Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012 Avionic Design GmbH
  4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
  5 */
  6
  7#include <linux/clk.h>
  8
  9#include <drm/drm_atomic_helper.h>
 10#include <drm/drm_panel.h>
 
 11
 12#include "drm.h"
 13#include "dc.h"
 14
 15struct tegra_rgb {
 16	struct tegra_output output;
 17	struct tegra_dc *dc;
 18
 
 
 19	struct clk *clk_parent;
 20	struct clk *clk;
 21};
 22
 23static inline struct tegra_rgb *to_rgb(struct tegra_output *output)
 24{
 25	return container_of(output, struct tegra_rgb, output);
 26}
 27
 28struct reg_entry {
 29	unsigned long offset;
 30	unsigned long value;
 31};
 32
 33static const struct reg_entry rgb_enable[] = {
 34	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x00000000 },
 35	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x00000000 },
 36	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x00000000 },
 37	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x00000000 },
 38	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
 39	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x01000000 },
 40	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
 41	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
 42	{ DC_COM_PIN_OUTPUT_DATA(0),     0x00000000 },
 43	{ DC_COM_PIN_OUTPUT_DATA(1),     0x00000000 },
 44	{ DC_COM_PIN_OUTPUT_DATA(2),     0x00000000 },
 45	{ DC_COM_PIN_OUTPUT_DATA(3),     0x00000000 },
 46	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
 47	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
 48	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
 49	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
 50	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00210222 },
 51	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00002200 },
 52	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00020000 },
 53};
 54
 55static const struct reg_entry rgb_disable[] = {
 56	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00000000 },
 57	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00000000 },
 58	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00000000 },
 59	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
 60	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
 61	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
 62	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
 63	{ DC_COM_PIN_OUTPUT_DATA(3),     0xaaaaaaaa },
 64	{ DC_COM_PIN_OUTPUT_DATA(2),     0xaaaaaaaa },
 65	{ DC_COM_PIN_OUTPUT_DATA(1),     0xaaaaaaaa },
 66	{ DC_COM_PIN_OUTPUT_DATA(0),     0xaaaaaaaa },
 67	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
 68	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
 69	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x00000000 },
 70	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
 71	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x55555555 },
 72	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x55555555 },
 73	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x55150005 },
 74	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x55555555 },
 75};
 76
 77static void tegra_dc_write_regs(struct tegra_dc *dc,
 78				const struct reg_entry *table,
 79				unsigned int num)
 80{
 81	unsigned int i;
 82
 83	for (i = 0; i < num; i++)
 84		tegra_dc_writel(dc, table[i].value, table[i].offset);
 85}
 86
 87static const struct drm_connector_funcs tegra_rgb_connector_funcs = {
 88	.reset = drm_atomic_helper_connector_reset,
 89	.detect = tegra_output_connector_detect,
 90	.fill_modes = drm_helper_probe_single_connector_modes,
 91	.destroy = tegra_output_connector_destroy,
 92	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
 93	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
 94};
 95
 96static enum drm_mode_status
 97tegra_rgb_connector_mode_valid(struct drm_connector *connector,
 98			       struct drm_display_mode *mode)
 99{
100	/*
101	 * FIXME: For now, always assume that the mode is okay. There are
102	 * unresolved issues with clk_round_rate(), which doesn't always
103	 * reliably report whether a frequency can be set or not.
104	 */
105	return MODE_OK;
106}
107
108static const struct drm_connector_helper_funcs tegra_rgb_connector_helper_funcs = {
109	.get_modes = tegra_output_connector_get_modes,
110	.mode_valid = tegra_rgb_connector_mode_valid,
111};
112
113static const struct drm_encoder_funcs tegra_rgb_encoder_funcs = {
114	.destroy = tegra_output_encoder_destroy,
115};
116
117static void tegra_rgb_encoder_disable(struct drm_encoder *encoder)
118{
119	struct tegra_output *output = encoder_to_output(encoder);
120	struct tegra_rgb *rgb = to_rgb(output);
121
122	if (output->panel)
123		drm_panel_disable(output->panel);
124
125	tegra_dc_write_regs(rgb->dc, rgb_disable, ARRAY_SIZE(rgb_disable));
126	tegra_dc_commit(rgb->dc);
127
128	if (output->panel)
129		drm_panel_unprepare(output->panel);
130}
131
132static void tegra_rgb_encoder_enable(struct drm_encoder *encoder)
133{
134	struct tegra_output *output = encoder_to_output(encoder);
135	struct tegra_rgb *rgb = to_rgb(output);
136	u32 value;
137
138	if (output->panel)
139		drm_panel_prepare(output->panel);
140
141	tegra_dc_write_regs(rgb->dc, rgb_enable, ARRAY_SIZE(rgb_enable));
142
143	value = DE_SELECT_ACTIVE | DE_CONTROL_NORMAL;
144	tegra_dc_writel(rgb->dc, value, DC_DISP_DATA_ENABLE_OPTIONS);
145
146	/* XXX: parameterize? */
147	value = tegra_dc_readl(rgb->dc, DC_COM_PIN_OUTPUT_POLARITY(1));
148	value &= ~LVS_OUTPUT_POLARITY_LOW;
149	value &= ~LHS_OUTPUT_POLARITY_LOW;
150	tegra_dc_writel(rgb->dc, value, DC_COM_PIN_OUTPUT_POLARITY(1));
151
152	/* XXX: parameterize? */
153	value = DISP_DATA_FORMAT_DF1P1C | DISP_ALIGNMENT_MSB |
154		DISP_ORDER_RED_BLUE;
155	tegra_dc_writel(rgb->dc, value, DC_DISP_DISP_INTERFACE_CONTROL);
156
157	/* XXX: parameterize? */
158	value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
159	tegra_dc_writel(rgb->dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
160
161	tegra_dc_commit(rgb->dc);
 
