Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is part of STM32 ADC driver
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 */
8
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
13#include <linux/iio/iio.h>
14#include <linux/iio/buffer.h>
15#include <linux/iio/timer/stm32-lptim-trigger.h>
16#include <linux/iio/timer/stm32-timer-trigger.h>
17#include <linux/iio/trigger.h>
18#include <linux/iio/trigger_consumer.h>
19#include <linux/iio/triggered_buffer.h>
20#include <linux/interrupt.h>
21#include <linux/io.h>
22#include <linux/iopoll.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/of.h>
27#include <linux/of_device.h>
28
29#include "stm32-adc-core.h"
30
31/* Number of linear calibration shadow registers / LINCALRDYW control bits */
32#define STM32H7_LINCALFACT_NUM 6
33
34/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
35#define STM32H7_BOOST_CLKRATE 20000000UL
36
37#define STM32_ADC_CH_MAX 20 /* max number of channels */
38#define STM32_ADC_CH_SZ 10 /* max channel name size */
39#define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
40#define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
41#define STM32_ADC_TIMEOUT_US 100000
42#define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
43#define STM32_ADC_HW_STOP_DELAY_MS 100
44
45#define STM32_DMA_BUFFER_SIZE PAGE_SIZE
46
47/* External trigger enable */
48enum stm32_adc_exten {
49 STM32_EXTEN_SWTRIG,
50 STM32_EXTEN_HWTRIG_RISING_EDGE,
51 STM32_EXTEN_HWTRIG_FALLING_EDGE,
52 STM32_EXTEN_HWTRIG_BOTH_EDGES,
53};
54
55/* extsel - trigger mux selection value */
56enum stm32_adc_extsel {
57 STM32_EXT0,
58 STM32_EXT1,
59 STM32_EXT2,
60 STM32_EXT3,
61 STM32_EXT4,
62 STM32_EXT5,
63 STM32_EXT6,
64 STM32_EXT7,
65 STM32_EXT8,
66 STM32_EXT9,
67 STM32_EXT10,
68 STM32_EXT11,
69 STM32_EXT12,
70 STM32_EXT13,
71 STM32_EXT14,
72 STM32_EXT15,
73 STM32_EXT16,
74 STM32_EXT17,
75 STM32_EXT18,
76 STM32_EXT19,
77 STM32_EXT20,
78};
79
80/**
81 * struct stm32_adc_trig_info - ADC trigger info
82 * @name: name of the trigger, corresponding to its source
83 * @extsel: trigger selection
84 */
85struct stm32_adc_trig_info {
86 const char *name;
87 enum stm32_adc_extsel extsel;
88};
89
90/**
91 * struct stm32_adc_calib - optional adc calibration data
92 * @calfact_s: Calibration offset for single ended channels
93 * @calfact_d: Calibration offset in differential
94 * @lincalfact: Linearity calibration factor
95 * @calibrated: Indicates calibration status
96 */
97struct stm32_adc_calib {
98 u32 calfact_s;
99 u32 calfact_d;
100 u32 lincalfact[STM32H7_LINCALFACT_NUM];
101 bool calibrated;
102};
103
104/**
105 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
106 * @reg: register offset
107 * @mask: bitfield mask
108 * @shift: left shift
109 */
110struct stm32_adc_regs {
111 int reg;
112 int mask;
113 int shift;
114};
115
116/**
117 * stm32_adc_regspec - stm32 registers definition, compatible dependent data
118 * @dr: data register offset
119 * @ier_eoc: interrupt enable register & eocie bitfield
120 * @isr_eoc: interrupt status register & eoc bitfield
121 * @sqr: reference to sequence registers array
122 * @exten: trigger control register & bitfield
123 * @extsel: trigger selection register & bitfield
124 * @res: resolution selection register & bitfield
125 * @smpr: smpr1 & smpr2 registers offset array
126 * @smp_bits: smpr1 & smpr2 index and bitfields
127 */
128struct stm32_adc_regspec {
129 const u32 dr;
130 const struct stm32_adc_regs ier_eoc;
131 const struct stm32_adc_regs isr_eoc;
132 const struct stm32_adc_regs *sqr;
133 const struct stm32_adc_regs exten;
134 const struct stm32_adc_regs extsel;
135 const struct stm32_adc_regs res;
136 const u32 smpr[2];
137 const struct stm32_adc_regs *smp_bits;
138};
139
140struct stm32_adc;
141
142/**
143 * stm32_adc_cfg - stm32 compatible configuration data
144 * @regs: registers descriptions
145 * @adc_info: per instance input channels definitions
146 * @trigs: external trigger sources
147 * @clk_required: clock is required
148 * @has_vregready: vregready status flag presence
149 * @prepare: optional prepare routine (power-up, enable)
150 * @start_conv: routine to start conversions
151 * @stop_conv: routine to stop conversions
152 * @unprepare: optional unprepare routine (disable, power-down)
153 * @smp_cycles: programmable sampling time (ADC clock cycles)
154 */
155struct stm32_adc_cfg {
156 const struct stm32_adc_regspec *regs;
157 const struct stm32_adc_info *adc_info;
158 struct stm32_adc_trig_info *trigs;
159 bool clk_required;
160 bool has_vregready;
161 int (*prepare)(struct stm32_adc *);
162 void (*start_conv)(struct stm32_adc *, bool dma);
163 void (*stop_conv)(struct stm32_adc *);
164 void (*unprepare)(struct stm32_adc *);
165 const unsigned int *smp_cycles;
166};
167
168/**
169 * struct stm32_adc - private data of each ADC IIO instance
170 * @common: reference to ADC block common data
171 * @offset: ADC instance register offset in ADC block
172 * @cfg: compatible configuration data
173 * @completion: end of single conversion completion
174 * @buffer: data buffer
175 * @clk: clock for this adc instance
176 * @irq: interrupt for this adc instance
177 * @lock: spinlock
178 * @bufi: data buffer index
179 * @num_conv: expected number of scan conversions
180 * @res: data resolution (e.g. RES bitfield value)
181 * @trigger_polarity: external trigger polarity (e.g. exten)
182 * @dma_chan: dma channel
183 * @rx_buf: dma rx buffer cpu address
184 * @rx_dma_buf: dma rx buffer bus address
185 * @rx_buf_sz: dma rx buffer size
186 * @difsel bitmask to set single-ended/differential channel
187 * @pcsel bitmask to preselect channels on some devices
188 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
189 * @cal: optional calibration data on some devices
190 * @chan_name: channel name array
191 */
192struct stm32_adc {
193 struct stm32_adc_common *common;
194 u32 offset;
195 const struct stm32_adc_cfg *cfg;
196 struct completion completion;
197 u16 buffer[STM32_ADC_MAX_SQ];
198 struct clk *clk;
199 int irq;
200 spinlock_t lock; /* interrupt lock */
201 unsigned int bufi;
202 unsigned int num_conv;
203 u32 res;
204 u32 trigger_polarity;
205 struct dma_chan *dma_chan;
206 u8 *rx_buf;
207 dma_addr_t rx_dma_buf;
208 unsigned int rx_buf_sz;
209 u32 difsel;
210 u32 pcsel;
211 u32 smpr_val[2];
212 struct stm32_adc_calib cal;
213 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
214};
215
216struct stm32_adc_diff_channel {
217 u32 vinp;
218 u32 vinn;
219};
220
221/**
222 * struct stm32_adc_info - stm32 ADC, per instance config data
223 * @max_channels: Number of channels
224 * @resolutions: available resolutions
225 * @num_res: number of available resolutions
226 */
227struct stm32_adc_info {
228 int max_channels;
229 const unsigned int *resolutions;
230 const unsigned int num_res;
231};
232
233static const unsigned int stm32f4_adc_resolutions[] = {
234 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
235 12, 10, 8, 6,
236};
237
238/* stm32f4 can have up to 16 channels */
239static const struct stm32_adc_info stm32f4_adc_info = {
240 .max_channels = 16,
241 .resolutions = stm32f4_adc_resolutions,
242 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
243};
244
245static const unsigned int stm32h7_adc_resolutions[] = {
246 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
247 16, 14, 12, 10, 8,
248};
249
250/* stm32h7 can have up to 20 channels */
251static const struct stm32_adc_info stm32h7_adc_info = {
252 .max_channels = STM32_ADC_CH_MAX,
253 .resolutions = stm32h7_adc_resolutions,
254 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
255};
256
257/**
258 * stm32f4_sq - describe regular sequence registers
259 * - L: sequence len (register & bit field)
260 * - SQ1..SQ16: sequence entries (register & bit field)
261 */
262static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
263 /* L: len bit field description to be kept as first element */
264 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
265 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
266 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
267 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
268 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
269 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
270 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
271 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
272 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
273 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
274 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
275 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
276 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
277 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
278 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
279 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
280 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
281 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
282};
283
284/* STM32F4 external trigger sources for all instances */
285static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
286 { TIM1_CH1, STM32_EXT0 },
287 { TIM1_CH2, STM32_EXT1 },
288 { TIM1_CH3, STM32_EXT2 },
289 { TIM2_CH2, STM32_EXT3 },
290 { TIM2_CH3, STM32_EXT4 },
291 { TIM2_CH4, STM32_EXT5 },
292 { TIM2_TRGO, STM32_EXT6 },
293 { TIM3_CH1, STM32_EXT7 },
294 { TIM3_TRGO, STM32_EXT8 },
295 { TIM4_CH4, STM32_EXT9 },
296 { TIM5_CH1, STM32_EXT10 },
297 { TIM5_CH2, STM32_EXT11 },
298 { TIM5_CH3, STM32_EXT12 },
299 { TIM8_CH1, STM32_EXT13 },
300 { TIM8_TRGO, STM32_EXT14 },
301 {}, /* sentinel */
302};
303
304/**
305 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
306 * Sorted so it can be indexed by channel number.
307 */
308static const struct stm32_adc_regs stm32f4_smp_bits[] = {
309 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
310 { 1, GENMASK(2, 0), 0 },
311 { 1, GENMASK(5, 3), 3 },
312 { 1, GENMASK(8, 6), 6 },
313 { 1, GENMASK(11, 9), 9 },
314 { 1, GENMASK(14, 12), 12 },
315 { 1, GENMASK(17, 15), 15 },
316 { 1, GENMASK(20, 18), 18 },
317 { 1, GENMASK(23, 21), 21 },
318 { 1, GENMASK(26, 24), 24 },
319 { 1, GENMASK(29, 27), 27 },
320 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
321 { 0, GENMASK(2, 0), 0 },
322 { 0, GENMASK(5, 3), 3 },
323 { 0, GENMASK(8, 6), 6 },
324 { 0, GENMASK(11, 9), 9 },
325 { 0, GENMASK(14, 12), 12 },
326 { 0, GENMASK(17, 15), 15 },
327 { 0, GENMASK(20, 18), 18 },
328 { 0, GENMASK(23, 21), 21 },
329 { 0, GENMASK(26, 24), 24 },
330};
331
332/* STM32F4 programmable sampling time (ADC clock cycles) */
333static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
334 3, 15, 28, 56, 84, 112, 144, 480,
335};
336
337static const struct stm32_adc_regspec stm32f4_adc_regspec = {
338 .dr = STM32F4_ADC_DR,
339 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
340 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
341 .sqr = stm32f4_sq,
342 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
343 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
344 STM32F4_EXTSEL_SHIFT },
345 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
346 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
347 .smp_bits = stm32f4_smp_bits,
348};
349
350static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
351 /* L: len bit field description to be kept as first element */
352 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
353 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
354 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
355 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
356 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
357 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
358 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
359 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
360 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
361 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
362 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
363 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
364 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
365 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
366 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
367 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
368 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
369 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
370};
371
372/* STM32H7 external trigger sources for all instances */
373static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
374 { TIM1_CH1, STM32_EXT0 },
375 { TIM1_CH2, STM32_EXT1 },
376 { TIM1_CH3, STM32_EXT2 },
377 { TIM2_CH2, STM32_EXT3 },
378 { TIM3_TRGO, STM32_EXT4 },
379 { TIM4_CH4, STM32_EXT5 },
380 { TIM8_TRGO, STM32_EXT7 },
381 { TIM8_TRGO2, STM32_EXT8 },
382 { TIM1_TRGO, STM32_EXT9 },
383 { TIM1_TRGO2, STM32_EXT10 },
384 { TIM2_TRGO, STM32_EXT11 },
385 { TIM4_TRGO, STM32_EXT12 },
386 { TIM6_TRGO, STM32_EXT13 },
387 { TIM15_TRGO, STM32_EXT14 },
388 { TIM3_CH4, STM32_EXT15 },
389 { LPTIM1_OUT, STM32_EXT18 },
390 { LPTIM2_OUT, STM32_EXT19 },
391 { LPTIM3_OUT, STM32_EXT20 },
392 {},
393};
394
395/**
396 * stm32h7_smp_bits - describe sampling time register index & bit fields
397 * Sorted so it can be indexed by channel number.
398 */
399static const struct stm32_adc_regs stm32h7_smp_bits[] = {
400 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
401 { 0, GENMASK(2, 0), 0 },
402 { 0, GENMASK(5, 3), 3 },
403 { 0, GENMASK(8, 6), 6 },
404 { 0, GENMASK(11, 9), 9 },
405 { 0, GENMASK(14, 12), 12 },
406 { 0, GENMASK(17, 15), 15 },
407 { 0, GENMASK(20, 18), 18 },
408 { 0, GENMASK(23, 21), 21 },
409 { 0, GENMASK(26, 24), 24 },
410 { 0, GENMASK(29, 27), 27 },
411 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
412 { 1, GENMASK(2, 0), 0 },
413 { 1, GENMASK(5, 3), 3 },
414 { 1, GENMASK(8, 6), 6 },
415 { 1, GENMASK(11, 9), 9 },
416 { 1, GENMASK(14, 12), 12 },
417 { 1, GENMASK(17, 15), 15 },
418 { 1, GENMASK(20, 18), 18 },
419 { 1, GENMASK(23, 21), 21 },
420 { 1, GENMASK(26, 24), 24 },
421 { 1, GENMASK(29, 27), 27 },
422};
423
424/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
425static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
426 1, 2, 8, 16, 32, 64, 387, 810,
427};
428
429static const struct stm32_adc_regspec stm32h7_adc_regspec = {
430 .dr = STM32H7_ADC_DR,
431 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
432 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
433 .sqr = stm32h7_sq,
434 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
435 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
436 STM32H7_EXTSEL_SHIFT },
437 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
438 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
439 .smp_bits = stm32h7_smp_bits,
440};
441
442/**
443 * STM32 ADC registers access routines
444 * @adc: stm32 adc instance
445 * @reg: reg offset in adc instance
446 *
447 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
448 * for adc1, adc2 and adc3.
