Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
  16#include <linux/irqdomain.h>
  17#include <linux/slab.h>
  18#include <linux/sched.h>
  19#include <linux/sched/rt.h>
  20#include <linux/sched/task.h>
  21#include <uapi/linux/sched/types.h>
  22#include <linux/task_work.h>
  23
  24#include "internals.h"
  25
  26#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
  27__read_mostly bool force_irqthreads;
  28EXPORT_SYMBOL_GPL(force_irqthreads);
  29
  30static int __init setup_forced_irqthreads(char *arg)
  31{
  32	force_irqthreads = true;
  33	return 0;
  34}
  35early_param("threadirqs", setup_forced_irqthreads);
  36#endif
  37
  38static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
  39{
  40	struct irq_data *irqd = irq_desc_get_irq_data(desc);
  41	bool inprogress;
  42
  43	do {
  44		unsigned long flags;
  45
  46		/*
  47		 * Wait until we're out of the critical section.  This might
  48		 * give the wrong answer due to the lack of memory barriers.
  49		 */
  50		while (irqd_irq_inprogress(&desc->irq_data))
  51			cpu_relax();
  52
  53		/* Ok, that indicated we're done: double-check carefully. */
  54		raw_spin_lock_irqsave(&desc->lock, flags);
  55		inprogress = irqd_irq_inprogress(&desc->irq_data);
  56
  57		/*
  58		 * If requested and supported, check at the chip whether it
  59		 * is in flight at the hardware level, i.e. already pending
  60		 * in a CPU and waiting for service and acknowledge.
  61		 */
  62		if (!inprogress && sync_chip) {
  63			/*
  64			 * Ignore the return code. inprogress is only updated
  65			 * when the chip supports it.
  66			 */
  67			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
  68						&inprogress);
  69		}
  70		raw_spin_unlock_irqrestore(&desc->lock, flags);
  71
  72		/* Oops, that failed? */
  73	} while (inprogress);
  74}
  75
  76/**
  77 *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  78 *	@irq: interrupt number to wait for
  79 *
  80 *	This function waits for any pending hard IRQ handlers for this
  81 *	interrupt to complete before returning. If you use this
  82 *	function while holding a resource the IRQ handler may need you
  83 *	will deadlock. It does not take associated threaded handlers
  84 *	into account.
  85 *
  86 *	Do not use this for shutdown scenarios where you must be sure
  87 *	that all parts (hardirq and threaded handler) have completed.
  88 *
  89 *	Returns: false if a threaded handler is active.
  90 *
  91 *	This function may be called - with care - from IRQ context.
  92 *
  93 *	It does not check whether there is an interrupt in flight at the
  94 *	hardware level, but not serviced yet, as this might deadlock when
  95 *	called with interrupts disabled and the target CPU of the interrupt
  96 *	is the current CPU.
  97 */
  98bool synchronize_hardirq(unsigned int irq)
  99{
 100	struct irq_desc *desc = irq_to_desc(irq);
 101
 102	if (desc) {
 103		__synchronize_hardirq(desc, false);
 104		return !atomic_read(&desc->threads_active);
 105	}
 106
 107	return true;
 108}
 109EXPORT_SYMBOL(synchronize_hardirq);
 110
 111/**
 112 *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
 113 *	@irq: interrupt number to wait for
 114 *
 115 *	This function waits for any pending IRQ handlers for this interrupt
 116 *	to complete before returning. If you use this function while
 117 *	holding a resource the IRQ handler may need you will deadlock.
 118 *
 119 *	Can only be called from preemptible code as it might sleep when
 120 *	an interrupt thread is associated to @irq.
 121 *
 122 *	It optionally makes sure (when the irq chip supports that method)
 123 *	that the interrupt is not pending in any CPU and waiting for
 124 *	service.
 125 */
 126void synchronize_irq(unsigned int irq)
 127{
 128	struct irq_desc *desc = irq_to_desc(irq);
 129
 130	if (desc) {
 131		__synchronize_hardirq(desc, true);
 132		/*
 133		 * We made sure that no hardirq handler is
 134		 * running. Now verify that no threaded handlers are
 135		 * active.
 136		 */
 137		wait_event(desc->wait_for_threads,
 138			   !atomic_read(&desc->threads_active));
 139	}
 140}
 141EXPORT_SYMBOL(synchronize_irq);
 142
 143#ifdef CONFIG_SMP
 144cpumask_var_t irq_default_affinity;
 145
 146static bool __irq_can_set_affinity(struct irq_desc *desc)
 147{
 148	if (!desc || !irqd_can_balance(&desc->irq_data) ||
 149	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 150		return false;
 151	return true;
 152}
 153
 154/**
 155 *	irq_can_set_affinity - Check if the affinity of a given irq can be set
 156 *	@irq:		Interrupt to check
 157 *
 158 */
 159int irq_can_set_affinity(unsigned int irq)
 160{
 161	return __irq_can_set_affinity(irq_to_desc(irq));
 162}
 163
 164/**
 165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 166 * @irq:	Interrupt to check
 167 *
 168 * Like irq_can_set_affinity() above, but additionally checks for the
 169 * AFFINITY_MANAGED flag.
 170 */
 171bool irq_can_set_affinity_usr(unsigned int irq)
 172{
 173	struct irq_desc *desc = irq_to_desc(irq);
 174
 175	return __irq_can_set_affinity(desc) &&
 176		!irqd_affinity_is_managed(&desc->irq_data);
 177}
 178
 179/**
 180 *	irq_set_thread_affinity - Notify irq threads to adjust affinity
 181 *	@desc:		irq descriptor which has affitnity changed
 182 *
 183 *	We just set IRQTF_AFFINITY and delegate the affinity setting
 184 *	to the interrupt thread itself. We can not call
 185 *	set_cpus_allowed_ptr() here as we hold desc->lock and this
 186 *	code can be called from hard interrupt context.
 187 */
 188void irq_set_thread_affinity(struct irq_desc *desc)
 189{
 190	struct irqaction *action;
 191
 192	for_each_action_of_desc(desc, action)
 193		if (action->thread)
 194			set_bit(IRQTF_AFFINITY, &action->thread_flags);
 195}
 196
 197static void irq_validate_effective_affinity(struct irq_data *data)
 198{
 199#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 200	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 201	struct irq_chip *chip = irq_data_get_irq_chip(data);
 202
 203	if (!cpumask_empty(m))
 204		return;
 205	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 206		     chip->name, data->irq);
 207#endif
 208}
 209
 210int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 211			bool force)
 212{
 213	struct irq_desc *desc = irq_data_to_desc(data);
 214	struct irq_chip *chip = irq_data_get_irq_chip(data);
 215	int ret;
 216
 217	if (!chip || !chip->irq_set_affinity)
 218		return -EINVAL;
 219
 220	ret = chip->irq_set_affinity(data, mask, force);
 221	switch (ret) {
 222	case IRQ_SET_MASK_OK:
 223	case IRQ_SET_MASK_OK_DONE:
 224		cpumask_copy(desc->irq_common_data.affinity, mask);
 225		/* fall through */
 226	case IRQ_SET_MASK_OK_NOCOPY:
 227		irq_validate_effective_affinity(data);
 228		irq_set_thread_affinity(desc);
 229		ret = 0;
 230	}
 231
 232	return ret;
 233}
 234
 235#ifdef CONFIG_GENERIC_PENDING_IRQ
 236static inline int irq_set_affinity_pending(struct irq_data *data,
 237					   const struct cpumask *dest)
 238{
 239	struct irq_desc *desc = irq_data_to_desc(data);
 240
 241	irqd_set_move_pending(data);
 242	irq_copy_pending(desc, dest);
 243	return 0;
 244}
 245#else
 246static inline int irq_set_affinity_pending(struct irq_data *data,
 247					   const struct cpumask *dest)
 248{
 249	return -EBUSY;
 250}
 251#endif
 252
 253static int irq_try_set_affinity(struct irq_data *data,
 254				const struct cpumask *dest, bool force)
 255{
 256	int ret = irq_do_set_affinity(data, dest, force);
 257
 258	/*
 259	 * In case that the underlying vector management is busy and the
 260	 * architecture supports the generic pending mechanism then utilize
 261	 * this to avoid returning an error to user space.
 262	 */
 263	if (ret == -EBUSY && !force)
 264		ret = irq_set_affinity_pending(data, dest);
 265	return ret;
 266}
 267
 268int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 269			    bool force)
 270{
 271	struct irq_chip *chip = irq_data_get_irq_chip(data);
 272	struct irq_desc *desc = irq_data_to_desc(data);
 273	int ret = 0;
 274
 275	if (!chip || !chip->irq_set_affinity)
 276		return -EINVAL;
 277
 278	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
 279		ret = irq_try_set_affinity(data, mask, force);
 280	} else {
 281		irqd_set_move_pending(data);
 282		irq_copy_pending(desc, mask);
 283	}
 284
 285	if (desc->affinity_notify) {
 286		kref_get(&desc->affinity_notify->kref);
 287		schedule_work(&desc->affinity_notify->work);
 288	}
 289	irqd_set(data, IRQD_AFFINITY_SET);
 290
 291	return ret;
 292}
 293
 294int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
 295{
 296	struct irq_desc *desc = irq_to_desc(irq);
 297	unsigned long flags;
 298	int ret;
 299
 300	if (!desc)
 301		return -EINVAL;
 302
 303	raw_spin_lock_irqsave(&desc->lock, flags);
 304	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 305	raw_spin_unlock_irqrestore(&desc->lock, flags);
 306	return ret;
 307}
 308
 309int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
 310{
 311	unsigned long flags;
 312	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 313
 314	if (!desc)
 315		return -EINVAL;
 316	desc->affinity_hint = m;
 317	irq_put_desc_unlock(desc, flags);
 318	/* set the initial affinity to prevent every interrupt being on CPU0 */
 319	if (m)
 320		__irq_set_affinity(irq, m, false);
 321	return 0;
 322}
 323EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
 324
 325static void irq_affinity_notify(struct work_struct *work)
 326{
 327	struct irq_affinity_notify *notify =
 328		container_of(work, struct irq_affinity_notify, work);
 329	struct irq_desc *desc = irq_to_desc(notify->irq);
 330	cpumask_var_t cpumask;
 331	unsigned long flags;
 332
 333	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 334		goto out;
 335
 336	raw_spin_lock_irqsave(&desc->lock, flags);
 337	if (irq_move_pending(&desc->irq_data))
 338		irq_get_pending(cpumask, desc);
 339	else
 340		cpumask_copy(cpumask, desc->irq_common_data.affinity);
 341	raw_spin_unlock_irqrestore(&desc->lock, flags);
 342
 343	notify->notify(notify, cpumask);
 344
 345	free_cpumask_var(cpumask);
 346out:
 347	kref_put(&notify->kref, notify->release);
 348}
 349
 350/**
 351 *	irq_set_affinity_notifier - control notification of IRQ affinity changes
 352 *	@irq:		Interrupt for which to enable/disable notification
 353 *	@notify:	Context for notification, or %NULL to disable
 354 *			notification.  Function pointers must be initialised;
 355 *			the other fields will be initialised by this function.
 356 *
 357 *	Must be called in process context.  Notification may only be enabled
 358 *	after the IRQ is allocated and must be disabled before the IRQ is
 359 *	freed using free_irq().
 360 */
 361int
 362irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 363{
 364	struct irq_desc *desc = irq_to_desc(irq);
 365	struct irq_affinity_notify *old_notify;
 366	unsigned long flags;
 367
 368	/* The release function is promised process context */
 369	might_sleep();
 370
 371	if (!desc || desc->istate & IRQS_NMI)
 372		return -EINVAL;
 373
 374	/* Complete initialisation of *notify */
 375	if (notify) {
 376		notify->irq = irq;
 377		kref_init(&notify->kref);
 378		INIT_WORK(&notify->work, irq_affinity_notify);
 379	}
 380
 381	raw_spin_lock_irqsave(&desc->lock, flags);
 382	old_notify = desc->affinity_notify;
 383	desc->affinity_notify = notify;
 384	raw_spin_unlock_irqrestore(&desc->lock, flags);
 385
 386	if (old_notify) {
 387		cancel_work_sync(&old_notify->work);
 388		kref_put(&old_notify->kref, old_notify->release);
 389	}
 390
 391	return 0;
 392}
 393EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 394
 395#ifndef CONFIG_AUTO_IRQ_AFFINITY
 396/*
 397 * Generic version of the affinity autoselector.
 398 */
 399int irq_setup_affinity(struct irq_desc *desc)
 400{
 401	struct cpumask *set = irq_default_affinity;
 402	int ret, node = irq_desc_get_node(desc);
 403	static DEFINE_RAW_SPINLOCK(mask_lock);
 404	static struct cpumask mask;
 405
 406	/* Excludes PER_CPU and NO_BALANCE interrupts */
 407	if (!__irq_can_set_affinity(desc))
 408		return 0;
 409
 410	raw_spin_lock(&mask_lock);
 411	/*
 412	 * Preserve the managed affinity setting and a userspace affinity
 413	 * setup, but make sure that one of the targets is online.
 414	 */
 415	if (irqd_affinity_is_managed(&desc->irq_data) ||
 416	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 417		if (cpumask_intersects(desc->irq_common_data.affinity,
 418				       cpu_online_mask))
 419			set = desc->irq_common_data.affinity;
 420		else
 421			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 422	}
 423
 424	cpumask_and(&mask, cpu_online_mask, set);
 425	if (cpumask_empty(&mask))
 426		cpumask_copy(&mask, cpu_online_mask);
 427
 428	if (node != NUMA_NO_NODE) {
 429		const struct cpumask *nodemask = cpumask_of_node(node);
 430
 431		/* make sure at least one of the cpus in nodemask is online */
 432		if (cpumask_intersects(&mask, nodemask))
 433			cpumask_and(&mask, &mask, nodemask);
 434	}
 435	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 436	raw_spin_unlock(&mask_lock);
 437	return ret;
 438}
 439#else
 440/* Wrapper for ALPHA specific affinity selector magic */
 441int irq_setup_affinity(struct irq_desc *desc)
 442{
 443	return irq_select_affinity(irq_desc_get_irq(desc));
 444}
 445#endif
 446
 447/*
 448 * Called when a bogus affinity is set via /proc/irq
 449 */
 450int irq_select_affinity_usr(unsigned int irq)
 451{
 452	struct irq_desc *desc = irq_to_desc(irq);
 453	unsigned long flags;
 454	int ret;
 455
 456	raw_spin_lock_irqsave(&desc->lock, flags);
 457	ret = irq_setup_affinity(desc);
 458	raw_spin_unlock_irqrestore(&desc->lock, flags);
 459	return ret;
 460}
 461#endif
 462
 463/**
 464 *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 465 *	@irq: interrupt number to set affinity
 466 *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 467 *	            specific data for percpu_devid interrupts
 468 *
 469 *	This function uses the vCPU specific data to set the vCPU
 470 *	affinity for an irq. The vCPU specific data is passed from
 471 *	outside, such as KVM. One example code path is as below:
 472 *	KVM -> IOMMU -> irq_set_vcpu_affinity().
 473 */
 474int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 475{
 476	unsigned long flags;
 477	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 478	struct irq_data *data;
 479	struct irq_chip *chip;
 480	int ret = -ENOSYS;
 481
 482	if (!desc)
 483		return -EINVAL;
 484
 485	data = irq_desc_get_irq_data(desc);
 486	do {
 487		chip = irq_data_get_irq_chip(data);
 488		if (chip && chip->irq_set_vcpu_affinity)
 489			break;
 490#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 491		data = data->parent_data;
 492#else
 493		data = NULL;
 494#endif
 495	} while (data);
 496
 497	if (data)
 498		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 499	irq_put_desc_unlock(desc, flags);
 500
 501	return ret;
 502}
 503EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 504
 505void __disable_irq(struct irq_desc *desc)
 506{
 507	if (!desc->depth++)
 508		irq_disable(desc);
 509}
 510
 511static int __disable_irq_nosync(unsigned int irq)
 512{
 513	unsigned long flags;
 514	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 515
 516	if (!desc)
 517		return -EINVAL;
 518	__disable_irq(desc);
 519	irq_put_desc_busunlock(desc, flags);
 520	return 0;
 521}
 522
 523/**
 524 *	disable_irq_nosync - disable an irq without waiting
 525 *	@irq: Interrupt to disable
 526 *
 527 *	Disable the selected interrupt line.  Disables and Enables are
 528 *	nested.
 529 *	Unlike disable_irq(), this function does not ensure existing
 530 *	instances of the IRQ handler have completed before returning.
 531 *
 532 *	This function may be called from IRQ context.
 533 */
 534void disable_irq_nosync(unsigned int irq)
 535{
 536	__disable_irq_nosync(irq);
 537}
 538EXPORT_SYMBOL(disable_irq_nosync);
 539
 540/**
 541 *	disable_irq - disable an irq and wait for completion
 542 *	@irq: Interrupt to disable
 543 *
 544 *	Disable the selected interrupt line.  Enables and Disables are
 545 *	nested.
 546 *	This function waits for any pending IRQ handlers for this interrupt
 547 *	to complete before returning. If you use this function while
 548 *	holding a resource the IRQ handler may need you will deadlock.
 549 *
 550 *	This function may be called - with care - from IRQ context.
 551 */
 552void disable_irq(unsigned int irq)
 553{
 554	if (!__disable_irq_nosync(irq))
 555		synchronize_irq(irq);
 556}
 557EXPORT_SYMBOL(disable_irq);
 558
 559/**
 560 *	disable_hardirq - disables an irq and waits for hardirq completion
 561 *	@irq: Interrupt to disable
 562 *
 563 *	Disable the selected interrupt line.  Enables and Disables are
 564 *	nested.
 565 *	This function waits for any pending hard IRQ handlers for this
 566 *	interrupt to complete before returning. If you use this function while
 567 *	holding a resource the hard IRQ handler may need you will deadlock.
 568 *
 569 *	When used to optimistically disable an interrupt from atomic context
 570 *	the return value must be checked.
 571 *
 572 *	Returns: false if a threaded handler is active.
 573 *
 574 *	This function may be called - with care - from IRQ context.
 575 */
 576bool disable_hardirq(unsigned int irq)
 577{
 578	if (!__disable_irq_nosync(irq))
 579		return synchronize_hardirq(irq);
 580
 581	return false;
 582}
 583EXPORT_SYMBOL_GPL(disable_hardirq);
 584
 585/**
 586 *	disable_nmi_nosync - disable an nmi without waiting
 587 *	@irq: Interrupt to disable
 588 *
 589 *	Disable the selected interrupt line. Disables and enables are
 590 *	nested.
 591 *	The interrupt to disable must have been requested through request_nmi.
 592 *	Unlike disable_nmi(), this function does not ensure existing
 593 *	instances of the IRQ handler have completed before returning.
 594 */
 595void disable_nmi_nosync(unsigned int irq)
 596{
 597	disable_irq_nosync(irq);
 598}
 599
 600void __enable_irq(struct irq_desc *desc)
 601{
 602	switch (desc->depth) {
 603	case 0:
 604 err_out:
 605		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 606		     irq_desc_get_irq(desc));
 607		break;
 608	case 1: {
 609		if (desc->istate & IRQS_SUSPENDED)
 610			goto err_out;
 611		/* Prevent probing on this irq: */
 612		irq_settings_set_noprobe(desc);
 613		/*
 614		 * Call irq_startup() not irq_enable() here because the
 615		 * interrupt might be marked NOAUTOEN. So irq_startup()
 616		 * needs to be invoked when it gets enabled the first
 617		 * time. If it was already started up, then irq_startup()
 618		 * will invoke irq_enable() under the hood.
 619		 */
 620		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 621		break;
 622	}
 623	default:
 624		desc->depth--;
 625	}
 626}
 627
 628/**
 629 *	enable_irq - enable handling of an irq
 630 *	@irq: Interrupt to enable
 631 *
 632 *	Undoes the effect of one call to disable_irq().  If this
 633 *	matches the last disable, processing of interrupts on this
 634 *	IRQ line is re-enabled.
 635 *
 636 *	This function may be called from IRQ context only when
 637 *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 638 */
 639void enable_irq(unsigned int irq)
 640{
 641	unsigned long flags;
 642	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 643
 644	if (!desc)
 645		return;
 646	if (WARN(!desc->irq_data.chip,
 647		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 648		goto out;
 649
 650	__enable_irq(desc);
 651out:
 652	irq_put_desc_busunlock(desc, flags);
 653}
 654EXPORT_SYMBOL(enable_irq);
 655
 656/**
 657 *	enable_nmi - enable handling of an nmi
 658 *	@irq: Interrupt to enable
 659 *
 660 *	The interrupt to enable must have been requested through request_nmi.
 661 *	Undoes the effect of one call to disable_nmi(). If this
 662 *	matches the last disable, processing of interrupts on this
 663 *	IRQ line is re-enabled.
 664 */
 665void enable_nmi(unsigned int irq)
 666{
 667	enable_irq(irq);
 668}
 669
 670static int set_irq_wake_real(unsigned int irq, unsigned int on)
 671{
 672	struct irq_desc *desc = irq_to_desc(irq);
 673	int ret = -ENXIO;
 674
 675	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 676		return 0;
 677
 678	if (desc->irq_data.chip->irq_set_wake)
 679		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 680
 681	return ret;
 682}
 683
 684/**
 685 *	irq_set_irq_wake - control irq power management wakeup
 686 *	@irq:	interrupt to control
 687 *	@on:	enable/disable power management wakeup
 688 *
 689 *	Enable/disable power management wakeup mode, which is
 690 *	disabled by default.  Enables and disables must match,
 691 *	just as they match for non-wakeup mode support.
 692 *
 693 *	Wakeup mode lets this IRQ wake the system from sleep
 694 *	states like "suspend to RAM".
 695 */
 696int irq_set_irq_wake(unsigned int irq, unsigned int on)
 697{
 698	unsigned long flags;
 699	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 700	int ret = 0;
 701
 702	if (!desc)
 703		return -EINVAL;
 704
 705	/* Don't use NMIs as wake up interrupts please */
 706	if (desc->istate & IRQS_NMI) {
 707		ret = -EINVAL;
 708		goto out_unlock;
 709	}
 710
 711	/* wakeup-capable irqs can be shared between drivers that
 712	 * don't need to have the same sleep mode behaviors.
 713	 */
 714	if (on) {
 715		if (desc->wake_depth++ == 0) {
 716			ret = set_irq_wake_real(irq, on);
 717			if (ret)
 718				desc->wake_depth = 0;
 719			else
 720				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 721		}
 722	} else {
 723		if (desc->wake_depth == 0) {
 724			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 725		} else if (--desc->wake_depth == 0) {
 726			ret = set_irq_wake_real(irq, on);
 727			if (ret)
 728				desc->wake_depth = 1;
 729			else
 730				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 731		}
 732	}
 733
 734out_unlock:
 735	irq_put_desc_busunlock(desc, flags);
 736	return ret;
 737}
 738EXPORT_SYMBOL(irq_set_irq_wake);
 739
 740/*
 741 * Internal function that tells the architecture code whether a
 742 * particular irq has been exclusively allocated or is available
 743 * for driver use.
 744 */
 745int can_request_irq(unsigned int irq, unsigned long irqflags)
 746{
 747	unsigned long flags;
 748	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 749	int canrequest = 0;
 750
 751	if (!desc)
 752		return 0;
 753
 754	if (irq_settings_can_request(desc)) {
 755		if (!desc->action ||
 756		    irqflags & desc->action->flags & IRQF_SHARED)
 757			canrequest = 1;
 758	}
 759	irq_put_desc_unlock(desc, flags);
 760	return canrequest;
 761}
 762
 763int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 764{
 765	struct irq_chip *chip = desc->irq_data.chip;
 766	int ret, unmask = 0;
 767
 768	if (!chip || !chip->irq_set_type) {
 769		/*
 770		 * IRQF_TRIGGER_* but the PIC does not support multiple
 771		 * flow-types?
 772		 */
 773		pr_debug("No set_type function for IRQ %d (%s)\n",
 774			 irq_desc_get_irq(desc),
 775			 chip ? (chip->name ? : "unknown") : "unknown");
 776		return 0;
 777	}
 778
 779	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 780		if (!irqd_irq_masked(&desc->irq_data))
 781			mask_irq(desc);
 782		if (!irqd_irq_disabled(&desc->irq_data))
 783			unmask = 1;
 784	}
 785
 786	/* Mask all flags except trigger mode */
 787	flags &= IRQ_TYPE_SENSE_MASK;
 788	ret = chip->irq_set_type(&desc->irq_data, flags);
 789
 790	switch (ret) {
 791	case IRQ_SET_MASK_OK:
 792	case IRQ_SET_MASK_OK_DONE:
 793		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 794		irqd_set(&desc->irq_data, flags);
 795		/* fall through */
 796
 797	case IRQ_SET_MASK_OK_NOCOPY:
 798		flags = irqd_get_trigger_type(&desc->irq_data);
 799		irq_settings_set_trigger_mask(desc, flags);
 800		irqd_clear(&desc->irq_data, IRQD_LEVEL);
 801		irq_settings_clr_level(desc);
 802		if (flags & IRQ_TYPE_LEVEL_MASK) {
 803			irq_settings_set_level(desc);
 804			irqd_set(&desc->irq_data, IRQD_LEVEL);
 805		}
 806
 807		ret = 0;
 808		break;
 809	default:
 810		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
 811		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
 812	}
 813	if (unmask)
 814		unmask_irq(desc);
 815	return ret;
 816}
 817
 818#ifdef CONFIG_HARDIRQS_SW_RESEND
 819int irq_set_parent(int irq, int parent_irq)
 820{
 821	unsigned long flags;
 822	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 823
 824	if (!desc)
 825		return -EINVAL;
 826
 827	desc->parent_irq = parent_irq;
 828
 829	irq_put_desc_unlock(desc, flags);
 830	return 0;
 831}
 832EXPORT_SYMBOL_GPL(irq_set_parent);
 833#endif
 834
 835/*
 836 * Default primary interrupt handler for threaded interrupts. Is
 837 * assigned as primary handler when request_threaded_irq is called
 838 * with handler == NULL. Useful for oneshot interrupts.
 839 */
 840static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
 841{
 842	return IRQ_WAKE_THREAD;
 843}
 844
 845/*
 846 * Primary handler for nested threaded interrupts. Should never be
 847 * called.
 848 */
 849static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
 850{
 851	WARN(1, "Primary handler called for nested irq %d\n", irq);
 852	return IRQ_NONE;
 853}
 854
 855static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
 856{
 857	WARN(1, "Secondary action handler called for irq %d\n", irq);
 858	return IRQ_NONE;
 859}
 860
 861static int irq_wait_for_interrupt(struct irqaction *action)
 862{
 863	for (;;) {
 864		set_current_state(TASK_INTERRUPTIBLE);
 865
 866		if (kthread_should_stop()) {
 867			/* may need to run one last time */
 868			if (test_and_clear_bit(IRQTF_RUNTHREAD,
 869					       &action->thread_flags)) {
 870				__set_current_state(TASK_RUNNING);
 871				return 0;
 872			}
 873			__set_current_state(TASK_RUNNING);
 874			return -1;
 875		}
 876
 877		if (test_and_clear_bit(IRQTF_RUNTHREAD,
 878				       &action->thread_flags)) {
 879			__set_current_state(TASK_RUNNING);
 880			return 0;
 881		}
 882		schedule();
 