 
 
 
 
 
162
163	if (output->panel)
164		drm_panel_enable(output->panel);
 
 
 
165}
166
167static int
168tegra_rgb_encoder_atomic_check(struct drm_encoder *encoder,
169			       struct drm_crtc_state *crtc_state,
170			       struct drm_connector_state *conn_state)
171{
172	struct tegra_output *output = encoder_to_output(encoder);
173	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
174	unsigned long pclk = crtc_state->mode.clock * 1000;
175	struct tegra_rgb *rgb = to_rgb(output);
176	unsigned int div;
177	int err;
178
179	/*
180	 * We may not want to change the frequency of the parent clock, since
181	 * it may be a parent for other peripherals. This is due to the fact
182	 * that on Tegra20 there's only a single clock dedicated to display
183	 * (pll_d_out0), whereas later generations have a second one that can
184	 * be used to independently drive a second output (pll_d2_out0).
185	 *
186	 * As a way to support multiple outputs on Tegra20 as well, pll_p is
187	 * typically used as the parent clock for the display controllers.
188	 * But this comes at a cost: pll_p is the parent of several other
189	 * peripherals, so its frequency shouldn't change out of the blue.
190	 *
191	 * The best we can do at this point is to use the shift clock divider
192	 * and hope that the desired frequency can be matched (or at least
193	 * matched sufficiently close that the panel will still work).
194	 */
195	div = ((clk_get_rate(rgb->clk) * 2) / pclk) - 2;
196	pclk = 0;
 
 
 
 
 
 
 
 
 
