Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is part of STM32 ADC driver
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 */
8
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
13#include <linux/iio/iio.h>
14#include <linux/iio/buffer.h>
15#include <linux/iio/timer/stm32-lptim-trigger.h>
16#include <linux/iio/timer/stm32-timer-trigger.h>
17#include <linux/iio/trigger.h>
18#include <linux/iio/trigger_consumer.h>
19#include <linux/iio/triggered_buffer.h>
20#include <linux/interrupt.h>
21#include <linux/io.h>
22#include <linux/iopoll.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/of.h>
27#include <linux/of_device.h>
28
29#include "stm32-adc-core.h"
30
31/* Number of linear calibration shadow registers / LINCALRDYW control bits */
32#define STM32H7_LINCALFACT_NUM 6
33
34/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
35#define STM32H7_BOOST_CLKRATE 20000000UL
36
37#define STM32_ADC_CH_MAX 20 /* max number of channels */
38#define STM32_ADC_CH_SZ 10 /* max channel name size */
39#define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
40#define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
41#define STM32_ADC_TIMEOUT_US 100000
42#define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
43#define STM32_ADC_HW_STOP_DELAY_MS 100
44
45#define STM32_DMA_BUFFER_SIZE PAGE_SIZE
46
47/* External trigger enable */
48enum stm32_adc_exten {
49 STM32_EXTEN_SWTRIG,
50 STM32_EXTEN_HWTRIG_RISING_EDGE,
51 STM32_EXTEN_HWTRIG_FALLING_EDGE,
52 STM32_EXTEN_HWTRIG_BOTH_EDGES,
53};
54
55/* extsel - trigger mux selection value */
56enum stm32_adc_extsel {
57 STM32_EXT0,
58 STM32_EXT1,
59 STM32_EXT2,
60 STM32_EXT3,
61 STM32_EXT4,
62 STM32_EXT5,
63 STM32_EXT6,
64 STM32_EXT7,
65 STM32_EXT8,
66 STM32_EXT9,
67 STM32_EXT10,
68 STM32_EXT11,
69 STM32_EXT12,
70 STM32_EXT13,
71 STM32_EXT14,
72 STM32_EXT15,
73 STM32_EXT16,
74 STM32_EXT17,
75 STM32_EXT18,
76 STM32_EXT19,
77 STM32_EXT20,
78};
79
80/**
81 * struct stm32_adc_trig_info - ADC trigger info
82 * @name: name of the trigger, corresponding to its source
83 * @extsel: trigger selection
84 */
85struct stm32_adc_trig_info {
86 const char *name;
87 enum stm32_adc_extsel extsel;
88};
89
90/**
91 * struct stm32_adc_calib - optional adc calibration data
92 * @calfact_s: Calibration offset for single ended channels
93 * @calfact_d: Calibration offset in differential
94 * @lincalfact: Linearity calibration factor
95 * @calibrated: Indicates calibration status
96 */
97struct stm32_adc_calib {
98 u32 calfact_s;
99 u32 calfact_d;
100 u32 lincalfact[STM32H7_LINCALFACT_NUM];
101 bool calibrated;
102};
103
104/**
105 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
106 * @reg: register offset
107 * @mask: bitfield mask
108 * @shift: left shift
109 */
110struct stm32_adc_regs {
111 int reg;
112 int mask;
113 int shift;
114};
115
116/**
117 * stm32_adc_regspec - stm32 registers definition, compatible dependent data
118 * @dr: data register offset
119 * @ier_eoc: interrupt enable register & eocie bitfield
120 * @isr_eoc: interrupt status register & eoc bitfield
121 * @sqr: reference to sequence registers array
122 * @exten: trigger control register & bitfield
123 * @extsel: trigger selection register & bitfield
124 * @res: resolution selection register & bitfield
125 * @smpr: smpr1 & smpr2 registers offset array
126 * @smp_bits: smpr1 & smpr2 index and bitfields
127 */
128struct stm32_adc_regspec {
129 const u32 dr;
130 const struct stm32_adc_regs ier_eoc;
131 const struct stm32_adc_regs isr_eoc;
132 const struct stm32_adc_regs *sqr;
133 const struct stm32_adc_regs exten;
134 const struct stm32_adc_regs extsel;
135 const struct stm32_adc_regs res;
136 const u32 smpr[2];
137 const struct stm32_adc_regs *smp_bits;
138};
139
140struct stm32_adc;
141
142/**
143 * stm32_adc_cfg - stm32 compatible configuration data
144 * @regs: registers descriptions
145 * @adc_info: per instance input channels definitions
146 * @trigs: external trigger sources
147 * @clk_required: clock is required
148 * @has_vregready: vregready status flag presence
149 * @prepare: optional prepare routine (power-up, enable)
150 * @start_conv: routine to start conversions
151 * @stop_conv: routine to stop conversions
152 * @unprepare: optional unprepare routine (disable, power-down)
153 * @smp_cycles: programmable sampling time (ADC clock cycles)
154 */
155struct stm32_adc_cfg {
156 const struct stm32_adc_regspec *regs;
157 const struct stm32_adc_info *adc_info;
158 struct stm32_adc_trig_info *trigs;
159 bool clk_required;
160 bool has_vregready;
161 int (*prepare)(struct stm32_adc *);
162 void (*start_conv)(struct stm32_adc *, bool dma);
163 void (*stop_conv)(struct stm32_adc *);
164 void (*unprepare)(struct stm32_adc *);
165 const unsigned int *smp_cycles;
166};
167
168/**
169 * struct stm32_adc - private data of each ADC IIO instance
170 * @common: reference to ADC block common data
171 * @offset: ADC instance register offset in ADC block
172 * @cfg: compatible configuration data
173 * @completion: end of single conversion completion
174 * @buffer: data buffer
175 * @clk: clock for this adc instance
176 * @irq: interrupt for this adc instance
177 * @lock: spinlock
178 * @bufi: data buffer index
179 * @num_conv: expected number of scan conversions
180 * @res: data resolution (e.g. RES bitfield value)
181 * @trigger_polarity: external trigger polarity (e.g. exten)
182 * @dma_chan: dma channel
183 * @rx_buf: dma rx buffer cpu address
184 * @rx_dma_buf: dma rx buffer bus address
185 * @rx_buf_sz: dma rx buffer size
186 * @difsel bitmask to set single-ended/differential channel
187 * @pcsel bitmask to preselect channels on some devices
188 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
189 * @cal: optional calibration data on some devices
190 * @chan_name: channel name array
191 */
192struct stm32_adc {
193 struct stm32_adc_common *common;
194 u32 offset;
195 const struct stm32_adc_cfg *cfg;
196 struct completion completion;
197 u16 buffer[STM32_ADC_MAX_SQ];
198 struct clk *clk;
199 int irq;
200 spinlock_t lock; /* interrupt lock */
201 unsigned int bufi;
202 unsigned int num_conv;
203 u32 res;
204 u32 trigger_polarity;
205 struct dma_chan *dma_chan;
206 u8 *rx_buf;
207 dma_addr_t rx_dma_buf;
208 unsigned int rx_buf_sz;
209 u32 difsel;
210 u32 pcsel;
211 u32 smpr_val[2];
212 struct stm32_adc_calib cal;
213 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
214};
215
216struct stm32_adc_diff_channel {
217 u32 vinp;
218 u32 vinn;
219};
220
221/**
222 * struct stm32_adc_info - stm32 ADC, per instance config data
223 * @max_channels: Number of channels
224 * @resolutions: available resolutions
225 * @num_res: number of available resolutions
226 */
227struct stm32_adc_info {
228 int max_channels;
229 const unsigned int *resolutions;
230 const unsigned int num_res;
231};
232
233static const unsigned int stm32f4_adc_resolutions[] = {
234 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
235 12, 10, 8, 6,
236};
237
238/* stm32f4 can have up to 16 channels */
239static const struct stm32_adc_info stm32f4_adc_info = {
240 .max_channels = 16,
241 .resolutions = stm32f4_adc_resolutions,
242 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
243};
244
245static const unsigned int stm32h7_adc_resolutions[] = {
246 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
247 16, 14, 12, 10, 8,
248};
249
250/* stm32h7 can have up to 20 channels */
251static const struct stm32_adc_info stm32h7_adc_info = {
252 .max_channels = STM32_ADC_CH_MAX,
253 .resolutions = stm32h7_adc_resolutions,
254 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
255};
256
257/**
258 * stm32f4_sq - describe regular sequence registers
259 * - L: sequence len (register & bit field)
260 * - SQ1..SQ16: sequence entries (register & bit field)
261 */
262static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
263 /* L: len bit field description to be kept as first element */
264 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
265 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
266 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
267 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
268 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
269 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
270 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
271 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
272 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
273 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
274 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
275 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
276 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
277 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
278 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
279 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
280 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
281 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
282};
283
284/* STM32F4 external trigger sources for all instances */
285static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
286 { TIM1_CH1, STM32_EXT0 },
287 { TIM1_CH2, STM32_EXT1 },
288 { TIM1_CH3, STM32_EXT2 },
289 { TIM2_CH2, STM32_EXT3 },
290 { TIM2_CH3, STM32_EXT4 },
291 { TIM2_CH4, STM32_EXT5 },
292 { TIM2_TRGO, STM32_EXT6 },
293 { TIM3_CH1, STM32_EXT7 },
294 { TIM3_TRGO, STM32_EXT8 },
295 { TIM4_CH4, STM32_EXT9 },
296 { TIM5_CH1, STM32_EXT10 },
297 { TIM5_CH2, STM32_EXT11 },
298 { TIM5_CH3, STM32_EXT12 },
299 { TIM8_CH1, STM32_EXT13 },
300 { TIM8_TRGO, STM32_EXT14 },
301 {}, /* sentinel */
302};
303
304/**
305 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
306 * Sorted so it can be indexed by channel number.
307 */
308static const struct stm32_adc_regs stm32f4_smp_bits[] = {
309 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
310 { 1, GENMASK(2, 0), 0 },
311 { 1, GENMASK(5, 3), 3 },
312 { 1, GENMASK(8, 6), 6 },
313 { 1, GENMASK(11, 9), 9 },
314 { 1, GENMASK(14, 12), 12 },
315 { 1, GENMASK(17, 15), 15 },
316 { 1, GENMASK(20, 18), 18 },
317 { 1, GENMASK(23, 21), 21 },
318 { 1, GENMASK(26, 24), 24 },
319 { 1, GENMASK(29, 27), 27 },
320 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
321 { 0, GENMASK(2, 0), 0 },
322 { 0, GENMASK(5, 3), 3 },
323 { 0, GENMASK(8, 6), 6 },
324 { 0, GENMASK(11, 9), 9 },
325 { 0, GENMASK(14, 12), 12 },
326 { 0, GENMASK(17, 15), 15 },
327 { 0, GENMASK(20, 18), 18 },
328 { 0, GENMASK(23, 21), 21 },
329 { 0, GENMASK(26, 24), 24 },
330};
331
332/* STM32F4 programmable sampling time (ADC clock cycles) */
333static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
334 3, 15, 28, 56, 84, 112, 144, 480,
335};
336
337static const struct stm32_adc_regspec stm32f4_adc_regspec = {
338 .dr = STM32F4_ADC_DR,
339 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
340 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
341 .sqr = stm32f4_sq,
342 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
343 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
344 STM32F4_EXTSEL_SHIFT },
345 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
346 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
347 .smp_bits = stm32f4_smp_bits,
348};
349
350static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
351 /* L: len bit field description to be kept as first element */
352 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
353 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
354 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
355 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
356 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
357 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
358 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
359 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
360 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
361 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
362 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
363 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
364 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
365 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
366 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
367 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
368 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
369 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
370};
371
372/* STM32H7 external trigger sources for all instances */
373static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
374 { TIM1_CH1, STM32_EXT0 },
375 { TIM1_CH2, STM32_EXT1 },
376 { TIM1_CH3, STM32_EXT2 },
377 { TIM2_CH2, STM32_EXT3 },
378 { TIM3_TRGO, STM32_EXT4 },
379 { TIM4_CH4, STM32_EXT5 },
380 { TIM8_TRGO, STM32_EXT7 },
381 { TIM8_TRGO2, STM32_EXT8 },
382 { TIM1_TRGO, STM32_EXT9 },
383 { TIM1_TRGO2, STM32_EXT10 },
384 { TIM2_TRGO, STM32_EXT11 },
385 { TIM4_TRGO, STM32_EXT12 },
386 { TIM6_TRGO, STM32_EXT13 },
387 { TIM15_TRGO, STM32_EXT14 },
388 { TIM3_CH4, STM32_EXT15 },
389 { LPTIM1_OUT, STM32_EXT18 },
390 { LPTIM2_OUT, STM32_EXT19 },
391 { LPTIM3_OUT, STM32_EXT20 },
392 {},
393};
394
395/**
396 * stm32h7_smp_bits - describe sampling time register index & bit fields
397 * Sorted so it can be indexed by channel number.
398 */
399static const struct stm32_adc_regs stm32h7_smp_bits[] = {
400 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
401 { 0, GENMASK(2, 0), 0 },
402 { 0, GENMASK(5, 3), 3 },
403 { 0, GENMASK(8, 6), 6 },
404 { 0, GENMASK(11, 9), 9 },
405 { 0, GENMASK(14, 12), 12 },
406 { 0, GENMASK(17, 15), 15 },
407 { 0, GENMASK(20, 18), 18 },
408 { 0, GENMASK(23, 21), 21 },
409 { 0, GENMASK(26, 24), 24 },
410 { 0, GENMASK(29, 27), 27 },
411 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
412 { 1, GENMASK(2, 0), 0 },
413 { 1, GENMASK(5, 3), 3 },
414 { 1, GENMASK(8, 6), 6 },
415 { 1, GENMASK(11, 9), 9 },
416 { 1, GENMASK(14, 12), 12 },
417 { 1, GENMASK(17, 15), 15 },
418 { 1, GENMASK(20, 18), 18 },
419 { 1, GENMASK(23, 21), 21 },
420 { 1, GENMASK(26, 24), 24 },
421 { 1, GENMASK(29, 27), 27 },
422};
423
424/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
425static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
426 1, 2, 8, 16, 32, 64, 387, 810,
427};
428
429static const struct stm32_adc_regspec stm32h7_adc_regspec = {
430 .dr = STM32H7_ADC_DR,
431 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
432 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
433 .sqr = stm32h7_sq,
434 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
435 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
436 STM32H7_EXTSEL_SHIFT },
437 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
438 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
439 .smp_bits = stm32h7_smp_bits,
440};
441
442/**
443 * STM32 ADC registers access routines
444 * @adc: stm32 adc instance
445 * @reg: reg offset in adc instance
446 *
447 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
448 * for adc1, adc2 and adc3.
449 */
450static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
451{
452 return readl_relaxed(adc->common->base + adc->offset + reg);
453}
454
455#define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
456
457#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
458 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
459 cond, sleep_us, timeout_us)
460
461static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
462{
463 return readw_relaxed(adc->common->base + adc->offset + reg);
464}
465
466static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
467{
468 writel_relaxed(val, adc->common->base + adc->offset + reg);
469}
470
471static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
472{
473 unsigned long flags;
474
475 spin_lock_irqsave(&adc->lock, flags);
476 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
477 spin_unlock_irqrestore(&adc->lock, flags);
478}
479
480static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
481{
482 unsigned long flags;
483
484 spin_lock_irqsave(&adc->lock, flags);
485 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
486 spin_unlock_irqrestore(&adc->lock, flags);
487}
488
489/**
490 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
491 * @adc: stm32 adc instance
492 */
493static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
494{
495 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
496 adc->cfg->regs->ier_eoc.mask);
497};
498
499/**
500 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
501 * @adc: stm32 adc instance
502 */
503static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
504{
505 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
506 adc->cfg->regs->ier_eoc.mask);
507}
508
509static void stm32_adc_set_res(struct stm32_adc *adc)
510{
511 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
512 u32 val;
513
514 val = stm32_adc_readl(adc, res->reg);
515 val = (val & ~res->mask) | (adc->res << res->shift);
516 stm32_adc_writel(adc, res->reg, val);
517}
518
519static int stm32_adc_hw_stop(struct device *dev)
520{
521 struct stm32_adc *adc = dev_get_drvdata(dev);
522
523 if (adc->cfg->unprepare)
524 adc->cfg->unprepare(adc);
525
526 if (adc->clk)
527 clk_disable_unprepare(adc->clk);
528
529 return 0;
530}
531
532static int stm32_adc_hw_start(struct device *dev)
533{
534 struct stm32_adc *adc = dev_get_drvdata(dev);
535 int ret;
536
537 if (adc->clk) {
538 ret = clk_prepare_enable(adc->clk);
539 if (ret)
540 return ret;
541 }
542
543 stm32_adc_set_res(adc);
544
545 if (adc->cfg->prepare) {
546 ret = adc->cfg->prepare(adc);
547 if (ret)
548 goto err_clk_dis;
549 }
550
551 return 0;
552
553err_clk_dis:
554 if (adc->clk)
555 clk_disable_unprepare(adc->clk);
556
557 return ret;
558}
559
560/**
561 * stm32f4_adc_start_conv() - Start conversions for regular channels.
562 * @adc: stm32 adc instance
563 * @dma: use dma to transfer conversion result
564 *
565 * Start conversions for regular channels.