449 */
450static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
451{
452 return readl_relaxed(adc->common->base + adc->offset + reg);
453}
454
455#define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
456
457#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
458 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
459 cond, sleep_us, timeout_us)
460
461static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
462{
463 return readw_relaxed(adc->common->base + adc->offset + reg);
464}
465
466static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
467{
468 writel_relaxed(val, adc->common->base + adc->offset + reg);
469}
470
471static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
472{
473 unsigned long flags;
474
475 spin_lock_irqsave(&adc->lock, flags);
476 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
477 spin_unlock_irqrestore(&adc->lock, flags);
478}
479
480static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
481{
482 unsigned long flags;
483
484 spin_lock_irqsave(&adc->lock, flags);
485 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
486 spin_unlock_irqrestore(&adc->lock, flags);
487}
488
489/**
490 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
491 * @adc: stm32 adc instance
492 */
493static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
494{
495 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
496 adc->cfg->regs->ier_eoc.mask);
497};
498
499/**
500 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
501 * @adc: stm32 adc instance
502 */
503static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
504{
505 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
506 adc->cfg->regs->ier_eoc.mask);
507}
508
509static void stm32_adc_set_res(struct stm32_adc *adc)
510{
511 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
512 u32 val;
513
514 val = stm32_adc_readl(adc, res->reg);
515 val = (val & ~res->mask) | (adc->res << res->shift);
516 stm32_adc_writel(adc, res->reg, val);
517}
518
519static int stm32_adc_hw_stop(struct device *dev)
520{
521 struct stm32_adc *adc = dev_get_drvdata(dev);
522
523 if (adc->cfg->unprepare)
524 adc->cfg->unprepare(adc);
525
526 if (adc->clk)
527 clk_disable_unprepare(adc->clk);
528
529 return 0;
530}
531
532static int stm32_adc_hw_start(struct device *dev)
533{
534 struct stm32_adc *adc = dev_get_drvdata(dev);
535 int ret;
536
537 if (adc->clk) {
538 ret = clk_prepare_enable(adc->clk);
539 if (ret)
540 return ret;
541 }
542
543 stm32_adc_set_res(adc);
544
545 if (adc->cfg->prepare) {
546 ret = adc->cfg->prepare(adc);
547 if (ret)
548 goto err_clk_dis;
549 }
550
551 return 0;
552
553err_clk_dis:
554 if (adc->clk)
555 clk_disable_unprepare(adc->clk);
556
557 return ret;
558}
559
560/**
561 * stm32f4_adc_start_conv() - Start conversions for regular channels.
562 * @adc: stm32 adc instance
563 * @dma: use dma to transfer conversion result
564 *
565 * Start conversions for regular channels.
566 * Also take care of normal or DMA mode. Circular DMA may be used for regular
567 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
568 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
569 */
570static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
571{
572 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
573
574 if (dma)
575 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
576 STM32F4_DMA | STM32F4_DDS);
577
578 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
579
580 /* Wait for Power-up time (tSTAB from datasheet) */
581 usleep_range(2, 3);
582
583 /* Software start ? (e.g. trigger detection disabled ?) */
584 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
585 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
586}
587
588static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
589{
590 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
591 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
592
593 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
594 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
595 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
596}
597
598static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
599{
600 enum stm32h7_adc_dmngt dmngt;
601 unsigned long flags;
602 u32 val;
603
604 if (dma)
605 dmngt = STM32H7_DMNGT_DMA_CIRC;
606 else
607 dmngt = STM32H7_DMNGT_DR_ONLY;
608
609 spin_lock_irqsave(&adc->lock, flags);
610 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
611 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
612 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
613 spin_unlock_irqrestore(&adc->lock, flags);
614
615 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
616}
617
618static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
619{
620 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
621 int ret;
622 u32 val;
623
624 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
625
626 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
627 !(val & (STM32H7_ADSTART)),
628 100, STM32_ADC_TIMEOUT_US);
629 if (ret)
630 dev_warn(&indio_dev->dev, "stop failed\n");
631
632 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
633}
634
635static int stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
636{
637 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
638 int ret;
639 u32 val;
640
641 /* Exit deep power down, then enable ADC voltage regulator */
642 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
643 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
644
645 if (adc->common->rate > STM32H7_BOOST_CLKRATE)
646 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
647
648 /* Wait for startup time */
649 if (!adc->cfg->has_vregready) {
650 usleep_range(10, 20);
651 return 0;
652 }
653
654 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
655 val & STM32MP1_VREGREADY, 100,
656 STM32_ADC_TIMEOUT_US);
657 if (ret) {
658 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
659 dev_err(&indio_dev->dev, "Failed to exit power down\n");
660 }
661
662 return ret;
663}
664
665static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
666{
667 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
668
669 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
670 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
671}
672
673static int stm32h7_adc_enable(struct stm32_adc *adc)
674{
675 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
676 int ret;
677 u32 val;
678
679 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
680
681 /* Poll for ADRDY to be set (after adc startup time) */
682 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
683 val & STM32H7_ADRDY,
684 100, STM32_ADC_TIMEOUT_US);
685 if (ret) {
686 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
687 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
688 } else {
689 /* Clear ADRDY by writing one */
690 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
691 }
692
693 return ret;
694}
695
696static void stm32h7_adc_disable(struct stm32_adc *adc)
697{
698 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
699 int ret;
700 u32 val;
701
702 /* Disable ADC and wait until it's effectively disabled */
703 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
704 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
705 !(val & STM32H7_ADEN), 100,
706 STM32_ADC_TIMEOUT_US);
707 if (ret)
708 dev_warn(&indio_dev->dev, "Failed to disable\n");
709}
710
711/**
712 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
713 * @adc: stm32 adc instance
714 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
715 */
716static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
717{
718 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
719 int i, ret;
720 u32 lincalrdyw_mask, val;
721
722 /* Read linearity calibration */
723 lincalrdyw_mask = STM32H7_LINCALRDYW6;
724 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
725 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
726 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
727
728 /* Poll: wait calib data to be ready in CALFACT2 register */
729 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
730 !(val & lincalrdyw_mask),
731 100, STM32_ADC_TIMEOUT_US);
732 if (ret) {
733 dev_err(&indio_dev->dev, "Failed to read calfact\n");
734 return ret;
735 }
736
737 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
738 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
739 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
740
741 lincalrdyw_mask >>= 1;
742 }
743
744 /* Read offset calibration */
745 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
746 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
747 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
748 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
749 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
750 adc->cal.calibrated = true;
751
752 return 0;
753}
754
755/**
756 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
757 * @adc: stm32 adc instance
758 * Note: ADC must be enabled, with no on-going conversions.
759 */
760static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
761{
762 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
763 int i, ret;
764 u32 lincalrdyw_mask, val;
765
766 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
767 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
768 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
769
770 lincalrdyw_mask = STM32H7_LINCALRDYW6;
771 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
772 /*
773 * Write saved calibration data to shadow registers:
774 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
775 * data write. Then poll to wait for complete transfer.
776 */
777 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
778 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
779 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
780 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
781 val & lincalrdyw_mask,
782 100, STM32_ADC_TIMEOUT_US);
783 if (ret) {
784 dev_err(&indio_dev->dev, "Failed to write calfact\n");
785 return ret;
786 }
787
788 /*
789 * Read back calibration data, has two effects:
790 * - It ensures bits LINCALRDYW[6..1] are kept cleared
791 * for next time calibration needs to be restored.
792 * - BTW, bit clear triggers a read, then check data has been
793 * correctly written.
794 */
795 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
796 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
797 !(val & lincalrdyw_mask),
798 100, STM32_ADC_TIMEOUT_US);
799 if (ret) {
800 dev_err(&indio_dev->dev, "Failed to read calfact\n");
801 return ret;
802 }
803 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
804 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
805 dev_err(&indio_dev->dev, "calfact not consistent\n");
806 return -EIO;
807 }
808
809 lincalrdyw_mask >>= 1;
810 }
811
812 return 0;
813}
814
815/**
816 * Fixed timeout value for ADC calibration.
817 * worst cases:
818 * - low clock frequency
819 * - maximum prescalers
820 * Calibration requires:
821 * - 131,072 ADC clock cycle for the linear calibration
822 * - 20 ADC clock cycle for the offset calibration
823 *
824 * Set to 100ms for now
825 */
826#define STM32H7_ADC_CALIB_TIMEOUT_US 100000
827
828/**
829 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
830 * @adc: stm32 adc instance
831 * Note: Must be called once ADC is out of power down.
832 */
833static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
834{
835 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
836 int ret;
837 u32 val;
838
839 if (adc->cal.calibrated)
840 return true;
841
842 /*
843 * Select calibration mode:
844 * - Offset calibration for single ended inputs
845 * - No linearity calibration (do it later, before reading it)
846 */
847 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
848 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
849
850 /* Start calibration, then wait for completion */
851 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
852 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
853 !(val & STM32H7_ADCAL), 100,
854 STM32H7_ADC_CALIB_TIMEOUT_US);
855 if (ret) {
856 dev_err(&indio_dev->dev, "calibration failed\n");
857 goto out;
858 }
859
860 /*
861 * Select calibration mode, then start calibration:
862 * - Offset calibration for differential input
863 * - Linearity calibration (needs to be done only once for single/diff)
864 * will run simultaneously with offset calibration.
865 */
866 stm32_adc_set_bits(adc, STM32H7_ADC_CR,
867 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
868 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
869 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
870 !(val & STM32H7_ADCAL), 100,
871 STM32H7_ADC_CALIB_TIMEOUT_US);
872 if (ret) {
873 dev_err(&indio_dev->dev, "calibration failed\n");
874 goto out;
875 }
876
877out:
878 stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
879 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
880
881 return ret;
882}
883
884/**
885 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
886 * @adc: stm32 adc instance
887 * Leave power down mode.
888 * Configure channels as single ended or differential before enabling ADC.
889 * Enable ADC.
890 * Restore calibration data.
891 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
892 * - Only one input is selected for single ended (e.g. 'vinp')
893 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
894 */
895static int stm32h7_adc_prepare(struct stm32_adc *adc)
896{
897 int calib, ret;
898
899 ret = stm32h7_adc_exit_pwr_down(adc);
900 if (ret)
901 return ret;
902
903 ret = stm32h7_adc_selfcalib(adc);
904 if (ret < 0)
905 goto pwr_dwn;
906 calib = ret;
907
908 stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
909
910 ret = stm32h7_adc_enable(adc);
911 if (ret)
912 goto pwr_dwn;
913
914 /* Either restore or read calibration result for future reference */
915 if (calib)
916 ret = stm32h7_adc_restore_selfcalib(adc);
917 else
918 ret = stm32h7_adc_read_selfcalib(adc);
919 if (ret)
920 goto disable;
921
922 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
923
924 return 0;
925
926disable:
927 stm32h7_adc_disable(adc);
928pwr_dwn:
929 stm32h7_adc_enter_pwr_down(adc);
930
931 return ret;
932}
933
934static void stm32h7_adc_unprepare(struct stm32_adc *adc)
935{
936 stm32h7_adc_disable(adc);
937 stm32h7_adc_enter_pwr_down(adc);
938}
939
940/**
941 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
942 * @indio_dev: IIO device
943 * @scan_mask: channels to be converted
944 *
945 * Conversion sequence :
946 * Apply sampling time settings for all channels.
947 * Configure ADC scan sequence based on selected channels in scan_mask.
948 * Add channels to SQR registers, from scan_mask LSB to MSB, then
949 * program sequence len.
950 */
951static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
952 const unsigned long *scan_mask)
953{
954 struct stm32_adc *adc = iio_priv(indio_dev);
955 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
956 const struct iio_chan_spec *chan;
957 u32 val, bit;
958 int i = 0;
959
960 /* Apply sampling time settings */
961 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
962 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
963
964 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
965 chan = indio_dev->channels + bit;
966 /*
967 * Assign one channel per SQ entry in regular
968 * sequence, starting with SQ1.
969 */
970 i++;
971 if (i > STM32_ADC_MAX_SQ)
972 return -EINVAL;
973
974 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
975 __func__, chan->channel, i);
976
977 val = stm32_adc_readl(adc, sqr[i].reg);
978 val &= ~sqr[i].mask;
979 val |= chan->channel << sqr[i].shift;
980 stm32_adc_writel(adc, sqr[i].reg, val);
981 }
982
983 if (!i)
984 return -EINVAL;
985
986 /* Sequence len */
987 val = stm32_adc_readl(adc, sqr[0].reg);
988 val &= ~sqr[0].mask;
989 val |= ((i - 1) << sqr[0].shift);
990 stm32_adc_writel(adc, sqr[0].reg, val);
991
992 return 0;
993}
994
995/**
996 * stm32_adc_get_trig_extsel() - Get external trigger selection
997 * @trig: trigger
998 *
999 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1000 */
1001static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1002 struct iio_trigger *trig)
1003{
1004 struct stm32_adc *adc = iio_priv(indio_dev);
1005 int i;
1006
1007 /* lookup triggers registered by stm32 timer trigger driver */
1008 for (i = 0; adc->cfg->trigs[i].name; i++) {
1009 /**
1010 * Checking both stm32 timer trigger type and trig name
1011 * should be safe against arbitrary trigger names.
1012 */
1013 if ((is_stm32_timer_trigger(trig) ||
1014 is_stm32_lptim_trigger(trig)) &&
1015 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1016 return adc->cfg->trigs[i].extsel;
1017 }
1018 }
1019
1020 return -EINVAL;
1021}
1022
1023/**
1024 * stm32_adc_set_trig() - Set a regular trigger
1025 * @indio_dev: IIO device
1026 * @trig: IIO trigger
1027 *
1028 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1029 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1030 * - if HW trigger enabled, set source & polarity
1031 */
1032static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1033 struct iio_trigger *trig)
1034{
1035 struct stm32_adc *adc = iio_priv(indio_dev);
1036 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1037 unsigned long flags;
1038 int ret;
1039
1040 if (trig) {
1041 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1042 if (ret < 0)
1043 return ret;
1044
1045 /* set trigger source and polarity (default to rising edge) */
1046 extsel = ret;
1047 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1048 }
1049
1050 spin_lock_irqsave(&adc->lock, flags);
1051 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1052 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1053 val |= exten << adc->cfg->regs->exten.shift;
1054 val |= extsel << adc->cfg->regs->extsel.shift;
1055 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1056 spin_unlock_irqrestore(&adc->lock, flags);
1057
1058 return 0;
1059}
1060
1061static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1062 const struct iio_chan_spec *chan,
1063 unsigned int type)
1064{
1065 struct stm32_adc *adc = iio_priv(indio_dev);
1066
1067 adc->trigger_polarity = type;
1068
1069 return 0;
1070}
1071
1072static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1073 const struct iio_chan_spec *chan)
1074{
1075 struct stm32_adc *adc = iio_priv(indio_dev);
1076
1077 return adc->trigger_polarity;
1078}
1079
1080static const char * const stm32_trig_pol_items[] = {
1081 "rising-edge", "falling-edge", "both-edges",
1082};
1083
1084static const struct iio_enum stm32_adc_trig_pol = {
1085 .items = stm32_trig_pol_items,
1086 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1087 .get = stm32_adc_get_trig_pol,
1088 .set = stm32_adc_set_trig_pol,
1089};
1090
1091/**
1092 * stm32_adc_single_conv() - Performs a single conversion
1093 * @indio_dev: IIO device
1094 * @chan: IIO channel
1095 * @res: conversion result
1096 *
1097 * The function performs a single conversion on a given channel:
1098 * - Apply sampling time settings
1099 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1100 * - Use SW trigger
1101 * - Start conversion, then wait for interrupt completion.
