Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * bpf_jit_comp.c: BPF JIT compiler
   4 *
   5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
   6 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   7 */
   8#include <linux/netdevice.h>
   9#include <linux/filter.h>
  10#include <linux/if_vlan.h>
  11#include <linux/bpf.h>
  12
 
 
 
  13#include <asm/set_memory.h>
  14#include <asm/nospec-branch.h>
 
  15
  16static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  17{
  18	if (len == 1)
  19		*ptr = bytes;
  20	else if (len == 2)
  21		*(u16 *)ptr = bytes;
  22	else {
  23		*(u32 *)ptr = bytes;
  24		barrier();
  25	}
  26	return ptr + len;
  27}
  28
  29#define EMIT(bytes, len) \
  30	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
  31
  32#define EMIT1(b1)		EMIT(b1, 1)
  33#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
  34#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  35#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
  36
  37#define EMIT1_off32(b1, off) \
  38	do { EMIT1(b1); EMIT(off, 4); } while (0)
  39#define EMIT2_off32(b1, b2, off) \
  40	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
  41#define EMIT3_off32(b1, b2, b3, off) \
  42	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
  43#define EMIT4_off32(b1, b2, b3, b4, off) \
  44	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
  45
 
 
 
 
 
 
  46static bool is_imm8(int value)
  47{
  48	return value <= 127 && value >= -128;
  49}
  50
  51static bool is_simm32(s64 value)
  52{
  53	return value == (s64)(s32)value;
  54}
  55
  56static bool is_uimm32(u64 value)
  57{
  58	return value == (u64)(u32)value;
  59}
  60
  61/* mov dst, src */
  62#define EMIT_mov(DST, SRC)								 \
  63	do {										 \
  64		if (DST != SRC)								 \
  65			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
  66	} while (0)
  67
  68static int bpf_size_to_x86_bytes(int bpf_size)
  69{
  70	if (bpf_size == BPF_W)
  71		return 4;
  72	else if (bpf_size == BPF_H)
  73		return 2;
  74	else if (bpf_size == BPF_B)
  75		return 1;
  76	else if (bpf_size == BPF_DW)
  77		return 4; /* imm32 */
  78	else
  79		return 0;
  80}
  81
  82/*
  83 * List of x86 cond jumps opcodes (. + s8)
  84 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
  85 */
  86#define X86_JB  0x72
  87#define X86_JAE 0x73
  88#define X86_JE  0x74
  89#define X86_JNE 0x75
  90#define X86_JBE 0x76
  91#define X86_JA  0x77
  92#define X86_JL  0x7C
  93#define X86_JGE 0x7D
  94#define X86_JLE 0x7E
  95#define X86_JG  0x7F
  96
  97/* Pick a register outside of BPF range for JIT internal work */
  98#define AUX_REG (MAX_BPF_JIT_REG + 1)
 
  99
 100/*
 101 * The following table maps BPF registers to x86-64 registers.
 102 *
 103 * x86-64 register R12 is unused, since if used as base address
 104 * register in load/store instructions, it always needs an
 105 * extra byte of encoding and is callee saved.
 106 *
 107 * Also x86-64 register R9 is unused. x86-64 register R10 is
 108 * used for blinding (if enabled).
 109 */
 110static const int reg2hex[] = {
 111	[BPF_REG_0] = 0,  /* RAX */
 112	[BPF_REG_1] = 7,  /* RDI */
 113	[BPF_REG_2] = 6,  /* RSI */
 114	[BPF_REG_3] = 2,  /* RDX */
 115	[BPF_REG_4] = 1,  /* RCX */
 116	[BPF_REG_5] = 0,  /* R8  */
 117	[BPF_REG_6] = 3,  /* RBX callee saved */
 118	[BPF_REG_7] = 5,  /* R13 callee saved */
 119	[BPF_REG_8] = 6,  /* R14 callee saved */
 120	[BPF_REG_9] = 7,  /* R15 callee saved */
 121	[BPF_REG_FP] = 5, /* RBP readonly */
 122	[BPF_REG_AX] = 2, /* R10 temp register */
 123	[AUX_REG] = 3,    /* R11 temp register */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124};
 125
 126/*
 127 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
 128 * which need extra byte of encoding.
 129 * rax,rcx,...,rbp have simpler encoding
 130 */
 131static bool is_ereg(u32 reg)
 132{
 133	return (1 << reg) & (BIT(BPF_REG_5) |
 134			     BIT(AUX_REG) |
 135			     BIT(BPF_REG_7) |
 136			     BIT(BPF_REG_8) |
 137			     BIT(BPF_REG_9) |
 
 138			     BIT(BPF_REG_AX));
 139}
 140
 
 
 
 
 
 
 
 
 
 
 
 
 
 141static bool is_axreg(u32 reg)
 142{
 143	return reg == BPF_REG_0;
 144}
 145
 146/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
 147static u8 add_1mod(u8 byte, u32 reg)
 148{
 149	if (is_ereg(reg))
 150		byte |= 1;
 151	return byte;
 152}
 153
 154static u8 add_2mod(u8 byte, u32 r1, u32 r2)
 155{
 156	if (is_ereg(r1))
 157		byte |= 1;
 158	if (is_ereg(r2))
 159		byte |= 4;
 160	return byte;
 161}
 162
 163/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
 164static u8 add_1reg(u8 byte, u32 dst_reg)
 165{
 166	return byte + reg2hex[dst_reg];
 167}
 168
 169/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
 170static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
 171{
 172	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
 173}
 174
 
 
 
 
 
 
 
 
 
 
 
 
 175static void jit_fill_hole(void *area, unsigned int size)
 176{
 177	/* Fill whole space with INT3 instructions */
 178	memset(area, 0xcc, size);
 179}
 180
 
 
 
 
 
 181struct jit_context {
 182	int cleanup_addr; /* Epilogue code offset */
 
 
 
 
 
 
 
 
 183};
 184
 185/* Maximum number of bytes emitted while JITing one eBPF insn */
 186#define BPF_MAX_INSN_SIZE	128
 187#define BPF_INSN_SAFETY		64
 188
 189#define PROLOGUE_SIZE		20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190
 191/*
 192 * Emit x86-64 prologue code for BPF program and check its size.
 193 * bpf_tail_call helper will skip it while jumping into another program
 
 194 */
 195static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
 
 196{
 197	u8 *prog = *pprog;
 198	int cnt = 0;
 199
 
 
 
 
 
 
 
 
 
 
 
 
 200	EMIT1(0x55);             /* push rbp */
 201	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
 
 
 
 
 202	/* sub rsp, rounded_stack_depth */
 203	EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
 204	EMIT1(0x53);             /* push rbx */
 205	EMIT2(0x41, 0x55);       /* push r13 */
 206	EMIT2(0x41, 0x56);       /* push r14 */
 207	EMIT2(0x41, 0x57);       /* push r15 */
 208	if (!ebpf_from_cbpf) {
 209		/* zero init tail_call_cnt */
 210		EMIT2(0x6a, 0x00);
 211		BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213	*pprog = prog;
 214}
 215
 216/*
 217 * Generate the following code:
 218 *
 219 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
 220 *   if (index >= array->map.max_entries)
 221 *     goto out;
 222 *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
 223 *     goto out;
 224 *   prog = array->ptrs[index];
 225 *   if (prog == NULL)
 226 *     goto out;
 227 *   goto *(prog->bpf_func + prologue_size);
 228 * out:
 229 */
 230static void emit_bpf_tail_call(u8 **pprog)
 
 
 231{
 232	u8 *prog = *pprog;
 233	int label1, label2, label3;
 234	int cnt = 0;
 235
 236	/*
 237	 * rdi - pointer to ctx
 238	 * rsi - pointer to bpf_array
 239	 * rdx - index in bpf_array
 240	 */
 241
 242	/*
 243	 * if (index >= array->map.max_entries)
 244	 *	goto out;
 245	 */
 246	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
 247	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
 248	      offsetof(struct bpf_array, map.max_entries));
 249#define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
 250	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
 251	label1 = cnt;
 252
 253	/*
 254	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
 255	 *	goto out;
 256	 */
 257	EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
 258	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
 259#define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
 260	EMIT2(X86_JA, OFFSET2);                   /* ja out */
 261	label2 = cnt;
 262	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
 263	EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
 264
 265	/* prog = array->ptrs[index]; */
 266	EMIT4_off32(0x48, 0x8B, 0x84, 0xD6,       /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
 267		    offsetof(struct bpf_array, ptrs));
 268
 269	/*
 270	 * if (prog == NULL)
 271	 *	goto out;
 272	 */
 273	EMIT3(0x48, 0x85, 0xC0);		  /* test rax,rax */
 274#define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
 275	EMIT2(X86_JE, OFFSET3);                   /* je out */
 276	label3 = cnt;
 277
 278	/* goto *(prog->bpf_func + prologue_size); */
 279	EMIT4(0x48, 0x8B, 0x40,                   /* mov rax, qword ptr [rax + 32] */
 280	      offsetof(struct bpf_prog, bpf_func));
 281	EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE);   /* add rax, prologue_size */
 282
 
 
 
 
 
 
 
 
 
 
 
 
 283	/*
 284	 * Wow we're ready to jump into next BPF program
 285	 * rdi == ctx (1st arg)
 286	 * rax == prog->bpf_func + prologue_size
 287	 */
 288	RETPOLINE_RAX_BPF_JIT();
 289
 290	/* out: */
 291	BUILD_BUG_ON(cnt - label1 != OFFSET1);
 292	BUILD_BUG_ON(cnt - label2 != OFFSET2);
 293	BUILD_BUG_ON(cnt - label3 != OFFSET3);
 294	*pprog = prog;
 295}
 296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
 298			   u32 dst_reg, const u32 imm32)
 299{
 300	u8 *prog = *pprog;
 301	u8 b1, b2, b3;
 302	int cnt = 0;
 303
 304	/*
 305	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
 306	 * (which zero-extends imm32) to save 2 bytes.
 307	 */
 308	if (sign_propagate && (s32)imm32 < 0) {
 309		/* 'mov %rax, imm32' sign extends imm32 */
 310		b1 = add_1mod(0x48, dst_reg);
 311		b2 = 0xC7;
 312		b3 = 0xC0;
 313		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
 314		goto done;
 315	}
 316
 317	/*
 318	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
 319	 * to save 3 bytes.
 320	 */
 321	if (imm32 == 0) {
 322		if (is_ereg(dst_reg))
 323			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
 324		b2 = 0x31; /* xor */
 325		b3 = 0xC0;
 326		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
 327		goto done;
 328	}
 329
 330	/* mov %eax, imm32 */
 331	if (is_ereg(dst_reg))
 332		EMIT1(add_1mod(0x40, dst_reg));
 333	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
 334done:
 335	*pprog = prog;
 336}
 337
 338static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
 339			   const u32 imm32_hi, const u32 imm32_lo)
 340{
 341	u8 *prog = *pprog;
 342	int cnt = 0;
 343
 344	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
 345		/*
 346		 * For emitting plain u32, where sign bit must not be
 347		 * propagated LLVM tends to load imm64 over mov32
 348		 * directly, so save couple of bytes by just doing
 349		 * 'mov %eax, imm32' instead.
 350		 */
 351		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
 352	} else {
 353		/* movabsq %rax, imm64 */
 354		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
 355		EMIT(imm32_lo, 4);
 356		EMIT(imm32_hi, 4);
 357	}
 358
 359	*pprog = prog;
 360}
 361
 362static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
 363{
 364	u8 *prog = *pprog;
 365	int cnt = 0;
 366
 367	if (is64) {
 368		/* mov dst, src */
 369		EMIT_mov(dst_reg, src_reg);
 370	} else {
 371		/* mov32 dst, src */
 372		if (is_ereg(dst_reg) || is_ereg(src_reg))
 373			EMIT1(add_2mod(0x40, dst_reg, src_reg));
 374		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
 375	}
 376
 377	*pprog = prog;
 378}
 379
 380static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
 381		  int oldproglen, struct jit_context *ctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383	struct bpf_insn *insn = bpf_prog->insnsi;
 
 384	int insn_cnt = bpf_prog->len;
 
 385	bool seen_exit = false;
 386	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
 387	int i, cnt = 0;
 388	int proglen = 0;
 389	u8 *prog = temp;
 
 
 
 
 
 
 
 390
 391	emit_prologue(&prog, bpf_prog->aux->stack_depth,
 392		      bpf_prog_was_classic(bpf_prog));
 393	addrs[0] = prog - temp;
 
 
 
 
 
 
 
 
 394
 395	for (i = 1; i <= insn_cnt; i++, insn++) {
 396		const s32 imm32 = insn->imm;
 397		u32 dst_reg = insn->dst_reg;
 398		u32 src_reg = insn->src_reg;
 399		u8 b2 = 0, b3 = 0;
 
 400		s64 jmp_offset;
 401		u8 jmp_cond;
 402		int ilen;
 403		u8 *func;
 
 404
 405		switch (insn->code) {
 406			/* ALU */
 407		case BPF_ALU | BPF_ADD | BPF_X:
 408		case BPF_ALU | BPF_SUB | BPF_X:
 409		case BPF_ALU | BPF_AND | BPF_X:
 410		case BPF_ALU | BPF_OR | BPF_X:
 411		case BPF_ALU | BPF_XOR | BPF_X:
 412		case BPF_ALU64 | BPF_ADD | BPF_X:
 413		case BPF_ALU64 | BPF_SUB | BPF_X:
 414		case BPF_ALU64 | BPF_AND | BPF_X:
 415		case BPF_ALU64 | BPF_OR | BPF_X:
 416		case BPF_ALU64 | BPF_XOR | BPF_X:
 417			switch (BPF_OP(insn->code)) {
 418			case BPF_ADD: b2 = 0x01; break;
 419			case BPF_SUB: b2 = 0x29; break;
 420			case BPF_AND: b2 = 0x21; break;
 421			case BPF_OR: b2 = 0x09; break;
 422			case BPF_XOR: b2 = 0x31; break;
 423			}
 424			if (BPF_CLASS(insn->code) == BPF_ALU64)
 425				EMIT1(add_2mod(0x48, dst_reg, src_reg));
 426			else if (is_ereg(dst_reg) || is_ereg(src_reg))
 427				EMIT1(add_2mod(0x40, dst_reg, src_reg));
 428			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
 429			break;
 430
 431		case BPF_ALU64 | BPF_MOV | BPF_X:
 432		case BPF_ALU | BPF_MOV | BPF_X:
 433			emit_mov_reg(&prog,
 434				     BPF_CLASS(insn->code) == BPF_ALU64,
 435				     dst_reg, src_reg);
 436			break;
 437
 438			/* neg dst */
 439		case BPF_ALU | BPF_NEG:
 440		case BPF_ALU64 | BPF_NEG:
 441			if (BPF_CLASS(insn->code) == BPF_ALU64)
 442				EMIT1(add_1mod(0x48, dst_reg));
 443			else if (is_ereg(dst_reg))
 444				EMIT1(add_1mod(0x40, dst_reg));
 445			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
 446			break;
 447
 448		case BPF_ALU | BPF_ADD | BPF_K:
 449		case BPF_ALU | BPF_SUB | BPF_K:
 450		case BPF_ALU | BPF_AND | BPF_K:
 451		case BPF_ALU | BPF_OR | BPF_K:
 452		case BPF_ALU | BPF_XOR | BPF_K:
 453		case BPF_ALU64 | BPF_ADD | BPF_K:
 454		case BPF_ALU64 | BPF_SUB | BPF_K:
 455		case BPF_ALU64 | BPF_AND | BPF_K:
 456		case BPF_ALU64 | BPF_OR | BPF_K:
 457		case BPF_ALU64 | BPF_XOR | BPF_K:
 458			if (BPF_CLASS(insn->code) == BPF_ALU64)
 459				EMIT1(add_1mod(0x48, dst_reg));
 460			else if (is_ereg(dst_reg))
 461				EMIT1(add_1mod(0x40, dst_reg));
 462
 463			/*
 464			 * b3 holds 'normal' opcode, b2 short form only valid
 465			 * in case dst is eax/rax.
 466			 */
 467			switch (BPF_OP(insn->code)) {
 468			case BPF_ADD:
 469				b3 = 0xC0;
 470				b2 = 0x05;
 471				break;
 472			case BPF_SUB:
 473				b3 = 0xE8;
 474				b2 = 0x2D;
 475				break;
 476			case BPF_AND:
 477				b3 = 0xE0;
 478				b2 = 0x25;
 479				break;
 480			case BPF_OR:
 481				b3 = 0xC8;
 482				b2 = 0x0D;
 483				break;
 484			case BPF_XOR:
 485				b3 = 0xF0;
 486				b2 = 0x35;
 487				break;
 488			}
 489
 490			if (is_imm8(imm32))
 491				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
 492			else if (is_axreg(dst_reg))
 493				EMIT1_off32(b2, imm32);
 494			else
 495				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
 496			break;
 497
 498		case BPF_ALU64 | BPF_MOV | BPF_K:
 499		case BPF_ALU | BPF_MOV | BPF_K:
 500			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
 501				       dst_reg, imm32);
 502			break;
 503
 504		case BPF_LD | BPF_IMM | BPF_DW:
 505			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
 506			insn++;
 507			i++;
 508			break;
 509
 510			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
 511		case BPF_ALU | BPF_MOD | BPF_X:
 512		case BPF_ALU | BPF_DIV | BPF_X:
 513		case BPF_ALU | BPF_MOD | BPF_K:
 514		case BPF_ALU | BPF_DIV | BPF_K:
 515		case BPF_ALU64 | BPF_MOD | BPF_X:
 516		case BPF_ALU64 | BPF_DIV | BPF_X:
 517		case BPF_ALU64 | BPF_MOD | BPF_K:
 518		case BPF_ALU64 | BPF_DIV | BPF_K:
 519			EMIT1(0x50); /* push rax */
 520			EMIT1(0x52); /* push rdx */
 521
 522			if (BPF_SRC(insn->code) == BPF_X)
 523				/* mov r11, src_reg */
 524				EMIT_mov(AUX_REG, src_reg);
 525			else
 