566 * Also take care of normal or DMA mode. Circular DMA may be used for regular
567 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
568 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
569 */
570static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
571{
572 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
573
574 if (dma)
575 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
576 STM32F4_DMA | STM32F4_DDS);
577
578 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
579
580 /* Wait for Power-up time (tSTAB from datasheet) */
581 usleep_range(2, 3);
582
583 /* Software start ? (e.g. trigger detection disabled ?) */
584 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
585 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
586}
587
588static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
589{
590 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
591 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
592
593 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
594 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
595 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
596}
597
598static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
599{
600 enum stm32h7_adc_dmngt dmngt;
601 unsigned long flags;
602 u32 val;
603
604 if (dma)
605 dmngt = STM32H7_DMNGT_DMA_CIRC;
606 else
607 dmngt = STM32H7_DMNGT_DR_ONLY;
608
609 spin_lock_irqsave(&adc->lock, flags);
610 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
611 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
612 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
613 spin_unlock_irqrestore(&adc->lock, flags);
614
615 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
616}
617
618static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
619{
620 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
621 int ret;
622 u32 val;
623
624 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
625
626 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
627 !(val & (STM32H7_ADSTART)),
628 100, STM32_ADC_TIMEOUT_US);
629 if (ret)
630 dev_warn(&indio_dev->dev, "stop failed\n");
631
632 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
633}
634
635static int stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
636{
637 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
638 int ret;
639 u32 val;
640
641 /* Exit deep power down, then enable ADC voltage regulator */
642 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
643 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
644
645 if (adc->common->rate > STM32H7_BOOST_CLKRATE)
646 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
647
648 /* Wait for startup time */
649 if (!adc->cfg->has_vregready) {
650 usleep_range(10, 20);
651 return 0;
652 }
653
654 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
655 val & STM32MP1_VREGREADY, 100,
656 STM32_ADC_TIMEOUT_US);
657 if (ret) {
658 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
659 dev_err(&indio_dev->dev, "Failed to exit power down\n");
660 }
661
662 return ret;
663}
664
665static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
666{
667 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
668
669 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
670 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
671}
672
673static int stm32h7_adc_enable(struct stm32_adc *adc)
674{
675 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
676 int ret;
677 u32 val;
678
679 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
680
681 /* Poll for ADRDY to be set (after adc startup time) */
682 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
683 val & STM32H7_ADRDY,
684 100, STM32_ADC_TIMEOUT_US);
685 if (ret) {
686 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
687 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
688 } else {
689 /* Clear ADRDY by writing one */
690 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
691 }
692
693 return ret;
694}
695
696static void stm32h7_adc_disable(struct stm32_adc *adc)
697{
698 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
699 int ret;
700 u32 val;
701
702 /* Disable ADC and wait until it's effectively disabled */
703 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
704 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
705 !(val & STM32H7_ADEN), 100,
706 STM32_ADC_TIMEOUT_US);
707 if (ret)
708 dev_warn(&indio_dev->dev, "Failed to disable\n");
709}
710
711/**
712 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
713 * @adc: stm32 adc instance
714 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
715 */
716static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
717{
718 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
719 int i, ret;
720 u32 lincalrdyw_mask, val;
721
722 /* Read linearity calibration */
723 lincalrdyw_mask = STM32H7_LINCALRDYW6;
724 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
725 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
726 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
727
728 /* Poll: wait calib data to be ready in CALFACT2 register */
729 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
730 !(val & lincalrdyw_mask),
731 100, STM32_ADC_TIMEOUT_US);
732 if (ret) {
733 dev_err(&indio_dev->dev, "Failed to read calfact\n");
734 return ret;
735 }
736
737 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
738 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
739 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
740
741 lincalrdyw_mask >>= 1;
742 }
743
744 /* Read offset calibration */
745 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
746 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
747 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
748 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
749 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
750 adc->cal.calibrated = true;
751
752 return 0;
753}
754
755/**
756 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
757 * @adc: stm32 adc instance
758 * Note: ADC must be enabled, with no on-going conversions.
759 */
760static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
761{
762 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
763 int i, ret;
764 u32 lincalrdyw_mask, val;
765
766 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
767 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
768 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
769
770 lincalrdyw_mask = STM32H7_LINCALRDYW6;
771 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
772 /*
773 * Write saved calibration data to shadow registers:
774 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
775 * data write. Then poll to wait for complete transfer.
776 */
777 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
778 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
779 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
780 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
781 val & lincalrdyw_mask,
782 100, STM32_ADC_TIMEOUT_US);
783 if (ret) {
784 dev_err(&indio_dev->dev, "Failed to write calfact\n");
785 return ret;
786 }
787
788 /*
789 * Read back calibration data, has two effects:
790 * - It ensures bits LINCALRDYW[6..1] are kept cleared
791 * for next time calibration needs to be restored.
792 * - BTW, bit clear triggers a read, then check data has been
793 * correctly written.
794 */
795 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
796 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
797 !(val & lincalrdyw_mask),
798 100, STM32_ADC_TIMEOUT_US);
799 if (ret) {
800 dev_err(&indio_dev->dev, "Failed to read calfact\n");
801 return ret;
802 }
803 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
804 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
805 dev_err(&indio_dev->dev, "calfact not consistent\n");
806 return -EIO;
807 }
808
809 lincalrdyw_mask >>= 1;
810 }
811
812 return 0;
813}
814
815/**
816 * Fixed timeout value for ADC calibration.
817 * worst cases:
818 * - low clock frequency
819 * - maximum prescalers
820 * Calibration requires:
821 * - 131,072 ADC clock cycle for the linear calibration
822 * - 20 ADC clock cycle for the offset calibration
823 *
824 * Set to 100ms for now
825 */
826#define STM32H7_ADC_CALIB_TIMEOUT_US 100000
827
828/**
829 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
830 * @adc: stm32 adc instance
831 * Note: Must be called once ADC is out of power down.
832 */
833static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
834{
835 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
836 int ret;
837 u32 val;
838
839 if (adc->cal.calibrated)
840 return true;
841
842 /*
843 * Select calibration mode:
844 * - Offset calibration for single ended inputs
845 * - No linearity calibration (do it later, before reading it)
846 */
847 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
848 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
849
850 /* Start calibration, then wait for completion */
851 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
852 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
853 !(val & STM32H7_ADCAL), 100,
854 STM32H7_ADC_CALIB_TIMEOUT_US);
855 if (ret) {
856 dev_err(&indio_dev->dev, "calibration failed\n");
857 goto out;
858 }
859
860 /*
861 * Select calibration mode, then start calibration:
862 * - Offset calibration for differential input
863 * - Linearity calibration (needs to be done only once for single/diff)
864 * will run simultaneously with offset calibration.
865 */
866 stm32_adc_set_bits(adc, STM32H7_ADC_CR,
867 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
868 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
869 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
870 !(val & STM32H7_ADCAL), 100,
871 STM32H7_ADC_CALIB_TIMEOUT_US);
872 if (ret) {
873 dev_err(&indio_dev->dev, "calibration failed\n");
874 goto out;
875 }
876
877out:
878 stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
879 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
880
881 return ret;
882}
883
884/**
885 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
886 * @adc: stm32 adc instance
887 * Leave power down mode.
888 * Configure channels as single ended or differential before enabling ADC.
889 * Enable ADC.
890 * Restore calibration data.
891 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
892 * - Only one input is selected for single ended (e.g. 'vinp')
893 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
894 */
895static int stm32h7_adc_prepare(struct stm32_adc *adc)
896{
897 int calib, ret;
898
899 ret = stm32h7_adc_exit_pwr_down(adc);
900 if (ret)
901 return ret;
902
903 ret = stm32h7_adc_selfcalib(adc);
904 if (ret < 0)
905 goto pwr_dwn;
906 calib = ret;
907
908 stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
909
910 ret = stm32h7_adc_enable(adc);
911 if (ret)
912 goto pwr_dwn;
913
914 /* Either restore or read calibration result for future reference */
915 if (calib)
916 ret = stm32h7_adc_restore_selfcalib(adc);
917 else
918 ret = stm32h7_adc_read_selfcalib(adc);
919 if (ret)
920 goto disable;
921
922 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
923
924 return 0;
925
926disable:
927 stm32h7_adc_disable(adc);
928pwr_dwn:
929 stm32h7_adc_enter_pwr_down(adc);
930
931 return ret;
932}
933
934static void stm32h7_adc_unprepare(struct stm32_adc *adc)
935{
936 stm32h7_adc_disable(adc);
937 stm32h7_adc_enter_pwr_down(adc);
938}
939
940/**
941 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
942 * @indio_dev: IIO device
943 * @scan_mask: channels to be converted
944 *
945 * Conversion sequence :
946 * Apply sampling time settings for all channels.
947 * Configure ADC scan sequence based on selected channels in scan_mask.
948 * Add channels to SQR registers, from scan_mask LSB to MSB, then
949 * program sequence len.
950 */
951static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
952 const unsigned long *scan_mask)
953{
954 struct stm32_adc *adc = iio_priv(indio_dev);
955 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
956 const struct iio_chan_spec *chan;
957 u32 val, bit;
958 int i = 0;
959
960 /* Apply sampling time settings */
961 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
962 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
963
964 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
965 chan = indio_dev->channels + bit;
966 /*
967 * Assign one channel per SQ entry in regular
968 * sequence, starting with SQ1.
969 */
970 i++;
971 if (i > STM32_ADC_MAX_SQ)
972 return -EINVAL;
973
974 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
975 __func__, chan->channel, i);
976
977 val = stm32_adc_readl(adc, sqr[i].reg);
978 val &= ~sqr[i].mask;
979 val |= chan->channel << sqr[i].shift;
980 stm32_adc_writel(adc, sqr[i].reg, val);
981 }
982
983 if (!i)
984 return -EINVAL;
985
986 /* Sequence len */
987 val = stm32_adc_readl(adc, sqr[0].reg);
988 val &= ~sqr[0].mask;
989 val |= ((i - 1) << sqr[0].shift);
990 stm32_adc_writel(adc, sqr[0].reg, val);
991
992 return 0;
993}
994
995/**
996 * stm32_adc_get_trig_extsel() - Get external trigger selection
997 * @trig: trigger
998 *
999 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1000 */
1001static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1002 struct iio_trigger *trig)
1003{
1004 struct stm32_adc *adc = iio_priv(indio_dev);
1005 int i;
1006
1007 /* lookup triggers registered by stm32 timer trigger driver */
1008 for (i = 0; adc->cfg->trigs[i].name; i++) {
1009 /**
1010 * Checking both stm32 timer trigger type and trig name
1011 * should be safe against arbitrary trigger names.
1012 */
1013 if ((is_stm32_timer_trigger(trig) ||
1014 is_stm32_lptim_trigger(trig)) &&
1015 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1016 return adc->cfg->trigs[i].extsel;
1017 }
1018 }
1019
1020 return -EINVAL;
1021}
1022
1023/**
1024 * stm32_adc_set_trig() - Set a regular trigger
1025 * @indio_dev: IIO device
1026 * @trig: IIO trigger
1027 *
1028 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1029 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1030 * - if HW trigger enabled, set source & polarity
1031 */
1032static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1033 struct iio_trigger *trig)
1034{
1035 struct stm32_adc *adc = iio_priv(indio_dev);
1036 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1037 unsigned long flags;
1038 int ret;
1039
1040 if (trig) {
1041 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1042 if (ret < 0)
1043 return ret;
1044
1045 /* set trigger source and polarity (default to rising edge) */
1046 extsel = ret;
1047 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1048 }
1049
1050 spin_lock_irqsave(&adc->lock, flags);
1051 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1052 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1053 val |= exten << adc->cfg->regs->exten.shift;
1054 val |= extsel << adc->cfg->regs->extsel.shift;
1055 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1056 spin_unlock_irqrestore(&adc->lock, flags);
1057
1058 return 0;
1059}
1060
1061static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1062 const struct iio_chan_spec *chan,
1063 unsigned int type)
1064{
1065 struct stm32_adc *adc = iio_priv(indio_dev);
1066
1067 adc->trigger_polarity = type;
1068
1069 return 0;
1070}
1071
1072static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1073 const struct iio_chan_spec *chan)
1074{
1075 struct stm32_adc *adc = iio_priv(indio_dev);
1076
1077 return adc->trigger_polarity;
1078}
1079
1080static const char * const stm32_trig_pol_items[] = {
1081 "rising-edge", "falling-edge", "both-edges",
1082};
1083
1084static const struct iio_enum stm32_adc_trig_pol = {
1085 .items = stm32_trig_pol_items,
1086 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1087 .get = stm32_adc_get_trig_pol,
1088 .set = stm32_adc_set_trig_pol,
1089};
1090
1091/**
1092 * stm32_adc_single_conv() - Performs a single conversion
1093 * @indio_dev: IIO device
1094 * @chan: IIO channel
1095 * @res: conversion result
1096 *
1097 * The function performs a single conversion on a given channel:
1098 * - Apply sampling time settings
1099 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1100 * - Use SW trigger
1101 * - Start conversion, then wait for interrupt completion.
1102 */
1103static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1104 const struct iio_chan_spec *chan,
1105 int *res)
1106{
1107 struct stm32_adc *adc = iio_priv(indio_dev);
1108 struct device *dev = indio_dev->dev.parent;
1109 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1110 long timeout;
1111 u32 val;
1112 int ret;
1113
1114 reinit_completion(&adc->completion);
1115
1116 adc->bufi = 0;
1117
1118 ret = pm_runtime_get_sync(dev);
1119 if (ret < 0) {
1120 pm_runtime_put_noidle(dev);
1121 return ret;
1122 }
1123
1124 /* Apply sampling time settings */
1125 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1126 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1127
1128 /* Program chan number in regular sequence (SQ1) */
1129 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1130 val &= ~regs->sqr[1].mask;
1131 val |= chan->channel << regs->sqr[1].shift;
1132 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1133
1134 /* Set regular sequence len (0 for 1 conversion) */
1135 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1136
1137 /* Trigger detection disabled (conversion can be launched in SW) */
1138 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1139
1140 stm32_adc_conv_irq_enable(adc);
1141
1142 adc->cfg->start_conv(adc, false);
1143
1144 timeout = wait_for_completion_interruptible_timeout(
1145 &adc->completion, STM32_ADC_TIMEOUT);
1146 if (timeout == 0) {
1147 ret = -ETIMEDOUT;
1148 } else if (timeout < 0) {
1149 ret = timeout;
1150 } else {
1151 *res = adc->buffer[0];
1152 ret = IIO_VAL_INT;
1153 }
1154
1155 adc->cfg->stop_conv(adc);
1156
1157 stm32_adc_conv_irq_disable(adc);
1158
1159 pm_runtime_mark_last_busy(dev);
1160 pm_runtime_put_autosuspend(dev);
1161
1162 return ret;
1163}
1164
1165static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1166 struct iio_chan_spec const *chan,
1167 int *val, int *val2, long mask)
1168{
1169 struct stm32_adc *adc = iio_priv(indio_dev);
1170 int ret;
1171
1172 switch (mask) {
1173 case IIO_CHAN_INFO_RAW:
1174 ret = iio_device_claim_direct_mode(indio_dev);
1175 if (ret)
1176 return ret;
1177 if (chan->type == IIO_VOLTAGE)
1178 ret = stm32_adc_single_conv(indio_dev, chan, val);
1179 else
1180 ret = -EINVAL;
1181 iio_device_release_direct_mode(indio_dev);
1182 return ret;
1183
1184 case IIO_CHAN_INFO_SCALE:
1185 if (chan->differential) {
1186 *val = adc->common->vref_mv * 2;
1187 *val2 = chan->scan_type.realbits;
1188 } else {
1189 *val = adc->common->vref_mv;
1190 *val2 = chan->scan_type.realbits;
1191 }
1192 return IIO_VAL_FRACTIONAL_LOG2;
1193
1194 case IIO_CHAN_INFO_OFFSET:
1195 if (chan->differential)
1196 /* ADC_full_scale / 2 */
1197 *val = -((1 << chan->scan_type.realbits) / 2);
1198 else
1199 *val = 0;
1200 return IIO_VAL_INT;
1201
1202 default:
1203 return -EINVAL;
1204 }
1205}
1206
1207static irqreturn_t stm32_adc_isr(int irq, void *data)
1208{
1209 struct stm32_adc *adc = data;
1210 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1211 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1212 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1213
1214 if (status & regs->isr_eoc.mask) {
1215 /* Reading DR also clears EOC status flag */
1216 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1217 if (iio_buffer_enabled(indio_dev)) {
1218 adc->bufi++;
1219 if (adc->bufi >= adc->num_conv) {
1220 stm32_adc_conv_irq_disable(adc);
1221 iio_trigger_poll(indio_dev->trig);
1222 }
1223 } else {
1224 complete(&adc->completion);
1225 }
1226 return IRQ_HANDLED;
1227 }
1228
1229 return IRQ_NONE;
1230}
1231
1232/**
1233 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1234 * @indio_dev: IIO device
1235 * @trig: new trigger
1236 *
1237 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1238 * driver, -EINVAL otherwise.
1239 */
1240static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1241 struct iio_trigger *trig)
1242{
1243 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1244}
1245
1246static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1247{
1248 struct stm32_adc *adc = iio_priv(indio_dev);
1249 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1250 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1251
1252 /*
1253 * dma cyclic transfers are used, buffer is split into two periods.
1254 * There should be :
1255 * - always one buffer (period) dma is working on
1256 * - one buffer (period) driver can push with iio_trigger_poll().