1102 */
1103static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1104 const struct iio_chan_spec *chan,
1105 int *res)
1106{
1107 struct stm32_adc *adc = iio_priv(indio_dev);
1108 struct device *dev = indio_dev->dev.parent;
1109 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1110 long timeout;
1111 u32 val;
1112 int ret;
1113
1114 reinit_completion(&adc->completion);
1115
1116 adc->bufi = 0;
1117
1118 ret = pm_runtime_get_sync(dev);
1119 if (ret < 0) {
1120 pm_runtime_put_noidle(dev);
1121 return ret;
1122 }
1123
1124 /* Apply sampling time settings */
1125 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1126 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1127
1128 /* Program chan number in regular sequence (SQ1) */
1129 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1130 val &= ~regs->sqr[1].mask;
1131 val |= chan->channel << regs->sqr[1].shift;
1132 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1133
1134 /* Set regular sequence len (0 for 1 conversion) */
1135 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1136
1137 /* Trigger detection disabled (conversion can be launched in SW) */
1138 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1139
1140 stm32_adc_conv_irq_enable(adc);
1141
1142 adc->cfg->start_conv(adc, false);
1143
1144 timeout = wait_for_completion_interruptible_timeout(
1145 &adc->completion, STM32_ADC_TIMEOUT);
1146 if (timeout == 0) {
1147 ret = -ETIMEDOUT;
1148 } else if (timeout < 0) {
1149 ret = timeout;
1150 } else {
1151 *res = adc->buffer[0];
1152 ret = IIO_VAL_INT;
1153 }
1154
1155 adc->cfg->stop_conv(adc);
1156
1157 stm32_adc_conv_irq_disable(adc);
1158
1159 pm_runtime_mark_last_busy(dev);
1160 pm_runtime_put_autosuspend(dev);
1161
1162 return ret;
1163}
1164
1165static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1166 struct iio_chan_spec const *chan,
1167 int *val, int *val2, long mask)
1168{
1169 struct stm32_adc *adc = iio_priv(indio_dev);
1170 int ret;
1171
1172 switch (mask) {
1173 case IIO_CHAN_INFO_RAW:
1174 ret = iio_device_claim_direct_mode(indio_dev);
1175 if (ret)
1176 return ret;
1177 if (chan->type == IIO_VOLTAGE)
1178 ret = stm32_adc_single_conv(indio_dev, chan, val);
1179 else
1180 ret = -EINVAL;
1181 iio_device_release_direct_mode(indio_dev);
1182 return ret;
1183
1184 case IIO_CHAN_INFO_SCALE:
1185 if (chan->differential) {
1186 *val = adc->common->vref_mv * 2;
1187 *val2 = chan->scan_type.realbits;
1188 } else {
1189 *val = adc->common->vref_mv;
1190 *val2 = chan->scan_type.realbits;
1191 }
1192 return IIO_VAL_FRACTIONAL_LOG2;
1193
1194 case IIO_CHAN_INFO_OFFSET:
1195 if (chan->differential)
1196 /* ADC_full_scale / 2 */
1197 *val = -((1 << chan->scan_type.realbits) / 2);
1198 else
1199 *val = 0;
1200 return IIO_VAL_INT;
1201
1202 default:
1203 return -EINVAL;
1204 }
1205}
1206
1207static irqreturn_t stm32_adc_isr(int irq, void *data)
1208{
1209 struct stm32_adc *adc = data;
1210 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1211 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1212 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1213
1214 if (status & regs->isr_eoc.mask) {
1215 /* Reading DR also clears EOC status flag */
1216 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1217 if (iio_buffer_enabled(indio_dev)) {
1218 adc->bufi++;
1219 if (adc->bufi >= adc->num_conv) {
1220 stm32_adc_conv_irq_disable(adc);
1221 iio_trigger_poll(indio_dev->trig);
1222 }
1223 } else {
1224 complete(&adc->completion);
1225 }
1226 return IRQ_HANDLED;
1227 }
1228
1229 return IRQ_NONE;
1230}
1231
1232/**
1233 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1234 * @indio_dev: IIO device
1235 * @trig: new trigger
1236 *
1237 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1238 * driver, -EINVAL otherwise.
1239 */
1240static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1241 struct iio_trigger *trig)
1242{
1243 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1244}
1245
1246static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1247{
1248 struct stm32_adc *adc = iio_priv(indio_dev);
1249 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1250 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1251
1252 /*
1253 * dma cyclic transfers are used, buffer is split into two periods.
1254 * There should be :
1255 * - always one buffer (period) dma is working on
1256 * - one buffer (period) driver can push with iio_trigger_poll().
1257 */
1258 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1259 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1260
1261 return 0;
1262}
1263
1264static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1265 const unsigned long *scan_mask)
1266{
1267 struct stm32_adc *adc = iio_priv(indio_dev);
1268 struct device *dev = indio_dev->dev.parent;
1269 int ret;
1270
1271 ret = pm_runtime_get_sync(dev);
1272 if (ret < 0) {
1273 pm_runtime_put_noidle(dev);
1274 return ret;
1275 }
1276
1277 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1278
1279 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1280 pm_runtime_mark_last_busy(dev);
1281 pm_runtime_put_autosuspend(dev);
1282
1283 return ret;
1284}
1285
1286static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1287 const struct of_phandle_args *iiospec)
1288{
1289 int i;
1290
1291 for (i = 0; i < indio_dev->num_channels; i++)
1292 if (indio_dev->channels[i].channel == iiospec->args[0])
1293 return i;
1294
1295 return -EINVAL;
1296}
1297
1298/**
1299 * stm32_adc_debugfs_reg_access - read or write register value
1300 *
1301 * To read a value from an ADC register:
1302 * echo [ADC reg offset] > direct_reg_access
1303 * cat direct_reg_access
1304 *
1305 * To write a value in a ADC register:
1306 * echo [ADC_reg_offset] [value] > direct_reg_access
1307 */
1308static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1309 unsigned reg, unsigned writeval,
1310 unsigned *readval)
1311{
1312 struct stm32_adc *adc = iio_priv(indio_dev);
1313 struct device *dev = indio_dev->dev.parent;
1314 int ret;
1315
1316 ret = pm_runtime_get_sync(dev);
1317 if (ret < 0) {
1318 pm_runtime_put_noidle(dev);
1319 return ret;
1320 }
1321
1322 if (!readval)
1323 stm32_adc_writel(adc, reg, writeval);
1324 else
1325 *readval = stm32_adc_readl(adc, reg);
1326
1327 pm_runtime_mark_last_busy(dev);
1328 pm_runtime_put_autosuspend(dev);
1329
1330 return 0;
1331}
1332
1333static const struct iio_info stm32_adc_iio_info = {
1334 .read_raw = stm32_adc_read_raw,
1335 .validate_trigger = stm32_adc_validate_trigger,
1336 .hwfifo_set_watermark = stm32_adc_set_watermark,
1337 .update_scan_mode = stm32_adc_update_scan_mode,
1338 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1339 .of_xlate = stm32_adc_of_xlate,
1340};
1341
1342static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1343{
1344 struct dma_tx_state state;
1345 enum dma_status status;
1346
1347 status = dmaengine_tx_status(adc->dma_chan,
1348 adc->dma_chan->cookie,
1349 &state);
1350 if (status == DMA_IN_PROGRESS) {
1351 /* Residue is size in bytes from end of buffer */
1352 unsigned int i = adc->rx_buf_sz - state.residue;
1353 unsigned int size;
1354
1355 /* Return available bytes */
1356 if (i >= adc->bufi)
1357 size = i - adc->bufi;
1358 else
1359 size = adc->rx_buf_sz + i - adc->bufi;
1360
1361 return size;
1362 }
1363
1364 return 0;
1365}
1366
1367static void stm32_adc_dma_buffer_done(void *data)
1368{
1369 struct iio_dev *indio_dev = data;
1370
1371 iio_trigger_poll_chained(indio_dev->trig);
1372}
1373
1374static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1375{
1376 struct stm32_adc *adc = iio_priv(indio_dev);
1377 struct dma_async_tx_descriptor *desc;
1378 dma_cookie_t cookie;
1379 int ret;
1380
1381 if (!adc->dma_chan)
1382 return 0;
1383
1384 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1385 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1386
1387 /* Prepare a DMA cyclic transaction */
1388 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1389 adc->rx_dma_buf,
1390 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1391 DMA_DEV_TO_MEM,
1392 DMA_PREP_INTERRUPT);
1393 if (!desc)
1394 return -EBUSY;
1395
1396 desc->callback = stm32_adc_dma_buffer_done;
1397 desc->callback_param = indio_dev;
1398
1399 cookie = dmaengine_submit(desc);
1400 ret = dma_submit_error(cookie);
1401 if (ret) {
1402 dmaengine_terminate_sync(adc->dma_chan);
1403 return ret;
1404 }
1405
1406 /* Issue pending DMA requests */
1407 dma_async_issue_pending(adc->dma_chan);
1408
1409 return 0;
1410}
1411
1412static int __stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1413{
1414 struct stm32_adc *adc = iio_priv(indio_dev);
1415 struct device *dev = indio_dev->dev.parent;
1416 int ret;
1417
1418 ret = pm_runtime_get_sync(dev);
1419 if (ret < 0) {
1420 pm_runtime_put_noidle(dev);
1421 return ret;
1422 }
1423
1424 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1425 if (ret) {
1426 dev_err(&indio_dev->dev, "Can't set trigger\n");
1427 goto err_pm_put;
1428 }
1429
1430 ret = stm32_adc_dma_start(indio_dev);
1431 if (ret) {
1432 dev_err(&indio_dev->dev, "Can't start dma\n");
1433 goto err_clr_trig;
1434 }
1435
1436 /* Reset adc buffer index */
1437 adc->bufi = 0;
1438
1439 if (!adc->dma_chan)
1440 stm32_adc_conv_irq_enable(adc);
1441
1442 adc->cfg->start_conv(adc, !!adc->dma_chan);
1443
1444 return 0;
1445
1446err_clr_trig:
1447 stm32_adc_set_trig(indio_dev, NULL);
1448err_pm_put:
1449 pm_runtime_mark_last_busy(dev);
1450 pm_runtime_put_autosuspend(dev);
1451
1452 return ret;
1453}
1454
1455static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1456{
1457 int ret;
1458
1459 ret = iio_triggered_buffer_postenable(indio_dev);
1460 if (ret < 0)
1461 return ret;
1462
1463 ret = __stm32_adc_buffer_postenable(indio_dev);
1464 if (ret < 0)
1465 iio_triggered_buffer_predisable(indio_dev);
1466
1467 return ret;
1468}
1469
1470static void __stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1471{
1472 struct stm32_adc *adc = iio_priv(indio_dev);
1473 struct device *dev = indio_dev->dev.parent;
1474
1475 adc->cfg->stop_conv(adc);
1476 if (!adc->dma_chan)
1477 stm32_adc_conv_irq_disable(adc);
1478
1479 if (adc->dma_chan)
1480 dmaengine_terminate_sync(adc->dma_chan);
1481
1482 if (stm32_adc_set_trig(indio_dev, NULL))
1483 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1484
1485 pm_runtime_mark_last_busy(dev);
1486 pm_runtime_put_autosuspend(dev);
1487}
1488
1489static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1490{
1491 int ret;
1492
1493 __stm32_adc_buffer_predisable(indio_dev);
1494
1495 ret = iio_triggered_buffer_predisable(indio_dev);
1496 if (ret < 0)
1497 dev_err(&indio_dev->dev, "predisable failed\n");
1498
1499 return ret;
1500}
1501
1502static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1503 .postenable = &stm32_adc_buffer_postenable,
1504 .predisable = &stm32_adc_buffer_predisable,
1505};
1506
1507static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1508{
1509 struct iio_poll_func *pf = p;
1510 struct iio_dev *indio_dev = pf->indio_dev;
1511 struct stm32_adc *adc = iio_priv(indio_dev);
1512
1513 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1514
1515 if (!adc->dma_chan) {
1516 /* reset buffer index */
1517 adc->bufi = 0;
1518 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1519 pf->timestamp);
1520 } else {
1521 int residue = stm32_adc_dma_residue(adc);
1522
1523 while (residue >= indio_dev->scan_bytes) {
1524 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1525
1526 iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1527 pf->timestamp);
1528 residue -= indio_dev->scan_bytes;
1529 adc->bufi += indio_dev->scan_bytes;
1530 if (adc->bufi >= adc->rx_buf_sz)
1531 adc->bufi = 0;
1532 }
1533 }
1534
1535 iio_trigger_notify_done(indio_dev->trig);
1536
1537 /* re-enable eoc irq */
1538 if (!adc->dma_chan)
1539 stm32_adc_conv_irq_enable(adc);
1540
1541 return IRQ_HANDLED;
1542}
1543
1544static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1545 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1546 {
1547 .name = "trigger_polarity_available",
1548 .shared = IIO_SHARED_BY_ALL,
1549 .read = iio_enum_available_read,
1550 .private = (uintptr_t)&stm32_adc_trig_pol,
1551 },
1552 {},
1553};
1554
1555static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1556{
1557 struct device_node *node = indio_dev->dev.of_node;
1558 struct stm32_adc *adc = iio_priv(indio_dev);
1559 unsigned int i;
1560 u32 res;
1561
1562 if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1563 res = adc->cfg->adc_info->resolutions[0];
1564
1565 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1566 if (res == adc->cfg->adc_info->resolutions[i])
1567 break;
1568 if (i >= adc->cfg->adc_info->num_res) {
1569 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1570 return -EINVAL;
1571 }
1572
1573 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1574 adc->res = i;
1575
1576 return 0;
1577}
1578
1579static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1580{
1581 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1582 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1583 unsigned int smp, r = smpr->reg;
1584
1585 /* Determine sampling time (ADC clock cycles) */
1586 period_ns = NSEC_PER_SEC / adc->common->rate;
1587 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1588 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1589 break;
1590 if (smp > STM32_ADC_MAX_SMP)
1591 smp = STM32_ADC_MAX_SMP;
1592
1593 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1594 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1595}
1596
1597static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1598 struct iio_chan_spec *chan, u32 vinp,
1599 u32 vinn, int scan_index, bool differential)
1600{
1601 struct stm32_adc *adc = iio_priv(indio_dev);
1602 char *name = adc->chan_name[vinp];
1603
1604 chan->type = IIO_VOLTAGE;
1605 chan->channel = vinp;
1606 if (differential) {
1607 chan->differential = 1;
1608 chan->channel2 = vinn;
1609 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1610 } else {
1611 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1612 }
1613 chan->datasheet_name = name;
1614 chan->scan_index = scan_index;
1615 chan->indexed = 1;
1616 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1617 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1618 BIT(IIO_CHAN_INFO_OFFSET);
1619 chan->scan_type.sign = 'u';
1620 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1621 chan->scan_type.storagebits = 16;
1622 chan->ext_info = stm32_adc_ext_info;
1623
1624 /* pre-build selected channels mask */
1625 adc->pcsel |= BIT(chan->channel);
1626 if (differential) {
1627 /* pre-build diff channels mask */
1628 adc->difsel |= BIT(chan->channel);
1629 /* Also add negative input to pre-selected channels */
1630 adc->pcsel |= BIT(chan->channel2);
1631 }
1632}
1633
1634static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1635{
1636 struct device_node *node = indio_dev->dev.of_node;
1637 struct stm32_adc *adc = iio_priv(indio_dev);
1638 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1639 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1640 struct property *prop;
1641 const __be32 *cur;
1642 struct iio_chan_spec *channels;
1643 int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1644 u32 val, smp = 0;
1645
1646 ret = of_property_count_u32_elems(node, "st,adc-channels");
1647 if (ret > adc_info->max_channels) {
1648 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1649 return -EINVAL;
1650 } else if (ret > 0) {
1651 num_channels += ret;
1652 }
1653
1654 ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1655 sizeof(*diff));
1656 if (ret > adc_info->max_channels) {
1657 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1658 return -EINVAL;
1659 } else if (ret > 0) {
1660 int size = ret * sizeof(*diff) / sizeof(u32);
1661
1662 num_diff = ret;
1663 num_channels += ret;
1664 ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1665 (u32 *)diff, size);
1666 if (ret)
1667 return ret;
1668 }
1669
1670 if (!num_channels) {
1671 dev_err(&indio_dev->dev, "No channels configured\n");
1672 return -ENODATA;
1673 }
1674
1675 /* Optional sample time is provided either for each, or all channels */
1676 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1677 if (ret > 1 && ret != num_channels) {
1678 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1679 return -EINVAL;
1680 }
1681
1682 channels = devm_kcalloc(&indio_dev->dev, num_channels,
1683 sizeof(struct iio_chan_spec), GFP_KERNEL);
1684 if (!channels)
1685 return -ENOMEM;
1686
1687 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1688 if (val >= adc_info->max_channels) {
1689 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1690 return -EINVAL;
1691 }
1692
1693 /* Channel can't be configured both as single-ended & diff */
1694 for (i = 0; i < num_diff; i++) {
1695 if (val == diff[i].vinp) {
1696 dev_err(&indio_dev->dev,
1697 "channel %d miss-configured\n", val);
1698 return -EINVAL;
1699 }
1700 }
1701 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1702 0, scan_index, false);
1703 scan_index++;
1704 }
1705
1706 for (i = 0; i < num_diff; i++) {
1707 if (diff[i].vinp >= adc_info->max_channels ||
1708 diff[i].vinn >= adc_info->max_channels) {
1709 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1710 diff[i].vinp, diff[i].vinn);
1711 return -EINVAL;
1712 }
1713 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1714 diff[i].vinp, diff[i].vinn, scan_index,
1715 true);
1716 scan_index++;
1717 }
1718
1719 for (i = 0; i < scan_index; i++) {
1720 /*
1721 * Using of_property_read_u32_index(), smp value will only be
1722 * modified if valid u32 value can be decoded. This allows to
1723 * get either no value, 1 shared value for all indexes, or one
1724 * value per channel.