 883	}
 
 
 884}
 885
 886/*
 887 * Oneshot interrupts keep the irq line masked until the threaded
 888 * handler finished. unmask if the interrupt has not been disabled and
 889 * is marked MASKED.
 890 */
 891static void irq_finalize_oneshot(struct irq_desc *desc,
 892				 struct irqaction *action)
 893{
 894	if (!(desc->istate & IRQS_ONESHOT) ||
 895	    action->handler == irq_forced_secondary_handler)
 896		return;
 897again:
 898	chip_bus_lock(desc);
 899	raw_spin_lock_irq(&desc->lock);
 900
 901	/*
 902	 * Implausible though it may be we need to protect us against
 903	 * the following scenario:
 904	 *
 905	 * The thread is faster done than the hard interrupt handler
 906	 * on the other CPU. If we unmask the irq line then the
 907	 * interrupt can come in again and masks the line, leaves due
 908	 * to IRQS_INPROGRESS and the irq line is masked forever.
 909	 *
 910	 * This also serializes the state of shared oneshot handlers
 911	 * versus "desc->threads_onehsot |= action->thread_mask;" in
 912	 * irq_wake_thread(). See the comment there which explains the
 913	 * serialization.
 914	 */
 915	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
 916		raw_spin_unlock_irq(&desc->lock);
 917		chip_bus_sync_unlock(desc);
 918		cpu_relax();
 919		goto again;
 920	}
 921
 922	/*
 923	 * Now check again, whether the thread should run. Otherwise
 924	 * we would clear the threads_oneshot bit of this thread which
 925	 * was just set.
 926	 */
 927	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 928		goto out_unlock;
 929
 930	desc->threads_oneshot &= ~action->thread_mask;
 931
 932	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
 933	    irqd_irq_masked(&desc->irq_data))
 934		unmask_threaded_irq(desc);
 935
 936out_unlock:
 937	raw_spin_unlock_irq(&desc->lock);
 938	chip_bus_sync_unlock(desc);
 939}
 940
 941#ifdef CONFIG_SMP
 942/*
 943 * Check whether we need to change the affinity of the interrupt thread.
 944 */
 945static void
 946irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
 947{
 948	cpumask_var_t mask;
 949	bool valid = true;
 950
 951	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
 952		return;
 953
 954	/*
 955	 * In case we are out of memory we set IRQTF_AFFINITY again and
 956	 * try again next time
 957	 */
 958	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
 959		set_bit(IRQTF_AFFINITY, &action->thread_flags);
 960		return;
 961	}
 962
 963	raw_spin_lock_irq(&desc->lock);
 964	/*
 965	 * This code is triggered unconditionally. Check the affinity
 966	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
 967	 */
 968	if (cpumask_available(desc->irq_common_data.affinity)) {
 969		const struct cpumask *m;
 970
 971		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
 972		cpumask_copy(mask, m);
 973	} else {
 974		valid = false;
 975	}
 976	raw_spin_unlock_irq(&desc->lock);
 977
 978	if (valid)
 979		set_cpus_allowed_ptr(current, mask);
 980	free_cpumask_var(mask);
 981}
 982#else
 983static inline void
 984irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
 985#endif
 986
 987/*
 988 * Interrupts which are not explicitly requested as threaded
 989 * interrupts rely on the implicit bh/preempt disable of the hard irq
 990 * context. So we need to disable bh here to avoid deadlocks and other
 991 * side effects.
 992 */
 993static irqreturn_t
 994irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
 995{
 996	irqreturn_t ret;
 997
 998	local_bh_disable();
 999	ret = action->thread_fn(action->irq, action->dev_id);
1000	if (ret == IRQ_HANDLED)
1001		atomic_inc(&desc->threads_handled);
1002
1003	irq_finalize_oneshot(desc, action);
1004	local_bh_enable();
1005	return ret;
1006}
1007
1008/*
1009 * Interrupts explicitly requested as threaded interrupts want to be
1010 * preemtible - many of them need to sleep and wait for slow busses to
1011 * complete.
1012 */
1013static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1014		struct irqaction *action)
1015{
1016	irqreturn_t ret;
1017
1018	ret = action->thread_fn(action->irq, action->dev_id);
1019	if (ret == IRQ_HANDLED)
1020		atomic_inc(&desc->threads_handled);
1021
1022	irq_finalize_oneshot(desc, action);
1023	return ret;
1024}
1025
1026static void wake_threads_waitq(struct irq_desc *desc)
1027{
1028	if (atomic_dec_and_test(&desc->threads_active))
1029		wake_up(&desc->wait_for_threads);
1030}
1031
1032static void irq_thread_dtor(struct callback_head *unused)
1033{
1034	struct task_struct *tsk = current;
1035	struct irq_desc *desc;
1036	struct irqaction *action;
1037
1038	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1039		return;
1040
1041	action = kthread_data(tsk);
1042
1043	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1044	       tsk->comm, tsk->pid, action->irq);
1045
1046
1047	desc = irq_to_desc(action->irq);
1048	/*
1049	 * If IRQTF_RUNTHREAD is set, we need to decrement
1050	 * desc->threads_active and wake possible waiters.
1051	 */
1052	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1053		wake_threads_waitq(desc);
1054
1055	/* Prevent a stale desc->threads_oneshot */
1056	irq_finalize_oneshot(desc, action);
1057}
1058
1059static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1060{
1061	struct irqaction *secondary = action->secondary;
1062
1063	if (WARN_ON_ONCE(!secondary))
1064		return;
1065
1066	raw_spin_lock_irq(&desc->lock);
1067	__irq_wake_thread(desc, secondary);
1068	raw_spin_unlock_irq(&desc->lock);
1069}
1070
1071/*
1072 * Interrupt handler thread
1073 */
1074static int irq_thread(void *data)
1075{
1076	struct callback_head on_exit_work;
1077	struct irqaction *action = data;
1078	struct irq_desc *desc = irq_to_desc(action->irq);
1079	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1080			struct irqaction *action);
1081
1082	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1083					&action->thread_flags))
1084		handler_fn = irq_forced_thread_fn;
1085	else
1086		handler_fn = irq_thread_fn;
1087
1088	init_task_work(&on_exit_work, irq_thread_dtor);
1089	task_work_add(current, &on_exit_work, false);
1090
1091	irq_thread_check_affinity(desc, action);
1092
1093	while (!irq_wait_for_interrupt(action)) {
1094		irqreturn_t action_ret;
1095
1096		irq_thread_check_affinity(desc, action);
1097
1098		action_ret = handler_fn(desc, action);
 
 
1099		if (action_ret == IRQ_WAKE_THREAD)
1100			irq_wake_secondary(desc, action);
1101
1102		wake_threads_waitq(desc);
1103	}
1104
1105	/*
1106	 * This is the regular exit path. __free_irq() is stopping the
1107	 * thread via kthread_stop() after calling
1108	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1109	 * oneshot mask bit can be set.
 
 
 
1110	 */
1111	task_work_cancel(current, irq_thread_dtor);
1112	return 0;
1113}
1114
1115/**
1116 *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1117 *	@irq:		Interrupt line
1118 *	@dev_id:	Device identity for which the thread should be woken
1119 *
1120 */
1121void irq_wake_thread(unsigned int irq, void *dev_id)
1122{
1123	struct irq_desc *desc = irq_to_desc(irq);
1124	struct irqaction *action;
1125	unsigned long flags;
1126
1127	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1128		return;
1129
1130	raw_spin_lock_irqsave(&desc->lock, flags);
1131	for_each_action_of_desc(desc, action) {
1132		if (action->dev_id == dev_id) {
1133			if (action->thread)
1134				__irq_wake_thread(desc, action);
1135			break;
1136		}
1137	}
1138	raw_spin_unlock_irqrestore(&desc->lock, flags);
1139}
1140EXPORT_SYMBOL_GPL(irq_wake_thread);
1141
1142static int irq_setup_forced_threading(struct irqaction *new)
1143{
1144	if (!force_irqthreads)
1145		return 0;
1146	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1147		return 0;
1148
1149	/*
1150	 * No further action required for interrupts which are requested as
1151	 * threaded interrupts already
1152	 */
1153	if (new->handler == irq_default_primary_handler)
1154		return 0;
1155
1156	new->flags |= IRQF_ONESHOT;
1157
1158	/*
1159	 * Handle the case where we have a real primary handler and a
1160	 * thread handler. We force thread them as well by creating a
1161	 * secondary action.
1162	 */
1163	if (new->handler && new->thread_fn) {
1164		/* Allocate the secondary action */
1165		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1166		if (!new->secondary)
1167			return -ENOMEM;
1168		new->secondary->handler = irq_forced_secondary_handler;
1169		new->secondary->thread_fn = new->thread_fn;
1170		new->secondary->dev_id = new->dev_id;
1171		new->secondary->irq = new->irq;
1172		new->secondary->name = new->name;
1173	}
1174	/* Deal with the primary handler */
1175	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1176	new->thread_fn = new->handler;
1177	new->handler = irq_default_primary_handler;
1178	return 0;
1179}
1180
1181static int irq_request_resources(struct irq_desc *desc)
1182{
1183	struct irq_data *d = &desc->irq_data;
1184	struct irq_chip *c = d->chip;
1185
1186	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1187}
1188
1189static void irq_release_resources(struct irq_desc *desc)
1190{
1191	struct irq_data *d = &desc->irq_data;
1192	struct irq_chip *c = d->chip;
1193
1194	if (c->irq_release_resources)
1195		c->irq_release_resources(d);
1196}
1197
1198static bool irq_supports_nmi(struct irq_desc *desc)
1199{
1200	struct irq_data *d = irq_desc_get_irq_data(desc);
1201
1202#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1203	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1204	if (d->parent_data)
1205		return false;
1206#endif
1207	/* Don't support NMIs for chips behind a slow bus */
1208	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1209		return false;
1210
1211	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1212}
1213
1214static int irq_nmi_setup(struct irq_desc *desc)
1215{
1216	struct irq_data *d = irq_desc_get_irq_data(desc);
1217	struct irq_chip *c = d->chip;
1218
1219	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1220}
1221
1222static void irq_nmi_teardown(struct irq_desc *desc)
1223{
1224	struct irq_data *d = irq_desc_get_irq_data(desc);
1225	struct irq_chip *c = d->chip;
1226
1227	if (c->irq_nmi_teardown)
1228		c->irq_nmi_teardown(d);
1229}
1230
1231static int
1232setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1233{
1234	struct task_struct *t;
1235	struct sched_param param = {
1236		.sched_priority = MAX_USER_RT_PRIO/2,
1237	};
1238
1239	if (!secondary) {
1240		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1241				   new->name);
1242	} else {
1243		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1244				   new->name);
1245		param.sched_priority -= 1;
1246	}
1247
1248	if (IS_ERR(t))
1249		return PTR_ERR(t);
1250
1251	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1252
1253	/*
1254	 * We keep the reference to the task struct even if
1255	 * the thread dies to avoid that the interrupt code
1256	 * references an already freed task_struct.
1257	 */
1258	new->thread = get_task_struct(t);
 
