Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
  16#include <linux/irqdomain.h>
  17#include <linux/slab.h>
  18#include <linux/sched.h>
  19#include <linux/sched/rt.h>
  20#include <linux/sched/task.h>
 
  21#include <uapi/linux/sched/types.h>
  22#include <linux/task_work.h>
  23
  24#include "internals.h"
  25
  26#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
  27__read_mostly bool force_irqthreads;
  28EXPORT_SYMBOL_GPL(force_irqthreads);
  29
  30static int __init setup_forced_irqthreads(char *arg)
  31{
  32	force_irqthreads = true;
  33	return 0;
  34}
  35early_param("threadirqs", setup_forced_irqthreads);
  36#endif
  37
  38static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
  39{
  40	struct irq_data *irqd = irq_desc_get_irq_data(desc);
  41	bool inprogress;
  42
  43	do {
  44		unsigned long flags;
  45
  46		/*
  47		 * Wait until we're out of the critical section.  This might
  48		 * give the wrong answer due to the lack of memory barriers.
  49		 */
  50		while (irqd_irq_inprogress(&desc->irq_data))
  51			cpu_relax();
  52
  53		/* Ok, that indicated we're done: double-check carefully. */
  54		raw_spin_lock_irqsave(&desc->lock, flags);
  55		inprogress = irqd_irq_inprogress(&desc->irq_data);
  56
  57		/*
  58		 * If requested and supported, check at the chip whether it
  59		 * is in flight at the hardware level, i.e. already pending
  60		 * in a CPU and waiting for service and acknowledge.
  61		 */
  62		if (!inprogress && sync_chip) {
  63			/*
  64			 * Ignore the return code. inprogress is only updated
  65			 * when the chip supports it.
  66			 */
  67			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
  68						&inprogress);
  69		}
  70		raw_spin_unlock_irqrestore(&desc->lock, flags);
  71
  72		/* Oops, that failed? */
  73	} while (inprogress);
  74}
  75
  76/**
  77 *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  78 *	@irq: interrupt number to wait for
  79 *
  80 *	This function waits for any pending hard IRQ handlers for this
  81 *	interrupt to complete before returning. If you use this
  82 *	function while holding a resource the IRQ handler may need you
  83 *	will deadlock. It does not take associated threaded handlers
  84 *	into account.
  85 *
  86 *	Do not use this for shutdown scenarios where you must be sure
  87 *	that all parts (hardirq and threaded handler) have completed.
  88 *
  89 *	Returns: false if a threaded handler is active.
  90 *
  91 *	This function may be called - with care - from IRQ context.
  92 *
  93 *	It does not check whether there is an interrupt in flight at the
  94 *	hardware level, but not serviced yet, as this might deadlock when
  95 *	called with interrupts disabled and the target CPU of the interrupt
  96 *	is the current CPU.
  97 */
  98bool synchronize_hardirq(unsigned int irq)
  99{
 100	struct irq_desc *desc = irq_to_desc(irq);
 101
 102	if (desc) {
 103		__synchronize_hardirq(desc, false);
 104		return !atomic_read(&desc->threads_active);
 105	}
 106
 107	return true;
 108}
 109EXPORT_SYMBOL(synchronize_hardirq);
 110
 111/**
 112 *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
 113 *	@irq: interrupt number to wait for
 114 *
 115 *	This function waits for any pending IRQ handlers for this interrupt
 116 *	to complete before returning. If you use this function while
 117 *	holding a resource the IRQ handler may need you will deadlock.
 118 *
 119 *	Can only be called from preemptible code as it might sleep when
 120 *	an interrupt thread is associated to @irq.
 121 *
 122 *	It optionally makes sure (when the irq chip supports that method)
 123 *	that the interrupt is not pending in any CPU and waiting for
 124 *	service.
 125 */
 126void synchronize_irq(unsigned int irq)
 127{
 128	struct irq_desc *desc = irq_to_desc(irq);
 129
 130	if (desc) {
 131		__synchronize_hardirq(desc, true);
 132		/*
 133		 * We made sure that no hardirq handler is
 134		 * running. Now verify that no threaded handlers are
 135		 * active.
 136		 */
 137		wait_event(desc->wait_for_threads,
 138			   !atomic_read(&desc->threads_active));
 139	}
 140}
 141EXPORT_SYMBOL(synchronize_irq);
 142
 143#ifdef CONFIG_SMP
 144cpumask_var_t irq_default_affinity;
 145
 146static bool __irq_can_set_affinity(struct irq_desc *desc)
 147{
 148	if (!desc || !irqd_can_balance(&desc->irq_data) ||
 149	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 150		return false;
 151	return true;
 152}
 153
 154/**
 155 *	irq_can_set_affinity - Check if the affinity of a given irq can be set
 156 *	@irq:		Interrupt to check
 157 *
 158 */
 159int irq_can_set_affinity(unsigned int irq)
 160{
 161	return __irq_can_set_affinity(irq_to_desc(irq));
 162}
 163
 164/**
 165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 166 * @irq:	Interrupt to check
 167 *
 168 * Like irq_can_set_affinity() above, but additionally checks for the
 169 * AFFINITY_MANAGED flag.
 170 */
 171bool irq_can_set_affinity_usr(unsigned int irq)
 172{
 173	struct irq_desc *desc = irq_to_desc(irq);
 174
 175	return __irq_can_set_affinity(desc) &&
 176		!irqd_affinity_is_managed(&desc->irq_data);
 177}
 178
 179/**
 180 *	irq_set_thread_affinity - Notify irq threads to adjust affinity
 181 *	@desc:		irq descriptor which has affitnity changed
 182 *
 183 *	We just set IRQTF_AFFINITY and delegate the affinity setting
 184 *	to the interrupt thread itself. We can not call
 185 *	set_cpus_allowed_ptr() here as we hold desc->lock and this
 186 *	code can be called from hard interrupt context.
 187 */
 188void irq_set_thread_affinity(struct irq_desc *desc)
 189{
 190	struct irqaction *action;
 191
 192	for_each_action_of_desc(desc, action)
 193		if (action->thread)
 194			set_bit(IRQTF_AFFINITY, &action->thread_flags);
 195}
 196
 
 197static void irq_validate_effective_affinity(struct irq_data *data)
 198{
 199#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 200	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 201	struct irq_chip *chip = irq_data_get_irq_chip(data);
 202
 203	if (!cpumask_empty(m))
 204		return;
 205	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 206		     chip->name, data->irq);
 207#endif
 208}
 
 
 
 209
 210int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 211			bool force)
 212{
 213	struct irq_desc *desc = irq_data_to_desc(data);
 214	struct irq_chip *chip = irq_data_get_irq_chip(data);
 
 215	int ret;
 216
 
 
 
 217	if (!chip || !chip->irq_set_affinity)
 218		return -EINVAL;
 219
 220	ret = chip->irq_set_affinity(data, mask, force);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 221	switch (ret) {
 222	case IRQ_SET_MASK_OK:
 223	case IRQ_SET_MASK_OK_DONE:
 224		cpumask_copy(desc->irq_common_data.affinity, mask);
 225		/* fall through */
 226	case IRQ_SET_MASK_OK_NOCOPY:
 227		irq_validate_effective_affinity(data);
 228		irq_set_thread_affinity(desc);
 229		ret = 0;
 230	}
 231
 232	return ret;
 233}
 234
 235#ifdef CONFIG_GENERIC_PENDING_IRQ
 236static inline int irq_set_affinity_pending(struct irq_data *data,
 237					   const struct cpumask *dest)
 238{
 239	struct irq_desc *desc = irq_data_to_desc(data);
 240
 241	irqd_set_move_pending(data);
 242	irq_copy_pending(desc, dest);
 243	return 0;
 244}
 245#else
 246static inline int irq_set_affinity_pending(struct irq_data *data,
 247					   const struct cpumask *dest)
 248{
 249	return -EBUSY;
 250}
 251#endif
 252
 253static int irq_try_set_affinity(struct irq_data *data,
 254				const struct cpumask *dest, bool force)
 255{
 256	int ret = irq_do_set_affinity(data, dest, force);
 257
 258	/*
 259	 * In case that the underlying vector management is busy and the
 260	 * architecture supports the generic pending mechanism then utilize
 261	 * this to avoid returning an error to user space.
 262	 */
 263	if (ret == -EBUSY && !force)
 264		ret = irq_set_affinity_pending(data, dest);
 265	return ret;
 266}
 267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 268int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 269			    bool force)
 270{
 271	struct irq_chip *chip = irq_data_get_irq_chip(data);
 272	struct irq_desc *desc = irq_data_to_desc(data);
 273	int ret = 0;
 274
 275	if (!chip || !chip->irq_set_affinity)
 276		return -EINVAL;
 277
 
 
 
 278	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
 279		ret = irq_try_set_affinity(data, mask, force);
 280	} else {
 281		irqd_set_move_pending(data);
 282		irq_copy_pending(desc, mask);
 283	}
 284
 285	if (desc->affinity_notify) {
 286		kref_get(&desc->affinity_notify->kref);
 287		schedule_work(&desc->affinity_notify->work);
 
 
 
 
 288	}
 289	irqd_set(data, IRQD_AFFINITY_SET);
 290
 291	return ret;
 292}
 293
 294int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295{
 296	struct irq_desc *desc = irq_to_desc(irq);
 297	unsigned long flags;
 298	int ret;
 299
 300	if (!desc)
 301		return -EINVAL;
 302
 303	raw_spin_lock_irqsave(&desc->lock, flags);
 304	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 305	raw_spin_unlock_irqrestore(&desc->lock, flags);
 306	return ret;
 307}
 308
 309int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310{
 311	unsigned long flags;
 312	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 313
 314	if (!desc)
 315		return -EINVAL;
 316	desc->affinity_hint = m;
 317	irq_put_desc_unlock(desc, flags);
 318	/* set the initial affinity to prevent every interrupt being on CPU0 */
 319	if (m)
 320		__irq_set_affinity(irq, m, false);
 321	return 0;
 322}
 323EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
 324
 325static void irq_affinity_notify(struct work_struct *work)
 326{
 327	struct irq_affinity_notify *notify =
 328		container_of(work, struct irq_affinity_notify, work);
 329	struct irq_desc *desc = irq_to_desc(notify->irq);
 330	cpumask_var_t cpumask;
 331	unsigned long flags;
 332
 333	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 334		goto out;
 335
 336	raw_spin_lock_irqsave(&desc->lock, flags);
 337	if (irq_move_pending(&desc->irq_data))
 338		irq_get_pending(cpumask, desc);
 339	else
 340		cpumask_copy(cpumask, desc->irq_common_data.affinity);
 341	raw_spin_unlock_irqrestore(&desc->lock, flags);
 342
 343	notify->notify(notify, cpumask);
 344
 345	free_cpumask_var(cpumask);
 346out:
 347	kref_put(&notify->kref, notify->release);
 348}
 349
 350/**
 351 *	irq_set_affinity_notifier - control notification of IRQ affinity changes
 352 *	@irq:		Interrupt for which to enable/disable notification
 353 *	@notify:	Context for notification, or %NULL to disable
 354 *			notification.  Function pointers must be initialised;
 355 *			the other fields will be initialised by this function.
 356 *
 357 *	Must be called in process context.  Notification may only be enabled
 358 *	after the IRQ is allocated and must be disabled before the IRQ is
 359 *	freed using free_irq().
 360 */
 361int
 362irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 363{
 364	struct irq_desc *desc = irq_to_desc(irq);
 365	struct irq_affinity_notify *old_notify;
 366	unsigned long flags;
 367
 368	/* The release function is promised process context */
 369	might_sleep();
 370
 371	if (!desc || desc->istate & IRQS_NMI)
 372		return -EINVAL;
 373
 374	/* Complete initialisation of *notify */
 375	if (notify) {
 376		notify->irq = irq;
 377		kref_init(&notify->kref);
 378		INIT_WORK(&notify->work, irq_affinity_notify);
 379	}
 380
 381	raw_spin_lock_irqsave(&desc->lock, flags);
 382	old_notify = desc->affinity_notify;
 383	desc->affinity_notify = notify;
 384	raw_spin_unlock_irqrestore(&desc->lock, flags);
 385
 386	if (old_notify) {
 387		cancel_work_sync(&old_notify->work);
 
 
 
 388		kref_put(&old_notify->kref, old_notify->release);
 389	}
 390
 391	return 0;
 392}
 393EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 394
 395#ifndef CONFIG_AUTO_IRQ_AFFINITY
 396/*
 397 * Generic version of the affinity autoselector.
 398 */
 399int irq_setup_affinity(struct irq_desc *desc)
 400{
 401	struct cpumask *set = irq_default_affinity;
 402	int ret, node = irq_desc_get_node(desc);
 403	static DEFINE_RAW_SPINLOCK(mask_lock);
 404	static struct cpumask mask;
 405
 406	/* Excludes PER_CPU and NO_BALANCE interrupts */
 407	if (!__irq_can_set_affinity(desc))
 408		return 0;
 409
 410	raw_spin_lock(&mask_lock);
 411	/*
 412	 * Preserve the managed affinity setting and a userspace affinity
 413	 * setup, but make sure that one of the targets is online.
 414	 */
 415	if (irqd_affinity_is_managed(&desc->irq_data) ||
 416	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 417		if (cpumask_intersects(desc->irq_common_data.affinity,
 418				       cpu_online_mask))
 419			set = desc->irq_common_data.affinity;
 420		else
 421			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 422	}
 423
 424	cpumask_and(&mask, cpu_online_mask, set);
 425	if (cpumask_empty(&mask))
 426		cpumask_copy(&mask, cpu_online_mask);
 427
 428	if (node != NUMA_NO_NODE) {
 429		const struct cpumask *nodemask = cpumask_of_node(node);
 430
 431		/* make sure at least one of the cpus in nodemask is online */
 432		if (cpumask_intersects(&mask, nodemask))
 433			cpumask_and(&mask, &mask, nodemask);
 434	}
 435	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 436	raw_spin_unlock(&mask_lock);
 437	return ret;
 438}
 439#else
 440/* Wrapper for ALPHA specific affinity selector magic */
 441int irq_setup_affinity(struct irq_desc *desc)
 442{
 443	return irq_select_affinity(irq_desc_get_irq(desc));
 444}
 445#endif
 446
 447/*
 448 * Called when a bogus affinity is set via /proc/irq
 449 */
 450int irq_select_affinity_usr(unsigned int irq)
 451{
 452	struct irq_desc *desc = irq_to_desc(irq);
 453	unsigned long flags;
 454	int ret;
 455
 456	raw_spin_lock_irqsave(&desc->lock, flags);
 457	ret = irq_setup_affinity(desc);
 458	raw_spin_unlock_irqrestore(&desc->lock, flags);
 459	return ret;
 460}
 461#endif
 462
 463/**
 464 *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 465 *	@irq: interrupt number to set affinity
 466 *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 467 *	            specific data for percpu_devid interrupts
 468 *
 469 *	This function uses the vCPU specific data to set the vCPU
 470 *	affinity for an irq. The vCPU specific data is passed from
 471 *	outside, such as KVM. One example code path is as below:
 472 *	KVM -> IOMMU -> irq_set_vcpu_affinity().
 473 */
 474int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 475{
 476	unsigned long flags;
 477	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 478	struct irq_data *data;
 479	struct irq_chip *chip;
 480	int ret = -ENOSYS;
 481
 482	if (!desc)
 483		return -EINVAL;
 484
 485	data = irq_desc_get_irq_data(desc);
 486	do {
 487		chip = irq_data_get_irq_chip(data);
 488		if (chip && chip->irq_set_vcpu_affinity)
 489			break;
 490#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 491		data = data->parent_data;
 492#else
 493		data = NULL;
 494#endif
 495	} while (data);
 496
 497	if (data)
 498		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 499	irq_put_desc_unlock(desc, flags);
 500
 501	return ret;
 502}
 503EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 504
 505void __disable_irq(struct irq_desc *desc)
 506{
 507	if (!desc->depth++)
 508		irq_disable(desc);
 509}
 510
 511static int __disable_irq_nosync(unsigned int irq)
 512{
 513	unsigned long flags;
 514	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 515
 516	if (!desc)
 517		return -EINVAL;
 518	__disable_irq(desc);
 519	irq_put_desc_busunlock(desc, flags);
 520	return 0;
 521}
 522
 523/**
 524 *	disable_irq_nosync - disable an irq without waiting
 525 *	@irq: Interrupt to disable
 526 *
 527 *	Disable the selected interrupt line.  Disables and Enables are
 528 *	nested.
 529 *	Unlike disable_irq(), this function does not ensure existing
 530 *	instances of the IRQ handler have completed before returning.
 531 *
 532 *	This function may be called from IRQ context.
 533 */
 534void disable_irq_nosync(unsigned int irq)
 535{
 536	__disable_irq_nosync(irq);
 537}
 538EXPORT_SYMBOL(disable_irq_nosync);
 539
 540/**
 541 *	disable_irq - disable an irq and wait for completion
 542 *	@irq: Interrupt to disable
 543 *
 544 *	Disable the selected interrupt line.  Enables and Disables are
 545 *	nested.
 546 *	This function waits for any pending IRQ handlers for this interrupt
 547 *	to complete before returning. If you use this function while
 548 *	holding a resource the IRQ handler may need you will deadlock.
 549 *
 550 *	This function may be called - with care - from IRQ context.
 551 */
 552void disable_irq(unsigned int irq)
 553{
 554	if (!__disable_irq_nosync(irq))
 555		synchronize_irq(irq);
 556}
 557EXPORT_SYMBOL(disable_irq);
 558
 559/**
 560 *	disable_hardirq - disables an irq and waits for hardirq completion
 561 *	@irq: Interrupt to disable
 562 *
 563 *	Disable the selected interrupt line.  Enables and Disables are
 564 *	nested.
 565 *	This function waits for any pending hard IRQ handlers for this
 566 *	interrupt to complete before returning. If you use this function while
 567 *	holding a resource the hard IRQ handler may need you will deadlock.
 568 *
 569 *	When used to optimistically disable an interrupt from atomic context
 570 *	the return value must be checked.
 571 *
 572 *	Returns: false if a threaded handler is active.
 573 *
 574 *	This function may be called - with care - from IRQ context.
 575 */
 576bool disable_hardirq(unsigned int irq)
 577{
 578	if (!__disable_irq_nosync(irq))
 579		return synchronize_hardirq(irq);
 580
 581	return false;
 582}
 583EXPORT_SYMBOL_GPL(disable_hardirq);
 584
 585/**
 586 *	disable_nmi_nosync - disable an nmi without waiting
 587 *	@irq: Interrupt to disable
 588 *
 589 *	Disable the selected interrupt line. Disables and enables are
 590 *	nested.
 591 *	The interrupt to disable must have been requested through request_nmi.
 592 *	Unlike disable_nmi(), this function does not ensure existing
 593 *	instances of the IRQ handler have completed before returning.
 594 */
 595void disable_nmi_nosync(unsigned int irq)
 596{
 597	disable_irq_nosync(irq);
 598}
 599
 600void __enable_irq(struct irq_desc *desc)
 601{
 602	switch (desc->depth) {
 603	case 0:
 604 err_out:
 605		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 606		     irq_desc_get_irq(desc));
 607		break;
 608	case 1: {
 609		if (desc->istate & IRQS_SUSPENDED)
 610			goto err_out;
 611		/* Prevent probing on this irq: */
 612		irq_settings_set_noprobe(desc);
 613		/*
 614		 * Call irq_startup() not irq_enable() here because the
 615		 * interrupt might be marked NOAUTOEN. So irq_startup()
 616		 * needs to be invoked when it gets enabled the first
 617		 * time. If it was already started up, then irq_startup()
 618		 * will invoke irq_enable() under the hood.
 619		 */
 620		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 621		break;
 622	}
 623	default:
 624		desc->depth--;
 625	}
 626}
 627
 628/**
 629 *	enable_irq - enable handling of an irq
 630 *	@irq: Interrupt to enable
 631 *
 632 *	Undoes the effect of one call to disable_irq().  If this
 633 *	matches the last disable, processing of interrupts on this
 634 *	IRQ line is re-enabled.
 635 *
 636 *	This function may be called from IRQ context only when
 637 *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 638 */
 639void enable_irq(unsigned int irq)
 640{
 641	unsigned long flags;
 642	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 643
 644	if (!desc)
 645		return;
 646	if (WARN(!desc->irq_data.chip,
 647		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 648		goto out;
 649
 650	__enable_irq(desc);
 651out:
 652	irq_put_desc_busunlock(desc, flags);
 653}
 654EXPORT_SYMBOL(enable_irq);
 655
 656/**
 657 *	enable_nmi - enable handling of an nmi
 658 *	@irq: Interrupt to enable
 659 *
 660 *	The interrupt to enable must have been requested through request_nmi.
 661 *	Undoes the effect of one call to disable_nmi(). If this
 662 *	matches the last disable, processing of interrupts on this
 663 *	IRQ line is re-enabled.
 664 */
 665void enable_nmi(unsigned int irq)
 666{
 667	enable_irq(irq);
 668}
 669
 670static int set_irq_wake_real(unsigned int irq, unsigned int on)
 671{
 672	struct irq_desc *desc = irq_to_desc(irq);
 673	int ret = -ENXIO;
 674
 675	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 676		return 0;
 677
 678	if (desc->irq_data.chip->irq_set_wake)
 679		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 680
 681	return ret;
 682}
 683
 684/**
 685 *	irq_set_irq_wake - control irq power management wakeup
 686 *	@irq:	interrupt to control
 687 *	@on:	enable/disable power management wakeup
 688 *
 689 *	Enable/disable power management wakeup mode, which is
 690 *	disabled by default.  Enables and disables must match,
 691 *	just as they match for non-wakeup mode support.
 692 *
 693 *	Wakeup mode lets this IRQ wake the system from sleep
 694 *	states like "suspend to RAM".
 