1725 */
1726 of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1727 i, &smp);
1728 /* Prepare sampling time settings */
1729 stm32_adc_smpr_init(adc, channels[i].channel, smp);
1730 }
1731
1732 indio_dev->num_channels = scan_index;
1733 indio_dev->channels = channels;
1734
1735 return 0;
1736}
1737
1738static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1739{
1740 struct stm32_adc *adc = iio_priv(indio_dev);
1741 struct dma_slave_config config;
1742 int ret;
1743
1744 adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1745 if (!adc->dma_chan)
1746 return 0;
1747
1748 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1749 STM32_DMA_BUFFER_SIZE,
1750 &adc->rx_dma_buf, GFP_KERNEL);
1751 if (!adc->rx_buf) {
1752 ret = -ENOMEM;
1753 goto err_release;
1754 }
1755
1756 /* Configure DMA channel to read data register */
1757 memset(&config, 0, sizeof(config));
1758 config.src_addr = (dma_addr_t)adc->common->phys_base;
1759 config.src_addr += adc->offset + adc->cfg->regs->dr;
1760 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1761
1762 ret = dmaengine_slave_config(adc->dma_chan, &config);
1763 if (ret)
1764 goto err_free;
1765
1766 return 0;
1767
1768err_free:
1769 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1770 adc->rx_buf, adc->rx_dma_buf);
1771err_release:
1772 dma_release_channel(adc->dma_chan);
1773
1774 return ret;
1775}
1776
1777static int stm32_adc_probe(struct platform_device *pdev)
1778{
1779 struct iio_dev *indio_dev;
1780 struct device *dev = &pdev->dev;
1781 struct stm32_adc *adc;
1782 int ret;
1783
1784 if (!pdev->dev.of_node)
1785 return -ENODEV;
1786
1787 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1788 if (!indio_dev)
1789 return -ENOMEM;
1790
1791 adc = iio_priv(indio_dev);
1792 adc->common = dev_get_drvdata(pdev->dev.parent);
1793 spin_lock_init(&adc->lock);
1794 init_completion(&adc->completion);
1795 adc->cfg = (const struct stm32_adc_cfg *)
1796 of_match_device(dev->driver->of_match_table, dev)->data;
1797
1798 indio_dev->name = dev_name(&pdev->dev);
1799 indio_dev->dev.parent = &pdev->dev;
1800 indio_dev->dev.of_node = pdev->dev.of_node;
1801 indio_dev->info = &stm32_adc_iio_info;
1802 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1803
1804 platform_set_drvdata(pdev, adc);
1805
1806 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1807 if (ret != 0) {
1808 dev_err(&pdev->dev, "missing reg property\n");
1809 return -EINVAL;
1810 }
1811
1812 adc->irq = platform_get_irq(pdev, 0);
1813 if (adc->irq < 0)
1814 return adc->irq;
1815
1816 ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1817 0, pdev->name, adc);
1818 if (ret) {
1819 dev_err(&pdev->dev, "failed to request IRQ\n");
1820 return ret;
1821 }
1822
1823 adc->clk = devm_clk_get(&pdev->dev, NULL);
1824 if (IS_ERR(adc->clk)) {
1825 ret = PTR_ERR(adc->clk);
1826 if (ret == -ENOENT && !adc->cfg->clk_required) {
1827 adc->clk = NULL;
1828 } else {
1829 dev_err(&pdev->dev, "Can't get clock\n");
1830 return ret;
1831 }
1832 }
1833
1834 ret = stm32_adc_of_get_resolution(indio_dev);
1835 if (ret < 0)
1836 return ret;
1837
1838 ret = stm32_adc_chan_of_init(indio_dev);
1839 if (ret < 0)
1840 return ret;
1841
1842 ret = stm32_adc_dma_request(indio_dev);
1843 if (ret < 0)
1844 return ret;
1845
1846 ret = iio_triggered_buffer_setup(indio_dev,
1847 &iio_pollfunc_store_time,
1848 &stm32_adc_trigger_handler,
1849 &stm32_adc_buffer_setup_ops);
1850 if (ret) {
1851 dev_err(&pdev->dev, "buffer setup failed\n");
1852 goto err_dma_disable;
1853 }
1854
1855 /* Get stm32-adc-core PM online */
1856 pm_runtime_get_noresume(dev);
1857 pm_runtime_set_active(dev);
1858 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1859 pm_runtime_use_autosuspend(dev);
1860 pm_runtime_enable(dev);
1861
1862 ret = stm32_adc_hw_start(dev);
1863 if (ret)
1864 goto err_buffer_cleanup;
1865
1866 ret = iio_device_register(indio_dev);
1867 if (ret) {
1868 dev_err(&pdev->dev, "iio dev register failed\n");
1869 goto err_hw_stop;
1870 }
1871
1872 pm_runtime_mark_last_busy(dev);
1873 pm_runtime_put_autosuspend(dev);
1874
1875 return 0;
1876
1877err_hw_stop:
1878 stm32_adc_hw_stop(dev);
1879
1880err_buffer_cleanup:
1881 pm_runtime_disable(dev);
1882 pm_runtime_set_suspended(dev);
1883 pm_runtime_put_noidle(dev);
1884 iio_triggered_buffer_cleanup(indio_dev);
1885
1886err_dma_disable:
1887 if (adc->dma_chan) {
1888 dma_free_coherent(adc->dma_chan->device->dev,
1889 STM32_DMA_BUFFER_SIZE,
1890 adc->rx_buf, adc->rx_dma_buf);
1891 dma_release_channel(adc->dma_chan);
1892 }
1893
1894 return ret;
1895}
1896
1897static int stm32_adc_remove(struct platform_device *pdev)
1898{
1899 struct stm32_adc *adc = platform_get_drvdata(pdev);
1900 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1901
1902 pm_runtime_get_sync(&pdev->dev);
1903 iio_device_unregister(indio_dev);
1904 stm32_adc_hw_stop(&pdev->dev);
1905 pm_runtime_disable(&pdev->dev);
1906 pm_runtime_set_suspended(&pdev->dev);
1907 pm_runtime_put_noidle(&pdev->dev);
1908 iio_triggered_buffer_cleanup(indio_dev);
1909 if (adc->dma_chan) {
1910 dma_free_coherent(adc->dma_chan->device->dev,
1911 STM32_DMA_BUFFER_SIZE,
1912 adc->rx_buf, adc->rx_dma_buf);
1913 dma_release_channel(adc->dma_chan);
1914 }
1915
1916 return 0;
1917}
1918
1919#if defined(CONFIG_PM_SLEEP)
1920static int stm32_adc_suspend(struct device *dev)
1921{
1922 struct stm32_adc *adc = dev_get_drvdata(dev);
1923 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1924
1925 if (iio_buffer_enabled(indio_dev))
1926 __stm32_adc_buffer_predisable(indio_dev);
1927
1928 return pm_runtime_force_suspend(dev);
1929}
1930
1931static int stm32_adc_resume(struct device *dev)
1932{
1933 struct stm32_adc *adc = dev_get_drvdata(dev);
1934 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1935 int ret;
1936
1937 ret = pm_runtime_force_resume(dev);
1938 if (ret < 0)
1939 return ret;
1940
1941 if (!iio_buffer_enabled(indio_dev))
1942 return 0;
1943
1944 ret = stm32_adc_update_scan_mode(indio_dev,
1945 indio_dev->active_scan_mask);
1946 if (ret < 0)
1947 return ret;
1948
1949 return __stm32_adc_buffer_postenable(indio_dev);
1950}
1951#endif
1952
1953#if defined(CONFIG_PM)
1954static int stm32_adc_runtime_suspend(struct device *dev)
1955{
1956 return stm32_adc_hw_stop(dev);
1957}
1958
1959static int stm32_adc_runtime_resume(struct device *dev)
1960{
1961 return stm32_adc_hw_start(dev);
1962}
1963#endif
1964
1965static const struct dev_pm_ops stm32_adc_pm_ops = {
1966 SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
1967 SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
1968 NULL)
1969};
1970
1971static const struct stm32_adc_cfg stm32f4_adc_cfg = {
1972 .regs = &stm32f4_adc_regspec,
1973 .adc_info = &stm32f4_adc_info,
1974 .trigs = stm32f4_adc_trigs,
1975 .clk_required = true,
1976 .start_conv = stm32f4_adc_start_conv,
1977 .stop_conv = stm32f4_adc_stop_conv,
1978 .smp_cycles = stm32f4_adc_smp_cycles,
1979};
1980
1981static const struct stm32_adc_cfg stm32h7_adc_cfg = {
1982 .regs = &stm32h7_adc_regspec,
1983 .adc_info = &stm32h7_adc_info,
1984 .trigs = stm32h7_adc_trigs,
1985 .start_conv = stm32h7_adc_start_conv,
1986 .stop_conv = stm32h7_adc_stop_conv,
1987 .prepare = stm32h7_adc_prepare,
1988 .unprepare = stm32h7_adc_unprepare,
1989 .smp_cycles = stm32h7_adc_smp_cycles,
1990};
1991
1992static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
1993 .regs = &stm32h7_adc_regspec,
1994 .adc_info = &stm32h7_adc_info,
1995 .trigs = stm32h7_adc_trigs,
1996 .has_vregready = true,
1997 .start_conv = stm32h7_adc_start_conv,
1998 .stop_conv = stm32h7_adc_stop_conv,
1999 .prepare = stm32h7_adc_prepare,
2000 .unprepare = stm32h7_adc_unprepare,
2001 .smp_cycles = stm32h7_adc_smp_cycles,
2002};
2003
2004static const struct of_device_id stm32_adc_of_match[] = {
2005 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2006 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2007 { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2008 {},
2009};
2010MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2011
2012static struct platform_driver stm32_adc_driver = {
2013 .probe = stm32_adc_probe,
2014 .remove = stm32_adc_remove,
2015 .driver = {
2016 .name = "stm32-adc",
2017 .of_match_table = stm32_adc_of_match,
2018 .pm = &stm32_adc_pm_ops,
2019 },
2020};
2021module_platform_driver(stm32_adc_driver);
2022
2023MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2024MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2025MODULE_LICENSE("GPL v2");
2026MODULE_ALIAS("platform:stm32-adc");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is part of STM32 ADC driver
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 */
8
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
13#include <linux/iio/iio.h>
14#include <linux/iio/buffer.h>
15#include <linux/iio/timer/stm32-lptim-trigger.h>
16#include <linux/iio/timer/stm32-timer-trigger.h>
17#include <linux/iio/trigger.h>
18#include <linux/iio/trigger_consumer.h>
19#include <linux/iio/triggered_buffer.h>
20#include <linux/interrupt.h>
21#include <linux/io.h>
22#include <linux/iopoll.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/of.h>
26#include <linux/of_device.h>
27
28#include "stm32-adc-core.h"
29
30/* STM32F4 - Registers for each ADC instance */
31#define STM32F4_ADC_SR 0x00
32#define STM32F4_ADC_CR1 0x04
33#define STM32F4_ADC_CR2 0x08
34#define STM32F4_ADC_SMPR1 0x0C
35#define STM32F4_ADC_SMPR2 0x10
36#define STM32F4_ADC_HTR 0x24
37#define STM32F4_ADC_LTR 0x28
38#define STM32F4_ADC_SQR1 0x2C
39#define STM32F4_ADC_SQR2 0x30
40#define STM32F4_ADC_SQR3 0x34
41#define STM32F4_ADC_JSQR 0x38
42#define STM32F4_ADC_JDR1 0x3C
43#define STM32F4_ADC_JDR2 0x40
44#define STM32F4_ADC_JDR3 0x44
45#define STM32F4_ADC_JDR4 0x48
46#define STM32F4_ADC_DR 0x4C
47
48/* STM32F4_ADC_SR - bit fields */
49#define STM32F4_STRT BIT(4)
50#define STM32F4_EOC BIT(1)
51
52/* STM32F4_ADC_CR1 - bit fields */
53#define STM32F4_RES_SHIFT 24
54#define STM32F4_RES_MASK GENMASK(25, 24)
55#define STM32F4_SCAN BIT(8)
56#define STM32F4_EOCIE BIT(5)
57
58/* STM32F4_ADC_CR2 - bit fields */
59#define STM32F4_SWSTART BIT(30)
60#define STM32F4_EXTEN_SHIFT 28
61#define STM32F4_EXTEN_MASK GENMASK(29, 28)
62#define STM32F4_EXTSEL_SHIFT 24
63#define STM32F4_EXTSEL_MASK GENMASK(27, 24)
64#define STM32F4_EOCS BIT(10)
65#define STM32F4_DDS BIT(9)
66#define STM32F4_DMA BIT(8)
67#define STM32F4_ADON BIT(0)
68
69/* STM32H7 - Registers for each ADC instance */
70#define STM32H7_ADC_ISR 0x00
71#define STM32H7_ADC_IER 0x04
72#define STM32H7_ADC_CR 0x08
73#define STM32H7_ADC_CFGR 0x0C
74#define STM32H7_ADC_SMPR1 0x14
75#define STM32H7_ADC_SMPR2 0x18
76#define STM32H7_ADC_PCSEL 0x1C
77#define STM32H7_ADC_SQR1 0x30
78#define STM32H7_ADC_SQR2 0x34
79#define STM32H7_ADC_SQR3 0x38
80#define STM32H7_ADC_SQR4 0x3C
81#define STM32H7_ADC_DR 0x40