1259	/*
1260	 * Tell the thread to set its affinity. This is
1261	 * important for shared interrupt handlers as we do
1262	 * not invoke setup_affinity() for the secondary
1263	 * handlers as everything is already set up. Even for
1264	 * interrupts marked with IRQF_NO_BALANCE this is
1265	 * correct as we want the thread to move to the cpu(s)
1266	 * on which the requesting code placed the interrupt.
1267	 */
1268	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1269	return 0;
1270}
1271
1272/*
1273 * Internal function to register an irqaction - typically used to
1274 * allocate special interrupts that are part of the architecture.
1275 *
1276 * Locking rules:
1277 *
1278 * desc->request_mutex	Provides serialization against a concurrent free_irq()
1279 *   chip_bus_lock	Provides serialization for slow bus operations
1280 *     desc->lock	Provides serialization against hard interrupts
1281 *
1282 * chip_bus_lock and desc->lock are sufficient for all other management and
1283 * interrupt related functions. desc->request_mutex solely serializes
1284 * request/free_irq().
1285 */
1286static int
1287__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1288{
1289	struct irqaction *old, **old_ptr;
1290	unsigned long flags, thread_mask = 0;
1291	int ret, nested, shared = 0;
1292
1293	if (!desc)
1294		return -EINVAL;
1295
1296	if (desc->irq_data.chip == &no_irq_chip)
1297		return -ENOSYS;
1298	if (!try_module_get(desc->owner))
1299		return -ENODEV;
1300
1301	new->irq = irq;
1302
1303	/*
1304	 * If the trigger type is not specified by the caller,
1305	 * then use the default for this interrupt.
1306	 */
1307	if (!(new->flags & IRQF_TRIGGER_MASK))
1308		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1309
1310	/*
1311	 * Check whether the interrupt nests into another interrupt
1312	 * thread.
1313	 */
1314	nested = irq_settings_is_nested_thread(desc);
1315	if (nested) {
1316		if (!new->thread_fn) {
1317			ret = -EINVAL;
1318			goto out_mput;
1319		}
1320		/*
1321		 * Replace the primary handler which was provided from
1322		 * the driver for non nested interrupt handling by the
1323		 * dummy function which warns when called.
1324		 */
1325		new->handler = irq_nested_primary_handler;
1326	} else {
1327		if (irq_settings_can_thread(desc)) {
1328			ret = irq_setup_forced_threading(new);
1329			if (ret)
1330				goto out_mput;
1331		}
1332	}
1333
1334	/*
1335	 * Create a handler thread when a thread function is supplied
1336	 * and the interrupt does not nest into another interrupt
1337	 * thread.
1338	 */
1339	if (new->thread_fn && !nested) {
1340		ret = setup_irq_thread(new, irq, false);
1341		if (ret)
1342			goto out_mput;
1343		if (new->secondary) {
1344			ret = setup_irq_thread(new->secondary, irq, true);
1345			if (ret)
1346				goto out_thread;
1347		}
1348	}
1349
1350	/*
1351	 * Drivers are often written to work w/o knowledge about the
1352	 * underlying irq chip implementation, so a request for a
1353	 * threaded irq without a primary hard irq context handler
1354	 * requires the ONESHOT flag to be set. Some irq chips like
1355	 * MSI based interrupts are per se one shot safe. Check the
1356	 * chip flags, so we can avoid the unmask dance at the end of
1357	 * the threaded handler for those.
1358	 */
1359	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1360		new->flags &= ~IRQF_ONESHOT;
1361
1362	/*
1363	 * Protects against a concurrent __free_irq() call which might wait
1364	 * for synchronize_hardirq() to complete without holding the optional
1365	 * chip bus lock and desc->lock. Also protects against handing out
1366	 * a recycled oneshot thread_mask bit while it's still in use by
1367	 * its previous owner.
1368	 */
1369	mutex_lock(&desc->request_mutex);
1370
1371	/*
1372	 * Acquire bus lock as the irq_request_resources() callback below
1373	 * might rely on the serialization or the magic power management
1374	 * functions which are abusing the irq_bus_lock() callback,
1375	 */
1376	chip_bus_lock(desc);
1377
1378	/* First installed action requests resources. */
1379	if (!desc->action) {
1380		ret = irq_request_resources(desc);
1381		if (ret) {
1382			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1383			       new->name, irq, desc->irq_data.chip->name);
1384			goto out_bus_unlock;
1385		}
1386	}
1387
1388	/*
1389	 * The following block of code has to be executed atomically
1390	 * protected against a concurrent interrupt and any of the other
1391	 * management calls which are not serialized via
1392	 * desc->request_mutex or the optional bus lock.
1393	 */
1394	raw_spin_lock_irqsave(&desc->lock, flags);
1395	old_ptr = &desc->action;
1396	old = *old_ptr;
1397	if (old) {
1398		/*
1399		 * Can't share interrupts unless both agree to and are
1400		 * the same type (level, edge, polarity). So both flag
1401		 * fields must have IRQF_SHARED set and the bits which
1402		 * set the trigger type must match. Also all must
1403		 * agree on ONESHOT.
1404		 * Interrupt lines used for NMIs cannot be shared.
1405		 */
1406		unsigned int oldtype;
1407
1408		if (desc->istate & IRQS_NMI) {
1409			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1410				new->name, irq, desc->irq_data.chip->name);
1411			ret = -EINVAL;
1412			goto out_unlock;
1413		}
1414
1415		/*
1416		 * If nobody did set the configuration before, inherit
1417		 * the one provided by the requester.
1418		 */
1419		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1420			oldtype = irqd_get_trigger_type(&desc->irq_data);
1421		} else {
1422			oldtype = new->flags & IRQF_TRIGGER_MASK;
1423			irqd_set_trigger_type(&desc->irq_data, oldtype);
1424		}
1425
1426		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1427		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1428		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1429			goto mismatch;
1430
1431		/* All handlers must agree on per-cpuness */
1432		if ((old->flags & IRQF_PERCPU) !=
1433		    (new->flags & IRQF_PERCPU))
1434			goto mismatch;
1435
1436		/* add new interrupt at end of irq queue */
1437		do {
1438			/*
1439			 * Or all existing action->thread_mask bits,
1440			 * so we can find the next zero bit for this
1441			 * new action.
1442			 */
1443			thread_mask |= old->thread_mask;
1444			old_ptr = &old->next;
1445			old = *old_ptr;
1446		} while (old);
1447		shared = 1;
1448	}
1449
1450	/*
1451	 * Setup the thread mask for this irqaction for ONESHOT. For
1452	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1453	 * conditional in irq_wake_thread().
1454	 */
1455	if (new->flags & IRQF_ONESHOT) {
1456		/*
1457		 * Unlikely to have 32 resp 64 irqs sharing one line,
1458		 * but who knows.
1459		 */
1460		if (thread_mask == ~0UL) {
1461			ret = -EBUSY;
1462			goto out_unlock;
1463		}
1464		/*
1465		 * The thread_mask for the action is or'ed to
1466		 * desc->thread_active to indicate that the
1467		 * IRQF_ONESHOT thread handler has been woken, but not
1468		 * yet finished. The bit is cleared when a thread
1469		 * completes. When all threads of a shared interrupt
1470		 * line have completed desc->threads_active becomes
1471		 * zero and the interrupt line is unmasked. See
1472		 * handle.c:irq_wake_thread() for further information.
1473		 *
1474		 * If no thread is woken by primary (hard irq context)
1475		 * interrupt handlers, then desc->threads_active is
1476		 * also checked for zero to unmask the irq line in the
1477		 * affected hard irq flow handlers
1478		 * (handle_[fasteoi|level]_irq).
1479		 *
1480		 * The new action gets the first zero bit of
1481		 * thread_mask assigned. See the loop above which or's
1482		 * all existing action->thread_mask bits.
1483		 */
1484		new->thread_mask = 1UL << ffz(thread_mask);
1485
1486	} else if (new->handler == irq_default_primary_handler &&
1487		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1488		/*
1489		 * The interrupt was requested with handler = NULL, so
1490		 * we use the default primary handler for it. But it
1491		 * does not have the oneshot flag set. In combination
1492		 * with level interrupts this is deadly, because the
1493		 * default primary handler just wakes the thread, then
1494		 * the irq lines is reenabled, but the device still
1495		 * has the level irq asserted. Rinse and repeat....
1496		 *
1497		 * While this works for edge type interrupts, we play
1498		 * it safe and reject unconditionally because we can't
1499		 * say for sure which type this interrupt really
1500		 * has. The type flags are unreliable as the
1501		 * underlying chip implementation can override them.
1502		 */
1503		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1504		       irq);
1505		ret = -EINVAL;
1506		goto out_unlock;
1507	}
1508
1509	if (!shared) {
1510		init_waitqueue_head(&desc->wait_for_threads);
1511
1512		/* Setup the type (level, edge polarity) if configured: */
1513		if (new->flags & IRQF_TRIGGER_MASK) {
1514			ret = __irq_set_trigger(desc,
1515						new->flags & IRQF_TRIGGER_MASK);
1516
1517			if (ret)
1518				goto out_unlock;
1519		}
1520
1521		/*
1522		 * Activate the interrupt. That activation must happen
1523		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1524		 * and the callers are supposed to handle
1525		 * that. enable_irq() of an interrupt requested with
1526		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1527		 * keeps it in shutdown mode, it merily associates
1528		 * resources if necessary and if that's not possible it
1529		 * fails. Interrupts which are in managed shutdown mode
1530		 * will simply ignore that activation request.
1531		 */
1532		ret = irq_activate(desc);
1533		if (ret)
1534			goto out_unlock;
1535
1536		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1537				  IRQS_ONESHOT | IRQS_WAITING);
1538		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1539
1540		if (new->flags & IRQF_PERCPU) {
1541			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1542			irq_settings_set_per_cpu(desc);
1543		}
1544
1545		if (new->flags & IRQF_ONESHOT)
1546			desc->istate |= IRQS_ONESHOT;
1547
1548		/* Exclude IRQ from balancing if requested */
1549		if (new->flags & IRQF_NOBALANCING) {
1550			irq_settings_set_no_balancing(desc);
1551			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1552		}
1553
1554		if (irq_settings_can_autoenable(desc)) {
1555			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1556		} else {
1557			/*
1558			 * Shared interrupts do not go well with disabling
1559			 * auto enable. The sharing interrupt might request
1560			 * it while it's still disabled and then wait for
1561			 * interrupts forever.
1562			 */
1563			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1564			/* Undo nested disables: */
1565			desc->depth = 1;
1566		}
1567
1568	} else if (new->flags & IRQF_TRIGGER_MASK) {
1569		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1570		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1571
1572		if (nmsk != omsk)
1573			/* hope the handler works with current  trigger mode */
1574			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1575				irq, omsk, nmsk);
1576	}
1577
1578	*old_ptr = new;
1579
1580	irq_pm_install_action(desc, new);
1581
1582	/* Reset broken irq detection when installing new handler */
1583	desc->irq_count = 0;
1584	desc->irqs_unhandled = 0;
1585
1586	/*
1587	 * Check whether we disabled the irq via the spurious handler
1588	 * before. Reenable it and give it another chance.
1589	 */
1590	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1591		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1592		__enable_irq(desc);
1593	}
1594
1595	raw_spin_unlock_irqrestore(&desc->lock, flags);
1596	chip_bus_sync_unlock(desc);
1597	mutex_unlock(&desc->request_mutex);
1598
1599	irq_setup_timings(desc, new);
1600
1601	/*
1602	 * Strictly no need to wake it up, but hung_task complains
1603	 * when no hard interrupt wakes the thread up.
1604	 */
1605	if (new->thread)
1606		wake_up_process(new->thread);
1607	if (new->secondary)
1608		wake_up_process(new->secondary->thread);
1609
1610	register_irq_proc(irq, desc);
1611	new->dir = NULL;
1612	register_handler_proc(irq, new);
1613	return 0;
1614
1615mismatch:
1616	if (!(new->flags & IRQF_PROBE_SHARED)) {
1617		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1618		       irq, new->flags, new->name, old->flags, old->name);
1619#ifdef CONFIG_DEBUG_SHIRQ
1620		dump_stack();
1621#endif
1622	}
1623	ret = -EBUSY;
1624
1625out_unlock:
1626	raw_spin_unlock_irqrestore(&desc->lock, flags);
1627
1628	if (!desc->action)
1629		irq_release_resources(desc);
1630out_bus_unlock:
1631	chip_bus_sync_unlock(desc);
1632	mutex_unlock(&desc->request_mutex);
1633
1634out_thread:
1635	if (new->thread) {
1636		struct task_struct *t = new->thread;
1637
1638		new->thread = NULL;
1639		kthread_stop(t);
1640		put_task_struct(t);
1641	}
1642	if (new->secondary && new->secondary->thread) {
1643		struct task_struct *t = new->secondary->thread;
1644
1645		new->secondary->thread = NULL;
1646		kthread_stop(t);
1647		put_task_struct(t);
1648	}
1649out_mput:
1650	module_put(desc->owner);
1651	return ret;
1652}
1653
1654/**
1655 *	setup_irq - setup an interrupt
1656 *	@irq: Interrupt line to setup
1657 *	@act: irqaction for the interrupt
1658 *
1659 * Used to statically setup interrupts in the early boot process.
1660 */
1661int setup_irq(unsigned int irq, struct irqaction *act)
1662{
1663	int retval;
1664	struct irq_desc *desc = irq_to_desc(irq);
1665
1666	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1667		return -EINVAL;
1668
1669	retval = irq_chip_pm_get(&desc->irq_data);
1670	if (retval < 0)
1671		return retval;
1672
1673	retval = __setup_irq(irq, desc, act);
1674
1675	if (retval)
1676		irq_chip_pm_put(&desc->irq_data);
1677
1678	return retval;
1679}
1680EXPORT_SYMBOL_GPL(setup_irq);
1681
1682/*
1683 * Internal function to unregister an irqaction - used to free
1684 * regular and special interrupts that are part of the architecture.
1685 */
1686static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1687{
1688	unsigned irq = desc->irq_data.irq;
1689	struct irqaction *action, **action_ptr;
1690	unsigned long flags;
1691
1692	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1693
 
 
 