 
 
 
 
 
 
 695 */
 696int irq_set_irq_wake(unsigned int irq, unsigned int on)
 697{
 698	unsigned long flags;
 699	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 700	int ret = 0;
 701
 702	if (!desc)
 703		return -EINVAL;
 704
 705	/* Don't use NMIs as wake up interrupts please */
 706	if (desc->istate & IRQS_NMI) {
 707		ret = -EINVAL;
 708		goto out_unlock;
 709	}
 710
 711	/* wakeup-capable irqs can be shared between drivers that
 712	 * don't need to have the same sleep mode behaviors.
 713	 */
 714	if (on) {
 715		if (desc->wake_depth++ == 0) {
 716			ret = set_irq_wake_real(irq, on);
 717			if (ret)
 718				desc->wake_depth = 0;
 719			else
 720				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 721		}
 722	} else {
 723		if (desc->wake_depth == 0) {
 724			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 725		} else if (--desc->wake_depth == 0) {
 726			ret = set_irq_wake_real(irq, on);
 727			if (ret)
 728				desc->wake_depth = 1;
 729			else
 730				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 731		}
 732	}
 733
 734out_unlock:
 735	irq_put_desc_busunlock(desc, flags);
 736	return ret;
 737}
 738EXPORT_SYMBOL(irq_set_irq_wake);
 739
 740/*
 741 * Internal function that tells the architecture code whether a
 742 * particular irq has been exclusively allocated or is available
 743 * for driver use.
 744 */
 745int can_request_irq(unsigned int irq, unsigned long irqflags)
 746{
 747	unsigned long flags;
 748	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 749	int canrequest = 0;
 750
 751	if (!desc)
 752		return 0;
 753
 754	if (irq_settings_can_request(desc)) {
 755		if (!desc->action ||
 756		    irqflags & desc->action->flags & IRQF_SHARED)
 757			canrequest = 1;
 758	}
 759	irq_put_desc_unlock(desc, flags);
 760	return canrequest;
 761}
 762
 763int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 764{
 765	struct irq_chip *chip = desc->irq_data.chip;
 766	int ret, unmask = 0;
 767
 768	if (!chip || !chip->irq_set_type) {
 769		/*
 770		 * IRQF_TRIGGER_* but the PIC does not support multiple
 771		 * flow-types?
 772		 */
 773		pr_debug("No set_type function for IRQ %d (%s)\n",
 774			 irq_desc_get_irq(desc),
 775			 chip ? (chip->name ? : "unknown") : "unknown");
 776		return 0;
 777	}
 778
 779	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 780		if (!irqd_irq_masked(&desc->irq_data))
 781			mask_irq(desc);
 782		if (!irqd_irq_disabled(&desc->irq_data))
 783			unmask = 1;
 784	}
 785
 786	/* Mask all flags except trigger mode */
 787	flags &= IRQ_TYPE_SENSE_MASK;
 788	ret = chip->irq_set_type(&desc->irq_data, flags);
 789
 790	switch (ret) {
 791	case IRQ_SET_MASK_OK:
 792	case IRQ_SET_MASK_OK_DONE:
 793		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 794		irqd_set(&desc->irq_data, flags);
 795		/* fall through */
 796
 797	case IRQ_SET_MASK_OK_NOCOPY:
 798		flags = irqd_get_trigger_type(&desc->irq_data);
 799		irq_settings_set_trigger_mask(desc, flags);
 800		irqd_clear(&desc->irq_data, IRQD_LEVEL);
 801		irq_settings_clr_level(desc);
 802		if (flags & IRQ_TYPE_LEVEL_MASK) {
 803			irq_settings_set_level(desc);
 804			irqd_set(&desc->irq_data, IRQD_LEVEL);
 805		}
 806
 807		ret = 0;
 808		break;
 809	default:
 810		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
 811		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
 812	}
 813	if (unmask)
 814		unmask_irq(desc);
 815	return ret;
 816}
 817
 818#ifdef CONFIG_HARDIRQS_SW_RESEND
 819int irq_set_parent(int irq, int parent_irq)
 820{
 821	unsigned long flags;
 822	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 823
 824	if (!desc)
 825		return -EINVAL;
 826
 827	desc->parent_irq = parent_irq;
 828
 829	irq_put_desc_unlock(desc, flags);
 830	return 0;
 831}
 832EXPORT_SYMBOL_GPL(irq_set_parent);
 833#endif
 834
 835/*
 836 * Default primary interrupt handler for threaded interrupts. Is
 837 * assigned as primary handler when request_threaded_irq is called
 838 * with handler == NULL. Useful for oneshot interrupts.
 839 */
 840static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
 841{
 842	return IRQ_WAKE_THREAD;
 843}
 844
 845/*
 846 * Primary handler for nested threaded interrupts. Should never be
 847 * called.
 848 */
 849static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
 850{
 851	WARN(1, "Primary handler called for nested irq %d\n", irq);
 852	return IRQ_NONE;
 853}
 854
 855static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
 856{
 857	WARN(1, "Secondary action handler called for irq %d\n", irq);
 858	return IRQ_NONE;
 859}
 860
 861static int irq_wait_for_interrupt(struct irqaction *action)
 862{
 863	for (;;) {
 864		set_current_state(TASK_INTERRUPTIBLE);
 865
 866		if (kthread_should_stop()) {
 867			/* may need to run one last time */
 868			if (test_and_clear_bit(IRQTF_RUNTHREAD,
 869					       &action->thread_flags)) {
 870				__set_current_state(TASK_RUNNING);
 871				return 0;
 872			}
 873			__set_current_state(TASK_RUNNING);
 874			return -1;
 875		}
 876
 877		if (test_and_clear_bit(IRQTF_RUNTHREAD,
 878				       &action->thread_flags)) {
 879			__set_current_state(TASK_RUNNING);
 880			return 0;
 881		}
 882		schedule();
 883	}
 884}
 885
 886/*
 887 * Oneshot interrupts keep the irq line masked until the threaded
 888 * handler finished. unmask if the interrupt has not been disabled and
 889 * is marked MASKED.
 890 */
 891static void irq_finalize_oneshot(struct irq_desc *desc,
 892				 struct irqaction *action)
 893{
 894	if (!(desc->istate & IRQS_ONESHOT) ||
 895	    action->handler == irq_forced_secondary_handler)
 896		return;
 897again:
 898	chip_bus_lock(desc);
 899	raw_spin_lock_irq(&desc->lock);
 900
 901	/*
 902	 * Implausible though it may be we need to protect us against
 903	 * the following scenario:
 904	 *
 905	 * The thread is faster done than the hard interrupt handler
 906	 * on the other CPU. If we unmask the irq line then the
 907	 * interrupt can come in again and masks the line, leaves due
 908	 * to IRQS_INPROGRESS and the irq line is masked forever.
 909	 *
 910	 * This also serializes the state of shared oneshot handlers
 911	 * versus "desc->threads_onehsot |= action->thread_mask;" in
 912	 * irq_wake_thread(). See the comment there which explains the
 913	 * serialization.
 914	 */
 915	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
 916		raw_spin_unlock_irq(&desc->lock);
 917		chip_bus_sync_unlock(desc);
 918		cpu_relax();
 919		goto again;
 920	}
 921
 922	/*
 923	 * Now check again, whether the thread should run. Otherwise
 924	 * we would clear the threads_oneshot bit of this thread which
 925	 * was just set.
 926	 */
 927	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 928		goto out_unlock;
 929
 930	desc->threads_oneshot &= ~action->thread_mask;
 931
 932	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
 933	    irqd_irq_masked(&desc->irq_data))
 934		unmask_threaded_irq(desc);
 935
 936out_unlock:
 937	raw_spin_unlock_irq(&desc->lock);
 938	chip_bus_sync_unlock(desc);
 939}
 940
 941#ifdef CONFIG_SMP
 942/*
 943 * Check whether we need to change the affinity of the interrupt thread.
 944 */
 945static void
 946irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
 947{
 948	cpumask_var_t mask;
 949	bool valid = true;
 950
 951	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
 952		return;
 953
 954	/*
 955	 * In case we are out of memory we set IRQTF_AFFINITY again and
 956	 * try again next time
 957	 */
 958	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
 959		set_bit(IRQTF_AFFINITY, &action->thread_flags);
 960		return;
 961	}
 962
 963	raw_spin_lock_irq(&desc->lock);
 964	/*
 965	 * This code is triggered unconditionally. Check the affinity
 966	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
 967	 */
 968	if (cpumask_available(desc->irq_common_data.affinity)) {
 969		const struct cpumask *m;
 970
 971		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
 972		cpumask_copy(mask, m);
 973	} else {
 974		valid = false;
 975	}
 976	raw_spin_unlock_irq(&desc->lock);
 977
 978	if (valid)
 979		set_cpus_allowed_ptr(current, mask);
 980	free_cpumask_var(mask);
 981}
 982#else
 983static inline void
 984irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
 985#endif
 986
 987/*
 988 * Interrupts which are not explicitly requested as threaded
 989 * interrupts rely on the implicit bh/preempt disable of the hard irq
 990 * context. So we need to disable bh here to avoid deadlocks and other
 991 * side effects.
 992 */
 993static irqreturn_t
 994irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
 995{
 996	irqreturn_t ret;
 997
 998	local_bh_disable();
 
 
 999	ret = action->thread_fn(action->irq, action->dev_id);
1000	if (ret == IRQ_HANDLED)
1001		atomic_inc(&desc->threads_handled);
1002
1003	irq_finalize_oneshot(desc, action);
 
 
1004	local_bh_enable();
1005	return ret;
1006}
1007
1008/*
1009 * Interrupts explicitly requested as threaded interrupts want to be
1010 * preemtible - many of them need to sleep and wait for slow busses to
1011 * complete.
1012 */
1013static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1014		struct irqaction *action)
1015{
1016	irqreturn_t ret;
1017
1018	ret = action->thread_fn(action->irq, action->dev_id);
1019	if (ret == IRQ_HANDLED)
1020		atomic_inc(&desc->threads_handled);
1021
1022	irq_finalize_oneshot(desc, action);
1023	return ret;
1024}
1025
1026static void wake_threads_waitq(struct irq_desc *desc)
1027{
1028	if (atomic_dec_and_test(&desc->threads_active))
1029		wake_up(&desc->wait_for_threads);
1030}
1031
1032static void irq_thread_dtor(struct callback_head *unused)
1033{
1034	struct task_struct *tsk = current;
1035	struct irq_desc *desc;
1036	struct irqaction *action;
1037
1038	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1039		return;
1040
1041	action = kthread_data(tsk);
1042
1043	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1044	       tsk->comm, tsk->pid, action->irq);
1045
1046
1047	desc = irq_to_desc(action->irq);
1048	/*
1049	 * If IRQTF_RUNTHREAD is set, we need to decrement
1050	 * desc->threads_active and wake possible waiters.
1051	 */
1052	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1053		wake_threads_waitq(desc);
1054
1055	/* Prevent a stale desc->threads_oneshot */
1056	irq_finalize_oneshot(desc, action);
1057}
1058
1059static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1060{
1061	struct irqaction *secondary = action->secondary;
1062
1063	if (WARN_ON_ONCE(!secondary))
1064		return;
1065
1066	raw_spin_lock_irq(&desc->lock);
1067	__irq_wake_thread(desc, secondary);
1068	raw_spin_unlock_irq(&desc->lock);
1069}
1070
1071/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072 * Interrupt handler thread
1073 */
1074static int irq_thread(void *data)
1075{
1076	struct callback_head on_exit_work;
1077	struct irqaction *action = data;
1078	struct irq_desc *desc = irq_to_desc(action->irq);
1079	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1080			struct irqaction *action);
1081
1082	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1083					&action->thread_flags))
 
 
 
 
1084		handler_fn = irq_forced_thread_fn;
1085	else
1086		handler_fn = irq_thread_fn;
1087
1088	init_task_work(&on_exit_work, irq_thread_dtor);
1089	task_work_add(current, &on_exit_work, false);
1090
1091	irq_thread_check_affinity(desc, action);
1092
1093	while (!irq_wait_for_interrupt(action)) {
1094		irqreturn_t action_ret;
1095
1096		irq_thread_check_affinity(desc, action);
1097
1098		action_ret = handler_fn(desc, action);
1099		if (action_ret == IRQ_WAKE_THREAD)
1100			irq_wake_secondary(desc, action);
1101
1102		wake_threads_waitq(desc);
1103	}
1104
1105	/*
1106	 * This is the regular exit path. __free_irq() is stopping the
1107	 * thread via kthread_stop() after calling
1108	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1109	 * oneshot mask bit can be set.
1110	 */
1111	task_work_cancel(current, irq_thread_dtor);
1112	return 0;
1113}
1114
1115/**
1116 *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1117 *	@irq:		Interrupt line
1118 *	@dev_id:	Device identity for which the thread should be woken
1119 *
1120 */
1121void irq_wake_thread(unsigned int irq, void *dev_id)
1122{
1123	struct irq_desc *desc = irq_to_desc(irq);
1124	struct irqaction *action;
1125	unsigned long flags;
1126
1127	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1128		return;
1129
1130	raw_spin_lock_irqsave(&desc->lock, flags);
1131	for_each_action_of_desc(desc, action) {
1132		if (action->dev_id == dev_id) {
1133			if (action->thread)
1134				__irq_wake_thread(desc, action);
1135			break;
1136		}
1137	}
1138	raw_spin_unlock_irqrestore(&desc->lock, flags);
1139}
1140EXPORT_SYMBOL_GPL(irq_wake_thread);
1141
1142static int irq_setup_forced_threading(struct irqaction *new)
1143{
1144	if (!force_irqthreads)
1145		return 0;
1146	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1147		return 0;
1148
1149	/*
1150	 * No further action required for interrupts which are requested as
1151	 * threaded interrupts already
1152	 */
1153	if (new->handler == irq_default_primary_handler)
1154		return 0;
1155
1156	new->flags |= IRQF_ONESHOT;
1157
1158	/*
1159	 * Handle the case where we have a real primary handler and a
1160	 * thread handler. We force thread them as well by creating a
1161	 * secondary action.
1162	 */
1163	if (new->handler && new->thread_fn) {
1164		/* Allocate the secondary action */
1165		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1166		if (!new->secondary)
1167			return -ENOMEM;
1168		new->secondary->handler = irq_forced_secondary_handler;
1169		new->secondary->thread_fn = new->thread_fn;
1170		new->secondary->dev_id = new->dev_id;
1171		new->secondary->irq = new->irq;
1172		new->secondary->name = new->name;
1173	}
1174	/* Deal with the primary handler */
1175	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1176	new->thread_fn = new->handler;
1177	new->handler = irq_default_primary_handler;
1178	return 0;
1179}
1180
1181static int irq_request_resources(struct irq_desc *desc)
1182{
1183	struct irq_data *d = &desc->irq_data;
1184	struct irq_chip *c = d->chip;
1185
1186	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1187}
1188
1189static void irq_release_resources(struct irq_desc *desc)
1190{
1191	struct irq_data *d = &desc->irq_data;
1192	struct irq_chip *c = d->chip;
1193
1194	if (c->irq_release_resources)
1195		c->irq_release_resources(d);
1196}
1197
1198static bool irq_supports_nmi(struct irq_desc *desc)
1199{
1200	struct irq_data *d = irq_desc_get_irq_data(desc);
1201
1202#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1203	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1204	if (d->parent_data)
1205		return false;
1206#endif
1207	/* Don't support NMIs for chips behind a slow bus */
1208	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1209		return false;
1210
1211	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1212}
1213
1214static int irq_nmi_setup(struct irq_desc *desc)
1215{
1216	struct irq_data *d = irq_desc_get_irq_data(desc);
1217	struct irq_chip *c = d->chip;
1218
1219	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1220}
1221
1222static void irq_nmi_teardown(struct irq_desc *desc)
1223{
1224	struct irq_data *d = irq_desc_get_irq_data(desc);
1225	struct irq_chip *c = d->chip;
1226
1227	if (c->irq_nmi_teardown)
1228		c->irq_nmi_teardown(d);
1229}
1230
1231static int
1232setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1233{
1234	struct task_struct *t;
1235	struct sched_param param = {
1236		.sched_priority = MAX_USER_RT_PRIO/2,
1237	};
1238
1239	if (!secondary) {
1240		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1241				   new->name);
1242	} else {
1243		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1244				   new->name);
1245		param.sched_priority -= 1;
1246	}
1247
1248	if (IS_ERR(t))
1249		return PTR_ERR(t);
1250
1251	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1252
1253	/*
1254	 * We keep the reference to the task struct even if
1255	 * the thread dies to avoid that the interrupt code
1256	 * references an already freed task_struct.
1257	 */
1258	new->thread = get_task_struct(t);
1259	/*
1260	 * Tell the thread to set its affinity. This is
1261	 * important for shared interrupt handlers as we do
1262	 * not invoke setup_affinity() for the secondary
1263	 * handlers as everything is already set up. Even for
1264	 * interrupts marked with IRQF_NO_BALANCE this is
1265	 * correct as we want the thread to move to the cpu(s)
1266	 * on which the requesting code placed the interrupt.
1267	 */
1268	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1269	return 0;
1270}
1271
1272/*
1273 * Internal function to register an irqaction - typically used to
1274 * allocate special interrupts that are part of the architecture.
1275 *
1276 * Locking rules:
1277 *
1278 * desc->request_mutex	Provides serialization against a concurrent free_irq()
1279 *   chip_bus_lock	Provides serialization for slow bus operations
1280 *     desc->lock	Provides serialization against hard interrupts
1281 *
1282 * chip_bus_lock and desc->lock are sufficient for all other management and
1283 * interrupt related functions. desc->request_mutex solely serializes
1284 * request/free_irq().
1285 */
1286static int
1287__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1288{
1289	struct irqaction *old, **old_ptr;
1290	unsigned long flags, thread_mask = 0;
1291	int ret, nested, shared = 0;
1292
1293	if (!desc)
1294		return -EINVAL;
1295
1296	if (desc->irq_data.chip == &no_irq_chip)
1297		return -ENOSYS;
1298	if (!try_module_get(desc->owner))
1299		return -ENODEV;
1300
1301	new->irq = irq;
1302
1303	/*
1304	 * If the trigger type is not specified by the caller,
1305	 * then use the default for this interrupt.
1306	 */
1307	if (!(new->flags & IRQF_TRIGGER_MASK))
1308		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1309
1310	/*
1311	 * Check whether the interrupt nests into another interrupt
1312	 * thread.
1313	 */
1314	nested = irq_settings_is_nested_thread(desc);
1315	if (nested) {
1316		if (!new->thread_fn) {
1317			ret = -EINVAL;
1318			goto out_mput;
1319		}
1320		/*
1321		 * Replace the primary handler which was provided from
1322		 * the driver for non nested interrupt handling by the
1323		 * dummy function which warns when called.
1324		 */
1325		new->handler = irq_nested_primary_handler;
1326	} else {
1327		if (irq_settings_can_thread(desc)) {
1328			ret = irq_setup_forced_threading(new);
1329			if (ret)
1330				goto out_mput;
1331		}
1332	}
1333
1334	/*
1335	 * Create a handler thread when a thread function is supplied
1336	 * and the interrupt does not nest into another interrupt
1337	 * thread.
1338	 */
1339	if (new->thread_fn && !nested) {
1340		ret = setup_irq_thread(new, irq, false);
1341		if (ret)
1342			goto out_mput;
1343		if (new->secondary) {
1344			ret = setup_irq_thread(new->secondary, irq, true);
1345			if (ret)
1346				goto out_thread;
1347		}
1348	}
1349
1350	/*
1351	 * Drivers are often written to work w/o knowledge about the
1352	 * underlying irq chip implementation, so a request for a
1353	 * threaded irq without a primary hard irq context handler
1354	 * requires the ONESHOT flag to be set. Some irq chips like
1355	 * MSI based interrupts are per se one shot safe. Check the
1356	 * chip flags, so we can avoid the unmask dance at the end of
1357	 * the threaded handler for those.
1358	 */
1359	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1360		new->flags &= ~IRQF_ONESHOT;
1361
1362	/*
1363	 * Protects against a concurrent __free_irq() call which might wait
1364	 * for synchronize_hardirq() to complete without holding the optional
1365	 * chip bus lock and desc->lock. Also protects against handing out
1366	 * a recycled oneshot thread_mask bit while it's still in use by
1367	 * its previous owner.
1368	 */
1369	mutex_lock(&desc->request_mutex);
1370
1371	/*
1372	 * Acquire bus lock as the irq_request_resources() callback below
1373	 * might rely on the serialization or the magic power management
1374	 * functions which are abusing the irq_bus_lock() callback,
1375	 */
1376	chip_bus_lock(desc);
1377
1378	/* First installed action requests resources. */
1379	if (!desc->action) {
1380		ret = irq_request_resources(desc);
1381		if (ret) {
1382			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1383			       new->name, irq, desc->irq_data.chip->name);
1384			goto out_bus_unlock;
1385		}
1386	}
1387
1388	/*
1389	 * The following block of code has to be executed atomically
1390	 * protected against a concurrent interrupt and any of the other
1391	 * management calls which are not serialized via
1392	 * desc->request_mutex or the optional bus lock.
1393	 */
1394	raw_spin_lock_irqsave(&desc->lock, flags);
1395	old_ptr = &desc->action;
1396	old = *old_ptr;
1397	if (old) {
1398		/*
1399		 * Can't share interrupts unless both agree to and are
1400		 * the same type (level, edge, polarity). So both flag
1401		 * fields must have IRQF_SHARED set and the bits which
1402		 * set the trigger type must match. Also all must
1403		 * agree on ONESHOT.
1404		 * Interrupt lines used for NMIs cannot be shared.
1405		 */
1406		unsigned int oldtype;
1407
1408		if (desc->istate & IRQS_NMI) {
1409			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1410				new->name, irq, desc->irq_data.chip->name);
1411			ret = -EINVAL;
1412			goto out_unlock;
1413		}
1414
1415		/*
1416		 * If nobody did set the configuration before, inherit
1417		 * the one provided by the requester.
1418		 */
1419		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1420			oldtype = irqd_get_trigger_type(&desc->irq_data);
1421		} else {
1422			oldtype = new->flags & IRQF_TRIGGER_MASK;
1423			irqd_set_trigger_type(&desc->irq_data, oldtype);
1424		}
1425
1426		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1427		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1428		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1429			goto mismatch;
1430
1431		/* All handlers must agree on per-cpuness */
1432		if ((old->flags & IRQF_PERCPU) !=
1433		    (new->flags & IRQF_PERCPU))
1434			goto mismatch;
1435
1436		/* add new interrupt at end of irq queue */
1437		do {
1438			/*
1439			 * Or all existing action->thread_mask bits,
1440			 * so we can find the next zero bit for this
1441			 * new action.
1442			 */
1443			thread_mask |= old->thread_mask;
1444			old_ptr = &old->next;
1445			old = *old_ptr;
1446		} while (old);
1447		shared = 1;
1448	}
1449
1450	/*
1451	 * Setup the thread mask for this irqaction for ONESHOT. For
1452	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1453	 * conditional in irq_wake_thread().
1454	 */
1455	if (new->flags & IRQF_ONESHOT) {
1456		/*
1457		 * Unlikely to have 32 resp 64 irqs sharing one line,
1458		 * but who knows.
1459		 */
1460		if (thread_mask == ~0UL) {
1461			ret = -EBUSY;
1462			goto out_unlock;
1463		}
1464		/*
1465		 * The thread_mask for the action is or'ed to
1466		 * desc->thread_active to indicate that the
1467		 * IRQF_ONESHOT thread handler has been woken, but not
1468		 * yet finished. The bit is cleared when a thread
1469		 * completes. When all threads of a shared interrupt
1470		 * line have completed desc->threads_active becomes
1471		 * zero and the interrupt line is unmasked. See
1472		 * handle.c:irq_wake_thread() for further information.
1473		 *
1474		 * If no thread is woken by primary (hard irq context)
1475		 * interrupt handlers, then desc->threads_active is
1476		 * also checked for zero to unmask the irq line in the
1477		 * affected hard irq flow handlers
1478		 * (handle_[fasteoi|level]_irq).
1479		 *
1480		 * The new action gets the first zero bit of
1481		 * thread_mask assigned. See the loop above which or's
1482		 * all existing action->thread_mask bits.
1483		 */
1484		new->thread_mask = 1UL << ffz(thread_mask);
1485
1486	} else if (new->handler == irq_default_primary_handler &&
1487		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1488		/*
1489		 * The interrupt was requested with handler = NULL, so
1490		 * we use the default primary handler for it. But it
1491		 * does not have the oneshot flag set. In combination
1492		 * with level interrupts this is deadly, because the
1493		 * default primary handler just wakes the thread, then
1494		 * the irq lines is reenabled, but the device still
1495		 * has the level irq asserted. Rinse and repeat....
1496		 *
1497		 * While this works for edge type interrupts, we play
1498		 * it safe and reject unconditionally because we can't
1499		 * say for sure which type this interrupt really
1500		 * has. The type flags are unreliable as the
1501		 * underlying chip implementation can override them.
1502		 */
1503		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1504		       irq);
1505		ret = -EINVAL;
1506		goto out_unlock;
1507	}
1508
1509	if (!shared) {
1510		init_waitqueue_head(&desc->wait_for_threads);
1511
1512		/* Setup the type (level, edge polarity) if configured: */
1513		if (new->flags & IRQF_TRIGGER_MASK) {
1514			ret = __irq_set_trigger(desc,
1515						new->flags & IRQF_TRIGGER_MASK);
1516
1517			if (ret)
1518				goto out_unlock;
1519		}
1520
1521		/*
1522		 * Activate the interrupt. That activation must happen
1523		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1524		 * and the callers are supposed to handle
1525		 * that. enable_irq() of an interrupt requested with
1526		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1527		 * keeps it in shutdown mode, it merily associates
1528		 * resources if necessary and if that's not possible it
1529		 * fails. Interrupts which are in managed shutdown mode
1530		 * will simply ignore that activation request.
1531		 */
1532		ret = irq_activate(desc);
1533		if (ret)
1534			goto out_unlock;
1535
1536		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1537				  IRQS_ONESHOT | IRQS_WAITING);
1538		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1539
1540		if (new->flags & IRQF_PERCPU) {
1541			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1542			irq_settings_set_per_cpu(desc);
 