1257 */
1258 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1259 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1260
1261 return 0;
1262}
1263
1264static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1265 const unsigned long *scan_mask)
1266{
1267 struct stm32_adc *adc = iio_priv(indio_dev);
1268 struct device *dev = indio_dev->dev.parent;
1269 int ret;
1270
1271 ret = pm_runtime_get_sync(dev);
1272 if (ret < 0) {
1273 pm_runtime_put_noidle(dev);
1274 return ret;
1275 }
1276
1277 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1278
1279 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1280 pm_runtime_mark_last_busy(dev);
1281 pm_runtime_put_autosuspend(dev);
1282
1283 return ret;
1284}
1285
1286static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1287 const struct of_phandle_args *iiospec)
1288{
1289 int i;
1290
1291 for (i = 0; i < indio_dev->num_channels; i++)
1292 if (indio_dev->channels[i].channel == iiospec->args[0])
1293 return i;
1294
1295 return -EINVAL;
1296}
1297
1298/**
1299 * stm32_adc_debugfs_reg_access - read or write register value
1300 *
1301 * To read a value from an ADC register:
1302 * echo [ADC reg offset] > direct_reg_access
1303 * cat direct_reg_access
1304 *
1305 * To write a value in a ADC register:
1306 * echo [ADC_reg_offset] [value] > direct_reg_access
1307 */
1308static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1309 unsigned reg, unsigned writeval,
1310 unsigned *readval)
1311{
1312 struct stm32_adc *adc = iio_priv(indio_dev);
1313 struct device *dev = indio_dev->dev.parent;
1314 int ret;
1315
1316 ret = pm_runtime_get_sync(dev);
1317 if (ret < 0) {
1318 pm_runtime_put_noidle(dev);
1319 return ret;
1320 }
1321
1322 if (!readval)
1323 stm32_adc_writel(adc, reg, writeval);
1324 else
1325 *readval = stm32_adc_readl(adc, reg);
1326
1327 pm_runtime_mark_last_busy(dev);
1328 pm_runtime_put_autosuspend(dev);
1329
1330 return 0;
1331}
1332
1333static const struct iio_info stm32_adc_iio_info = {
1334 .read_raw = stm32_adc_read_raw,
1335 .validate_trigger = stm32_adc_validate_trigger,
1336 .hwfifo_set_watermark = stm32_adc_set_watermark,
1337 .update_scan_mode = stm32_adc_update_scan_mode,
1338 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1339 .of_xlate = stm32_adc_of_xlate,
1340};
1341
1342static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1343{
1344 struct dma_tx_state state;
1345 enum dma_status status;
1346
1347 status = dmaengine_tx_status(adc->dma_chan,
1348 adc->dma_chan->cookie,
1349 &state);
1350 if (status == DMA_IN_PROGRESS) {
1351 /* Residue is size in bytes from end of buffer */
1352 unsigned int i = adc->rx_buf_sz - state.residue;
1353 unsigned int size;
1354
1355 /* Return available bytes */
1356 if (i >= adc->bufi)
1357 size = i - adc->bufi;
1358 else
1359 size = adc->rx_buf_sz + i - adc->bufi;
1360
1361 return size;
1362 }
1363
1364 return 0;
1365}
1366
1367static void stm32_adc_dma_buffer_done(void *data)
1368{
1369 struct iio_dev *indio_dev = data;
1370
1371 iio_trigger_poll_chained(indio_dev->trig);
1372}
1373
1374static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1375{
1376 struct stm32_adc *adc = iio_priv(indio_dev);
1377 struct dma_async_tx_descriptor *desc;
1378 dma_cookie_t cookie;
1379 int ret;
1380
1381 if (!adc->dma_chan)
1382 return 0;
1383
1384 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1385 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1386
1387 /* Prepare a DMA cyclic transaction */
1388 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1389 adc->rx_dma_buf,
1390 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1391 DMA_DEV_TO_MEM,
1392 DMA_PREP_INTERRUPT);
1393 if (!desc)
1394 return -EBUSY;
1395
1396 desc->callback = stm32_adc_dma_buffer_done;
1397 desc->callback_param = indio_dev;
1398
1399 cookie = dmaengine_submit(desc);
1400 ret = dma_submit_error(cookie);
1401 if (ret) {
1402 dmaengine_terminate_sync(adc->dma_chan);
1403 return ret;
1404 }
1405
1406 /* Issue pending DMA requests */
1407 dma_async_issue_pending(adc->dma_chan);
1408
1409 return 0;
1410}
1411
1412static int __stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1413{
1414 struct stm32_adc *adc = iio_priv(indio_dev);
1415 struct device *dev = indio_dev->dev.parent;
1416 int ret;
1417
1418 ret = pm_runtime_get_sync(dev);
1419 if (ret < 0) {
1420 pm_runtime_put_noidle(dev);
1421 return ret;
1422 }
1423
1424 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1425 if (ret) {
1426 dev_err(&indio_dev->dev, "Can't set trigger\n");
1427 goto err_pm_put;
1428 }
1429
1430 ret = stm32_adc_dma_start(indio_dev);
1431 if (ret) {
1432 dev_err(&indio_dev->dev, "Can't start dma\n");
1433 goto err_clr_trig;
1434 }
1435
1436 /* Reset adc buffer index */
1437 adc->bufi = 0;
1438
1439 if (!adc->dma_chan)
1440 stm32_adc_conv_irq_enable(adc);
1441
1442 adc->cfg->start_conv(adc, !!adc->dma_chan);
1443
1444 return 0;
1445
1446err_clr_trig:
1447 stm32_adc_set_trig(indio_dev, NULL);
1448err_pm_put:
1449 pm_runtime_mark_last_busy(dev);
1450 pm_runtime_put_autosuspend(dev);
1451
1452 return ret;
1453}
1454
1455static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1456{
1457 int ret;
1458
1459 ret = iio_triggered_buffer_postenable(indio_dev);
1460 if (ret < 0)
1461 return ret;
1462
1463 ret = __stm32_adc_buffer_postenable(indio_dev);
1464 if (ret < 0)
1465 iio_triggered_buffer_predisable(indio_dev);
1466
1467 return ret;
1468}
1469
1470static void __stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1471{
1472 struct stm32_adc *adc = iio_priv(indio_dev);
1473 struct device *dev = indio_dev->dev.parent;
1474
1475 adc->cfg->stop_conv(adc);
1476 if (!adc->dma_chan)
1477 stm32_adc_conv_irq_disable(adc);
1478
1479 if (adc->dma_chan)
1480 dmaengine_terminate_sync(adc->dma_chan);
1481
1482 if (stm32_adc_set_trig(indio_dev, NULL))
1483 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1484
1485 pm_runtime_mark_last_busy(dev);
1486 pm_runtime_put_autosuspend(dev);
1487}
1488
1489static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1490{
1491 int ret;
1492
1493 __stm32_adc_buffer_predisable(indio_dev);
1494
1495 ret = iio_triggered_buffer_predisable(indio_dev);
1496 if (ret < 0)
1497 dev_err(&indio_dev->dev, "predisable failed\n");
1498
1499 return ret;
1500}
1501
1502static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1503 .postenable = &stm32_adc_buffer_postenable,
1504 .predisable = &stm32_adc_buffer_predisable,
1505};
1506
1507static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1508{
1509 struct iio_poll_func *pf = p;
1510 struct iio_dev *indio_dev = pf->indio_dev;
1511 struct stm32_adc *adc = iio_priv(indio_dev);
1512
1513 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1514
1515 if (!adc->dma_chan) {
1516 /* reset buffer index */
1517 adc->bufi = 0;
1518 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1519 pf->timestamp);
1520 } else {
1521 int residue = stm32_adc_dma_residue(adc);
1522
1523 while (residue >= indio_dev->scan_bytes) {
1524 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1525
1526 iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1527 pf->timestamp);
1528 residue -= indio_dev->scan_bytes;
1529 adc->bufi += indio_dev->scan_bytes;
1530 if (adc->bufi >= adc->rx_buf_sz)
1531 adc->bufi = 0;
1532 }
1533 }
1534
1535 iio_trigger_notify_done(indio_dev->trig);
1536
1537 /* re-enable eoc irq */
1538 if (!adc->dma_chan)
1539 stm32_adc_conv_irq_enable(adc);
1540
1541 return IRQ_HANDLED;
1542}
1543
1544static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1545 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1546 {
1547 .name = "trigger_polarity_available",
1548 .shared = IIO_SHARED_BY_ALL,
1549 .read = iio_enum_available_read,
1550 .private = (uintptr_t)&stm32_adc_trig_pol,
1551 },
1552 {},
1553};
1554
1555static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1556{
1557 struct device_node *node = indio_dev->dev.of_node;
1558 struct stm32_adc *adc = iio_priv(indio_dev);
1559 unsigned int i;
1560 u32 res;
1561
1562 if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1563 res = adc->cfg->adc_info->resolutions[0];
1564
1565 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1566 if (res == adc->cfg->adc_info->resolutions[i])
1567 break;
1568 if (i >= adc->cfg->adc_info->num_res) {
1569 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1570 return -EINVAL;
1571 }
1572
1573 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1574 adc->res = i;
1575
1576 return 0;
1577}
1578
1579static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1580{
1581 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1582 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1583 unsigned int smp, r = smpr->reg;
1584
1585 /* Determine sampling time (ADC clock cycles) */
1586 period_ns = NSEC_PER_SEC / adc->common->rate;
1587 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1588 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1589 break;
1590 if (smp > STM32_ADC_MAX_SMP)
1591 smp = STM32_ADC_MAX_SMP;
1592
1593 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1594 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1595}
1596
1597static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1598 struct iio_chan_spec *chan, u32 vinp,
1599 u32 vinn, int scan_index, bool differential)
1600{
1601 struct stm32_adc *adc = iio_priv(indio_dev);
1602 char *name = adc->chan_name[vinp];
1603
1604 chan->type = IIO_VOLTAGE;
1605 chan->channel = vinp;
1606 if (differential) {
1607 chan->differential = 1;
1608 chan->channel2 = vinn;
1609 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1610 } else {
1611 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1612 }
1613 chan->datasheet_name = name;
1614 chan->scan_index = scan_index;
1615 chan->indexed = 1;
1616 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1617 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1618 BIT(IIO_CHAN_INFO_OFFSET);
1619 chan->scan_type.sign = 'u';
1620 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1621 chan->scan_type.storagebits = 16;
1622 chan->ext_info = stm32_adc_ext_info;
1623
1624 /* pre-build selected channels mask */
1625 adc->pcsel |= BIT(chan->channel);
1626 if (differential) {
1627 /* pre-build diff channels mask */
1628 adc->difsel |= BIT(chan->channel);
1629 /* Also add negative input to pre-selected channels */
1630 adc->pcsel |= BIT(chan->channel2);
1631 }
1632}
1633
1634static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1635{
1636 struct device_node *node = indio_dev->dev.of_node;
1637 struct stm32_adc *adc = iio_priv(indio_dev);
1638 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1639 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1640 struct property *prop;
1641 const __be32 *cur;
1642 struct iio_chan_spec *channels;
1643 int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1644 u32 val, smp = 0;
1645
1646 ret = of_property_count_u32_elems(node, "st,adc-channels");
1647 if (ret > adc_info->max_channels) {
1648 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1649 return -EINVAL;
1650 } else if (ret > 0) {
1651 num_channels += ret;
1652 }
1653
1654 ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1655 sizeof(*diff));
1656 if (ret > adc_info->max_channels) {
1657 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1658 return -EINVAL;
1659 } else if (ret > 0) {
1660 int size = ret * sizeof(*diff) / sizeof(u32);
1661
1662 num_diff = ret;
1663 num_channels += ret;
1664 ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1665 (u32 *)diff, size);
1666 if (ret)
1667 return ret;
1668 }
1669
1670 if (!num_channels) {
1671 dev_err(&indio_dev->dev, "No channels configured\n");
1672 return -ENODATA;
1673 }
1674
1675 /* Optional sample time is provided either for each, or all channels */
1676 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1677 if (ret > 1 && ret != num_channels) {
1678 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1679 return -EINVAL;
1680 }
1681
1682 channels = devm_kcalloc(&indio_dev->dev, num_channels,
1683 sizeof(struct iio_chan_spec), GFP_KERNEL);
1684 if (!channels)
1685 return -ENOMEM;
1686
1687 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1688 if (val >= adc_info->max_channels) {
1689 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1690 return -EINVAL;
1691 }
1692
1693 /* Channel can't be configured both as single-ended & diff */
1694 for (i = 0; i < num_diff; i++) {
1695 if (val == diff[i].vinp) {
1696 dev_err(&indio_dev->dev,
1697 "channel %d miss-configured\n", val);
1698 return -EINVAL;
1699 }
1700 }
1701 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1702 0, scan_index, false);
1703 scan_index++;
1704 }
1705
1706 for (i = 0; i < num_diff; i++) {
1707 if (diff[i].vinp >= adc_info->max_channels ||
1708 diff[i].vinn >= adc_info->max_channels) {
1709 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1710 diff[i].vinp, diff[i].vinn);
1711 return -EINVAL;
1712 }
1713 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1714 diff[i].vinp, diff[i].vinn, scan_index,
1715 true);
1716 scan_index++;
1717 }
1718
1719 for (i = 0; i < scan_index; i++) {
1720 /*
1721 * Using of_property_read_u32_index(), smp value will only be
1722 * modified if valid u32 value can be decoded. This allows to
1723 * get either no value, 1 shared value for all indexes, or one
1724 * value per channel.
1725 */
1726 of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1727 i, &smp);
1728 /* Prepare sampling time settings */
1729 stm32_adc_smpr_init(adc, channels[i].channel, smp);
1730 }
1731
1732 indio_dev->num_channels = scan_index;
1733 indio_dev->channels = channels;
1734
1735 return 0;
1736}
1737
1738static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1739{
1740 struct stm32_adc *adc = iio_priv(indio_dev);
1741 struct dma_slave_config config;
1742 int ret;
1743
1744 adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1745 if (!adc->dma_chan)
1746 return 0;
1747
1748 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1749 STM32_DMA_BUFFER_SIZE,
1750 &adc->rx_dma_buf, GFP_KERNEL);
1751 if (!adc->rx_buf) {
1752 ret = -ENOMEM;
1753 goto err_release;
1754 }
1755
1756 /* Configure DMA channel to read data register */
1757 memset(&config, 0, sizeof(config));
1758 config.src_addr = (dma_addr_t)adc->common->phys_base;
1759 config.src_addr += adc->offset + adc->cfg->regs->dr;
1760 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1761
1762 ret = dmaengine_slave_config(adc->dma_chan, &config);
1763 if (ret)
1764 goto err_free;
1765
1766 return 0;
1767
1768err_free:
1769 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1770 adc->rx_buf, adc->rx_dma_buf);
1771err_release:
1772 dma_release_channel(adc->dma_chan);
1773
1774 return ret;
1775}
1776
1777static int stm32_adc_probe(struct platform_device *pdev)
1778{
1779 struct iio_dev *indio_dev;
1780 struct device *dev = &pdev->dev;
1781 struct stm32_adc *adc;
1782 int ret;
1783
1784 if (!pdev->dev.of_node)
1785 return -ENODEV;
1786
1787 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1788 if (!indio_dev)
1789 return -ENOMEM;
1790
1791 adc = iio_priv(indio_dev);
1792 adc->common = dev_get_drvdata(pdev->dev.parent);
1793 spin_lock_init(&adc->lock);
1794 init_completion(&adc->completion);
1795 adc->cfg = (const struct stm32_adc_cfg *)
1796 of_match_device(dev->driver->of_match_table, dev)->data;
1797
1798 indio_dev->name = dev_name(&pdev->dev);
1799 indio_dev->dev.parent = &pdev->dev;
1800 indio_dev->dev.of_node = pdev->dev.of_node;
1801 indio_dev->info = &stm32_adc_iio_info;
1802 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1803
1804 platform_set_drvdata(pdev, adc);
1805
1806 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1807 if (ret != 0) {
1808 dev_err(&pdev->dev, "missing reg property\n");
1809 return -EINVAL;
1810 }
1811
1812 adc->irq = platform_get_irq(pdev, 0);
1813 if (adc->irq < 0)
1814 return adc->irq;
1815
1816 ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1817 0, pdev->name, adc);
1818 if (ret) {
1819 dev_err(&pdev->dev, "failed to request IRQ\n");
1820 return ret;
1821 }
1822
1823 adc->clk = devm_clk_get(&pdev->dev, NULL);
1824 if (IS_ERR(adc->clk)) {
1825 ret = PTR_ERR(adc->clk);
1826 if (ret == -ENOENT && !adc->cfg->clk_required) {
1827 adc->clk = NULL;
1828 } else {
1829 dev_err(&pdev->dev, "Can't get clock\n");
1830 return ret;
1831 }
1832 }
1833
1834 ret = stm32_adc_of_get_resolution(indio_dev);
1835 if (ret < 0)
1836 return ret;
1837
1838 ret = stm32_adc_chan_of_init(indio_dev);
1839 if (ret < 0)
1840 return ret;
1841
1842 ret = stm32_adc_dma_request(indio_dev);
1843 if (ret < 0)
1844 return ret;
1845
1846 ret = iio_triggered_buffer_setup(indio_dev,
1847 &iio_pollfunc_store_time,
1848 &stm32_adc_trigger_handler,
1849 &stm32_adc_buffer_setup_ops);
1850 if (ret) {
1851 dev_err(&pdev->dev, "buffer setup failed\n");
1852 goto err_dma_disable;
1853 }
1854
1855 /* Get stm32-adc-core PM online */
1856 pm_runtime_get_noresume(dev);
1857 pm_runtime_set_active(dev);
1858 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1859 pm_runtime_use_autosuspend(dev);
1860 pm_runtime_enable(dev);
1861
1862 ret = stm32_adc_hw_start(dev);
1863 if (ret)
1864 goto err_buffer_cleanup;
1865
1866 ret = iio_device_register(indio_dev);
1867 if (ret) {