82#define STM32H7_ADC_DIFSEL 0xC0
83#define STM32H7_ADC_CALFACT 0xC4
84#define STM32H7_ADC_CALFACT2 0xC8
85
86/* STM32H7_ADC_ISR - bit fields */
87#define STM32H7_EOC BIT(2)
88#define STM32H7_ADRDY BIT(0)
89
90/* STM32H7_ADC_IER - bit fields */
91#define STM32H7_EOCIE STM32H7_EOC
92
93/* STM32H7_ADC_CR - bit fields */
94#define STM32H7_ADCAL BIT(31)
95#define STM32H7_ADCALDIF BIT(30)
96#define STM32H7_DEEPPWD BIT(29)
97#define STM32H7_ADVREGEN BIT(28)
98#define STM32H7_LINCALRDYW6 BIT(27)
99#define STM32H7_LINCALRDYW5 BIT(26)
100#define STM32H7_LINCALRDYW4 BIT(25)
101#define STM32H7_LINCALRDYW3 BIT(24)
102#define STM32H7_LINCALRDYW2 BIT(23)
103#define STM32H7_LINCALRDYW1 BIT(22)
104#define STM32H7_ADCALLIN BIT(16)
105#define STM32H7_BOOST BIT(8)
106#define STM32H7_ADSTP BIT(4)
107#define STM32H7_ADSTART BIT(2)
108#define STM32H7_ADDIS BIT(1)
109#define STM32H7_ADEN BIT(0)
110
111/* STM32H7_ADC_CFGR bit fields */
112#define STM32H7_EXTEN_SHIFT 10
113#define STM32H7_EXTEN_MASK GENMASK(11, 10)
114#define STM32H7_EXTSEL_SHIFT 5
115#define STM32H7_EXTSEL_MASK GENMASK(9, 5)
116#define STM32H7_RES_SHIFT 2
117#define STM32H7_RES_MASK GENMASK(4, 2)
118#define STM32H7_DMNGT_SHIFT 0
119#define STM32H7_DMNGT_MASK GENMASK(1, 0)
120
121enum stm32h7_adc_dmngt {
122 STM32H7_DMNGT_DR_ONLY, /* Regular data in DR only */
123 STM32H7_DMNGT_DMA_ONESHOT, /* DMA one shot mode */
124 STM32H7_DMNGT_DFSDM, /* DFSDM mode */
125 STM32H7_DMNGT_DMA_CIRC, /* DMA circular mode */
126};
127
128/* STM32H7_ADC_CALFACT - bit fields */
129#define STM32H7_CALFACT_D_SHIFT 16
130#define STM32H7_CALFACT_D_MASK GENMASK(26, 16)
131#define STM32H7_CALFACT_S_SHIFT 0
132#define STM32H7_CALFACT_S_MASK GENMASK(10, 0)
133
134/* STM32H7_ADC_CALFACT2 - bit fields */
135#define STM32H7_LINCALFACT_SHIFT 0
136#define STM32H7_LINCALFACT_MASK GENMASK(29, 0)
137
138/* Number of linear calibration shadow registers / LINCALRDYW control bits */
139#define STM32H7_LINCALFACT_NUM 6
140
141/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
142#define STM32H7_BOOST_CLKRATE 20000000UL
143
144#define STM32_ADC_CH_MAX 20 /* max number of channels */
145#define STM32_ADC_CH_SZ 10 /* max channel name size */
146#define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
147#define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
148#define STM32_ADC_TIMEOUT_US 100000
149#define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
150
151#define STM32_DMA_BUFFER_SIZE PAGE_SIZE
152
153/* External trigger enable */
154enum stm32_adc_exten {
155 STM32_EXTEN_SWTRIG,
156 STM32_EXTEN_HWTRIG_RISING_EDGE,
157 STM32_EXTEN_HWTRIG_FALLING_EDGE,
158 STM32_EXTEN_HWTRIG_BOTH_EDGES,
159};
160
161/* extsel - trigger mux selection value */
162enum stm32_adc_extsel {
163 STM32_EXT0,
164 STM32_EXT1,
165 STM32_EXT2,
166 STM32_EXT3,
167 STM32_EXT4,
168 STM32_EXT5,
169 STM32_EXT6,
170 STM32_EXT7,
171 STM32_EXT8,
172 STM32_EXT9,
173 STM32_EXT10,
174 STM32_EXT11,
175 STM32_EXT12,
176 STM32_EXT13,
177 STM32_EXT14,
178 STM32_EXT15,
179 STM32_EXT16,
180 STM32_EXT17,
181 STM32_EXT18,
182 STM32_EXT19,
183 STM32_EXT20,
184};
185
186/**
187 * struct stm32_adc_trig_info - ADC trigger info
188 * @name: name of the trigger, corresponding to its source
189 * @extsel: trigger selection
190 */
191struct stm32_adc_trig_info {
192 const char *name;
193 enum stm32_adc_extsel extsel;
194};
195
196/**
197 * struct stm32_adc_calib - optional adc calibration data
198 * @calfact_s: Calibration offset for single ended channels
199 * @calfact_d: Calibration offset in differential
200 * @lincalfact: Linearity calibration factor
201 */
202struct stm32_adc_calib {
203 u32 calfact_s;
204 u32 calfact_d;
205 u32 lincalfact[STM32H7_LINCALFACT_NUM];
206};
207
208/**
209 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
210 * @reg: register offset
211 * @mask: bitfield mask
212 * @shift: left shift
213 */
214struct stm32_adc_regs {
215 int reg;
216 int mask;
217 int shift;
218};
219
220/**
221 * stm32_adc_regspec - stm32 registers definition, compatible dependent data
222 * @dr: data register offset
223 * @ier_eoc: interrupt enable register & eocie bitfield
224 * @isr_eoc: interrupt status register & eoc bitfield
225 * @sqr: reference to sequence registers array
226 * @exten: trigger control register & bitfield
227 * @extsel: trigger selection register & bitfield
228 * @res: resolution selection register & bitfield
229 * @smpr: smpr1 & smpr2 registers offset array
230 * @smp_bits: smpr1 & smpr2 index and bitfields
231 */
232struct stm32_adc_regspec {
233 const u32 dr;
234 const struct stm32_adc_regs ier_eoc;
235 const struct stm32_adc_regs isr_eoc;
236 const struct stm32_adc_regs *sqr;
237 const struct stm32_adc_regs exten;
238 const struct stm32_adc_regs extsel;
239 const struct stm32_adc_regs res;
240 const u32 smpr[2];
241 const struct stm32_adc_regs *smp_bits;
242};
243
244struct stm32_adc;
245
246/**
247 * stm32_adc_cfg - stm32 compatible configuration data
248 * @regs: registers descriptions
249 * @adc_info: per instance input channels definitions
250 * @trigs: external trigger sources
251 * @clk_required: clock is required
252 * @selfcalib: optional routine for self-calibration
253 * @prepare: optional prepare routine (power-up, enable)
254 * @start_conv: routine to start conversions
255 * @stop_conv: routine to stop conversions
256 * @unprepare: optional unprepare routine (disable, power-down)
257 * @smp_cycles: programmable sampling time (ADC clock cycles)
258 */
259struct stm32_adc_cfg {
260 const struct stm32_adc_regspec *regs;
261 const struct stm32_adc_info *adc_info;
262 struct stm32_adc_trig_info *trigs;
263 bool clk_required;
264 int (*selfcalib)(struct stm32_adc *);
265 int (*prepare)(struct stm32_adc *);
266 void (*start_conv)(struct stm32_adc *, bool dma);
267 void (*stop_conv)(struct stm32_adc *);
268 void (*unprepare)(struct stm32_adc *);
269 const unsigned int *smp_cycles;
270};
271
272/**
273 * struct stm32_adc - private data of each ADC IIO instance
274 * @common: reference to ADC block common data
275 * @offset: ADC instance register offset in ADC block
276 * @cfg: compatible configuration data
277 * @completion: end of single conversion completion
278 * @buffer: data buffer
279 * @clk: clock for this adc instance
280 * @irq: interrupt for this adc instance
281 * @lock: spinlock
282 * @bufi: data buffer index
283 * @num_conv: expected number of scan conversions
284 * @res: data resolution (e.g. RES bitfield value)
285 * @trigger_polarity: external trigger polarity (e.g. exten)
286 * @dma_chan: dma channel
287 * @rx_buf: dma rx buffer cpu address
288 * @rx_dma_buf: dma rx buffer bus address
289 * @rx_buf_sz: dma rx buffer size
290 * @difsel bitmask to set single-ended/differential channel
291 * @pcsel bitmask to preselect channels on some devices
292 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
293 * @cal: optional calibration data on some devices
294 * @chan_name: channel name array
295 */
296struct stm32_adc {
297 struct stm32_adc_common *common;
298 u32 offset;
299 const struct stm32_adc_cfg *cfg;
300 struct completion completion;
301 u16 buffer[STM32_ADC_MAX_SQ];
302 struct clk *clk;
303 int irq;
304 spinlock_t lock; /* interrupt lock */
305 unsigned int bufi;
306 unsigned int num_conv;
307 u32 res;
308 u32 trigger_polarity;
309 struct dma_chan *dma_chan;
310 u8 *rx_buf;
311 dma_addr_t rx_dma_buf;
312 unsigned int rx_buf_sz;
313 u32 difsel;
314 u32 pcsel;
315 u32 smpr_val[2];
316 struct stm32_adc_calib cal;
317 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
318};
319
320struct stm32_adc_diff_channel {
321 u32 vinp;
322 u32 vinn;
323};
324
325/**
326 * struct stm32_adc_info - stm32 ADC, per instance config data
327 * @max_channels: Number of channels
328 * @resolutions: available resolutions
329 * @num_res: number of available resolutions
330 */
331struct stm32_adc_info {
332 int max_channels;
333 const unsigned int *resolutions;
334 const unsigned int num_res;
335};
336
337static const unsigned int stm32f4_adc_resolutions[] = {
338 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
339 12, 10, 8, 6,
340};
341
342/* stm32f4 can have up to 16 channels */
343static const struct stm32_adc_info stm32f4_adc_info = {
344 .max_channels = 16,
345 .resolutions = stm32f4_adc_resolutions,
346 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
347};
348
349static const unsigned int stm32h7_adc_resolutions[] = {
350 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
351 16, 14, 12, 10, 8,
352};
353
354/* stm32h7 can have up to 20 channels */
355static const struct stm32_adc_info stm32h7_adc_info = {
356 .max_channels = STM32_ADC_CH_MAX,
357 .resolutions = stm32h7_adc_resolutions,
358 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
359};
360
361/**
362 * stm32f4_sq - describe regular sequence registers
363 * - L: sequence len (register & bit field)
364 * - SQ1..SQ16: sequence entries (register & bit field)
365 */
366static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
367 /* L: len bit field description to be kept as first element */
368 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
369 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
370 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
371 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
372 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
373 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
374 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
375 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
376 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
377 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
378 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
379 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
380 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
381 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
382 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
383 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
384 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
385 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
386};
387
388/* STM32F4 external trigger sources for all instances */
389static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
390 { TIM1_CH1, STM32_EXT0 },
391 { TIM1_CH2, STM32_EXT1 },
392 { TIM1_CH3, STM32_EXT2 },
393 { TIM2_CH2, STM32_EXT3 },
394 { TIM2_CH3, STM32_EXT4 },
395 { TIM2_CH4, STM32_EXT5 },
396 { TIM2_TRGO, STM32_EXT6 },
397 { TIM3_CH1, STM32_EXT7 },
398 { TIM3_TRGO, STM32_EXT8 },
399 { TIM4_CH4, STM32_EXT9 },
400 { TIM5_CH1, STM32_EXT10 },
401 { TIM5_CH2, STM32_EXT11 },
402 { TIM5_CH3, STM32_EXT12 },
403 { TIM8_CH1, STM32_EXT13 },
404 { TIM8_TRGO, STM32_EXT14 },
405 {}, /* sentinel */
406};
407
408/**
409 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
410 * Sorted so it can be indexed by channel number.