 
1543		}
1544
 
 
 
1545		if (new->flags & IRQF_ONESHOT)
1546			desc->istate |= IRQS_ONESHOT;
1547
1548		/* Exclude IRQ from balancing if requested */
1549		if (new->flags & IRQF_NOBALANCING) {
1550			irq_settings_set_no_balancing(desc);
1551			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1552		}
1553
1554		if (irq_settings_can_autoenable(desc)) {
 
1555			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1556		} else {
1557			/*
1558			 * Shared interrupts do not go well with disabling
1559			 * auto enable. The sharing interrupt might request
1560			 * it while it's still disabled and then wait for
1561			 * interrupts forever.
1562			 */
1563			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1564			/* Undo nested disables: */
1565			desc->depth = 1;
1566		}
1567
1568	} else if (new->flags & IRQF_TRIGGER_MASK) {
1569		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1570		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1571
1572		if (nmsk != omsk)
1573			/* hope the handler works with current  trigger mode */
1574			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1575				irq, omsk, nmsk);
1576	}
1577
1578	*old_ptr = new;
1579
1580	irq_pm_install_action(desc, new);
1581
1582	/* Reset broken irq detection when installing new handler */
1583	desc->irq_count = 0;
1584	desc->irqs_unhandled = 0;
1585
1586	/*
1587	 * Check whether we disabled the irq via the spurious handler
1588	 * before. Reenable it and give it another chance.
1589	 */
1590	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1591		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1592		__enable_irq(desc);
1593	}
1594
1595	raw_spin_unlock_irqrestore(&desc->lock, flags);
1596	chip_bus_sync_unlock(desc);
1597	mutex_unlock(&desc->request_mutex);
1598
1599	irq_setup_timings(desc, new);
1600
1601	/*
1602	 * Strictly no need to wake it up, but hung_task complains
1603	 * when no hard interrupt wakes the thread up.
1604	 */
1605	if (new->thread)
1606		wake_up_process(new->thread);
1607	if (new->secondary)
1608		wake_up_process(new->secondary->thread);
1609
1610	register_irq_proc(irq, desc);
1611	new->dir = NULL;
1612	register_handler_proc(irq, new);
1613	return 0;
1614
1615mismatch:
1616	if (!(new->flags & IRQF_PROBE_SHARED)) {
1617		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1618		       irq, new->flags, new->name, old->flags, old->name);
1619#ifdef CONFIG_DEBUG_SHIRQ
1620		dump_stack();
1621#endif
1622	}
1623	ret = -EBUSY;
1624
1625out_unlock:
1626	raw_spin_unlock_irqrestore(&desc->lock, flags);
1627
1628	if (!desc->action)
1629		irq_release_resources(desc);
1630out_bus_unlock:
1631	chip_bus_sync_unlock(desc);
1632	mutex_unlock(&desc->request_mutex);
1633
1634out_thread:
1635	if (new->thread) {
1636		struct task_struct *t = new->thread;
1637
1638		new->thread = NULL;
1639		kthread_stop(t);
1640		put_task_struct(t);
1641	}
1642	if (new->secondary && new->secondary->thread) {
1643		struct task_struct *t = new->secondary->thread;
1644
1645		new->secondary->thread = NULL;
1646		kthread_stop(t);
1647		put_task_struct(t);
1648	}
1649out_mput:
1650	module_put(desc->owner);
1651	return ret;
1652}
1653
1654/**
1655 *	setup_irq - setup an interrupt
1656 *	@irq: Interrupt line to setup
1657 *	@act: irqaction for the interrupt
1658 *
1659 * Used to statically setup interrupts in the early boot process.
1660 */
1661int setup_irq(unsigned int irq, struct irqaction *act)
1662{
1663	int retval;
1664	struct irq_desc *desc = irq_to_desc(irq);
1665
1666	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1667		return -EINVAL;
1668
1669	retval = irq_chip_pm_get(&desc->irq_data);
1670	if (retval < 0)
1671		return retval;
1672
1673	retval = __setup_irq(irq, desc, act);
1674
1675	if (retval)
1676		irq_chip_pm_put(&desc->irq_data);
1677
1678	return retval;
1679}
1680EXPORT_SYMBOL_GPL(setup_irq);
1681
1682/*
1683 * Internal function to unregister an irqaction - used to free
1684 * regular and special interrupts that are part of the architecture.
1685 */
1686static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1687{
1688	unsigned irq = desc->irq_data.irq;
1689	struct irqaction *action, **action_ptr;
1690	unsigned long flags;
1691
1692	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1693
1694	mutex_lock(&desc->request_mutex);
1695	chip_bus_lock(desc);
1696	raw_spin_lock_irqsave(&desc->lock, flags);
1697
1698	/*
1699	 * There can be multiple actions per IRQ descriptor, find the right
1700	 * one based on the dev_id:
1701	 */
1702	action_ptr = &desc->action;
1703	for (;;) {
1704		action = *action_ptr;
1705
1706		if (!action) {
1707			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1708			raw_spin_unlock_irqrestore(&desc->lock, flags);
1709			chip_bus_sync_unlock(desc);
1710			mutex_unlock(&desc->request_mutex);
1711			return NULL;
1712		}
1713
1714		if (action->dev_id == dev_id)
1715			break;
1716		action_ptr = &action->next;
1717	}
1718
1719	/* Found it - now remove it from the list of entries: */
1720	*action_ptr = action->next;
1721
1722	irq_pm_remove_action(desc, action);
1723
1724	/* If this was the last handler, shut down the IRQ line: */
1725	if (!desc->action) {
1726		irq_settings_clr_disable_unlazy(desc);
1727		/* Only shutdown. Deactivate after synchronize_hardirq() */
1728		irq_shutdown(desc);
1729	}
1730
1731#ifdef CONFIG_SMP
1732	/* make sure affinity_hint is cleaned up */
1733	if (WARN_ON_ONCE(desc->affinity_hint))
1734		desc->affinity_hint = NULL;
1735#endif
1736
1737	raw_spin_unlock_irqrestore(&desc->lock, flags);
1738	/*
1739	 * Drop bus_lock here so the changes which were done in the chip
1740	 * callbacks above are synced out to the irq chips which hang
1741	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1742	 *
1743	 * Aside of that the bus_lock can also be taken from the threaded
1744	 * handler in irq_finalize_oneshot() which results in a deadlock
1745	 * because kthread_stop() would wait forever for the thread to
1746	 * complete, which is blocked on the bus lock.
1747	 *
1748	 * The still held desc->request_mutex() protects against a
1749	 * concurrent request_irq() of this irq so the release of resources
1750	 * and timing data is properly serialized.
1751	 */
1752	chip_bus_sync_unlock(desc);
1753
1754	unregister_handler_proc(irq, action);
1755
1756	/*
1757	 * Make sure it's not being used on another CPU and if the chip
1758	 * supports it also make sure that there is no (not yet serviced)
1759	 * interrupt in flight at the hardware level.
1760	 */
1761	__synchronize_hardirq(desc, true);
1762
1763#ifdef CONFIG_DEBUG_SHIRQ
1764	/*
1765	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1766	 * event to happen even now it's being freed, so let's make sure that
1767	 * is so by doing an extra call to the handler ....
1768	 *
1769	 * ( We do this after actually deregistering it, to make sure that a
1770	 *   'real' IRQ doesn't run in parallel with our fake. )
1771	 */
1772	if (action->flags & IRQF_SHARED) {
1773		local_irq_save(flags);
1774		action->handler(irq, dev_id);
1775		local_irq_restore(flags);
1776	}
1777#endif
1778
1779	/*
1780	 * The action has already been removed above, but the thread writes
1781	 * its oneshot mask bit when it completes. Though request_mutex is
1782	 * held across this which prevents __setup_irq() from handing out
1783	 * the same bit to a newly requested action.
1784	 */
1785	if (action->thread) {
1786		kthread_stop(action->thread);
1787		put_task_struct(action->thread);
1788		if (action->secondary && action->secondary->thread) {
1789			kthread_stop(action->secondary->thread);
1790			put_task_struct(action->secondary->thread);
1791		}
1792	}
1793
1794	/* Last action releases resources */
1795	if (!desc->action) {
1796		/*
1797		 * Reaquire bus lock as irq_release_resources() might
1798		 * require it to deallocate resources over the slow bus.
1799		 */
1800		chip_bus_lock(desc);
1801		/*
1802		 * There is no interrupt on the fly anymore. Deactivate it
1803		 * completely.
1804		 */
1805		raw_spin_lock_irqsave(&desc->lock, flags);
1806		irq_domain_deactivate_irq(&desc->irq_data);
1807		raw_spin_unlock_irqrestore(&desc->lock, flags);
1808
1809		irq_release_resources(desc);
1810		chip_bus_sync_unlock(desc);
1811		irq_remove_timings(desc);
1812	}
1813
1814	mutex_unlock(&desc->request_mutex);
1815
1816	irq_chip_pm_put(&desc->irq_data);
1817	module_put(desc->owner);
1818	kfree(action->secondary);
1819	return action;
1820}
1821
1822/**
1823 *	remove_irq - free an interrupt
1824 *	@irq: Interrupt line to free
1825 *	@act: irqaction for the interrupt
1826 *
1827 * Used to remove interrupts statically setup by the early boot process.
1828 */
1829void remove_irq(unsigned int irq, struct irqaction *act)
1830{
1831	struct irq_desc *desc = irq_to_desc(irq);
1832
1833	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1834		__free_irq(desc, act->dev_id);
1835}
1836EXPORT_SYMBOL_GPL(remove_irq);
1837
1838/**
1839 *	free_irq - free an interrupt allocated with request_irq
1840 *	@irq: Interrupt line to free
1841 *	@dev_id: Device identity to free
1842 *
1843 *	Remove an interrupt handler. The handler is removed and if the
1844 *	interrupt line is no longer in use by any driver it is disabled.
1845 *	On a shared IRQ the caller must ensure the interrupt is disabled
1846 *	on the card it drives before calling this function. The function
1847 *	does not return until any executing interrupts for this IRQ
1848 *	have completed.
1849 *
1850 *	This function must not be called from interrupt context.
1851 *
1852 *	Returns the devname argument passed to request_irq.
1853 */
1854const void *free_irq(unsigned int irq, void *dev_id)
1855{
1856	struct irq_desc *desc = irq_to_desc(irq);
1857	struct irqaction *action;
1858	const char *devname;
1859
1860	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1861		return NULL;
1862
1863#ifdef CONFIG_SMP
1864	if (WARN_ON(desc->affinity_notify))
1865		desc->affinity_notify = NULL;
1866#endif
1867
1868	action = __free_irq(desc, dev_id);
1869
1870	if (!action)
1871		return NULL;
1872
1873	devname = action->name;
1874	kfree(action);
1875	return devname;
1876}
1877EXPORT_SYMBOL(free_irq);
1878
1879/* This function must be called with desc->lock held */
1880static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1881{
1882	const char *devname = NULL;
1883
1884	desc->istate &= ~IRQS_NMI;
1885
1886	if (!WARN_ON(desc->action == NULL)) {
1887		irq_pm_remove_action(desc, desc->action);
1888		devname = desc->action->name;
1889		unregister_handler_proc(irq, desc->action);
1890
1891		kfree(desc->action);
1892		desc->action = NULL;
1893	}
1894
1895	irq_settings_clr_disable_unlazy(desc);
1896	irq_shutdown_and_deactivate(desc);
1897
1898	irq_release_resources(desc);
1899
1900	irq_chip_pm_put(&desc->irq_data);
1901	module_put(desc->owner);
1902
1903	return devname;
1904}
1905
1906const void *free_nmi(unsigned int irq, void *dev_id)
1907{
1908	struct irq_desc *desc = irq_to_desc(irq);
1909	unsigned long flags;
1910	const void *devname;
1911
1912	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1913		return NULL;
1914
1915	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1916		return NULL;
1917
1918	/* NMI still enabled */
1919	if (WARN_ON(desc->depth == 0))
1920		disable_nmi_nosync(irq);
1921
1922	raw_spin_lock_irqsave(&desc->lock, flags);
1923
1924	irq_nmi_teardown(desc);
1925	devname = __cleanup_nmi(irq, desc);
1926
1927	raw_spin_unlock_irqrestore(&desc->lock, flags);
1928
1929	return devname;
1930}
1931
1932/**
1933 *	request_threaded_irq - allocate an interrupt line
1934 *	@irq: Interrupt line to allocate
1935 *	@handler: Function to be called when the IRQ occurs.
1936 *		  Primary handler for threaded interrupts
1937 *		  If NULL and thread_fn != NULL the default
1938 *		  primary handler is installed
1939 *	@thread_fn: Function called from the irq handler thread
1940 *		    If NULL, no irq thread is created
1941 *	@irqflags: Interrupt type flags
1942 *	@devname: An ascii name for the claiming device
1943 *	@dev_id: A cookie passed back to the handler function
1944 *
1945 *	This call allocates interrupt resources and enables the
1946 *	interrupt line and IRQ handling. From the point this
1947 *	call is made your handler function may be invoked. Since
1948 *	your handler function must clear any interrupt the board
1949 *	raises, you must take care both to initialise your hardware
1950 *	and to set up the interrupt handler in the right order.
1951 *
1952 *	If you want to set up a threaded irq handler for your device
1953 *	then you need to supply @handler and @thread_fn. @handler is
1954 *	still called in hard interrupt context and has to check
1955 *	whether the interrupt originates from the device. If yes it
1956 *	needs to disable the interrupt on the device and return
1957 *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1958 *	@thread_fn. This split handler design is necessary to support
1959 *	shared interrupts.
1960 *
1961 *	Dev_id must be globally unique. Normally the address of the
1962 *	device data structure is used as the cookie. Since the handler
1963 *	receives this value it makes sense to use it.
1964 *
1965 *	If your interrupt is shared you must pass a non NULL dev_id
1966 *	as this is required when freeing the interrupt.
1967 *
1968 *	Flags:
1969 *
1970 *	IRQF_SHARED		Interrupt is shared
1971 *	IRQF_TRIGGER_*		Specify active edge(s) or level
1972 *
1973 */
1974int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1975			 irq_handler_t thread_fn, unsigned long irqflags,
1976			 const char *devname, void *dev_id)
1977{
1978	struct irqaction *action;
1979	struct irq_desc *desc;
1980	int retval;
1981
1982	if (irq == IRQ_NOTCONNECTED)
1983		return -ENOTCONN;
1984
1985	/*
1986	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1987	 * otherwise we'll have trouble later trying to figure out
1988	 * which interrupt is which (messes up the interrupt freeing
1989	 * logic etc).
1990	 *
 
 
 
 
1991	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1992	 * it cannot be set along with IRQF_NO_SUSPEND.
1993	 */
1994	if (((irqflags & IRQF_SHARED) && !dev_id) ||
 
1995	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1996	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1997		return -EINVAL;
1998
1999	desc = irq_to_desc(irq);
2000	if (!desc)
2001		return -EINVAL;
2002
2003	if (!irq_settings_can_request(desc) ||
2004	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2005		return -EINVAL;
2006
2007	if (!handler) {
2008		if (!thread_fn)
2009			return -EINVAL;
2010		handler = irq_default_primary_handler;
2011	}
2012
2013	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2014	if (!action)
2015		return -ENOMEM;
2016
2017	action->handler = handler;
2018	action->thread_fn = thread_fn;
2019	action->flags = irqflags;
2020	action->name = devname;
2021	action->dev_id = dev_id;
2022
2023	retval = irq_chip_pm_get(&desc->irq_data);
2024	if (retval < 0) {
2025		kfree(action);
2026		return retval;
2027	}
2028
2029	retval = __setup_irq(irq, desc, action);
2030
2031	if (retval) {
2032		irq_chip_pm_put(&desc->irq_data);
2033		kfree(action->secondary);
2034		kfree(action);
2035	}
2036
2037#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2038	if (!retval && (irqflags & IRQF_SHARED)) {
2039		/*
2040		 * It's a shared IRQ -- the driver ought to be prepared for it
2041		 * to happen immediately, so let's make sure....
2042		 * We disable the irq to make sure that a 'real' IRQ doesn't
2043		 * run in parallel with our fake.
2044		 */
2045		unsigned long flags;
2046
2047		disable_irq(irq);
2048		local_irq_save(flags);
2049
2050		handler(irq, dev_id);
2051
2052		local_irq_restore(flags);
2053		enable_irq(irq);
2054	}
2055#endif
2056	return retval;
2057}
2058EXPORT_SYMBOL(request_threaded_irq);
2059
2060/**
2061 *	request_any_context_irq - allocate an interrupt line
2062 *	@irq: Interrupt line to allocate
2063 *	@handler: Function to be called when the IRQ occurs.
2064 *		  Threaded handler for threaded interrupts.
2065 *	@flags: Interrupt type flags
2066 *	@name: An ascii name for the claiming device
2067 *	@dev_id: A cookie passed back to the handler function
2068 *
2069 *	This call allocates interrupt resources and enables the
2070 *	interrupt line and IRQ handling. It selects either a
2071 *	hardirq or threaded handling method depending on the
2072 *	context.
2073 *
2074 *	On failure, it returns a negative value. On success,
2075 *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2076 */
2077int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2078			    unsigned long flags, const char *name, void *dev_id)
2079{
2080	struct irq_desc *desc;
2081	int ret;
2082
2083	if (irq == IRQ_NOTCONNECTED)
2084		return -ENOTCONN;
2085
2086	desc = irq_to_desc(irq);
2087	if (!desc)
2088		return -EINVAL;
2089
2090	if (irq_settings_is_nested_thread(desc)) {
2091		ret = request_threaded_irq(irq, NULL, handler,
2092					   flags, name, dev_id);
2093		return !ret ? IRQC_IS_NESTED : ret;
2094	}
2095
2096	ret = request_irq(irq, handler, flags, name, dev_id);
2097	return !ret ? IRQC_IS_HARDIRQ : ret;
2098}
2099EXPORT_SYMBOL_GPL(request_any_context_irq);
2100
2101/**
2102 *	request_nmi - allocate an interrupt line for NMI delivery
2103 *	@irq: Interrupt line to allocate
2104 *	@handler: Function to be called when the IRQ occurs.
2105 *		  Threaded handler for threaded interrupts.
2106 *	@irqflags: Interrupt type flags
2107 *	@name: An ascii name for the claiming device
2108 *	@dev_id: A cookie passed back to the handler function
2109 *
2110 *	This call allocates interrupt resources and enables the
2111 *	interrupt line and IRQ handling. It sets up the IRQ line
2112 *	to be handled as an NMI.
2113 *
2114 *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2115 *	cannot be threaded.
2116 *
2117 *	Interrupt lines requested for NMI delivering must produce per cpu
2118 *	interrupts and have auto enabling setting disabled.
2119 *
2120 *	Dev_id must be globally unique. Normally the address of the
2121 *	device data structure is used as the cookie. Since the handler
2122 *	receives this value it makes sense to use it.
2123 *
2124 *	If the interrupt line cannot be used to deliver NMIs, function
2125 *	will fail and return a negative value.
2126 */
2127int request_nmi(unsigned int irq, irq_handler_t handler,
2128		unsigned long irqflags, const char *name, void *dev_id)
2129{
2130	struct irqaction *action;
2131	struct irq_desc *desc;
2132	unsigned long flags;
2133	int retval;
2134
2135	if (irq == IRQ_NOTCONNECTED)
2136		return -ENOTCONN;
2137
2138	/* NMI cannot be shared, used for Polling */
2139	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2140		return -EINVAL;
2141
2142	if (!(irqflags & IRQF_PERCPU))
2143		return -EINVAL;
2144
2145	if (!handler)
2146		return -EINVAL;
2147
2148	desc = irq_to_desc(irq);
2149
2150	if (!desc || irq_settings_can_autoenable(desc) ||
 