197
198	err = tegra_dc_state_setup_clock(dc, crtc_state, rgb->clk_parent,
199					 pclk, div);
200	if (err < 0) {
201		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
202		return err;
203	}
204
205	return err;
206}
207
208static const struct drm_encoder_helper_funcs tegra_rgb_encoder_helper_funcs = {
209	.disable = tegra_rgb_encoder_disable,
210	.enable = tegra_rgb_encoder_enable,
211	.atomic_check = tegra_rgb_encoder_atomic_check,
212};
213
214int tegra_dc_rgb_probe(struct tegra_dc *dc)
215{
216	struct device_node *np;
217	struct tegra_rgb *rgb;
218	int err;
219
220	np = of_get_child_by_name(dc->dev->of_node, "rgb");
221	if (!np || !of_device_is_available(np))
222		return -ENODEV;
223
224	rgb = devm_kzalloc(dc->dev, sizeof(*rgb), GFP_KERNEL);
225	if (!rgb)
226		return -ENOMEM;
227
228	rgb->output.dev = dc->dev;
229	rgb->output.of_node = np;
230	rgb->dc = dc;
231
232	err = tegra_output_probe(&rgb->output);
233	if (err < 0)
234		return err;
235
236	rgb->clk = devm_clk_get(dc->dev, NULL);
237	if (IS_ERR(rgb->clk)) {
238		dev_err(dc->dev, "failed to get clock\n");
239		return PTR_ERR(rgb->clk);
240	}
241
242	rgb->clk_parent = devm_clk_get(dc->dev, "parent");
243	if (IS_ERR(rgb->clk_parent)) {
244		dev_err(dc->dev, "failed to get parent clock\n");
245		return PTR_ERR(rgb->clk_parent);
246	}
247
248	err = clk_set_parent(rgb->clk, rgb->clk_parent);
249	if (err < 0) {
250		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
251		return err;
252	}
253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254	dc->rgb = &rgb->output;
255
256	return 0;
257}
258
259int tegra_dc_rgb_remove(struct tegra_dc *dc)
260{
 
 
261	if (!dc->rgb)
262		return 0;
263
 
 
 
 
264	tegra_output_remove(dc->rgb);
265	dc->rgb = NULL;
266
267	return 0;
268}
269
270int tegra_dc_rgb_init(struct drm_device *drm, struct tegra_dc *dc)
271{
272	struct tegra_output *output = dc->rgb;
 
273	int err;
274
275	if (!dc->rgb)
276		return -ENODEV;
277
278	drm_connector_init(drm, &output->connector, &tegra_rgb_connector_funcs,
279			   DRM_MODE_CONNECTOR_LVDS);
280	drm_connector_helper_add(&output->connector,
281				 &tegra_rgb_connector_helper_funcs);
282	output->connector.dpms = DRM_MODE_DPMS_OFF;
283
284	drm_encoder_init(drm, &output->encoder, &tegra_rgb_encoder_funcs,
285			 DRM_MODE_ENCODER_LVDS, NULL);
286	drm_encoder_helper_add(&output->encoder,
287			       &tegra_rgb_encoder_helper_funcs);
288
289	drm_connector_attach_encoder(&output->connector,
290					  &output->encoder);
291	drm_connector_register(&output->connector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292
293	err = tegra_output_init(drm, output);
294	if (err < 0) {
295		dev_err(output->dev, "failed to initialize output: %d\n", err);
296		return err;
297	}
298
299	/*
300	 * Other outputs can be attached to either display controller. The RGB
301	 * outputs are an exception and work only with their parent display
302	 * controller.
303	 */
304	output->encoder.possible_crtcs = drm_crtc_mask(&dc->base);
305
306	return 0;
307}
308
309int tegra_dc_rgb_exit(struct tegra_dc *dc)
310{
311	if (dc->rgb)
312		tegra_output_exit(dc->rgb);
313
314	return 0;
315}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012 Avionic Design GmbH
  4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
  5 */
  6
  7#include <linux/clk.h>
  8
  9#include <drm/drm_atomic_helper.h>
 10#include <drm/drm_bridge_connector.h>
 11#include <drm/drm_simple_kms_helper.h>
 12
 13#include "drm.h"
 14#include "dc.h"
 15
 16struct tegra_rgb {
 17	struct tegra_output output;
 18	struct tegra_dc *dc;
 19
 20	struct clk *pll_d_out0;
 21	struct clk *pll_d2_out0;
 22	struct clk *clk_parent;
 23	struct clk *clk;
 24};
 25
 26static inline struct tegra_rgb *to_rgb(struct tegra_output *output)
 27{
 28	return container_of(output, struct tegra_rgb, output);
 29}
 30
 31struct reg_entry {
 32	unsigned long offset;
 33	unsigned long value;
 34};
 35
 36static const struct reg_entry rgb_enable[] = {
 37	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x00000000 },
 38	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x00000000 },
 39	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x00000000 },
 40	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x00000000 },
 41	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
 42	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x01000000 },
 43	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
 44	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
 45	{ DC_COM_PIN_OUTPUT_DATA(0),     0x00000000 },
 46	{ DC_COM_PIN_OUTPUT_DATA(1),     0x00000000 },
 47	{ DC_COM_PIN_OUTPUT_DATA(2),     0x00000000 },
 48	{ DC_COM_PIN_OUTPUT_DATA(3),     0x00000000 },
 49	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
 50	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
 51	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
 52	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
 53	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00210222 },
 54	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00002200 },
 55	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00020000 },
 56};
 57
 58static const struct reg_entry rgb_disable[] = {
 59	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00000000 },
 60	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00000000 },
 61	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00000000 },
 62	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
 63	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
 64	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
 65	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
 66	{ DC_COM_PIN_OUTPUT_DATA(3),     0xaaaaaaaa },
 67	{ DC_COM_PIN_OUTPUT_DATA(2),     0xaaaaaaaa },
 68	{ DC_COM_PIN_OUTPUT_DATA(1),     0xaaaaaaaa },
 69	{ DC_COM_PIN_OUTPUT_DATA(0),     0xaaaaaaaa },
 70	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
 71	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
 72	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x00000000 },
 73	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
 74	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x55555555 },
 75	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x55555555 },
 76	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x55150005 },
 77	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x55555555 },
 78};
 79
 80static void tegra_dc_write_regs(struct tegra_dc *dc,
 81				const struct reg_entry *table,
 82				unsigned int num)
 83{
 84	unsigned int i;
 85
 86	for (i = 0; i < num; i++)
 87		tegra_dc_writel(dc, table[i].value, table[i].offset);
 88}
 89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 90static void tegra_rgb_encoder_disable(struct drm_encoder *encoder)
 91{
 92	struct tegra_output *output = encoder_to_output(encoder);
 93	struct tegra_rgb *rgb = to_rgb(output);
 94
 