411 */
412static const struct stm32_adc_regs stm32f4_smp_bits[] = {
413 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
414 { 1, GENMASK(2, 0), 0 },
415 { 1, GENMASK(5, 3), 3 },
416 { 1, GENMASK(8, 6), 6 },
417 { 1, GENMASK(11, 9), 9 },
418 { 1, GENMASK(14, 12), 12 },
419 { 1, GENMASK(17, 15), 15 },
420 { 1, GENMASK(20, 18), 18 },
421 { 1, GENMASK(23, 21), 21 },
422 { 1, GENMASK(26, 24), 24 },
423 { 1, GENMASK(29, 27), 27 },
424 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
425 { 0, GENMASK(2, 0), 0 },
426 { 0, GENMASK(5, 3), 3 },
427 { 0, GENMASK(8, 6), 6 },
428 { 0, GENMASK(11, 9), 9 },
429 { 0, GENMASK(14, 12), 12 },
430 { 0, GENMASK(17, 15), 15 },
431 { 0, GENMASK(20, 18), 18 },
432 { 0, GENMASK(23, 21), 21 },
433 { 0, GENMASK(26, 24), 24 },
434};
435
436/* STM32F4 programmable sampling time (ADC clock cycles) */
437static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
438 3, 15, 28, 56, 84, 112, 144, 480,
439};
440
441static const struct stm32_adc_regspec stm32f4_adc_regspec = {
442 .dr = STM32F4_ADC_DR,
443 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
444 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
445 .sqr = stm32f4_sq,
446 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
447 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
448 STM32F4_EXTSEL_SHIFT },
449 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
450 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
451 .smp_bits = stm32f4_smp_bits,
452};
453
454static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
455 /* L: len bit field description to be kept as first element */
456 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
457 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
458 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
459 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
460 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
461 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
462 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
463 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
464 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
465 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
466 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
467 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
468 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
469 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
470 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
471 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
472 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
473 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
474};
475
476/* STM32H7 external trigger sources for all instances */
477static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
478 { TIM1_CH1, STM32_EXT0 },
479 { TIM1_CH2, STM32_EXT1 },
480 { TIM1_CH3, STM32_EXT2 },
481 { TIM2_CH2, STM32_EXT3 },
482 { TIM3_TRGO, STM32_EXT4 },
483 { TIM4_CH4, STM32_EXT5 },
484 { TIM8_TRGO, STM32_EXT7 },
485 { TIM8_TRGO2, STM32_EXT8 },
486 { TIM1_TRGO, STM32_EXT9 },
487 { TIM1_TRGO2, STM32_EXT10 },
488 { TIM2_TRGO, STM32_EXT11 },
489 { TIM4_TRGO, STM32_EXT12 },
490 { TIM6_TRGO, STM32_EXT13 },
491 { TIM15_TRGO, STM32_EXT14 },
492 { TIM3_CH4, STM32_EXT15 },
493 { LPTIM1_OUT, STM32_EXT18 },
494 { LPTIM2_OUT, STM32_EXT19 },
495 { LPTIM3_OUT, STM32_EXT20 },
496 {},
497};
498
499/**
500 * stm32h7_smp_bits - describe sampling time register index & bit fields
501 * Sorted so it can be indexed by channel number.
502 */
503static const struct stm32_adc_regs stm32h7_smp_bits[] = {
504 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
505 { 0, GENMASK(2, 0), 0 },
506 { 0, GENMASK(5, 3), 3 },
507 { 0, GENMASK(8, 6), 6 },
508 { 0, GENMASK(11, 9), 9 },
509 { 0, GENMASK(14, 12), 12 },
510 { 0, GENMASK(17, 15), 15 },
511 { 0, GENMASK(20, 18), 18 },
512 { 0, GENMASK(23, 21), 21 },
513 { 0, GENMASK(26, 24), 24 },
514 { 0, GENMASK(29, 27), 27 },
515 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
516 { 1, GENMASK(2, 0), 0 },
517 { 1, GENMASK(5, 3), 3 },
518 { 1, GENMASK(8, 6), 6 },
519 { 1, GENMASK(11, 9), 9 },
520 { 1, GENMASK(14, 12), 12 },
521 { 1, GENMASK(17, 15), 15 },
522 { 1, GENMASK(20, 18), 18 },
523 { 1, GENMASK(23, 21), 21 },
524 { 1, GENMASK(26, 24), 24 },
525 { 1, GENMASK(29, 27), 27 },
526};
527
528/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
529static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
530 1, 2, 8, 16, 32, 64, 387, 810,
531};
532
533static const struct stm32_adc_regspec stm32h7_adc_regspec = {
534 .dr = STM32H7_ADC_DR,
535 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
536 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
537 .sqr = stm32h7_sq,
538 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
539 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
540 STM32H7_EXTSEL_SHIFT },
541 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
542 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
543 .smp_bits = stm32h7_smp_bits,
544};
545
546/**
547 * STM32 ADC registers access routines
548 * @adc: stm32 adc instance
549 * @reg: reg offset in adc instance
550 *
551 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
552 * for adc1, adc2 and adc3.
553 */
554static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
555{
556 return readl_relaxed(adc->common->base + adc->offset + reg);
557}
558
559#define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
560
561#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
562 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
563 cond, sleep_us, timeout_us)
564
565static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
566{
567 return readw_relaxed(adc->common->base + adc->offset + reg);
568}
569
570static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
571{
572 writel_relaxed(val, adc->common->base + adc->offset + reg);
573}
574
575static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
576{
577 unsigned long flags;
578
579 spin_lock_irqsave(&adc->lock, flags);
580 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
581 spin_unlock_irqrestore(&adc->lock, flags);
582}
583
584static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
585{
586 unsigned long flags;
587
588 spin_lock_irqsave(&adc->lock, flags);
589 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
590 spin_unlock_irqrestore(&adc->lock, flags);
591}
592
593/**
594 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
595 * @adc: stm32 adc instance
596 */
597static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
598{
599 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
600 adc->cfg->regs->ier_eoc.mask);
601};
602
603/**
604 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
605 * @adc: stm32 adc instance
606 */
607static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
608{
609 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
610 adc->cfg->regs->ier_eoc.mask);
611}
612
613static void stm32_adc_set_res(struct stm32_adc *adc)
614{
615 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
616 u32 val;
617
618 val = stm32_adc_readl(adc, res->reg);
619 val = (val & ~res->mask) | (adc->res << res->shift);
620 stm32_adc_writel(adc, res->reg, val);
621}
622
623/**
624 * stm32f4_adc_start_conv() - Start conversions for regular channels.
625 * @adc: stm32 adc instance
626 * @dma: use dma to transfer conversion result
627 *
628 * Start conversions for regular channels.
629 * Also take care of normal or DMA mode. Circular DMA may be used for regular
630 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
631 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
632 */
633static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
634{
635 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
636
637 if (dma)
638 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
639 STM32F4_DMA | STM32F4_DDS);
640
641 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
642
643 /* Wait for Power-up time (tSTAB from datasheet) */
644 usleep_range(2, 3);
645
646 /* Software start ? (e.g. trigger detection disabled ?) */
647 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
648 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
649}
650
651static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
652{
653 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
654 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
655
656 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
657 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
658 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
659}
660
661static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
662{
663 enum stm32h7_adc_dmngt dmngt;
664 unsigned long flags;
665 u32 val;
666
667 if (dma)
668 dmngt = STM32H7_DMNGT_DMA_CIRC;
669 else
670 dmngt = STM32H7_DMNGT_DR_ONLY;
671
672 spin_lock_irqsave(&adc->lock, flags);
673 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
674 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
675 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
676 spin_unlock_irqrestore(&adc->lock, flags);
677
678 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
679}
680
681static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
682{
683 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
684 int ret;
685 u32 val;
686
687 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
688
689 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
690 !(val & (STM32H7_ADSTART)),
691 100, STM32_ADC_TIMEOUT_US);
692 if (ret)
693 dev_warn(&indio_dev->dev, "stop failed\n");
694
695 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
696}
697
698static void stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
699{
700 /* Exit deep power down, then enable ADC voltage regulator */
701 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
702 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
703
704 if (adc->common->rate > STM32H7_BOOST_CLKRATE)
705 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
706
707 /* Wait for startup time */
708 usleep_range(10, 20);
709}
710
711static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
712{
713 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
714
715 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
716 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
717}
718
719static int stm32h7_adc_enable(struct stm32_adc *adc)
720{
721 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
722 int ret;
723 u32 val;
724
725 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
726
727 /* Poll for ADRDY to be set (after adc startup time) */
728 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
729 val & STM32H7_ADRDY,
730 100, STM32_ADC_TIMEOUT_US);
731 if (ret) {
732 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
733 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
734 } else {
735 /* Clear ADRDY by writing one */
736 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
737 }
738
739 return ret;
740}
741
742static void stm32h7_adc_disable(struct stm32_adc *adc)
743{
744 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
745 int ret;
746 u32 val;
747
748 /* Disable ADC and wait until it's effectively disabled */
749 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
750 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
751 !(val & STM32H7_ADEN), 100,
752 STM32_ADC_TIMEOUT_US);
753 if (ret)
754 dev_warn(&indio_dev->dev, "Failed to disable\n");
755}
756
757/**
758 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
759 * @adc: stm32 adc instance
760 */
761static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
762{
763 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
764 int i, ret;
765 u32 lincalrdyw_mask, val;
766
767 /* Enable adc so LINCALRDYW1..6 bits are writable */
768 ret = stm32h7_adc_enable(adc);
769 if (ret)
770 return ret;
771
772 /* Read linearity calibration */
773 lincalrdyw_mask = STM32H7_LINCALRDYW6;
774 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
775 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
776 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
777
778 /* Poll: wait calib data to be ready in CALFACT2 register */
779 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
780 !(val & lincalrdyw_mask),
781 100, STM32_ADC_TIMEOUT_US);
782 if (ret) {
783 dev_err(&indio_dev->dev, "Failed to read calfact\n");
784 goto disable;
785 }
786
787 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
788 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
789 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
790
791 lincalrdyw_mask >>= 1;
792 }
793
794 /* Read offset calibration */
795 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
796 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
797 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
798 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
799 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
800
801disable:
802 stm32h7_adc_disable(adc);
803
804 return ret;
805}
806
807/**
808 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
809 * @adc: stm32 adc instance
810 * Note: ADC must be enabled, with no on-going conversions.
811 */
812static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
813{
814 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
815 int i, ret;
816 u32 lincalrdyw_mask, val;
817
818 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
819 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
820 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
821
822 lincalrdyw_mask = STM32H7_LINCALRDYW6;
823 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
824 /*
825 * Write saved calibration data to shadow registers:
826 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
827 * data write. Then poll to wait for complete transfer.
828 */
829 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
830 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
831 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
832 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
833 val & lincalrdyw_mask,
834 100, STM32_ADC_TIMEOUT_US);
835 if (ret) {
836 dev_err(&indio_dev->dev, "Failed to write calfact\n");
837 return ret;
838 }
839
840 /*
841 * Read back calibration data, has two effects:
842 * - It ensures bits LINCALRDYW[6..1] are kept cleared
843 * for next time calibration needs to be restored.
844 * - BTW, bit clear triggers a read, then check data has been
845 * correctly written.
846 */
847 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
848 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
849 !(val & lincalrdyw_mask),
850 100, STM32_ADC_TIMEOUT_US);
851 if (ret) {
852 dev_err(&indio_dev->dev, "Failed to read calfact\n");
853 return ret;
854 }
855 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
856 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
857 dev_err(&indio_dev->dev, "calfact not consistent\n");
858 return -EIO;
859 }
860
861 lincalrdyw_mask >>= 1;
862 }
863
864 return 0;
865}
866
867/**
868 * Fixed timeout value for ADC calibration.
869 * worst cases:
870 * - low clock frequency
871 * - maximum prescalers
872 * Calibration requires:
873 * - 131,072 ADC clock cycle for the linear calibration
874 * - 20 ADC clock cycle for the offset calibration
875 *
876 * Set to 100ms for now
877 */
878#define STM32H7_ADC_CALIB_TIMEOUT_US 100000
879
880/**
881 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC (from power down)
882 * @adc: stm32 adc instance
883 * Exit from power down, calibrate ADC, then return to power down.
884 */
885static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
886{
887 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
888 int ret;
889 u32 val;
890
891 stm32h7_adc_exit_pwr_down(adc);
892
893 /*
894 * Select calibration mode:
895 * - Offset calibration for single ended inputs
896 * - No linearity calibration (do it later, before reading it)
897 */
898 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
899 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
900
901 /* Start calibration, then wait for completion */
902 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
903 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
904 !(val & STM32H7_ADCAL), 100,
905 STM32H7_ADC_CALIB_TIMEOUT_US);
906 if (ret) {
907 dev_err(&indio_dev->dev, "calibration failed\n");
908 goto pwr_dwn;
909 }
910
911 /*
912 * Select calibration mode, then start calibration:
913 * - Offset calibration for differential input
914 * - Linearity calibration (needs to be done only once for single/diff)
915 * will run simultaneously with offset calibration.
916 */
917 stm32_adc_set_bits(adc, STM32H7_ADC_CR,
918 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
919 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
920 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
921 !(val & STM32H7_ADCAL), 100,
922 STM32H7_ADC_CALIB_TIMEOUT_US);
923 if (ret) {
924 dev_err(&indio_dev->dev, "calibration failed\n");
925 goto pwr_dwn;
926 }
927
928 stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
929 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
930
931 /* Read calibration result for future reference */
932 ret = stm32h7_adc_read_selfcalib(adc);
933
934pwr_dwn:
935 stm32h7_adc_enter_pwr_down(adc);
936
937 return ret;
938}
939
940/**
941 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
942 * @adc: stm32 adc instance
943 * Leave power down mode.
944 * Configure channels as single ended or differential before enabling ADC.
945 * Enable ADC.
946 * Restore calibration data.
947 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
948 * - Only one input is selected for single ended (e.g. 'vinp')
949 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
950 */
951static int stm32h7_adc_prepare(struct stm32_adc *adc)
952{
953 int ret;
954
955 stm32h7_adc_exit_pwr_down(adc);
956 stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
957
958 ret = stm32h7_adc_enable(adc);
959 if (ret)
960 goto pwr_dwn;
961
962 ret = stm32h7_adc_restore_selfcalib(adc);
963 if (ret)
964 goto disable;
965
966 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
967
968 return 0;
969
970disable:
971 stm32h7_adc_disable(adc);
972pwr_dwn:
973 stm32h7_adc_enter_pwr_down(adc);
974
975 return ret;
976}
977
978static void stm32h7_adc_unprepare(struct stm32_adc *adc)
979{
980 stm32h7_adc_disable(adc);
981 stm32h7_adc_enter_pwr_down(adc);
982}
983
984/**
985 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
986 * @indio_dev: IIO device
987 * @scan_mask: channels to be converted
988 *
989 * Conversion sequence :
990 * Apply sampling time settings for all channels.