2151	    !irq_settings_can_request(desc) ||
2152	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2153	    !irq_supports_nmi(desc))
2154		return -EINVAL;
2155
2156	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2157	if (!action)
2158		return -ENOMEM;
2159
2160	action->handler = handler;
2161	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2162	action->name = name;
2163	action->dev_id = dev_id;
2164
2165	retval = irq_chip_pm_get(&desc->irq_data);
2166	if (retval < 0)
2167		goto err_out;
2168
2169	retval = __setup_irq(irq, desc, action);
2170	if (retval)
2171		goto err_irq_setup;
2172
2173	raw_spin_lock_irqsave(&desc->lock, flags);
2174
2175	/* Setup NMI state */
2176	desc->istate |= IRQS_NMI;
2177	retval = irq_nmi_setup(desc);
2178	if (retval) {
2179		__cleanup_nmi(irq, desc);
2180		raw_spin_unlock_irqrestore(&desc->lock, flags);
2181		return -EINVAL;
2182	}
2183
2184	raw_spin_unlock_irqrestore(&desc->lock, flags);
2185
2186	return 0;
2187
2188err_irq_setup:
2189	irq_chip_pm_put(&desc->irq_data);
2190err_out:
2191	kfree(action);
2192
2193	return retval;
2194}
2195
2196void enable_percpu_irq(unsigned int irq, unsigned int type)
2197{
2198	unsigned int cpu = smp_processor_id();
2199	unsigned long flags;
2200	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2201
2202	if (!desc)
2203		return;
2204
2205	/*
2206	 * If the trigger type is not specified by the caller, then
2207	 * use the default for this interrupt.
2208	 */
2209	type &= IRQ_TYPE_SENSE_MASK;
2210	if (type == IRQ_TYPE_NONE)
2211		type = irqd_get_trigger_type(&desc->irq_data);
2212
2213	if (type != IRQ_TYPE_NONE) {
2214		int ret;
2215
2216		ret = __irq_set_trigger(desc, type);
2217
2218		if (ret) {
2219			WARN(1, "failed to set type for IRQ%d\n", irq);
2220			goto out;
2221		}
2222	}
2223
2224	irq_percpu_enable(desc, cpu);
2225out:
2226	irq_put_desc_unlock(desc, flags);
2227}
2228EXPORT_SYMBOL_GPL(enable_percpu_irq);
2229
2230void enable_percpu_nmi(unsigned int irq, unsigned int type)
2231{
2232	enable_percpu_irq(irq, type);
2233}
2234
2235/**
2236 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2237 * @irq:	Linux irq number to check for
2238 *
2239 * Must be called from a non migratable context. Returns the enable
2240 * state of a per cpu interrupt on the current cpu.
2241 */
2242bool irq_percpu_is_enabled(unsigned int irq)
2243{
2244	unsigned int cpu = smp_processor_id();
2245	struct irq_desc *desc;
2246	unsigned long flags;
2247	bool is_enabled;
2248
2249	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2250	if (!desc)
2251		return false;
2252
2253	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2254	irq_put_desc_unlock(desc, flags);
2255
2256	return is_enabled;
2257}
2258EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2259
2260void disable_percpu_irq(unsigned int irq)
2261{
2262	unsigned int cpu = smp_processor_id();
2263	unsigned long flags;
2264	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2265
2266	if (!desc)
2267		return;
2268
2269	irq_percpu_disable(desc, cpu);
2270	irq_put_desc_unlock(desc, flags);
2271}
2272EXPORT_SYMBOL_GPL(disable_percpu_irq);
2273
2274void disable_percpu_nmi(unsigned int irq)
2275{
2276	disable_percpu_irq(irq);
2277}
2278
2279/*
2280 * Internal function to unregister a percpu irqaction.
2281 */
2282static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2283{
2284	struct irq_desc *desc = irq_to_desc(irq);
2285	struct irqaction *action;
2286	unsigned long flags;
2287
2288	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2289
2290	if (!desc)
2291		return NULL;
2292
2293	raw_spin_lock_irqsave(&desc->lock, flags);
2294
2295	action = desc->action;
2296	if (!action || action->percpu_dev_id != dev_id) {
2297		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2298		goto bad;
2299	}
2300
2301	if (!cpumask_empty(desc->percpu_enabled)) {
2302		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2303		     irq, cpumask_first(desc->percpu_enabled));
2304		goto bad;
2305	}
2306
2307	/* Found it - now remove it from the list of entries: */
2308	desc->action = NULL;
2309
2310	desc->istate &= ~IRQS_NMI;
2311
2312	raw_spin_unlock_irqrestore(&desc->lock, flags);
2313
2314	unregister_handler_proc(irq, action);
2315
2316	irq_chip_pm_put(&desc->irq_data);
2317	module_put(desc->owner);
2318	return action;
2319
2320bad:
2321	raw_spin_unlock_irqrestore(&desc->lock, flags);
2322	return NULL;
2323}
2324
2325/**
2326 *	remove_percpu_irq - free a per-cpu interrupt
2327 *	@irq: Interrupt line to free
2328 *	@act: irqaction for the interrupt
2329 *
2330 * Used to remove interrupts statically setup by the early boot process.
2331 */
2332void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2333{
2334	struct irq_desc *desc = irq_to_desc(irq);
2335
2336	if (desc && irq_settings_is_per_cpu_devid(desc))
2337	    __free_percpu_irq(irq, act->percpu_dev_id);
2338}
2339
2340/**
2341 *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2342 *	@irq: Interrupt line to free
2343 *	@dev_id: Device identity to free
2344 *
2345 *	Remove a percpu interrupt handler. The handler is removed, but
2346 *	the interrupt line is not disabled. This must be done on each
2347 *	CPU before calling this function. The function does not return
2348 *	until any executing interrupts for this IRQ have completed.
2349 *
2350 *	This function must not be called from interrupt context.
2351 */
2352void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2353{
2354	struct irq_desc *desc = irq_to_desc(irq);
2355
2356	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2357		return;
2358
2359	chip_bus_lock(desc);
2360	kfree(__free_percpu_irq(irq, dev_id));
2361	chip_bus_sync_unlock(desc);
2362}
2363EXPORT_SYMBOL_GPL(free_percpu_irq);
2364
2365void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2366{
2367	struct irq_desc *desc = irq_to_desc(irq);
2368
2369	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2370		return;
2371
2372	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2373		return;
2374
2375	kfree(__free_percpu_irq(irq, dev_id));
2376}
2377
2378/**
2379 *	setup_percpu_irq - setup a per-cpu interrupt
2380 *	@irq: Interrupt line to setup
2381 *	@act: irqaction for the interrupt
2382 *
2383 * Used to statically setup per-cpu interrupts in the early boot process.
2384 */
2385int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2386{
2387	struct irq_desc *desc = irq_to_desc(irq);
2388	int retval;
2389
2390	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2391		return -EINVAL;
2392
2393	retval = irq_chip_pm_get(&desc->irq_data);
2394	if (retval < 0)
2395		return retval;
2396
2397	retval = __setup_irq(irq, desc, act);
2398
2399	if (retval)
2400		irq_chip_pm_put(&desc->irq_data);
2401
2402	return retval;
2403}
2404
2405/**
2406 *	__request_percpu_irq - allocate a percpu interrupt line
2407 *	@irq: Interrupt line to allocate
2408 *	@handler: Function to be called when the IRQ occurs.
2409 *	@flags: Interrupt type flags (IRQF_TIMER only)
2410 *	@devname: An ascii name for the claiming device
2411 *	@dev_id: A percpu cookie passed back to the handler function
2412 *
2413 *	This call allocates interrupt resources and enables the
2414 *	interrupt on the local CPU. If the interrupt is supposed to be
2415 *	enabled on other CPUs, it has to be done on each CPU using
2416 *	enable_percpu_irq().
2417 *
2418 *	Dev_id must be globally unique. It is a per-cpu variable, and
2419 *	the handler gets called with the interrupted CPU's instance of
2420 *	that variable.
2421 */
2422int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2423			 unsigned long flags, const char *devname,
2424			 void __percpu *dev_id)
2425{
2426	struct irqaction *action;
2427	struct irq_desc *desc;
2428	int retval;
2429
2430	if (!dev_id)
2431		return -EINVAL;
2432
2433	desc = irq_to_desc(irq);
2434	if (!desc || !irq_settings_can_request(desc) ||
2435	    !irq_settings_is_per_cpu_devid(desc))
2436		return -EINVAL;
2437
2438	if (flags && flags != IRQF_TIMER)
2439		return -EINVAL;
2440
2441	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2442	if (!action)
2443		return -ENOMEM;
2444
2445	action->handler = handler;
2446	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2447	action->name = devname;
2448	action->percpu_dev_id = dev_id;
2449
2450	retval = irq_chip_pm_get(&desc->irq_data);
2451	if (retval < 0) {
2452		kfree(action);
2453		return retval;
2454	}
2455
2456	retval = __setup_irq(irq, desc, action);
2457
2458	if (retval) {
2459		irq_chip_pm_put(&desc->irq_data);
2460		kfree(action);
2461	}
2462
2463	return retval;
2464}
2465EXPORT_SYMBOL_GPL(__request_percpu_irq);
2466
2467/**
2468 *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2469 *	@irq: Interrupt line to allocate
2470 *	@handler: Function to be called when the IRQ occurs.
2471 *	@name: An ascii name for the claiming device
2472 *	@dev_id: A percpu cookie passed back to the handler function
2473 *
2474 *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2475 *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2476 *	being enabled on the same CPU by using enable_percpu_nmi().
2477 *
2478 *	Dev_id must be globally unique. It is a per-cpu variable, and
2479 *	the handler gets called with the interrupted CPU's instance of
2480 *	that variable.
2481 *
2482 *	Interrupt lines requested for NMI delivering should have auto enabling
2483 *	setting disabled.
2484 *
2485 *	If the interrupt line cannot be used to deliver NMIs, function
2486 *	will fail returning a negative value.
2487 */
2488int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2489		       const char *name, void __percpu *dev_id)
2490{
2491	struct irqaction *action;
2492	struct irq_desc *desc;
2493	unsigned long flags;
2494	int retval;
2495
2496	if (!handler)
2497		return -EINVAL;
2498
2499	desc = irq_to_desc(irq);
2500
2501	if (!desc || !irq_settings_can_request(desc) ||
2502	    !irq_settings_is_per_cpu_devid(desc) ||
2503	    irq_settings_can_autoenable(desc) ||
2504	    !irq_supports_nmi(desc))
2505		return -EINVAL;
2506
2507	/* The line cannot already be NMI */
2508	if (desc->istate & IRQS_NMI)
2509		return -EINVAL;
2510
2511	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2512	if (!action)
2513		return -ENOMEM;
2514
2515	action->handler = handler;
2516	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2517		| IRQF_NOBALANCING;
2518	action->name = name;
2519	action->percpu_dev_id = dev_id;
2520
2521	retval = irq_chip_pm_get(&desc->irq_data);
2522	if (retval < 0)
2523		goto err_out;
2524
2525	retval = __setup_irq(irq, desc, action);
2526	if (retval)
2527		goto err_irq_setup;
2528
2529	raw_spin_lock_irqsave(&desc->lock, flags);
2530	desc->istate |= IRQS_NMI;
2531	raw_spin_unlock_irqrestore(&desc->lock, flags);
2532
2533	return 0;
2534
2535err_irq_setup:
2536	irq_chip_pm_put(&desc->irq_data);
2537err_out:
2538	kfree(action);
2539
2540	return retval;
2541}
2542
2543/**
2544 *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2545 *	@irq: Interrupt line to prepare for NMI delivery
2546 *
2547 *	This call prepares an interrupt line to deliver NMI on the current CPU,
2548 *	before that interrupt line gets enabled with enable_percpu_nmi().
2549 *
2550 *	As a CPU local operation, this should be called from non-preemptible
2551 *	context.
2552 *
2553 *	If the interrupt line cannot be used to deliver NMIs, function
2554 *	will fail returning a negative value.
2555 */
2556int prepare_percpu_nmi(unsigned int irq)
2557{
2558	unsigned long flags;
2559	struct irq_desc *desc;
2560	int ret = 0;
2561
2562	WARN_ON(preemptible());
2563
2564	desc = irq_get_desc_lock(irq, &flags,
2565				 IRQ_GET_DESC_CHECK_PERCPU);
2566	if (!desc)
2567		return -EINVAL;
2568
2569	if (WARN(!(desc->istate & IRQS_NMI),
2570		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2571		 irq)) {
2572		ret = -EINVAL;
2573		goto out;
2574	}
2575
2576	ret = irq_nmi_setup(desc);
2577	if (ret) {
2578		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2579		goto out;
2580	}
2581
2582out:
2583	irq_put_desc_unlock(desc, flags);
2584	return ret;
2585}
2586
2587/**
2588 *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2589 *	@irq: Interrupt line from which CPU local NMI configuration should be
2590 *	      removed
2591 *
2592 *	This call undoes the setup done by prepare_percpu_nmi().
2593 *
2594 *	IRQ line should not be enabled for the current CPU.
2595 *
2596 *	As a CPU local operation, this should be called from non-preemptible
2597 *	context.
2598 */
2599void teardown_percpu_nmi(unsigned int irq)
2600{
2601	unsigned long flags;
2602	struct irq_desc *desc;
2603
2604	WARN_ON(preemptible());
2605
2606	desc = irq_get_desc_lock(irq, &flags,
2607				 IRQ_GET_DESC_CHECK_PERCPU);
2608	if (!desc)
2609		return;
2610
2611	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2612		goto out;
2613
2614	irq_nmi_teardown(desc);
2615out:
2616	irq_put_desc_unlock(desc, flags);
2617}
2618
2619int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2620			    bool *state)
2621{
2622	struct irq_chip *chip;
2623	int err = -EINVAL;
2624
2625	do {
2626		chip = irq_data_get_irq_chip(data);
 
 
2627		if (chip->irq_get_irqchip_state)
2628			break;
2629#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2630		data = data->parent_data;
2631#else
2632		data = NULL;
2633#endif
2634	} while (data);
2635
2636	if (data)
2637		err = chip->irq_get_irqchip_state(data, which, state);
2638	return err;
2639}
2640
2641/**
2642 *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2643 *	@irq: Interrupt line that is forwarded to a VM
2644 *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2645 *	@state: a pointer to a boolean where the state is to be storeed
2646 *
2647 *	This call snapshots the internal irqchip state of an
2648 *	interrupt, returning into @state the bit corresponding to
2649 *	stage @which
2650 *
2651 *	This function should be called with preemption disabled if the
2652 *	interrupt controller has per-cpu registers.
2653 */
2654int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2655			  bool *state)
2656{
2657	struct irq_desc *desc;
2658	struct irq_data *data;
2659	unsigned long flags;
2660	int err = -EINVAL;
2661
2662	desc = irq_get_desc_buslock(irq, &flags, 0);
2663	if (!desc)
2664		return err;
2665
2666	data = irq_desc_get_irq_data(desc);
2667
2668	err = __irq_get_irqchip_state(data, which, state);
2669
2670	irq_put_desc_busunlock(desc, flags);
2671	return err;
2672}
2673EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2674
2675/**
2676 *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2677 *	@irq: Interrupt line that is forwarded to a VM
2678 *	@which: State to be restored (one of IRQCHIP_STATE_*)
2679 *	@val: Value corresponding to @which
2680 *
2681 *	This call sets the internal irqchip state of an interrupt,
2682 *	depending on the value of @which.
2683 *
2684 *	This function should be called with preemption disabled if the
2685 *	interrupt controller has per-cpu registers.
2686 */
2687int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2688			  bool val)
2689{
2690	struct irq_desc *desc;
2691	struct irq_data *data;
2692	struct irq_chip *chip;
2693	unsigned long flags;
2694	int err = -EINVAL;
2695
2696	desc = irq_get_desc_buslock(irq, &flags, 0);
2697	if (!desc)
2698		return err;
2699
2700	data = irq_desc_get_irq_data(desc);
2701
2702	do {
2703		chip = irq_data_get_irq_chip(data);
 
 
 
 
2704		if (chip->irq_set_irqchip_state)
2705			break;
2706#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2707		data = data->parent_data;
2708#else
2709		data = NULL;
2710#endif
2711	} while (data);
2712
2713	if (data)
2714		err = chip->irq_set_irqchip_state(data, which, val);
2715
 
2716	irq_put_desc_busunlock(desc, flags);
2717	return err;
2718}
2719EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
  16#include <linux/irqdomain.h>
  17#include <linux/slab.h>
  18#include <linux/sched.h>
  19#include <linux/sched/rt.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/isolation.h>
  22#include <uapi/linux/sched/types.h>
  23#include <linux/task_work.h>
  24
  25#include "internals.h"
  26
  27#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
  28DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
 
  29
  30static int __init setup_forced_irqthreads(char *arg)
  31{
  32	static_branch_enable(&force_irqthreads_key);
  33	return 0;
  34}
  35early_param("threadirqs", setup_forced_irqthreads);
  36#endif
  37
  38static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
  39{
  40	struct irq_data *irqd = irq_desc_get_irq_data(desc);
  41	bool inprogress;
  42
  43	do {
  44		unsigned long flags;
  45
  46		/*
  47		 * Wait until we're out of the critical section.  This might
  48		 * give the wrong answer due to the lack of memory barriers.
  49		 */
  50		while (irqd_irq_inprogress(&desc->irq_data))
  51			cpu_relax();
  52
  53		/* Ok, that indicated we're done: double-check carefully. */
  54		raw_spin_lock_irqsave(&desc->lock, flags);
  55		inprogress = irqd_irq_inprogress(&desc->irq_data);
  56
  57		/*
  58		 * If requested and supported, check at the chip whether it
  59		 * is in flight at the hardware level, i.e. already pending
  60		 * in a CPU and waiting for service and acknowledge.
  61		 */
  62		if (!inprogress && sync_chip) {
  63			/*
  64			 * Ignore the return code. inprogress is only updated
  65			 * when the chip supports it.
  66			 */
  67			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
  68						&inprogress);
  69		}
  70		raw_spin_unlock_irqrestore(&desc->lock, flags);
  71
  72		/* Oops, that failed? */
  73	} while (inprogress);
  74}
  75
  76/**
  77 *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  78 *	@irq: interrupt number to wait for
  79 *
  80 *	This function waits for any pending hard IRQ handlers for this
  81 *	interrupt to complete before returning. If you use this
  82 *	function while holding a resource the IRQ handler may need you
  83 *	will deadlock. It does not take associated threaded handlers
  84 *	into account.
  85 *
  86 *	Do not use this for shutdown scenarios where you must be sure
  87 *	that all parts (hardirq and threaded handler) have completed.
  88 *
  89 *	Returns: false if a threaded handler is active.
  90 *
  91 *	This function may be called - with care - from IRQ context.
  92 *
  93 *	It does not check whether there is an interrupt in flight at the
  94 *	hardware level, but not serviced yet, as this might deadlock when
  95 *	called with interrupts disabled and the target CPU of the interrupt
  96 *	is the current CPU.
  97 */
  98bool synchronize_hardirq(unsigned int irq)
  99{
 100	struct irq_desc *desc = irq_to_desc(irq);
 101
 102	if (desc) {
 103		__synchronize_hardirq(desc, false);
 104		return !atomic_read(&desc->threads_active);
 105	}
 106
 107	return true;
 108}
 109EXPORT_SYMBOL(synchronize_hardirq);
 110
 111/**
 112 *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
 113 *	@irq: interrupt number to wait for
 114 *
 115 *	This function waits for any pending IRQ handlers for this interrupt
 116 *	to complete before returning. If you use this function while
 117 *	holding a resource the IRQ handler may need you will deadlock.
 118 *
 119 *	Can only be called from preemptible code as it might sleep when
 120 *	an interrupt thread is associated to @irq.
 121 *
 122 *	It optionally makes sure (when the irq chip supports that method)
 123 *	that the interrupt is not pending in any CPU and waiting for
 124 *	service.
 125 */
 126void synchronize_irq(unsigned int irq)
 127{
 128	struct irq_desc *desc = irq_to_desc(irq);
 129
 130	if (desc) {
 131		__synchronize_hardirq(desc, true);
 132		/*
 133		 * We made sure that no hardirq handler is
 134		 * running. Now verify that no threaded handlers are
 135		 * active.
 136		 */
 137		wait_event(desc->wait_for_threads,
 138			   !atomic_read(&desc->threads_active));
 139	}
 140}
 141EXPORT_SYMBOL(synchronize_irq);
 142
 143#ifdef CONFIG_SMP
 144cpumask_var_t irq_default_affinity;
 145
 146static bool __irq_can_set_affinity(struct irq_desc *desc)
 147{
 148	if (!desc || !irqd_can_balance(&desc->irq_data) ||
 149	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 150		return false;
 151	return true;
 152}
 153
 154/**
 155 *	irq_can_set_affinity - Check if the affinity of a given irq can be set
 156 *	@irq:		Interrupt to check
 157 *
 158 */
 159int irq_can_set_affinity(unsigned int irq)
 160{
 161	return __irq_can_set_affinity(irq_to_desc(irq));
 162}
 163
 164/**
 165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 166 * @irq:	Interrupt to check
 167 *
 168 * Like irq_can_set_affinity() above, but additionally checks for the
 169 * AFFINITY_MANAGED flag.
 170 */
 171bool irq_can_set_affinity_usr(unsigned int irq)
 172{
 173	struct irq_desc *desc = irq_to_desc(irq);
 174
 175	return __irq_can_set_affinity(desc) &&
 176		!irqd_affinity_is_managed(&desc->irq_data);
 177}
 178
 179/**
 180 *	irq_set_thread_affinity - Notify irq threads to adjust affinity
 181 *	@desc:		irq descriptor which has affinity changed
 182 *
 183 *	We just set IRQTF_AFFINITY and delegate the affinity setting
 184 *	to the interrupt thread itself. We can not call
 185 *	set_cpus_allowed_ptr() here as we hold desc->lock and this
 186 *	code can be called from hard interrupt context.
 187 */
 188void irq_set_thread_affinity(struct irq_desc *desc)
 189{
 190	struct irqaction *action;
 191
 192	for_each_action_of_desc(desc, action)
 193		if (action->thread)
 194			set_bit(IRQTF_AFFINITY, &action->thread_flags);
 195}
 196
 197#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 198static void irq_validate_effective_affinity(struct irq_data *data)
 199{
 