1694	mutex_lock(&desc->request_mutex);
1695	chip_bus_lock(desc);
1696	raw_spin_lock_irqsave(&desc->lock, flags);
1697
1698	/*
1699	 * There can be multiple actions per IRQ descriptor, find the right
1700	 * one based on the dev_id:
1701	 */
1702	action_ptr = &desc->action;
1703	for (;;) {
1704		action = *action_ptr;
1705
1706		if (!action) {
1707			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1708			raw_spin_unlock_irqrestore(&desc->lock, flags);
1709			chip_bus_sync_unlock(desc);
1710			mutex_unlock(&desc->request_mutex);
1711			return NULL;
1712		}
1713
1714		if (action->dev_id == dev_id)
1715			break;
1716		action_ptr = &action->next;
1717	}
1718
1719	/* Found it - now remove it from the list of entries: */
1720	*action_ptr = action->next;
1721
1722	irq_pm_remove_action(desc, action);
1723
1724	/* If this was the last handler, shut down the IRQ line: */
1725	if (!desc->action) {
1726		irq_settings_clr_disable_unlazy(desc);
1727		/* Only shutdown. Deactivate after synchronize_hardirq() */
1728		irq_shutdown(desc);
1729	}
1730
1731#ifdef CONFIG_SMP
1732	/* make sure affinity_hint is cleaned up */
1733	if (WARN_ON_ONCE(desc->affinity_hint))
1734		desc->affinity_hint = NULL;
1735#endif
1736
1737	raw_spin_unlock_irqrestore(&desc->lock, flags);
1738	/*
1739	 * Drop bus_lock here so the changes which were done in the chip
1740	 * callbacks above are synced out to the irq chips which hang
1741	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1742	 *
1743	 * Aside of that the bus_lock can also be taken from the threaded
1744	 * handler in irq_finalize_oneshot() which results in a deadlock
1745	 * because kthread_stop() would wait forever for the thread to
1746	 * complete, which is blocked on the bus lock.
1747	 *
1748	 * The still held desc->request_mutex() protects against a
1749	 * concurrent request_irq() of this irq so the release of resources
1750	 * and timing data is properly serialized.
1751	 */
1752	chip_bus_sync_unlock(desc);
1753
1754	unregister_handler_proc(irq, action);
1755
1756	/*
1757	 * Make sure it's not being used on another CPU and if the chip
1758	 * supports it also make sure that there is no (not yet serviced)
1759	 * interrupt in flight at the hardware level.
1760	 */
1761	__synchronize_hardirq(desc, true);
1762
1763#ifdef CONFIG_DEBUG_SHIRQ
1764	/*
1765	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1766	 * event to happen even now it's being freed, so let's make sure that
1767	 * is so by doing an extra call to the handler ....
1768	 *
1769	 * ( We do this after actually deregistering it, to make sure that a
1770	 *   'real' IRQ doesn't run in parallel with our fake. )
1771	 */
1772	if (action->flags & IRQF_SHARED) {
1773		local_irq_save(flags);
1774		action->handler(irq, dev_id);
1775		local_irq_restore(flags);
1776	}
1777#endif
1778
1779	/*
1780	 * The action has already been removed above, but the thread writes
1781	 * its oneshot mask bit when it completes. Though request_mutex is
1782	 * held across this which prevents __setup_irq() from handing out
1783	 * the same bit to a newly requested action.
1784	 */
1785	if (action->thread) {
1786		kthread_stop(action->thread);
1787		put_task_struct(action->thread);
1788		if (action->secondary && action->secondary->thread) {
1789			kthread_stop(action->secondary->thread);
1790			put_task_struct(action->secondary->thread);
1791		}
1792	}
1793
1794	/* Last action releases resources */
1795	if (!desc->action) {
1796		/*
1797		 * Reaquire bus lock as irq_release_resources() might
1798		 * require it to deallocate resources over the slow bus.
1799		 */
1800		chip_bus_lock(desc);
1801		/*
1802		 * There is no interrupt on the fly anymore. Deactivate it
1803		 * completely.
1804		 */
1805		raw_spin_lock_irqsave(&desc->lock, flags);
1806		irq_domain_deactivate_irq(&desc->irq_data);
1807		raw_spin_unlock_irqrestore(&desc->lock, flags);
1808
1809		irq_release_resources(desc);
1810		chip_bus_sync_unlock(desc);
1811		irq_remove_timings(desc);
1812	}
1813
1814	mutex_unlock(&desc->request_mutex);
1815
1816	irq_chip_pm_put(&desc->irq_data);
1817	module_put(desc->owner);
1818	kfree(action->secondary);
1819	return action;
1820}
1821
1822/**
1823 *	remove_irq - free an interrupt
1824 *	@irq: Interrupt line to free
1825 *	@act: irqaction for the interrupt
1826 *
1827 * Used to remove interrupts statically setup by the early boot process.
1828 */
1829void remove_irq(unsigned int irq, struct irqaction *act)
1830{
1831	struct irq_desc *desc = irq_to_desc(irq);
1832
1833	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1834		__free_irq(desc, act->dev_id);
1835}
1836EXPORT_SYMBOL_GPL(remove_irq);
1837
1838/**
1839 *	free_irq - free an interrupt allocated with request_irq
1840 *	@irq: Interrupt line to free
1841 *	@dev_id: Device identity to free
1842 *
1843 *	Remove an interrupt handler. The handler is removed and if the
1844 *	interrupt line is no longer in use by any driver it is disabled.
1845 *	On a shared IRQ the caller must ensure the interrupt is disabled
1846 *	on the card it drives before calling this function. The function
1847 *	does not return until any executing interrupts for this IRQ
1848 *	have completed.
1849 *
1850 *	This function must not be called from interrupt context.
1851 *
1852 *	Returns the devname argument passed to request_irq.
1853 */
1854const void *free_irq(unsigned int irq, void *dev_id)
1855{
1856	struct irq_desc *desc = irq_to_desc(irq);
1857	struct irqaction *action;
1858	const char *devname;
1859
1860	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1861		return NULL;
1862
1863#ifdef CONFIG_SMP
1864	if (WARN_ON(desc->affinity_notify))
1865		desc->affinity_notify = NULL;
1866#endif
1867
1868	action = __free_irq(desc, dev_id);
1869
1870	if (!action)
1871		return NULL;
1872
1873	devname = action->name;
1874	kfree(action);
1875	return devname;
1876}
1877EXPORT_SYMBOL(free_irq);
1878
1879/* This function must be called with desc->lock held */
1880static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1881{
1882	const char *devname = NULL;
1883
1884	desc->istate &= ~IRQS_NMI;
1885
1886	if (!WARN_ON(desc->action == NULL)) {
1887		irq_pm_remove_action(desc, desc->action);
1888		devname = desc->action->name;
1889		unregister_handler_proc(irq, desc->action);
1890
1891		kfree(desc->action);
1892		desc->action = NULL;
1893	}
1894
1895	irq_settings_clr_disable_unlazy(desc);
1896	irq_shutdown_and_deactivate(desc);
1897
1898	irq_release_resources(desc);
1899
1900	irq_chip_pm_put(&desc->irq_data);
1901	module_put(desc->owner);
1902
1903	return devname;
1904}
1905
1906const void *free_nmi(unsigned int irq, void *dev_id)
1907{
1908	struct irq_desc *desc = irq_to_desc(irq);
1909	unsigned long flags;
1910	const void *devname;
1911
1912	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1913		return NULL;
1914
1915	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1916		return NULL;
1917
1918	/* NMI still enabled */
1919	if (WARN_ON(desc->depth == 0))
1920		disable_nmi_nosync(irq);
1921
1922	raw_spin_lock_irqsave(&desc->lock, flags);
1923
1924	irq_nmi_teardown(desc);
1925	devname = __cleanup_nmi(irq, desc);
1926
1927	raw_spin_unlock_irqrestore(&desc->lock, flags);
1928
1929	return devname;
1930}
1931
1932/**
1933 *	request_threaded_irq - allocate an interrupt line
1934 *	@irq: Interrupt line to allocate
1935 *	@handler: Function to be called when the IRQ occurs.
1936 *		  Primary handler for threaded interrupts
1937 *		  If NULL and thread_fn != NULL the default
1938 *		  primary handler is installed
1939 *	@thread_fn: Function called from the irq handler thread
1940 *		    If NULL, no irq thread is created
1941 *	@irqflags: Interrupt type flags
1942 *	@devname: An ascii name for the claiming device
1943 *	@dev_id: A cookie passed back to the handler function
1944 *
1945 *	This call allocates interrupt resources and enables the
1946 *	interrupt line and IRQ handling. From the point this
1947 *	call is made your handler function may be invoked. Since
1948 *	your handler function must clear any interrupt the board
1949 *	raises, you must take care both to initialise your hardware
1950 *	and to set up the interrupt handler in the right order.
1951 *
1952 *	If you want to set up a threaded irq handler for your device
1953 *	then you need to supply @handler and @thread_fn. @handler is
1954 *	still called in hard interrupt context and has to check
1955 *	whether the interrupt originates from the device. If yes it
1956 *	needs to disable the interrupt on the device and return
1957 *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1958 *	@thread_fn. This split handler design is necessary to support
1959 *	shared interrupts.
1960 *
1961 *	Dev_id must be globally unique. Normally the address of the
1962 *	device data structure is used as the cookie. Since the handler
1963 *	receives this value it makes sense to use it.
1964 *
1965 *	If your interrupt is shared you must pass a non NULL dev_id
1966 *	as this is required when freeing the interrupt.
1967 *
1968 *	Flags:
1969 *
1970 *	IRQF_SHARED		Interrupt is shared
1971 *	IRQF_TRIGGER_*		Specify active edge(s) or level
1972 *
1973 */
1974int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1975			 irq_handler_t thread_fn, unsigned long irqflags,
1976			 const char *devname, void *dev_id)
1977{
1978	struct irqaction *action;
1979	struct irq_desc *desc;
1980	int retval;
1981
1982	if (irq == IRQ_NOTCONNECTED)
1983		return -ENOTCONN;
1984
1985	/*
1986	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1987	 * otherwise we'll have trouble later trying to figure out
1988	 * which interrupt is which (messes up the interrupt freeing
1989	 * logic etc).
1990	 *
1991	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1992	 * it cannot be set along with IRQF_NO_SUSPEND.
1993	 */
1994	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1995	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1996	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1997		return -EINVAL;
1998
1999	desc = irq_to_desc(irq);
2000	if (!desc)
2001		return -EINVAL;
2002
2003	if (!irq_settings_can_request(desc) ||
2004	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2005		return -EINVAL;
2006
2007	if (!handler) {
2008		if (!thread_fn)
2009			return -EINVAL;
2010		handler = irq_default_primary_handler;
2011	}
2012
2013	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2014	if (!action)
2015		return -ENOMEM;
2016
2017	action->handler = handler;
2018	action->thread_fn = thread_fn;
2019	action->flags = irqflags;
2020	action->name = devname;
2021	action->dev_id = dev_id;
2022
2023	retval = irq_chip_pm_get(&desc->irq_data);
2024	if (retval < 0) {
2025		kfree(action);
2026		return retval;
2027	}
2028
2029	retval = __setup_irq(irq, desc, action);
2030
2031	if (retval) {
2032		irq_chip_pm_put(&desc->irq_data);
2033		kfree(action->secondary);
2034		kfree(action);
2035	}
2036
2037#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2038	if (!retval && (irqflags & IRQF_SHARED)) {
2039		/*
2040		 * It's a shared IRQ -- the driver ought to be prepared for it
2041		 * to happen immediately, so let's make sure....
2042		 * We disable the irq to make sure that a 'real' IRQ doesn't
2043		 * run in parallel with our fake.
2044		 */
2045		unsigned long flags;
2046
2047		disable_irq(irq);
2048		local_irq_save(flags);
2049
2050		handler(irq, dev_id);
2051
2052		local_irq_restore(flags);
2053		enable_irq(irq);
2054	}
2055#endif
2056	return retval;
2057}
2058EXPORT_SYMBOL(request_threaded_irq);
2059
2060/**
2061 *	request_any_context_irq - allocate an interrupt line
2062 *	@irq: Interrupt line to allocate
2063 *	@handler: Function to be called when the IRQ occurs.
2064 *		  Threaded handler for threaded interrupts.
2065 *	@flags: Interrupt type flags
2066 *	@name: An ascii name for the claiming device
2067 *	@dev_id: A cookie passed back to the handler function
2068 *
2069 *	This call allocates interrupt resources and enables the
2070 *	interrupt line and IRQ handling. It selects either a
2071 *	hardirq or threaded handling method depending on the
2072 *	context.
2073 *
2074 *	On failure, it returns a negative value. On success,
2075 *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2076 */
2077int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2078			    unsigned long flags, const char *name, void *dev_id)
2079{
2080	struct irq_desc *desc;
2081	int ret;
2082
2083	if (irq == IRQ_NOTCONNECTED)
2084		return -ENOTCONN;
2085
2086	desc = irq_to_desc(irq);
2087	if (!desc)
2088		return -EINVAL;
2089
2090	if (irq_settings_is_nested_thread(desc)) {
2091		ret = request_threaded_irq(irq, NULL, handler,
2092					   flags, name, dev_id);
2093		return !ret ? IRQC_IS_NESTED : ret;
2094	}
2095
2096	ret = request_irq(irq, handler, flags, name, dev_id);
2097	return !ret ? IRQC_IS_HARDIRQ : ret;
2098}
2099EXPORT_SYMBOL_GPL(request_any_context_irq);
2100
2101/**
2102 *	request_nmi - allocate an interrupt line for NMI delivery
2103 *	@irq: Interrupt line to allocate
2104 *	@handler: Function to be called when the IRQ occurs.
2105 *		  Threaded handler for threaded interrupts.
2106 *	@irqflags: Interrupt type flags
2107 *	@name: An ascii name for the claiming device
2108 *	@dev_id: A cookie passed back to the handler function
2109 *
2110 *	This call allocates interrupt resources and enables the
2111 *	interrupt line and IRQ handling. It sets up the IRQ line
2112 *	to be handled as an NMI.
2113 *
2114 *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2115 *	cannot be threaded.
2116 *
2117 *	Interrupt lines requested for NMI delivering must produce per cpu
2118 *	interrupts and have auto enabling setting disabled.
2119 *
2120 *	Dev_id must be globally unique. Normally the address of the
2121 *	device data structure is used as the cookie. Since the handler
2122 *	receives this value it makes sense to use it.
2123 *
2124 *	If the interrupt line cannot be used to deliver NMIs, function
2125 *	will fail and return a negative value.
2126 */
2127int request_nmi(unsigned int irq, irq_handler_t handler,
2128		unsigned long irqflags, const char *name, void *dev_id)
2129{
2130	struct irqaction *action;
2131	struct irq_desc *desc;
2132	unsigned long flags;
2133	int retval;
2134
2135	if (irq == IRQ_NOTCONNECTED)
2136		return -ENOTCONN;
2137
2138	/* NMI cannot be shared, used for Polling */
2139	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2140		return -EINVAL;
2141
2142	if (!(irqflags & IRQF_PERCPU))
2143		return -EINVAL;
2144
2145	if (!handler)
2146		return -EINVAL;
2147
2148	desc = irq_to_desc(irq);
2149
2150	if (!desc || irq_settings_can_autoenable(desc) ||
2151	    !irq_settings_can_request(desc) ||
2152	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2153	    !irq_supports_nmi(desc))
2154		return -EINVAL;
2155
2156	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2157	if (!action)
2158		return -ENOMEM;
2159
2160	action->handler = handler;
2161	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2162	action->name = name;
2163	action->dev_id = dev_id;
2164
2165	retval = irq_chip_pm_get(&desc->irq_data);
2166	if (retval < 0)
2167		goto err_out;
2168
2169	retval = __setup_irq(irq, desc, action);
2170	if (retval)
2171		goto err_irq_setup;
2172
2173	raw_spin_lock_irqsave(&desc->lock, flags);
2174
2175	/* Setup NMI state */
2176	desc->istate |= IRQS_NMI;
2177	retval = irq_nmi_setup(desc);
2178	if (retval) {
2179		__cleanup_nmi(irq, desc);
2180		raw_spin_unlock_irqrestore(&desc->lock, flags);
2181		return -EINVAL;
2182	}
2183
2184	raw_spin_unlock_irqrestore(&desc->lock, flags);
2185
2186	return 0;
2187
2188err_irq_setup:
2189	irq_chip_pm_put(&desc->irq_data);
2190err_out:
2191	kfree(action);
2192
2193	return retval;
2194}
2195
2196void enable_percpu_irq(unsigned int irq, unsigned int type)
2197{
2198	unsigned int cpu = smp_processor_id();
2199	unsigned long flags;
2200	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2201
2202	if (!desc)
2203		return;
2204
2205	/*
2206	 * If the trigger type is not specified by the caller, then
2207	 * use the default for this interrupt.
2208	 */
2209	type &= IRQ_TYPE_SENSE_MASK;
2210	if (type == IRQ_TYPE_NONE)
2211		type = irqd_get_trigger_type(&desc->irq_data);
2212
2213	if (type != IRQ_TYPE_NONE) {
2214		int ret;
2215
2216		ret = __irq_set_trigger(desc, type);
2217
2218		if (ret) {
2219			WARN(1, "failed to set type for IRQ%d\n", irq);
2220			goto out;
2221		}
2222	}
2223
2224	irq_percpu_enable(desc, cpu);
2225out:
2226	irq_put_desc_unlock(desc, flags);
2227}
2228EXPORT_SYMBOL_GPL(enable_percpu_irq);
2229
2230void enable_percpu_nmi(unsigned int irq, unsigned int type)
2231{
2232	enable_percpu_irq(irq, type);
2233}
2234
2235/**
2236 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2237 * @irq:	Linux irq number to check for
2238 *
2239 * Must be called from a non migratable context. Returns the enable
2240 * state of a per cpu interrupt on the current cpu.
2241 */
2242bool irq_percpu_is_enabled(unsigned int irq)
2243{
2244	unsigned int cpu = smp_processor_id();
2245	struct irq_desc *desc;
2246	unsigned long flags;
2247	bool is_enabled;
2248
2249	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2250	if (!desc)
2251		return false;
2252
2253	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2254	irq_put_desc_unlock(desc, flags);
2255
2256	return is_enabled;
2257}
2258EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2259
2260void disable_percpu_irq(unsigned int irq)
2261{
2262	unsigned int cpu = smp_processor_id();
2263	unsigned long flags;
2264	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2265
2266	if (!desc)
2267		return;
2268
2269	irq_percpu_disable(desc, cpu);
2270	irq_put_desc_unlock(desc, flags);
2271}
2272EXPORT_SYMBOL_GPL(disable_percpu_irq);
2273
2274void disable_percpu_nmi(unsigned int irq)
2275{
2276	disable_percpu_irq(irq);
2277}
2278
2279/*
2280 * Internal function to unregister a percpu irqaction.
2281 */
2282static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2283{
2284	struct irq_desc *desc = irq_to_desc(irq);
2285	struct irqaction *action;
2286	unsigned long flags;
2287
2288	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2289
2290	if (!desc)
2291		return NULL;
2292
2293	raw_spin_lock_irqsave(&desc->lock, flags);
2294
2295	action = desc->action;
2296	if (!action || action->percpu_dev_id != dev_id) {
2297		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2298		goto bad;
2299	}
2300
2301	if (!cpumask_empty(desc->percpu_enabled)) {
2302		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2303		     irq, cpumask_first(desc->percpu_enabled));
2304		goto bad;
2305	}
2306
2307	/* Found it - now remove it from the list of entries: */
2308	desc->action = NULL;
2309
2310	desc->istate &= ~IRQS_NMI;
2311
2312	raw_spin_unlock_irqrestore(&desc->lock, flags);
2313
2314	unregister_handler_proc(irq, action);
2315
2316	irq_chip_pm_put(&desc->irq_data);
2317	module_put(desc->owner);
2318	return action;
2319
2320bad:
2321	raw_spin_unlock_irqrestore(&desc->lock, flags);
2322	return NULL;
2323}
2324
2325/**
2326 *	remove_percpu_irq - free a per-cpu interrupt
2327 *	@irq: Interrupt line to free
2328 *	@act: irqaction for the interrupt
2329 *
2330 * Used to remove interrupts statically setup by the early boot process.
2331 */
2332void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2333{
2334	struct irq_desc *desc = irq_to_desc(irq);
2335
2336	if (desc && irq_settings_is_per_cpu_devid(desc))
2337	    __free_percpu_irq(irq, act->percpu_dev_id);
2338}
2339
2340/**
2341 *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2342 *	@irq: Interrupt line to free
2343 *	@dev_id: Device identity to free
2344 *
2345 *	Remove a percpu interrupt handler. The handler is removed, but
2346 *	the interrupt line is not disabled. This must be done on each
2347 *	CPU before calling this function. The function does not return
2348 *	until any executing interrupts for this IRQ have completed.
2349 *
2350 *	This function must not be called from interrupt context.
2351 */
2352void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2353{
2354	struct irq_desc *desc = irq_to_desc(irq);
2355
2356	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2357		return;
2358
2359	chip_bus_lock(desc);
2360	kfree(__free_percpu_irq(irq, dev_id));
2361	chip_bus_sync_unlock(desc);
2362}
2363EXPORT_SYMBOL_GPL(free_percpu_irq);
2364
2365void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2366{
2367	struct irq_desc *desc = irq_to_desc(irq);
2368
2369	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2370		return;
2371
2372	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2373		return;
2374
2375	kfree(__free_percpu_irq(irq, dev_id));
2376}
2377
2378/**
2379 *	setup_percpu_irq - setup a per-cpu interrupt
2380 *	@irq: Interrupt line to setup
2381 *	@act: irqaction for the interrupt
2382 *
2383 * Used to statically setup per-cpu interrupts in the early boot process.
2384 */
2385int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2386{
2387	struct irq_desc *desc = irq_to_desc(irq);
2388	int retval;
2389
2390	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2391		return -EINVAL;
2392
2393	retval = irq_chip_pm_get(&desc->irq_data);
2394	if (retval < 0)
2395		return retval;
2396
2397	retval = __setup_irq(irq, desc, act);
2398
2399	if (retval)
2400		irq_chip_pm_put(&desc->irq_data);
2401
2402	return retval;
2403}
2404
2405/**
2406 *	__request_percpu_irq - allocate a percpu interrupt line
2407 *	@irq: Interrupt line to allocate
2408 *	@handler: Function to be called when the IRQ occurs.
2409 *	@flags: Interrupt type flags (IRQF_TIMER only)
2410 *	@devname: An ascii name for the claiming device
2411 *	@dev_id: A percpu cookie passed back to the handler function
2412 *
2413 *	This call allocates interrupt resources and enables the
2414 *	interrupt on the local CPU. If the interrupt is supposed to be
2415 *	enabled on other CPUs, it has to be done on each CPU using
2416 *	enable_percpu_irq().
2417 *
2418 *	Dev_id must be globally unique. It is a per-cpu variable, and
2419 *	the handler gets called with the interrupted CPU's instance of
2420 *	that variable.
2421 */
2422int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2423			 unsigned long flags, const char *devname,
2424			 void __percpu *dev_id)
2425{
2426	struct irqaction *action;
2427	struct irq_desc *desc;
2428	int retval;
2429
2430	if (!dev_id)
2431		return -EINVAL;
2432
2433	desc = irq_to_desc(irq);
2434	if (!desc || !irq_settings_can_request(desc) ||
2435	    !irq_settings_is_per_cpu_devid(desc))
2436		return -EINVAL;
2437
2438	if (flags && flags != IRQF_TIMER)
2439		return -EINVAL;
2440
2441	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2442	if (!action)
2443		return -ENOMEM;
2444
2445	action->handler = handler;
2446	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2447	action->name = devname;
2448	action->percpu_dev_id = dev_id;
2449
2450	retval = irq_chip_pm_get(&desc->irq_data);
2451	if (retval < 0) {
2452		kfree(action);
2453		return retval;
2454	}
2455
2456	retval = __setup_irq(irq, desc, action);
2457
2458	if (retval) {
2459		irq_chip_pm_put(&desc->irq_data);
2460		kfree(action);
2461	}
2462
2463	return retval;
2464}
2465EXPORT_SYMBOL_GPL(__request_percpu_irq);
2466
2467/**
2468 *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2469 *	@irq: Interrupt line to allocate
2470 *	@handler: Function to be called when the IRQ occurs.
2471 *	@name: An ascii name for the claiming device
2472 *	@dev_id: A percpu cookie passed back to the handler function
2473 *
2474 *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2475 *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2476 *	being enabled on the same CPU by using enable_percpu_nmi().
2477 *
2478 *	Dev_id must be globally unique. It is a per-cpu variable, and
2479 *	the handler gets called with the interrupted CPU's instance of
2480 *	that variable.
2481 *
2482 *	Interrupt lines requested for NMI delivering should have auto enabling
2483 *	setting disabled.
2484 *
2485 *	If the interrupt line cannot be used to deliver NMIs, function
2486 *	will fail returning a negative value.
2487 */
2488int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2489		       const char *name, void __percpu *dev_id)
2490{
2491	struct irqaction *action;
2492	struct irq_desc *desc;
2493	unsigned long flags;
2494	int retval;
2495
2496	if (!handler)
2497		return -EINVAL;
2498
2499	desc = irq_to_desc(irq);
2500
2501	if (!desc || !irq_settings_can_request(desc) ||
2502	    !irq_settings_is_per_cpu_devid(desc) ||
2503	    irq_settings_can_autoenable(desc) ||
2504	    !irq_supports_nmi(desc))
2505		return -EINVAL;
2506
2507	/* The line cannot already be NMI */
2508	if (desc->istate & IRQS_NMI)
2509		return -EINVAL;
2510
2511	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2512	if (!action)
2513		return -ENOMEM;
2514
2515	action->handler = handler;
2516	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2517		| IRQF_NOBALANCING;
2518	action->name = name;
2519	action->percpu_dev_id = dev_id;
2520
2521	retval = irq_chip_pm_get(&desc->irq_data);
2522	if (retval < 0)
2523		goto err_out;
2524
2525	retval = __setup_irq(irq, desc, action);
2526	if (retval)
2527		goto err_irq_setup;
2528
2529	raw_spin_lock_irqsave(&desc->lock, flags);
2530	desc->istate |= IRQS_NMI;
2531	raw_spin_unlock_irqrestore(&desc->lock, flags);
2532
2533	return 0;
2534
2535err_irq_setup:
2536	irq_chip_pm_put(&desc->irq_data);
2537err_out:
2538	kfree(action);
2539
2540	return retval;
2541}
2542
2543/**
2544 *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2545 *	@irq: Interrupt line to prepare for NMI delivery
2546 *
2547 *	This call prepares an interrupt line to deliver NMI on the current CPU,
2548 *	before that interrupt line gets enabled with enable_percpu_nmi().
2549 *
2550 *	As a CPU local operation, this should be called from non-preemptible
2551 *	context.
2552 *
2553 *	If the interrupt line cannot be used to deliver NMIs, function
2554 *	will fail returning a negative value.
2555 */
2556int prepare_percpu_nmi(unsigned int irq)
2557{
2558	unsigned long flags;
2559	struct irq_desc *desc;
2560	int ret = 0;
2561
2562	WARN_ON(preemptible());
2563
2564	desc = irq_get_desc_lock(irq, &flags,
2565				 IRQ_GET_DESC_CHECK_PERCPU);
2566	if (!desc)
2567		return -EINVAL;
2568
2569	if (WARN(!(desc->istate & IRQS_NMI),
2570		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2571		 irq)) {
2572		ret = -EINVAL;
2573		goto out;
2574	}
2575
2576	ret = irq_nmi_setup(desc);
2577	if (ret) {
2578		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2579		goto out;
2580	}
2581
2582out:
2583	irq_put_desc_unlock(desc, flags);
2584	return ret;
2585}
2586
2587/**
2588 *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2589 *	@irq: Interrupt line from which CPU local NMI configuration should be
2590 *	      removed
2591 *
2592 *	This call undoes the setup done by prepare_percpu_nmi().
2593 *
2594 *	IRQ line should not be enabled for the current CPU.
2595 *
2596 *	As a CPU local operation, this should be called from non-preemptible
2597 *	context.
2598 */
2599void teardown_percpu_nmi(unsigned int irq)
2600{
2601	unsigned long flags;
2602	struct irq_desc *desc;
2603
2604	WARN_ON(preemptible());
2605
2606	desc = irq_get_desc_lock(irq, &flags,
2607				 IRQ_GET_DESC_CHECK_PERCPU);
2608	if (!desc)
2609		return;
2610
2611	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2612		goto out;
2613
2614	irq_nmi_teardown(desc);
2615out:
2616	irq_put_desc_unlock(desc, flags);
2617}
2618
2619int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2620			    bool *state)
2621{
2622	struct irq_chip *chip;
2623	int err = -EINVAL;
2624
2625	do {
2626		chip = irq_data_get_irq_chip(data);
2627		if (chip->irq_get_irqchip_state)
2628			break;
2629#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2630		data = data->parent_data;
2631#else
2632		data = NULL;
2633#endif
2634	} while (data);
2635
2636	if (data)
2637		err = chip->irq_get_irqchip_state(data, which, state);
2638	return err;
2639}
2640
2641/**
2642 *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2643 *	@irq: Interrupt line that is forwarded to a VM
2644 *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2645 *	@state: a pointer to a boolean where the state is to be storeed
2646 *
2647 *	This call snapshots the internal irqchip state of an
2648 *	interrupt, returning into @state the bit corresponding to
2649 *	stage @which
2650 *
2651 *	This function should be called with preemption disabled if the
2652 *	interrupt controller has per-cpu registers.
2653 */
2654int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2655			  bool *state)
2656{
2657	struct irq_desc *desc;
2658	struct irq_data *data;
 