1868 dev_err(&pdev->dev, "iio dev register failed\n");
1869 goto err_hw_stop;
1870 }
1871
1872 pm_runtime_mark_last_busy(dev);
1873 pm_runtime_put_autosuspend(dev);
1874
1875 return 0;
1876
1877err_hw_stop:
1878 stm32_adc_hw_stop(dev);
1879
1880err_buffer_cleanup:
1881 pm_runtime_disable(dev);
1882 pm_runtime_set_suspended(dev);
1883 pm_runtime_put_noidle(dev);
1884 iio_triggered_buffer_cleanup(indio_dev);
1885
1886err_dma_disable:
1887 if (adc->dma_chan) {
1888 dma_free_coherent(adc->dma_chan->device->dev,
1889 STM32_DMA_BUFFER_SIZE,
1890 adc->rx_buf, adc->rx_dma_buf);
1891 dma_release_channel(adc->dma_chan);
1892 }
1893
1894 return ret;
1895}
1896
1897static int stm32_adc_remove(struct platform_device *pdev)
1898{
1899 struct stm32_adc *adc = platform_get_drvdata(pdev);
1900 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1901
1902 pm_runtime_get_sync(&pdev->dev);
1903 iio_device_unregister(indio_dev);
1904 stm32_adc_hw_stop(&pdev->dev);
1905 pm_runtime_disable(&pdev->dev);
1906 pm_runtime_set_suspended(&pdev->dev);
1907 pm_runtime_put_noidle(&pdev->dev);
1908 iio_triggered_buffer_cleanup(indio_dev);
1909 if (adc->dma_chan) {
1910 dma_free_coherent(adc->dma_chan->device->dev,
1911 STM32_DMA_BUFFER_SIZE,
1912 adc->rx_buf, adc->rx_dma_buf);
1913 dma_release_channel(adc->dma_chan);
1914 }
1915
1916 return 0;
1917}
1918
1919#if defined(CONFIG_PM_SLEEP)
1920static int stm32_adc_suspend(struct device *dev)
1921{
1922 struct stm32_adc *adc = dev_get_drvdata(dev);
1923 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1924
1925 if (iio_buffer_enabled(indio_dev))
1926 __stm32_adc_buffer_predisable(indio_dev);
1927
1928 return pm_runtime_force_suspend(dev);
1929}
1930
1931static int stm32_adc_resume(struct device *dev)
1932{
1933 struct stm32_adc *adc = dev_get_drvdata(dev);
1934 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1935 int ret;
1936
1937 ret = pm_runtime_force_resume(dev);
1938 if (ret < 0)
1939 return ret;
1940
1941 if (!iio_buffer_enabled(indio_dev))
1942 return 0;
1943
1944 ret = stm32_adc_update_scan_mode(indio_dev,
1945 indio_dev->active_scan_mask);
1946 if (ret < 0)
1947 return ret;
1948
1949 return __stm32_adc_buffer_postenable(indio_dev);
1950}
1951#endif
1952
1953#if defined(CONFIG_PM)
1954static int stm32_adc_runtime_suspend(struct device *dev)
1955{
1956 return stm32_adc_hw_stop(dev);
1957}
1958
1959static int stm32_adc_runtime_resume(struct device *dev)
1960{
1961 return stm32_adc_hw_start(dev);
1962}
1963#endif
1964
1965static const struct dev_pm_ops stm32_adc_pm_ops = {
1966 SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
1967 SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
1968 NULL)
1969};
1970
1971static const struct stm32_adc_cfg stm32f4_adc_cfg = {
1972 .regs = &stm32f4_adc_regspec,
1973 .adc_info = &stm32f4_adc_info,
1974 .trigs = stm32f4_adc_trigs,
1975 .clk_required = true,
1976 .start_conv = stm32f4_adc_start_conv,
1977 .stop_conv = stm32f4_adc_stop_conv,
1978 .smp_cycles = stm32f4_adc_smp_cycles,
1979};
1980
1981static const struct stm32_adc_cfg stm32h7_adc_cfg = {
1982 .regs = &stm32h7_adc_regspec,
1983 .adc_info = &stm32h7_adc_info,
1984 .trigs = stm32h7_adc_trigs,
1985 .start_conv = stm32h7_adc_start_conv,
1986 .stop_conv = stm32h7_adc_stop_conv,
1987 .prepare = stm32h7_adc_prepare,
1988 .unprepare = stm32h7_adc_unprepare,
1989 .smp_cycles = stm32h7_adc_smp_cycles,
1990};
1991
1992static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
1993 .regs = &stm32h7_adc_regspec,
1994 .adc_info = &stm32h7_adc_info,
1995 .trigs = stm32h7_adc_trigs,
1996 .has_vregready = true,
1997 .start_conv = stm32h7_adc_start_conv,
1998 .stop_conv = stm32h7_adc_stop_conv,
1999 .prepare = stm32h7_adc_prepare,
2000 .unprepare = stm32h7_adc_unprepare,
2001 .smp_cycles = stm32h7_adc_smp_cycles,
2002};
2003
2004static const struct of_device_id stm32_adc_of_match[] = {
2005 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2006 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2007 { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2008 {},
2009};
2010MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2011
2012static struct platform_driver stm32_adc_driver = {
2013 .probe = stm32_adc_probe,
2014 .remove = stm32_adc_remove,
2015 .driver = {
2016 .name = "stm32-adc",
2017 .of_match_table = stm32_adc_of_match,
2018 .pm = &stm32_adc_pm_ops,
2019 },
2020};
2021module_platform_driver(stm32_adc_driver);
2022
2023MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2024MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2025MODULE_LICENSE("GPL v2");
2026MODULE_ALIAS("platform:stm32-adc");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is part of STM32 ADC driver
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 */
8
9#include <linux/clk.h>
10#include <linux/debugfs.h>
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmaengine.h>
14#include <linux/iio/iio.h>
15#include <linux/iio/buffer.h>
16#include <linux/iio/timer/stm32-lptim-trigger.h>
17#include <linux/iio/timer/stm32-timer-trigger.h>
18#include <linux/iio/trigger.h>
19#include <linux/iio/trigger_consumer.h>
20#include <linux/iio/triggered_buffer.h>
21#include <linux/interrupt.h>
22#include <linux/io.h>
23#include <linux/iopoll.h>
24#include <linux/module.h>
25#include <linux/mod_devicetable.h>
26#include <linux/nvmem-consumer.h>
27#include <linux/platform_device.h>
28#include <linux/pm_runtime.h>
29#include <linux/property.h>
30
31#include "stm32-adc-core.h"
32
33/* Number of linear calibration shadow registers / LINCALRDYW control bits */
34#define STM32H7_LINCALFACT_NUM 6
35
36/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
37#define STM32H7_BOOST_CLKRATE 20000000UL
38
39#define STM32_ADC_CH_MAX 20 /* max number of channels */
40#define STM32_ADC_CH_SZ 16 /* max channel name size */
41#define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
42#define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
43#define STM32_ADC_TIMEOUT_US 100000
44#define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
45#define STM32_ADC_HW_STOP_DELAY_MS 100
46#define STM32_ADC_VREFINT_VOLTAGE 3300
47
48#define STM32_DMA_BUFFER_SIZE PAGE_SIZE
49
50/* External trigger enable */
51enum stm32_adc_exten {
52 STM32_EXTEN_SWTRIG,
53 STM32_EXTEN_HWTRIG_RISING_EDGE,
54 STM32_EXTEN_HWTRIG_FALLING_EDGE,
55 STM32_EXTEN_HWTRIG_BOTH_EDGES,
56};
57
58/* extsel - trigger mux selection value */
59enum stm32_adc_extsel {
60 STM32_EXT0,
61 STM32_EXT1,
62 STM32_EXT2,
63 STM32_EXT3,
64 STM32_EXT4,
65 STM32_EXT5,
66 STM32_EXT6,
67 STM32_EXT7,
68 STM32_EXT8,
69 STM32_EXT9,
70 STM32_EXT10,
71 STM32_EXT11,
72 STM32_EXT12,
73 STM32_EXT13,
74 STM32_EXT14,
75 STM32_EXT15,
76 STM32_EXT16,
77 STM32_EXT17,
78 STM32_EXT18,
79 STM32_EXT19,
80 STM32_EXT20,
81};
82
83enum stm32_adc_int_ch {
84 STM32_ADC_INT_CH_NONE = -1,
85 STM32_ADC_INT_CH_VDDCORE,
86 STM32_ADC_INT_CH_VDDCPU,
87 STM32_ADC_INT_CH_VDDQ_DDR,
88 STM32_ADC_INT_CH_VREFINT,
89 STM32_ADC_INT_CH_VBAT,
90 STM32_ADC_INT_CH_NB,
91};
92
93/**
94 * struct stm32_adc_ic - ADC internal channels
95 * @name: name of the internal channel
96 * @idx: internal channel enum index
97 */
98struct stm32_adc_ic {
99 const char *name;
100 u32 idx;
101};
102
103static const struct stm32_adc_ic stm32_adc_ic[STM32_ADC_INT_CH_NB] = {
104 { "vddcore", STM32_ADC_INT_CH_VDDCORE },
105 { "vddcpu", STM32_ADC_INT_CH_VDDCPU },
106 { "vddq_ddr", STM32_ADC_INT_CH_VDDQ_DDR },
107 { "vrefint", STM32_ADC_INT_CH_VREFINT },
108 { "vbat", STM32_ADC_INT_CH_VBAT },
109};
110
111/**
112 * struct stm32_adc_trig_info - ADC trigger info
113 * @name: name of the trigger, corresponding to its source
114 * @extsel: trigger selection
115 */
116struct stm32_adc_trig_info {
117 const char *name;
118 enum stm32_adc_extsel extsel;
119};
120
121/**
122 * struct stm32_adc_calib - optional adc calibration data
123 * @lincalfact: Linearity calibration factor
124 * @lincal_saved: Indicates that linear calibration factors are saved
125 */
126struct stm32_adc_calib {
127 u32 lincalfact[STM32H7_LINCALFACT_NUM];
128 bool lincal_saved;
129};
130
131/**
132 * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
133 * @reg: register offset
134 * @mask: bitfield mask
135 * @shift: left shift
136 */
137struct stm32_adc_regs {
138 int reg;
139 int mask;
140 int shift;
141};
142
143/**
144 * struct stm32_adc_vrefint - stm32 ADC internal reference voltage data
145 * @vrefint_cal: vrefint calibration value from nvmem
146 * @vrefint_data: vrefint actual value
147 */
148struct stm32_adc_vrefint {
149 u32 vrefint_cal;
150 u32 vrefint_data;
151};
152
153/**
154 * struct stm32_adc_regspec - stm32 registers definition
155 * @dr: data register offset
156 * @ier_eoc: interrupt enable register & eocie bitfield
157 * @ier_ovr: interrupt enable register & overrun bitfield
158 * @isr_eoc: interrupt status register & eoc bitfield
159 * @isr_ovr: interrupt status register & overrun bitfield
160 * @sqr: reference to sequence registers array
161 * @exten: trigger control register & bitfield
162 * @extsel: trigger selection register & bitfield
163 * @res: resolution selection register & bitfield
164 * @difsel: differential mode selection register & bitfield
165 * @smpr: smpr1 & smpr2 registers offset array
166 * @smp_bits: smpr1 & smpr2 index and bitfields
167 * @or_vddcore: option register & vddcore bitfield
168 * @or_vddcpu: option register & vddcpu bitfield
169 * @or_vddq_ddr: option register & vddq_ddr bitfield
170 * @ccr_vbat: common register & vbat bitfield
171 * @ccr_vref: common register & vrefint bitfield
172 */
173struct stm32_adc_regspec {
174 const u32 dr;
175 const struct stm32_adc_regs ier_eoc;
176 const struct stm32_adc_regs ier_ovr;
177 const struct stm32_adc_regs isr_eoc;
178 const struct stm32_adc_regs isr_ovr;
179 const struct stm32_adc_regs *sqr;
180 const struct stm32_adc_regs exten;
181 const struct stm32_adc_regs extsel;
182 const struct stm32_adc_regs res;
183 const struct stm32_adc_regs difsel;
184 const u32 smpr[2];
185 const struct stm32_adc_regs *smp_bits;
186 const struct stm32_adc_regs or_vddcore;
187 const struct stm32_adc_regs or_vddcpu;
188 const struct stm32_adc_regs or_vddq_ddr;
189 const struct stm32_adc_regs ccr_vbat;
190 const struct stm32_adc_regs ccr_vref;
191};
192
193struct stm32_adc;
194
195/**
196 * struct stm32_adc_cfg - stm32 compatible configuration data
197 * @regs: registers descriptions
198 * @adc_info: per instance input channels definitions
199 * @trigs: external trigger sources
200 * @clk_required: clock is required
201 * @has_vregready: vregready status flag presence
202 * @has_boostmode: boost mode support flag
203 * @has_linearcal: linear calibration support flag
204 * @has_presel: channel preselection support flag
205 * @prepare: optional prepare routine (power-up, enable)
206 * @start_conv: routine to start conversions
207 * @stop_conv: routine to stop conversions
208 * @unprepare: optional unprepare routine (disable, power-down)
209 * @irq_clear: routine to clear irqs
210 * @smp_cycles: programmable sampling time (ADC clock cycles)
211 * @ts_int_ch: pointer to array of internal channels minimum sampling time in ns
212 */
213struct stm32_adc_cfg {
214 const struct stm32_adc_regspec *regs;
215 const struct stm32_adc_info *adc_info;
216 struct stm32_adc_trig_info *trigs;
217 bool clk_required;
218 bool has_vregready;
219 bool has_boostmode;
220 bool has_linearcal;
221 bool has_presel;
222 int (*prepare)(struct iio_dev *);
223 void (*start_conv)(struct iio_dev *, bool dma);
224 void (*stop_conv)(struct iio_dev *);
225 void (*unprepare)(struct iio_dev *);
226 void (*irq_clear)(struct iio_dev *indio_dev, u32 msk);
227 const unsigned int *smp_cycles;
228 const unsigned int *ts_int_ch;
229};
230
231/**
232 * struct stm32_adc - private data of each ADC IIO instance
233 * @common: reference to ADC block common data
234 * @offset: ADC instance register offset in ADC block
235 * @cfg: compatible configuration data
236 * @completion: end of single conversion completion
237 * @buffer: data buffer + 8 bytes for timestamp if enabled
238 * @clk: clock for this adc instance
239 * @irq: interrupt for this adc instance
240 * @lock: spinlock
241 * @bufi: data buffer index
242 * @num_conv: expected number of scan conversions
243 * @res: data resolution (e.g. RES bitfield value)
244 * @trigger_polarity: external trigger polarity (e.g. exten)
245 * @dma_chan: dma channel
246 * @rx_buf: dma rx buffer cpu address
247 * @rx_dma_buf: dma rx buffer bus address
248 * @rx_buf_sz: dma rx buffer size
249 * @difsel: bitmask to set single-ended/differential channel
250 * @pcsel: bitmask to preselect channels on some devices
251 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
252 * @cal: optional calibration data on some devices
253 * @vrefint: internal reference voltage data
254 * @chan_name: channel name array
255 * @num_diff: number of differential channels
256 * @int_ch: internal channel indexes array
257 * @nsmps: number of channels with optional sample time
258 */
259struct stm32_adc {
260 struct stm32_adc_common *common;
261 u32 offset;
262 const struct stm32_adc_cfg *cfg;
263 struct completion completion;
264 u16 buffer[STM32_ADC_MAX_SQ + 4] __aligned(8);
265 struct clk *clk;
266 int irq;
267 spinlock_t lock; /* interrupt lock */
268 unsigned int bufi;
269 unsigned int num_conv;
270 u32 res;
271 u32 trigger_polarity;
272 struct dma_chan *dma_chan;
273 u8 *rx_buf;
274 dma_addr_t rx_dma_buf;
275 unsigned int rx_buf_sz;
276 u32 difsel;
277 u32 pcsel;
278 u32 smpr_val[2];
279 struct stm32_adc_calib cal;
280 struct stm32_adc_vrefint vrefint;
281 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
282 u32 num_diff;
283 int int_ch[STM32_ADC_INT_CH_NB];
284 int nsmps;
285};
286
287struct stm32_adc_diff_channel {
288 u32 vinp;
289 u32 vinn;
290};
291
292/**
293 * struct stm32_adc_info - stm32 ADC, per instance config data
294 * @max_channels: Number of channels
295 * @resolutions: available resolutions
296 * @num_res: number of available resolutions
297 */
298struct stm32_adc_info {
299 int max_channels;
300 const unsigned int *resolutions;
301 const unsigned int num_res;
302};
303
304static const unsigned int stm32f4_adc_resolutions[] = {
305 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
306 12, 10, 8, 6,
307};
308
309/* stm32f4 can have up to 16 channels */
310static const struct stm32_adc_info stm32f4_adc_info = {
311 .max_channels = 16,
312 .resolutions = stm32f4_adc_resolutions,
313 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
314};
315
316static const unsigned int stm32h7_adc_resolutions[] = {
317 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
318 16, 14, 12, 10, 8,
319};
320
321/* stm32h7 can have up to 20 channels */
322static const struct stm32_adc_info stm32h7_adc_info = {
323 .max_channels = STM32_ADC_CH_MAX,
324 .resolutions = stm32h7_adc_resolutions,
325 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
326};
327
328/* stm32mp13 can have up to 19 channels */
329static const struct stm32_adc_info stm32mp13_adc_info = {
330 .max_channels = 19,
331 .resolutions = stm32f4_adc_resolutions,
332 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
333};
334
335/*
336 * stm32f4_sq - describe regular sequence registers
337 * - L: sequence len (register & bit field)
338 * - SQ1..SQ16: sequence entries (register & bit field)
339 */
340static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
341 /* L: len bit field description to be kept as first element */
342 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
343 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
344 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
345 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
346 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
347 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
348 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
349 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
350 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
351 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
352 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
353 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
354 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
355 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
356 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
357 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
358 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
359 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
360};
361
362/* STM32F4 external trigger sources for all instances */
363static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
364 { TIM1_CH1, STM32_EXT0 },
365 { TIM1_CH2, STM32_EXT1 },
366 { TIM1_CH3, STM32_EXT2 },
367 { TIM2_CH2, STM32_EXT3 },
368 { TIM2_CH3, STM32_EXT4 },
369 { TIM2_CH4, STM32_EXT5 },
370 { TIM2_TRGO, STM32_EXT6 },
371 { TIM3_CH1, STM32_EXT7 },
372 { TIM3_TRGO, STM32_EXT8 },
373 { TIM4_CH4, STM32_EXT9 },
374 { TIM5_CH1, STM32_EXT10 },
375 { TIM5_CH2, STM32_EXT11 },
376 { TIM5_CH3, STM32_EXT12 },
377 { TIM8_CH1, STM32_EXT13 },
378 { TIM8_TRGO, STM32_EXT14 },
379 {}, /* sentinel */
380};
381
382/*
383 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
384 * Sorted so it can be indexed by channel number.