 
 
 
 
 
 
 
 
 526				/* mov r11, imm32 */
 527				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
 
 
 528
 529			/* mov rax, dst_reg */
 530			EMIT_mov(BPF_REG_0, dst_reg);
 
 531
 532			/*
 533			 * xor edx, edx
 534			 * equivalent to 'xor rdx, rdx', but one byte less
 535			 */
 536			EMIT2(0x31, 0xd2);
 537
 538			if (BPF_CLASS(insn->code) == BPF_ALU64)
 539				/* div r11 */
 540				EMIT3(0x49, 0xF7, 0xF3);
 541			else
 542				/* div r11d */
 543				EMIT3(0x41, 0xF7, 0xF3);
 544
 545			if (BPF_OP(insn->code) == BPF_MOD)
 546				/* mov r11, rdx */
 547				EMIT3(0x49, 0x89, 0xD3);
 548			else
 549				/* mov r11, rax */
 550				EMIT3(0x49, 0x89, 0xC3);
 551
 552			EMIT1(0x5A); /* pop rdx */
 553			EMIT1(0x58); /* pop rax */
 554
 555			/* mov dst_reg, r11 */
 556			EMIT_mov(dst_reg, AUX_REG);
 
 
 557			break;
 
 558
 559		case BPF_ALU | BPF_MUL | BPF_K:
 560		case BPF_ALU | BPF_MUL | BPF_X:
 561		case BPF_ALU64 | BPF_MUL | BPF_K:
 562		case BPF_ALU64 | BPF_MUL | BPF_X:
 563		{
 564			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
 565
 566			if (dst_reg != BPF_REG_0)
 567				EMIT1(0x50); /* push rax */
 568			if (dst_reg != BPF_REG_3)
 569				EMIT1(0x52); /* push rdx */
 570
 571			/* mov r11, dst_reg */
 572			EMIT_mov(AUX_REG, dst_reg);
 573
 574			if (BPF_SRC(insn->code) == BPF_X)
 575				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
 
 
 576			else
 577				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
 
 
 
 
 578
 579			if (is64)
 580				EMIT1(add_1mod(0x48, AUX_REG));
 581			else if (is_ereg(AUX_REG))
 582				EMIT1(add_1mod(0x40, AUX_REG));
 583			/* mul(q) r11 */
 584			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
 585
 586			if (dst_reg != BPF_REG_3)
 587				EMIT1(0x5A); /* pop rdx */
 588			if (dst_reg != BPF_REG_0) {
 589				/* mov dst_reg, rax */
 590				EMIT_mov(dst_reg, BPF_REG_0);
 591				EMIT1(0x58); /* pop rax */
 592			}
 593			break;
 594		}
 595			/* Shifts */
 596		case BPF_ALU | BPF_LSH | BPF_K:
 597		case BPF_ALU | BPF_RSH | BPF_K:
 598		case BPF_ALU | BPF_ARSH | BPF_K:
 599		case BPF_ALU64 | BPF_LSH | BPF_K:
 600		case BPF_ALU64 | BPF_RSH | BPF_K:
 601		case BPF_ALU64 | BPF_ARSH | BPF_K:
 602			if (BPF_CLASS(insn->code) == BPF_ALU64)
 603				EMIT1(add_1mod(0x48, dst_reg));
 604			else if (is_ereg(dst_reg))
 605				EMIT1(add_1mod(0x40, dst_reg));
 606
 607			switch (BPF_OP(insn->code)) {
 608			case BPF_LSH: b3 = 0xE0; break;
 609			case BPF_RSH: b3 = 0xE8; break;
 610			case BPF_ARSH: b3 = 0xF8; break;
 611			}
 612
 
 613			if (imm32 == 1)
 614				EMIT2(0xD1, add_1reg(b3, dst_reg));
 615			else
 616				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
 617			break;
 618
 619		case BPF_ALU | BPF_LSH | BPF_X:
 620		case BPF_ALU | BPF_RSH | BPF_X:
 621		case BPF_ALU | BPF_ARSH | BPF_X:
 622		case BPF_ALU64 | BPF_LSH | BPF_X:
 623		case BPF_ALU64 | BPF_RSH | BPF_X:
 624		case BPF_ALU64 | BPF_ARSH | BPF_X:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625
 626			/* Check for bad case when dst_reg == rcx */
 627			if (dst_reg == BPF_REG_4) {
 628				/* mov r11, dst_reg */
 629				EMIT_mov(AUX_REG, dst_reg);
 630				dst_reg = AUX_REG;
 631			}
 632
 633			if (src_reg != BPF_REG_4) { /* common case */
 634				EMIT1(0x51); /* push rcx */
 635
 
 
 
 
 
 
 636				/* mov rcx, src_reg */
 637				EMIT_mov(BPF_REG_4, src_reg);
 638			}
 639
 640			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
 641			if (BPF_CLASS(insn->code) == BPF_ALU64)
 642				EMIT1(add_1mod(0x48, dst_reg));
 643			else if (is_ereg(dst_reg))
 644				EMIT1(add_1mod(0x40, dst_reg));
 645
 646			switch (BPF_OP(insn->code)) {
 647			case BPF_LSH: b3 = 0xE0; break;
 648			case BPF_RSH: b3 = 0xE8; break;
 649			case BPF_ARSH: b3 = 0xF8; break;
 650			}
 651			EMIT2(0xD3, add_1reg(b3, dst_reg));
 652
 653			if (src_reg != BPF_REG_4)
 654				EMIT1(0x59); /* pop rcx */
 
 
 
 
 
 655
 656			if (insn->dst_reg == BPF_REG_4)
 657				/* mov dst_reg, r11 */
 658				EMIT_mov(insn->dst_reg, AUX_REG);
 659			break;
 660
 661		case BPF_ALU | BPF_END | BPF_FROM_BE:
 662			switch (imm32) {
 663			case 16:
 664				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
 665				EMIT1(0x66);
 666				if (is_ereg(dst_reg))
 667					EMIT1(0x41);
 668				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
 669
 670				/* Emit 'movzwl eax, ax' */
 671				if (is_ereg(dst_reg))
 672					EMIT3(0x45, 0x0F, 0xB7);
 673				else
 674					EMIT2(0x0F, 0xB7);
 675				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
 676				break;
 677			case 32:
 678				/* Emit 'bswap eax' to swap lower 4 bytes */
 679				if (is_ereg(dst_reg))
 680					EMIT2(0x41, 0x0F);
 681				else
 682					EMIT1(0x0F);
 683				EMIT1(add_1reg(0xC8, dst_reg));
 684				break;
 685			case 64:
 686				/* Emit 'bswap rax' to swap 8 bytes */
 687				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
 688				      add_1reg(0xC8, dst_reg));
 689				break;
 690			}
 691			break;
 692
 693		case BPF_ALU | BPF_END | BPF_FROM_LE:
 694			switch (imm32) {
 695			case 16:
 696				/*
 697				 * Emit 'movzwl eax, ax' to zero extend 16-bit
 698				 * into 64 bit
 699				 */
 700				if (is_ereg(dst_reg))
 701					EMIT3(0x45, 0x0F, 0xB7);
 702				else
 703					EMIT2(0x0F, 0xB7);
 704				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
 705				break;
 706			case 32:
 707				/* Emit 'mov eax, eax' to clear upper 32-bits */
 708				if (is_ereg(dst_reg))
 709					EMIT1(0x45);
 710				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
 711				break;
 712			case 64:
 713				/* nop */
 714				break;
 715			}
 716			break;
 717
 
 
 
 
 
 718			/* ST: *(u8*)(dst_reg + off) = imm */
 719		case BPF_ST | BPF_MEM | BPF_B:
 720			if (is_ereg(dst_reg))
 721				EMIT2(0x41, 0xC6);
 722			else
 723				EMIT1(0xC6);
 724			goto st;
 725		case BPF_ST | BPF_MEM | BPF_H:
 726			if (is_ereg(dst_reg))
 727				EMIT3(0x66, 0x41, 0xC7);
 728			else
 729				EMIT2(0x66, 0xC7);
 730			goto st;
 731		case BPF_ST | BPF_MEM | BPF_W:
 732			if (is_ereg(dst_reg))
 733				EMIT2(0x41, 0xC7);
 734			else
 735				EMIT1(0xC7);
 736			goto st;
 737		case BPF_ST | BPF_MEM | BPF_DW:
 738			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
 739
 740st:			if (is_imm8(insn->off))
 741				EMIT2(add_1reg(0x40, dst_reg), insn->off);
 742			else
 743				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
 744
 745			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
 746			break;
 747
 748			/* STX: *(u8*)(dst_reg + off) = src_reg */
 749		case BPF_STX | BPF_MEM | BPF_B:
 750			/* Emit 'mov byte ptr [rax + off], al' */
 751			if (is_ereg(dst_reg) || is_ereg(src_reg) ||
 752			    /* We have to add extra byte for x86 SIL, DIL regs */
 753			    src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
 754				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
 755			else
 756				EMIT1(0x88);
 757			goto stx;
 758		case BPF_STX | BPF_MEM | BPF_H:
 759			if (is_ereg(dst_reg) || is_ereg(src_reg))
 760				EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
 761			else
 762				EMIT2(0x66, 0x89);
 763			goto stx;
 764		case BPF_STX | BPF_MEM | BPF_W:
 765			if (is_ereg(dst_reg) || is_ereg(src_reg))
 766				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
 767			else
 768				EMIT1(0x89);
 769			goto stx;
 770		case BPF_STX | BPF_MEM | BPF_DW:
 771			EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
 772stx:			if (is_imm8(insn->off))
 773				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
 774			else
 775				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
 776					    insn->off);
 777			break;
 778
 779			/* LDX: dst_reg = *(u8*)(src_reg + off) */
 780		case BPF_LDX | BPF_MEM | BPF_B:
 781			/* Emit 'movzx rax, byte ptr [rax + off]' */
 782			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
 783			goto ldx;
 784		case BPF_LDX | BPF_MEM | BPF_H:
 785			/* Emit 'movzx rax, word ptr [rax + off]' */
 786			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
 787			goto ldx;
 788		case BPF_LDX | BPF_MEM | BPF_W:
 789			/* Emit 'mov eax, dword ptr [rax+0x14]' */
 790			if (is_ereg(dst_reg) || is_ereg(src_reg))
 791				EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
 792			else
 793				EMIT1(0x8B);
 794			goto ldx;
 795		case BPF_LDX | BPF_MEM | BPF_DW:
 796			/* Emit 'mov rax, qword ptr [rax+0x14]' */
 797			EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
 798ldx:			/*
 799			 * If insn->off == 0 we can save one extra byte, but
 800			 * special case of x86 R13 which always needs an offset
 801			 * is not worth the hassle
 802			 */
 803			if (is_imm8(insn->off))
 804				EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
 805			else
 806				EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
 807					    insn->off);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808			break;
 809
 810			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
 811		case BPF_STX | BPF_XADD | BPF_W:
 812			/* Emit 'lock add dword ptr [rax + off], eax' */
 813			if (is_ereg(dst_reg) || is_ereg(src_reg))
 814				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
 815			else
 816				EMIT2(0xF0, 0x01);
 817			goto xadd;
 818		case BPF_STX | BPF_XADD | BPF_DW:
 819			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
 820xadd:			if (is_imm8(insn->off))
 821				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
 822			else
 823				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
 824					    insn->off);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825			break;
 826
 827			/* call */
 828		case BPF_JMP | BPF_CALL:
 
 
 829			func = (u8 *) __bpf_call_base + imm32;
 830			jmp_offset = func - (image + addrs[i]);
 831			if (!imm32 || !is_simm32(jmp_offset)) {
 832				pr_err("unsupported BPF func %d addr %p image %p\n",
 833				       imm32, func, image);
 834				return -EINVAL;
 
 
 
 
 
 
 835			}
 836			EMIT1_off32(0xE8, jmp_offset);
 
 837			break;
 
 838
 839		case BPF_JMP | BPF_TAIL_CALL:
 840			emit_bpf_tail_call(&prog);
 
 
 
 
 
 
 
 
 
 
 
 841			break;
 842
 843			/* cond jump */
 844		case BPF_JMP | BPF_JEQ | BPF_X:
 845		case BPF_JMP | BPF_JNE | BPF_X:
 846		case BPF_JMP | BPF_JGT | BPF_X:
 847		case BPF_JMP | BPF_JLT | BPF_X:
 848		case BPF_JMP | BPF_JGE | BPF_X:
 849		case BPF_JMP | BPF_JLE | BPF_X:
 850		case BPF_JMP | BPF_JSGT | BPF_X:
 851		case BPF_JMP | BPF_JSLT | BPF_X:
 852		case BPF_JMP | BPF_JSGE | BPF_X:
 853		case BPF_JMP | BPF_JSLE | BPF_X:
 854		case BPF_JMP32 | BPF_JEQ | BPF_X:
 855		case BPF_JMP32 | BPF_JNE | BPF_X:
 856		case BPF_JMP32 | BPF_JGT | BPF_X:
 857		case BPF_JMP32 | BPF_JLT | BPF_X:
 858		case BPF_JMP32 | BPF_JGE | BPF_X:
 859		case BPF_JMP32 | BPF_JLE | BPF_X:
 860		case BPF_JMP32 | BPF_JSGT | BPF_X:
 861		case BPF_JMP32 | BPF_JSLT | BPF_X:
 862		case BPF_JMP32 | BPF_JSGE | BPF_X:
 863		case BPF_JMP32 | BPF_JSLE | BPF_X:
 864			/* cmp dst_reg, src_reg */
 865			if (BPF_CLASS(insn->code) == BPF_JMP)
 866				EMIT1(add_2mod(0x48, dst_reg, src_reg));
 867			else if (is_ereg(dst_reg) || is_ereg(src_reg))
 868				EMIT1(add_2mod(0x40, dst_reg, src_reg));
 869			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
 870			goto emit_cond_jmp;
 871
 872		case BPF_JMP | BPF_JSET | BPF_X:
 873		case BPF_JMP32 | BPF_JSET | BPF_X:
 874			/* test dst_reg, src_reg */
 875			if (BPF_CLASS(insn->code) == BPF_JMP)
 876				EMIT1(add_2mod(0x48, dst_reg, src_reg));
 877			else if (is_ereg(dst_reg) || is_ereg(src_reg))
 878				EMIT1(add_2mod(0x40, dst_reg, src_reg));
 879			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
 880			goto emit_cond_jmp;
 881
 882		case BPF_JMP | BPF_JSET | BPF_K:
 883		case BPF_JMP32 | BPF_JSET | BPF_K:
 884			/* test dst_reg, imm32 */
 885			if (BPF_CLASS(insn->code) == BPF_JMP)
 886				EMIT1(add_1mod(0x48, dst_reg));
 887			else if (is_ereg(dst_reg))
 888				EMIT1(add_1mod(0x40, dst_reg));
 889			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
 890			goto emit_cond_jmp;
 891
 892		case BPF_JMP | BPF_JEQ | BPF_K:
 893		case BPF_JMP | BPF_JNE | BPF_K:
 894		case BPF_JMP | BPF_JGT | BPF_K:
 895		case BPF_JMP | BPF_JLT | BPF_K:
 896		case BPF_JMP | BPF_JGE | BPF_K:
 897		case BPF_JMP | BPF_JLE | BPF_K:
 898		case BPF_JMP | BPF_JSGT | BPF_K:
 899		case BPF_JMP | BPF_JSLT | BPF_K:
 900		case BPF_JMP | BPF_JSGE | BPF_K:
 901		case BPF_JMP | BPF_JSLE | BPF_K:
 902		case BPF_JMP32 | BPF_JEQ | BPF_K:
 903		case BPF_JMP32 | BPF_JNE | BPF_K:
 904		case BPF_JMP32 | BPF_JGT | BPF_K:
 905		case BPF_JMP32 | BPF_JLT | BPF_K:
 906		case BPF_JMP32 | BPF_JGE | BPF_K:
 907		case BPF_JMP32 | BPF_JLE | BPF_K:
 908		case BPF_JMP32 | BPF_JSGT | BPF_K:
 909		case BPF_JMP32 | BPF_JSLT | BPF_K:
 910		case BPF_JMP32 | BPF_JSGE | BPF_K:
 911		case BPF_JMP32 | BPF_JSLE | BPF_K:
 