2659	unsigned long flags;
2660	int err = -EINVAL;
2661
2662	desc = irq_get_desc_buslock(irq, &flags, 0);
2663	if (!desc)
2664		return err;
2665
2666	data = irq_desc_get_irq_data(desc);
2667
2668	err = __irq_get_irqchip_state(data, which, state);
 
 
 
 
 
 
 
 
 
 
 
 
2669
2670	irq_put_desc_busunlock(desc, flags);
2671	return err;
2672}
2673EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2674
2675/**
2676 *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2677 *	@irq: Interrupt line that is forwarded to a VM
2678 *	@which: State to be restored (one of IRQCHIP_STATE_*)
2679 *	@val: Value corresponding to @which
2680 *
2681 *	This call sets the internal irqchip state of an interrupt,
2682 *	depending on the value of @which.
2683 *
2684 *	This function should be called with preemption disabled if the
2685 *	interrupt controller has per-cpu registers.
2686 */
2687int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2688			  bool val)
2689{
2690	struct irq_desc *desc;
2691	struct irq_data *data;
2692	struct irq_chip *chip;
2693	unsigned long flags;
2694	int err = -EINVAL;
2695
2696	desc = irq_get_desc_buslock(irq, &flags, 0);
2697	if (!desc)
2698		return err;
2699
2700	data = irq_desc_get_irq_data(desc);
2701
2702	do {
2703		chip = irq_data_get_irq_chip(data);
2704		if (chip->irq_set_irqchip_state)
2705			break;
2706#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2707		data = data->parent_data;
2708#else
2709		data = NULL;
2710#endif
2711	} while (data);
2712
2713	if (data)
2714		err = chip->irq_set_irqchip_state(data, which, val);
2715
2716	irq_put_desc_busunlock(desc, flags);
2717	return err;
2718}
2719EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
 
  16#include <linux/slab.h>
  17#include <linux/sched.h>
  18#include <linux/sched/rt.h>
  19#include <linux/sched/task.h>
  20#include <uapi/linux/sched/types.h>
  21#include <linux/task_work.h>
  22
  23#include "internals.h"
  24
  25#ifdef CONFIG_IRQ_FORCED_THREADING
  26__read_mostly bool force_irqthreads;
 
  27
  28static int __init setup_forced_irqthreads(char *arg)
  29{
  30	force_irqthreads = true;
  31	return 0;
  32}
  33early_param("threadirqs", setup_forced_irqthreads);
  34#endif
  35
  36static void __synchronize_hardirq(struct irq_desc *desc)
  37{
 
  38	bool inprogress;
  39
  40	do {
  41		unsigned long flags;
  42
  43		/*
  44		 * Wait until we're out of the critical section.  This might
  45		 * give the wrong answer due to the lack of memory barriers.
  46		 */
  47		while (irqd_irq_inprogress(&desc->irq_data))
  48			cpu_relax();
  49
  50		/* Ok, that indicated we're done: double-check carefully. */
  51		raw_spin_lock_irqsave(&desc->lock, flags);
  52		inprogress = irqd_irq_inprogress(&desc->irq_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53		raw_spin_unlock_irqrestore(&desc->lock, flags);
  54
  55		/* Oops, that failed? */
  56	} while (inprogress);
  57}
  58
  59/**
  60 *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  61 *	@irq: interrupt number to wait for
  62 *
  63 *	This function waits for any pending hard IRQ handlers for this
  64 *	interrupt to complete before returning. If you use this
  65 *	function while holding a resource the IRQ handler may need you
  66 *	will deadlock. It does not take associated threaded handlers
  67 *	into account.
  68 *
  69 *	Do not use this for shutdown scenarios where you must be sure
  70 *	that all parts (hardirq and threaded handler) have completed.
  71 *
  72 *	Returns: false if a threaded handler is active.
  73 *
  74 *	This function may be called - with care - from IRQ context.
 
 
 
 
 
  75 */
  76bool synchronize_hardirq(unsigned int irq)
  77{
  78	struct irq_desc *desc = irq_to_desc(irq);
  79
  80	if (desc) {
  81		__synchronize_hardirq(desc);
  82		return !atomic_read(&desc->threads_active);
  83	}
  84
  85	return true;
  86}
  87EXPORT_SYMBOL(synchronize_hardirq);
  88
  89/**
  90 *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
  91 *	@irq: interrupt number to wait for
  92 *
  93 *	This function waits for any pending IRQ handlers for this interrupt
  94 *	to complete before returning. If you use this function while
  95 *	holding a resource the IRQ handler may need you will deadlock.
  96 *
  97 *	This function may be called - with care - from IRQ context.
 
 
 
 
 
  98 */
  99void synchronize_irq(unsigned int irq)
 100{
 101	struct irq_desc *desc = irq_to_desc(irq);
 102
 103	if (desc) {
 104		__synchronize_hardirq(desc);
 105		/*
 106		 * We made sure that no hardirq handler is
 107		 * running. Now verify that no threaded handlers are
 108		 * active.
 109		 */
 110		wait_event(desc->wait_for_threads,
 111			   !atomic_read(&desc->threads_active));
 112	}
 113}
 114EXPORT_SYMBOL(synchronize_irq);
 115
 116#ifdef CONFIG_SMP
 117cpumask_var_t irq_default_affinity;
 118
 119static bool __irq_can_set_affinity(struct irq_desc *desc)
 120{
 121	if (!desc || !irqd_can_balance(&desc->irq_data) ||
 122	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 123		return false;
 124	return true;
 125}
 126
 127/**
 128 *	irq_can_set_affinity - Check if the affinity of a given irq can be set
 129 *	@irq:		Interrupt to check
 130 *
 131 */
 132int irq_can_set_affinity(unsigned int irq)
 133{
 134	return __irq_can_set_affinity(irq_to_desc(irq));
 135}
 136
 137/**
 138 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 139 * @irq:	Interrupt to check
 140 *
 141 * Like irq_can_set_affinity() above, but additionally checks for the
 142 * AFFINITY_MANAGED flag.
 143 */
 144bool irq_can_set_affinity_usr(unsigned int irq)
 145{
 146	struct irq_desc *desc = irq_to_desc(irq);
 147
 148	return __irq_can_set_affinity(desc) &&
 149		!irqd_affinity_is_managed(&desc->irq_data);
 150}
 151
 152/**
 153 *	irq_set_thread_affinity - Notify irq threads to adjust affinity
 154 *	@desc:		irq descriptor which has affitnity changed
 155 *
 156 *	We just set IRQTF_AFFINITY and delegate the affinity setting
 157 *	to the interrupt thread itself. We can not call
 158 *	set_cpus_allowed_ptr() here as we hold desc->lock and this
 159 *	code can be called from hard interrupt context.
 160 */
 161void irq_set_thread_affinity(struct irq_desc *desc)
 162{
 163	struct irqaction *action;
 164
 165	for_each_action_of_desc(desc, action)
 166		if (action->thread)
 167			set_bit(IRQTF_AFFINITY, &action->thread_flags);
 168}
 169
 170static void irq_validate_effective_affinity(struct irq_data *data)
 171{
 172#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 173	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 174	struct irq_chip *chip = irq_data_get_irq_chip(data);
 175
 176	if (!cpumask_empty(m))
 177		return;
 178	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 179		     chip->name, data->irq);
 180#endif
 181}
 182
 183int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 184			bool force)
 185{
 186	struct irq_desc *desc = irq_data_to_desc(data);
 187	struct irq_chip *chip = irq_data_get_irq_chip(data);
 188	int ret;
 189
 190	if (!chip || !chip->irq_set_affinity)
 191		return -EINVAL;
 192
 193	ret = chip->irq_set_affinity(data, mask, force);
 194	switch (ret) {
 195	case IRQ_SET_MASK_OK:
 196	case IRQ_SET_MASK_OK_DONE:
 197		cpumask_copy(desc->irq_common_data.affinity, mask);
 
 198	case IRQ_SET_MASK_OK_NOCOPY:
 199		irq_validate_effective_affinity(data);
 200		irq_set_thread_affinity(desc);
 201		ret = 0;
 202	}
 203
 204	return ret;
 205}
 206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 208			    bool force)
 209{
 210	struct irq_chip *chip = irq_data_get_irq_chip(data);
 211	struct irq_desc *desc = irq_data_to_desc(data);
 212	int ret = 0;
 213
 214	if (!chip || !chip->irq_set_affinity)
 215		return -EINVAL;
 216
 217	if (irq_can_move_pcntxt(data)) {
 218		ret = irq_do_set_affinity(data, mask, force);
 219	} else {
 220		irqd_set_move_pending(data);
 221		irq_copy_pending(desc, mask);
 222	}
 223
 224	if (desc->affinity_notify) {
 225		kref_get(&desc->affinity_notify->kref);
 226		schedule_work(&desc->affinity_notify->work);
 227	}
 228	irqd_set(data, IRQD_AFFINITY_SET);
 229
 230	return ret;
 231}
 232
 233int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
 234{
 235	struct irq_desc *desc = irq_to_desc(irq);
 236	unsigned long flags;
 237	int ret;
 238
 239	if (!desc)
 240		return -EINVAL;
 241
 242	raw_spin_lock_irqsave(&desc->lock, flags);
 243	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 244	raw_spin_unlock_irqrestore(&desc->lock, flags);
 245	return ret;
 246}
 247
 248int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
 249{
 250	unsigned long flags;
 251	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 252
 253	if (!desc)
 254		return -EINVAL;
 255	desc->affinity_hint = m;
 256	irq_put_desc_unlock(desc, flags);
 257	/* set the initial affinity to prevent every interrupt being on CPU0 */
 258	if (m)
 259		__irq_set_affinity(irq, m, false);
 260	return 0;
 261}
 262EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
 263
 264static void irq_affinity_notify(struct work_struct *work)
 265{
 266	struct irq_affinity_notify *notify =
 267		container_of(work, struct irq_affinity_notify, work);
 268	struct irq_desc *desc = irq_to_desc(notify->irq);
 269	cpumask_var_t cpumask;
 270	unsigned long flags;
 271
 272	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 273		goto out;
 274
 275	raw_spin_lock_irqsave(&desc->lock, flags);
 276	if (irq_move_pending(&desc->irq_data))
 277		irq_get_pending(cpumask, desc);
 278	else
 279		cpumask_copy(cpumask, desc->irq_common_data.affinity);
 280	raw_spin_unlock_irqrestore(&desc->lock, flags);
 281
 282	notify->notify(notify, cpumask);
 283
 284	free_cpumask_var(cpumask);
 285out:
 286	kref_put(&notify->kref, notify->release);
 287}
 288
 289/**
 290 *	irq_set_affinity_notifier - control notification of IRQ affinity changes
 291 *	@irq:		Interrupt for which to enable/disable notification
 292 *	@notify:	Context for notification, or %NULL to disable
 293 *			notification.  Function pointers must be initialised;
 294 *			the other fields will be initialised by this function.
 295 *
 296 *	Must be called in process context.  Notification may only be enabled
 297 *	after the IRQ is allocated and must be disabled before the IRQ is
 298 *	freed using free_irq().
 299 */
 300int
 301irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 302{
 303	struct irq_desc *desc = irq_to_desc(irq);
 304	struct irq_affinity_notify *old_notify;
 305	unsigned long flags;
 306
 307	/* The release function is promised process context */
 308	might_sleep();
 309
 310	if (!desc)
 311		return -EINVAL;
 312
 313	/* Complete initialisation of *notify */
 314	if (notify) {
 315		notify->irq = irq;
 316		kref_init(&notify->kref);
 317		INIT_WORK(&notify->work, irq_affinity_notify);
 318	}
 319
 320	raw_spin_lock_irqsave(&desc->lock, flags);
 321	old_notify = desc->affinity_notify;
 322	desc->affinity_notify = notify;
 323	raw_spin_unlock_irqrestore(&desc->lock, flags);
 324
 325	if (old_notify)
 
 326		kref_put(&old_notify->kref, old_notify->release);
 
 327
 328	return 0;
 329}
 330EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 331
 332#ifndef CONFIG_AUTO_IRQ_AFFINITY
 333/*
 334 * Generic version of the affinity autoselector.
 335 */
 336int irq_setup_affinity(struct irq_desc *desc)
 337{
 338	struct cpumask *set = irq_default_affinity;
 339	int ret, node = irq_desc_get_node(desc);
 340	static DEFINE_RAW_SPINLOCK(mask_lock);
 341	static struct cpumask mask;
 342
 343	/* Excludes PER_CPU and NO_BALANCE interrupts */
 344	if (!__irq_can_set_affinity(desc))
 345		return 0;
 346
 347	raw_spin_lock(&mask_lock);
 348	/*
 349	 * Preserve the managed affinity setting and a userspace affinity
 350	 * setup, but make sure that one of the targets is online.
 351	 */
 352	if (irqd_affinity_is_managed(&desc->irq_data) ||
 353	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 354		if (cpumask_intersects(desc->irq_common_data.affinity,
 355				       cpu_online_mask))
 356			set = desc->irq_common_data.affinity;
 357		else
 358			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 359	}
 360
 361	cpumask_and(&mask, cpu_online_mask, set);
 
 
 