991 * Configure ADC scan sequence based on selected channels in scan_mask.
992 * Add channels to SQR registers, from scan_mask LSB to MSB, then
993 * program sequence len.
994 */
995static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
996 const unsigned long *scan_mask)
997{
998 struct stm32_adc *adc = iio_priv(indio_dev);
999 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1000 const struct iio_chan_spec *chan;
1001 u32 val, bit;
1002 int i = 0;
1003
1004 /* Apply sampling time settings */
1005 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1006 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1007
1008 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1009 chan = indio_dev->channels + bit;
1010 /*
1011 * Assign one channel per SQ entry in regular
1012 * sequence, starting with SQ1.
1013 */
1014 i++;
1015 if (i > STM32_ADC_MAX_SQ)
1016 return -EINVAL;
1017
1018 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1019 __func__, chan->channel, i);
1020
1021 val = stm32_adc_readl(adc, sqr[i].reg);
1022 val &= ~sqr[i].mask;
1023 val |= chan->channel << sqr[i].shift;
1024 stm32_adc_writel(adc, sqr[i].reg, val);
1025 }
1026
1027 if (!i)
1028 return -EINVAL;
1029
1030 /* Sequence len */
1031 val = stm32_adc_readl(adc, sqr[0].reg);
1032 val &= ~sqr[0].mask;
1033 val |= ((i - 1) << sqr[0].shift);
1034 stm32_adc_writel(adc, sqr[0].reg, val);
1035
1036 return 0;
1037}
1038
1039/**
1040 * stm32_adc_get_trig_extsel() - Get external trigger selection
1041 * @trig: trigger
1042 *
1043 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1044 */
1045static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1046 struct iio_trigger *trig)
1047{
1048 struct stm32_adc *adc = iio_priv(indio_dev);
1049 int i;
1050
1051 /* lookup triggers registered by stm32 timer trigger driver */
1052 for (i = 0; adc->cfg->trigs[i].name; i++) {
1053 /**
1054 * Checking both stm32 timer trigger type and trig name
1055 * should be safe against arbitrary trigger names.
1056 */
1057 if ((is_stm32_timer_trigger(trig) ||
1058 is_stm32_lptim_trigger(trig)) &&
1059 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1060 return adc->cfg->trigs[i].extsel;
1061 }
1062 }
1063
1064 return -EINVAL;
1065}
1066
1067/**
1068 * stm32_adc_set_trig() - Set a regular trigger
1069 * @indio_dev: IIO device
1070 * @trig: IIO trigger
1071 *
1072 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1073 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1074 * - if HW trigger enabled, set source & polarity
1075 */
1076static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1077 struct iio_trigger *trig)
1078{
1079 struct stm32_adc *adc = iio_priv(indio_dev);
1080 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1081 unsigned long flags;
1082 int ret;
1083
1084 if (trig) {
1085 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1086 if (ret < 0)
1087 return ret;
1088
1089 /* set trigger source and polarity (default to rising edge) */
1090 extsel = ret;
1091 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1092 }
1093
1094 spin_lock_irqsave(&adc->lock, flags);
1095 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1096 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1097 val |= exten << adc->cfg->regs->exten.shift;
1098 val |= extsel << adc->cfg->regs->extsel.shift;
1099 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1100 spin_unlock_irqrestore(&adc->lock, flags);
1101
1102 return 0;
1103}
1104
1105static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1106 const struct iio_chan_spec *chan,
1107 unsigned int type)
1108{
1109 struct stm32_adc *adc = iio_priv(indio_dev);
1110
1111 adc->trigger_polarity = type;
1112
1113 return 0;
1114}
1115
1116static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1117 const struct iio_chan_spec *chan)
1118{
1119 struct stm32_adc *adc = iio_priv(indio_dev);
1120
1121 return adc->trigger_polarity;
1122}
1123
1124static const char * const stm32_trig_pol_items[] = {
1125 "rising-edge", "falling-edge", "both-edges",
1126};
1127
1128static const struct iio_enum stm32_adc_trig_pol = {
1129 .items = stm32_trig_pol_items,
1130 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1131 .get = stm32_adc_get_trig_pol,
1132 .set = stm32_adc_set_trig_pol,
1133};
1134
1135/**
1136 * stm32_adc_single_conv() - Performs a single conversion
1137 * @indio_dev: IIO device
1138 * @chan: IIO channel
1139 * @res: conversion result
1140 *
1141 * The function performs a single conversion on a given channel:
1142 * - Apply sampling time settings
1143 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1144 * - Use SW trigger
1145 * - Start conversion, then wait for interrupt completion.
1146 */
1147static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1148 const struct iio_chan_spec *chan,
1149 int *res)
1150{
1151 struct stm32_adc *adc = iio_priv(indio_dev);
1152 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1153 long timeout;
1154 u32 val;
1155 int ret;
1156
1157 reinit_completion(&adc->completion);
1158
1159 adc->bufi = 0;
1160
1161 if (adc->cfg->prepare) {
1162 ret = adc->cfg->prepare(adc);
1163 if (ret)
1164 return ret;
1165 }
1166
1167 /* Apply sampling time settings */
1168 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1169 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1170
1171 /* Program chan number in regular sequence (SQ1) */
1172 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1173 val &= ~regs->sqr[1].mask;
1174 val |= chan->channel << regs->sqr[1].shift;
1175 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1176
1177 /* Set regular sequence len (0 for 1 conversion) */
1178 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1179
1180 /* Trigger detection disabled (conversion can be launched in SW) */
1181 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1182
1183 stm32_adc_conv_irq_enable(adc);
1184
1185 adc->cfg->start_conv(adc, false);
1186
1187 timeout = wait_for_completion_interruptible_timeout(
1188 &adc->completion, STM32_ADC_TIMEOUT);
1189 if (timeout == 0) {
1190 ret = -ETIMEDOUT;
1191 } else if (timeout < 0) {
1192 ret = timeout;
1193 } else {
1194 *res = adc->buffer[0];
1195 ret = IIO_VAL_INT;
1196 }
1197
1198 adc->cfg->stop_conv(adc);
1199
1200 stm32_adc_conv_irq_disable(adc);
1201
1202 if (adc->cfg->unprepare)
1203 adc->cfg->unprepare(adc);
1204
1205 return ret;
1206}
1207
1208static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1209 struct iio_chan_spec const *chan,
1210 int *val, int *val2, long mask)
1211{
1212 struct stm32_adc *adc = iio_priv(indio_dev);
1213 int ret;
1214
1215 switch (mask) {
1216 case IIO_CHAN_INFO_RAW:
1217 ret = iio_device_claim_direct_mode(indio_dev);
1218 if (ret)
1219 return ret;
1220 if (chan->type == IIO_VOLTAGE)
1221 ret = stm32_adc_single_conv(indio_dev, chan, val);
1222 else
1223 ret = -EINVAL;
1224 iio_device_release_direct_mode(indio_dev);
1225 return ret;
1226
1227 case IIO_CHAN_INFO_SCALE:
1228 if (chan->differential) {
1229 *val = adc->common->vref_mv * 2;
1230 *val2 = chan->scan_type.realbits;
1231 } else {
1232 *val = adc->common->vref_mv;
1233 *val2 = chan->scan_type.realbits;
1234 }
1235 return IIO_VAL_FRACTIONAL_LOG2;
1236
1237 case IIO_CHAN_INFO_OFFSET:
1238 if (chan->differential)
1239 /* ADC_full_scale / 2 */
1240 *val = -((1 << chan->scan_type.realbits) / 2);
1241 else
1242 *val = 0;
1243 return IIO_VAL_INT;
1244
1245 default:
1246 return -EINVAL;
1247 }
1248}
1249
1250static irqreturn_t stm32_adc_isr(int irq, void *data)
1251{
1252 struct stm32_adc *adc = data;
1253 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1254 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1255 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1256
1257 if (status & regs->isr_eoc.mask) {
1258 /* Reading DR also clears EOC status flag */
1259 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1260 if (iio_buffer_enabled(indio_dev)) {
1261 adc->bufi++;
1262 if (adc->bufi >= adc->num_conv) {
1263 stm32_adc_conv_irq_disable(adc);
1264 iio_trigger_poll(indio_dev->trig);
1265 }
1266 } else {
1267 complete(&adc->completion);
1268 }
1269 return IRQ_HANDLED;
1270 }
1271
1272 return IRQ_NONE;
1273}
1274
1275/**
1276 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1277 * @indio_dev: IIO device
1278 * @trig: new trigger
1279 *
1280 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1281 * driver, -EINVAL otherwise.
1282 */
1283static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1284 struct iio_trigger *trig)
1285{
1286 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1287}
1288
1289static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1290{
1291 struct stm32_adc *adc = iio_priv(indio_dev);
1292 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1293 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1294
1295 /*
1296 * dma cyclic transfers are used, buffer is split into two periods.
1297 * There should be :
1298 * - always one buffer (period) dma is working on
1299 * - one buffer (period) driver can push with iio_trigger_poll().
1300 */
1301 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1302 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1303
1304 return 0;
1305}
1306
1307static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1308 const unsigned long *scan_mask)
1309{
1310 struct stm32_adc *adc = iio_priv(indio_dev);
1311 int ret;
1312
1313 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1314
1315 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1316 if (ret)
1317 return ret;
1318
1319 return 0;
1320}
1321
1322static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1323 const struct of_phandle_args *iiospec)
1324{
1325 int i;
1326
1327 for (i = 0; i < indio_dev->num_channels; i++)
1328 if (indio_dev->channels[i].channel == iiospec->args[0])
1329 return i;
1330
1331 return -EINVAL;
1332}
1333
1334/**
1335 * stm32_adc_debugfs_reg_access - read or write register value
1336 *
1337 * To read a value from an ADC register:
1338 * echo [ADC reg offset] > direct_reg_access
1339 * cat direct_reg_access
1340 *
1341 * To write a value in a ADC register:
1342 * echo [ADC_reg_offset] [value] > direct_reg_access
1343 */
1344static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1345 unsigned reg, unsigned writeval,
1346 unsigned *readval)
1347{
1348 struct stm32_adc *adc = iio_priv(indio_dev);
1349
1350 if (!readval)
1351 stm32_adc_writel(adc, reg, writeval);
1352 else
1353 *readval = stm32_adc_readl(adc, reg);
1354
1355 return 0;
1356}
1357
1358static const struct iio_info stm32_adc_iio_info = {
1359 .read_raw = stm32_adc_read_raw,
1360 .validate_trigger = stm32_adc_validate_trigger,
1361 .hwfifo_set_watermark = stm32_adc_set_watermark,
1362 .update_scan_mode = stm32_adc_update_scan_mode,
1363 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1364 .of_xlate = stm32_adc_of_xlate,
1365};
1366
1367static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1368{
1369 struct dma_tx_state state;
1370 enum dma_status status;
1371
1372 status = dmaengine_tx_status(adc->dma_chan,
1373 adc->dma_chan->cookie,
1374 &state);
1375 if (status == DMA_IN_PROGRESS) {
1376 /* Residue is size in bytes from end of buffer */
1377 unsigned int i = adc->rx_buf_sz - state.residue;
1378 unsigned int size;
1379
1380 /* Return available bytes */
1381 if (i >= adc->bufi)
1382 size = i - adc->bufi;
1383 else
1384 size = adc->rx_buf_sz + i - adc->bufi;
1385
1386 return size;
1387 }
1388
1389 return 0;
1390}
1391
1392static void stm32_adc_dma_buffer_done(void *data)
1393{
1394 struct iio_dev *indio_dev = data;
1395
1396 iio_trigger_poll_chained(indio_dev->trig);
1397}
1398
1399static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1400{
1401 struct stm32_adc *adc = iio_priv(indio_dev);
1402 struct dma_async_tx_descriptor *desc;
1403 dma_cookie_t cookie;
1404 int ret;
1405
1406 if (!adc->dma_chan)
1407 return 0;
1408
1409 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1410 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1411
1412 /* Prepare a DMA cyclic transaction */
1413 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1414 adc->rx_dma_buf,
1415 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1416 DMA_DEV_TO_MEM,
1417 DMA_PREP_INTERRUPT);
1418 if (!desc)
1419 return -EBUSY;
1420
1421 desc->callback = stm32_adc_dma_buffer_done;
1422 desc->callback_param = indio_dev;
1423
1424 cookie = dmaengine_submit(desc);
1425 ret = dma_submit_error(cookie);
1426 if (ret) {
1427 dmaengine_terminate_all(adc->dma_chan);
1428 return ret;
1429 }
1430
1431 /* Issue pending DMA requests */
1432 dma_async_issue_pending(adc->dma_chan);
1433
1434 return 0;
1435}
1436
1437static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1438{
1439 struct stm32_adc *adc = iio_priv(indio_dev);
1440 int ret;
1441
1442 if (adc->cfg->prepare) {
1443 ret = adc->cfg->prepare(adc);
1444 if (ret)
1445 return ret;
1446 }
1447
1448 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1449 if (ret) {
1450 dev_err(&indio_dev->dev, "Can't set trigger\n");
1451 goto err_unprepare;
1452 }
1453
1454 ret = stm32_adc_dma_start(indio_dev);
1455 if (ret) {
1456 dev_err(&indio_dev->dev, "Can't start dma\n");
1457 goto err_clr_trig;
1458 }
1459
1460 ret = iio_triggered_buffer_postenable(indio_dev);
1461 if (ret < 0)
1462 goto err_stop_dma;
1463
1464 /* Reset adc buffer index */
1465 adc->bufi = 0;
1466
1467 if (!adc->dma_chan)
1468 stm32_adc_conv_irq_enable(adc);
1469
1470 adc->cfg->start_conv(adc, !!adc->dma_chan);
1471
1472 return 0;
1473
1474err_stop_dma:
1475 if (adc->dma_chan)
1476 dmaengine_terminate_all(adc->dma_chan);
1477err_clr_trig:
1478 stm32_adc_set_trig(indio_dev, NULL);
1479err_unprepare:
1480 if (adc->cfg->unprepare)
1481 adc->cfg->unprepare(adc);
1482
1483 return ret;
1484}
1485
1486static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1487{
1488 struct stm32_adc *adc = iio_priv(indio_dev);
1489 int ret;
1490
1491 adc->cfg->stop_conv(adc);
1492 if (!adc->dma_chan)
1493 stm32_adc_conv_irq_disable(adc);
1494