 
 
 
 
 
 
 
 912			/* cmp dst_reg, imm8/32 */
 913			if (BPF_CLASS(insn->code) == BPF_JMP)
 914				EMIT1(add_1mod(0x48, dst_reg));
 915			else if (is_ereg(dst_reg))
 916				EMIT1(add_1mod(0x40, dst_reg));
 917
 918			if (is_imm8(imm32))
 919				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
 920			else
 921				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
 922
 923emit_cond_jmp:		/* Convert BPF opcode to x86 */
 924			switch (BPF_OP(insn->code)) {
 925			case BPF_JEQ:
 926				jmp_cond = X86_JE;
 927				break;
 928			case BPF_JSET:
 929			case BPF_JNE:
 930				jmp_cond = X86_JNE;
 931				break;
 932			case BPF_JGT:
 933				/* GT is unsigned '>', JA in x86 */
 934				jmp_cond = X86_JA;
 935				break;
 936			case BPF_JLT:
 937				/* LT is unsigned '<', JB in x86 */
 938				jmp_cond = X86_JB;
 939				break;
 940			case BPF_JGE:
 941				/* GE is unsigned '>=', JAE in x86 */
 942				jmp_cond = X86_JAE;
 943				break;
 944			case BPF_JLE:
 945				/* LE is unsigned '<=', JBE in x86 */
 946				jmp_cond = X86_JBE;
 947				break;
 948			case BPF_JSGT:
 949				/* Signed '>', GT in x86 */
 950				jmp_cond = X86_JG;
 951				break;
 952			case BPF_JSLT:
 953				/* Signed '<', LT in x86 */
 954				jmp_cond = X86_JL;
 955				break;
 956			case BPF_JSGE:
 957				/* Signed '>=', GE in x86 */
 958				jmp_cond = X86_JGE;
 959				break;
 960			case BPF_JSLE:
 961				/* Signed '<=', LE in x86 */
 962				jmp_cond = X86_JLE;
 963				break;
 964			default: /* to silence GCC warning */
 965				return -EFAULT;
 966			}
 967			jmp_offset = addrs[i + insn->off] - addrs[i];
 968			if (is_imm8(jmp_offset)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969				EMIT2(jmp_cond, jmp_offset);
 970			} else if (is_simm32(jmp_offset)) {
 971				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
 972			} else {
 973				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
 974				return -EFAULT;
 975			}
 976
 977			break;
 978
 979		case BPF_JMP | BPF_JA:
 980			if (insn->off == -1)
 981				/* -1 jmp instructions will always jump
 982				 * backwards two bytes. Explicitly handling
 983				 * this case avoids wasting too many passes
 984				 * when there are long sequences of replaced
 985				 * dead code.
 986				 */
 987				jmp_offset = -2;
 988			else
 989				jmp_offset = addrs[i + insn->off] - addrs[i];
 990
 991			if (!jmp_offset)
 992				/* Optimize out nop jumps */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993				break;
 
 994emit_jmp:
 995			if (is_imm8(jmp_offset)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996				EMIT2(0xEB, jmp_offset);
 997			} else if (is_simm32(jmp_offset)) {
 998				EMIT1_off32(0xE9, jmp_offset);
 999			} else {
1000				pr_err("jmp gen bug %llx\n", jmp_offset);
1001				return -EFAULT;
1002			}
1003			break;
1004
1005		case BPF_JMP | BPF_EXIT:
1006			if (seen_exit) {
1007				jmp_offset = ctx->cleanup_addr - addrs[i];
1008				goto emit_jmp;
1009			}
1010			seen_exit = true;
1011			/* Update cleanup_addr */
1012			ctx->cleanup_addr = proglen;
1013			if (!bpf_prog_was_classic(bpf_prog))
1014				EMIT1(0x5B); /* get rid of tail_call_cnt */
1015			EMIT2(0x41, 0x5F);   /* pop r15 */
1016			EMIT2(0x41, 0x5E);   /* pop r14 */
1017			EMIT2(0x41, 0x5D);   /* pop r13 */
1018			EMIT1(0x5B);         /* pop rbx */
1019			EMIT1(0xC9);         /* leave */
1020			EMIT1(0xC3);         /* ret */
1021			break;
1022
1023		default:
1024			/*
1025			 * By design x86-64 JIT should support all BPF instructions.
1026			 * This error will be seen if new instruction was added
1027			 * to the interpreter, but not to the JIT, or if there is
1028			 * junk in bpf_prog.
1029			 */
1030			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1031			return -EINVAL;
1032		}
1033
1034		ilen = prog - temp;
1035		if (ilen > BPF_MAX_INSN_SIZE) {
1036			pr_err("bpf_jit: fatal insn size error\n");
1037			return -EFAULT;
1038		}
1039
1040		if (image) {
1041			if (unlikely(proglen + ilen > oldproglen)) {
 
 
 
 
 
 
 
 
 
1042				pr_err("bpf_jit: fatal error\n");
1043				return -EFAULT;
1044			}
1045			memcpy(image + proglen, temp, ilen);
1046		}
1047		proglen += ilen;
1048		addrs[i] = proglen;
1049		prog = temp;
1050	}
 
 
 
 
 
1051	return proglen;
1052}
1053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054struct x64_jit_data {
 
1055	struct bpf_binary_header *header;
1056	int *addrs;
1057	u8 *image;
1058	int proglen;
1059	struct jit_context ctx;
1060};
1061
 
 
 
1062struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1063{
 
1064	struct bpf_binary_header *header = NULL;
1065	struct bpf_prog *tmp, *orig_prog = prog;
1066	struct x64_jit_data *jit_data;
1067	int proglen, oldproglen = 0;
1068	struct jit_context ctx = {};
1069	bool tmp_blinded = false;
1070	bool extra_pass = false;
 
 
1071	u8 *image = NULL;
1072	int *addrs;
1073	int pass;
1074	int i;
1075
1076	if (!prog->jit_requested)
1077		return orig_prog;
1078
1079	tmp = bpf_jit_blind_constants(prog);
1080	/*
1081	 * If blinding was requested and we failed during blinding,
1082	 * we must fall back to the interpreter.
1083	 */
1084	if (IS_ERR(tmp))
1085		return orig_prog;
1086	if (tmp != prog) {
1087		tmp_blinded = true;
1088		prog = tmp;
1089	}
1090
1091	jit_data = prog->aux->jit_data;
1092	if (!jit_data) {
1093		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1094		if (!jit_data) {
1095			prog = orig_prog;
1096			goto out;
1097		}
1098		prog->aux->jit_data = jit_data;
1099	}
1100	addrs = jit_data->addrs;
1101	if (addrs) {
1102		ctx = jit_data->ctx;
1103		oldproglen = jit_data->proglen;
1104		image = jit_data->image;
1105		header = jit_data->header;
 
 
1106		extra_pass = true;
 
1107		goto skip_init_addrs;
1108	}
1109	addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
1110	if (!addrs) {
1111		prog = orig_prog;
1112		goto out_addrs;
1113	}
1114
1115	/*
1116	 * Before first pass, make a rough estimation of addrs[]
1117	 * each BPF instruction is translated to less than 64 bytes
1118	 */
1119	for (proglen = 0, i = 0; i <= prog->len; i++) {
1120		proglen += 64;
1121		addrs[i] = proglen;
1122	}
1123	ctx.cleanup_addr = proglen;
1124skip_init_addrs:
1125
1126	/*
1127	 * JITed image shrinks with every pass and the loop iterates
1128	 * until the image stops shrinking. Very large BPF programs
1129	 * may converge on the last pass. In such case do one more
1130	 * pass to emit the final image.
1131	 */
1132	for (pass = 0; pass < 20 || image; pass++) {
1133		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
 
 
1134		if (proglen <= 0) {
1135out_image:
1136			image = NULL;
1137			if (header)
1138				bpf_jit_binary_free(header);
 
 
 
 
1139			prog = orig_prog;
 
 
 
 
 
1140			goto out_addrs;
1141		}
1142		if (image) {
1143			if (proglen != oldproglen) {
1144				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1145				       proglen, oldproglen);
1146				goto out_image;
1147			}
1148			break;
1149		}
1150		if (proglen == oldproglen) {
1151			header = bpf_jit_binary_alloc(proglen, &image,
1152						      1, jit_fill_hole);
 
 
 
 
 
 
 
 
 
 
 
 
1153			if (!header) {
1154				prog = orig_prog;
1155				goto out_addrs;
1156			}
 
1157		}
1158		oldproglen = proglen;
1159		cond_resched();
1160	}
1161
1162	if (bpf_jit_enable > 1)
1163		bpf_jit_dump(prog->len, proglen, pass + 1, image);
1164
1165	if (image) {
1166		if (!prog->is_func || extra_pass) {
1167			bpf_jit_binary_lock_ro(header);
 
 
 
 
 
 
 
 
 
 
 
 
 
1168		} else {
1169			jit_data->addrs = addrs;
1170			jit_data->ctx = ctx;
1171			jit_data->proglen = proglen;
1172			jit_data->image = image;
1173			jit_data->header = header;
 
1174		}
1175		prog->bpf_func = (void *)image;
1176		prog->jited = 1;
1177		prog->jited_len = proglen;
1178	} else {
1179		prog = orig_prog;
1180	}
1181
1182	if (!image || !prog->is_func || extra_pass) {
1183		if (image)
1184			bpf_prog_fill_jited_linfo(prog, addrs + 1);
1185out_addrs:
1186		kfree(addrs);
1187		kfree(jit_data);
1188		prog->aux->jit_data = NULL;
1189	}
1190out:
1191	if (tmp_blinded)
1192		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1193					   tmp : orig_prog);
1194	return prog;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * BPF JIT compiler
   4 *
   5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
   6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   7 */
   8#include <linux/netdevice.h>
   9#include <linux/filter.h>
  10#include <linux/if_vlan.h>
  11#include <linux/bpf.h>
  12#include <linux/memory.h>
  13#include <linux/sort.h>
  14#include <asm/extable.h>
  15#include <asm/ftrace.h>
  16#include <asm/set_memory.h>
  17#include <asm/nospec-branch.h>
  18#include <asm/text-patching.h>
  19
  20static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  21{
  22	if (len == 1)
  23		*ptr = bytes;
  24	else if (len == 2)
  25		*(u16 *)ptr = bytes;
  26	else {
  27		*(u32 *)ptr = bytes;
  28		barrier();
  29	}
  30	return ptr + len;
  31}
  32
  33#define EMIT(bytes, len) \
  34	do { prog = emit_code(prog, bytes, len); } while (0)
  35
  36#define EMIT1(b1)		EMIT(b1, 1)
  37#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
  38#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  39#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
  40
  41#define EMIT1_off32(b1, off) \
  42	do { EMIT1(b1); EMIT(off, 4); } while (0)
  43#define EMIT2_off32(b1, b2, off) \
  44	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
  45#define EMIT3_off32(b1, b2, b3, off) \
  46	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
  47#define EMIT4_off32(b1, b2, b3, b4, off) \
  48	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
  49
  50#ifdef CONFIG_X86_KERNEL_IBT
  51#define EMIT_ENDBR()	EMIT(gen_endbr(), 4)
  52#else
  53#define EMIT_ENDBR()
  54#endif
  55
  56static bool is_imm8(int value)
  57{
  58	return value <= 127 && value >= -128;
  59}
  60
  61static bool is_simm32(s64 value)
  62{
  63	return value == (s64)(s32)value;
  64}
  65
  66static bool is_uimm32(u64 value)
  67{
  68	return value == (u64)(u32)value;
  69}
  70
  71/* mov dst, src */
  72#define EMIT_mov(DST, SRC)								 \
  73	do {										 \
  74		if (DST != SRC)								 \
  75			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
  76	} while (0)
  77
  78static int bpf_size_to_x86_bytes(int bpf_size)
  79{
  80	if (bpf_size == BPF_W)
  81		return 4;
  82	else if (bpf_size == BPF_H)
  83		return 2;
  84	else if (bpf_size == BPF_B)
  85		return 1;
  86	else if (bpf_size == BPF_DW)
  87		return 4; /* imm32 */
  88	else
  89		return 0;
  90}
  91
  92/*
  93 * List of x86 cond jumps opcodes (. + s8)
  94 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
  95 */
  96#define X86_JB  0x72
  97#define X86_JAE 0x73
  98#define X86_JE  0x74
  99#define X86_JNE 0x75
 100#define X86_JBE 0x76
 101#define X86_JA  0x77
 102#define X86_JL  0x7C
 103#define X86_JGE 0x7D
 104#define X86_JLE 0x7E
 105#define X86_JG  0x7F
 106
 107/* Pick a register outside of BPF range for JIT internal work */
 108#define AUX_REG (MAX_BPF_JIT_REG + 1)
 109#define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
 110
 111/*
 112 * The following table maps BPF registers to x86-64 registers.
 113 *
 114 * x86-64 register R12 is unused, since if used as base address
 115 * register in load/store instructions, it always needs an
 116 * extra byte of encoding and is callee saved.
 117 *
 118 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
 119 * trampoline. x86-64 register R10 is used for blinding (if enabled).
 120 */
 121static const int reg2hex[] = {
 122	[BPF_REG_0] = 0,  /* RAX */
 123	[BPF_REG_1] = 7,  /* RDI */
 124	[BPF_REG_2] = 6,  /* RSI */
 125	[BPF_REG_3] = 2,  /* RDX */
 126	[BPF_REG_4] = 1,  /* RCX */
 127	[BPF_REG_5] = 0,  /* R8  */
 128	[BPF_REG_6] = 3,  /* RBX callee saved */
 129	[BPF_REG_7] = 5,  /* R13 callee saved */
 130	[BPF_REG_8] = 6,  /* R14 callee saved */
 131	[BPF_REG_9] = 7,  /* R15 callee saved */
 132	[BPF_REG_FP] = 5, /* RBP readonly */
 133	[BPF_REG_AX] = 2, /* R10 temp register */
 134	[AUX_REG] = 3,    /* R11 temp register */
 135	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
 136};
 137
 138static const int reg2pt_regs[] = {
 139	[BPF_REG_0] = offsetof(struct pt_regs, ax),
 140	[BPF_REG_1] = offsetof(struct pt_regs, di),
 141	[BPF_REG_2] = offsetof(struct pt_regs, si),
 142	[BPF_REG_3] = offsetof(struct pt_regs, dx),
 143	[BPF_REG_4] = offsetof(struct pt_regs, cx),
 144	[BPF_REG_5] = offsetof(struct pt_regs, r8),
 145	[BPF_REG_6] = offsetof(struct pt_regs, bx),
 146	[BPF_REG_7] = offsetof(struct pt_regs, r13),
 147	[BPF_REG_8] = offsetof(struct pt_regs, r14),
 148	[BPF_REG_9] = offsetof(struct pt_regs, r15),
 149};
 150
 151/*
 152 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
 153 * which need extra byte of encoding.
 154 * rax,rcx,...,rbp have simpler encoding
 155 */
 156static bool is_ereg(u32 reg)
 157{
 158	return (1 << reg) & (BIT(BPF_REG_5) |
 159			     BIT(AUX_REG) |
 160			     BIT(BPF_REG_7) |
 161			     BIT(BPF_REG_8) |
 162			     BIT(BPF_REG_9) |
 163			     BIT(X86_REG_R9) |
 164			     BIT(BPF_REG_AX));
 165}
 166
 167/*
 168 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
 169 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
 170 * of encoding. al,cl,dl,bl have simpler encoding.
 171 */
 172static bool is_ereg_8l(u32 reg)
 173{
 174	return is_ereg(reg) ||
 175	    (1 << reg) & (BIT(BPF_REG_1) |
 176			  BIT(BPF_REG_2) |
 177			  BIT(BPF_REG_FP));
 178}
 179
 180static bool is_axreg(u32 reg)
 181{
 182	return reg == BPF_REG_0;
 183}
 184
 185/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
 186static u8 add_1mod(u8 byte, u32 reg)
 187{
 188	if (is_ereg(reg))
 189		byte |= 1;
 190	return byte;
 191}
 192
 193static u8 add_2mod(u8 byte, u32 r1, u32 r2)
 194{
 195	if (is_ereg(r1))
 196		byte |= 1;
 197	if (is_ereg(r2))
 198		byte |= 4;
 199	return byte;
 200}
 201
 202/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
 203static u8 add_1reg(u8 byte, u32 dst_reg)
 204{
 205	return byte + reg2hex[dst_reg];
 206}
 207
 208/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
 209static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
 210{
 211	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
 212}
 213
 214/* Some 1-byte opcodes for binary ALU operations */
 215static u8 simple_alu_opcodes[] = {
 216	[BPF_ADD] = 0x01,
 217	[BPF_SUB] = 0x29,
 218	[BPF_AND] = 0x21,
 219	[BPF_OR] = 0x09,
 220	[BPF_XOR] = 0x31,
 221	[BPF_LSH] = 0xE0,
 222	[BPF_RSH] = 0xE8,
 223	[BPF_ARSH] = 0xF8,
 224};
 225
 226static void jit_fill_hole(void *area, unsigned int size)
 227{
 228	/* Fill whole space with INT3 instructions */
 229	memset(area, 0xcc, size);
 230}
 231
 232int bpf_arch_text_invalidate(void *dst, size_t len)
 233{
 234	return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
 235}
 236
 237struct jit_context {
 238	int cleanup_addr; /* Epilogue code offset */
 239
 240	/*
 241	 * Program specific offsets of labels in the code; these rely on the
 242	 * JIT doing at least 2 passes, recording the position on the first
 243	 * pass, only to generate the correct offset on the second pass.
 244	 */
 245	int tail_call_direct_label;
 246	int tail_call_indirect_label;
 247};
 248
 249/* Maximum number of bytes emitted while JITing one eBPF insn */
 250#define BPF_MAX_INSN_SIZE	128
 251#define BPF_INSN_SAFETY		64
 252
 253/* Number of bytes emit_patch() needs to generate instructions */
 254#define X86_PATCH_SIZE		5
 255/* Number of bytes that will be skipped on tailcall */
 256#define X86_TAIL_CALL_OFFSET	(11 + ENDBR_INSN_SIZE)
 257
 258static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
 259{
 260	u8 *prog = *pprog;
 261
 262	if (callee_regs_used[0])
 263		EMIT1(0x53);         /* push rbx */
 264	if (callee_regs_used[1])
 265		EMIT2(0x41, 0x55);   /* push r13 */
 266	if (callee_regs_used[2])
 267		EMIT2(0x41, 0x56);   /* push r14 */
 268	if (callee_regs_used[3])
 269		EMIT2(0x41, 0x57);   /* push r15 */
 270	*pprog = prog;
 271}
 272
 273static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
 274{
 275	u8 *prog = *pprog;
 276
 277	if (callee_regs_used[3])
 278		EMIT2(0x41, 0x5F);   /* pop r15 */
 279	if (callee_regs_used[2])
 280		EMIT2(0x41, 0x5E);   /* pop r14 */
 281	if (callee_regs_used[1])
 282		EMIT2(0x41, 0x5D);   /* pop r13 */
 283	if (callee_regs_used[0])
 284		EMIT1(0x5B);         /* pop rbx */
 285	*pprog = prog;
 286}
 287
 288/*
 289 * Emit x86-64 prologue code for BPF program.
 290 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
 291 * while jumping to another program
 292 */
 293static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
 294			  bool tail_call_reachable, bool is_subprog)
 295{
 296	u8 *prog = *pprog;
 