 362	if (node != NUMA_NO_NODE) {
 363		const struct cpumask *nodemask = cpumask_of_node(node);
 364
 365		/* make sure at least one of the cpus in nodemask is online */
 366		if (cpumask_intersects(&mask, nodemask))
 367			cpumask_and(&mask, &mask, nodemask);
 368	}
 369	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 370	raw_spin_unlock(&mask_lock);
 371	return ret;
 372}
 373#else
 374/* Wrapper for ALPHA specific affinity selector magic */
 375int irq_setup_affinity(struct irq_desc *desc)
 376{
 377	return irq_select_affinity(irq_desc_get_irq(desc));
 378}
 379#endif
 380
 381/*
 382 * Called when a bogus affinity is set via /proc/irq
 383 */
 384int irq_select_affinity_usr(unsigned int irq)
 385{
 386	struct irq_desc *desc = irq_to_desc(irq);
 387	unsigned long flags;
 388	int ret;
 389
 390	raw_spin_lock_irqsave(&desc->lock, flags);
 391	ret = irq_setup_affinity(desc);
 392	raw_spin_unlock_irqrestore(&desc->lock, flags);
 393	return ret;
 394}
 395#endif
 396
 397/**
 398 *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 399 *	@irq: interrupt number to set affinity
 400 *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 401 *	            specific data for percpu_devid interrupts
 402 *
 403 *	This function uses the vCPU specific data to set the vCPU
 404 *	affinity for an irq. The vCPU specific data is passed from
 405 *	outside, such as KVM. One example code path is as below:
 406 *	KVM -> IOMMU -> irq_set_vcpu_affinity().
 407 */
 408int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 409{
 410	unsigned long flags;
 411	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 412	struct irq_data *data;
 413	struct irq_chip *chip;
 414	int ret = -ENOSYS;
 415
 416	if (!desc)
 417		return -EINVAL;
 418
 419	data = irq_desc_get_irq_data(desc);
 420	do {
 421		chip = irq_data_get_irq_chip(data);
 422		if (chip && chip->irq_set_vcpu_affinity)
 423			break;
 424#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 425		data = data->parent_data;
 426#else
 427		data = NULL;
 428#endif
 429	} while (data);
 430
 431	if (data)
 432		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 433	irq_put_desc_unlock(desc, flags);
 434
 435	return ret;
 436}
 437EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 438
 439void __disable_irq(struct irq_desc *desc)
 440{
 441	if (!desc->depth++)
 442		irq_disable(desc);
 443}
 444
 445static int __disable_irq_nosync(unsigned int irq)
 446{
 447	unsigned long flags;
 448	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 449
 450	if (!desc)
 451		return -EINVAL;
 452	__disable_irq(desc);
 453	irq_put_desc_busunlock(desc, flags);
 454	return 0;
 455}
 456
 457/**
 458 *	disable_irq_nosync - disable an irq without waiting
 459 *	@irq: Interrupt to disable
 460 *
 461 *	Disable the selected interrupt line.  Disables and Enables are
 462 *	nested.
 463 *	Unlike disable_irq(), this function does not ensure existing
 464 *	instances of the IRQ handler have completed before returning.
 465 *
 466 *	This function may be called from IRQ context.
 467 */
 468void disable_irq_nosync(unsigned int irq)
 469{
 470	__disable_irq_nosync(irq);
 471}
 472EXPORT_SYMBOL(disable_irq_nosync);
 473
 474/**
 475 *	disable_irq - disable an irq and wait for completion
 476 *	@irq: Interrupt to disable
 477 *
 478 *	Disable the selected interrupt line.  Enables and Disables are
 479 *	nested.
 480 *	This function waits for any pending IRQ handlers for this interrupt
 481 *	to complete before returning. If you use this function while
 482 *	holding a resource the IRQ handler may need you will deadlock.
 483 *
 484 *	This function may be called - with care - from IRQ context.
 485 */
 486void disable_irq(unsigned int irq)
 487{
 488	if (!__disable_irq_nosync(irq))
 489		synchronize_irq(irq);
 490}
 491EXPORT_SYMBOL(disable_irq);
 492
 493/**
 494 *	disable_hardirq - disables an irq and waits for hardirq completion
 495 *	@irq: Interrupt to disable
 496 *
 497 *	Disable the selected interrupt line.  Enables and Disables are
 498 *	nested.
 499 *	This function waits for any pending hard IRQ handlers for this
 500 *	interrupt to complete before returning. If you use this function while
 501 *	holding a resource the hard IRQ handler may need you will deadlock.
 502 *
 503 *	When used to optimistically disable an interrupt from atomic context
 504 *	the return value must be checked.
 505 *
 506 *	Returns: false if a threaded handler is active.
 507 *
 508 *	This function may be called - with care - from IRQ context.
 509 */
 510bool disable_hardirq(unsigned int irq)
 511{
 512	if (!__disable_irq_nosync(irq))
 513		return synchronize_hardirq(irq);
 514
 515	return false;
 516}
 517EXPORT_SYMBOL_GPL(disable_hardirq);
 518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 519void __enable_irq(struct irq_desc *desc)
 520{
 521	switch (desc->depth) {
 522	case 0:
 523 err_out:
 524		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 525		     irq_desc_get_irq(desc));
 526		break;
 527	case 1: {
 528		if (desc->istate & IRQS_SUSPENDED)
 529			goto err_out;
 530		/* Prevent probing on this irq: */
 531		irq_settings_set_noprobe(desc);
 532		/*
 533		 * Call irq_startup() not irq_enable() here because the
 534		 * interrupt might be marked NOAUTOEN. So irq_startup()
 535		 * needs to be invoked when it gets enabled the first
 536		 * time. If it was already started up, then irq_startup()
 537		 * will invoke irq_enable() under the hood.
 538		 */
 539		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 540		break;
 541	}
 542	default:
 543		desc->depth--;
 544	}
 545}
 546
 547/**
 548 *	enable_irq - enable handling of an irq
 549 *	@irq: Interrupt to enable
 550 *
 551 *	Undoes the effect of one call to disable_irq().  If this
 552 *	matches the last disable, processing of interrupts on this
 553 *	IRQ line is re-enabled.
 554 *
 555 *	This function may be called from IRQ context only when
 556 *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 557 */
 558void enable_irq(unsigned int irq)
 559{
 560	unsigned long flags;
 561	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 562
 563	if (!desc)
 564		return;
 565	if (WARN(!desc->irq_data.chip,
 566		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 567		goto out;
 568
 569	__enable_irq(desc);
 570out:
 571	irq_put_desc_busunlock(desc, flags);
 572}
 573EXPORT_SYMBOL(enable_irq);
 574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575static int set_irq_wake_real(unsigned int irq, unsigned int on)
 576{
 577	struct irq_desc *desc = irq_to_desc(irq);
 578	int ret = -ENXIO;
 579
 580	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 581		return 0;
 582
 583	if (desc->irq_data.chip->irq_set_wake)
 584		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 585
 586	return ret;
 587}
 588
 589/**
 590 *	irq_set_irq_wake - control irq power management wakeup
 591 *	@irq:	interrupt to control
 592 *	@on:	enable/disable power management wakeup
 593 *
 594 *	Enable/disable power management wakeup mode, which is
 595 *	disabled by default.  Enables and disables must match,
 596 *	just as they match for non-wakeup mode support.
 597 *
 598 *	Wakeup mode lets this IRQ wake the system from sleep
 599 *	states like "suspend to RAM".
 600 */
 601int irq_set_irq_wake(unsigned int irq, unsigned int on)
 602{
 603	unsigned long flags;
 604	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 605	int ret = 0;
 606
 607	if (!desc)
 608		return -EINVAL;
 609
 
 
 
 
 
 
 610	/* wakeup-capable irqs can be shared between drivers that
 611	 * don't need to have the same sleep mode behaviors.
 612	 */
 613	if (on) {
 614		if (desc->wake_depth++ == 0) {
 615			ret = set_irq_wake_real(irq, on);
 616			if (ret)
 617				desc->wake_depth = 0;
 618			else
 619				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 620		}
 621	} else {
 622		if (desc->wake_depth == 0) {
 623			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 624		} else if (--desc->wake_depth == 0) {
 625			ret = set_irq_wake_real(irq, on);
 626			if (ret)
 627				desc->wake_depth = 1;
 628			else
 629				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 630		}
 631	}
 
 
 632	irq_put_desc_busunlock(desc, flags);
 633	return ret;
 634}
 635EXPORT_SYMBOL(irq_set_irq_wake);
 636
 637/*
 638 * Internal function that tells the architecture code whether a
 639 * particular irq has been exclusively allocated or is available
 640 * for driver use.
 641 */
 642int can_request_irq(unsigned int irq, unsigned long irqflags)
 643{
 644	unsigned long flags;
 645	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 646	int canrequest = 0;
 647
 648	if (!desc)
 649		return 0;
 650
 651	if (irq_settings_can_request(desc)) {
 652		if (!desc->action ||
 653		    irqflags & desc->action->flags & IRQF_SHARED)
 654			canrequest = 1;
 655	}
 656	irq_put_desc_unlock(desc, flags);
 657	return canrequest;
 658}
 659
 660int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 661{
 662	struct irq_chip *chip = desc->irq_data.chip;
 663	int ret, unmask = 0;
 664
 665	if (!chip || !chip->irq_set_type) {
 666		/*
 667		 * IRQF_TRIGGER_* but the PIC does not support multiple
 668		 * flow-types?
 669		 */
 670		pr_debug("No set_type function for IRQ %d (%s)\n",
 671			 irq_desc_get_irq(desc),
 672			 chip ? (chip->name ? : "unknown") : "unknown");
 673		return 0;
 674	}
 675
 676	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 677		if (!irqd_irq_masked(&desc->irq_data))
 678			mask_irq(desc);
 679		if (!irqd_irq_disabled(&desc->irq_data))
 680			unmask = 1;
 681	}
 682
 683	/* Mask all flags except trigger mode */
 684	flags &= IRQ_TYPE_SENSE_MASK;
 685	ret = chip->irq_set_type(&desc->irq_data, flags);
 686
 687	switch (ret) {
 688	case IRQ_SET_MASK_OK:
 689	case IRQ_SET_MASK_OK_DONE:
 690		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 691		irqd_set(&desc->irq_data, flags);
 
 692
 693	case IRQ_SET_MASK_OK_NOCOPY:
 694		flags = irqd_get_trigger_type(&desc->irq_data);
 695		irq_settings_set_trigger_mask(desc, flags);
 696		irqd_clear(&desc->irq_data, IRQD_LEVEL);
 697		irq_settings_clr_level(desc);
 698		if (flags & IRQ_TYPE_LEVEL_MASK) {
 699			irq_settings_set_level(desc);
 700			irqd_set(&desc->irq_data, IRQD_LEVEL);
 701		}
 702
 703		ret = 0;
 704		break;
 705	default:
 706		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
 707		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
 708	}
 709	if (unmask)
 710		unmask_irq(desc);
 711	return ret;
 712}
 713
 714#ifdef CONFIG_HARDIRQS_SW_RESEND
 715int irq_set_parent(int irq, int parent_irq)
 716{
 717	unsigned long flags;
 718	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 719
 720	if (!desc)
 721		return -EINVAL;
 722
 723	desc->parent_irq = parent_irq;
 724
 725	irq_put_desc_unlock(desc, flags);
 726	return 0;
 727}
 728EXPORT_SYMBOL_GPL(irq_set_parent);
 729#endif
 730
 731/*
 732 * Default primary interrupt handler for threaded interrupts. Is
 733 * assigned as primary handler when request_threaded_irq is called
 734 * with handler == NULL. Useful for oneshot interrupts.
 735 */
 736static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
 737{
 738	return IRQ_WAKE_THREAD;
 739}
 740
 741/*
 742 * Primary handler for nested threaded interrupts. Should never be
 743 * called.
 744 */
 745static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
 746{
 747	WARN(1, "Primary handler called for nested irq %d\n", irq);
 748	return IRQ_NONE;
 749}
 750
 751static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
 752{
 753	WARN(1, "Secondary action handler called for irq %d\n", irq);
 754	return IRQ_NONE;
 755}
 756
 757static int irq_wait_for_interrupt(struct irqaction *action)
 758{
 759	set_current_state(TASK_INTERRUPTIBLE);
 
 760
 761	while (!kthread_should_stop()) {
 
 
 
 
 
 
 
 
 
 762
 763		if (test_and_clear_bit(IRQTF_RUNTHREAD,
 764				       &action->thread_flags)) {
 765			__set_current_state(TASK_RUNNING);
 766			return 0;
 767		}
 768		schedule();
 769		set_current_state(TASK_INTERRUPTIBLE);
 770	}
 771	__set_current_state(TASK_RUNNING);
 772	return -1;
 773}
 774
 775/*
 776 * Oneshot interrupts keep the irq line masked until the threaded
 777 * handler finished. unmask if the interrupt has not been disabled and
 778 * is marked MASKED.
 779 */
 780static void irq_finalize_oneshot(struct irq_desc *desc,
 781				 struct irqaction *action)
 782{
 783	if (!(desc->istate & IRQS_ONESHOT) ||
 784	    action->handler == irq_forced_secondary_handler)
 785		return;
 786again:
 787	chip_bus_lock(desc);
 788	raw_spin_lock_irq(&desc->lock);
 789
 790	/*
 791	 * Implausible though it may be we need to protect us against
 792	 * the following scenario:
 793	 *
 794	 * The thread is faster done than the hard interrupt handler
 795	 * on the other CPU. If we unmask the irq line then the
 796	 * interrupt can come in again and masks the line, leaves due
 797	 * to IRQS_INPROGRESS and the irq line is masked forever.
 798	 *
 799	 * This also serializes the state of shared oneshot handlers
 800	 * versus "desc->threads_onehsot |= action->thread_mask;" in
 801	 * irq_wake_thread(). See the comment there which explains the
 802	 * serialization.
 803	 */
 804	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
 805		raw_spin_unlock_irq(&desc->lock);
 806		chip_bus_sync_unlock(desc);
 807		cpu_relax();
 808		goto again;
 809	}
 810
 811	/*
 812	 * Now check again, whether the thread should run. Otherwise
 813	 * we would clear the threads_oneshot bit of this thread which
 814	 * was just set.
 815	 */
 816	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 817		goto out_unlock;
 818
 819	desc->threads_oneshot &= ~action->thread_mask;
 820
 821	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
 822	    irqd_irq_masked(&desc->irq_data))
 823		unmask_threaded_irq(desc);
 824
 825out_unlock:
 826	raw_spin_unlock_irq(&desc->lock);
 827	chip_bus_sync_unlock(desc);
 828}
 829
 830#ifdef CONFIG_SMP
 831/*
 832 * Check whether we need to change the affinity of the interrupt thread.
 833 */
 834static void
 835irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
 836{
 837	cpumask_var_t mask;
 838	bool valid = true;
 839
 840	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
 841		return;
 842
 843	/*
 844	 * In case we are out of memory we set IRQTF_AFFINITY again and
 845	 * try again next time
 846	 */
 847	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
 848		set_bit(IRQTF_AFFINITY, &action->thread_flags);
 849		return;
 850	}
 851
 852	raw_spin_lock_irq(&desc->lock);
 853	/*
 854	 * This code is triggered unconditionally. Check the affinity
 855	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
 856	 */
 857	if (cpumask_available(desc->irq_common_data.affinity)) {
 858		const struct cpumask *m;
 859
 860		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
 861		cpumask_copy(mask, m);
 862	} else {
 863		valid = false;
 864	}
 865	raw_spin_unlock_irq(&desc->lock);
 866
 867	if (valid)
 868		set_cpus_allowed_ptr(current, mask);
 869	free_cpumask_var(mask);
 870}
 871#else
 872static inline void
 873irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
 874#endif
 875
 876/*
 877 * Interrupts which are not explicitely requested as threaded
 878 * interrupts rely on the implicit bh/preempt disable of the hard irq
 879 * context. So we need to disable bh here to avoid deadlocks and other
 880 * side effects.
 881 */
 882static irqreturn_t
 883irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
 884{
 885	irqreturn_t ret;
 886
 887	local_bh_disable();
 888	ret = action->thread_fn(action->irq, action->dev_id);
 
 
 
 889	irq_finalize_oneshot(desc, action);
 890	local_bh_enable();
 891	return ret;
 892}
 893
 894/*
 895 * Interrupts explicitly requested as threaded interrupts want to be
 896 * preemtible - many of them need to sleep and wait for slow busses to
 897 * complete.
 898 */
 899static irqreturn_t irq_thread_fn(struct irq_desc *desc,
 900		struct irqaction *action)
 901{
 902	irqreturn_t ret;
 903
 904	ret = action->thread_fn(action->irq, action->dev_id);
 
 
 
 905	irq_finalize_oneshot(desc, action);
 906	return ret;
 907}
 908
 909static void wake_threads_waitq(struct irq_desc *desc)
 910{
 911	if (atomic_dec_and_test(&desc->threads_active))
 912		wake_up(&desc->wait_for_threads);
 913}
 914
 915static void irq_thread_dtor(struct callback_head *unused)
 916{
 917	struct task_struct *tsk = current;
 918	struct irq_desc *desc;
 919	struct irqaction *action;
 920
 921	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
 922		return;
 923
 924	action = kthread_data(tsk);
 925
 926	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
 927	       tsk->comm, tsk->pid, action->irq);
 928
 929
 930	desc = irq_to_desc(action->irq);
 931	/*
 932	 * If IRQTF_RUNTHREAD is set, we need to decrement
 933	 * desc->threads_active and wake possible waiters.
 934	 */
 935	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 936		wake_threads_waitq(desc);
 937
 938	/* Prevent a stale desc->threads_oneshot */
 939	irq_finalize_oneshot(desc, action);
 940}
 941
 942static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
 943{
 944	struct irqaction *secondary = action->secondary;
 945
 946	if (WARN_ON_ONCE(!secondary))
 947		return;
 948
 949	raw_spin_lock_irq(&desc->lock);
 950	__irq_wake_thread(desc, secondary);
 951	raw_spin_unlock_irq(&desc->lock);
 952}
 953
 954/*
 955 * Interrupt handler thread
 956 */
 957static int irq_thread(void *data)
 958{
 959	struct callback_head on_exit_work;
 960	struct irqaction *action = data;
 961	struct irq_desc *desc = irq_to_desc(action->irq);
 962	irqreturn_t (*handler_fn)(struct irq_desc *desc,
 963			struct irqaction *action);
 964
 965	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
 966					&action->thread_flags))
 967		handler_fn = irq_forced_thread_fn;
 968	else
 969		handler_fn = irq_thread_fn;
 970
 971	init_task_work(&on_exit_work, irq_thread_dtor);
 972	task_work_add(current, &on_exit_work, false);
 973
 974	irq_thread_check_affinity(desc, action);
 975
 976	while (!irq_wait_for_interrupt(action)) {
 977		irqreturn_t action_ret;
 978
 979		irq_thread_check_affinity(desc, action);
 980
 981		action_ret = handler_fn(desc, action);
 982		if (action_ret == IRQ_HANDLED)
 983			atomic_inc(&desc->threads_handled);
 984		if (action_ret == IRQ_WAKE_THREAD)
 985			irq_wake_secondary(desc, action);
 986
 987		wake_threads_waitq(desc);
 988	}
 989
 990	/*
 991	 * This is the regular exit path. __free_irq() is stopping the
 992	 * thread via kthread_stop() after calling
 993	 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
 994	 * oneshot mask bit can be set. We cannot verify that as we
 995	 * cannot touch the oneshot mask at this point anymore as
 996	 * __setup_irq() might have given out currents thread_mask
 997	 * again.
 998	 */
 999	task_work_cancel(current, irq_thread_dtor);
1000	return 0;
1001}
1002
1003/**
1004 *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1005 *	@irq:		Interrupt line
1006 *	@dev_id:	Device identity for which the thread should be woken
1007 *
1008 */
1009void irq_wake_thread(unsigned int irq, void *dev_id)
1010{
1011	struct irq_desc *desc = irq_to_desc(irq);
1012	struct irqaction *action;
1013	unsigned long flags;
1014
1015	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1016		return;
1017
1018	raw_spin_lock_irqsave(&desc->lock, flags);
1019	for_each_action_of_desc(desc, action) {
1020		if (action->dev_id == dev_id) {
1021			if (action->thread)
1022				__irq_wake_thread(desc, action);
1023			break;
1024		}
1025	}
1026	raw_spin_unlock_irqrestore(&desc->lock, flags);
1027}
1028EXPORT_SYMBOL_GPL(irq_wake_thread);
1029
1030static int irq_setup_forced_threading(struct irqaction *new)
1031{
1032	if (!force_irqthreads)
1033		return 0;
1034	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1035		return 0;
1036
 