385 */
386static const struct stm32_adc_regs stm32f4_smp_bits[] = {
387 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
388 { 1, GENMASK(2, 0), 0 },
389 { 1, GENMASK(5, 3), 3 },
390 { 1, GENMASK(8, 6), 6 },
391 { 1, GENMASK(11, 9), 9 },
392 { 1, GENMASK(14, 12), 12 },
393 { 1, GENMASK(17, 15), 15 },
394 { 1, GENMASK(20, 18), 18 },
395 { 1, GENMASK(23, 21), 21 },
396 { 1, GENMASK(26, 24), 24 },
397 { 1, GENMASK(29, 27), 27 },
398 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
399 { 0, GENMASK(2, 0), 0 },
400 { 0, GENMASK(5, 3), 3 },
401 { 0, GENMASK(8, 6), 6 },
402 { 0, GENMASK(11, 9), 9 },
403 { 0, GENMASK(14, 12), 12 },
404 { 0, GENMASK(17, 15), 15 },
405 { 0, GENMASK(20, 18), 18 },
406 { 0, GENMASK(23, 21), 21 },
407 { 0, GENMASK(26, 24), 24 },
408};
409
410/* STM32F4 programmable sampling time (ADC clock cycles) */
411static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
412 3, 15, 28, 56, 84, 112, 144, 480,
413};
414
415static const struct stm32_adc_regspec stm32f4_adc_regspec = {
416 .dr = STM32F4_ADC_DR,
417 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
418 .ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
419 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
420 .isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
421 .sqr = stm32f4_sq,
422 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
423 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
424 STM32F4_EXTSEL_SHIFT },
425 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
426 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
427 .smp_bits = stm32f4_smp_bits,
428};
429
430static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
431 /* L: len bit field description to be kept as first element */
432 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
433 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
434 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
435 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
436 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
437 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
438 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
439 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
440 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
441 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
442 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
443 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
444 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
445 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
446 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
447 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
448 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
449 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
450};
451
452/* STM32H7 external trigger sources for all instances */
453static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
454 { TIM1_CH1, STM32_EXT0 },
455 { TIM1_CH2, STM32_EXT1 },
456 { TIM1_CH3, STM32_EXT2 },
457 { TIM2_CH2, STM32_EXT3 },
458 { TIM3_TRGO, STM32_EXT4 },
459 { TIM4_CH4, STM32_EXT5 },
460 { TIM8_TRGO, STM32_EXT7 },
461 { TIM8_TRGO2, STM32_EXT8 },
462 { TIM1_TRGO, STM32_EXT9 },
463 { TIM1_TRGO2, STM32_EXT10 },
464 { TIM2_TRGO, STM32_EXT11 },
465 { TIM4_TRGO, STM32_EXT12 },
466 { TIM6_TRGO, STM32_EXT13 },
467 { TIM15_TRGO, STM32_EXT14 },
468 { TIM3_CH4, STM32_EXT15 },
469 { LPTIM1_OUT, STM32_EXT18 },
470 { LPTIM2_OUT, STM32_EXT19 },
471 { LPTIM3_OUT, STM32_EXT20 },
472 {},
473};
474
475/*
476 * stm32h7_smp_bits - describe sampling time register index & bit fields
477 * Sorted so it can be indexed by channel number.
478 */
479static const struct stm32_adc_regs stm32h7_smp_bits[] = {
480 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
481 { 0, GENMASK(2, 0), 0 },
482 { 0, GENMASK(5, 3), 3 },
483 { 0, GENMASK(8, 6), 6 },
484 { 0, GENMASK(11, 9), 9 },
485 { 0, GENMASK(14, 12), 12 },
486 { 0, GENMASK(17, 15), 15 },
487 { 0, GENMASK(20, 18), 18 },
488 { 0, GENMASK(23, 21), 21 },
489 { 0, GENMASK(26, 24), 24 },
490 { 0, GENMASK(29, 27), 27 },
491 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
492 { 1, GENMASK(2, 0), 0 },
493 { 1, GENMASK(5, 3), 3 },
494 { 1, GENMASK(8, 6), 6 },
495 { 1, GENMASK(11, 9), 9 },
496 { 1, GENMASK(14, 12), 12 },
497 { 1, GENMASK(17, 15), 15 },
498 { 1, GENMASK(20, 18), 18 },
499 { 1, GENMASK(23, 21), 21 },
500 { 1, GENMASK(26, 24), 24 },
501 { 1, GENMASK(29, 27), 27 },
502};
503
504/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
505static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
506 1, 2, 8, 16, 32, 64, 387, 810,
507};
508
509static const struct stm32_adc_regspec stm32h7_adc_regspec = {
510 .dr = STM32H7_ADC_DR,
511 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
512 .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
513 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
514 .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
515 .sqr = stm32h7_sq,
516 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
517 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
518 STM32H7_EXTSEL_SHIFT },
519 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
520 .difsel = { STM32H7_ADC_DIFSEL, STM32H7_DIFSEL_MASK},
521 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
522 .smp_bits = stm32h7_smp_bits,
523};
524
525/* STM32MP13 programmable sampling time (ADC clock cycles, rounded down) */
526static const unsigned int stm32mp13_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
527 2, 6, 12, 24, 47, 92, 247, 640,
528};
529
530static const struct stm32_adc_regspec stm32mp13_adc_regspec = {
531 .dr = STM32H7_ADC_DR,
532 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
533 .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
534 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
535 .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
536 .sqr = stm32h7_sq,
537 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
538 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
539 STM32H7_EXTSEL_SHIFT },
540 .res = { STM32H7_ADC_CFGR, STM32MP13_RES_MASK, STM32MP13_RES_SHIFT },
541 .difsel = { STM32MP13_ADC_DIFSEL, STM32MP13_DIFSEL_MASK},
542 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
543 .smp_bits = stm32h7_smp_bits,
544 .or_vddcore = { STM32MP13_ADC2_OR, STM32MP13_OP0 },
545 .or_vddcpu = { STM32MP13_ADC2_OR, STM32MP13_OP1 },
546 .or_vddq_ddr = { STM32MP13_ADC2_OR, STM32MP13_OP2 },
547 .ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
548 .ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
549};
550
551static const struct stm32_adc_regspec stm32mp1_adc_regspec = {
552 .dr = STM32H7_ADC_DR,
553 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
554 .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
555 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
556 .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
557 .sqr = stm32h7_sq,
558 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
559 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
560 STM32H7_EXTSEL_SHIFT },
561 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
562 .difsel = { STM32H7_ADC_DIFSEL, STM32H7_DIFSEL_MASK},
563 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
564 .smp_bits = stm32h7_smp_bits,
565 .or_vddcore = { STM32MP1_ADC2_OR, STM32MP1_VDDCOREEN },
566 .ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
567 .ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
568};
569
570/*
571 * STM32 ADC registers access routines
572 * @adc: stm32 adc instance
573 * @reg: reg offset in adc instance
574 *
575 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
576 * for adc1, adc2 and adc3.
577 */
578static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
579{
580 return readl_relaxed(adc->common->base + adc->offset + reg);
581}
582
583#define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
584
585#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
586 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
587 cond, sleep_us, timeout_us)
588
589static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
590{
591 return readw_relaxed(adc->common->base + adc->offset + reg);
592}
593
594static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
595{
596 writel_relaxed(val, adc->common->base + adc->offset + reg);
597}
598
599static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
600{
601 unsigned long flags;
602
603 spin_lock_irqsave(&adc->lock, flags);
604 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
605 spin_unlock_irqrestore(&adc->lock, flags);
606}
607
608static void stm32_adc_set_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
609{
610 spin_lock(&adc->common->lock);
611 writel_relaxed(readl_relaxed(adc->common->base + reg) | bits,
612 adc->common->base + reg);
613 spin_unlock(&adc->common->lock);
614}
615
616static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
617{
618 unsigned long flags;
619
620 spin_lock_irqsave(&adc->lock, flags);
621 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
622 spin_unlock_irqrestore(&adc->lock, flags);
623}
624
625static void stm32_adc_clr_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
626{
627 spin_lock(&adc->common->lock);
628 writel_relaxed(readl_relaxed(adc->common->base + reg) & ~bits,
629 adc->common->base + reg);
630 spin_unlock(&adc->common->lock);
631}
632
633/**
634 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
635 * @adc: stm32 adc instance
636 */
637static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
638{
639 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
640 adc->cfg->regs->ier_eoc.mask);
641};
642
643/**
644 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
645 * @adc: stm32 adc instance
646 */
647static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
648{
649 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
650 adc->cfg->regs->ier_eoc.mask);
651}
652
653static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
654{
655 stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
656 adc->cfg->regs->ier_ovr.mask);
657}
658
659static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
660{
661 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
662 adc->cfg->regs->ier_ovr.mask);
663}
664
665static void stm32_adc_set_res(struct stm32_adc *adc)
666{
667 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
668 u32 val;
669
670 val = stm32_adc_readl(adc, res->reg);
671 val = (val & ~res->mask) | (adc->res << res->shift);
672 stm32_adc_writel(adc, res->reg, val);
673}
674
675static int stm32_adc_hw_stop(struct device *dev)
676{
677 struct iio_dev *indio_dev = dev_get_drvdata(dev);
678 struct stm32_adc *adc = iio_priv(indio_dev);
679
680 if (adc->cfg->unprepare)
681 adc->cfg->unprepare(indio_dev);
682
683 clk_disable_unprepare(adc->clk);
684
685 return 0;
686}
687
688static int stm32_adc_hw_start(struct device *dev)
689{
690 struct iio_dev *indio_dev = dev_get_drvdata(dev);
691 struct stm32_adc *adc = iio_priv(indio_dev);
692 int ret;
693
694 ret = clk_prepare_enable(adc->clk);
695 if (ret)
696 return ret;
697
698 stm32_adc_set_res(adc);
699
700 if (adc->cfg->prepare) {
701 ret = adc->cfg->prepare(indio_dev);
702 if (ret)
703 goto err_clk_dis;
704 }
705
706 return 0;
707
708err_clk_dis:
709 clk_disable_unprepare(adc->clk);
710
711 return ret;
712}
713
714static void stm32_adc_int_ch_enable(struct iio_dev *indio_dev)
715{
716 struct stm32_adc *adc = iio_priv(indio_dev);
717 u32 i;
718
719 for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
720 if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
721 continue;
722
723 switch (i) {
724 case STM32_ADC_INT_CH_VDDCORE:
725 dev_dbg(&indio_dev->dev, "Enable VDDCore\n");
726 stm32_adc_set_bits(adc, adc->cfg->regs->or_vddcore.reg,
727 adc->cfg->regs->or_vddcore.mask);
728 break;
729 case STM32_ADC_INT_CH_VDDCPU:
730 dev_dbg(&indio_dev->dev, "Enable VDDCPU\n");
731 stm32_adc_set_bits(adc, adc->cfg->regs->or_vddcpu.reg,
732 adc->cfg->regs->or_vddcpu.mask);
733 break;
734 case STM32_ADC_INT_CH_VDDQ_DDR:
735 dev_dbg(&indio_dev->dev, "Enable VDDQ_DDR\n");
736 stm32_adc_set_bits(adc, adc->cfg->regs->or_vddq_ddr.reg,
737 adc->cfg->regs->or_vddq_ddr.mask);
738 break;
739 case STM32_ADC_INT_CH_VREFINT:
740 dev_dbg(&indio_dev->dev, "Enable VREFInt\n");
741 stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
742 adc->cfg->regs->ccr_vref.mask);
743 break;
744 case STM32_ADC_INT_CH_VBAT:
745 dev_dbg(&indio_dev->dev, "Enable VBAT\n");
746 stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
747 adc->cfg->regs->ccr_vbat.mask);
748 break;
749 }
750 }
751}
752
753static void stm32_adc_int_ch_disable(struct stm32_adc *adc)
754{
755 u32 i;
756
757 for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
758 if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
759 continue;
760
761 switch (i) {
762 case STM32_ADC_INT_CH_VDDCORE:
763 stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddcore.reg,
764 adc->cfg->regs->or_vddcore.mask);
765 break;
766 case STM32_ADC_INT_CH_VDDCPU:
767 stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddcpu.reg,
768 adc->cfg->regs->or_vddcpu.mask);
769 break;
770 case STM32_ADC_INT_CH_VDDQ_DDR:
771 stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddq_ddr.reg,
772 adc->cfg->regs->or_vddq_ddr.mask);
773 break;
774 case STM32_ADC_INT_CH_VREFINT:
775 stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
776 adc->cfg->regs->ccr_vref.mask);
777 break;
778 case STM32_ADC_INT_CH_VBAT:
779 stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
780 adc->cfg->regs->ccr_vbat.mask);
781 break;
782 }
783 }
784}
785
786/**
787 * stm32f4_adc_start_conv() - Start conversions for regular channels.
788 * @indio_dev: IIO device instance
789 * @dma: use dma to transfer conversion result
790 *
791 * Start conversions for regular channels.
792 * Also take care of normal or DMA mode. Circular DMA may be used for regular
793 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
794 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
795 */
796static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
797{
798 struct stm32_adc *adc = iio_priv(indio_dev);
799
800 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
801
802 if (dma)
803 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
804 STM32F4_DMA | STM32F4_DDS);
805
806 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
807
808 /* Wait for Power-up time (tSTAB from datasheet) */
809 usleep_range(2, 3);
810
811 /* Software start ? (e.g. trigger detection disabled ?) */
812 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
813 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
814}
815
816static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
817{
818 struct stm32_adc *adc = iio_priv(indio_dev);
819
820 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
821 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
822
823 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
824 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
825 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
826}
827
828static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
829{
830 struct stm32_adc *adc = iio_priv(indio_dev);
831
832 stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
833}
834
835static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
836{
837 struct stm32_adc *adc = iio_priv(indio_dev);
838 enum stm32h7_adc_dmngt dmngt;
839 unsigned long flags;
840 u32 val;
841
842 if (dma)
843 dmngt = STM32H7_DMNGT_DMA_CIRC;
844 else
845 dmngt = STM32H7_DMNGT_DR_ONLY;
846
847 spin_lock_irqsave(&adc->lock, flags);
848 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
849 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
850 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
851 spin_unlock_irqrestore(&adc->lock, flags);
852
853 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
854}
855
856static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
857{
858 struct stm32_adc *adc = iio_priv(indio_dev);
859 int ret;
860 u32 val;
861
862 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
863
864 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
865 !(val & (STM32H7_ADSTART)),
866 100, STM32_ADC_TIMEOUT_US);
867 if (ret)
868 dev_warn(&indio_dev->dev, "stop failed\n");
869
870 /* STM32H7_DMNGT_MASK covers STM32MP13_DMAEN & STM32MP13_DMACFG */
871 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
872}
873
874static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
875{
876 struct stm32_adc *adc = iio_priv(indio_dev);
877 /* On STM32H7 IRQs are cleared by writing 1 into ISR register */
878 stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
879}
880
881static void stm32mp13_adc_start_conv(struct iio_dev *indio_dev, bool dma)
882{
883 struct stm32_adc *adc = iio_priv(indio_dev);
884
885 if (dma)
886 stm32_adc_set_bits(adc, STM32H7_ADC_CFGR,
887 STM32MP13_DMAEN | STM32MP13_DMACFG);
888
889 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
890}
891
892static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
893{
894 struct stm32_adc *adc = iio_priv(indio_dev);
895 int ret;
896 u32 val;
897
898 /* Exit deep power down, then enable ADC voltage regulator */
899 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
900 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
901
902 if (adc->cfg->has_boostmode &&
903 adc->common->rate > STM32H7_BOOST_CLKRATE)
904 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
905
906 /* Wait for startup time */
907 if (!adc->cfg->has_vregready) {
908 usleep_range(10, 20);
909 return 0;
910 }
911
912 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
913 val & STM32MP1_VREGREADY, 100,
914 STM32_ADC_TIMEOUT_US);
915 if (ret) {
916 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
917 dev_err(&indio_dev->dev, "Failed to exit power down\n");
918 }
919
920 return ret;
921}
922
923static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
924{
925 if (adc->cfg->has_boostmode)
926 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
927
928 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
929 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
930}
931
932static int stm32h7_adc_enable(struct iio_dev *indio_dev)
933{
934 struct stm32_adc *adc = iio_priv(indio_dev);
935 int ret;
936 u32 val;
937
938 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
939
940 /* Poll for ADRDY to be set (after adc startup time) */
941 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
942 val & STM32H7_ADRDY,
943 100, STM32_ADC_TIMEOUT_US);
944 if (ret) {
945 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
946 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
947 } else {
948 /* Clear ADRDY by writing one */
949 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
950 }
951
952 return ret;
953}
954
955static void stm32h7_adc_disable(struct iio_dev *indio_dev)
956{
957 struct stm32_adc *adc = iio_priv(indio_dev);
958 int ret;
959 u32 val;
960
961 if (!(stm32_adc_readl(adc, STM32H7_ADC_CR) & STM32H7_ADEN))
962 return;
963
964 /* Disable ADC and wait until it's effectively disabled */
965 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
966 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
967 !(val & STM32H7_ADEN), 100,
968 STM32_ADC_TIMEOUT_US);
969 if (ret)
970 dev_warn(&indio_dev->dev, "Failed to disable\n");
971}
972
973/**
974 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
975 * @indio_dev: IIO device instance
976 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
977 */
978static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
979{
980 struct stm32_adc *adc = iio_priv(indio_dev);
981 int i, ret;
982 u32 lincalrdyw_mask, val;
983
984 /* Read linearity calibration */
985 lincalrdyw_mask = STM32H7_LINCALRDYW6;
986 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
987 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
988 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
989
990 /* Poll: wait calib data to be ready in CALFACT2 register */
991 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
992 !(val & lincalrdyw_mask),
993 100, STM32_ADC_TIMEOUT_US);
994 if (ret) {
995 dev_err(&indio_dev->dev, "Failed to read calfact\n");
996 return ret;
997 }
998
999 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
1000 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
1001 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
1002
1003 lincalrdyw_mask >>= 1;
1004 }
1005 adc->cal.lincal_saved = true;
1006
1007 return 0;
1008}
1009
1010/**
1011 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
1012 * @indio_dev: IIO device instance
1013 * Note: ADC must be enabled, with no on-going conversions.
1014 */
1015static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
1016{
1017 struct stm32_adc *adc = iio_priv(indio_dev);
1018 int i, ret;
1019 u32 lincalrdyw_mask, val;
1020
1021 lincalrdyw_mask = STM32H7_LINCALRDYW6;
1022 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
1023 /*
1024 * Write saved calibration data to shadow registers:
1025 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
1026 * data write. Then poll to wait for complete transfer.