 297
 298	/* BPF trampoline can be made to work without these nops,
 299	 * but let's waste 5 bytes for now and optimize later
 300	 */
 301	EMIT_ENDBR();
 302	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
 303	prog += X86_PATCH_SIZE;
 304	if (!ebpf_from_cbpf) {
 305		if (tail_call_reachable && !is_subprog)
 306			EMIT2(0x31, 0xC0); /* xor eax, eax */
 307		else
 308			EMIT2(0x66, 0x90); /* nop2 */
 309	}
 310	EMIT1(0x55);             /* push rbp */
 311	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
 312
 313	/* X86_TAIL_CALL_OFFSET is here */
 314	EMIT_ENDBR();
 315
 316	/* sub rsp, rounded_stack_depth */
 317	if (stack_depth)
 318		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
 319	if (tail_call_reachable)
 320		EMIT1(0x50);         /* push rax */
 321	*pprog = prog;
 322}
 323
 324static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
 325{
 326	u8 *prog = *pprog;
 327	s64 offset;
 328
 329	offset = func - (ip + X86_PATCH_SIZE);
 330	if (!is_simm32(offset)) {
 331		pr_err("Target call %p is out of range\n", func);
 332		return -ERANGE;
 333	}
 334	EMIT1_off32(opcode, offset);
 335	*pprog = prog;
 336	return 0;
 337}
 338
 339static int emit_call(u8 **pprog, void *func, void *ip)
 340{
 341	return emit_patch(pprog, func, ip, 0xE8);
 342}
 343
 344static int emit_rsb_call(u8 **pprog, void *func, void *ip)
 345{
 346	OPTIMIZER_HIDE_VAR(func);
 347	x86_call_depth_emit_accounting(pprog, func);
 348	return emit_patch(pprog, func, ip, 0xE8);
 349}
 350
 351static int emit_jump(u8 **pprog, void *func, void *ip)
 352{
 353	return emit_patch(pprog, func, ip, 0xE9);
 354}
 355
 356static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
 357				void *old_addr, void *new_addr)
 358{
 359	const u8 *nop_insn = x86_nops[5];
 360	u8 old_insn[X86_PATCH_SIZE];
 361	u8 new_insn[X86_PATCH_SIZE];
 362	u8 *prog;
 363	int ret;
 364
 365	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
 366	if (old_addr) {
 367		prog = old_insn;
 368		ret = t == BPF_MOD_CALL ?
 369		      emit_call(&prog, old_addr, ip) :
 370		      emit_jump(&prog, old_addr, ip);
 371		if (ret)
 372			return ret;
 373	}
 374
 375	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
 376	if (new_addr) {
 377		prog = new_insn;
 378		ret = t == BPF_MOD_CALL ?
 379		      emit_call(&prog, new_addr, ip) :
 380		      emit_jump(&prog, new_addr, ip);
 381		if (ret)
 382			return ret;
 383	}
 384
 385	ret = -EBUSY;
 386	mutex_lock(&text_mutex);
 387	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
 388		goto out;
 389	ret = 1;
 390	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
 391		text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
 392		ret = 0;
 393	}
 394out:
 395	mutex_unlock(&text_mutex);
 396	return ret;
 397}
 398
 399int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
 400		       void *old_addr, void *new_addr)
 401{
 402	if (!is_kernel_text((long)ip) &&
 403	    !is_bpf_text_address((long)ip))
 404		/* BPF poking in modules is not supported */
 405		return -EINVAL;
 406
 407	/*
 408	 * See emit_prologue(), for IBT builds the trampoline hook is preceded
 409	 * with an ENDBR instruction.
 410	 */
 411	if (is_endbr(*(u32 *)ip))
 412		ip += ENDBR_INSN_SIZE;
 413
 414	return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
 415}
 416
 417#define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
 418
 419static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
 420{
 421	u8 *prog = *pprog;
 422
 423	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
 424		EMIT_LFENCE();
 425		EMIT2(0xFF, 0xE0 + reg);
 426	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
 427		OPTIMIZER_HIDE_VAR(reg);
 428		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
 429			emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
 430		else
 431			emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
 432	} else {
 433		EMIT2(0xFF, 0xE0 + reg);	/* jmp *%\reg */
 434		if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
 435			EMIT1(0xCC);		/* int3 */
 436	}
 437
 438	*pprog = prog;
 439}
 440
 441static void emit_return(u8 **pprog, u8 *ip)
 442{
 443	u8 *prog = *pprog;
 444
 445	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
 446		emit_jump(&prog, x86_return_thunk, ip);
 447	} else {
 448		EMIT1(0xC3);		/* ret */
 449		if (IS_ENABLED(CONFIG_SLS))
 450			EMIT1(0xCC);	/* int3 */
 451	}
 452
 453	*pprog = prog;
 454}
 455
 456/*
 457 * Generate the following code:
 458 *
 459 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
 460 *   if (index >= array->map.max_entries)
 461 *     goto out;
 462 *   if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
 463 *     goto out;
 464 *   prog = array->ptrs[index];
 465 *   if (prog == NULL)
 466 *     goto out;
 467 *   goto *(prog->bpf_func + prologue_size);
 468 * out:
 469 */
 470static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
 471					u32 stack_depth, u8 *ip,
 472					struct jit_context *ctx)
 473{
 474	int tcc_off = -4 - round_up(stack_depth, 8);
 475	u8 *prog = *pprog, *start = *pprog;
 476	int offset;
 477
 478	/*
 479	 * rdi - pointer to ctx
 480	 * rsi - pointer to bpf_array
 481	 * rdx - index in bpf_array
 482	 */
 483
 484	/*
 485	 * if (index >= array->map.max_entries)
 486	 *	goto out;
 487	 */
 488	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
 489	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
 490	      offsetof(struct bpf_array, map.max_entries));
 491
 492	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
 493	EMIT2(X86_JBE, offset);                   /* jbe out */
 494
 495	/*
 496	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
 497	 *	goto out;
 498	 */
 499	EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
 500	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
 501
 502	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
 503	EMIT2(X86_JAE, offset);                   /* jae out */
 504	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
 505	EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
 506
 507	/* prog = array->ptrs[index]; */
 508	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
 509		    offsetof(struct bpf_array, ptrs));
 510
 511	/*
 512	 * if (prog == NULL)
 513	 *	goto out;
 514	 */
 515	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
 
 
 
 516
 517	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
 518	EMIT2(X86_JE, offset);                    /* je out */
 
 
 519
 520	pop_callee_regs(&prog, callee_regs_used);
 521
 522	EMIT1(0x58);                              /* pop rax */
 523	if (stack_depth)
 524		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
 525			    round_up(stack_depth, 8));
 526
 527	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
 528	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
 529	      offsetof(struct bpf_prog, bpf_func));
 530	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
 531	      X86_TAIL_CALL_OFFSET);
 532	/*
 533	 * Now we're ready to jump into next BPF program
 534	 * rdi == ctx (1st arg)
 535	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
 536	 */
 537	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
 538
 539	/* out: */
 540	ctx->tail_call_indirect_label = prog - start;
 
 
 541	*pprog = prog;
 542}
 543
 544static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
 545				      u8 **pprog, u8 *ip,
 546				      bool *callee_regs_used, u32 stack_depth,
 547				      struct jit_context *ctx)
 548{
 549	int tcc_off = -4 - round_up(stack_depth, 8);
 550	u8 *prog = *pprog, *start = *pprog;
 551	int offset;
 552
 553	/*
 554	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
 555	 *	goto out;
 556	 */
 557	EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
 558	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
 559
 560	offset = ctx->tail_call_direct_label - (prog + 2 - start);
 561	EMIT2(X86_JAE, offset);                       /* jae out */
 562	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
 563	EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
 564
 565	poke->tailcall_bypass = ip + (prog - start);
 566	poke->adj_off = X86_TAIL_CALL_OFFSET;
 567	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
 568	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
 569
 570	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
 571		  poke->tailcall_bypass);
 572
 573	pop_callee_regs(&prog, callee_regs_used);
 574	EMIT1(0x58);                                  /* pop rax */
 575	if (stack_depth)
 576		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
 577
 578	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
 579	prog += X86_PATCH_SIZE;
 580
 581	/* out: */
 582	ctx->tail_call_direct_label = prog - start;
 583
 584	*pprog = prog;
 585}
 586
 587static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
 588{
 589	struct bpf_jit_poke_descriptor *poke;
 590	struct bpf_array *array;
 591	struct bpf_prog *target;
 592	int i, ret;
 593
 594	for (i = 0; i < prog->aux->size_poke_tab; i++) {
 595		poke = &prog->aux->poke_tab[i];
 596		if (poke->aux && poke->aux != prog->aux)
 597			continue;
 598
 599		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
 600
 601		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
 602			continue;
 603
 604		array = container_of(poke->tail_call.map, struct bpf_array, map);
 605		mutex_lock(&array->aux->poke_mutex);
 606		target = array->ptrs[poke->tail_call.key];
 607		if (target) {
 608			ret = __bpf_arch_text_poke(poke->tailcall_target,
 609						   BPF_MOD_JUMP, NULL,
 610						   (u8 *)target->bpf_func +
 611						   poke->adj_off);
 612			BUG_ON(ret < 0);
 613			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
 614						   BPF_MOD_JUMP,
 615						   (u8 *)poke->tailcall_target +
 616						   X86_PATCH_SIZE, NULL);
 617			BUG_ON(ret < 0);
 618		}
 619		WRITE_ONCE(poke->tailcall_target_stable, true);
 620		mutex_unlock(&array->aux->poke_mutex);
 621	}
 622}
 623
 624static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
 625			   u32 dst_reg, const u32 imm32)
 626{
 627	u8 *prog = *pprog;
 628	u8 b1, b2, b3;
 
 629
 630	/*
 631	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
 632	 * (which zero-extends imm32) to save 2 bytes.
 633	 */
 634	if (sign_propagate && (s32)imm32 < 0) {
 635		/* 'mov %rax, imm32' sign extends imm32 */
 636		b1 = add_1mod(0x48, dst_reg);
 637		b2 = 0xC7;
 638		b3 = 0xC0;
 639		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
 640		goto done;
 641	}
 642
 643	/*
 644	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
 645	 * to save 3 bytes.
 646	 */
 647	if (imm32 == 0) {
 648		if (is_ereg(dst_reg))
 649			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
 650		b2 = 0x31; /* xor */
 651		b3 = 0xC0;
 652		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
 653		goto done;
 654	}
 655
 656	/* mov %eax, imm32 */
 657	if (is_ereg(dst_reg))
 658		EMIT1(add_1mod(0x40, dst_reg));
 659	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
 660done:
 661	*pprog = prog;
 662}
 663
 664static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
 665			   const u32 imm32_hi, const u32 imm32_lo)
 666{
 667	u8 *prog = *pprog;
 
 668
 669	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
 670		/*
 671		 * For emitting plain u32, where sign bit must not be
 672		 * propagated LLVM tends to load imm64 over mov32
 673		 * directly, so save couple of bytes by just doing
 674		 * 'mov %eax, imm32' instead.
 675		 */
 676		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
 677	} else {
 678		/* movabsq rax, imm64 */
 679		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
 680		EMIT(imm32_lo, 4);
 681		EMIT(imm32_hi, 4);
 682	}
 683
 684	*pprog = prog;
 685}
 686
 687static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
 688{
 689	u8 *prog = *pprog;
 