 200	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 201	struct irq_chip *chip = irq_data_get_irq_chip(data);
 202
 203	if (!cpumask_empty(m))
 204		return;
 205	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 206		     chip->name, data->irq);
 
 207}
 208#else
 209static inline void irq_validate_effective_affinity(struct irq_data *data) { }
 210#endif
 211
 212int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 213			bool force)
 214{
 215	struct irq_desc *desc = irq_data_to_desc(data);
 216	struct irq_chip *chip = irq_data_get_irq_chip(data);
 217	const struct cpumask  *prog_mask;
 218	int ret;
 219
 220	static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
 221	static struct cpumask tmp_mask;
 222
 223	if (!chip || !chip->irq_set_affinity)
 224		return -EINVAL;
 225
 226	raw_spin_lock(&tmp_mask_lock);
 227	/*
 228	 * If this is a managed interrupt and housekeeping is enabled on
 229	 * it check whether the requested affinity mask intersects with
 230	 * a housekeeping CPU. If so, then remove the isolated CPUs from
 231	 * the mask and just keep the housekeeping CPU(s). This prevents
 232	 * the affinity setter from routing the interrupt to an isolated
 233	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
 234	 * interrupts on an isolated one.
 235	 *
 236	 * If the masks do not intersect or include online CPU(s) then
 237	 * keep the requested mask. The isolated target CPUs are only
 238	 * receiving interrupts when the I/O operation was submitted
 239	 * directly from them.
 240	 *
 241	 * If all housekeeping CPUs in the affinity mask are offline, the
 242	 * interrupt will be migrated by the CPU hotplug code once a
 243	 * housekeeping CPU which belongs to the affinity mask comes
 244	 * online.
 245	 */
 246	if (irqd_affinity_is_managed(data) &&
 247	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
 248		const struct cpumask *hk_mask;
 249
 250		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
 251
 252		cpumask_and(&tmp_mask, mask, hk_mask);
 253		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
 254			prog_mask = mask;
 255		else
 256			prog_mask = &tmp_mask;
 257	} else {
 258		prog_mask = mask;
 259	}
 260
 261	/*
 262	 * Make sure we only provide online CPUs to the irqchip,
 263	 * unless we are being asked to force the affinity (in which
 264	 * case we do as we are told).
 265	 */
 266	cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
 267	if (!force && !cpumask_empty(&tmp_mask))
 268		ret = chip->irq_set_affinity(data, &tmp_mask, force);
 269	else if (force)
 270		ret = chip->irq_set_affinity(data, mask, force);
 271	else
 272		ret = -EINVAL;
 273
 274	raw_spin_unlock(&tmp_mask_lock);
 275
 276	switch (ret) {
 277	case IRQ_SET_MASK_OK:
 278	case IRQ_SET_MASK_OK_DONE:
 279		cpumask_copy(desc->irq_common_data.affinity, mask);
 280		fallthrough;
 281	case IRQ_SET_MASK_OK_NOCOPY:
 282		irq_validate_effective_affinity(data);
 283		irq_set_thread_affinity(desc);
 284		ret = 0;
 285	}
 286
 287	return ret;
 288}
 289
 290#ifdef CONFIG_GENERIC_PENDING_IRQ
 291static inline int irq_set_affinity_pending(struct irq_data *data,
 292					   const struct cpumask *dest)
 293{
 294	struct irq_desc *desc = irq_data_to_desc(data);
 295
 296	irqd_set_move_pending(data);
 297	irq_copy_pending(desc, dest);
 298	return 0;
 299}
 300#else
 301static inline int irq_set_affinity_pending(struct irq_data *data,
 302					   const struct cpumask *dest)
 303{
 304	return -EBUSY;
 305}
 306#endif
 307
 308static int irq_try_set_affinity(struct irq_data *data,
 309				const struct cpumask *dest, bool force)
 310{
 311	int ret = irq_do_set_affinity(data, dest, force);
 312
 313	/*
 314	 * In case that the underlying vector management is busy and the
 315	 * architecture supports the generic pending mechanism then utilize
 316	 * this to avoid returning an error to user space.
 317	 */
 318	if (ret == -EBUSY && !force)
 319		ret = irq_set_affinity_pending(data, dest);
 320	return ret;
 321}
 322
 323static bool irq_set_affinity_deactivated(struct irq_data *data,
 324					 const struct cpumask *mask)
 325{
 326	struct irq_desc *desc = irq_data_to_desc(data);
 327
 328	/*
 329	 * Handle irq chips which can handle affinity only in activated
 330	 * state correctly
 331	 *
 332	 * If the interrupt is not yet activated, just store the affinity
 333	 * mask and do not call the chip driver at all. On activation the
 334	 * driver has to make sure anyway that the interrupt is in a
 335	 * usable state so startup works.
 336	 */
 337	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
 338	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
 339		return false;
 340
 341	cpumask_copy(desc->irq_common_data.affinity, mask);
 342	irq_data_update_effective_affinity(data, mask);
 343	irqd_set(data, IRQD_AFFINITY_SET);
 344	return true;
 345}
 346
 347int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 348			    bool force)
 349{
 350	struct irq_chip *chip = irq_data_get_irq_chip(data);
 351	struct irq_desc *desc = irq_data_to_desc(data);
 352	int ret = 0;
 353
 354	if (!chip || !chip->irq_set_affinity)
 355		return -EINVAL;
 356
 357	if (irq_set_affinity_deactivated(data, mask))
 358		return 0;
 359
 360	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
 361		ret = irq_try_set_affinity(data, mask, force);
 362	} else {
 363		irqd_set_move_pending(data);
 364		irq_copy_pending(desc, mask);
 365	}
 366
 367	if (desc->affinity_notify) {
 368		kref_get(&desc->affinity_notify->kref);
 369		if (!schedule_work(&desc->affinity_notify->work)) {
 370			/* Work was already scheduled, drop our extra ref */
 371			kref_put(&desc->affinity_notify->kref,
 372				 desc->affinity_notify->release);
 373		}
 374	}
 375	irqd_set(data, IRQD_AFFINITY_SET);
 376
 377	return ret;
 378}
 379
 380/**
 381 * irq_update_affinity_desc - Update affinity management for an interrupt
 382 * @irq:	The interrupt number to update
 383 * @affinity:	Pointer to the affinity descriptor
 384 *
 385 * This interface can be used to configure the affinity management of
 386 * interrupts which have been allocated already.
 387 *
 388 * There are certain limitations on when it may be used - attempts to use it
 389 * for when the kernel is configured for generic IRQ reservation mode (in
 390 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
 391 * managed/non-managed interrupt accounting. In addition, attempts to use it on
 392 * an interrupt which is already started or which has already been configured
 393 * as managed will also fail, as these mean invalid init state or double init.
 394 */
 395int irq_update_affinity_desc(unsigned int irq,
 396			     struct irq_affinity_desc *affinity)
 397{
 398	struct irq_desc *desc;
 399	unsigned long flags;
 400	bool activated;
 401	int ret = 0;
 402
 403	/*
 404	 * Supporting this with the reservation scheme used by x86 needs
 405	 * some more thought. Fail it for now.
 406	 */
 407	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
 408		return -EOPNOTSUPP;
 409
 410	desc = irq_get_desc_buslock(irq, &flags, 0);
 411	if (!desc)
 412		return -EINVAL;
 413
 414	/* Requires the interrupt to be shut down */
 415	if (irqd_is_started(&desc->irq_data)) {
 416		ret = -EBUSY;
 417		goto out_unlock;
 418	}
 419
 420	/* Interrupts which are already managed cannot be modified */
 421	if (irqd_affinity_is_managed(&desc->irq_data)) {
 422		ret = -EBUSY;
 423		goto out_unlock;
 424	}
 425
 426	/*
 427	 * Deactivate the interrupt. That's required to undo
 428	 * anything an earlier activation has established.
 429	 */
 430	activated = irqd_is_activated(&desc->irq_data);
 431	if (activated)
 432		irq_domain_deactivate_irq(&desc->irq_data);
 433
 434	if (affinity->is_managed) {
 435		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
 436		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
 437	}
 438
 439	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
 440
 441	/* Restore the activation state */
 442	if (activated)
 443		irq_domain_activate_irq(&desc->irq_data, false);
 444
 445out_unlock:
 446	irq_put_desc_busunlock(desc, flags);
 447	return ret;
 448}
 449
 450static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
 451			      bool force)
 452{
 453	struct irq_desc *desc = irq_to_desc(irq);
 454	unsigned long flags;
 455	int ret;
 456
 457	if (!desc)
 458		return -EINVAL;
 459
 460	raw_spin_lock_irqsave(&desc->lock, flags);
 461	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 462	raw_spin_unlock_irqrestore(&desc->lock, flags);
 463	return ret;
 464}
 465
 466/**
 467 * irq_set_affinity - Set the irq affinity of a given irq
 468 * @irq:	Interrupt to set affinity
 469 * @cpumask:	cpumask
 470 *
 471 * Fails if cpumask does not contain an online CPU
 472 */
 473int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
 474{
 475	return __irq_set_affinity(irq, cpumask, false);
 476}
 477EXPORT_SYMBOL_GPL(irq_set_affinity);
 478
 479/**
 480 * irq_force_affinity - Force the irq affinity of a given irq
 481 * @irq:	Interrupt to set affinity
 482 * @cpumask:	cpumask
 483 *
 484 * Same as irq_set_affinity, but without checking the mask against
 485 * online cpus.
 486 *
 487 * Solely for low level cpu hotplug code, where we need to make per
 488 * cpu interrupts affine before the cpu becomes online.
 489 */
 490int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
 491{
 492	return __irq_set_affinity(irq, cpumask, true);
 493}
 494EXPORT_SYMBOL_GPL(irq_force_affinity);
 495
 496int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
 497			      bool setaffinity)
 498{
 499	unsigned long flags;
 500	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 501
 502	if (!desc)
 503		return -EINVAL;
 504	desc->affinity_hint = m;
 505	irq_put_desc_unlock(desc, flags);
 506	if (m && setaffinity)
 
 507		__irq_set_affinity(irq, m, false);
 508	return 0;
 509}
 510EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
 511
 512static void irq_affinity_notify(struct work_struct *work)
 513{
 514	struct irq_affinity_notify *notify =
 515		container_of(work, struct irq_affinity_notify, work);
 516	struct irq_desc *desc = irq_to_desc(notify->irq);
 517	cpumask_var_t cpumask;
 518	unsigned long flags;
 519
 520	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 521		goto out;
 522
 523	raw_spin_lock_irqsave(&desc->lock, flags);
 524	if (irq_move_pending(&desc->irq_data))
 525		irq_get_pending(cpumask, desc);
 526	else
 527		cpumask_copy(cpumask, desc->irq_common_data.affinity);
 528	raw_spin_unlock_irqrestore(&desc->lock, flags);
 529
 530	notify->notify(notify, cpumask);
 531
 532	free_cpumask_var(cpumask);
 533out:
 534	kref_put(&notify->kref, notify->release);
 535}
 536
 537/**
 538 *	irq_set_affinity_notifier - control notification of IRQ affinity changes
 539 *	@irq:		Interrupt for which to enable/disable notification
 540 *	@notify:	Context for notification, or %NULL to disable
 541 *			notification.  Function pointers must be initialised;
 542 *			the other fields will be initialised by this function.
 543 *
 544 *	Must be called in process context.  Notification may only be enabled
 545 *	after the IRQ is allocated and must be disabled before the IRQ is
 546 *	freed using free_irq().
 547 */
 548int
 549irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 550{
 551	struct irq_desc *desc = irq_to_desc(irq);
 552	struct irq_affinity_notify *old_notify;
 553	unsigned long flags;
 554
 555	/* The release function is promised process context */
 556	might_sleep();
 557
 558	if (!desc || desc->istate & IRQS_NMI)
 559		return -EINVAL;
 560
 561	/* Complete initialisation of *notify */
 562	if (notify) {
 563		notify->irq = irq;
 564		kref_init(&notify->kref);
 565		INIT_WORK(&notify->work, irq_affinity_notify);
 566	}
 567
 568	raw_spin_lock_irqsave(&desc->lock, flags);
 569	old_notify = desc->affinity_notify;
 570	desc->affinity_notify = notify;
 571	raw_spin_unlock_irqrestore(&desc->lock, flags);
 572
 573	if (old_notify) {
 574		if (cancel_work_sync(&old_notify->work)) {
 575			/* Pending work had a ref, put that one too */
 576			kref_put(&old_notify->kref, old_notify->release);
 577		}
 578		kref_put(&old_notify->kref, old_notify->release);
 579	}
 580
 581	return 0;
 582}
 583EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 584
 585#ifndef CONFIG_AUTO_IRQ_AFFINITY
 586/*
 587 * Generic version of the affinity autoselector.
 588 */
 589int irq_setup_affinity(struct irq_desc *desc)
 590{
 591	struct cpumask *set = irq_default_affinity;
 592	int ret, node = irq_desc_get_node(desc);
 593	static DEFINE_RAW_SPINLOCK(mask_lock);
 594	static struct cpumask mask;
 595
 596	/* Excludes PER_CPU and NO_BALANCE interrupts */
 597	if (!__irq_can_set_affinity(desc))
 598		return 0;
 599
 600	raw_spin_lock(&mask_lock);
 601	/*
 602	 * Preserve the managed affinity setting and a userspace affinity
 603	 * setup, but make sure that one of the targets is online.
 604	 */
 605	if (irqd_affinity_is_managed(&desc->irq_data) ||
 606	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 607		if (cpumask_intersects(desc->irq_common_data.affinity,
 608				       cpu_online_mask))
 609			set = desc->irq_common_data.affinity;
 610		else
 611			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 612	}
 613
 614	cpumask_and(&mask, cpu_online_mask, set);
 615	if (cpumask_empty(&mask))
 616		cpumask_copy(&mask, cpu_online_mask);
 617
 618	if (node != NUMA_NO_NODE) {
 619		const struct cpumask *nodemask = cpumask_of_node(node);
 620
 621		/* make sure at least one of the cpus in nodemask is online */
 622		if (cpumask_intersects(&mask, nodemask))
 623			cpumask_and(&mask, &mask, nodemask);
 624	}
 625	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 626	raw_spin_unlock(&mask_lock);
 627	return ret;
 628}
 629#else
 630/* Wrapper for ALPHA specific affinity selector magic */
 631int irq_setup_affinity(struct irq_desc *desc)
 632{
 633	return irq_select_affinity(irq_desc_get_irq(desc));
 634}
 635#endif /* CONFIG_AUTO_IRQ_AFFINITY */
 636#endif /* CONFIG_SMP */
 
 
 
 
 
 
 
 
 637
 
 
 
 
 