1027 */
1028 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
1029 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
1030 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
1031 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1032 val & lincalrdyw_mask,
1033 100, STM32_ADC_TIMEOUT_US);
1034 if (ret) {
1035 dev_err(&indio_dev->dev, "Failed to write calfact\n");
1036 return ret;
1037 }
1038
1039 /*
1040 * Read back calibration data, has two effects:
1041 * - It ensures bits LINCALRDYW[6..1] are kept cleared
1042 * for next time calibration needs to be restored.
1043 * - BTW, bit clear triggers a read, then check data has been
1044 * correctly written.
1045 */
1046 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
1047 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1048 !(val & lincalrdyw_mask),
1049 100, STM32_ADC_TIMEOUT_US);
1050 if (ret) {
1051 dev_err(&indio_dev->dev, "Failed to read calfact\n");
1052 return ret;
1053 }
1054 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
1055 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
1056 dev_err(&indio_dev->dev, "calfact not consistent\n");
1057 return -EIO;
1058 }
1059
1060 lincalrdyw_mask >>= 1;
1061 }
1062
1063 return 0;
1064}
1065
1066/*
1067 * Fixed timeout value for ADC calibration.
1068 * worst cases:
1069 * - low clock frequency
1070 * - maximum prescalers
1071 * Calibration requires:
1072 * - 131,072 ADC clock cycle for the linear calibration
1073 * - 20 ADC clock cycle for the offset calibration
1074 *
1075 * Set to 100ms for now
1076 */
1077#define STM32H7_ADC_CALIB_TIMEOUT_US 100000
1078
1079/**
1080 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
1081 * @indio_dev: IIO device instance
1082 * @do_lincal: linear calibration request flag
1083 * Note: Must be called once ADC is out of power down.
1084 *
1085 * Run offset calibration unconditionally.
1086 * Run linear calibration if requested & supported.
1087 */
1088static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev, int do_lincal)
1089{
1090 struct stm32_adc *adc = iio_priv(indio_dev);
1091 int ret;
1092 u32 msk = STM32H7_ADCALDIF;
1093 u32 val;
1094
1095 if (adc->cfg->has_linearcal && do_lincal)
1096 msk |= STM32H7_ADCALLIN;
1097 /* ADC must be disabled for calibration */
1098 stm32h7_adc_disable(indio_dev);
1099
1100 /*
1101 * Select calibration mode:
1102 * - Offset calibration for single ended inputs
1103 * - No linearity calibration (do it later, before reading it)
1104 */
1105 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, msk);
1106
1107 /* Start calibration, then wait for completion */
1108 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1109 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1110 !(val & STM32H7_ADCAL), 100,
1111 STM32H7_ADC_CALIB_TIMEOUT_US);
1112 if (ret) {
1113 dev_err(&indio_dev->dev, "calibration (single-ended) error %d\n", ret);
1114 goto out;
1115 }
1116
1117 /*
1118 * Select calibration mode, then start calibration:
1119 * - Offset calibration for differential input
1120 * - Linearity calibration (needs to be done only once for single/diff)
1121 * will run simultaneously with offset calibration.
1122 */
1123 stm32_adc_set_bits(adc, STM32H7_ADC_CR, msk);
1124 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1125 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1126 !(val & STM32H7_ADCAL), 100,
1127 STM32H7_ADC_CALIB_TIMEOUT_US);
1128 if (ret) {
1129 dev_err(&indio_dev->dev, "calibration (diff%s) error %d\n",
1130 (msk & STM32H7_ADCALLIN) ? "+linear" : "", ret);
1131 goto out;
1132 }
1133
1134out:
1135 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, msk);
1136
1137 return ret;
1138}
1139
1140/**
1141 * stm32h7_adc_check_selfcalib() - Check linear calibration status
1142 * @indio_dev: IIO device instance
1143 *
1144 * Used to check if linear calibration has been done.
1145 * Return true if linear calibration factors are already saved in private data
1146 * or if a linear calibration has been done at boot stage.
1147 */
1148static int stm32h7_adc_check_selfcalib(struct iio_dev *indio_dev)
1149{
1150 struct stm32_adc *adc = iio_priv(indio_dev);
1151 u32 val;
1152
1153 if (adc->cal.lincal_saved)
1154 return true;
1155
1156 /*
1157 * Check if linear calibration factors are available in ADC registers,
1158 * by checking that all LINCALRDYWx bits are set.
1159 */
1160 val = stm32_adc_readl(adc, STM32H7_ADC_CR) & STM32H7_LINCALRDYW_MASK;
1161 if (val == STM32H7_LINCALRDYW_MASK)
1162 return true;
1163
1164 return false;
1165}
1166
1167/**
1168 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
1169 * @indio_dev: IIO device instance
1170 * Leave power down mode.
1171 * Configure channels as single ended or differential before enabling ADC.
1172 * Enable ADC.
1173 * Restore calibration data.
1174 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
1175 * - Only one input is selected for single ended (e.g. 'vinp')
1176 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
1177 */
1178static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
1179{
1180 struct stm32_adc *adc = iio_priv(indio_dev);
1181 int lincal_done = false;
1182 int ret;
1183
1184 ret = stm32h7_adc_exit_pwr_down(indio_dev);
1185 if (ret)
1186 return ret;
1187
1188 if (adc->cfg->has_linearcal)
1189 lincal_done = stm32h7_adc_check_selfcalib(indio_dev);
1190
1191 /* Always run offset calibration. Run linear calibration only once */
1192 ret = stm32h7_adc_selfcalib(indio_dev, !lincal_done);
1193 if (ret < 0)
1194 goto pwr_dwn;
1195
1196 stm32_adc_int_ch_enable(indio_dev);
1197
1198 stm32_adc_writel(adc, adc->cfg->regs->difsel.reg, adc->difsel);
1199
1200 ret = stm32h7_adc_enable(indio_dev);
1201 if (ret)
1202 goto ch_disable;
1203
1204 if (adc->cfg->has_linearcal) {
1205 if (!adc->cal.lincal_saved)
1206 ret = stm32h7_adc_read_selfcalib(indio_dev);
1207 else
1208 ret = stm32h7_adc_restore_selfcalib(indio_dev);
1209
1210 if (ret)
1211 goto disable;
1212 }
1213
1214 if (adc->cfg->has_presel)
1215 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
1216
1217 return 0;
1218
1219disable:
1220 stm32h7_adc_disable(indio_dev);
1221ch_disable:
1222 stm32_adc_int_ch_disable(adc);
1223pwr_dwn:
1224 stm32h7_adc_enter_pwr_down(adc);
1225
1226 return ret;
1227}
1228
1229static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
1230{
1231 struct stm32_adc *adc = iio_priv(indio_dev);
1232
1233 if (adc->cfg->has_presel)
1234 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, 0);
1235 stm32h7_adc_disable(indio_dev);
1236 stm32_adc_int_ch_disable(adc);
1237 stm32h7_adc_enter_pwr_down(adc);
1238}
1239
1240/**
1241 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
1242 * @indio_dev: IIO device
1243 * @scan_mask: channels to be converted
1244 *
1245 * Conversion sequence :
1246 * Apply sampling time settings for all channels.
1247 * Configure ADC scan sequence based on selected channels in scan_mask.
1248 * Add channels to SQR registers, from scan_mask LSB to MSB, then
1249 * program sequence len.
1250 */
1251static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1252 const unsigned long *scan_mask)
1253{
1254 struct stm32_adc *adc = iio_priv(indio_dev);
1255 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1256 const struct iio_chan_spec *chan;
1257 u32 val, bit;
1258 int i = 0;
1259
1260 /* Apply sampling time settings */
1261 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1262 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1263
1264 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1265 chan = indio_dev->channels + bit;
1266 /*
1267 * Assign one channel per SQ entry in regular
1268 * sequence, starting with SQ1.
1269 */
1270 i++;
1271 if (i > STM32_ADC_MAX_SQ)
1272 return -EINVAL;
1273
1274 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1275 __func__, chan->channel, i);
1276
1277 val = stm32_adc_readl(adc, sqr[i].reg);
1278 val &= ~sqr[i].mask;
1279 val |= chan->channel << sqr[i].shift;
1280 stm32_adc_writel(adc, sqr[i].reg, val);
1281 }
1282
1283 if (!i)
1284 return -EINVAL;
1285
1286 /* Sequence len */
1287 val = stm32_adc_readl(adc, sqr[0].reg);
1288 val &= ~sqr[0].mask;
1289 val |= ((i - 1) << sqr[0].shift);
1290 stm32_adc_writel(adc, sqr[0].reg, val);
1291
1292 return 0;
1293}
1294
1295/**
1296 * stm32_adc_get_trig_extsel() - Get external trigger selection
1297 * @indio_dev: IIO device structure
1298 * @trig: trigger
1299 *
1300 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1301 */
1302static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1303 struct iio_trigger *trig)
1304{
1305 struct stm32_adc *adc = iio_priv(indio_dev);
1306 int i;
1307
1308 /* lookup triggers registered by stm32 timer trigger driver */
1309 for (i = 0; adc->cfg->trigs[i].name; i++) {
1310 /**
1311 * Checking both stm32 timer trigger type and trig name
1312 * should be safe against arbitrary trigger names.
1313 */
1314 if ((is_stm32_timer_trigger(trig) ||
1315 is_stm32_lptim_trigger(trig)) &&
1316 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1317 return adc->cfg->trigs[i].extsel;
1318 }
1319 }
1320
1321 return -EINVAL;
1322}
1323
1324/**
1325 * stm32_adc_set_trig() - Set a regular trigger
1326 * @indio_dev: IIO device
1327 * @trig: IIO trigger
1328 *
1329 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1330 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1331 * - if HW trigger enabled, set source & polarity
1332 */
1333static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1334 struct iio_trigger *trig)
1335{
1336 struct stm32_adc *adc = iio_priv(indio_dev);
1337 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1338 unsigned long flags;
1339 int ret;
1340
1341 if (trig) {
1342 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1343 if (ret < 0)
1344 return ret;
1345
1346 /* set trigger source and polarity (default to rising edge) */
1347 extsel = ret;
1348 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1349 }
1350
1351 spin_lock_irqsave(&adc->lock, flags);
1352 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1353 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1354 val |= exten << adc->cfg->regs->exten.shift;
1355 val |= extsel << adc->cfg->regs->extsel.shift;
1356 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1357 spin_unlock_irqrestore(&adc->lock, flags);
1358
1359 return 0;
1360}
1361
1362static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1363 const struct iio_chan_spec *chan,
1364 unsigned int type)
1365{
1366 struct stm32_adc *adc = iio_priv(indio_dev);
1367
1368 adc->trigger_polarity = type;
1369
1370 return 0;
1371}
1372
1373static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1374 const struct iio_chan_spec *chan)
1375{
1376 struct stm32_adc *adc = iio_priv(indio_dev);
1377
1378 return adc->trigger_polarity;
1379}
1380
1381static const char * const stm32_trig_pol_items[] = {
1382 "rising-edge", "falling-edge", "both-edges",
1383};
1384
1385static const struct iio_enum stm32_adc_trig_pol = {
1386 .items = stm32_trig_pol_items,
1387 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1388 .get = stm32_adc_get_trig_pol,
1389 .set = stm32_adc_set_trig_pol,
1390};
1391
1392/**
1393 * stm32_adc_single_conv() - Performs a single conversion
1394 * @indio_dev: IIO device
1395 * @chan: IIO channel
1396 * @res: conversion result
1397 *
1398 * The function performs a single conversion on a given channel:
1399 * - Apply sampling time settings
1400 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1401 * - Use SW trigger
1402 * - Start conversion, then wait for interrupt completion.
1403 */
1404static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1405 const struct iio_chan_spec *chan,
1406 int *res)
1407{
1408 struct stm32_adc *adc = iio_priv(indio_dev);
1409 struct device *dev = indio_dev->dev.parent;
1410 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1411 long timeout;
1412 u32 val;
1413 int ret;
1414
1415 reinit_completion(&adc->completion);
1416
1417 adc->bufi = 0;
1418
1419 ret = pm_runtime_resume_and_get(dev);
1420 if (ret < 0)
1421 return ret;
1422
1423 /* Apply sampling time settings */
1424 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1425 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1426
1427 /* Program chan number in regular sequence (SQ1) */
1428 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1429 val &= ~regs->sqr[1].mask;
1430 val |= chan->channel << regs->sqr[1].shift;
1431 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1432
1433 /* Set regular sequence len (0 for 1 conversion) */
1434 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1435
1436 /* Trigger detection disabled (conversion can be launched in SW) */
1437 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1438
1439 stm32_adc_conv_irq_enable(adc);
1440
1441 adc->cfg->start_conv(indio_dev, false);
1442
1443 timeout = wait_for_completion_interruptible_timeout(
1444 &adc->completion, STM32_ADC_TIMEOUT);
1445 if (timeout == 0) {
1446 ret = -ETIMEDOUT;
1447 } else if (timeout < 0) {
1448 ret = timeout;
1449 } else {
1450 *res = adc->buffer[0];
1451 ret = IIO_VAL_INT;
1452 }
1453
1454 adc->cfg->stop_conv(indio_dev);
1455
1456 stm32_adc_conv_irq_disable(adc);
1457
1458 pm_runtime_mark_last_busy(dev);
1459 pm_runtime_put_autosuspend(dev);
1460
1461 return ret;
1462}
1463
1464static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1465 struct iio_chan_spec const *chan,
1466 int *val, int *val2, long mask)
1467{
1468 struct stm32_adc *adc = iio_priv(indio_dev);
1469 int ret;
1470
1471 switch (mask) {
1472 case IIO_CHAN_INFO_RAW:
1473 case IIO_CHAN_INFO_PROCESSED:
1474 ret = iio_device_claim_direct_mode(indio_dev);
1475 if (ret)
1476 return ret;
1477 if (chan->type == IIO_VOLTAGE)
1478 ret = stm32_adc_single_conv(indio_dev, chan, val);
1479 else
1480 ret = -EINVAL;
1481
1482 if (mask == IIO_CHAN_INFO_PROCESSED)
1483 *val = STM32_ADC_VREFINT_VOLTAGE * adc->vrefint.vrefint_cal / *val;
1484
1485 iio_device_release_direct_mode(indio_dev);
1486 return ret;
1487
1488 case IIO_CHAN_INFO_SCALE:
1489 if (chan->differential) {
1490 *val = adc->common->vref_mv * 2;
1491 *val2 = chan->scan_type.realbits;
1492 } else {
1493 *val = adc->common->vref_mv;
1494 *val2 = chan->scan_type.realbits;
1495 }
1496 return IIO_VAL_FRACTIONAL_LOG2;
1497
1498 case IIO_CHAN_INFO_OFFSET:
1499 if (chan->differential)
1500 /* ADC_full_scale / 2 */
1501 *val = -((1 << chan->scan_type.realbits) / 2);
1502 else
1503 *val = 0;
1504 return IIO_VAL_INT;
1505
1506 default:
1507 return -EINVAL;
1508 }
1509}
1510
1511static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
1512{
1513 struct stm32_adc *adc = iio_priv(indio_dev);
1514
1515 adc->cfg->irq_clear(indio_dev, msk);
1516}
1517
1518static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1519{
1520 struct iio_dev *indio_dev = data;
1521 struct stm32_adc *adc = iio_priv(indio_dev);
1522 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1523 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1524
1525 /* Check ovr status right now, as ovr mask should be already disabled */
1526 if (status & regs->isr_ovr.mask) {
1527 /*
1528 * Clear ovr bit to avoid subsequent calls to IRQ handler.
1529 * This requires to stop ADC first. OVR bit state in ISR,
1530 * is propaged to CSR register by hardware.
1531 */
1532 adc->cfg->stop_conv(indio_dev);
1533 stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask);
1534 dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
1535 return IRQ_HANDLED;
1536 }
1537
1538 return IRQ_NONE;
1539}
1540
1541static irqreturn_t stm32_adc_isr(int irq, void *data)
1542{
1543 struct iio_dev *indio_dev = data;
1544 struct stm32_adc *adc = iio_priv(indio_dev);
1545 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1546 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1547
1548 if (status & regs->isr_ovr.mask) {
1549 /*
1550 * Overrun occurred on regular conversions: data for wrong
1551 * channel may be read. Unconditionally disable interrupts
1552 * to stop processing data and print error message.
1553 * Restarting the capture can be done by disabling, then
1554 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1555 */
1556 stm32_adc_ovr_irq_disable(adc);
1557 stm32_adc_conv_irq_disable(adc);
1558 return IRQ_WAKE_THREAD;
1559 }
1560
1561 if (status & regs->isr_eoc.mask) {
1562 /* Reading DR also clears EOC status flag */
1563 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1564 if (iio_buffer_enabled(indio_dev)) {
1565 adc->bufi++;
1566 if (adc->bufi >= adc->num_conv) {
1567 stm32_adc_conv_irq_disable(adc);
1568 iio_trigger_poll(indio_dev->trig);
1569 }
1570 } else {
1571 complete(&adc->completion);
1572 }
1573 return IRQ_HANDLED;
1574 }
1575
1576 return IRQ_NONE;
1577}
1578
1579/**
1580 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1581 * @indio_dev: IIO device
1582 * @trig: new trigger
1583 *
1584 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1585 * driver, -EINVAL otherwise.
1586 */
1587static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1588 struct iio_trigger *trig)
1589{
1590 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1591}
1592
1593static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1594{
1595 struct stm32_adc *adc = iio_priv(indio_dev);
1596 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1597 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1598
1599 /*
1600 * dma cyclic transfers are used, buffer is split into two periods.
1601 * There should be :
1602 * - always one buffer (period) dma is working on
1603 * - one buffer (period) driver can push data.