 690
 691	if (is64) {
 692		/* mov dst, src */
 693		EMIT_mov(dst_reg, src_reg);
 694	} else {
 695		/* mov32 dst, src */
 696		if (is_ereg(dst_reg) || is_ereg(src_reg))
 697			EMIT1(add_2mod(0x40, dst_reg, src_reg));
 698		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
 699	}
 700
 701	*pprog = prog;
 702}
 703
 704/* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
 705static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
 706{
 707	u8 *prog = *pprog;
 708
 709	if (is_imm8(off)) {
 710		/* 1-byte signed displacement.
 711		 *
 712		 * If off == 0 we could skip this and save one extra byte, but
 713		 * special case of x86 R13 which always needs an offset is not
 714		 * worth the hassle
 715		 */
 716		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
 717	} else {
 718		/* 4-byte signed displacement */
 719		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
 720	}
 721	*pprog = prog;
 722}
 723
 724/*
 725 * Emit a REX byte if it will be necessary to address these registers
 726 */
 727static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
 728{
 729	u8 *prog = *pprog;
 730
 731	if (is64)
 732		EMIT1(add_2mod(0x48, dst_reg, src_reg));
 733	else if (is_ereg(dst_reg) || is_ereg(src_reg))
 734		EMIT1(add_2mod(0x40, dst_reg, src_reg));
 735	*pprog = prog;
 736}
 737
 738/*
 739 * Similar version of maybe_emit_mod() for a single register
 740 */
 741static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
 742{
 743	u8 *prog = *pprog;
 744
 745	if (is64)
 746		EMIT1(add_1mod(0x48, reg));
 747	else if (is_ereg(reg))
 748		EMIT1(add_1mod(0x40, reg));
 749	*pprog = prog;
 750}
 751
 752/* LDX: dst_reg = *(u8*)(src_reg + off) */
 753static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
 754{
 755	u8 *prog = *pprog;
 756
 757	switch (size) {
 758	case BPF_B:
 759		/* Emit 'movzx rax, byte ptr [rax + off]' */
 760		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
 761		break;
 762	case BPF_H:
 763		/* Emit 'movzx rax, word ptr [rax + off]' */
 764		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
 765		break;
 766	case BPF_W:
 767		/* Emit 'mov eax, dword ptr [rax+0x14]' */
 768		if (is_ereg(dst_reg) || is_ereg(src_reg))
 769			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
 770		else
 771			EMIT1(0x8B);
 772		break;
 773	case BPF_DW:
 774		/* Emit 'mov rax, qword ptr [rax+0x14]' */
 775		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
 776		break;
 777	}
 778	emit_insn_suffix(&prog, src_reg, dst_reg, off);
 779	*pprog = prog;
 780}
 781
 782/* STX: *(u8*)(dst_reg + off) = src_reg */
 783static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
 784{
 785	u8 *prog = *pprog;
 786
 787	switch (size) {
 788	case BPF_B:
 789		/* Emit 'mov byte ptr [rax + off], al' */
 790		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
 791			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
 792			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
 793		else
 794			EMIT1(0x88);
 795		break;
 796	case BPF_H:
 797		if (is_ereg(dst_reg) || is_ereg(src_reg))
 798			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
 799		else
 800			EMIT2(0x66, 0x89);
 801		break;
 802	case BPF_W:
 803		if (is_ereg(dst_reg) || is_ereg(src_reg))
 804			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
 805		else
 806			EMIT1(0x89);
 807		break;
 808	case BPF_DW:
 809		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
 810		break;
 811	}
 812	emit_insn_suffix(&prog, dst_reg, src_reg, off);
 813	*pprog = prog;
 814}
 815
 816static int emit_atomic(u8 **pprog, u8 atomic_op,
 817		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
 818{
 819	u8 *prog = *pprog;
 820
 821	EMIT1(0xF0); /* lock prefix */
 822
 823	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
 824
 825	/* emit opcode */
 826	switch (atomic_op) {
 827	case BPF_ADD:
 828	case BPF_AND:
 829	case BPF_OR:
 830	case BPF_XOR:
 831		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
 832		EMIT1(simple_alu_opcodes[atomic_op]);
 833		break;
 834	case BPF_ADD | BPF_FETCH:
 835		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
 836		EMIT2(0x0F, 0xC1);
 837		break;
 838	case BPF_XCHG:
 839		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
 840		EMIT1(0x87);
 841		break;
 842	case BPF_CMPXCHG:
 843		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
 844		EMIT2(0x0F, 0xB1);
 845		break;
 846	default:
 847		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
 848		return -EFAULT;
 849	}
 850
 851	emit_insn_suffix(&prog, dst_reg, src_reg, off);
 852
 853	*pprog = prog;
 854	return 0;
 855}
 856
 857bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
 858{
 859	u32 reg = x->fixup >> 8;
 860
 861	/* jump over faulting load and clear dest register */
 862	*(unsigned long *)((void *)regs + reg) = 0;
 863	regs->ip += x->fixup & 0xff;
 864	return true;
 865}
 866
 867static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
 868			     bool *regs_used, bool *tail_call_seen)
 869{
 870	int i;
 871
 872	for (i = 1; i <= insn_cnt; i++, insn++) {
 873		if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
 874			*tail_call_seen = true;
 875		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
 876			regs_used[0] = true;
 877		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
 878			regs_used[1] = true;
 879		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
 880			regs_used[2] = true;
 881		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
 882			regs_used[3] = true;
 883	}
 884}
 885
 886static void emit_nops(u8 **pprog, int len)
 887{
 888	u8 *prog = *pprog;
 889	int i, noplen;
 890
 891	while (len > 0) {
 892		noplen = len;
 893
 894		if (noplen > ASM_NOP_MAX)
 895			noplen = ASM_NOP_MAX;
 896
 897		for (i = 0; i < noplen; i++)
 898			EMIT1(x86_nops[noplen][i]);
 899		len -= noplen;
 900	}
 901
 902	*pprog = prog;
 903}
 904
 905/* emit the 3-byte VEX prefix
 906 *
 907 * r: same as rex.r, extra bit for ModRM reg field
 908 * x: same as rex.x, extra bit for SIB index field
 909 * b: same as rex.b, extra bit for ModRM r/m, or SIB base
 910 * m: opcode map select, encoding escape bytes e.g. 0x0f38
 911 * w: same as rex.w (32 bit or 64 bit) or opcode specific
 912 * src_reg2: additional source reg (encoded as BPF reg)
 913 * l: vector length (128 bit or 256 bit) or reserved
 914 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
 915 */
 916static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
 917		      bool w, u8 src_reg2, bool l, u8 pp)
 918{
 919	u8 *prog = *pprog;
 920	const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
 921	u8 b1, b2;
 922	u8 vvvv = reg2hex[src_reg2];
 923
 924	/* reg2hex gives only the lower 3 bit of vvvv */
 925	if (is_ereg(src_reg2))
 926		vvvv |= 1 << 3;
 927
 928	/*
 929	 * 2nd byte of 3-byte VEX prefix
 930	 * ~ means bit inverted encoding
 931	 *
 932	 *    7                           0
 933	 *  +---+---+---+---+---+---+---+---+
 934	 *  |~R |~X |~B |         m         |
 935	 *  +---+---+---+---+---+---+---+---+
 936	 */
 937	b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
 938	/*
 939	 * 3rd byte of 3-byte VEX prefix
 940	 *
 941	 *    7                           0
 942	 *  +---+---+---+---+---+---+---+---+
 943	 *  | W |     ~vvvv     | L |   pp  |
 944	 *  +---+---+---+---+---+---+---+---+
 945	 */
 946	b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
 947
 948	EMIT3(b0, b1, b2);
 949	*pprog = prog;
 950}
 951
 952/* emit BMI2 shift instruction */
 953static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
 954{
 955	u8 *prog = *pprog;
 956	bool r = is_ereg(dst_reg);
 957	u8 m = 2; /* escape code 0f38 */
 958
 959	emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
 960	EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
 961	*pprog = prog;
 962}
 963
 964#define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
 965
 966static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
 967		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
 968{
 969	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
 970	struct bpf_insn *insn = bpf_prog->insnsi;
 971	bool callee_regs_used[4] = {};
 972	int insn_cnt = bpf_prog->len;
 973	bool tail_call_seen = false;
 974	bool seen_exit = false;
 975	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
 976	int i, excnt = 0;
 977	int ilen, proglen = 0;
 978	u8 *prog = temp;
 979	int err;
 980
 981	detect_reg_usage(insn, insn_cnt, callee_regs_used,
 982			 &tail_call_seen);
 983
 984	/* tail call's presence in current prog implies it is reachable */
 985	tail_call_reachable |= tail_call_seen;
 986
 987	emit_prologue(&prog, bpf_prog->aux->stack_depth,
 988		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
 989		      bpf_prog->aux->func_idx != 0);
 990	push_callee_regs(&prog, callee_regs_used);
 991
 992	ilen = prog - temp;
 993	if (rw_image)
 994		memcpy(rw_image + proglen, temp, ilen);
 995	proglen += ilen;
 996	addrs[0] = proglen;
 997	prog = temp;
 998
 999	for (i = 1; i <= insn_cnt; i++, insn++) {
1000		const s32 imm32 = insn->imm;
1001		u32 dst_reg = insn->dst_reg;
1002		u32 src_reg = insn->src_reg;
1003		u8 b2 = 0, b3 = 0;
1004		u8 *start_of_ldx;
1005		s64 jmp_offset;
1006		u8 jmp_cond;
 
1007		u8 *func;
1008		int nops;
1009
1010		switch (insn->code) {
1011			/* ALU */
1012		case BPF_ALU | BPF_ADD | BPF_X:
1013		case BPF_ALU | BPF_SUB | BPF_X:
1014		case BPF_ALU | BPF_AND | BPF_X:
1015		case BPF_ALU | BPF_OR | BPF_X:
1016		case BPF_ALU | BPF_XOR | BPF_X:
1017		case BPF_ALU64 | BPF_ADD | BPF_X:
1018		case BPF_ALU64 | BPF_SUB | BPF_X:
1019		case BPF_ALU64 | BPF_AND | BPF_X:
1020		case BPF_ALU64 | BPF_OR | BPF_X:
1021		case BPF_ALU64 | BPF_XOR | BPF_X:
1022			maybe_emit_mod(&prog, dst_reg, src_reg,
1023				       BPF_CLASS(insn->code) == BPF_ALU64);
1024			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
 
 
 
 
 
 
 
 
1025			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1026			break;
1027
1028		case BPF_ALU64 | BPF_MOV | BPF_X:
1029		case BPF_ALU | BPF_MOV | BPF_X:
1030			emit_mov_reg(&prog,
1031				     BPF_CLASS(insn->code) == BPF_ALU64,
1032				     dst_reg, src_reg);
1033			break;
1034
1035			/* neg dst */
1036		case BPF_ALU | BPF_NEG:
1037		case BPF_ALU64 | BPF_NEG:
1038			maybe_emit_1mod(&prog, dst_reg,
1039					BPF_CLASS(insn->code) == BPF_ALU64);
 
 
1040			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1041			break;
1042
1043		case BPF_ALU | BPF_ADD | BPF_K:
1044		case BPF_ALU | BPF_SUB | BPF_K:
1045		case BPF_ALU | BPF_AND | BPF_K:
1046		case BPF_ALU | BPF_OR | BPF_K:
1047		case BPF_ALU | BPF_XOR | BPF_K:
1048		case BPF_ALU64 | BPF_ADD | BPF_K:
1049		case BPF_ALU64 | BPF_SUB | BPF_K:
1050		case BPF_ALU64 | BPF_AND | BPF_K:
1051		case BPF_ALU64 | BPF_OR | BPF_K:
1052		case BPF_ALU64 | BPF_XOR | BPF_K:
1053			maybe_emit_1mod(&prog, dst_reg,
1054					BPF_CLASS(insn->code) == BPF_ALU64);
 
 
1055
1056			/*
1057			 * b3 holds 'normal' opcode, b2 short form only valid
1058			 * in case dst is eax/rax.
1059			 */
1060			switch (BPF_OP(insn->code)) {
1061			case BPF_ADD:
1062				b3 = 0xC0;
1063				b2 = 0x05;
1064				break;
1065			case BPF_SUB:
1066				b3 = 0xE8;
1067				b2 = 0x2D;
1068				break;
1069			case BPF_AND:
1070				b3 = 0xE0;
1071				b2 = 0x25;
1072				break;
1073			case BPF_OR:
1074				b3 = 0xC8;
1075				b2 = 0x0D;
1076				break;
1077			case BPF_XOR:
1078				b3 = 0xF0;
1079				b2 = 0x35;
1080				break;
1081			}
1082
1083			if (is_imm8(imm32))
1084				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1085			else if (is_axreg(dst_reg))
1086				EMIT1_off32(b2, imm32);
1087			else
1088				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1089			break;
1090
1091		case BPF_ALU64 | BPF_MOV | BPF_K:
1092		case BPF_ALU | BPF_MOV | BPF_K:
1093			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1094				       dst_reg, imm32);
1095			break;
1096
1097		case BPF_LD | BPF_IMM | BPF_DW:
1098			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1099			insn++;
1100			i++;
1101			break;
1102
1103			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1104		case BPF_ALU | BPF_MOD | BPF_X:
1105		case BPF_ALU | BPF_DIV | BPF_X:
1106		case BPF_ALU | BPF_MOD | BPF_K:
1107		case BPF_ALU | BPF_DIV | BPF_K:
1108		case BPF_ALU64 | BPF_MOD | BPF_X:
1109		case BPF_ALU64 | BPF_DIV | BPF_X:
1110		case BPF_ALU64 | BPF_MOD | BPF_K:
1111		case BPF_ALU64 | BPF_DIV | BPF_K: {
1112			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
 
1113
1114			if (dst_reg != BPF_REG_0)
1115				EMIT1(0x50); /* push rax */
1116			if (dst_reg != BPF_REG_3)
1117				EMIT1(0x52); /* push rdx */
1118
1119			if (BPF_SRC(insn->code) == BPF_X) {
1120				if (src_reg == BPF_REG_0 ||
1121				    src_reg == BPF_REG_3) {
1122					/* mov r11, src_reg */
1123					EMIT_mov(AUX_REG, src_reg);
1124					src_reg = AUX_REG;
1125				}
1126			} else {
1127				/* mov r11, imm32 */
1128				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1129				src_reg = AUX_REG;
1130			}
1131
1132			if (dst_reg != BPF_REG_0)
1133				/* mov rax, dst_reg */
1134				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1135
1136			/*
1137			 * xor edx, edx
1138			 * equivalent to 'xor rdx, rdx', but one byte less
1139			 */
1140			EMIT2(0x31, 0xd2);
1141
1142			/* div src_reg */
1143			maybe_emit_1mod(&prog, src_reg, is64);
1144			EMIT2(0xF7, add_1reg(0xF0, src_reg));
1145
1146			if (BPF_OP(insn->code) == BPF_MOD &&
1147			    dst_reg != BPF_REG_3)
1148				/* mov dst_reg, rdx */
1149				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1150			else if (BPF_OP(insn->code) == BPF_DIV &&
1151				 dst_reg != BPF_REG_0)
1152				/* mov dst_reg, rax */
1153				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
 
 
 
 
1154
1155			if (dst_reg != BPF_REG_3)
1156				EMIT1(0x5A); /* pop rdx */
1157			if (dst_reg != BPF_REG_0)
1158				EMIT1(0x58); /* pop rax */
1159			break;
1160		}
1161
1162		case BPF_ALU | BPF_MUL | BPF_K:
 
1163		case BPF_ALU64 | BPF_MUL | BPF_K:
1164			maybe_emit_mod(&prog, dst_reg, dst_reg,
1165				       BPF_CLASS(insn->code) == BPF_ALU64);
 
 
 
 
 
 
 
 
 
1166
1167			if (is_imm8(imm32))
1168				/* imul dst_reg, dst_reg, imm8 */
1169				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1170				      imm32);
1171			else
1172				/* imul dst_reg, dst_reg, imm32 */
1173				EMIT2_off32(0x69,
1174					    add_2reg(0xC0, dst_reg, dst_reg),
1175					    imm32);
1176			break;
1177
1178		case BPF_ALU | BPF_MUL | BPF_X:
1179		case BPF_ALU64 | BPF_MUL | BPF_X:
1180			maybe_emit_mod(&prog, src_reg, dst_reg,
1181				       BPF_CLASS(insn->code) == BPF_ALU64);
 
 
1182
1183			/* imul dst_reg, src_reg */
1184			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
 
 
 
 
 
1185			break;
1186
1187			/* Shifts */
1188		case BPF_ALU | BPF_LSH | BPF_K:
1189		case BPF_ALU | BPF_RSH | BPF_K:
1190		case BPF_ALU | BPF_ARSH | BPF_K:
1191		case BPF_ALU64 | BPF_LSH | BPF_K:
1192		case BPF_ALU64 | BPF_RSH | BPF_K:
1193		case BPF_ALU64 | BPF_ARSH | BPF_K:
1194			maybe_emit_1mod(&prog, dst_reg,
1195					BPF_CLASS(insn->code) == BPF_ALU64);
 
 
 
 
 
 
 