 
 638
 639/**
 640 *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 641 *	@irq: interrupt number to set affinity
 642 *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 643 *	            specific data for percpu_devid interrupts
 644 *
 645 *	This function uses the vCPU specific data to set the vCPU
 646 *	affinity for an irq. The vCPU specific data is passed from
 647 *	outside, such as KVM. One example code path is as below:
 648 *	KVM -> IOMMU -> irq_set_vcpu_affinity().
 649 */
 650int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 651{
 652	unsigned long flags;
 653	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 654	struct irq_data *data;
 655	struct irq_chip *chip;
 656	int ret = -ENOSYS;
 657
 658	if (!desc)
 659		return -EINVAL;
 660
 661	data = irq_desc_get_irq_data(desc);
 662	do {
 663		chip = irq_data_get_irq_chip(data);
 664		if (chip && chip->irq_set_vcpu_affinity)
 665			break;
 666#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 667		data = data->parent_data;
 668#else
 669		data = NULL;
 670#endif
 671	} while (data);
 672
 673	if (data)
 674		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 675	irq_put_desc_unlock(desc, flags);
 676
 677	return ret;
 678}
 679EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 680
 681void __disable_irq(struct irq_desc *desc)
 682{
 683	if (!desc->depth++)
 684		irq_disable(desc);
 685}
 686
 687static int __disable_irq_nosync(unsigned int irq)
 688{
 689	unsigned long flags;
 690	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 691
 692	if (!desc)
 693		return -EINVAL;
 694	__disable_irq(desc);
 695	irq_put_desc_busunlock(desc, flags);
 696	return 0;
 697}
 698
 699/**
 700 *	disable_irq_nosync - disable an irq without waiting
 701 *	@irq: Interrupt to disable
 702 *
 703 *	Disable the selected interrupt line.  Disables and Enables are
 704 *	nested.
 705 *	Unlike disable_irq(), this function does not ensure existing
 706 *	instances of the IRQ handler have completed before returning.
 707 *
 708 *	This function may be called from IRQ context.
 709 */
 710void disable_irq_nosync(unsigned int irq)
 711{
 712	__disable_irq_nosync(irq);
 713}
 714EXPORT_SYMBOL(disable_irq_nosync);
 715
 716/**
 717 *	disable_irq - disable an irq and wait for completion
 718 *	@irq: Interrupt to disable
 719 *
 720 *	Disable the selected interrupt line.  Enables and Disables are
 721 *	nested.
 722 *	This function waits for any pending IRQ handlers for this interrupt
 723 *	to complete before returning. If you use this function while
 724 *	holding a resource the IRQ handler may need you will deadlock.
 725 *
 726 *	This function may be called - with care - from IRQ context.
 727 */
 728void disable_irq(unsigned int irq)
 729{
 730	if (!__disable_irq_nosync(irq))
 731		synchronize_irq(irq);
 732}
 733EXPORT_SYMBOL(disable_irq);
 734
 735/**
 736 *	disable_hardirq - disables an irq and waits for hardirq completion
 737 *	@irq: Interrupt to disable
 738 *
 739 *	Disable the selected interrupt line.  Enables and Disables are
 740 *	nested.
 741 *	This function waits for any pending hard IRQ handlers for this
 742 *	interrupt to complete before returning. If you use this function while
 743 *	holding a resource the hard IRQ handler may need you will deadlock.
 744 *
 745 *	When used to optimistically disable an interrupt from atomic context
 746 *	the return value must be checked.
 747 *
 748 *	Returns: false if a threaded handler is active.
 749 *
 750 *	This function may be called - with care - from IRQ context.
 751 */
 752bool disable_hardirq(unsigned int irq)
 753{
 754	if (!__disable_irq_nosync(irq))
 755		return synchronize_hardirq(irq);
 756
 757	return false;
 758}
 759EXPORT_SYMBOL_GPL(disable_hardirq);
 760
 761/**
 762 *	disable_nmi_nosync - disable an nmi without waiting
 763 *	@irq: Interrupt to disable
 764 *
 765 *	Disable the selected interrupt line. Disables and enables are
 766 *	nested.
 767 *	The interrupt to disable must have been requested through request_nmi.
 768 *	Unlike disable_nmi(), this function does not ensure existing
 769 *	instances of the IRQ handler have completed before returning.
 770 */
 771void disable_nmi_nosync(unsigned int irq)
 772{
 773	disable_irq_nosync(irq);
 774}
 775
 776void __enable_irq(struct irq_desc *desc)
 777{
 778	switch (desc->depth) {
 779	case 0:
 780 err_out:
 781		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 782		     irq_desc_get_irq(desc));
 783		break;
 784	case 1: {
 785		if (desc->istate & IRQS_SUSPENDED)
 786			goto err_out;
 787		/* Prevent probing on this irq: */
 788		irq_settings_set_noprobe(desc);
 789		/*
 790		 * Call irq_startup() not irq_enable() here because the
 791		 * interrupt might be marked NOAUTOEN. So irq_startup()
 792		 * needs to be invoked when it gets enabled the first
 793		 * time. If it was already started up, then irq_startup()
 794		 * will invoke irq_enable() under the hood.
 795		 */
 796		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 797		break;
 798	}
 799	default:
 800		desc->depth--;
 801	}
 802}
 803
 804/**
 805 *	enable_irq - enable handling of an irq
 806 *	@irq: Interrupt to enable
 807 *
 808 *	Undoes the effect of one call to disable_irq().  If this
 809 *	matches the last disable, processing of interrupts on this
 810 *	IRQ line is re-enabled.
 811 *
 812 *	This function may be called from IRQ context only when
 813 *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 814 */
 815void enable_irq(unsigned int irq)
 816{
 817	unsigned long flags;
 818	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 819
 820	if (!desc)
 821		return;
 822	if (WARN(!desc->irq_data.chip,
 823		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 824		goto out;
 825
 826	__enable_irq(desc);
 827out:
 828	irq_put_desc_busunlock(desc, flags);
 829}
 830EXPORT_SYMBOL(enable_irq);
 831
 832/**
 833 *	enable_nmi - enable handling of an nmi
 834 *	@irq: Interrupt to enable
 835 *
 836 *	The interrupt to enable must have been requested through request_nmi.
 837 *	Undoes the effect of one call to disable_nmi(). If this
 838 *	matches the last disable, processing of interrupts on this
 839 *	IRQ line is re-enabled.
 840 */
 841void enable_nmi(unsigned int irq)
 842{
 843	enable_irq(irq);
 844}
 845
 846static int set_irq_wake_real(unsigned int irq, unsigned int on)
 847{
 848	struct irq_desc *desc = irq_to_desc(irq);
 849	int ret = -ENXIO;
 850
 851	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 852		return 0;
 853
 854	if (desc->irq_data.chip->irq_set_wake)
 855		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 856
 857	return ret;
 858}
 859
 860/**
 861 *	irq_set_irq_wake - control irq power management wakeup
 862 *	@irq:	interrupt to control
 863 *	@on:	enable/disable power management wakeup
 864 *
 865 *	Enable/disable power management wakeup mode, which is
 866 *	disabled by default.  Enables and disables must match,
 867 *	just as they match for non-wakeup mode support.
 868 *
 869 *	Wakeup mode lets this IRQ wake the system from sleep
 870 *	states like "suspend to RAM".
 871 *
 872 *	Note: irq enable/disable state is completely orthogonal
 873 *	to the enable/disable state of irq wake. An irq can be
 874 *	disabled with disable_irq() and still wake the system as
 875 *	long as the irq has wake enabled. If this does not hold,
 876 *	then the underlying irq chip and the related driver need
 877 *	to be investigated.
 878 */
 879int irq_set_irq_wake(unsigned int irq, unsigned int on)
 880{
 881	unsigned long flags;
 882	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 883	int ret = 0;
 884
 885	if (!desc)
 886		return -EINVAL;
 887
 888	/* Don't use NMIs as wake up interrupts please */
 889	if (desc->istate & IRQS_NMI) {
 890		ret = -EINVAL;
 891		goto out_unlock;
 892	}
 893
 894	/* wakeup-capable irqs can be shared between drivers that
 895	 * don't need to have the same sleep mode behaviors.
 896	 */
 897	if (on) {
 898		if (desc->wake_depth++ == 0) {
 899			ret = set_irq_wake_real(irq, on);
 900			if (ret)
 901				desc->wake_depth = 0;
 902			else
 903				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 904		}
 905	} else {
 906		if (desc->wake_depth == 0) {
 907			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 908		} else if (--desc->wake_depth == 0) {
 909			ret = set_irq_wake_real(irq, on);
 910			if (ret)
 911				desc->wake_depth = 1;
 912			else
 913				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 914		}
 915	}
 916
 917out_unlock:
 918	irq_put_desc_busunlock(desc, flags);
 919	return ret;
 920}
 921EXPORT_SYMBOL(irq_set_irq_wake);
 922
 923/*
 924 * Internal function that tells the architecture code whether a
 925 * particular irq has been exclusively allocated or is available
 926 * for driver use.
 927 */
 928int can_request_irq(unsigned int irq, unsigned long irqflags)
 929{
 930	unsigned long flags;
 931	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 932	int canrequest = 0;
 933
 934	if (!desc)
 935		return 0;
 936
 937	if (irq_settings_can_request(desc)) {
 938		if (!desc->action ||
 939		    irqflags & desc->action->flags & IRQF_SHARED)
 940			canrequest = 1;
 941	}
 942	irq_put_desc_unlock(desc, flags);
 943	return canrequest;
 944}
 945
 946int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 947{
 948	struct irq_chip *chip = desc->irq_data.chip;
 949	int ret, unmask = 0;
 950
 951	if (!chip || !chip->irq_set_type) {
 952		/*
 953		 * IRQF_TRIGGER_* but the PIC does not support multiple
 954		 * flow-types?
 955		 */
 956		pr_debug("No set_type function for IRQ %d (%s)\n",
 957			 irq_desc_get_irq(desc),
 958			 chip ? (chip->name ? : "unknown") : "unknown");
 959		return 0;
 960	}
 961
 962	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 963		if (!irqd_irq_masked(&desc->irq_data))
 964			mask_irq(desc);
 965		if (!irqd_irq_disabled(&desc->irq_data))
 966			unmask = 1;
 967	}
 968
 969	/* Mask all flags except trigger mode */
 970	flags &= IRQ_TYPE_SENSE_MASK;
 971	ret = chip->irq_set_type(&desc->irq_data, flags);
 972
 973	switch (ret) {
 974	case IRQ_SET_MASK_OK:
 975	case IRQ_SET_MASK_OK_DONE:
 976		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 977		irqd_set(&desc->irq_data, flags);
 978		fallthrough;
 979
 980	case IRQ_SET_MASK_OK_NOCOPY:
 981		flags = irqd_get_trigger_type(&desc->irq_data);
 982		irq_settings_set_trigger_mask(desc, flags);
 983		irqd_clear(&desc->irq_data, IRQD_LEVEL);
 984		irq_settings_clr_level(desc);
 985		if (flags & IRQ_TYPE_LEVEL_MASK) {
 986			irq_settings_set_level(desc);
 987			irqd_set(&desc->irq_data, IRQD_LEVEL);
 988		}
 989
 990		ret = 0;
 991		break;
 992	default:
 993		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
 994		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
 995	}
 996	if (unmask)
 997		unmask_irq(desc);
 998	return ret;
 999}
1000
1001#ifdef CONFIG_HARDIRQS_SW_RESEND
1002int irq_set_parent(int irq, int parent_irq)
1003{
1004	unsigned long flags;
1005	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1006
1007	if (!desc)
1008		return -EINVAL;
1009
1010	desc->parent_irq = parent_irq;
1011
1012	irq_put_desc_unlock(desc, flags);
1013	return 0;
1014}
1015EXPORT_SYMBOL_GPL(irq_set_parent);
1016#endif
1017
1018/*
1019 * Default primary interrupt handler for threaded interrupts. Is
1020 * assigned as primary handler when request_threaded_irq is called
1021 * with handler == NULL. Useful for oneshot interrupts.
1022 */
1023static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1024{
1025	return IRQ_WAKE_THREAD;
1026}
1027
1028/*
1029 * Primary handler for nested threaded interrupts. Should never be
1030 * called.
1031 */
1032static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1033{
1034	WARN(1, "Primary handler called for nested irq %d\n", irq);
1035	return IRQ_NONE;
1036}
1037
1038static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1039{
1040	WARN(1, "Secondary action handler called for irq %d\n", irq);
1041	return IRQ_NONE;
1042}
1043
1044static int irq_wait_for_interrupt(struct irqaction *action)
1045{
1046	for (;;) {
1047		set_current_state(TASK_INTERRUPTIBLE);
1048
1049		if (kthread_should_stop()) {
1050			/* may need to run one last time */
1051			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1052					       &action->thread_flags)) {
1053				__set_current_state(TASK_RUNNING);
1054				return 0;
1055			}
1056			__set_current_state(TASK_RUNNING);
1057			return -1;
1058		}
1059
1060		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1061				       &action->thread_flags)) {
1062			__set_current_state(TASK_RUNNING);
1063			return 0;
1064		}
1065		schedule();
1066	}
1067}
1068
1069/*
1070 * Oneshot interrupts keep the irq line masked until the threaded
1071 * handler finished. unmask if the interrupt has not been disabled and
1072 * is marked MASKED.
1073 */
1074static void irq_finalize_oneshot(struct irq_desc *desc,
1075				 struct irqaction *action)
1076{
1077	if (!(desc->istate & IRQS_ONESHOT) ||
1078	    action->handler == irq_forced_secondary_handler)
1079		return;
1080again:
1081	chip_bus_lock(desc);
1082	raw_spin_lock_irq(&desc->lock);
1083
1084	/*
1085	 * Implausible though it may be we need to protect us against
1086	 * the following scenario:
1087	 *
1088	 * The thread is faster done than the hard interrupt handler
1089	 * on the other CPU. If we unmask the irq line then the
1090	 * interrupt can come in again and masks the line, leaves due
1091	 * to IRQS_INPROGRESS and the irq line is masked forever.
1092	 *
1093	 * This also serializes the state of shared oneshot handlers
1094	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1095	 * irq_wake_thread(). See the comment there which explains the
1096	 * serialization.
1097	 */
1098	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1099		raw_spin_unlock_irq(&desc->lock);
1100		chip_bus_sync_unlock(desc);
1101		cpu_relax();
1102		goto again;
1103	}
1104
1105	/*
1106	 * Now check again, whether the thread should run. Otherwise
1107	 * we would clear the threads_oneshot bit of this thread which
1108	 * was just set.
1109	 */
1110	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1111		goto out_unlock;
1112
1113	desc->threads_oneshot &= ~action->thread_mask;
1114
1115	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1116	    irqd_irq_masked(&desc->irq_data))
1117		unmask_threaded_irq(desc);
1118
1119out_unlock:
1120	raw_spin_unlock_irq(&desc->lock);
1121	chip_bus_sync_unlock(desc);
1122}
1123
1124#ifdef CONFIG_SMP
1125/*
1126 * Check whether we need to change the affinity of the interrupt thread.
1127 */
1128static void
1129irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1130{
1131	cpumask_var_t mask;
1132	bool valid = true;
1133
1134	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1135		return;
1136
1137	/*
1138	 * In case we are out of memory we set IRQTF_AFFINITY again and
1139	 * try again next time
1140	 */
1141	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1142		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1143		return;
1144	}
1145
1146	raw_spin_lock_irq(&desc->lock);
1147	/*
1148	 * This code is triggered unconditionally. Check the affinity
1149	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1150	 */
1151	if (cpumask_available(desc->irq_common_data.affinity)) {
1152		const struct cpumask *m;
1153
1154		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1155		cpumask_copy(mask, m);
1156	} else {
1157		valid = false;
1158	}
1159	raw_spin_unlock_irq(&desc->lock);
1160
1161	if (valid)
1162		set_cpus_allowed_ptr(current, mask);
1163	free_cpumask_var(mask);
1164}
1165#else
1166static inline void
1167irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1168#endif
1169
1170/*
1171 * Interrupts which are not explicitly requested as threaded
1172 * interrupts rely on the implicit bh/preempt disable of the hard irq
1173 * context. So we need to disable bh here to avoid deadlocks and other
1174 * side effects.
1175 */
1176static irqreturn_t
1177irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1178{
1179	irqreturn_t ret;
1180
1181	local_bh_disable();
1182	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1183		local_irq_disable();
1184	ret = action->thread_fn(action->irq, action->dev_id);
1185	if (ret == IRQ_HANDLED)
1186		atomic_inc(&desc->threads_handled);
1187
1188	irq_finalize_oneshot(desc, action);
1189	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1190		local_irq_enable();
1191	local_bh_enable();
1192	return ret;
1193}
1194
1195/*
1196 * Interrupts explicitly requested as threaded interrupts want to be
1197 * preemptible - many of them need to sleep and wait for slow busses to
1198 * complete.
1199 */
1200static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1201		struct irqaction *action)
1202{
1203	irqreturn_t ret;
1204
1205	ret = action->thread_fn(action->irq, action->dev_id);
1206	if (ret == IRQ_HANDLED)
1207		atomic_inc(&desc->threads_handled);
1208
1209	irq_finalize_oneshot(desc, action);
1210	return ret;
1211}
1212
1213static void wake_threads_waitq(struct irq_desc *desc)
1214{
1215	if (atomic_dec_and_test(&desc->threads_active))
1216		wake_up(&desc->wait_for_threads);
1217}
1218
1219static void irq_thread_dtor(struct callback_head *unused)
1220{
1221	struct task_struct *tsk = current;
1222	struct irq_desc *desc;
1223	struct irqaction *action;
1224
1225	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1226		return;
1227
1228	action = kthread_data(tsk);
1229
1230	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1231	       tsk->comm, tsk->pid, action->irq);
1232
1233
1234	desc = irq_to_desc(action->irq);
1235	/*
1236	 * If IRQTF_RUNTHREAD is set, we need to decrement
1237	 * desc->threads_active and wake possible waiters.
1238	 */
1239	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1240		wake_threads_waitq(desc);
1241
1242	/* Prevent a stale desc->threads_oneshot */
1243	irq_finalize_oneshot(desc, action);
1244}
1245
1246static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1247{
1248	struct irqaction *secondary = action->secondary;
1249
1250	if (WARN_ON_ONCE(!secondary))
1251		return;
1252
1253	raw_spin_lock_irq(&desc->lock);
1254	__irq_wake_thread(desc, secondary);
1255	raw_spin_unlock_irq(&desc->lock);
1256}
1257
1258/*
1259 * Internal function to notify that a interrupt thread is ready.
1260 */
1261static void irq_thread_set_ready(struct irq_desc *desc,
1262				 struct irqaction *action)
1263{
1264	set_bit(IRQTF_READY, &action->thread_flags);
1265	wake_up(&desc->wait_for_threads);
1266}
1267
1268/*
1269 * Internal function to wake up a interrupt thread and wait until it is
1270 * ready.
1271 */
1272static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1273						  struct irqaction *action)
1274{
1275	if (!action || !action->thread)
1276		return;
1277
1278	wake_up_process(action->thread);
1279	wait_event(desc->wait_for_threads,
1280		   test_bit(IRQTF_READY, &action->thread_flags));
1281}
1282
1283/*
1284 * Interrupt handler thread
1285 */
1286static int irq_thread(void *data)
1287{
1288	struct callback_head on_exit_work;
1289	struct irqaction *action = data;
1290	struct irq_desc *desc = irq_to_desc(action->irq);
1291	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1292			struct irqaction *action);
1293
1294	irq_thread_set_ready(desc, action);
1295
1296	sched_set_fifo(current);
1297
1298	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1299					   &action->thread_flags))
1300		handler_fn = irq_forced_thread_fn;
1301	else
1302		handler_fn = irq_thread_fn;
1303
1304	init_task_work(&on_exit_work, irq_thread_dtor);
1305	task_work_add(current, &on_exit_work, TWA_NONE);
1306
1307	irq_thread_check_affinity(desc, action);
1308
1309	while (!irq_wait_for_interrupt(action)) {
1310		irqreturn_t action_ret;
1311
1312		irq_thread_check_affinity(desc, action);
1313
1314		action_ret = handler_fn(desc, action);
1315		if (action_ret == IRQ_WAKE_THREAD)
1316			irq_wake_secondary(desc, action);
1317
1318		wake_threads_waitq(desc);
1319	}
1320
1321	/*
1322	 * This is the regular exit path. __free_irq() is stopping the
1323	 * thread via kthread_stop() after calling
1324	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1325	 * oneshot mask bit can be set.
1326	 */
1327	task_work_cancel(current, irq_thread_dtor);
1328	return 0;
1329}
1330
1331/**
1332 *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1333 *	@irq:		Interrupt line
1334 *	@dev_id:	Device identity for which the thread should be woken
1335 *
1336 */
1337void irq_wake_thread(unsigned int irq, void *dev_id)
1338{
1339	struct irq_desc *desc = irq_to_desc(irq);
1340	struct irqaction *action;
1341	unsigned long flags;
1342
1343	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1344		return;
1345
1346	raw_spin_lock_irqsave(&desc->lock, flags);
1347	for_each_action_of_desc(desc, action) {
1348		if (action->dev_id == dev_id) {
1349			if (action->thread)
1350				__irq_wake_thread(desc, action);
1351			break;
1352		}
1353	}
1354	raw_spin_unlock_irqrestore(&desc->lock, flags);
1355}
1356EXPORT_SYMBOL_GPL(irq_wake_thread);
1357
1358static int irq_setup_forced_threading(struct irqaction *new)
1359{
1360	if (!force_irqthreads())
1361		return 0;
1362	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1363		return 0;
1364
1365	/*
1366	 * No further action required for interrupts which are requested as
1367	 * threaded interrupts already
1368	 */
1369	if (new->handler == irq_default_primary_handler)
1370		return 0;
1371
1372	new->flags |= IRQF_ONESHOT;
1373
1374	/*
1375	 * Handle the case where we have a real primary handler and a
1376	 * thread handler. We force thread them as well by creating a
1377	 * secondary action.
1378	 */
1379	if (new->handler && new->thread_fn) {
1380		/* Allocate the secondary action */
1381		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1382		if (!new->secondary)
1383			return -ENOMEM;
1384		new->secondary->handler = irq_forced_secondary_handler;
1385		new->secondary->thread_fn = new->thread_fn;
1386		new->secondary->dev_id = new->dev_id;
1387		new->secondary->irq = new->irq;
1388		new->secondary->name = new->name;
1389	}
1390	/* Deal with the primary handler */
1391	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1392	new->thread_fn = new->handler;
1393	new->handler = irq_default_primary_handler;
1394	return 0;
1395}
1396
1397static int irq_request_resources(struct irq_desc *desc)
1398{
1399	struct irq_data *d = &desc->irq_data;
1400	struct irq_chip *c = d->chip;
1401
1402	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1403}
1404
1405static void irq_release_resources(struct irq_desc *desc)
1406{
1407	struct irq_data *d = &desc->irq_data;
1408	struct irq_chip *c = d->chip;
1409
1410	if (c->irq_release_resources)
1411		c->irq_release_resources(d);
1412}
1413
1414static bool irq_supports_nmi(struct irq_desc *desc)
1415{
1416	struct irq_data *d = irq_desc_get_irq_data(desc);
1417
1418#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1419	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1420	if (d->parent_data)
1421		return false;
1422#endif
1423	/* Don't support NMIs for chips behind a slow bus */
1424	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1425		return false;
1426
1427	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1428}
1429
1430static int irq_nmi_setup(struct irq_desc *desc)
1431{
1432	struct irq_data *d = irq_desc_get_irq_data(desc);
1433	struct irq_chip *c = d->chip;
1434
1435	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1436}
1437
1438static void irq_nmi_teardown(struct irq_desc *desc)
1439{
1440	struct irq_data *d = irq_desc_get_irq_data(desc);
1441	struct irq_chip *c = d->chip;
1442
1443	if (c->irq_nmi_teardown)
1444		c->irq_nmi_teardown(d);
1445}
1446
1447static int
1448setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1449{
1450	struct task_struct *t;
 
 
 
1451
1452	if (!secondary) {
1453		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1454				   new->name);
1455	} else {
1456		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1457				   new->name);
 