1604 */
1605 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1606 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1607
1608 return 0;
1609}
1610
1611static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1612 const unsigned long *scan_mask)
1613{
1614 struct stm32_adc *adc = iio_priv(indio_dev);
1615 struct device *dev = indio_dev->dev.parent;
1616 int ret;
1617
1618 ret = pm_runtime_resume_and_get(dev);
1619 if (ret < 0)
1620 return ret;
1621
1622 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1623
1624 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1625 pm_runtime_mark_last_busy(dev);
1626 pm_runtime_put_autosuspend(dev);
1627
1628 return ret;
1629}
1630
1631static int stm32_adc_fwnode_xlate(struct iio_dev *indio_dev,
1632 const struct fwnode_reference_args *iiospec)
1633{
1634 int i;
1635
1636 for (i = 0; i < indio_dev->num_channels; i++)
1637 if (indio_dev->channels[i].channel == iiospec->args[0])
1638 return i;
1639
1640 return -EINVAL;
1641}
1642
1643/**
1644 * stm32_adc_debugfs_reg_access - read or write register value
1645 * @indio_dev: IIO device structure
1646 * @reg: register offset
1647 * @writeval: value to write
1648 * @readval: value to read
1649 *
1650 * To read a value from an ADC register:
1651 * echo [ADC reg offset] > direct_reg_access
1652 * cat direct_reg_access
1653 *
1654 * To write a value in a ADC register:
1655 * echo [ADC_reg_offset] [value] > direct_reg_access
1656 */
1657static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1658 unsigned reg, unsigned writeval,
1659 unsigned *readval)
1660{
1661 struct stm32_adc *adc = iio_priv(indio_dev);
1662 struct device *dev = indio_dev->dev.parent;
1663 int ret;
1664
1665 ret = pm_runtime_resume_and_get(dev);
1666 if (ret < 0)
1667 return ret;
1668
1669 if (!readval)
1670 stm32_adc_writel(adc, reg, writeval);
1671 else
1672 *readval = stm32_adc_readl(adc, reg);
1673
1674 pm_runtime_mark_last_busy(dev);
1675 pm_runtime_put_autosuspend(dev);
1676
1677 return 0;
1678}
1679
1680static const struct iio_info stm32_adc_iio_info = {
1681 .read_raw = stm32_adc_read_raw,
1682 .validate_trigger = stm32_adc_validate_trigger,
1683 .hwfifo_set_watermark = stm32_adc_set_watermark,
1684 .update_scan_mode = stm32_adc_update_scan_mode,
1685 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1686 .fwnode_xlate = stm32_adc_fwnode_xlate,
1687};
1688
1689static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1690{
1691 struct dma_tx_state state;
1692 enum dma_status status;
1693
1694 status = dmaengine_tx_status(adc->dma_chan,
1695 adc->dma_chan->cookie,
1696 &state);
1697 if (status == DMA_IN_PROGRESS) {
1698 /* Residue is size in bytes from end of buffer */
1699 unsigned int i = adc->rx_buf_sz - state.residue;
1700 unsigned int size;
1701
1702 /* Return available bytes */
1703 if (i >= adc->bufi)
1704 size = i - adc->bufi;
1705 else
1706 size = adc->rx_buf_sz + i - adc->bufi;
1707
1708 return size;
1709 }
1710
1711 return 0;
1712}
1713
1714static void stm32_adc_dma_buffer_done(void *data)
1715{
1716 struct iio_dev *indio_dev = data;
1717 struct stm32_adc *adc = iio_priv(indio_dev);
1718 int residue = stm32_adc_dma_residue(adc);
1719
1720 /*
1721 * In DMA mode the trigger services of IIO are not used
1722 * (e.g. no call to iio_trigger_poll).
1723 * Calling irq handler associated to the hardware trigger is not
1724 * relevant as the conversions have already been done. Data
1725 * transfers are performed directly in DMA callback instead.
1726 * This implementation avoids to call trigger irq handler that
1727 * may sleep, in an atomic context (DMA irq handler context).
1728 */
1729 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1730
1731 while (residue >= indio_dev->scan_bytes) {
1732 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1733
1734 iio_push_to_buffers(indio_dev, buffer);
1735
1736 residue -= indio_dev->scan_bytes;
1737 adc->bufi += indio_dev->scan_bytes;
1738 if (adc->bufi >= adc->rx_buf_sz)
1739 adc->bufi = 0;
1740 }
1741}
1742
1743static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1744{
1745 struct stm32_adc *adc = iio_priv(indio_dev);
1746 struct dma_async_tx_descriptor *desc;
1747 dma_cookie_t cookie;
1748 int ret;
1749
1750 if (!adc->dma_chan)
1751 return 0;
1752
1753 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1754 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1755
1756 /* Prepare a DMA cyclic transaction */
1757 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1758 adc->rx_dma_buf,
1759 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1760 DMA_DEV_TO_MEM,
1761 DMA_PREP_INTERRUPT);
1762 if (!desc)
1763 return -EBUSY;
1764
1765 desc->callback = stm32_adc_dma_buffer_done;
1766 desc->callback_param = indio_dev;
1767
1768 cookie = dmaengine_submit(desc);
1769 ret = dma_submit_error(cookie);
1770 if (ret) {
1771 dmaengine_terminate_sync(adc->dma_chan);
1772 return ret;
1773 }
1774
1775 /* Issue pending DMA requests */
1776 dma_async_issue_pending(adc->dma_chan);
1777
1778 return 0;
1779}
1780
1781static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1782{
1783 struct stm32_adc *adc = iio_priv(indio_dev);
1784 struct device *dev = indio_dev->dev.parent;
1785 int ret;
1786
1787 ret = pm_runtime_resume_and_get(dev);
1788 if (ret < 0)
1789 return ret;
1790
1791 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1792 if (ret) {
1793 dev_err(&indio_dev->dev, "Can't set trigger\n");
1794 goto err_pm_put;
1795 }
1796
1797 ret = stm32_adc_dma_start(indio_dev);
1798 if (ret) {
1799 dev_err(&indio_dev->dev, "Can't start dma\n");
1800 goto err_clr_trig;
1801 }
1802
1803 /* Reset adc buffer index */
1804 adc->bufi = 0;
1805
1806 stm32_adc_ovr_irq_enable(adc);
1807
1808 if (!adc->dma_chan)
1809 stm32_adc_conv_irq_enable(adc);
1810
1811 adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
1812
1813 return 0;
1814
1815err_clr_trig:
1816 stm32_adc_set_trig(indio_dev, NULL);
1817err_pm_put:
1818 pm_runtime_mark_last_busy(dev);
1819 pm_runtime_put_autosuspend(dev);
1820
1821 return ret;
1822}
1823
1824static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1825{
1826 struct stm32_adc *adc = iio_priv(indio_dev);
1827 struct device *dev = indio_dev->dev.parent;
1828
1829 adc->cfg->stop_conv(indio_dev);
1830 if (!adc->dma_chan)
1831 stm32_adc_conv_irq_disable(adc);
1832
1833 stm32_adc_ovr_irq_disable(adc);
1834
1835 if (adc->dma_chan)
1836 dmaengine_terminate_sync(adc->dma_chan);
1837
1838 if (stm32_adc_set_trig(indio_dev, NULL))
1839 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1840
1841 pm_runtime_mark_last_busy(dev);
1842 pm_runtime_put_autosuspend(dev);
1843
1844 return 0;
1845}
1846
1847static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1848 .postenable = &stm32_adc_buffer_postenable,
1849 .predisable = &stm32_adc_buffer_predisable,
1850};
1851
1852static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1853{
1854 struct iio_poll_func *pf = p;
1855 struct iio_dev *indio_dev = pf->indio_dev;
1856 struct stm32_adc *adc = iio_priv(indio_dev);
1857
1858 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1859
1860 /* reset buffer index */
1861 adc->bufi = 0;
1862 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1863 pf->timestamp);
1864 iio_trigger_notify_done(indio_dev->trig);
1865
1866 /* re-enable eoc irq */
1867 stm32_adc_conv_irq_enable(adc);
1868
1869 return IRQ_HANDLED;
1870}
1871
1872static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1873 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1874 {
1875 .name = "trigger_polarity_available",
1876 .shared = IIO_SHARED_BY_ALL,
1877 .read = iio_enum_available_read,
1878 .private = (uintptr_t)&stm32_adc_trig_pol,
1879 },
1880 {},
1881};
1882
1883static void stm32_adc_debugfs_init(struct iio_dev *indio_dev)
1884{
1885 struct stm32_adc *adc = iio_priv(indio_dev);
1886 struct dentry *d = iio_get_debugfs_dentry(indio_dev);
1887 struct stm32_adc_calib *cal = &adc->cal;
1888 char buf[16];
1889 unsigned int i;
1890
1891 if (!adc->cfg->has_linearcal)
1892 return;
1893
1894 for (i = 0; i < STM32H7_LINCALFACT_NUM; i++) {
1895 snprintf(buf, sizeof(buf), "lincalfact%d", i + 1);
1896 debugfs_create_u32(buf, 0444, d, &cal->lincalfact[i]);
1897 }
1898}
1899
1900static int stm32_adc_fw_get_resolution(struct iio_dev *indio_dev)
1901{
1902 struct device *dev = &indio_dev->dev;
1903 struct stm32_adc *adc = iio_priv(indio_dev);
1904 unsigned int i;
1905 u32 res;
1906
1907 if (device_property_read_u32(dev, "assigned-resolution-bits", &res))
1908 res = adc->cfg->adc_info->resolutions[0];
1909
1910 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1911 if (res == adc->cfg->adc_info->resolutions[i])
1912 break;
1913 if (i >= adc->cfg->adc_info->num_res) {
1914 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1915 return -EINVAL;
1916 }
1917
1918 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1919 adc->res = i;
1920
1921 return 0;
1922}
1923
1924static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1925{
1926 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1927 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1928 unsigned int i, smp, r = smpr->reg;
1929
1930 /*
1931 * For internal channels, ensure that the sampling time cannot
1932 * be lower than the one specified in the datasheet
1933 */
1934 for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
1935 if (channel == adc->int_ch[i] && adc->int_ch[i] != STM32_ADC_INT_CH_NONE)
1936 smp_ns = max(smp_ns, adc->cfg->ts_int_ch[i]);
1937
1938 /* Determine sampling time (ADC clock cycles) */
1939 period_ns = NSEC_PER_SEC / adc->common->rate;
1940 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1941 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1942 break;
1943 if (smp > STM32_ADC_MAX_SMP)
1944 smp = STM32_ADC_MAX_SMP;
1945
1946 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1947 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1948}
1949
1950static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1951 struct iio_chan_spec *chan, u32 vinp,
1952 u32 vinn, int scan_index, bool differential)
1953{
1954 struct stm32_adc *adc = iio_priv(indio_dev);
1955 char *name = adc->chan_name[vinp];
1956
1957 chan->type = IIO_VOLTAGE;
1958 chan->channel = vinp;
1959 if (differential) {
1960 chan->differential = 1;
1961 chan->channel2 = vinn;
1962 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1963 } else {
1964 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1965 }
1966 chan->datasheet_name = name;
1967 chan->scan_index = scan_index;
1968 chan->indexed = 1;
1969 if (chan->channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
1970 chan->info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED);
1971 else
1972 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1973 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1974 BIT(IIO_CHAN_INFO_OFFSET);
1975 chan->scan_type.sign = 'u';
1976 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1977 chan->scan_type.storagebits = 16;
1978 chan->ext_info = stm32_adc_ext_info;
1979
1980 /* pre-build selected channels mask */
1981 adc->pcsel |= BIT(chan->channel);
1982 if (differential) {
1983 /* pre-build diff channels mask */
1984 adc->difsel |= BIT(chan->channel) & adc->cfg->regs->difsel.mask;
1985 /* Also add negative input to pre-selected channels */
1986 adc->pcsel |= BIT(chan->channel2);
1987 }
1988}
1989
1990static int stm32_adc_get_legacy_chan_count(struct iio_dev *indio_dev, struct stm32_adc *adc)
1991{
1992 struct device *dev = &indio_dev->dev;
1993 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1994 int num_channels = 0, ret;
1995
1996 ret = device_property_count_u32(dev, "st,adc-channels");
1997 if (ret > adc_info->max_channels) {
1998 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1999 return -EINVAL;
2000 } else if (ret > 0) {
2001 num_channels += ret;
2002 }
2003
2004 /*
2005 * each st,adc-diff-channels is a group of 2 u32 so we divide @ret
2006 * to get the *real* number of channels.
2007 */
2008 ret = device_property_count_u32(dev, "st,adc-diff-channels");
2009 if (ret < 0)
2010 return ret;
2011
2012 ret /= (int)(sizeof(struct stm32_adc_diff_channel) / sizeof(u32));
2013 if (ret > adc_info->max_channels) {
2014 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
2015 return -EINVAL;
2016 } else if (ret > 0) {
2017 adc->num_diff = ret;
2018 num_channels += ret;
2019 }
2020
2021 /* Optional sample time is provided either for each, or all channels */
2022 adc->nsmps = device_property_count_u32(dev, "st,min-sample-time-nsecs");
2023 if (adc->nsmps > 1 && adc->nsmps != num_channels) {
2024 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
2025 return -EINVAL;
2026 }
2027
2028 return num_channels;
2029}
2030
2031static int stm32_adc_legacy_chan_init(struct iio_dev *indio_dev,
2032 struct stm32_adc *adc,
2033 struct iio_chan_spec *channels,
2034 int nchans)
2035{
2036 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2037 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
2038 struct device *dev = &indio_dev->dev;
2039 u32 num_diff = adc->num_diff;
2040 int size = num_diff * sizeof(*diff) / sizeof(u32);
2041 int scan_index = 0, ret, i, c;
2042 u32 smp = 0, smps[STM32_ADC_CH_MAX], chans[STM32_ADC_CH_MAX];
2043
2044 if (num_diff) {
2045 ret = device_property_read_u32_array(dev, "st,adc-diff-channels",
2046 (u32 *)diff, size);
2047 if (ret) {
2048 dev_err(&indio_dev->dev, "Failed to get diff channels %d\n", ret);
2049 return ret;
2050 }
2051
2052 for (i = 0; i < num_diff; i++) {
2053 if (diff[i].vinp >= adc_info->max_channels ||
2054 diff[i].vinn >= adc_info->max_channels) {
2055 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
2056 diff[i].vinp, diff[i].vinn);
2057 return -EINVAL;
2058 }
2059
2060 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
2061 diff[i].vinp, diff[i].vinn,
2062 scan_index, true);
2063 scan_index++;
2064 }
2065 }
2066
2067 ret = device_property_read_u32_array(dev, "st,adc-channels", chans,
2068 nchans);
2069 if (ret)
2070 return ret;
2071
2072 for (c = 0; c < nchans; c++) {
2073 if (chans[c] >= adc_info->max_channels) {
2074 dev_err(&indio_dev->dev, "Invalid channel %d\n",
2075 chans[c]);
2076 return -EINVAL;
2077 }
2078
2079 /* Channel can't be configured both as single-ended & diff */
2080 for (i = 0; i < num_diff; i++) {
2081 if (chans[c] == diff[i].vinp) {
2082 dev_err(&indio_dev->dev, "channel %d misconfigured\n", chans[c]);
2083 return -EINVAL;
2084 }
2085 }
2086 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
2087 chans[c], 0, scan_index, false);
2088 scan_index++;
2089 }
2090
2091 if (adc->nsmps > 0) {
2092 ret = device_property_read_u32_array(dev, "st,min-sample-time-nsecs",
2093 smps, adc->nsmps);
2094 if (ret)
2095 return ret;
2096 }
2097
2098 for (i = 0; i < scan_index; i++) {
2099 /*
2100 * This check is used with the above logic so that smp value
2101 * will only be modified if valid u32 value can be decoded. This
2102 * allows to get either no value, 1 shared value for all indexes,
2103 * or one value per channel. The point is to have the same
2104 * behavior as 'of_property_read_u32_index()'.