 
 
 95	tegra_dc_write_regs(rgb->dc, rgb_disable, ARRAY_SIZE(rgb_disable));
 96	tegra_dc_commit(rgb->dc);
 
 
 
 97}
 98
 99static void tegra_rgb_encoder_enable(struct drm_encoder *encoder)
100{
101	struct tegra_output *output = encoder_to_output(encoder);
102	struct tegra_rgb *rgb = to_rgb(output);
103	u32 value;
104
 
 
 
105	tegra_dc_write_regs(rgb->dc, rgb_enable, ARRAY_SIZE(rgb_enable));
106
107	value = DE_SELECT_ACTIVE | DE_CONTROL_NORMAL;
108	tegra_dc_writel(rgb->dc, value, DC_DISP_DATA_ENABLE_OPTIONS);
109
110	/* XXX: parameterize? */
111	value = tegra_dc_readl(rgb->dc, DC_COM_PIN_OUTPUT_POLARITY(1));
112	value &= ~LVS_OUTPUT_POLARITY_LOW;
113	value &= ~LHS_OUTPUT_POLARITY_LOW;
114	tegra_dc_writel(rgb->dc, value, DC_COM_PIN_OUTPUT_POLARITY(1));
115
116	/* XXX: parameterize? */
117	value = DISP_DATA_FORMAT_DF1P1C | DISP_ALIGNMENT_MSB |
118		DISP_ORDER_RED_BLUE;
119	tegra_dc_writel(rgb->dc, value, DC_DISP_DISP_INTERFACE_CONTROL);
120
 
 
 