1458	}
1459
1460	if (IS_ERR(t))
1461		return PTR_ERR(t);
1462
 
 
1463	/*
1464	 * We keep the reference to the task struct even if
1465	 * the thread dies to avoid that the interrupt code
1466	 * references an already freed task_struct.
1467	 */
1468	new->thread = get_task_struct(t);
1469	/*
1470	 * Tell the thread to set its affinity. This is
1471	 * important for shared interrupt handlers as we do
1472	 * not invoke setup_affinity() for the secondary
1473	 * handlers as everything is already set up. Even for
1474	 * interrupts marked with IRQF_NO_BALANCE this is
1475	 * correct as we want the thread to move to the cpu(s)
1476	 * on which the requesting code placed the interrupt.
1477	 */
1478	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1479	return 0;
1480}
1481
1482/*
1483 * Internal function to register an irqaction - typically used to
1484 * allocate special interrupts that are part of the architecture.
1485 *
1486 * Locking rules:
1487 *
1488 * desc->request_mutex	Provides serialization against a concurrent free_irq()
1489 *   chip_bus_lock	Provides serialization for slow bus operations
1490 *     desc->lock	Provides serialization against hard interrupts
1491 *
1492 * chip_bus_lock and desc->lock are sufficient for all other management and
1493 * interrupt related functions. desc->request_mutex solely serializes
1494 * request/free_irq().
1495 */
1496static int
1497__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1498{
1499	struct irqaction *old, **old_ptr;
1500	unsigned long flags, thread_mask = 0;
1501	int ret, nested, shared = 0;
1502
1503	if (!desc)
1504		return -EINVAL;
1505
1506	if (desc->irq_data.chip == &no_irq_chip)
1507		return -ENOSYS;
1508	if (!try_module_get(desc->owner))
1509		return -ENODEV;
1510
1511	new->irq = irq;
1512
1513	/*
1514	 * If the trigger type is not specified by the caller,
1515	 * then use the default for this interrupt.
1516	 */
1517	if (!(new->flags & IRQF_TRIGGER_MASK))
1518		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1519
1520	/*
1521	 * Check whether the interrupt nests into another interrupt
1522	 * thread.
1523	 */
1524	nested = irq_settings_is_nested_thread(desc);
1525	if (nested) {
1526		if (!new->thread_fn) {
1527			ret = -EINVAL;
1528			goto out_mput;
1529		}
1530		/*
1531		 * Replace the primary handler which was provided from
1532		 * the driver for non nested interrupt handling by the
1533		 * dummy function which warns when called.
1534		 */
1535		new->handler = irq_nested_primary_handler;
1536	} else {
1537		if (irq_settings_can_thread(desc)) {
1538			ret = irq_setup_forced_threading(new);
1539			if (ret)
1540				goto out_mput;
1541		}
1542	}
1543
1544	/*
1545	 * Create a handler thread when a thread function is supplied
1546	 * and the interrupt does not nest into another interrupt
1547	 * thread.
1548	 */
1549	if (new->thread_fn && !nested) {
1550		ret = setup_irq_thread(new, irq, false);
1551		if (ret)
1552			goto out_mput;
1553		if (new->secondary) {
1554			ret = setup_irq_thread(new->secondary, irq, true);
1555			if (ret)
1556				goto out_thread;
1557		}
1558	}
1559
1560	/*
1561	 * Drivers are often written to work w/o knowledge about the
1562	 * underlying irq chip implementation, so a request for a
1563	 * threaded irq without a primary hard irq context handler
1564	 * requires the ONESHOT flag to be set. Some irq chips like
1565	 * MSI based interrupts are per se one shot safe. Check the
1566	 * chip flags, so we can avoid the unmask dance at the end of
1567	 * the threaded handler for those.
1568	 */
1569	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1570		new->flags &= ~IRQF_ONESHOT;
1571
1572	/*
1573	 * Protects against a concurrent __free_irq() call which might wait
1574	 * for synchronize_hardirq() to complete without holding the optional
1575	 * chip bus lock and desc->lock. Also protects against handing out
1576	 * a recycled oneshot thread_mask bit while it's still in use by
1577	 * its previous owner.
1578	 */
1579	mutex_lock(&desc->request_mutex);
1580
1581	/*
1582	 * Acquire bus lock as the irq_request_resources() callback below
1583	 * might rely on the serialization or the magic power management
1584	 * functions which are abusing the irq_bus_lock() callback,
1585	 */
1586	chip_bus_lock(desc);
1587
1588	/* First installed action requests resources. */
1589	if (!desc->action) {
1590		ret = irq_request_resources(desc);
1591		if (ret) {
1592			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1593			       new->name, irq, desc->irq_data.chip->name);
1594			goto out_bus_unlock;
1595		}
1596	}
1597
1598	/*
1599	 * The following block of code has to be executed atomically
1600	 * protected against a concurrent interrupt and any of the other
1601	 * management calls which are not serialized via
1602	 * desc->request_mutex or the optional bus lock.
1603	 */
1604	raw_spin_lock_irqsave(&desc->lock, flags);
1605	old_ptr = &desc->action;
1606	old = *old_ptr;
1607	if (old) {
1608		/*
1609		 * Can't share interrupts unless both agree to and are
1610		 * the same type (level, edge, polarity). So both flag
1611		 * fields must have IRQF_SHARED set and the bits which
1612		 * set the trigger type must match. Also all must
1613		 * agree on ONESHOT.
1614		 * Interrupt lines used for NMIs cannot be shared.
1615		 */
1616		unsigned int oldtype;
1617
1618		if (desc->istate & IRQS_NMI) {
1619			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1620				new->name, irq, desc->irq_data.chip->name);
1621			ret = -EINVAL;
1622			goto out_unlock;
1623		}
1624
1625		/*
1626		 * If nobody did set the configuration before, inherit
1627		 * the one provided by the requester.
1628		 */
1629		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1630			oldtype = irqd_get_trigger_type(&desc->irq_data);
1631		} else {
1632			oldtype = new->flags & IRQF_TRIGGER_MASK;
1633			irqd_set_trigger_type(&desc->irq_data, oldtype);
1634		}
1635
1636		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1637		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1638		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1639			goto mismatch;
1640
1641		/* All handlers must agree on per-cpuness */
1642		if ((old->flags & IRQF_PERCPU) !=
1643		    (new->flags & IRQF_PERCPU))
1644			goto mismatch;
1645
1646		/* add new interrupt at end of irq queue */
1647		do {
1648			/*
1649			 * Or all existing action->thread_mask bits,
1650			 * so we can find the next zero bit for this
1651			 * new action.
1652			 */
1653			thread_mask |= old->thread_mask;
1654			old_ptr = &old->next;
1655			old = *old_ptr;
1656		} while (old);
1657		shared = 1;
1658	}
1659
1660	/*
1661	 * Setup the thread mask for this irqaction for ONESHOT. For
1662	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1663	 * conditional in irq_wake_thread().
1664	 */
1665	if (new->flags & IRQF_ONESHOT) {
1666		/*
1667		 * Unlikely to have 32 resp 64 irqs sharing one line,
1668		 * but who knows.
1669		 */
1670		if (thread_mask == ~0UL) {
1671			ret = -EBUSY;
1672			goto out_unlock;
1673		}
1674		/*
1675		 * The thread_mask for the action is or'ed to
1676		 * desc->thread_active to indicate that the
1677		 * IRQF_ONESHOT thread handler has been woken, but not
1678		 * yet finished. The bit is cleared when a thread
1679		 * completes. When all threads of a shared interrupt
1680		 * line have completed desc->threads_active becomes
1681		 * zero and the interrupt line is unmasked. See
1682		 * handle.c:irq_wake_thread() for further information.
1683		 *
1684		 * If no thread is woken by primary (hard irq context)
1685		 * interrupt handlers, then desc->threads_active is
1686		 * also checked for zero to unmask the irq line in the
1687		 * affected hard irq flow handlers
1688		 * (handle_[fasteoi|level]_irq).
1689		 *
1690		 * The new action gets the first zero bit of
1691		 * thread_mask assigned. See the loop above which or's
1692		 * all existing action->thread_mask bits.
1693		 */
1694		new->thread_mask = 1UL << ffz(thread_mask);
1695
1696	} else if (new->handler == irq_default_primary_handler &&
1697		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1698		/*
1699		 * The interrupt was requested with handler = NULL, so
1700		 * we use the default primary handler for it. But it
1701		 * does not have the oneshot flag set. In combination
1702		 * with level interrupts this is deadly, because the
1703		 * default primary handler just wakes the thread, then
1704		 * the irq lines is reenabled, but the device still
1705		 * has the level irq asserted. Rinse and repeat....
1706		 *
1707		 * While this works for edge type interrupts, we play
1708		 * it safe and reject unconditionally because we can't
1709		 * say for sure which type this interrupt really
1710		 * has. The type flags are unreliable as the
1711		 * underlying chip implementation can override them.
1712		 */
1713		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1714		       new->name, irq);
1715		ret = -EINVAL;
1716		goto out_unlock;
1717	}
1718
1719	if (!shared) {
 
 
1720		/* Setup the type (level, edge polarity) if configured: */
1721		if (new->flags & IRQF_TRIGGER_MASK) {
1722			ret = __irq_set_trigger(desc,
1723						new->flags & IRQF_TRIGGER_MASK);
1724
1725			if (ret)
1726				goto out_unlock;
1727		}
1728
1729		/*
1730		 * Activate the interrupt. That activation must happen
1731		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1732		 * and the callers are supposed to handle
1733		 * that. enable_irq() of an interrupt requested with
1734		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1735		 * keeps it in shutdown mode, it merily associates
1736		 * resources if necessary and if that's not possible it
1737		 * fails. Interrupts which are in managed shutdown mode
1738		 * will simply ignore that activation request.
1739		 */
1740		ret = irq_activate(desc);
1741		if (ret)
1742			goto out_unlock;
1743
1744		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1745				  IRQS_ONESHOT | IRQS_WAITING);
1746		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1747
1748		if (new->flags & IRQF_PERCPU) {
1749			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1750			irq_settings_set_per_cpu(desc);
1751			if (new->flags & IRQF_NO_DEBUG)
1752				irq_settings_set_no_debug(desc);
1753		}
1754
1755		if (noirqdebug)
1756			irq_settings_set_no_debug(desc);
1757
1758		if (new->flags & IRQF_ONESHOT)
1759			desc->istate |= IRQS_ONESHOT;
1760
1761		/* Exclude IRQ from balancing if requested */
1762		if (new->flags & IRQF_NOBALANCING) {
1763			irq_settings_set_no_balancing(desc);
1764			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1765		}
1766
1767		if (!(new->flags & IRQF_NO_AUTOEN) &&
1768		    irq_settings_can_autoenable(desc)) {
1769			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1770		} else {
1771			/*
1772			 * Shared interrupts do not go well with disabling
1773			 * auto enable. The sharing interrupt might request
1774			 * it while it's still disabled and then wait for
1775			 * interrupts forever.
1776			 */
1777			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1778			/* Undo nested disables: */
1779			desc->depth = 1;
1780		}
1781
1782	} else if (new->flags & IRQF_TRIGGER_MASK) {
1783		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1784		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1785
1786		if (nmsk != omsk)
1787			/* hope the handler works with current  trigger mode */
1788			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1789				irq, omsk, nmsk);
1790	}
1791
1792	*old_ptr = new;
1793
1794	irq_pm_install_action(desc, new);
1795
1796	/* Reset broken irq detection when installing new handler */
1797	desc->irq_count = 0;
1798	desc->irqs_unhandled = 0;
1799
1800	/*
1801	 * Check whether we disabled the irq via the spurious handler
1802	 * before. Reenable it and give it another chance.
1803	 */
1804	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1805		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1806		__enable_irq(desc);
1807	}
1808
1809	raw_spin_unlock_irqrestore(&desc->lock, flags);
1810	chip_bus_sync_unlock(desc);
1811	mutex_unlock(&desc->request_mutex);
1812
1813	irq_setup_timings(desc, new);
1814
1815	wake_up_and_wait_for_irq_thread_ready(desc, new);
1816	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
 
 
 
 
 