 
1196
1197			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1198			if (imm32 == 1)
1199				EMIT2(0xD1, add_1reg(b3, dst_reg));
1200			else
1201				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1202			break;
1203
1204		case BPF_ALU | BPF_LSH | BPF_X:
1205		case BPF_ALU | BPF_RSH | BPF_X:
1206		case BPF_ALU | BPF_ARSH | BPF_X:
1207		case BPF_ALU64 | BPF_LSH | BPF_X:
1208		case BPF_ALU64 | BPF_RSH | BPF_X:
1209		case BPF_ALU64 | BPF_ARSH | BPF_X:
1210			/* BMI2 shifts aren't better when shift count is already in rcx */
1211			if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1212				/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1213				bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1214				u8 op;
1215
1216				switch (BPF_OP(insn->code)) {
1217				case BPF_LSH:
1218					op = 1; /* prefix 0x66 */
1219					break;
1220				case BPF_RSH:
1221					op = 3; /* prefix 0xf2 */
1222					break;
1223				case BPF_ARSH:
1224					op = 2; /* prefix 0xf3 */
1225					break;
1226				}
1227
1228				emit_shiftx(&prog, dst_reg, src_reg, w, op);
1229
1230				break;
 
 
 
 
1231			}
1232
1233			if (src_reg != BPF_REG_4) { /* common case */
1234				/* Check for bad case when dst_reg == rcx */
1235				if (dst_reg == BPF_REG_4) {
1236					/* mov r11, dst_reg */
1237					EMIT_mov(AUX_REG, dst_reg);
1238					dst_reg = AUX_REG;
1239				} else {
1240					EMIT1(0x51); /* push rcx */
1241				}
1242				/* mov rcx, src_reg */
1243				EMIT_mov(BPF_REG_4, src_reg);
1244			}
1245
1246			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1247			maybe_emit_1mod(&prog, dst_reg,
1248					BPF_CLASS(insn->code) == BPF_ALU64);
 
 
1249
1250			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
 
 
 
 
1251			EMIT2(0xD3, add_1reg(b3, dst_reg));
1252
1253			if (src_reg != BPF_REG_4) {
1254				if (insn->dst_reg == BPF_REG_4)
1255					/* mov dst_reg, r11 */
1256					EMIT_mov(insn->dst_reg, AUX_REG);
1257				else
1258					EMIT1(0x59); /* pop rcx */
1259			}
1260
 
 
 
1261			break;
1262
1263		case BPF_ALU | BPF_END | BPF_FROM_BE:
1264			switch (imm32) {
1265			case 16:
1266				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1267				EMIT1(0x66);
1268				if (is_ereg(dst_reg))
1269					EMIT1(0x41);
1270				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1271
1272				/* Emit 'movzwl eax, ax' */
1273				if (is_ereg(dst_reg))
1274					EMIT3(0x45, 0x0F, 0xB7);
1275				else
1276					EMIT2(0x0F, 0xB7);
1277				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1278				break;
1279			case 32:
1280				/* Emit 'bswap eax' to swap lower 4 bytes */
1281				if (is_ereg(dst_reg))
1282					EMIT2(0x41, 0x0F);
1283				else
1284					EMIT1(0x0F);
1285				EMIT1(add_1reg(0xC8, dst_reg));
1286				break;
1287			case 64:
1288				/* Emit 'bswap rax' to swap 8 bytes */
1289				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1290				      add_1reg(0xC8, dst_reg));
1291				break;
1292			}
1293			break;
1294
1295		case BPF_ALU | BPF_END | BPF_FROM_LE:
1296			switch (imm32) {
1297			case 16:
1298				/*
1299				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1300				 * into 64 bit
1301				 */
1302				if (is_ereg(dst_reg))
1303					EMIT3(0x45, 0x0F, 0xB7);
1304				else
1305					EMIT2(0x0F, 0xB7);
1306				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1307				break;
1308			case 32:
1309				/* Emit 'mov eax, eax' to clear upper 32-bits */
1310				if (is_ereg(dst_reg))
1311					EMIT1(0x45);
1312				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1313				break;
1314			case 64:
1315				/* nop */
1316				break;
1317			}
1318			break;
1319
1320			/* speculation barrier */
1321		case BPF_ST | BPF_NOSPEC:
1322			EMIT_LFENCE();
1323			break;
1324
1325			/* ST: *(u8*)(dst_reg + off) = imm */
1326		case BPF_ST | BPF_MEM | BPF_B:
1327			if (is_ereg(dst_reg))
1328				EMIT2(0x41, 0xC6);
1329			else
1330				EMIT1(0xC6);
1331			goto st;
1332		case BPF_ST | BPF_MEM | BPF_H:
1333			if (is_ereg(dst_reg))
1334				EMIT3(0x66, 0x41, 0xC7);
1335			else
1336				EMIT2(0x66, 0xC7);
1337			goto st;
1338		case BPF_ST | BPF_MEM | BPF_W:
1339			if (is_ereg(dst_reg))
1340				EMIT2(0x41, 0xC7);
1341			else
1342				EMIT1(0xC7);
1343			goto st;
1344		case BPF_ST | BPF_MEM | BPF_DW:
1345			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1346
1347st:			if (is_imm8(insn->off))
1348				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1349			else
1350				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1351
1352			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1353			break;
1354
1355			/* STX: *(u8*)(dst_reg + off) = src_reg */
1356		case BPF_STX | BPF_MEM | BPF_B:
 
 
 
 
 
 
 
 
1357		case BPF_STX | BPF_MEM | BPF_H:
 
 
 
 
 
1358		case BPF_STX | BPF_MEM | BPF_W:
 
 
 
 
 
1359		case BPF_STX | BPF_MEM | BPF_DW:
1360			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
 
 
 
 
 
1361			break;
1362
1363			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1364		case BPF_LDX | BPF_MEM | BPF_B:
1365		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
 
 
1366		case BPF_LDX | BPF_MEM | BPF_H:
1367		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
 
 
1368		case BPF_LDX | BPF_MEM | BPF_W:
1369		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
 
 
 
 
 
1370		case BPF_LDX | BPF_MEM | BPF_DW:
1371		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1372			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1373				/* Though the verifier prevents negative insn->off in BPF_PROBE_MEM
1374				 * add abs(insn->off) to the limit to make sure that negative
1375				 * offset won't be an issue.
1376				 * insn->off is s16, so it won't affect valid pointers.
1377				 */
1378				u64 limit = TASK_SIZE_MAX + PAGE_SIZE + abs(insn->off);
1379				u8 *end_of_jmp1, *end_of_jmp2;
1380
1381				/* Conservatively check that src_reg + insn->off is a kernel address:
1382				 * 1. src_reg + insn->off >= limit
1383				 * 2. src_reg + insn->off doesn't become small positive.
1384				 * Cannot do src_reg + insn->off >= limit in one branch,
1385				 * since it needs two spare registers, but JIT has only one.
1386				 */
1387
1388				/* movabsq r11, limit */
1389				EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1390				EMIT((u32)limit, 4);
1391				EMIT(limit >> 32, 4);
1392				/* cmp src_reg, r11 */
1393				maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1394				EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1395				/* if unsigned '<' goto end_of_jmp2 */
1396				EMIT2(X86_JB, 0);
1397				end_of_jmp1 = prog;
1398
1399				/* mov r11, src_reg */
1400				emit_mov_reg(&prog, true, AUX_REG, src_reg);
1401				/* add r11, insn->off */
1402				maybe_emit_1mod(&prog, AUX_REG, true);
1403				EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
1404				/* jmp if not carry to start_of_ldx
1405				 * Otherwise ERR_PTR(-EINVAL) + 128 will be the user addr
1406				 * that has to be rejected.
1407				 */
1408				EMIT2(0x73 /* JNC */, 0);
1409				end_of_jmp2 = prog;
1410
1411				/* xor dst_reg, dst_reg */
1412				emit_mov_imm32(&prog, false, dst_reg, 0);
1413				/* jmp byte_after_ldx */
1414				EMIT2(0xEB, 0);
1415
1416				/* populate jmp_offset for JB above to jump to xor dst_reg */
1417				end_of_jmp1[-1] = end_of_jmp2 - end_of_jmp1;
1418				/* populate jmp_offset for JNC above to jump to start_of_ldx */
1419				start_of_ldx = prog;
1420				end_of_jmp2[-1] = start_of_ldx - end_of_jmp2;
1421			}
1422			emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1423			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1424				struct exception_table_entry *ex;
1425				u8 *_insn = image + proglen + (start_of_ldx - temp);
1426				s64 delta;
1427
1428				/* populate jmp_offset for JMP above */
1429				start_of_ldx[-1] = prog - start_of_ldx;
1430
1431				if (!bpf_prog->aux->extable)
1432					break;
1433
1434				if (excnt >= bpf_prog->aux->num_exentries) {
1435					pr_err("ex gen bug\n");
1436					return -EFAULT;
1437				}
1438				ex = &bpf_prog->aux->extable[excnt++];
1439
1440				delta = _insn - (u8 *)&ex->insn;
1441				if (!is_simm32(delta)) {
1442					pr_err("extable->insn doesn't fit into 32-bit\n");
1443					return -EFAULT;
1444				}
1445				/* switch ex to rw buffer for writes */
1446				ex = (void *)rw_image + ((void *)ex - (void *)image);
1447
1448				ex->insn = delta;
1449
1450				ex->data = EX_TYPE_BPF;
1451
1452				if (dst_reg > BPF_REG_9) {
1453					pr_err("verifier error\n");
1454					return -EFAULT;
1455				}
1456				/*
1457				 * Compute size of x86 insn and its target dest x86 register.
1458				 * ex_handler_bpf() will use lower 8 bits to adjust
1459				 * pt_regs->ip to jump over this x86 instruction
1460				 * and upper bits to figure out which pt_regs to zero out.
1461				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1462				 * of 4 bytes will be ignored and rbx will be zero inited.
1463				 */
1464				ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1465			}
1466			break;
1467
1468		case BPF_STX | BPF_ATOMIC | BPF_W:
1469		case BPF_STX | BPF_ATOMIC | BPF_DW:
1470			if (insn->imm == (BPF_AND | BPF_FETCH) ||
1471			    insn->imm == (BPF_OR | BPF_FETCH) ||
1472			    insn->imm == (BPF_XOR | BPF_FETCH)) {
1473				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1474				u32 real_src_reg = src_reg;
1475				u32 real_dst_reg = dst_reg;
1476				u8 *branch_target;
1477
1478				/*
1479				 * Can't be implemented with a single x86 insn.
1480				 * Need to do a CMPXCHG loop.
1481				 */
1482
1483				/* Will need RAX as a CMPXCHG operand so save R0 */
1484				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1485				if (src_reg == BPF_REG_0)
1486					real_src_reg = BPF_REG_AX;
1487				if (dst_reg == BPF_REG_0)
1488					real_dst_reg = BPF_REG_AX;
1489
1490				branch_target = prog;
1491				/* Load old value */
1492				emit_ldx(&prog, BPF_SIZE(insn->code),
1493					 BPF_REG_0, real_dst_reg, insn->off);
1494				/*
1495				 * Perform the (commutative) operation locally,
1496				 * put the result in the AUX_REG.
1497				 */
1498				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1499				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1500				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1501				      add_2reg(0xC0, AUX_REG, real_src_reg));
1502				/* Attempt to swap in new value */
1503				err = emit_atomic(&prog, BPF_CMPXCHG,
1504						  real_dst_reg, AUX_REG,
1505						  insn->off,
1506						  BPF_SIZE(insn->code));
1507				if (WARN_ON(err))
1508					return err;
1509				/*
1510				 * ZF tells us whether we won the race. If it's
1511				 * cleared we need to try again.
1512				 */
1513				EMIT2(X86_JNE, -(prog - branch_target) - 2);
1514				/* Return the pre-modification value */
1515				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1516				/* Restore R0 after clobbering RAX */
1517				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1518				break;
1519			}
1520
1521			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1522					  insn->off, BPF_SIZE(insn->code));
1523			if (err)
1524				return err;
1525			break;
1526
1527			/* call */
1528		case BPF_JMP | BPF_CALL: {
1529			int offs;
1530
1531			func = (u8 *) __bpf_call_base + imm32;
1532			if (tail_call_reachable) {
1533				/* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1534				EMIT3_off32(0x48, 0x8B, 0x85,
1535					    -round_up(bpf_prog->aux->stack_depth, 8) - 8);
1536				if (!imm32)
1537					return -EINVAL;
1538				offs = 7 + x86_call_depth_emit_accounting(&prog, func);
1539			} else {
1540				if (!imm32)
1541					return -EINVAL;
1542				offs = x86_call_depth_emit_accounting(&prog, func);
1543			}
1544			if (emit_call(&prog, func, image + addrs[i - 1] + offs))
1545				return -EINVAL;
1546			break;
1547		}
1548
1549		case BPF_JMP | BPF_TAIL_CALL:
1550			if (imm32)
1551				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1552							  &prog, image + addrs[i - 1],
1553							  callee_regs_used,
1554							  bpf_prog->aux->stack_depth,
1555							  ctx);
1556			else
1557				emit_bpf_tail_call_indirect(&prog,
1558							    callee_regs_used,
1559							    bpf_prog->aux->stack_depth,
1560							    image + addrs[i - 1],
1561							    ctx);
1562			break;
1563
1564			/* cond jump */
1565		case BPF_JMP | BPF_JEQ | BPF_X:
1566		case BPF_JMP | BPF_JNE | BPF_X:
1567		case BPF_JMP | BPF_JGT | BPF_X:
1568		case BPF_JMP | BPF_JLT | BPF_X:
1569		case BPF_JMP | BPF_JGE | BPF_X:
1570		case BPF_JMP | BPF_JLE | BPF_X:
1571		case BPF_JMP | BPF_JSGT | BPF_X:
1572		case BPF_JMP | BPF_JSLT | BPF_X:
1573		case BPF_JMP | BPF_JSGE | BPF_X:
1574		case BPF_JMP | BPF_JSLE | BPF_X:
1575		case BPF_JMP32 | BPF_JEQ | BPF_X:
1576		case BPF_JMP32 | BPF_JNE | BPF_X:
1577		case BPF_JMP32 | BPF_JGT | BPF_X:
1578		case BPF_JMP32 | BPF_JLT | BPF_X:
1579		case BPF_JMP32 | BPF_JGE | BPF_X:
1580		case BPF_JMP32 | BPF_JLE | BPF_X:
1581		case BPF_JMP32 | BPF_JSGT | BPF_X:
1582		case BPF_JMP32 | BPF_JSLT | BPF_X:
1583		case BPF_JMP32 | BPF_JSGE | BPF_X:
1584		case BPF_JMP32 | BPF_JSLE | BPF_X:
1585			/* cmp dst_reg, src_reg */
1586			maybe_emit_mod(&prog, dst_reg, src_reg,
1587				       BPF_CLASS(insn->code) == BPF_JMP);
 
 
1588			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1589			goto emit_cond_jmp;
1590
1591		case BPF_JMP | BPF_JSET | BPF_X:
1592		case BPF_JMP32 | BPF_JSET | BPF_X:
1593			/* test dst_reg, src_reg */
1594			maybe_emit_mod(&prog, dst_reg, src_reg,
1595				       BPF_CLASS(insn->code) == BPF_JMP);
 
 
1596			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1597			goto emit_cond_jmp;
1598
1599		case BPF_JMP | BPF_JSET | BPF_K:
1600		case BPF_JMP32 | BPF_JSET | BPF_K:
1601			/* test dst_reg, imm32 */
1602			maybe_emit_1mod(&prog, dst_reg,
1603					BPF_CLASS(insn->code) == BPF_JMP);
 
 
1604			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1605			goto emit_cond_jmp;
1606
1607		case BPF_JMP | BPF_JEQ | BPF_K:
1608		case BPF_JMP | BPF_JNE | BPF_K:
1609		case BPF_JMP | BPF_JGT | BPF_K:
1610		case BPF_JMP | BPF_JLT | BPF_K:
1611		case BPF_JMP | BPF_JGE | BPF_K:
1612		case BPF_JMP | BPF_JLE | BPF_K:
1613		case BPF_JMP | BPF_JSGT | BPF_K:
1614		case BPF_JMP | BPF_JSLT | BPF_K:
1615		case BPF_JMP | BPF_JSGE | BPF_K:
1616		case BPF_JMP | BPF_JSLE | BPF_K:
1617		case BPF_JMP32 | BPF_JEQ | BPF_K:
1618		case BPF_JMP32 | BPF_JNE | BPF_K:
1619		case BPF_JMP32 | BPF_JGT | BPF_K:
1620		case BPF_JMP32 | BPF_JLT | BPF_K:
1621		case BPF_JMP32 | BPF_JGE | BPF_K:
1622		case BPF_JMP32 | BPF_JLE | BPF_K:
1623		case BPF_JMP32 | BPF_JSGT | BPF_K:
1624		case BPF_JMP32 | BPF_JSLT | BPF_K:
1625		case BPF_JMP32 | BPF_JSGE | BPF_K:
1626		case BPF_JMP32 | BPF_JSLE | BPF_K:
1627			/* test dst_reg, dst_reg to save one extra byte */
1628			if (imm32 == 0) {
1629				maybe_emit_mod(&prog, dst_reg, dst_reg,
1630					       BPF_CLASS(insn->code) == BPF_JMP);
1631				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1632				goto emit_cond_jmp;
1633			}
1634
1635			/* cmp dst_reg, imm8/32 */
1636			maybe_emit_1mod(&prog, dst_reg,
1637					BPF_CLASS(insn->code) == BPF_JMP);
 