 
121	tegra_dc_commit(rgb->dc);
122}
123
124static bool tegra_rgb_pll_rate_change_allowed(struct tegra_rgb *rgb)
125{
126	if (!rgb->pll_d2_out0)
127		return false;
128
129	if (!clk_is_match(rgb->clk_parent, rgb->pll_d_out0) &&
130	    !clk_is_match(rgb->clk_parent, rgb->pll_d2_out0))
131		return false;
132
133	return true;
134}
135
136static int
137tegra_rgb_encoder_atomic_check(struct drm_encoder *encoder,
138			       struct drm_crtc_state *crtc_state,
139			       struct drm_connector_state *conn_state)
140{
141	struct tegra_output *output = encoder_to_output(encoder);
142	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
143	unsigned long pclk = crtc_state->mode.clock * 1000;
144	struct tegra_rgb *rgb = to_rgb(output);
145	unsigned int div;
146	int err;
147
148	/*
149	 * We may not want to change the frequency of the parent clock, since
150	 * it may be a parent for other peripherals. This is due to the fact
151	 * that on Tegra20 there's only a single clock dedicated to display
152	 * (pll_d_out0), whereas later generations have a second one that can
153	 * be used to independently drive a second output (pll_d2_out0).
154	 *
155	 * As a way to support multiple outputs on Tegra20 as well, pll_p is
156	 * typically used as the parent clock for the display controllers.
157	 * But this comes at a cost: pll_p is the parent of several other
158	 * peripherals, so its frequency shouldn't change out of the blue.
159	 *
160	 * The best we can do at this point is to use the shift clock divider
161	 * and hope that the desired frequency can be matched (or at least
162	 * matched sufficiently close that the panel will still work).
163	 */
164	if (tegra_rgb_pll_rate_change_allowed(rgb)) {
165		/*
166		 * Set display controller clock to x2 of PCLK in order to
167		 * produce higher resolution pulse positions.
168		 */
169		div = 2;
170		pclk *= 2;
171	} else {
172		div = ((clk_get_rate(rgb->clk) * 2) / pclk) - 2;
173		pclk = 0;
174	}
175
176	err = tegra_dc_state_setup_clock(dc, crtc_state, rgb->clk_parent,
177					 pclk, div);
178	if (err < 0) {
179		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
180		return err;
181	}
182
183	return err;
184}
185
186static const struct drm_encoder_helper_funcs tegra_rgb_encoder_helper_funcs = {
187	.disable = tegra_rgb_encoder_disable,
188	.enable = tegra_rgb_encoder_enable,
189	.atomic_check = tegra_rgb_encoder_atomic_check,
190};
191
192int tegra_dc_rgb_probe(struct tegra_dc *dc)
193{
194	struct device_node *np;
195	struct tegra_rgb *rgb;
196	int err;
197
198	np = of_get_child_by_name(dc->dev->of_node, "rgb");
199	if (!np || !of_device_is_available(np))
200		return -ENODEV;
201
202	rgb = devm_kzalloc(dc->dev, sizeof(*rgb), GFP_KERNEL);
203	if (!rgb)
204		return -ENOMEM;
205
206	rgb->output.dev = dc->dev;
207	rgb->output.of_node = np;
208	rgb->dc = dc;
209
210	err = tegra_output_probe(&rgb->output);
211	if (err < 0)
212		return err;
213
214	rgb->clk = devm_clk_get(dc->dev, NULL);
215	if (IS_ERR(rgb->clk)) {
216		dev_err(dc->dev, "failed to get clock\n");
217		return PTR_ERR(rgb->clk);
218	}
219
220	rgb->clk_parent = devm_clk_get(dc->dev, "parent");
221	if (IS_ERR(rgb->clk_parent)) {
222		dev_err(dc->dev, "failed to get parent clock\n");
223		return PTR_ERR(rgb->clk_parent);
224	}
225
226	err = clk_set_parent(rgb->clk, rgb->clk_parent);
227	if (err < 0) {
228		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
229		return err;
230	}
231
232	rgb->pll_d_out0 = clk_get_sys(NULL, "pll_d_out0");
233	if (IS_ERR(rgb->pll_d_out0)) {
234		err = PTR_ERR(rgb->pll_d_out0);
235		dev_err(dc->dev, "failed to get pll_d_out0: %d\n", err);
236		return err;
237	}
238
239	if (dc->soc->has_pll_d2_out0) {
240		rgb->pll_d2_out0 = clk_get_sys(NULL, "pll_d2_out0");
241		if (IS_ERR(rgb->pll_d2_out0)) {
242			err = PTR_ERR(rgb->pll_d2_out0);
243			dev_err(dc->dev, "failed to get pll_d2_out0: %d\n", err);
244			return err;
245		}
246	}
247
248	dc->rgb = &rgb->output;
249
250	return 0;
251}
252
253int tegra_dc_rgb_remove(struct tegra_dc *dc)
254{
255	struct tegra_rgb *rgb;
256
257	if (!dc->rgb)
258		return 0;
259
260	rgb = to_rgb(dc->rgb);
261	clk_put(rgb->pll_d2_out0);
262	clk_put(rgb->pll_d_out0);
263
264	tegra_output_remove(dc->rgb);
265	dc->rgb = NULL;
266
267	return 0;
268}
269
270int tegra_dc_rgb_init(struct drm_device *drm, struct tegra_dc *dc)
271{
272	struct tegra_output *output = dc->rgb;
273	struct drm_connector *connector;
274	int err;
275
276	if (!dc->rgb)
277		return -ENODEV;
278
279	drm_simple_encoder_init(drm, &output->encoder, DRM_MODE_ENCODER_LVDS);
 