1495 ret = iio_triggered_buffer_predisable(indio_dev);
1496 if (ret < 0)
1497 dev_err(&indio_dev->dev, "predisable failed\n");
1498
1499 if (adc->dma_chan)
1500 dmaengine_terminate_all(adc->dma_chan);
1501
1502 if (stm32_adc_set_trig(indio_dev, NULL))
1503 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1504
1505 if (adc->cfg->unprepare)
1506 adc->cfg->unprepare(adc);
1507
1508 return ret;
1509}
1510
1511static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1512 .postenable = &stm32_adc_buffer_postenable,
1513 .predisable = &stm32_adc_buffer_predisable,
1514};
1515
1516static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1517{
1518 struct iio_poll_func *pf = p;
1519 struct iio_dev *indio_dev = pf->indio_dev;
1520 struct stm32_adc *adc = iio_priv(indio_dev);
1521
1522 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1523
1524 if (!adc->dma_chan) {
1525 /* reset buffer index */
1526 adc->bufi = 0;
1527 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1528 pf->timestamp);
1529 } else {
1530 int residue = stm32_adc_dma_residue(adc);
1531
1532 while (residue >= indio_dev->scan_bytes) {
1533 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1534
1535 iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1536 pf->timestamp);
1537 residue -= indio_dev->scan_bytes;
1538 adc->bufi += indio_dev->scan_bytes;
1539 if (adc->bufi >= adc->rx_buf_sz)
1540 adc->bufi = 0;
1541 }
1542 }
1543
1544 iio_trigger_notify_done(indio_dev->trig);
1545
1546 /* re-enable eoc irq */
1547 if (!adc->dma_chan)
1548 stm32_adc_conv_irq_enable(adc);
1549
1550 return IRQ_HANDLED;
1551}
1552
1553static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1554 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1555 {
1556 .name = "trigger_polarity_available",
1557 .shared = IIO_SHARED_BY_ALL,
1558 .read = iio_enum_available_read,
1559 .private = (uintptr_t)&stm32_adc_trig_pol,
1560 },
1561 {},
1562};
1563
1564static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1565{
1566 struct device_node *node = indio_dev->dev.of_node;
1567 struct stm32_adc *adc = iio_priv(indio_dev);
1568 unsigned int i;
1569 u32 res;
1570
1571 if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1572 res = adc->cfg->adc_info->resolutions[0];
1573
1574 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1575 if (res == adc->cfg->adc_info->resolutions[i])
1576 break;
1577 if (i >= adc->cfg->adc_info->num_res) {
1578 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1579 return -EINVAL;
1580 }
1581
1582 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1583 adc->res = i;
1584
1585 return 0;
1586}
1587
1588static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1589{
1590 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1591 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1592 unsigned int smp, r = smpr->reg;
1593
1594 /* Determine sampling time (ADC clock cycles) */
1595 period_ns = NSEC_PER_SEC / adc->common->rate;
1596 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1597 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1598 break;
1599 if (smp > STM32_ADC_MAX_SMP)
1600 smp = STM32_ADC_MAX_SMP;
1601
1602 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1603 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1604}
1605
1606static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1607 struct iio_chan_spec *chan, u32 vinp,
1608 u32 vinn, int scan_index, bool differential)
1609{
1610 struct stm32_adc *adc = iio_priv(indio_dev);
1611 char *name = adc->chan_name[vinp];
1612
1613 chan->type = IIO_VOLTAGE;
1614 chan->channel = vinp;
1615 if (differential) {
1616 chan->differential = 1;
1617 chan->channel2 = vinn;
1618 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1619 } else {
1620 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1621 }
1622 chan->datasheet_name = name;
1623 chan->scan_index = scan_index;
1624 chan->indexed = 1;
1625 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1626 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1627 BIT(IIO_CHAN_INFO_OFFSET);
1628 chan->scan_type.sign = 'u';
1629 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1630 chan->scan_type.storagebits = 16;
1631 chan->ext_info = stm32_adc_ext_info;
1632
1633 /* pre-build selected channels mask */
1634 adc->pcsel |= BIT(chan->channel);
1635 if (differential) {
1636 /* pre-build diff channels mask */
1637 adc->difsel |= BIT(chan->channel);
1638 /* Also add negative input to pre-selected channels */
1639 adc->pcsel |= BIT(chan->channel2);
1640 }
1641}
1642
1643static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1644{
1645 struct device_node *node = indio_dev->dev.of_node;
1646 struct stm32_adc *adc = iio_priv(indio_dev);
1647 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1648 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1649 struct property *prop;
1650 const __be32 *cur;
1651 struct iio_chan_spec *channels;
1652 int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1653 u32 val, smp = 0;
1654
1655 ret = of_property_count_u32_elems(node, "st,adc-channels");
1656 if (ret > adc_info->max_channels) {
1657 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1658 return -EINVAL;
1659 } else if (ret > 0) {
1660 num_channels += ret;
1661 }
1662
1663 ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1664 sizeof(*diff));
1665 if (ret > adc_info->max_channels) {
1666 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1667 return -EINVAL;
1668 } else if (ret > 0) {
1669 int size = ret * sizeof(*diff) / sizeof(u32);
1670
1671 num_diff = ret;
1672 num_channels += ret;
1673 ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1674 (u32 *)diff, size);
1675 if (ret)
1676 return ret;
1677 }
1678
1679 if (!num_channels) {
1680 dev_err(&indio_dev->dev, "No channels configured\n");
1681 return -ENODATA;
1682 }
1683
1684 /* Optional sample time is provided either for each, or all channels */
1685 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1686 if (ret > 1 && ret != num_channels) {
1687 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1688 return -EINVAL;
1689 }
1690
1691 channels = devm_kcalloc(&indio_dev->dev, num_channels,
1692 sizeof(struct iio_chan_spec), GFP_KERNEL);
1693 if (!channels)
1694 return -ENOMEM;
1695
1696 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1697 if (val >= adc_info->max_channels) {
1698 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1699 return -EINVAL;
1700 }
1701
1702 /* Channel can't be configured both as single-ended & diff */
1703 for (i = 0; i < num_diff; i++) {
1704 if (val == diff[i].vinp) {
1705 dev_err(&indio_dev->dev,
1706 "channel %d miss-configured\n", val);
1707 return -EINVAL;
1708 }
1709 }
1710 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1711 0, scan_index, false);
1712 scan_index++;
1713 }
1714
1715 for (i = 0; i < num_diff; i++) {
1716 if (diff[i].vinp >= adc_info->max_channels ||
1717 diff[i].vinn >= adc_info->max_channels) {
1718 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1719 diff[i].vinp, diff[i].vinn);
1720 return -EINVAL;
1721 }
1722 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1723 diff[i].vinp, diff[i].vinn, scan_index,
1724 true);
1725 scan_index++;
1726 }
1727
1728 for (i = 0; i < scan_index; i++) {
1729 /*
1730 * Using of_property_read_u32_index(), smp value will only be
1731 * modified if valid u32 value can be decoded. This allows to
1732 * get either no value, 1 shared value for all indexes, or one
1733 * value per channel.
1734 */
1735 of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1736 i, &smp);
1737 /* Prepare sampling time settings */
1738 stm32_adc_smpr_init(adc, channels[i].channel, smp);
1739 }
1740
1741 indio_dev->num_channels = scan_index;
1742 indio_dev->channels = channels;
1743
1744 return 0;
1745}
1746
1747static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1748{
1749 struct stm32_adc *adc = iio_priv(indio_dev);
1750 struct dma_slave_config config;
1751 int ret;
1752
1753 adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1754 if (!adc->dma_chan)
1755 return 0;
1756
1757 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1758 STM32_DMA_BUFFER_SIZE,
1759 &adc->rx_dma_buf, GFP_KERNEL);
1760 if (!adc->rx_buf) {
1761 ret = -ENOMEM;
1762 goto err_release;
1763 }
1764
1765 /* Configure DMA channel to read data register */
1766 memset(&config, 0, sizeof(config));
1767 config.src_addr = (dma_addr_t)adc->common->phys_base;
1768 config.src_addr += adc->offset + adc->cfg->regs->dr;
1769 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1770
1771 ret = dmaengine_slave_config(adc->dma_chan, &config);
1772 if (ret)
1773 goto err_free;
1774
1775 return 0;
1776
1777err_free:
1778 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1779 adc->rx_buf, adc->rx_dma_buf);
1780err_release:
1781 dma_release_channel(adc->dma_chan);
1782
1783 return ret;
1784}
1785
1786static int stm32_adc_probe(struct platform_device *pdev)
1787{
1788 struct iio_dev *indio_dev;
1789 struct device *dev = &pdev->dev;
1790 struct stm32_adc *adc;
1791 int ret;
1792
1793 if (!pdev->dev.of_node)
1794 return -ENODEV;
1795
1796 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1797 if (!indio_dev)
1798 return -ENOMEM;
1799
1800 adc = iio_priv(indio_dev);
1801 adc->common = dev_get_drvdata(pdev->dev.parent);
1802 spin_lock_init(&adc->lock);
1803 init_completion(&adc->completion);
1804 adc->cfg = (const struct stm32_adc_cfg *)
1805 of_match_device(dev->driver->of_match_table, dev)->data;
1806
1807 indio_dev->name = dev_name(&pdev->dev);
1808 indio_dev->dev.parent = &pdev->dev;
1809 indio_dev->dev.of_node = pdev->dev.of_node;
1810 indio_dev->info = &stm32_adc_iio_info;
1811 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1812
1813 platform_set_drvdata(pdev, adc);
1814
1815 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1816 if (ret != 0) {
1817 dev_err(&pdev->dev, "missing reg property\n");
1818 return -EINVAL;
1819 }
1820
1821 adc->irq = platform_get_irq(pdev, 0);
1822 if (adc->irq < 0) {
1823 dev_err(&pdev->dev, "failed to get irq\n");
1824 return adc->irq;
1825 }
1826
1827 ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1828 0, pdev->name, adc);
1829 if (ret) {
1830 dev_err(&pdev->dev, "failed to request IRQ\n");
1831 return ret;
1832 }
1833
1834 adc->clk = devm_clk_get(&pdev->dev, NULL);
1835 if (IS_ERR(adc->clk)) {
1836 ret = PTR_ERR(adc->clk);
1837 if (ret == -ENOENT && !adc->cfg->clk_required) {
1838 adc->clk = NULL;
1839 } else {
1840 dev_err(&pdev->dev, "Can't get clock\n");
1841 return ret;
1842 }
1843 }
1844
1845 if (adc->clk) {
1846 ret = clk_prepare_enable(adc->clk);
1847 if (ret < 0) {
1848 dev_err(&pdev->dev, "clk enable failed\n");
1849 return ret;
1850 }
1851 }
1852
1853 ret = stm32_adc_of_get_resolution(indio_dev);
1854 if (ret < 0)
1855 goto err_clk_disable;
1856 stm32_adc_set_res(adc);
1857
1858 if (adc->cfg->selfcalib) {
1859 ret = adc->cfg->selfcalib(adc);
1860 if (ret)
1861 goto err_clk_disable;
1862 }
1863
1864 ret = stm32_adc_chan_of_init(indio_dev);
1865 if (ret < 0)
1866 goto err_clk_disable;
1867
1868 ret = stm32_adc_dma_request(indio_dev);
1869 if (ret < 0)
1870 goto err_clk_disable;
1871
1872 ret = iio_triggered_buffer_setup(indio_dev,
1873 &iio_pollfunc_store_time,
1874 &stm32_adc_trigger_handler,
1875 &stm32_adc_buffer_setup_ops);
1876 if (ret) {
1877 dev_err(&pdev->dev, "buffer setup failed\n");
1878 goto err_dma_disable;
1879 }
1880
1881 ret = iio_device_register(indio_dev);
1882 if (ret) {
1883 dev_err(&pdev->dev, "iio dev register failed\n");
1884 goto err_buffer_cleanup;
1885 }
1886
1887 return 0;
1888
1889err_buffer_cleanup:
1890 iio_triggered_buffer_cleanup(indio_dev);
1891
1892err_dma_disable:
1893 if (adc->dma_chan) {
1894 dma_free_coherent(adc->dma_chan->device->dev,
1895 STM32_DMA_BUFFER_SIZE,
1896 adc->rx_buf, adc->rx_dma_buf);
1897 dma_release_channel(adc->dma_chan);
1898 }
1899err_clk_disable:
1900 if (adc->clk)
1901 clk_disable_unprepare(adc->clk);
1902
1903 return ret;
1904}
1905
1906static int stm32_adc_remove(struct platform_device *pdev)
1907{
1908 struct stm32_adc *adc = platform_get_drvdata(pdev);
1909 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1910
1911 iio_device_unregister(indio_dev);
1912 iio_triggered_buffer_cleanup(indio_dev);
1913 if (adc->dma_chan) {
1914 dma_free_coherent(adc->dma_chan->device->dev,
1915 STM32_DMA_BUFFER_SIZE,
1916 adc->rx_buf, adc->rx_dma_buf);
1917 dma_release_channel(adc->dma_chan);
1918 }
1919 if (adc->clk)
1920 clk_disable_unprepare(adc->clk);
1921
1922 return 0;
1923}
1924
1925static const struct stm32_adc_cfg stm32f4_adc_cfg = {
1926 .regs = &stm32f4_adc_regspec,
1927 .adc_info = &stm32f4_adc_info,
1928 .trigs = stm32f4_adc_trigs,
1929 .clk_required = true,
1930 .start_conv = stm32f4_adc_start_conv,
1931 .stop_conv = stm32f4_adc_stop_conv,
1932 .smp_cycles = stm32f4_adc_smp_cycles,
1933};
1934
1935static const struct stm32_adc_cfg stm32h7_adc_cfg = {
1936 .regs = &stm32h7_adc_regspec,
1937 .adc_info = &stm32h7_adc_info,
1938 .trigs = stm32h7_adc_trigs,
1939 .selfcalib = stm32h7_adc_selfcalib,
1940 .start_conv = stm32h7_adc_start_conv,
1941 .stop_conv = stm32h7_adc_stop_conv,
1942 .prepare = stm32h7_adc_prepare,
1943 .unprepare = stm32h7_adc_unprepare,
1944 .smp_cycles = stm32h7_adc_smp_cycles,
1945};
1946
1947static const struct of_device_id stm32_adc_of_match[] = {
1948 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
1949 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
1950 {},
1951};
1952MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
1953
1954static struct platform_driver stm32_adc_driver = {
1955 .probe = stm32_adc_probe,
1956 .remove = stm32_adc_remove,
1957 .driver = {
1958 .name = "stm32-adc",
1959 .of_match_table = stm32_adc_of_match,
1960 },
1961};
1962module_platform_driver(stm32_adc_driver);
1963
1964MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
1965MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
1966MODULE_LICENSE("GPL v2");
1967MODULE_ALIAS("platform:stm32-adc");