 
 
 
 
 
 
1037	new->flags |= IRQF_ONESHOT;
1038
1039	/*
1040	 * Handle the case where we have a real primary handler and a
1041	 * thread handler. We force thread them as well by creating a
1042	 * secondary action.
1043	 */
1044	if (new->handler != irq_default_primary_handler && new->thread_fn) {
1045		/* Allocate the secondary action */
1046		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1047		if (!new->secondary)
1048			return -ENOMEM;
1049		new->secondary->handler = irq_forced_secondary_handler;
1050		new->secondary->thread_fn = new->thread_fn;
1051		new->secondary->dev_id = new->dev_id;
1052		new->secondary->irq = new->irq;
1053		new->secondary->name = new->name;
1054	}
1055	/* Deal with the primary handler */
1056	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1057	new->thread_fn = new->handler;
1058	new->handler = irq_default_primary_handler;
1059	return 0;
1060}
1061
1062static int irq_request_resources(struct irq_desc *desc)
1063{
1064	struct irq_data *d = &desc->irq_data;
1065	struct irq_chip *c = d->chip;
1066
1067	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1068}
1069
1070static void irq_release_resources(struct irq_desc *desc)
1071{
1072	struct irq_data *d = &desc->irq_data;
1073	struct irq_chip *c = d->chip;
1074
1075	if (c->irq_release_resources)
1076		c->irq_release_resources(d);
1077}
1078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1079static int
1080setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1081{
1082	struct task_struct *t;
1083	struct sched_param param = {
1084		.sched_priority = MAX_USER_RT_PRIO/2,
1085	};
1086
1087	if (!secondary) {
1088		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1089				   new->name);
1090	} else {
1091		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1092				   new->name);
1093		param.sched_priority -= 1;
1094	}
1095
1096	if (IS_ERR(t))
1097		return PTR_ERR(t);
1098
1099	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1100
1101	/*
1102	 * We keep the reference to the task struct even if
1103	 * the thread dies to avoid that the interrupt code
1104	 * references an already freed task_struct.
1105	 */
1106	get_task_struct(t);
1107	new->thread = t;
1108	/*
1109	 * Tell the thread to set its affinity. This is
1110	 * important for shared interrupt handlers as we do
1111	 * not invoke setup_affinity() for the secondary
1112	 * handlers as everything is already set up. Even for
1113	 * interrupts marked with IRQF_NO_BALANCE this is
1114	 * correct as we want the thread to move to the cpu(s)
1115	 * on which the requesting code placed the interrupt.
1116	 */
1117	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1118	return 0;
1119}
1120
1121/*
1122 * Internal function to register an irqaction - typically used to
1123 * allocate special interrupts that are part of the architecture.
1124 *
1125 * Locking rules:
1126 *
1127 * desc->request_mutex	Provides serialization against a concurrent free_irq()
1128 *   chip_bus_lock	Provides serialization for slow bus operations
1129 *     desc->lock	Provides serialization against hard interrupts
1130 *
1131 * chip_bus_lock and desc->lock are sufficient for all other management and
1132 * interrupt related functions. desc->request_mutex solely serializes
1133 * request/free_irq().
1134 */
1135static int
1136__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1137{
1138	struct irqaction *old, **old_ptr;
1139	unsigned long flags, thread_mask = 0;
1140	int ret, nested, shared = 0;
1141
1142	if (!desc)
1143		return -EINVAL;
1144
1145	if (desc->irq_data.chip == &no_irq_chip)
1146		return -ENOSYS;
1147	if (!try_module_get(desc->owner))
1148		return -ENODEV;
1149
1150	new->irq = irq;
1151
1152	/*
1153	 * If the trigger type is not specified by the caller,
1154	 * then use the default for this interrupt.
1155	 */
1156	if (!(new->flags & IRQF_TRIGGER_MASK))
1157		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1158
1159	/*
1160	 * Check whether the interrupt nests into another interrupt
1161	 * thread.
1162	 */
1163	nested = irq_settings_is_nested_thread(desc);
1164	if (nested) {
1165		if (!new->thread_fn) {
1166			ret = -EINVAL;
1167			goto out_mput;
1168		}
1169		/*
1170		 * Replace the primary handler which was provided from
1171		 * the driver for non nested interrupt handling by the
1172		 * dummy function which warns when called.
1173		 */
1174		new->handler = irq_nested_primary_handler;
1175	} else {
1176		if (irq_settings_can_thread(desc)) {
1177			ret = irq_setup_forced_threading(new);
1178			if (ret)
1179				goto out_mput;
1180		}
1181	}
1182
1183	/*
1184	 * Create a handler thread when a thread function is supplied
1185	 * and the interrupt does not nest into another interrupt
1186	 * thread.
1187	 */
1188	if (new->thread_fn && !nested) {
1189		ret = setup_irq_thread(new, irq, false);
1190		if (ret)
1191			goto out_mput;
1192		if (new->secondary) {
1193			ret = setup_irq_thread(new->secondary, irq, true);
1194			if (ret)
1195				goto out_thread;
1196		}
1197	}
1198
1199	/*
1200	 * Drivers are often written to work w/o knowledge about the
1201	 * underlying irq chip implementation, so a request for a
1202	 * threaded irq without a primary hard irq context handler
1203	 * requires the ONESHOT flag to be set. Some irq chips like
1204	 * MSI based interrupts are per se one shot safe. Check the
1205	 * chip flags, so we can avoid the unmask dance at the end of
1206	 * the threaded handler for those.
1207	 */
1208	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1209		new->flags &= ~IRQF_ONESHOT;
1210
1211	/*
1212	 * Protects against a concurrent __free_irq() call which might wait
1213	 * for synchronize_irq() to complete without holding the optional
1214	 * chip bus lock and desc->lock.
 
 
1215	 */
1216	mutex_lock(&desc->request_mutex);
1217
1218	/*
1219	 * Acquire bus lock as the irq_request_resources() callback below
1220	 * might rely on the serialization or the magic power management
1221	 * functions which are abusing the irq_bus_lock() callback,
1222	 */
1223	chip_bus_lock(desc);
1224
1225	/* First installed action requests resources. */
1226	if (!desc->action) {
1227		ret = irq_request_resources(desc);
1228		if (ret) {
1229			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1230			       new->name, irq, desc->irq_data.chip->name);
1231			goto out_bus_unlock;
1232		}
1233	}
1234
1235	/*
1236	 * The following block of code has to be executed atomically
1237	 * protected against a concurrent interrupt and any of the other
1238	 * management calls which are not serialized via
1239	 * desc->request_mutex or the optional bus lock.
1240	 */
1241	raw_spin_lock_irqsave(&desc->lock, flags);
1242	old_ptr = &desc->action;
1243	old = *old_ptr;
1244	if (old) {
1245		/*
1246		 * Can't share interrupts unless both agree to and are
1247		 * the same type (level, edge, polarity). So both flag
1248		 * fields must have IRQF_SHARED set and the bits which
1249		 * set the trigger type must match. Also all must
1250		 * agree on ONESHOT.
 
1251		 */
1252		unsigned int oldtype;
1253
 
 
 
 
 
 
 
1254		/*
1255		 * If nobody did set the configuration before, inherit
1256		 * the one provided by the requester.
1257		 */
1258		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1259			oldtype = irqd_get_trigger_type(&desc->irq_data);
1260		} else {
1261			oldtype = new->flags & IRQF_TRIGGER_MASK;
1262			irqd_set_trigger_type(&desc->irq_data, oldtype);
1263		}
1264
1265		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1266		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1267		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1268			goto mismatch;
1269
1270		/* All handlers must agree on per-cpuness */
1271		if ((old->flags & IRQF_PERCPU) !=
1272		    (new->flags & IRQF_PERCPU))
1273			goto mismatch;
1274
1275		/* add new interrupt at end of irq queue */
1276		do {
1277			/*
1278			 * Or all existing action->thread_mask bits,
1279			 * so we can find the next zero bit for this
1280			 * new action.
1281			 */
1282			thread_mask |= old->thread_mask;
1283			old_ptr = &old->next;
1284			old = *old_ptr;
1285		} while (old);
1286		shared = 1;
1287	}
1288
1289	/*
1290	 * Setup the thread mask for this irqaction for ONESHOT. For
1291	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1292	 * conditional in irq_wake_thread().
1293	 */
1294	if (new->flags & IRQF_ONESHOT) {
1295		/*
1296		 * Unlikely to have 32 resp 64 irqs sharing one line,
1297		 * but who knows.
1298		 */
1299		if (thread_mask == ~0UL) {
1300			ret = -EBUSY;
1301			goto out_unlock;
1302		}
1303		/*
1304		 * The thread_mask for the action is or'ed to
1305		 * desc->thread_active to indicate that the
1306		 * IRQF_ONESHOT thread handler has been woken, but not
1307		 * yet finished. The bit is cleared when a thread
1308		 * completes. When all threads of a shared interrupt
1309		 * line have completed desc->threads_active becomes
1310		 * zero and the interrupt line is unmasked. See
1311		 * handle.c:irq_wake_thread() for further information.
1312		 *
1313		 * If no thread is woken by primary (hard irq context)
1314		 * interrupt handlers, then desc->threads_active is
1315		 * also checked for zero to unmask the irq line in the
1316		 * affected hard irq flow handlers
1317		 * (handle_[fasteoi|level]_irq).
1318		 *
1319		 * The new action gets the first zero bit of
1320		 * thread_mask assigned. See the loop above which or's
1321		 * all existing action->thread_mask bits.
1322		 */
1323		new->thread_mask = 1UL << ffz(thread_mask);
1324
1325	} else if (new->handler == irq_default_primary_handler &&
1326		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1327		/*
1328		 * The interrupt was requested with handler = NULL, so
1329		 * we use the default primary handler for it. But it
1330		 * does not have the oneshot flag set. In combination
1331		 * with level interrupts this is deadly, because the
1332		 * default primary handler just wakes the thread, then
1333		 * the irq lines is reenabled, but the device still
1334		 * has the level irq asserted. Rinse and repeat....
1335		 *
1336		 * While this works for edge type interrupts, we play
1337		 * it safe and reject unconditionally because we can't
1338		 * say for sure which type this interrupt really
1339		 * has. The type flags are unreliable as the
1340		 * underlying chip implementation can override them.
1341		 */
1342		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1343		       irq);
1344		ret = -EINVAL;
1345		goto out_unlock;
1346	}
1347
1348	if (!shared) {
1349		init_waitqueue_head(&desc->wait_for_threads);
1350
1351		/* Setup the type (level, edge polarity) if configured: */
1352		if (new->flags & IRQF_TRIGGER_MASK) {
1353			ret = __irq_set_trigger(desc,
1354						new->flags & IRQF_TRIGGER_MASK);
1355
1356			if (ret)
1357				goto out_unlock;
1358		}
1359
1360		/*
1361		 * Activate the interrupt. That activation must happen
1362		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1363		 * and the callers are supposed to handle
1364		 * that. enable_irq() of an interrupt requested with
1365		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1366		 * keeps it in shutdown mode, it merily associates
1367		 * resources if necessary and if that's not possible it
1368		 * fails. Interrupts which are in managed shutdown mode
1369		 * will simply ignore that activation request.
1370		 */
1371		ret = irq_activate(desc);
1372		if (ret)
1373			goto out_unlock;
1374
1375		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1376				  IRQS_ONESHOT | IRQS_WAITING);
1377		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1378
1379		if (new->flags & IRQF_PERCPU) {
1380			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1381			irq_settings_set_per_cpu(desc);
1382		}
1383
1384		if (new->flags & IRQF_ONESHOT)
1385			desc->istate |= IRQS_ONESHOT;
1386
1387		/* Exclude IRQ from balancing if requested */
1388		if (new->flags & IRQF_NOBALANCING) {
1389			irq_settings_set_no_balancing(desc);
1390			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1391		}
1392
1393		if (irq_settings_can_autoenable(desc)) {
1394			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1395		} else {
1396			/*
1397			 * Shared interrupts do not go well with disabling
1398			 * auto enable. The sharing interrupt might request
1399			 * it while it's still disabled and then wait for
1400			 * interrupts forever.
1401			 */
1402			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1403			/* Undo nested disables: */
1404			desc->depth = 1;
1405		}
1406
1407	} else if (new->flags & IRQF_TRIGGER_MASK) {
1408		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1409		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1410
1411		if (nmsk != omsk)
1412			/* hope the handler works with current  trigger mode */
1413			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1414				irq, omsk, nmsk);
1415	}
1416
1417	*old_ptr = new;
1418
1419	irq_pm_install_action(desc, new);
1420
1421	/* Reset broken irq detection when installing new handler */
1422	desc->irq_count = 0;
1423	desc->irqs_unhandled = 0;
1424
1425	/*
1426	 * Check whether we disabled the irq via the spurious handler
1427	 * before. Reenable it and give it another chance.
1428	 */
1429	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1430		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1431		__enable_irq(desc);
1432	}
1433
1434	raw_spin_unlock_irqrestore(&desc->lock, flags);
1435	chip_bus_sync_unlock(desc);
1436	mutex_unlock(&desc->request_mutex);
1437
1438	irq_setup_timings(desc, new);
1439
1440	/*
1441	 * Strictly no need to wake it up, but hung_task complains
1442	 * when no hard interrupt wakes the thread up.
1443	 */
1444	if (new->thread)
1445		wake_up_process(new->thread);
1446	if (new->secondary)
1447		wake_up_process(new->secondary->thread);
1448
1449	register_irq_proc(irq, desc);
1450	new->dir = NULL;
1451	register_handler_proc(irq, new);
1452	return 0;
1453
1454mismatch:
1455	if (!(new->flags & IRQF_PROBE_SHARED)) {
1456		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1457		       irq, new->flags, new->name, old->flags, old->name);
1458#ifdef CONFIG_DEBUG_SHIRQ
1459		dump_stack();
1460#endif
1461	}
1462	ret = -EBUSY;
1463
1464out_unlock:
1465	raw_spin_unlock_irqrestore(&desc->lock, flags);
1466
1467	if (!desc->action)
1468		irq_release_resources(desc);
1469out_bus_unlock:
1470	chip_bus_sync_unlock(desc);
1471	mutex_unlock(&desc->request_mutex);
1472
1473out_thread:
1474	if (new->thread) {
1475		struct task_struct *t = new->thread;
1476
1477		new->thread = NULL;
1478		kthread_stop(t);
1479		put_task_struct(t);
1480	}
1481	if (new->secondary && new->secondary->thread) {
1482		struct task_struct *t = new->secondary->thread;
1483
1484		new->secondary->thread = NULL;
1485		kthread_stop(t);
1486		put_task_struct(t);
1487	}
1488out_mput:
1489	module_put(desc->owner);
1490	return ret;
1491}
1492
1493/**
1494 *	setup_irq - setup an interrupt
1495 *	@irq: Interrupt line to setup
1496 *	@act: irqaction for the interrupt
1497 *
1498 * Used to statically setup interrupts in the early boot process.
1499 */
1500int setup_irq(unsigned int irq, struct irqaction *act)
1501{
1502	int retval;
1503	struct irq_desc *desc = irq_to_desc(irq);
1504
1505	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1506		return -EINVAL;
1507
1508	retval = irq_chip_pm_get(&desc->irq_data);
1509	if (retval < 0)
1510		return retval;
1511
1512	retval = __setup_irq(irq, desc, act);
1513
1514	if (retval)
1515		irq_chip_pm_put(&desc->irq_data);
1516
1517	return retval;
1518}
1519EXPORT_SYMBOL_GPL(setup_irq);
1520
1521/*
1522 * Internal function to unregister an irqaction - used to free
1523 * regular and special interrupts that are part of the architecture.
1524 */
1525static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1526{
1527	unsigned irq = desc->irq_data.irq;
1528	struct irqaction *action, **action_ptr;
1529	unsigned long flags;
1530
1531	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1532
1533	if (!desc)
1534		return NULL;
1535
1536	mutex_lock(&desc->request_mutex);
1537	chip_bus_lock(desc);
1538	raw_spin_lock_irqsave(&desc->lock, flags);
1539
1540	/*
1541	 * There can be multiple actions per IRQ descriptor, find the right
1542	 * one based on the dev_id:
1543	 */
1544	action_ptr = &desc->action;
1545	for (;;) {
1546		action = *action_ptr;
1547
1548		if (!action) {
1549			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1550			raw_spin_unlock_irqrestore(&desc->lock, flags);
1551			chip_bus_sync_unlock(desc);
1552			mutex_unlock(&desc->request_mutex);
1553			return NULL;
1554		}
1555
1556		if (action->dev_id == dev_id)
1557			break;
1558		action_ptr = &action->next;
1559	}
1560
1561	/* Found it - now remove it from the list of entries: */
1562	*action_ptr = action->next;
1563
1564	irq_pm_remove_action(desc, action);
1565
1566	/* If this was the last handler, shut down the IRQ line: */
1567	if (!desc->action) {
1568		irq_settings_clr_disable_unlazy(desc);
 
1569		irq_shutdown(desc);
1570	}
1571
1572#ifdef CONFIG_SMP
1573	/* make sure affinity_hint is cleaned up */
1574	if (WARN_ON_ONCE(desc->affinity_hint))
1575		desc->affinity_hint = NULL;
1576#endif
1577
1578	raw_spin_unlock_irqrestore(&desc->lock, flags);
1579	/*
1580	 * Drop bus_lock here so the changes which were done in the chip
1581	 * callbacks above are synced out to the irq chips which hang
1582	 * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1583	 *
1584	 * Aside of that the bus_lock can also be taken from the threaded
1585	 * handler in irq_finalize_oneshot() which results in a deadlock
1586	 * because synchronize_irq() would wait forever for the thread to
1587	 * complete, which is blocked on the bus lock.
1588	 *
1589	 * The still held desc->request_mutex() protects against a
1590	 * concurrent request_irq() of this irq so the release of resources
1591	 * and timing data is properly serialized.
1592	 */
1593	chip_bus_sync_unlock(desc);
1594
1595	unregister_handler_proc(irq, action);
1596
1597	/* Make sure it's not being used on another CPU: */
1598	synchronize_irq(irq);
 