 
1638
1639			if (is_imm8(imm32))
1640				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1641			else
1642				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1643
1644emit_cond_jmp:		/* Convert BPF opcode to x86 */
1645			switch (BPF_OP(insn->code)) {
1646			case BPF_JEQ:
1647				jmp_cond = X86_JE;
1648				break;
1649			case BPF_JSET:
1650			case BPF_JNE:
1651				jmp_cond = X86_JNE;
1652				break;
1653			case BPF_JGT:
1654				/* GT is unsigned '>', JA in x86 */
1655				jmp_cond = X86_JA;
1656				break;
1657			case BPF_JLT:
1658				/* LT is unsigned '<', JB in x86 */
1659				jmp_cond = X86_JB;
1660				break;
1661			case BPF_JGE:
1662				/* GE is unsigned '>=', JAE in x86 */
1663				jmp_cond = X86_JAE;
1664				break;
1665			case BPF_JLE:
1666				/* LE is unsigned '<=', JBE in x86 */
1667				jmp_cond = X86_JBE;
1668				break;
1669			case BPF_JSGT:
1670				/* Signed '>', GT in x86 */
1671				jmp_cond = X86_JG;
1672				break;
1673			case BPF_JSLT:
1674				/* Signed '<', LT in x86 */
1675				jmp_cond = X86_JL;
1676				break;
1677			case BPF_JSGE:
1678				/* Signed '>=', GE in x86 */
1679				jmp_cond = X86_JGE;
1680				break;
1681			case BPF_JSLE:
1682				/* Signed '<=', LE in x86 */
1683				jmp_cond = X86_JLE;
1684				break;
1685			default: /* to silence GCC warning */
1686				return -EFAULT;
1687			}
1688			jmp_offset = addrs[i + insn->off] - addrs[i];
1689			if (is_imm8(jmp_offset)) {
1690				if (jmp_padding) {
1691					/* To keep the jmp_offset valid, the extra bytes are
1692					 * padded before the jump insn, so we subtract the
1693					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1694					 *
1695					 * If the previous pass already emits an imm8
1696					 * jmp_cond, then this BPF insn won't shrink, so
1697					 * "nops" is 0.
1698					 *
1699					 * On the other hand, if the previous pass emits an
1700					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1701					 * keep the image from shrinking further.
1702					 *
1703					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1704					 *     is 2 bytes, so the size difference is 4 bytes.
1705					 */
1706					nops = INSN_SZ_DIFF - 2;
1707					if (nops != 0 && nops != 4) {
1708						pr_err("unexpected jmp_cond padding: %d bytes\n",
1709						       nops);
1710						return -EFAULT;
1711					}
1712					emit_nops(&prog, nops);
1713				}
1714				EMIT2(jmp_cond, jmp_offset);
1715			} else if (is_simm32(jmp_offset)) {
1716				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1717			} else {
1718				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1719				return -EFAULT;
1720			}
1721
1722			break;
1723
1724		case BPF_JMP | BPF_JA:
1725			if (insn->off == -1)
1726				/* -1 jmp instructions will always jump
1727				 * backwards two bytes. Explicitly handling
1728				 * this case avoids wasting too many passes
1729				 * when there are long sequences of replaced
1730				 * dead code.
1731				 */
1732				jmp_offset = -2;
1733			else
1734				jmp_offset = addrs[i + insn->off] - addrs[i];
1735
1736			if (!jmp_offset) {
1737				/*
1738				 * If jmp_padding is enabled, the extra nops will
1739				 * be inserted. Otherwise, optimize out nop jumps.
1740				 */
1741				if (jmp_padding) {
1742					/* There are 3 possible conditions.
1743					 * (1) This BPF_JA is already optimized out in
1744					 *     the previous run, so there is no need
1745					 *     to pad any extra byte (0 byte).
1746					 * (2) The previous pass emits an imm8 jmp,
1747					 *     so we pad 2 bytes to match the previous
1748					 *     insn size.
1749					 * (3) Similarly, the previous pass emits an
1750					 *     imm32 jmp, and 5 bytes is padded.
1751					 */
1752					nops = INSN_SZ_DIFF;
1753					if (nops != 0 && nops != 2 && nops != 5) {
1754						pr_err("unexpected nop jump padding: %d bytes\n",
1755						       nops);
1756						return -EFAULT;
1757					}
1758					emit_nops(&prog, nops);
1759				}
1760				break;
1761			}
1762emit_jmp:
1763			if (is_imm8(jmp_offset)) {
1764				if (jmp_padding) {
1765					/* To avoid breaking jmp_offset, the extra bytes
1766					 * are padded before the actual jmp insn, so
1767					 * 2 bytes is subtracted from INSN_SZ_DIFF.
1768					 *
1769					 * If the previous pass already emits an imm8
1770					 * jmp, there is nothing to pad (0 byte).
1771					 *
1772					 * If it emits an imm32 jmp (5 bytes) previously
1773					 * and now an imm8 jmp (2 bytes), then we pad
1774					 * (5 - 2 = 3) bytes to stop the image from
1775					 * shrinking further.
1776					 */
1777					nops = INSN_SZ_DIFF - 2;
1778					if (nops != 0 && nops != 3) {
1779						pr_err("unexpected jump padding: %d bytes\n",
1780						       nops);
1781						return -EFAULT;
1782					}
1783					emit_nops(&prog, INSN_SZ_DIFF - 2);
1784				}
1785				EMIT2(0xEB, jmp_offset);
1786			} else if (is_simm32(jmp_offset)) {
1787				EMIT1_off32(0xE9, jmp_offset);
1788			} else {
1789				pr_err("jmp gen bug %llx\n", jmp_offset);
1790				return -EFAULT;
1791			}
1792			break;
1793
1794		case BPF_JMP | BPF_EXIT:
1795			if (seen_exit) {
1796				jmp_offset = ctx->cleanup_addr - addrs[i];
1797				goto emit_jmp;
1798			}
1799			seen_exit = true;
1800			/* Update cleanup_addr */
1801			ctx->cleanup_addr = proglen;
1802			pop_callee_regs(&prog, callee_regs_used);
 
 
 
 
 