 
1817
1818	register_irq_proc(irq, desc);
1819	new->dir = NULL;
1820	register_handler_proc(irq, new);
1821	return 0;
1822
1823mismatch:
1824	if (!(new->flags & IRQF_PROBE_SHARED)) {
1825		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1826		       irq, new->flags, new->name, old->flags, old->name);
1827#ifdef CONFIG_DEBUG_SHIRQ
1828		dump_stack();
1829#endif
1830	}
1831	ret = -EBUSY;
1832
1833out_unlock:
1834	raw_spin_unlock_irqrestore(&desc->lock, flags);
1835
1836	if (!desc->action)
1837		irq_release_resources(desc);
1838out_bus_unlock:
1839	chip_bus_sync_unlock(desc);
1840	mutex_unlock(&desc->request_mutex);
1841
1842out_thread:
1843	if (new->thread) {
1844		struct task_struct *t = new->thread;
1845
1846		new->thread = NULL;
1847		kthread_stop(t);
1848		put_task_struct(t);
1849	}
1850	if (new->secondary && new->secondary->thread) {
1851		struct task_struct *t = new->secondary->thread;
1852
1853		new->secondary->thread = NULL;
1854		kthread_stop(t);
1855		put_task_struct(t);
1856	}
1857out_mput:
1858	module_put(desc->owner);
1859	return ret;
1860}
1861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1862/*
1863 * Internal function to unregister an irqaction - used to free
1864 * regular and special interrupts that are part of the architecture.
1865 */
1866static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1867{
1868	unsigned irq = desc->irq_data.irq;
1869	struct irqaction *action, **action_ptr;
1870	unsigned long flags;
1871
1872	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1873
1874	mutex_lock(&desc->request_mutex);
1875	chip_bus_lock(desc);
1876	raw_spin_lock_irqsave(&desc->lock, flags);
1877
1878	/*
1879	 * There can be multiple actions per IRQ descriptor, find the right
1880	 * one based on the dev_id:
1881	 */
1882	action_ptr = &desc->action;
1883	for (;;) {
1884		action = *action_ptr;
1885
1886		if (!action) {
1887			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1888			raw_spin_unlock_irqrestore(&desc->lock, flags);
1889			chip_bus_sync_unlock(desc);
1890			mutex_unlock(&desc->request_mutex);
1891			return NULL;
1892		}
1893
1894		if (action->dev_id == dev_id)
1895			break;
1896		action_ptr = &action->next;
1897	}
1898
1899	/* Found it - now remove it from the list of entries: */
1900	*action_ptr = action->next;
1901
1902	irq_pm_remove_action(desc, action);
1903
1904	/* If this was the last handler, shut down the IRQ line: */
1905	if (!desc->action) {
1906		irq_settings_clr_disable_unlazy(desc);
1907		/* Only shutdown. Deactivate after synchronize_hardirq() */
1908		irq_shutdown(desc);
1909	}
1910
1911#ifdef CONFIG_SMP
1912	/* make sure affinity_hint is cleaned up */
1913	if (WARN_ON_ONCE(desc->affinity_hint))
1914		desc->affinity_hint = NULL;
1915#endif
1916
1917	raw_spin_unlock_irqrestore(&desc->lock, flags);
1918	/*
1919	 * Drop bus_lock here so the changes which were done in the chip
1920	 * callbacks above are synced out to the irq chips which hang
1921	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1922	 *
1923	 * Aside of that the bus_lock can also be taken from the threaded
1924	 * handler in irq_finalize_oneshot() which results in a deadlock
1925	 * because kthread_stop() would wait forever for the thread to
1926	 * complete, which is blocked on the bus lock.
1927	 *
1928	 * The still held desc->request_mutex() protects against a
1929	 * concurrent request_irq() of this irq so the release of resources
1930	 * and timing data is properly serialized.
1931	 */
1932	chip_bus_sync_unlock(desc);
1933
1934	unregister_handler_proc(irq, action);
1935
1936	/*
1937	 * Make sure it's not being used on another CPU and if the chip
1938	 * supports it also make sure that there is no (not yet serviced)
1939	 * interrupt in flight at the hardware level.
1940	 */
1941	__synchronize_hardirq(desc, true);
1942
1943#ifdef CONFIG_DEBUG_SHIRQ
1944	/*
1945	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1946	 * event to happen even now it's being freed, so let's make sure that
1947	 * is so by doing an extra call to the handler ....
1948	 *
1949	 * ( We do this after actually deregistering it, to make sure that a
1950	 *   'real' IRQ doesn't run in parallel with our fake. )
1951	 */
1952	if (action->flags & IRQF_SHARED) {
1953		local_irq_save(flags);
1954		action->handler(irq, dev_id);
1955		local_irq_restore(flags);
1956	}
1957#endif
1958
1959	/*
1960	 * The action has already been removed above, but the thread writes
1961	 * its oneshot mask bit when it completes. Though request_mutex is
1962	 * held across this which prevents __setup_irq() from handing out
1963	 * the same bit to a newly requested action.
1964	 */
1965	if (action->thread) {
1966		kthread_stop(action->thread);
1967		put_task_struct(action->thread);
1968		if (action->secondary && action->secondary->thread) {
1969			kthread_stop(action->secondary->thread);
1970			put_task_struct(action->secondary->thread);
1971		}
1972	}
1973
1974	/* Last action releases resources */
1975	if (!desc->action) {
1976		/*
1977		 * Reacquire bus lock as irq_release_resources() might
1978		 * require it to deallocate resources over the slow bus.
1979		 */
1980		chip_bus_lock(desc);
1981		/*
1982		 * There is no interrupt on the fly anymore. Deactivate it
1983		 * completely.
1984		 */
1985		raw_spin_lock_irqsave(&desc->lock, flags);
1986		irq_domain_deactivate_irq(&desc->irq_data);
1987		raw_spin_unlock_irqrestore(&desc->lock, flags);
1988
1989		irq_release_resources(desc);
1990		chip_bus_sync_unlock(desc);
1991		irq_remove_timings(desc);
1992	}
1993
1994	mutex_unlock(&desc->request_mutex);
1995
1996	irq_chip_pm_put(&desc->irq_data);
1997	module_put(desc->owner);
1998	kfree(action->secondary);
1999	return action;
2000}
2001
2002/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2003 *	free_irq - free an interrupt allocated with request_irq
2004 *	@irq: Interrupt line to free
2005 *	@dev_id: Device identity to free
2006 *
2007 *	Remove an interrupt handler. The handler is removed and if the
2008 *	interrupt line is no longer in use by any driver it is disabled.
2009 *	On a shared IRQ the caller must ensure the interrupt is disabled
2010 *	on the card it drives before calling this function. The function
2011 *	does not return until any executing interrupts for this IRQ
2012 *	have completed.
2013 *
2014 *	This function must not be called from interrupt context.
2015 *
2016 *	Returns the devname argument passed to request_irq.
2017 */
2018const void *free_irq(unsigned int irq, void *dev_id)
2019{
2020	struct irq_desc *desc = irq_to_desc(irq);
2021	struct irqaction *action;
2022	const char *devname;
2023
2024	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2025		return NULL;
2026
2027#ifdef CONFIG_SMP
2028	if (WARN_ON(desc->affinity_notify))
2029		desc->affinity_notify = NULL;
2030#endif
2031
2032	action = __free_irq(desc, dev_id);
2033
2034	if (!action)
2035		return NULL;
2036
2037	devname = action->name;
2038	kfree(action);
2039	return devname;
2040}
2041EXPORT_SYMBOL(free_irq);
2042
2043/* This function must be called with desc->lock held */
2044static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2045{
2046	const char *devname = NULL;
2047
2048	desc->istate &= ~IRQS_NMI;
2049
2050	if (!WARN_ON(desc->action == NULL)) {
2051		irq_pm_remove_action(desc, desc->action);
2052		devname = desc->action->name;
2053		unregister_handler_proc(irq, desc->action);
2054
2055		kfree(desc->action);
2056		desc->action = NULL;
2057	}
2058
2059	irq_settings_clr_disable_unlazy(desc);
2060	irq_shutdown_and_deactivate(desc);
2061
2062	irq_release_resources(desc);
2063
2064	irq_chip_pm_put(&desc->irq_data);
2065	module_put(desc->owner);
2066
2067	return devname;
2068}
2069
2070const void *free_nmi(unsigned int irq, void *dev_id)
2071{
2072	struct irq_desc *desc = irq_to_desc(irq);
2073	unsigned long flags;
2074	const void *devname;
2075
2076	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2077		return NULL;
2078
2079	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2080		return NULL;
2081
2082	/* NMI still enabled */
2083	if (WARN_ON(desc->depth == 0))
2084		disable_nmi_nosync(irq);
2085
2086	raw_spin_lock_irqsave(&desc->lock, flags);
2087
2088	irq_nmi_teardown(desc);
2089	devname = __cleanup_nmi(irq, desc);
2090
2091	raw_spin_unlock_irqrestore(&desc->lock, flags);
2092
2093	return devname;
2094}
2095
2096/**
2097 *	request_threaded_irq - allocate an interrupt line
2098 *	@irq: Interrupt line to allocate
2099 *	@handler: Function to be called when the IRQ occurs.
2100 *		  Primary handler for threaded interrupts.
2101 *		  If handler is NULL and thread_fn != NULL
2102 *		  the default primary handler is installed.
2103 *	@thread_fn: Function called from the irq handler thread
2104 *		    If NULL, no irq thread is created
2105 *	@irqflags: Interrupt type flags
2106 *	@devname: An ascii name for the claiming device
2107 *	@dev_id: A cookie passed back to the handler function
2108 *
2109 *	This call allocates interrupt resources and enables the
2110 *	interrupt line and IRQ handling. From the point this
2111 *	call is made your handler function may be invoked. Since
2112 *	your handler function must clear any interrupt the board
2113 *	raises, you must take care both to initialise your hardware
2114 *	and to set up the interrupt handler in the right order.
2115 *
2116 *	If you want to set up a threaded irq handler for your device
2117 *	then you need to supply @handler and @thread_fn. @handler is
2118 *	still called in hard interrupt context and has to check
2119 *	whether the interrupt originates from the device. If yes it
2120 *	needs to disable the interrupt on the device and return
2121 *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2122 *	@thread_fn. This split handler design is necessary to support
2123 *	shared interrupts.
2124 *
2125 *	Dev_id must be globally unique. Normally the address of the
2126 *	device data structure is used as the cookie. Since the handler
2127 *	receives this value it makes sense to use it.
2128 *
2129 *	If your interrupt is shared you must pass a non NULL dev_id
2130 *	as this is required when freeing the interrupt.
2131 *
2132 *	Flags:
2133 *
2134 *	IRQF_SHARED		Interrupt is shared
2135 *	IRQF_TRIGGER_*		Specify active edge(s) or level
2136 *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2137 */
2138int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2139			 irq_handler_t thread_fn, unsigned long irqflags,
2140			 const char *devname, void *dev_id)
2141{
2142	struct irqaction *action;
2143	struct irq_desc *desc;
2144	int retval;
2145
2146	if (irq == IRQ_NOTCONNECTED)
2147		return -ENOTCONN;
2148
2149	/*
2150	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2151	 * otherwise we'll have trouble later trying to figure out
2152	 * which interrupt is which (messes up the interrupt freeing
2153	 * logic etc).
2154	 *
2155	 * Also shared interrupts do not go well with disabling auto enable.
2156	 * The sharing interrupt might request it while it's still disabled
2157	 * and then wait for interrupts forever.
2158	 *
2159	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2160	 * it cannot be set along with IRQF_NO_SUSPEND.
2161	 */
2162	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2163	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2164	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2165	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2166		return -EINVAL;
2167
2168	desc = irq_to_desc(irq);
2169	if (!desc)
2170		return -EINVAL;
2171
2172	if (!irq_settings_can_request(desc) ||
2173	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2174		return -EINVAL;
2175
2176	if (!handler) {
2177		if (!thread_fn)
2178			return -EINVAL;
2179		handler = irq_default_primary_handler;
2180	}
2181
2182	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2183	if (!action)
2184		return -ENOMEM;
2185
2186	action->handler = handler;
2187	action->thread_fn = thread_fn;
2188	action->flags = irqflags;
2189	action->name = devname;
2190	action->dev_id = dev_id;
2191
2192	retval = irq_chip_pm_get(&desc->irq_data);
2193	if (retval < 0) {
2194		kfree(action);
2195		return retval;
2196	}
2197
2198	retval = __setup_irq(irq, desc, action);
2199
2200	if (retval) {
2201		irq_chip_pm_put(&desc->irq_data);
2202		kfree(action->secondary);
2203		kfree(action);
2204	}
2205
2206#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2207	if (!retval && (irqflags & IRQF_SHARED)) {
2208		/*
2209		 * It's a shared IRQ -- the driver ought to be prepared for it
2210		 * to happen immediately, so let's make sure....
2211		 * We disable the irq to make sure that a 'real' IRQ doesn't
2212		 * run in parallel with our fake.
2213		 */
2214		unsigned long flags;
2215
2216		disable_irq(irq);
2217		local_irq_save(flags);
2218
2219		handler(irq, dev_id);
2220
2221		local_irq_restore(flags);
2222		enable_irq(irq);
2223	}
2224#endif
2225	return retval;
2226}
2227EXPORT_SYMBOL(request_threaded_irq);
2228
2229/**
2230 *	request_any_context_irq - allocate an interrupt line
2231 *	@irq: Interrupt line to allocate
2232 *	@handler: Function to be called when the IRQ occurs.
2233 *		  Threaded handler for threaded interrupts.
2234 *	@flags: Interrupt type flags
2235 *	@name: An ascii name for the claiming device
2236 *	@dev_id: A cookie passed back to the handler function
2237 *
2238 *	This call allocates interrupt resources and enables the
2239 *	interrupt line and IRQ handling. It selects either a
2240 *	hardirq or threaded handling method depending on the
2241 *	context.
2242 *
2243 *	On failure, it returns a negative value. On success,
2244 *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2245 */
2246int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2247			    unsigned long flags, const char *name, void *dev_id)
2248{
2249	struct irq_desc *desc;
2250	int ret;
2251
2252	if (irq == IRQ_NOTCONNECTED)
2253		return -ENOTCONN;
2254
2255	desc = irq_to_desc(irq);
2256	if (!desc)
2257		return -EINVAL;
2258
2259	if (irq_settings_is_nested_thread(desc)) {
2260		ret = request_threaded_irq(irq, NULL, handler,
2261					   flags, name, dev_id);
2262		return !ret ? IRQC_IS_NESTED : ret;
2263	}
2264
2265	ret = request_irq(irq, handler, flags, name, dev_id);
2266	return !ret ? IRQC_IS_HARDIRQ : ret;
2267}
2268EXPORT_SYMBOL_GPL(request_any_context_irq);
2269
2270/**
2271 *	request_nmi - allocate an interrupt line for NMI delivery
2272 *	@irq: Interrupt line to allocate
2273 *	@handler: Function to be called when the IRQ occurs.
2274 *		  Threaded handler for threaded interrupts.
2275 *	@irqflags: Interrupt type flags
2276 *	@name: An ascii name for the claiming device
2277 *	@dev_id: A cookie passed back to the handler function
2278 *
2279 *	This call allocates interrupt resources and enables the
2280 *	interrupt line and IRQ handling. It sets up the IRQ line
2281 *	to be handled as an NMI.
2282 *
2283 *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2284 *	cannot be threaded.
2285 *
2286 *	Interrupt lines requested for NMI delivering must produce per cpu
2287 *	interrupts and have auto enabling setting disabled.
2288 *
2289 *	Dev_id must be globally unique. Normally the address of the
2290 *	device data structure is used as the cookie. Since the handler
2291 *	receives this value it makes sense to use it.
2292 *
2293 *	If the interrupt line cannot be used to deliver NMIs, function
2294 *	will fail and return a negative value.
2295 */
2296int request_nmi(unsigned int irq, irq_handler_t handler,
2297		unsigned long irqflags, const char *name, void *dev_id)
2298{
2299	struct irqaction *action;
2300	struct irq_desc *desc;
2301	unsigned long flags;
2302	int retval;
2303
2304	if (irq == IRQ_NOTCONNECTED)
2305		return -ENOTCONN;
2306
2307	/* NMI cannot be shared, used for Polling */
2308	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2309		return -EINVAL;
2310
2311	if (!(irqflags & IRQF_PERCPU))
2312		return -EINVAL;
2313
2314	if (!handler)
2315		return -EINVAL;
2316
2317	desc = irq_to_desc(irq);
2318
2319	if (!desc || (irq_settings_can_autoenable(desc) &&
2320	    !(irqflags & IRQF_NO_AUTOEN)) ||
2321	    !irq_settings_can_request(desc) ||
2322	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2323	    !irq_supports_nmi(desc))
2324		return -EINVAL;
2325
2326	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2327	if (!action)
2328		return -ENOMEM;
2329
2330	action->handler = handler;
2331	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2332	action->name = name;
2333	action->dev_id = dev_id;
2334
2335	retval = irq_chip_pm_get(&desc->irq_data);
2336	if (retval < 0)
2337		goto err_out;
2338
2339	retval = __setup_irq(irq, desc, action);
2340	if (retval)
2341		goto err_irq_setup;
2342
2343	raw_spin_lock_irqsave(&desc->lock, flags);
2344
2345	/* Setup NMI state */
2346	desc->istate |= IRQS_NMI;
2347	retval = irq_nmi_setup(desc);
2348	if (retval) {
2349		__cleanup_nmi(irq, desc);
2350		raw_spin_unlock_irqrestore(&desc->lock, flags);
2351		return -EINVAL;
2352	}
2353
2354	raw_spin_unlock_irqrestore(&desc->lock, flags);
2355
2356	return 0;
2357
2358err_irq_setup:
2359	irq_chip_pm_put(&desc->irq_data);
2360err_out:
2361	kfree(action);
2362
2363	return retval;
2364}
2365
2366void enable_percpu_irq(unsigned int irq, unsigned int type)
2367{
2368	unsigned int cpu = smp_processor_id();
2369	unsigned long flags;
2370	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2371
2372	if (!desc)
2373		return;
2374
2375	/*
2376	 * If the trigger type is not specified by the caller, then
2377	 * use the default for this interrupt.
2378	 */
2379	type &= IRQ_TYPE_SENSE_MASK;
2380	if (type == IRQ_TYPE_NONE)
2381		type = irqd_get_trigger_type(&desc->irq_data);
2382
2383	if (type != IRQ_TYPE_NONE) {
2384		int ret;
2385
2386		ret = __irq_set_trigger(desc, type);
2387
2388		if (ret) {
2389			WARN(1, "failed to set type for IRQ%d\n", irq);
2390			goto out;
2391		}
2392	}
2393
2394	irq_percpu_enable(desc, cpu);
2395out:
2396	irq_put_desc_unlock(desc, flags);
2397}
2398EXPORT_SYMBOL_GPL(enable_percpu_irq);
2399
2400void enable_percpu_nmi(unsigned int irq, unsigned int type)
2401{
2402	enable_percpu_irq(irq, type);
2403}
2404
2405/**
2406 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2407 * @irq:	Linux irq number to check for
2408 *
2409 * Must be called from a non migratable context. Returns the enable
2410 * state of a per cpu interrupt on the current cpu.
2411 */
2412bool irq_percpu_is_enabled(unsigned int irq)
2413{
2414	unsigned int cpu = smp_processor_id();
2415	struct irq_desc *desc;
2416	unsigned long flags;
2417	bool is_enabled;
2418
2419	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2420	if (!desc)
2421		return false;
2422
2423	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2424	irq_put_desc_unlock(desc, flags);
2425
2426	return is_enabled;
2427}
2428EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2429
2430void disable_percpu_irq(unsigned int irq)
2431{
2432	unsigned int cpu = smp_processor_id();
2433	unsigned long flags;
2434	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2435
2436	if (!desc)
2437		return;
2438
2439	irq_percpu_disable(desc, cpu);
2440	irq_put_desc_unlock(desc, flags);
2441}
2442EXPORT_SYMBOL_GPL(disable_percpu_irq);
2443
2444void disable_percpu_nmi(unsigned int irq)
2445{
2446	disable_percpu_irq(irq);
2447}
2448
2449/*
2450 * Internal function to unregister a percpu irqaction.
2451 */
2452static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2453{
2454	struct irq_desc *desc = irq_to_desc(irq);
2455	struct irqaction *action;
2456	unsigned long flags;
2457
2458	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2459
2460	if (!desc)
2461		return NULL;
2462
2463	raw_spin_lock_irqsave(&desc->lock, flags);
2464
2465	action = desc->action;
2466	if (!action || action->percpu_dev_id != dev_id) {
2467		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2468		goto bad;
2469	}
2470
2471	if (!cpumask_empty(desc->percpu_enabled)) {
2472		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2473		     irq, cpumask_first(desc->percpu_enabled));
2474		goto bad;
2475	}
2476
2477	/* Found it - now remove it from the list of entries: */
2478	desc->action = NULL;
2479
2480	desc->istate &= ~IRQS_NMI;
2481
2482	raw_spin_unlock_irqrestore(&desc->lock, flags);
2483
2484	unregister_handler_proc(irq, action);
2485
2486	irq_chip_pm_put(&desc->irq_data);
2487	module_put(desc->owner);
2488	return action;
2489
2490bad:
2491	raw_spin_unlock_irqrestore(&desc->lock, flags);
2492	return NULL;
2493}
2494
2495/**
2496 *	remove_percpu_irq - free a per-cpu interrupt
2497 *	@irq: Interrupt line to free
2498 *	@act: irqaction for the interrupt
2499 *
2500 * Used to remove interrupts statically setup by the early boot process.
2501 */
2502void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2503{
2504	struct irq_desc *desc = irq_to_desc(irq);
2505
2506	if (desc && irq_settings_is_per_cpu_devid(desc))
2507	    __free_percpu_irq(irq, act->percpu_dev_id);
2508}
2509
2510/**
2511 *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2512 *	@irq: Interrupt line to free
2513 *	@dev_id: Device identity to free
2514 *
2515 *	Remove a percpu interrupt handler. The handler is removed, but
2516 *	the interrupt line is not disabled. This must be done on each
2517 *	CPU before calling this function. The function does not return
2518 *	until any executing interrupts for this IRQ have completed.
2519 *
2520 *	This function must not be called from interrupt context.
2521 */
2522void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2523{
2524	struct irq_desc *desc = irq_to_desc(irq);
2525
2526	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2527		return;
2528
2529	chip_bus_lock(desc);
2530	kfree(__free_percpu_irq(irq, dev_id));
2531	chip_bus_sync_unlock(desc);
2532}
2533EXPORT_SYMBOL_GPL(free_percpu_irq);
2534
2535void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2536{
2537	struct irq_desc *desc = irq_to_desc(irq);
2538
2539	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2540		return;
2541
2542	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2543		return;
2544
2545	kfree(__free_percpu_irq(irq, dev_id));
2546}
2547
2548/**
2549 *	setup_percpu_irq - setup a per-cpu interrupt
2550 *	@irq: Interrupt line to setup
2551 *	@act: irqaction for the interrupt
2552 *
2553 * Used to statically setup per-cpu interrupts in the early boot process.
2554 */
2555int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2556{
2557	struct irq_desc *desc = irq_to_desc(irq);
2558	int retval;
2559
2560	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2561		return -EINVAL;
2562
2563	retval = irq_chip_pm_get(&desc->irq_data);
2564	if (retval < 0)
2565		return retval;
2566
2567	retval = __setup_irq(irq, desc, act);
2568
2569	if (retval)
2570		irq_chip_pm_put(&desc->irq_data);
2571
2572	return retval;
2573}
2574
2575/**
2576 *	__request_percpu_irq - allocate a percpu interrupt line
2577 *	@irq: Interrupt line to allocate
2578 *	@handler: Function to be called when the IRQ occurs.
2579 *	@flags: Interrupt type flags (IRQF_TIMER only)
2580 *	@devname: An ascii name for the claiming device
2581 *	@dev_id: A percpu cookie passed back to the handler function
2582 *
2583 *	This call allocates interrupt resources and enables the
2584 *	interrupt on the local CPU. If the interrupt is supposed to be
2585 *	enabled on other CPUs, it has to be done on each CPU using
2586 *	enable_percpu_irq().
2587 *
2588 *	Dev_id must be globally unique. It is a per-cpu variable, and
2589 *	the handler gets called with the interrupted CPU's instance of
2590 *	that variable.
2591 */
2592int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2593			 unsigned long flags, const char *devname,
2594			 void __percpu *dev_id)
2595{
2596	struct irqaction *action;
2597	struct irq_desc *desc;
2598	int retval;
2599
2600	if (!dev_id)
2601		return -EINVAL;
2602
2603	desc = irq_to_desc(irq);
2604	if (!desc || !irq_settings_can_request(desc) ||
2605	    !irq_settings_is_per_cpu_devid(desc))
2606		return -EINVAL;
2607
2608	if (flags && flags != IRQF_TIMER)
2609		return -EINVAL;
2610
2611	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2612	if (!action)
2613		return -ENOMEM;
2614
2615	action->handler = handler;
2616	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2617	action->name = devname;
2618	action->percpu_dev_id = dev_id;
2619
2620	retval = irq_chip_pm_get(&desc->irq_data);
2621	if (retval < 0) {
2622		kfree(action);
2623		return retval;
2624	}
2625
2626	retval = __setup_irq(irq, desc, action);
2627
2628	if (retval) {
2629		irq_chip_pm_put(&desc->irq_data);
2630		kfree(action);
2631	}
2632
2633	return retval;
2634}
2635EXPORT_SYMBOL_GPL(__request_percpu_irq);
2636
2637/**
2638 *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2639 *	@irq: Interrupt line to allocate
2640 *	@handler: Function to be called when the IRQ occurs.
2641 *	@name: An ascii name for the claiming device
2642 *	@dev_id: A percpu cookie passed back to the handler function
2643 *
2644 *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2645 *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2646 *	being enabled on the same CPU by using enable_percpu_nmi().
2647 *
2648 *	Dev_id must be globally unique. It is a per-cpu variable, and
2649 *	the handler gets called with the interrupted CPU's instance of
2650 *	that variable.
2651 *
2652 *	Interrupt lines requested for NMI delivering should have auto enabling
2653 *	setting disabled.
2654 *
2655 *	If the interrupt line cannot be used to deliver NMIs, function
2656 *	will fail returning a negative value.
2657 */
2658int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2659		       const char *name, void __percpu *dev_id)
2660{
2661	struct irqaction *action;
2662	struct irq_desc *desc;
2663	unsigned long flags;
2664	int retval;
2665
2666	if (!handler)
2667		return -EINVAL;
2668
2669	desc = irq_to_desc(irq);
2670
2671	if (!desc || !irq_settings_can_request(desc) ||
2672	    !irq_settings_is_per_cpu_devid(desc) ||
2673	    irq_settings_can_autoenable(desc) ||
2674	    !irq_supports_nmi(desc))
2675		return -EINVAL;
2676
2677	/* The line cannot already be NMI */
2678	if (desc->istate & IRQS_NMI)
2679		return -EINVAL;
2680
2681	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2682	if (!action)
2683		return -ENOMEM;
2684
2685	action->handler = handler;
2686	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2687		| IRQF_NOBALANCING;
2688	action->name = name;
2689	action->percpu_dev_id = dev_id;
2690
2691	retval = irq_chip_pm_get(&desc->irq_data);
2692	if (retval < 0)
2693		goto err_out;
2694
2695	retval = __setup_irq(irq, desc, action);
2696	if (retval)
2697		goto err_irq_setup;
2698
2699	raw_spin_lock_irqsave(&desc->lock, flags);
2700	desc->istate |= IRQS_NMI;
2701	raw_spin_unlock_irqrestore(&desc->lock, flags);
2702
2703	return 0;
2704
2705err_irq_setup:
2706	irq_chip_pm_put(&desc->irq_data);
2707err_out:
2708	kfree(action);
2709
2710	return retval;
2711}
2712
2713/**
2714 *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2715 *	@irq: Interrupt line to prepare for NMI delivery
2716 *
2717 *	This call prepares an interrupt line to deliver NMI on the current CPU,
2718 *	before that interrupt line gets enabled with enable_percpu_nmi().
2719 *
2720 *	As a CPU local operation, this should be called from non-preemptible
2721 *	context.
2722 *
2723 *	If the interrupt line cannot be used to deliver NMIs, function
2724 *	will fail returning a negative value.
2725 */
2726int prepare_percpu_nmi(unsigned int irq)
2727{
2728	unsigned long flags;
2729	struct irq_desc *desc;
2730	int ret = 0;
2731
2732	WARN_ON(preemptible());
2733
2734	desc = irq_get_desc_lock(irq, &flags,
2735				 IRQ_GET_DESC_CHECK_PERCPU);
2736	if (!desc)
2737		return -EINVAL;
2738
2739	if (WARN(!(desc->istate & IRQS_NMI),
2740		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2741		 irq)) {
2742		ret = -EINVAL;
2743		goto out;
2744	}
2745
2746	ret = irq_nmi_setup(desc);
2747	if (ret) {
2748		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2749		goto out;
2750	}
2751
2752out:
2753	irq_put_desc_unlock(desc, flags);
2754	return ret;
2755}
2756
2757/**
2758 *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2759 *	@irq: Interrupt line from which CPU local NMI configuration should be
2760 *	      removed
2761 *
2762 *	This call undoes the setup done by prepare_percpu_nmi().
2763 *
2764 *	IRQ line should not be enabled for the current CPU.
2765 *
2766 *	As a CPU local operation, this should be called from non-preemptible
2767 *	context.
2768 */
2769void teardown_percpu_nmi(unsigned int irq)
2770{
2771	unsigned long flags;
2772	struct irq_desc *desc;
2773
2774	WARN_ON(preemptible());
2775
2776	desc = irq_get_desc_lock(irq, &flags,
2777				 IRQ_GET_DESC_CHECK_PERCPU);
2778	if (!desc)
2779		return;
2780
2781	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2782		goto out;
2783
2784	irq_nmi_teardown(desc);
2785out:
2786	irq_put_desc_unlock(desc, flags);
2787}
2788
2789int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2790			    bool *state)
2791{
2792	struct irq_chip *chip;
2793	int err = -EINVAL;
2794
2795	do {
2796		chip = irq_data_get_irq_chip(data);
2797		if (WARN_ON_ONCE(!chip))
2798			return -ENODEV;
2799		if (chip->irq_get_irqchip_state)
2800			break;
2801#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2802		data = data->parent_data;
2803#else
2804		data = NULL;
2805#endif
2806	} while (data);
2807
2808	if (data)
2809		err = chip->irq_get_irqchip_state(data, which, state);
2810	return err;
2811}
2812
2813/**
2814 *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2815 *	@irq: Interrupt line that is forwarded to a VM
2816 *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2817 *	@state: a pointer to a boolean where the state is to be stored
2818 *
2819 *	This call snapshots the internal irqchip state of an
2820 *	interrupt, returning into @state the bit corresponding to
2821 *	stage @which
2822 *
2823 *	This function should be called with preemption disabled if the
2824 *	interrupt controller has per-cpu registers.
2825 */
2826int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2827			  bool *state)
2828{
2829	struct irq_desc *desc;
2830	struct irq_data *data;
2831	unsigned long flags;
2832	int err = -EINVAL;
2833
2834	desc = irq_get_desc_buslock(irq, &flags, 0);
2835	if (!desc)
2836		return err;
2837
2838	data = irq_desc_get_irq_data(desc);
2839
2840	err = __irq_get_irqchip_state(data, which, state);
2841
2842	irq_put_desc_busunlock(desc, flags);
2843	return err;
2844}
2845EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2846
2847/**
2848 *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2849 *	@irq: Interrupt line that is forwarded to a VM
2850 *	@which: State to be restored (one of IRQCHIP_STATE_*)
2851 *	@val: Value corresponding to @which
2852 *
2853 *	This call sets the internal irqchip state of an interrupt,
2854 *	depending on the value of @which.
2855 *
2856 *	This function should be called with migration disabled if the
2857 *	interrupt controller has per-cpu registers.
2858 */
2859int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2860			  bool val)
2861{
2862	struct irq_desc *desc;
2863	struct irq_data *data;
2864	struct irq_chip *chip;
2865	unsigned long flags;
2866	int err = -EINVAL;
2867
2868	desc = irq_get_desc_buslock(irq, &flags, 0);
2869	if (!desc)
2870		return err;
2871
2872	data = irq_desc_get_irq_data(desc);
2873
2874	do {
2875		chip = irq_data_get_irq_chip(data);
2876		if (WARN_ON_ONCE(!chip)) {
2877			err = -ENODEV;
2878			goto out_unlock;
2879		}
2880		if (chip->irq_set_irqchip_state)
2881			break;
2882#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2883		data = data->parent_data;
2884#else
2885		data = NULL;
2886#endif
2887	} while (data);
2888
2889	if (data)
2890		err = chip->irq_set_irqchip_state(data, which, val);
2891
2892out_unlock:
2893	irq_put_desc_busunlock(desc, flags);
2894	return err;
2895}
2896EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2897
2898/**
2899 * irq_has_action - Check whether an interrupt is requested
2900 * @irq:	The linux irq number
2901 *
2902 * Returns: A snapshot of the current state
2903 */
2904bool irq_has_action(unsigned int irq)
2905{
2906	bool res;
2907
2908	rcu_read_lock();
2909	res = irq_desc_has_action(irq_to_desc(irq));
2910	rcu_read_unlock();
2911	return res;
2912}
2913EXPORT_SYMBOL_GPL(irq_has_action);
2914
2915/**
2916 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2917 * @irq:	The linux irq number
2918 * @bitmask:	The bitmask to evaluate
2919 *
2920 * Returns: True if one of the bits in @bitmask is set
2921 */
2922bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2923{
2924	struct irq_desc *desc;
2925	bool res = false;
2926
2927	rcu_read_lock();
2928	desc = irq_to_desc(irq);
2929	if (desc)
2930		res = !!(desc->status_use_accessors & bitmask);
2931	rcu_read_unlock();
2932	return res;
2933}
2934EXPORT_SYMBOL_GPL(irq_check_status_bit);