 
 
 
1599
1600#ifdef CONFIG_DEBUG_SHIRQ
1601	/*
1602	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1603	 * event to happen even now it's being freed, so let's make sure that
1604	 * is so by doing an extra call to the handler ....
1605	 *
1606	 * ( We do this after actually deregistering it, to make sure that a
1607	 *   'real' IRQ doesn't run in * parallel with our fake. )
1608	 */
1609	if (action->flags & IRQF_SHARED) {
1610		local_irq_save(flags);
1611		action->handler(irq, dev_id);
1612		local_irq_restore(flags);
1613	}
1614#endif
1615
 
 
 
 
 
 
1616	if (action->thread) {
1617		kthread_stop(action->thread);
1618		put_task_struct(action->thread);
1619		if (action->secondary && action->secondary->thread) {
1620			kthread_stop(action->secondary->thread);
1621			put_task_struct(action->secondary->thread);
1622		}
1623	}
1624
1625	/* Last action releases resources */
1626	if (!desc->action) {
1627		/*
1628		 * Reaquire bus lock as irq_release_resources() might
1629		 * require it to deallocate resources over the slow bus.
1630		 */
1631		chip_bus_lock(desc);
 
 
 
 
 
 
 
 
1632		irq_release_resources(desc);
1633		chip_bus_sync_unlock(desc);
1634		irq_remove_timings(desc);
1635	}
1636
1637	mutex_unlock(&desc->request_mutex);
1638
1639	irq_chip_pm_put(&desc->irq_data);
1640	module_put(desc->owner);
1641	kfree(action->secondary);
1642	return action;
1643}
1644
1645/**
1646 *	remove_irq - free an interrupt
1647 *	@irq: Interrupt line to free
1648 *	@act: irqaction for the interrupt
1649 *
1650 * Used to remove interrupts statically setup by the early boot process.
1651 */
1652void remove_irq(unsigned int irq, struct irqaction *act)
1653{
1654	struct irq_desc *desc = irq_to_desc(irq);
1655
1656	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1657		__free_irq(desc, act->dev_id);
1658}
1659EXPORT_SYMBOL_GPL(remove_irq);
1660
1661/**
1662 *	free_irq - free an interrupt allocated with request_irq
1663 *	@irq: Interrupt line to free
1664 *	@dev_id: Device identity to free
1665 *
1666 *	Remove an interrupt handler. The handler is removed and if the
1667 *	interrupt line is no longer in use by any driver it is disabled.
1668 *	On a shared IRQ the caller must ensure the interrupt is disabled
1669 *	on the card it drives before calling this function. The function
1670 *	does not return until any executing interrupts for this IRQ
1671 *	have completed.
1672 *
1673 *	This function must not be called from interrupt context.
1674 *
1675 *	Returns the devname argument passed to request_irq.
1676 */
1677const void *free_irq(unsigned int irq, void *dev_id)
1678{
1679	struct irq_desc *desc = irq_to_desc(irq);
1680	struct irqaction *action;
1681	const char *devname;
1682
1683	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1684		return NULL;
1685
1686#ifdef CONFIG_SMP
1687	if (WARN_ON(desc->affinity_notify))
1688		desc->affinity_notify = NULL;
1689#endif
1690
1691	action = __free_irq(desc, dev_id);
1692
1693	if (!action)
1694		return NULL;
1695
1696	devname = action->name;
1697	kfree(action);
1698	return devname;
1699}
1700EXPORT_SYMBOL(free_irq);
1701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1702/**
1703 *	request_threaded_irq - allocate an interrupt line
1704 *	@irq: Interrupt line to allocate
1705 *	@handler: Function to be called when the IRQ occurs.
1706 *		  Primary handler for threaded interrupts
1707 *		  If NULL and thread_fn != NULL the default
1708 *		  primary handler is installed
1709 *	@thread_fn: Function called from the irq handler thread
1710 *		    If NULL, no irq thread is created
1711 *	@irqflags: Interrupt type flags
1712 *	@devname: An ascii name for the claiming device
1713 *	@dev_id: A cookie passed back to the handler function
1714 *
1715 *	This call allocates interrupt resources and enables the
1716 *	interrupt line and IRQ handling. From the point this
1717 *	call is made your handler function may be invoked. Since
1718 *	your handler function must clear any interrupt the board
1719 *	raises, you must take care both to initialise your hardware
1720 *	and to set up the interrupt handler in the right order.
1721 *
1722 *	If you want to set up a threaded irq handler for your device
1723 *	then you need to supply @handler and @thread_fn. @handler is
1724 *	still called in hard interrupt context and has to check
1725 *	whether the interrupt originates from the device. If yes it
1726 *	needs to disable the interrupt on the device and return
1727 *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1728 *	@thread_fn. This split handler design is necessary to support
1729 *	shared interrupts.
1730 *
1731 *	Dev_id must be globally unique. Normally the address of the
1732 *	device data structure is used as the cookie. Since the handler
1733 *	receives this value it makes sense to use it.
1734 *
1735 *	If your interrupt is shared you must pass a non NULL dev_id
1736 *	as this is required when freeing the interrupt.
1737 *
1738 *	Flags:
1739 *
1740 *	IRQF_SHARED		Interrupt is shared
1741 *	IRQF_TRIGGER_*		Specify active edge(s) or level
1742 *
1743 */
1744int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1745			 irq_handler_t thread_fn, unsigned long irqflags,
1746			 const char *devname, void *dev_id)
1747{
1748	struct irqaction *action;
1749	struct irq_desc *desc;
1750	int retval;
1751
1752	if (irq == IRQ_NOTCONNECTED)
1753		return -ENOTCONN;
1754
1755	/*
1756	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1757	 * otherwise we'll have trouble later trying to figure out
1758	 * which interrupt is which (messes up the interrupt freeing
1759	 * logic etc).
1760	 *
1761	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1762	 * it cannot be set along with IRQF_NO_SUSPEND.
1763	 */
1764	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1765	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1766	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1767		return -EINVAL;
1768
1769	desc = irq_to_desc(irq);
1770	if (!desc)
1771		return -EINVAL;
1772
1773	if (!irq_settings_can_request(desc) ||
1774	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1775		return -EINVAL;
1776
1777	if (!handler) {
1778		if (!thread_fn)
1779			return -EINVAL;
1780		handler = irq_default_primary_handler;
1781	}
1782
1783	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1784	if (!action)
1785		return -ENOMEM;
1786
1787	action->handler = handler;
1788	action->thread_fn = thread_fn;
1789	action->flags = irqflags;
1790	action->name = devname;
1791	action->dev_id = dev_id;
1792
1793	retval = irq_chip_pm_get(&desc->irq_data);
1794	if (retval < 0) {
1795		kfree(action);
1796		return retval;
1797	}
1798
1799	retval = __setup_irq(irq, desc, action);
1800
1801	if (retval) {
1802		irq_chip_pm_put(&desc->irq_data);
1803		kfree(action->secondary);
1804		kfree(action);
1805	}
1806
1807#ifdef CONFIG_DEBUG_SHIRQ_FIXME
1808	if (!retval && (irqflags & IRQF_SHARED)) {
1809		/*
1810		 * It's a shared IRQ -- the driver ought to be prepared for it
1811		 * to happen immediately, so let's make sure....
1812		 * We disable the irq to make sure that a 'real' IRQ doesn't
1813		 * run in parallel with our fake.
1814		 */
1815		unsigned long flags;
1816
1817		disable_irq(irq);
1818		local_irq_save(flags);
1819
1820		handler(irq, dev_id);
1821
1822		local_irq_restore(flags);
1823		enable_irq(irq);
1824	}
1825#endif
1826	return retval;
1827}
1828EXPORT_SYMBOL(request_threaded_irq);
1829
1830/**
1831 *	request_any_context_irq - allocate an interrupt line
1832 *	@irq: Interrupt line to allocate
1833 *	@handler: Function to be called when the IRQ occurs.
1834 *		  Threaded handler for threaded interrupts.
1835 *	@flags: Interrupt type flags
1836 *	@name: An ascii name for the claiming device
1837 *	@dev_id: A cookie passed back to the handler function
1838 *
1839 *	This call allocates interrupt resources and enables the
1840 *	interrupt line and IRQ handling. It selects either a
1841 *	hardirq or threaded handling method depending on the
1842 *	context.
1843 *
1844 *	On failure, it returns a negative value. On success,
1845 *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1846 */
1847int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1848			    unsigned long flags, const char *name, void *dev_id)
1849{
1850	struct irq_desc *desc;
1851	int ret;
1852
1853	if (irq == IRQ_NOTCONNECTED)
1854		return -ENOTCONN;
1855
1856	desc = irq_to_desc(irq);
1857	if (!desc)
1858		return -EINVAL;
1859
1860	if (irq_settings_is_nested_thread(desc)) {
1861		ret = request_threaded_irq(irq, NULL, handler,
1862					   flags, name, dev_id);
1863		return !ret ? IRQC_IS_NESTED : ret;
1864	}
1865
1866	ret = request_irq(irq, handler, flags, name, dev_id);
1867	return !ret ? IRQC_IS_HARDIRQ : ret;
1868}
1869EXPORT_SYMBOL_GPL(request_any_context_irq);
1870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1871void enable_percpu_irq(unsigned int irq, unsigned int type)
1872{
1873	unsigned int cpu = smp_processor_id();
1874	unsigned long flags;
1875	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1876
1877	if (!desc)
1878		return;
1879
1880	/*
1881	 * If the trigger type is not specified by the caller, then
1882	 * use the default for this interrupt.
1883	 */
1884	type &= IRQ_TYPE_SENSE_MASK;
1885	if (type == IRQ_TYPE_NONE)
1886		type = irqd_get_trigger_type(&desc->irq_data);
1887
1888	if (type != IRQ_TYPE_NONE) {
1889		int ret;
1890
1891		ret = __irq_set_trigger(desc, type);
1892
1893		if (ret) {
1894			WARN(1, "failed to set type for IRQ%d\n", irq);
1895			goto out;
1896		}
1897	}
1898
1899	irq_percpu_enable(desc, cpu);
1900out:
1901	irq_put_desc_unlock(desc, flags);
1902}
1903EXPORT_SYMBOL_GPL(enable_percpu_irq);
1904
 
 
 
 
 
1905/**
1906 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1907 * @irq:	Linux irq number to check for
1908 *
1909 * Must be called from a non migratable context. Returns the enable
1910 * state of a per cpu interrupt on the current cpu.
1911 */
1912bool irq_percpu_is_enabled(unsigned int irq)
1913{
1914	unsigned int cpu = smp_processor_id();
1915	struct irq_desc *desc;
1916	unsigned long flags;
1917	bool is_enabled;
1918
1919	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1920	if (!desc)
1921		return false;
1922
1923	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1924	irq_put_desc_unlock(desc, flags);
1925
1926	return is_enabled;
1927}
1928EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1929
1930void disable_percpu_irq(unsigned int irq)
1931{
1932	unsigned int cpu = smp_processor_id();
1933	unsigned long flags;
1934	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1935
1936	if (!desc)
1937		return;
1938
1939	irq_percpu_disable(desc, cpu);
1940	irq_put_desc_unlock(desc, flags);
1941}
1942EXPORT_SYMBOL_GPL(disable_percpu_irq);
1943
 
 
 
 
 
1944/*
1945 * Internal function to unregister a percpu irqaction.
1946 */
1947static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1948{
1949	struct irq_desc *desc = irq_to_desc(irq);
1950	struct irqaction *action;
1951	unsigned long flags;
1952
1953	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1954
1955	if (!desc)
1956		return NULL;
1957
1958	raw_spin_lock_irqsave(&desc->lock, flags);
1959
1960	action = desc->action;
1961	if (!action || action->percpu_dev_id != dev_id) {
1962		WARN(1, "Trying to free already-free IRQ %d\n", irq);
1963		goto bad;
1964	}
1965
1966	if (!cpumask_empty(desc->percpu_enabled)) {
1967		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1968		     irq, cpumask_first(desc->percpu_enabled));
1969		goto bad;
1970	}
1971
1972	/* Found it - now remove it from the list of entries: */
1973	desc->action = NULL;
1974
 
 
1975	raw_spin_unlock_irqrestore(&desc->lock, flags);
1976
1977	unregister_handler_proc(irq, action);
1978
1979	irq_chip_pm_put(&desc->irq_data);
1980	module_put(desc->owner);
1981	return action;
1982
1983bad:
1984	raw_spin_unlock_irqrestore(&desc->lock, flags);
1985	return NULL;
1986}
1987
1988/**
1989 *	remove_percpu_irq - free a per-cpu interrupt
1990 *	@irq: Interrupt line to free
1991 *	@act: irqaction for the interrupt
1992 *
1993 * Used to remove interrupts statically setup by the early boot process.
1994 */
1995void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1996{
1997	struct irq_desc *desc = irq_to_desc(irq);
1998
1999	if (desc && irq_settings_is_per_cpu_devid(desc))
2000	    __free_percpu_irq(irq, act->percpu_dev_id);
2001}
2002
2003/**
2004 *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2005 *	@irq: Interrupt line to free
2006 *	@dev_id: Device identity to free
2007 *
2008 *	Remove a percpu interrupt handler. The handler is removed, but
2009 *	the interrupt line is not disabled. This must be done on each
2010 *	CPU before calling this function. The function does not return
2011 *	until any executing interrupts for this IRQ have completed.
2012 *
2013 *	This function must not be called from interrupt context.
2014 */
2015void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2016{
2017	struct irq_desc *desc = irq_to_desc(irq);
2018
2019	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2020		return;
2021
2022	chip_bus_lock(desc);
2023	kfree(__free_percpu_irq(irq, dev_id));
2024	chip_bus_sync_unlock(desc);
2025}
2026EXPORT_SYMBOL_GPL(free_percpu_irq);
2027
 
 
 
 
 
 
 
 
 
 
 
 
 
2028/**
2029 *	setup_percpu_irq - setup a per-cpu interrupt
2030 *	@irq: Interrupt line to setup
2031 *	@act: irqaction for the interrupt
2032 *
2033 * Used to statically setup per-cpu interrupts in the early boot process.
2034 */
2035int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2036{
2037	struct irq_desc *desc = irq_to_desc(irq);
2038	int retval;
2039
2040	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2041		return -EINVAL;
2042
2043	retval = irq_chip_pm_get(&desc->irq_data);
2044	if (retval < 0)
2045		return retval;
2046
2047	retval = __setup_irq(irq, desc, act);
2048
2049	if (retval)
2050		irq_chip_pm_put(&desc->irq_data);
2051
2052	return retval;
2053}
2054
2055/**
2056 *	__request_percpu_irq - allocate a percpu interrupt line
2057 *	@irq: Interrupt line to allocate
2058 *	@handler: Function to be called when the IRQ occurs.
2059 *	@flags: Interrupt type flags (IRQF_TIMER only)
2060 *	@devname: An ascii name for the claiming device
2061 *	@dev_id: A percpu cookie passed back to the handler function
2062 *
2063 *	This call allocates interrupt resources and enables the
2064 *	interrupt on the local CPU. If the interrupt is supposed to be
2065 *	enabled on other CPUs, it has to be done on each CPU using
2066 *	enable_percpu_irq().
2067 *
2068 *	Dev_id must be globally unique. It is a per-cpu variable, and
2069 *	the handler gets called with the interrupted CPU's instance of
2070 *	that variable.
2071 */
2072int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2073			 unsigned long flags, const char *devname,
2074			 void __percpu *dev_id)
2075{
2076	struct irqaction *action;
2077	struct irq_desc *desc;
2078	int retval;
2079
2080	if (!dev_id)
2081		return -EINVAL;
2082
2083	desc = irq_to_desc(irq);
2084	if (!desc || !irq_settings_can_request(desc) ||
2085	    !irq_settings_is_per_cpu_devid(desc))
2086		return -EINVAL;
2087
2088	if (flags && flags != IRQF_TIMER)
2089		return -EINVAL;
2090
2091	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2092	if (!action)
2093		return -ENOMEM;
2094
2095	action->handler = handler;
2096	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2097	action->name = devname;
2098	action->percpu_dev_id = dev_id;
2099
2100	retval = irq_chip_pm_get(&desc->irq_data);
2101	if (retval < 0) {
2102		kfree(action);
2103		return retval;
2104	}
2105
2106	retval = __setup_irq(irq, desc, action);
2107
2108	if (retval) {
2109		irq_chip_pm_put(&desc->irq_data);
2110		kfree(action);
2111	}
2112
2113	return retval;
2114}
2115EXPORT_SYMBOL_GPL(__request_percpu_irq);
2116
2117/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118 *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2119 *	@irq: Interrupt line that is forwarded to a VM
2120 *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2121 *	@state: a pointer to a boolean where the state is to be storeed
2122 *
2123 *	This call snapshots the internal irqchip state of an
2124 *	interrupt, returning into @state the bit corresponding to
2125 *	stage @which
2126 *
2127 *	This function should be called with preemption disabled if the
2128 *	interrupt controller has per-cpu registers.
2129 */
2130int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2131			  bool *state)
2132{
2133	struct irq_desc *desc;
2134	struct irq_data *data;
2135	struct irq_chip *chip;
2136	unsigned long flags;
2137	int err = -EINVAL;
2138
2139	desc = irq_get_desc_buslock(irq, &flags, 0);
2140	if (!desc)
2141		return err;
2142
2143	data = irq_desc_get_irq_data(desc);
2144
2145	do {
2146		chip = irq_data_get_irq_chip(data);
2147		if (chip->irq_get_irqchip_state)
2148			break;
2149#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2150		data = data->parent_data;
2151#else
2152		data = NULL;
2153#endif
2154	} while (data);
2155
2156	if (data)
2157		err = chip->irq_get_irqchip_state(data, which, state);
2158
2159	irq_put_desc_busunlock(desc, flags);
2160	return err;
2161}
2162EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2163
2164/**
2165 *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2166 *	@irq: Interrupt line that is forwarded to a VM
2167 *	@which: State to be restored (one of IRQCHIP_STATE_*)
2168 *	@val: Value corresponding to @which
2169 *
2170 *	This call sets the internal irqchip state of an interrupt,
2171 *	depending on the value of @which.
2172 *
2173 *	This function should be called with preemption disabled if the
2174 *	interrupt controller has per-cpu registers.
2175 */
2176int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2177			  bool val)
2178{
2179	struct irq_desc *desc;
2180	struct irq_data *data;
2181	struct irq_chip *chip;
2182	unsigned long flags;
2183	int err = -EINVAL;
2184
2185	desc = irq_get_desc_buslock(irq, &flags, 0);
2186	if (!desc)
2187		return err;
2188
2189	data = irq_desc_get_irq_data(desc);
2190
2191	do {
2192		chip = irq_data_get_irq_chip(data);
2193		if (chip->irq_set_irqchip_state)
2194			break;
2195#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2196		data = data->parent_data;
2197#else
2198		data = NULL;
2199#endif
2200	} while (data);
2201
2202	if (data)
2203		err = chip->irq_set_irqchip_state(data, which, val);
2204
2205	irq_put_desc_busunlock(desc, flags);
2206	return err;
2207}
2208EXPORT_SYMBOL_GPL(irq_set_irqchip_state);