1803			EMIT1(0xC9);         /* leave */
1804			emit_return(&prog, image + addrs[i - 1] + (prog - temp));
1805			break;
1806
1807		default:
1808			/*
1809			 * By design x86-64 JIT should support all BPF instructions.
1810			 * This error will be seen if new instruction was added
1811			 * to the interpreter, but not to the JIT, or if there is
1812			 * junk in bpf_prog.
1813			 */
1814			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1815			return -EINVAL;
1816		}
1817
1818		ilen = prog - temp;
1819		if (ilen > BPF_MAX_INSN_SIZE) {
1820			pr_err("bpf_jit: fatal insn size error\n");
1821			return -EFAULT;
1822		}
1823
1824		if (image) {
1825			/*
1826			 * When populating the image, assert that:
1827			 *
1828			 *  i) We do not write beyond the allocated space, and
1829			 * ii) addrs[i] did not change from the prior run, in order
1830			 *     to validate assumptions made for computing branch
1831			 *     displacements.
1832			 */
1833			if (unlikely(proglen + ilen > oldproglen ||
1834				     proglen + ilen != addrs[i])) {
1835				pr_err("bpf_jit: fatal error\n");
1836				return -EFAULT;
1837			}
1838			memcpy(rw_image + proglen, temp, ilen);
1839		}
1840		proglen += ilen;
1841		addrs[i] = proglen;
1842		prog = temp;
1843	}
1844
1845	if (image && excnt != bpf_prog->aux->num_exentries) {
1846		pr_err("extable is not populated\n");
1847		return -EFAULT;
1848	}
1849	return proglen;
1850}
1851
1852static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1853		      int stack_size)
1854{
1855	int i, j, arg_size, nr_regs;
1856	/* Store function arguments to stack.
1857	 * For a function that accepts two pointers the sequence will be:
1858	 * mov QWORD PTR [rbp-0x10],rdi
1859	 * mov QWORD PTR [rbp-0x8],rsi
1860	 */
1861	for (i = 0, j = 0; i < min(nr_args, 6); i++) {
1862		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) {
1863			nr_regs = (m->arg_size[i] + 7) / 8;
1864			arg_size = 8;
1865		} else {
1866			nr_regs = 1;
1867			arg_size = m->arg_size[i];
1868		}
1869
1870		while (nr_regs) {
1871			emit_stx(prog, bytes_to_bpf_size(arg_size),
1872				 BPF_REG_FP,
1873				 j == 5 ? X86_REG_R9 : BPF_REG_1 + j,
1874				 -(stack_size - j * 8));
1875			nr_regs--;
1876			j++;
1877		}
1878	}
1879}
1880
1881static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1882			 int stack_size)
1883{
1884	int i, j, arg_size, nr_regs;
1885
1886	/* Restore function arguments from stack.
1887	 * For a function that accepts two pointers the sequence will be:
1888	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1889	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1890	 */
1891	for (i = 0, j = 0; i < min(nr_args, 6); i++) {
1892		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) {
1893			nr_regs = (m->arg_size[i] + 7) / 8;
1894			arg_size = 8;
1895		} else {
1896			nr_regs = 1;
1897			arg_size = m->arg_size[i];
1898		}
1899
1900		while (nr_regs) {
1901			emit_ldx(prog, bytes_to_bpf_size(arg_size),
1902				 j == 5 ? X86_REG_R9 : BPF_REG_1 + j,
1903				 BPF_REG_FP,
1904				 -(stack_size - j * 8));
1905			nr_regs--;
1906			j++;
1907		}
1908	}
1909}
1910
1911static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1912			   struct bpf_tramp_link *l, int stack_size,
1913			   int run_ctx_off, bool save_ret)
1914{
1915	u8 *prog = *pprog;
1916	u8 *jmp_insn;
1917	int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
1918	struct bpf_prog *p = l->link.prog;
1919	u64 cookie = l->cookie;
1920
1921	/* mov rdi, cookie */
1922	emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
1923
1924	/* Prepare struct bpf_tramp_run_ctx.
1925	 *
1926	 * bpf_tramp_run_ctx is already preserved by
1927	 * arch_prepare_bpf_trampoline().
1928	 *
1929	 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
1930	 */
1931	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
1932
1933	/* arg1: mov rdi, progs[i] */
1934	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1935	/* arg2: lea rsi, [rbp - ctx_cookie_off] */
1936	EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
1937
1938	if (emit_rsb_call(&prog, bpf_trampoline_enter(p), prog))
1939		return -EINVAL;
1940	/* remember prog start time returned by __bpf_prog_enter */
1941	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1942
1943	/* if (__bpf_prog_enter*(prog) == 0)
1944	 *	goto skip_exec_of_prog;
1945	 */
1946	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
1947	/* emit 2 nops that will be replaced with JE insn */
1948	jmp_insn = prog;
1949	emit_nops(&prog, 2);
1950
1951	/* arg1: lea rdi, [rbp - stack_size] */
1952	EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1953	/* arg2: progs[i]->insnsi for interpreter */
1954	if (!p->jited)
1955		emit_mov_imm64(&prog, BPF_REG_2,
1956			       (long) p->insnsi >> 32,
1957			       (u32) (long) p->insnsi);
1958	/* call JITed bpf program or interpreter */
1959	if (emit_rsb_call(&prog, p->bpf_func, prog))
1960		return -EINVAL;
1961
1962	/*
1963	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1964	 * of the previous call which is then passed on the stack to
1965	 * the next BPF program.
1966	 *
1967	 * BPF_TRAMP_FENTRY trampoline may need to return the return
1968	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
1969	 */
1970	if (save_ret)
1971		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1972
1973	/* replace 2 nops with JE insn, since jmp target is known */
1974	jmp_insn[0] = X86_JE;
1975	jmp_insn[1] = prog - jmp_insn - 2;
1976
1977	/* arg1: mov rdi, progs[i] */
1978	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1979	/* arg2: mov rsi, rbx <- start time in nsec */
1980	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1981	/* arg3: lea rdx, [rbp - run_ctx_off] */
1982	EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
1983	if (emit_rsb_call(&prog, bpf_trampoline_exit(p), prog))
1984		return -EINVAL;
1985
1986	*pprog = prog;
1987	return 0;
1988}
1989
1990static void emit_align(u8 **pprog, u32 align)
1991{
1992	u8 *target, *prog = *pprog;
1993
1994	target = PTR_ALIGN(prog, align);
1995	if (target != prog)
1996		emit_nops(&prog, target - prog);
1997
1998	*pprog = prog;
1999}
2000
2001static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2002{
2003	u8 *prog = *pprog;
2004	s64 offset;
2005
2006	offset = func - (ip + 2 + 4);
2007	if (!is_simm32(offset)) {
2008		pr_err("Target %p is out of range\n", func);
2009		return -EINVAL;
2010	}
2011	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2012	*pprog = prog;
2013	return 0;
2014}
2015
2016static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2017		      struct bpf_tramp_links *tl, int stack_size,
2018		      int run_ctx_off, bool save_ret)
2019{
2020	int i;
2021	u8 *prog = *pprog;
2022
2023	for (i = 0; i < tl->nr_links; i++) {
2024		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2025				    run_ctx_off, save_ret))
2026			return -EINVAL;
2027	}
2028	*pprog = prog;
2029	return 0;
2030}
2031
2032static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2033			      struct bpf_tramp_links *tl, int stack_size,
2034			      int run_ctx_off, u8 **branches)
2035{
2036	u8 *prog = *pprog;
2037	int i;
2038
2039	/* The first fmod_ret program will receive a garbage return value.
2040	 * Set this to 0 to avoid confusing the program.
2041	 */
2042	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2043	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2044	for (i = 0; i < tl->nr_links; i++) {
2045		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true))
2046			return -EINVAL;
2047
2048		/* mod_ret prog stored return value into [rbp - 8]. Emit:
2049		 * if (*(u64 *)(rbp - 8) !=  0)
2050		 *	goto do_fexit;
2051		 */
2052		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
2053		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2054
2055		/* Save the location of the branch and Generate 6 nops
2056		 * (4 bytes for an offset and 2 bytes for the jump) These nops
2057		 * are replaced with a conditional jump once do_fexit (i.e. the
2058		 * start of the fexit invocation) is finalized.
2059		 */
2060		branches[i] = prog;
2061		emit_nops(&prog, 4 + 2);
2062	}
2063
2064	*pprog = prog;
2065	return 0;
2066}
2067
2068/* Example:
2069 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2070 * its 'struct btf_func_model' will be nr_args=2
2071 * The assembly code when eth_type_trans is executing after trampoline:
2072 *
2073 * push rbp
2074 * mov rbp, rsp
2075 * sub rsp, 16                     // space for skb and dev
2076 * push rbx                        // temp regs to pass start time
2077 * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
2078 * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
2079 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2080 * mov rbx, rax                    // remember start time in bpf stats are enabled
2081 * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
2082 * call addr_of_jited_FENTRY_prog
2083 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2084 * mov rsi, rbx                    // prog start time
2085 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2086 * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
2087 * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
2088 * pop rbx
2089 * leave
2090 * ret
2091 *
2092 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2093 * replaced with 'call generated_bpf_trampoline'. When it returns
2094 * eth_type_trans will continue executing with original skb and dev pointers.
2095 *
2096 * The assembly code when eth_type_trans is called from trampoline:
2097 *
2098 * push rbp
2099 * mov rbp, rsp
2100 * sub rsp, 24                     // space for skb, dev, return value
2101 * push rbx                        // temp regs to pass start time
2102 * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
2103 * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
2104 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2105 * mov rbx, rax                    // remember start time if bpf stats are enabled
2106 * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2107 * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
2108 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2109 * mov rsi, rbx                    // prog start time
2110 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2111 * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
2112 * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
2113 * call eth_type_trans+5           // execute body of eth_type_trans
2114 * mov qword ptr [rbp - 8], rax    // save return value
2115 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2116 * mov rbx, rax                    // remember start time in bpf stats are enabled
2117 * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2118 * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2119 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2120 * mov rsi, rbx                    // prog start time
2121 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2122 * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2123 * pop rbx
2124 * leave
2125 * add rsp, 8                      // skip eth_type_trans's frame
2126 * ret                             // return to its caller
2127 */
2128int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2129				const struct btf_func_model *m, u32 flags,
2130				struct bpf_tramp_links *tlinks,
2131				void *func_addr)
2132{
2133	int ret, i, nr_args = m->nr_args, extra_nregs = 0;
2134	int regs_off, ip_off, args_off, stack_size = nr_args * 8, run_ctx_off;
2135	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2136	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2137	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2138	void *orig_call = func_addr;
2139	u8 **branches = NULL;
2140	u8 *prog;
2141	bool save_ret;
2142
2143	/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
2144	if (nr_args > 6)
2145		return -ENOTSUPP;
2146
2147	for (i = 0; i < MAX_BPF_FUNC_ARGS; i++) {
2148		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2149			extra_nregs += (m->arg_size[i] + 7) / 8 - 1;
2150	}
2151	if (nr_args + extra_nregs > 6)
2152		return -ENOTSUPP;
2153	stack_size += extra_nregs * 8;
2154
2155	/* Generated trampoline stack layout:
2156	 *
2157	 * RBP + 8         [ return address  ]
2158	 * RBP + 0         [ RBP             ]
2159	 *
2160	 * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2161	 *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2162	 *
2163	 *                 [ reg_argN        ]  always
2164	 *                 [ ...             ]
2165	 * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2166	 *
2167	 * RBP - args_off  [ arg regs count  ]  always
2168	 *
2169	 * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2170	 *
2171	 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2172	 */
2173
2174	/* room for return value of orig_call or fentry prog */
2175	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2176	if (save_ret)
2177		stack_size += 8;
2178
2179	regs_off = stack_size;
2180
2181	/* args count  */
2182	stack_size += 8;
2183	args_off = stack_size;
2184
2185	if (flags & BPF_TRAMP_F_IP_ARG)
2186		stack_size += 8; /* room for IP address argument */
2187
2188	ip_off = stack_size;
2189
2190	stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2191	run_ctx_off = stack_size;
2192
2193	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2194		/* skip patched call instruction and point orig_call to actual
2195		 * body of the kernel function.
2196		 */
2197		if (is_endbr(*(u32 *)orig_call))
2198			orig_call += ENDBR_INSN_SIZE;
2199		orig_call += X86_PATCH_SIZE;
2200	}
2201
2202	prog = image;
2203
2204	EMIT_ENDBR();
2205	/*
2206	 * This is the direct-call trampoline, as such it needs accounting
2207	 * for the __fentry__ call.
2208	 */
2209	x86_call_depth_emit_accounting(&prog, NULL);
2210	EMIT1(0x55);		 /* push rbp */
2211	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2212	EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
2213	EMIT1(0x53);		 /* push rbx */
2214
2215	/* Store number of argument registers of the traced function:
2216	 *   mov rax, nr_args + extra_nregs
2217	 *   mov QWORD PTR [rbp - args_off], rax
2218	 */
2219	emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_args + extra_nregs);
2220	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -args_off);
2221
2222	if (flags & BPF_TRAMP_F_IP_ARG) {
2223		/* Store IP address of the traced function:
2224		 * movabsq rax, func_addr
2225		 * mov QWORD PTR [rbp - ip_off], rax
2226		 */
2227		emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2228		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2229	}
2230
2231	save_regs(m, &prog, nr_args, regs_off);
2232
2233	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2234		/* arg1: mov rdi, im */
2235		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2236		if (emit_rsb_call(&prog, __bpf_tramp_enter, prog)) {
2237			ret = -EINVAL;
2238			goto cleanup;
2239		}
2240	}
2241
2242	if (fentry->nr_links)
2243		if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2244			       flags & BPF_TRAMP_F_RET_FENTRY_RET))
2245			return -EINVAL;
2246
2247	if (fmod_ret->nr_links) {
2248		branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2249				   GFP_KERNEL);
2250		if (!branches)
2251			return -ENOMEM;
2252
2253		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2254				       run_ctx_off, branches)) {
2255			ret = -EINVAL;
2256			goto cleanup;
2257		}
2258	}
2259
2260	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2261		restore_regs(m, &prog, nr_args, regs_off);
2262
2263		if (flags & BPF_TRAMP_F_ORIG_STACK) {
2264			emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8);
2265			EMIT2(0xff, 0xd0); /* call *rax */
2266		} else {
2267			/* call original function */
2268			if (emit_rsb_call(&prog, orig_call, prog)) {
2269				ret = -EINVAL;
2270				goto cleanup;
2271			}
2272		}
2273		/* remember return value in a stack for bpf prog to access */
2274		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2275		im->ip_after_call = prog;
2276		memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2277		prog += X86_PATCH_SIZE;
2278	}
2279
2280	if (fmod_ret->nr_links) {
2281		/* From Intel 64 and IA-32 Architectures Optimization
2282		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2283		 * Coding Rule 11: All branch targets should be 16-byte
2284		 * aligned.
2285		 */
2286		emit_align(&prog, 16);
2287		/* Update the branches saved in invoke_bpf_mod_ret with the
2288		 * aligned address of do_fexit.
2289		 */
2290		for (i = 0; i < fmod_ret->nr_links; i++)
2291			emit_cond_near_jump(&branches[i], prog, branches[i],
2292					    X86_JNE);
2293	}
2294
2295	if (fexit->nr_links)
2296		if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) {
2297			ret = -EINVAL;
2298			goto cleanup;
2299		}
2300
2301	if (flags & BPF_TRAMP_F_RESTORE_REGS)
2302		restore_regs(m, &prog, nr_args, regs_off);
2303
2304	/* This needs to be done regardless. If there were fmod_ret programs,
2305	 * the return value is only updated on the stack and still needs to be
2306	 * restored to R0.
2307	 */
2308	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2309		im->ip_epilogue = prog;
2310		/* arg1: mov rdi, im */
2311		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2312		if (emit_rsb_call(&prog, __bpf_tramp_exit, prog)) {
2313			ret = -EINVAL;
2314			goto cleanup;
2315		}
2316	}
2317	/* restore return value of orig_call or fentry prog back into RAX */
2318	if (save_ret)
2319		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2320
2321	EMIT1(0x5B); /* pop rbx */
2322	EMIT1(0xC9); /* leave */
2323	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2324		/* skip our return address and return to parent */
2325		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2326	emit_return(&prog, prog);
2327	/* Make sure the trampoline generation logic doesn't overflow */
2328	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2329		ret = -EFAULT;
2330		goto cleanup;
2331	}
2332	ret = prog - (u8 *)image;
2333
2334cleanup:
2335	kfree(branches);
2336	return ret;
2337}
2338
2339static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2340{
2341	u8 *jg_reloc, *prog = *pprog;
2342	int pivot, err, jg_bytes = 1;
2343	s64 jg_offset;
2344
2345	if (a == b) {
2346		/* Leaf node of recursion, i.e. not a range of indices
2347		 * anymore.
2348		 */
2349		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
2350		if (!is_simm32(progs[a]))
2351			return -1;
2352		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2353			    progs[a]);
2354		err = emit_cond_near_jump(&prog,	/* je func */
2355					  (void *)progs[a], image + (prog - buf),
2356					  X86_JE);
2357		if (err)
2358			return err;
2359
2360		emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2361
2362		*pprog = prog;
2363		return 0;
2364	}
2365
2366	/* Not a leaf node, so we pivot, and recursively descend into
2367	 * the lower and upper ranges.
2368	 */
2369	pivot = (b - a) / 2;
2370	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
2371	if (!is_simm32(progs[a + pivot]))
2372		return -1;
2373	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2374
2375	if (pivot > 2) {				/* jg upper_part */
2376		/* Require near jump. */
2377		jg_bytes = 4;
2378		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2379	} else {
2380		EMIT2(X86_JG, 0);
2381	}
2382	jg_reloc = prog;
2383
2384	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
2385				  progs, image, buf);
2386	if (err)
2387		return err;
2388
2389	/* From Intel 64 and IA-32 Architectures Optimization
2390	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2391	 * Coding Rule 11: All branch targets should be 16-byte
2392	 * aligned.
2393	 */
2394	emit_align(&prog, 16);
2395	jg_offset = prog - jg_reloc;
2396	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2397
2398	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
2399				  b, progs, image, buf);
2400	if (err)
2401		return err;
2402
2403	*pprog = prog;
2404	return 0;
2405}
2406
2407static int cmp_ips(const void *a, const void *b)
2408{
2409	const s64 *ipa = a;
2410	const s64 *ipb = b;
2411
2412	if (*ipa > *ipb)
2413		return 1;
2414	if (*ipa < *ipb)
2415		return -1;
2416	return 0;
2417}
2418
2419int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2420{
2421	u8 *prog = buf;
2422
2423	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2424	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2425}
2426
2427struct x64_jit_data {
2428	struct bpf_binary_header *rw_header;
2429	struct bpf_binary_header *header;
2430	int *addrs;
2431	u8 *image;
2432	int proglen;
2433	struct jit_context ctx;
2434};
2435
2436#define MAX_PASSES 20
2437#define PADDING_PASSES (MAX_PASSES - 5)
2438
2439struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2440{
2441	struct bpf_binary_header *rw_header = NULL;
2442	struct bpf_binary_header *header = NULL;
2443	struct bpf_prog *tmp, *orig_prog = prog;
2444	struct x64_jit_data *jit_data;
2445	int proglen, oldproglen = 0;
2446	struct jit_context ctx = {};
2447	bool tmp_blinded = false;
2448	bool extra_pass = false;
2449	bool padding = false;
2450	u8 *rw_image = NULL;
2451	u8 *image = NULL;
2452	int *addrs;
2453	int pass;
2454	int i;
2455
2456	if (!prog->jit_requested)
2457		return orig_prog;
2458
2459	tmp = bpf_jit_blind_constants(prog);
2460	/*
2461	 * If blinding was requested and we failed during blinding,
2462	 * we must fall back to the interpreter.
2463	 */
2464	if (IS_ERR(tmp))
2465		return orig_prog;
2466	if (tmp != prog) {
2467		tmp_blinded = true;
2468		prog = tmp;
2469	}
2470
2471	jit_data = prog->aux->jit_data;
2472	if (!jit_data) {
2473		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2474		if (!jit_data) {
2475			prog = orig_prog;
2476			goto out;
2477		}
2478		prog->aux->jit_data = jit_data;
2479	}
2480	addrs = jit_data->addrs;
2481	if (addrs) {
2482		ctx = jit_data->ctx;
2483		oldproglen = jit_data->proglen;
2484		image = jit_data->image;
2485		header = jit_data->header;
2486		rw_header = jit_data->rw_header;
2487		rw_image = (void *)rw_header + ((void *)image - (void *)header);
2488		extra_pass = true;
2489		padding = true;
2490		goto skip_init_addrs;
2491	}
2492	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2493	if (!addrs) {
2494		prog = orig_prog;
2495		goto out_addrs;
2496	}
2497
2498	/*
2499	 * Before first pass, make a rough estimation of addrs[]
2500	 * each BPF instruction is translated to less than 64 bytes
2501	 */
2502	for (proglen = 0, i = 0; i <= prog->len; i++) {
2503		proglen += 64;
2504		addrs[i] = proglen;
2505	}
2506	ctx.cleanup_addr = proglen;
2507skip_init_addrs:
2508
2509	/*
2510	 * JITed image shrinks with every pass and the loop iterates
2511	 * until the image stops shrinking. Very large BPF programs
2512	 * may converge on the last pass. In such case do one more
2513	 * pass to emit the final image.
2514	 */
2515	for (pass = 0; pass < MAX_PASSES || image; pass++) {
2516		if (!padding && pass >= PADDING_PASSES)
2517			padding = true;
2518		proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
2519		if (proglen <= 0) {
2520out_image:
2521			image = NULL;
2522			if (header) {
2523				bpf_arch_text_copy(&header->size, &rw_header->size,
2524						   sizeof(rw_header->size));
2525				bpf_jit_binary_pack_free(header, rw_header);
2526			}
2527			/* Fall back to interpreter mode */
2528			prog = orig_prog;
2529			if (extra_pass) {
2530				prog->bpf_func = NULL;
2531				prog->jited = 0;
2532				prog->jited_len = 0;
2533			}
2534			goto out_addrs;
2535		}
2536		if (image) {
2537			if (proglen != oldproglen) {
2538				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2539				       proglen, oldproglen);
2540				goto out_image;
2541			}
2542			break;
2543		}
2544		if (proglen == oldproglen) {
2545			/*
2546			 * The number of entries in extable is the number of BPF_LDX
2547			 * insns that access kernel memory via "pointer to BTF type".
2548			 * The verifier changed their opcode from LDX|MEM|size
2549			 * to LDX|PROBE_MEM|size to make JITing easier.
2550			 */
2551			u32 align = __alignof__(struct exception_table_entry);
2552			u32 extable_size = prog->aux->num_exentries *
2553				sizeof(struct exception_table_entry);
2554
2555			/* allocate module memory for x86 insns and extable */
2556			header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2557							   &image, align, &rw_header, &rw_image,
2558							   jit_fill_hole);
2559			if (!header) {
2560				prog = orig_prog;
2561				goto out_addrs;
2562			}
2563			prog->aux->extable = (void *) image + roundup(proglen, align);
2564		}
2565		oldproglen = proglen;
2566		cond_resched();
2567	}
2568
2569	if (bpf_jit_enable > 1)
2570		bpf_jit_dump(prog->len, proglen, pass + 1, image);
2571
2572	if (image) {
2573		if (!prog->is_func || extra_pass) {
2574			/*
2575			 * bpf_jit_binary_pack_finalize fails in two scenarios:
2576			 *   1) header is not pointing to proper module memory;
2577			 *   2) the arch doesn't support bpf_arch_text_copy().
2578			 *
2579			 * Both cases are serious bugs and justify WARN_ON.
2580			 */
2581			if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2582				/* header has been freed */
2583				header = NULL;
2584				goto out_image;
2585			}
2586
2587			bpf_tail_call_direct_fixup(prog);
2588		} else {
2589			jit_data->addrs = addrs;
2590			jit_data->ctx = ctx;
2591			jit_data->proglen = proglen;
2592			jit_data->image = image;
2593			jit_data->header = header;
2594			jit_data->rw_header = rw_header;
2595		}
2596		prog->bpf_func = (void *)image;
2597		prog->jited = 1;
2598		prog->jited_len = proglen;
2599	} else {
2600		prog = orig_prog;
2601	}
2602
2603	if (!image || !prog->is_func || extra_pass) {
2604		if (image)
2605			bpf_prog_fill_jited_linfo(prog, addrs + 1);
2606out_addrs:
2607		kvfree(addrs);
2608		kfree(jit_data);
2609		prog->aux->jit_data = NULL;
2610	}
2611out:
2612	if (tmp_blinded)
2613		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2614					   tmp : orig_prog);
2615	return prog;
2616}
2617
2618bool bpf_jit_supports_kfunc_call(void)
2619{
2620	return true;
2621}
2622
2623void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2624{
2625	if (text_poke_copy(dst, src, len) == NULL)
2626		return ERR_PTR(-EINVAL);
2627	return dst;
2628}
2629
2630/* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2631bool bpf_jit_supports_subprog_tailcalls(void)
2632{
2633	return true;
2634}
2635
2636void bpf_jit_free(struct bpf_prog *prog)
2637{
2638	if (prog->jited) {
2639		struct x64_jit_data *jit_data = prog->aux->jit_data;
2640		struct bpf_binary_header *hdr;
2641
2642		/*
2643		 * If we fail the final pass of JIT (from jit_subprogs),
2644		 * the program may not be finalized yet. Call finalize here
2645		 * before freeing it.
2646		 */
2647		if (jit_data) {
2648			bpf_jit_binary_pack_finalize(prog, jit_data->header,
2649						     jit_data->rw_header);
2650			kvfree(jit_data->addrs);
2651			kfree(jit_data);
2652		}
2653		hdr = bpf_jit_binary_pack_hdr(prog);
2654		bpf_jit_binary_pack_free(hdr, NULL);
2655		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2656	}
2657
2658	bpf_prog_unlock_free(prog);
2659}