 
 
 
 
 
 
280	drm_encoder_helper_add(&output->encoder,
281			       &tegra_rgb_encoder_helper_funcs);
282
283	/*
284	 * Wrap directly-connected panel into DRM bridge in order to let
285	 * DRM core to handle panel for us.
286	 */
287	if (output->panel) {
288		output->bridge = devm_drm_panel_bridge_add(output->dev,
289							   output->panel);
290		if (IS_ERR(output->bridge)) {
291			dev_err(output->dev,
292				"failed to wrap panel into bridge: %pe\n",
293				output->bridge);
294			return PTR_ERR(output->bridge);
295		}
296
297		output->panel = NULL;
298	}
299
300	/*
301	 * Tegra devices that have LVDS panel utilize LVDS encoder bridge
302	 * for converting up to 28 LCD LVTTL lanes into 5/4 LVDS lanes that
303	 * go to display panel's receiver.
304	 *
305	 * Encoder usually have a power-down control which needs to be enabled
306	 * in order to transmit data to the panel.  Historically devices that
307	 * use an older device-tree version didn't model the bridge, assuming
308	 * that encoder is turned ON by default, while today's DRM allows us
309	 * to model LVDS encoder properly.
310	 *
311	 * Newer device-trees utilize LVDS encoder bridge, which provides
312	 * us with a connector and handles the display panel.
313	 *
314	 * For older device-trees we wrapped panel into the panel-bridge.
315	 */
316	if (output->bridge) {
317		err = drm_bridge_attach(&output->encoder, output->bridge,
318					NULL, DRM_BRIDGE_ATTACH_NO_CONNECTOR);
319		if (err)
320			return err;
321
322		connector = drm_bridge_connector_init(drm, &output->encoder);
323		if (IS_ERR(connector)) {
324			dev_err(output->dev,
325				"failed to initialize bridge connector: %pe\n",
326				connector);
327			return PTR_ERR(connector);
328		}
329
330		drm_connector_attach_encoder(connector, &output->encoder);
331	}
332
333	err = tegra_output_init(drm, output);
334	if (err < 0) {
335		dev_err(output->dev, "failed to initialize output: %d\n", err);
336		return err;
337	}
338
339	/*
340	 * Other outputs can be attached to either display controller. The RGB
341	 * outputs are an exception and work only with their parent display
342	 * controller.
343	 */
344	output->encoder.possible_crtcs = drm_crtc_mask(&dc->base);
345
346	return 0;
347}
348
349int tegra_dc_rgb_exit(struct tegra_dc *dc)
350{
351	if (dc->rgb)
352		tegra_output_exit(dc->rgb);
353
354	return 0;
355}