2105 */
2106 if (i < adc->nsmps)
2107 smp = smps[i];
2108
2109 /* Prepare sampling time settings */
2110 stm32_adc_smpr_init(adc, channels[i].channel, smp);
2111 }
2112
2113 return scan_index;
2114}
2115
2116static int stm32_adc_populate_int_ch(struct iio_dev *indio_dev, const char *ch_name,
2117 int chan)
2118{
2119 struct stm32_adc *adc = iio_priv(indio_dev);
2120 u16 vrefint;
2121 int i, ret;
2122
2123 for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
2124 if (!strncmp(stm32_adc_ic[i].name, ch_name, STM32_ADC_CH_SZ)) {
2125 /* Check internal channel availability */
2126 switch (i) {
2127 case STM32_ADC_INT_CH_VDDCORE:
2128 if (!adc->cfg->regs->or_vddcore.reg)
2129 dev_warn(&indio_dev->dev,
2130 "%s channel not available\n", ch_name);
2131 break;
2132 case STM32_ADC_INT_CH_VDDCPU:
2133 if (!adc->cfg->regs->or_vddcpu.reg)
2134 dev_warn(&indio_dev->dev,
2135 "%s channel not available\n", ch_name);
2136 break;
2137 case STM32_ADC_INT_CH_VDDQ_DDR:
2138 if (!adc->cfg->regs->or_vddq_ddr.reg)
2139 dev_warn(&indio_dev->dev,
2140 "%s channel not available\n", ch_name);
2141 break;
2142 case STM32_ADC_INT_CH_VREFINT:
2143 if (!adc->cfg->regs->ccr_vref.reg)
2144 dev_warn(&indio_dev->dev,
2145 "%s channel not available\n", ch_name);
2146 break;
2147 case STM32_ADC_INT_CH_VBAT:
2148 if (!adc->cfg->regs->ccr_vbat.reg)
2149 dev_warn(&indio_dev->dev,
2150 "%s channel not available\n", ch_name);
2151 break;
2152 }
2153
2154 if (stm32_adc_ic[i].idx != STM32_ADC_INT_CH_VREFINT) {
2155 adc->int_ch[i] = chan;
2156 break;
2157 }
2158
2159 /* Get calibration data for vrefint channel */
2160 ret = nvmem_cell_read_u16(&indio_dev->dev, "vrefint", &vrefint);
2161 if (ret && ret != -ENOENT) {
2162 return dev_err_probe(indio_dev->dev.parent, ret,
2163 "nvmem access error\n");
2164 }
2165 if (ret == -ENOENT) {
2166 dev_dbg(&indio_dev->dev, "vrefint calibration not found. Skip vrefint channel\n");
2167 return ret;
2168 } else if (!vrefint) {
2169 dev_dbg(&indio_dev->dev, "Null vrefint calibration value. Skip vrefint channel\n");
2170 return -ENOENT;
2171 }
2172 adc->int_ch[i] = chan;
2173 adc->vrefint.vrefint_cal = vrefint;
2174 }
2175 }
2176
2177 return 0;
2178}
2179
2180static int stm32_adc_generic_chan_init(struct iio_dev *indio_dev,
2181 struct stm32_adc *adc,
2182 struct iio_chan_spec *channels)
2183{
2184 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2185 struct fwnode_handle *child;
2186 const char *name;
2187 int val, scan_index = 0, ret;
2188 bool differential;
2189 u32 vin[2];
2190
2191 device_for_each_child_node(&indio_dev->dev, child) {
2192 ret = fwnode_property_read_u32(child, "reg", &val);
2193 if (ret) {
2194 dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
2195 goto err;
2196 }
2197
2198 ret = fwnode_property_read_string(child, "label", &name);
2199 /* label is optional */
2200 if (!ret) {
2201 if (strlen(name) >= STM32_ADC_CH_SZ) {
2202 dev_err(&indio_dev->dev, "Label %s exceeds %d characters\n",
2203 name, STM32_ADC_CH_SZ);
2204 ret = -EINVAL;
2205 goto err;
2206 }
2207 strncpy(adc->chan_name[val], name, STM32_ADC_CH_SZ);
2208 ret = stm32_adc_populate_int_ch(indio_dev, name, val);
2209 if (ret == -ENOENT)
2210 continue;
2211 else if (ret)
2212 goto err;
2213 } else if (ret != -EINVAL) {
2214 dev_err(&indio_dev->dev, "Invalid label %d\n", ret);
2215 goto err;
2216 }
2217
2218 if (val >= adc_info->max_channels) {
2219 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
2220 ret = -EINVAL;
2221 goto err;
2222 }
2223
2224 differential = false;
2225 ret = fwnode_property_read_u32_array(child, "diff-channels", vin, 2);
2226 /* diff-channels is optional */
2227 if (!ret) {
2228 differential = true;
2229 if (vin[0] != val || vin[1] >= adc_info->max_channels) {
2230 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
2231 vin[0], vin[1]);
2232 goto err;
2233 }
2234 } else if (ret != -EINVAL) {
2235 dev_err(&indio_dev->dev, "Invalid diff-channels property %d\n", ret);
2236 goto err;
2237 }
2238
2239 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
2240 vin[1], scan_index, differential);
2241
2242 val = 0;
2243 ret = fwnode_property_read_u32(child, "st,min-sample-time-ns", &val);
2244 /* st,min-sample-time-ns is optional */
2245 if (ret && ret != -EINVAL) {
2246 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-ns property %d\n",
2247 ret);
2248 goto err;
2249 }
2250
2251 stm32_adc_smpr_init(adc, channels[scan_index].channel, val);
2252 if (differential)
2253 stm32_adc_smpr_init(adc, vin[1], val);
2254
2255 scan_index++;
2256 }
2257
2258 return scan_index;
2259
2260err:
2261 fwnode_handle_put(child);
2262
2263 return ret;
2264}
2265
2266static int stm32_adc_chan_fw_init(struct iio_dev *indio_dev, bool timestamping)
2267{
2268 struct stm32_adc *adc = iio_priv(indio_dev);
2269 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2270 struct iio_chan_spec *channels;
2271 int scan_index = 0, num_channels = 0, ret, i;
2272 bool legacy = false;
2273
2274 for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
2275 adc->int_ch[i] = STM32_ADC_INT_CH_NONE;
2276
2277 num_channels = device_get_child_node_count(&indio_dev->dev);
2278 /* If no channels have been found, fallback to channels legacy properties. */
2279 if (!num_channels) {
2280 legacy = true;
2281
2282 ret = stm32_adc_get_legacy_chan_count(indio_dev, adc);
2283 if (!ret) {
2284 dev_err(indio_dev->dev.parent, "No channel found\n");
2285 return -ENODATA;
2286 } else if (ret < 0) {
2287 return ret;
2288 }
2289
2290 num_channels = ret;
2291 }
2292
2293 if (num_channels > adc_info->max_channels) {
2294 dev_err(&indio_dev->dev, "Channel number [%d] exceeds %d\n",
2295 num_channels, adc_info->max_channels);
2296 return -EINVAL;
2297 }
2298
2299 if (timestamping)
2300 num_channels++;
2301
2302 channels = devm_kcalloc(&indio_dev->dev, num_channels,
2303 sizeof(struct iio_chan_spec), GFP_KERNEL);
2304 if (!channels)
2305 return -ENOMEM;
2306
2307 if (legacy)
2308 ret = stm32_adc_legacy_chan_init(indio_dev, adc, channels,
2309 num_channels);
2310 else
2311 ret = stm32_adc_generic_chan_init(indio_dev, adc, channels);
2312 if (ret < 0)
2313 return ret;
2314 scan_index = ret;
2315
2316 if (timestamping) {
2317 struct iio_chan_spec *timestamp = &channels[scan_index];
2318
2319 timestamp->type = IIO_TIMESTAMP;
2320 timestamp->channel = -1;
2321 timestamp->scan_index = scan_index;
2322 timestamp->scan_type.sign = 's';
2323 timestamp->scan_type.realbits = 64;
2324 timestamp->scan_type.storagebits = 64;
2325
2326 scan_index++;
2327 }
2328
2329 indio_dev->num_channels = scan_index;
2330 indio_dev->channels = channels;
2331
2332 return 0;
2333}
2334
2335static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
2336{
2337 struct stm32_adc *adc = iio_priv(indio_dev);
2338 struct dma_slave_config config;
2339 int ret;
2340
2341 adc->dma_chan = dma_request_chan(dev, "rx");
2342 if (IS_ERR(adc->dma_chan)) {
2343 ret = PTR_ERR(adc->dma_chan);
2344 if (ret != -ENODEV)
2345 return dev_err_probe(dev, ret,
2346 "DMA channel request failed with\n");
2347
2348 /* DMA is optional: fall back to IRQ mode */
2349 adc->dma_chan = NULL;
2350 return 0;
2351 }
2352
2353 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
2354 STM32_DMA_BUFFER_SIZE,
2355 &adc->rx_dma_buf, GFP_KERNEL);
2356 if (!adc->rx_buf) {
2357 ret = -ENOMEM;
2358 goto err_release;
2359 }
2360
2361 /* Configure DMA channel to read data register */
2362 memset(&config, 0, sizeof(config));
2363 config.src_addr = (dma_addr_t)adc->common->phys_base;
2364 config.src_addr += adc->offset + adc->cfg->regs->dr;
2365 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
2366
2367 ret = dmaengine_slave_config(adc->dma_chan, &config);
2368 if (ret)
2369 goto err_free;
2370
2371 return 0;
2372
2373err_free:
2374 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
2375 adc->rx_buf, adc->rx_dma_buf);
2376err_release:
2377 dma_release_channel(adc->dma_chan);
2378
2379 return ret;
2380}
2381
2382static int stm32_adc_probe(struct platform_device *pdev)
2383{
2384 struct iio_dev *indio_dev;
2385 struct device *dev = &pdev->dev;
2386 irqreturn_t (*handler)(int irq, void *p) = NULL;
2387 struct stm32_adc *adc;
2388 bool timestamping = false;
2389 int ret;
2390
2391 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
2392 if (!indio_dev)
2393 return -ENOMEM;
2394
2395 adc = iio_priv(indio_dev);
2396 adc->common = dev_get_drvdata(pdev->dev.parent);
2397 spin_lock_init(&adc->lock);
2398 init_completion(&adc->completion);
2399 adc->cfg = device_get_match_data(dev);
2400
2401 indio_dev->name = dev_name(&pdev->dev);
2402 device_set_node(&indio_dev->dev, dev_fwnode(&pdev->dev));
2403 indio_dev->info = &stm32_adc_iio_info;
2404 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
2405
2406 platform_set_drvdata(pdev, indio_dev);
2407
2408 ret = device_property_read_u32(dev, "reg", &adc->offset);
2409 if (ret != 0) {
2410 dev_err(&pdev->dev, "missing reg property\n");
2411 return -EINVAL;
2412 }
2413
2414 adc->irq = platform_get_irq(pdev, 0);
2415 if (adc->irq < 0)
2416 return adc->irq;
2417
2418 ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
2419 stm32_adc_threaded_isr,
2420 0, pdev->name, indio_dev);
2421 if (ret) {
2422 dev_err(&pdev->dev, "failed to request IRQ\n");
2423 return ret;
2424 }
2425
2426 adc->clk = devm_clk_get(&pdev->dev, NULL);
2427 if (IS_ERR(adc->clk)) {
2428 ret = PTR_ERR(adc->clk);
2429 if (ret == -ENOENT && !adc->cfg->clk_required) {
2430 adc->clk = NULL;
2431 } else {
2432 dev_err(&pdev->dev, "Can't get clock\n");
2433 return ret;
2434 }
2435 }
2436
2437 ret = stm32_adc_fw_get_resolution(indio_dev);
2438 if (ret < 0)
2439 return ret;
2440
2441 ret = stm32_adc_dma_request(dev, indio_dev);
2442 if (ret < 0)
2443 return ret;
2444
2445 if (!adc->dma_chan) {
2446 /* For PIO mode only, iio_pollfunc_store_time stores a timestamp
2447 * in the primary trigger IRQ handler and stm32_adc_trigger_handler
2448 * runs in the IRQ thread to push out buffer along with timestamp.
2449 */
2450 handler = &stm32_adc_trigger_handler;
2451 timestamping = true;
2452 }
2453
2454 ret = stm32_adc_chan_fw_init(indio_dev, timestamping);
2455 if (ret < 0)
2456 goto err_dma_disable;
2457
2458 ret = iio_triggered_buffer_setup(indio_dev,
2459 &iio_pollfunc_store_time, handler,
2460 &stm32_adc_buffer_setup_ops);
2461 if (ret) {
2462 dev_err(&pdev->dev, "buffer setup failed\n");
2463 goto err_dma_disable;
2464 }
2465
2466 /* Get stm32-adc-core PM online */
2467 pm_runtime_get_noresume(dev);
2468 pm_runtime_set_active(dev);
2469 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
2470 pm_runtime_use_autosuspend(dev);
2471 pm_runtime_enable(dev);
2472
2473 ret = stm32_adc_hw_start(dev);
2474 if (ret)
2475 goto err_buffer_cleanup;
2476
2477 ret = iio_device_register(indio_dev);
2478 if (ret) {
2479 dev_err(&pdev->dev, "iio dev register failed\n");
2480 goto err_hw_stop;
2481 }
2482
2483 pm_runtime_mark_last_busy(dev);
2484 pm_runtime_put_autosuspend(dev);
2485
2486 if (IS_ENABLED(CONFIG_DEBUG_FS))
2487 stm32_adc_debugfs_init(indio_dev);
2488
2489 return 0;
2490
2491err_hw_stop:
2492 stm32_adc_hw_stop(dev);
2493
2494err_buffer_cleanup:
2495 pm_runtime_disable(dev);
2496 pm_runtime_set_suspended(dev);
2497 pm_runtime_put_noidle(dev);
2498 iio_triggered_buffer_cleanup(indio_dev);
2499
2500err_dma_disable:
2501 if (adc->dma_chan) {
2502 dma_free_coherent(adc->dma_chan->device->dev,
2503 STM32_DMA_BUFFER_SIZE,
2504 adc->rx_buf, adc->rx_dma_buf);
2505 dma_release_channel(adc->dma_chan);
2506 }
2507
2508 return ret;
2509}
2510
2511static int stm32_adc_remove(struct platform_device *pdev)
2512{
2513 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
2514 struct stm32_adc *adc = iio_priv(indio_dev);
2515
2516 pm_runtime_get_sync(&pdev->dev);
2517 /* iio_device_unregister() also removes debugfs entries */
2518 iio_device_unregister(indio_dev);
2519 stm32_adc_hw_stop(&pdev->dev);
2520 pm_runtime_disable(&pdev->dev);
2521 pm_runtime_set_suspended(&pdev->dev);
2522 pm_runtime_put_noidle(&pdev->dev);
2523 iio_triggered_buffer_cleanup(indio_dev);
2524 if (adc->dma_chan) {
2525 dma_free_coherent(adc->dma_chan->device->dev,
2526 STM32_DMA_BUFFER_SIZE,
2527 adc->rx_buf, adc->rx_dma_buf);
2528 dma_release_channel(adc->dma_chan);
2529 }
2530
2531 return 0;
2532}
2533
2534static int stm32_adc_suspend(struct device *dev)
2535{
2536 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2537
2538 if (iio_buffer_enabled(indio_dev))
2539 stm32_adc_buffer_predisable(indio_dev);
2540
2541 return pm_runtime_force_suspend(dev);
2542}
2543
2544static int stm32_adc_resume(struct device *dev)
2545{
2546 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2547 int ret;
2548
2549 ret = pm_runtime_force_resume(dev);
2550 if (ret < 0)
2551 return ret;
2552
2553 if (!iio_buffer_enabled(indio_dev))
2554 return 0;
2555
2556 ret = stm32_adc_update_scan_mode(indio_dev,
2557 indio_dev->active_scan_mask);
2558 if (ret < 0)
2559 return ret;
2560
2561 return stm32_adc_buffer_postenable(indio_dev);
2562}
2563
2564static int stm32_adc_runtime_suspend(struct device *dev)
2565{
2566 return stm32_adc_hw_stop(dev);
2567}
2568
2569static int stm32_adc_runtime_resume(struct device *dev)
2570{
2571 return stm32_adc_hw_start(dev);
2572}
2573
2574static const struct dev_pm_ops stm32_adc_pm_ops = {
2575 SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2576 RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2577 NULL)
2578};
2579
2580static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2581 .regs = &stm32f4_adc_regspec,
2582 .adc_info = &stm32f4_adc_info,
2583 .trigs = stm32f4_adc_trigs,
2584 .clk_required = true,
2585 .start_conv = stm32f4_adc_start_conv,
2586 .stop_conv = stm32f4_adc_stop_conv,
2587 .smp_cycles = stm32f4_adc_smp_cycles,
2588 .irq_clear = stm32f4_adc_irq_clear,
2589};
2590
2591const unsigned int stm32_adc_min_ts_h7[] = { 0, 0, 0, 4300, 9000 };
2592static_assert(ARRAY_SIZE(stm32_adc_min_ts_h7) == STM32_ADC_INT_CH_NB);
2593
2594static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2595 .regs = &stm32h7_adc_regspec,
2596 .adc_info = &stm32h7_adc_info,
2597 .trigs = stm32h7_adc_trigs,
2598 .has_boostmode = true,
2599 .has_linearcal = true,
2600 .has_presel = true,
2601 .start_conv = stm32h7_adc_start_conv,
2602 .stop_conv = stm32h7_adc_stop_conv,
2603 .prepare = stm32h7_adc_prepare,
2604 .unprepare = stm32h7_adc_unprepare,
2605 .smp_cycles = stm32h7_adc_smp_cycles,
2606 .irq_clear = stm32h7_adc_irq_clear,
2607 .ts_int_ch = stm32_adc_min_ts_h7,
2608};
2609
2610const unsigned int stm32_adc_min_ts_mp1[] = { 100, 100, 100, 4300, 9800 };
2611static_assert(ARRAY_SIZE(stm32_adc_min_ts_mp1) == STM32_ADC_INT_CH_NB);
2612
2613static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2614 .regs = &stm32mp1_adc_regspec,
2615 .adc_info = &stm32h7_adc_info,
2616 .trigs = stm32h7_adc_trigs,
2617 .has_vregready = true,
2618 .has_boostmode = true,
2619 .has_linearcal = true,
2620 .has_presel = true,
2621 .start_conv = stm32h7_adc_start_conv,
2622 .stop_conv = stm32h7_adc_stop_conv,
2623 .prepare = stm32h7_adc_prepare,
2624 .unprepare = stm32h7_adc_unprepare,
2625 .smp_cycles = stm32h7_adc_smp_cycles,
2626 .irq_clear = stm32h7_adc_irq_clear,
2627 .ts_int_ch = stm32_adc_min_ts_mp1,
2628};
2629
2630const unsigned int stm32_adc_min_ts_mp13[] = { 100, 0, 0, 4300, 9800 };
2631static_assert(ARRAY_SIZE(stm32_adc_min_ts_mp13) == STM32_ADC_INT_CH_NB);
2632
2633static const struct stm32_adc_cfg stm32mp13_adc_cfg = {
2634 .regs = &stm32mp13_adc_regspec,
2635 .adc_info = &stm32mp13_adc_info,
2636 .trigs = stm32h7_adc_trigs,
2637 .start_conv = stm32mp13_adc_start_conv,
2638 .stop_conv = stm32h7_adc_stop_conv,
2639 .prepare = stm32h7_adc_prepare,
2640 .unprepare = stm32h7_adc_unprepare,
2641 .smp_cycles = stm32mp13_adc_smp_cycles,
2642 .irq_clear = stm32h7_adc_irq_clear,
2643 .ts_int_ch = stm32_adc_min_ts_mp13,
2644};
2645
2646static const struct of_device_id stm32_adc_of_match[] = {
2647 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2648 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2649 { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2650 { .compatible = "st,stm32mp13-adc", .data = (void *)&stm32mp13_adc_cfg },
2651 {},
2652};
2653MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2654
2655static struct platform_driver stm32_adc_driver = {
2656 .probe = stm32_adc_probe,
2657 .remove = stm32_adc_remove,
2658 .driver = {
2659 .name = "stm32-adc",
2660 .of_match_table = stm32_adc_of_match,
2661 .pm = pm_ptr(&stm32_adc_pm_ops),
2662 },
2663};
2664module_platform_driver(stm32_adc_driver);
2665
2666MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2667MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2668MODULE_LICENSE("GPL v2");
2669MODULE_ALIAS("platform:stm32-adc");