Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * bpf_jit_comp.c: BPF JIT compiler
4 *
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 */
8#include <linux/netdevice.h>
9#include <linux/filter.h>
10#include <linux/if_vlan.h>
11#include <linux/bpf.h>
12
13#include <asm/set_memory.h>
14#include <asm/nospec-branch.h>
15
16static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
17{
18 if (len == 1)
19 *ptr = bytes;
20 else if (len == 2)
21 *(u16 *)ptr = bytes;
22 else {
23 *(u32 *)ptr = bytes;
24 barrier();
25 }
26 return ptr + len;
27}
28
29#define EMIT(bytes, len) \
30 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
31
32#define EMIT1(b1) EMIT(b1, 1)
33#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
34#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
35#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
36
37#define EMIT1_off32(b1, off) \
38 do { EMIT1(b1); EMIT(off, 4); } while (0)
39#define EMIT2_off32(b1, b2, off) \
40 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
41#define EMIT3_off32(b1, b2, b3, off) \
42 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
43#define EMIT4_off32(b1, b2, b3, b4, off) \
44 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
45
46static bool is_imm8(int value)
47{
48 return value <= 127 && value >= -128;
49}
50
51static bool is_simm32(s64 value)
52{
53 return value == (s64)(s32)value;
54}
55
56static bool is_uimm32(u64 value)
57{
58 return value == (u64)(u32)value;
59}
60
61/* mov dst, src */
62#define EMIT_mov(DST, SRC) \
63 do { \
64 if (DST != SRC) \
65 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
66 } while (0)
67
68static int bpf_size_to_x86_bytes(int bpf_size)
69{
70 if (bpf_size == BPF_W)
71 return 4;
72 else if (bpf_size == BPF_H)
73 return 2;
74 else if (bpf_size == BPF_B)
75 return 1;
76 else if (bpf_size == BPF_DW)
77 return 4; /* imm32 */
78 else
79 return 0;
80}
81
82/*
83 * List of x86 cond jumps opcodes (. + s8)
84 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
85 */
86#define X86_JB 0x72
87#define X86_JAE 0x73
88#define X86_JE 0x74
89#define X86_JNE 0x75
90#define X86_JBE 0x76
91#define X86_JA 0x77
92#define X86_JL 0x7C
93#define X86_JGE 0x7D
94#define X86_JLE 0x7E
95#define X86_JG 0x7F
96
97/* Pick a register outside of BPF range for JIT internal work */
98#define AUX_REG (MAX_BPF_JIT_REG + 1)
99
100/*
101 * The following table maps BPF registers to x86-64 registers.
102 *
103 * x86-64 register R12 is unused, since if used as base address
104 * register in load/store instructions, it always needs an
105 * extra byte of encoding and is callee saved.
106 *
107 * Also x86-64 register R9 is unused. x86-64 register R10 is
108 * used for blinding (if enabled).
109 */
110static const int reg2hex[] = {
111 [BPF_REG_0] = 0, /* RAX */
112 [BPF_REG_1] = 7, /* RDI */
113 [BPF_REG_2] = 6, /* RSI */
114 [BPF_REG_3] = 2, /* RDX */
115 [BPF_REG_4] = 1, /* RCX */
116 [BPF_REG_5] = 0, /* R8 */
117 [BPF_REG_6] = 3, /* RBX callee saved */
118 [BPF_REG_7] = 5, /* R13 callee saved */
119 [BPF_REG_8] = 6, /* R14 callee saved */
120 [BPF_REG_9] = 7, /* R15 callee saved */
121 [BPF_REG_FP] = 5, /* RBP readonly */
122 [BPF_REG_AX] = 2, /* R10 temp register */
123 [AUX_REG] = 3, /* R11 temp register */
124};
125
126/*
127 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
128 * which need extra byte of encoding.
129 * rax,rcx,...,rbp have simpler encoding
130 */
131static bool is_ereg(u32 reg)
132{
133 return (1 << reg) & (BIT(BPF_REG_5) |
134 BIT(AUX_REG) |
135 BIT(BPF_REG_7) |
136 BIT(BPF_REG_8) |
137 BIT(BPF_REG_9) |
138 BIT(BPF_REG_AX));
139}
140
141static bool is_axreg(u32 reg)
142{
143 return reg == BPF_REG_0;
144}
145
146/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
147static u8 add_1mod(u8 byte, u32 reg)
148{
149 if (is_ereg(reg))
150 byte |= 1;
151 return byte;
152}
153
154static u8 add_2mod(u8 byte, u32 r1, u32 r2)
155{
156 if (is_ereg(r1))
157 byte |= 1;
158 if (is_ereg(r2))
159 byte |= 4;
160 return byte;
161}
162
163/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
164static u8 add_1reg(u8 byte, u32 dst_reg)
165{
166 return byte + reg2hex[dst_reg];
167}
168
169/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
170static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
171{
172 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
173}
174
175static void jit_fill_hole(void *area, unsigned int size)
176{
177 /* Fill whole space with INT3 instructions */
178 memset(area, 0xcc, size);
179}
180
181struct jit_context {
182 int cleanup_addr; /* Epilogue code offset */
183};
184
185/* Maximum number of bytes emitted while JITing one eBPF insn */
186#define BPF_MAX_INSN_SIZE 128
187#define BPF_INSN_SAFETY 64
188
189#define PROLOGUE_SIZE 20
190
191/*
192 * Emit x86-64 prologue code for BPF program and check its size.
193 * bpf_tail_call helper will skip it while jumping into another program
194 */
195static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
196{
197 u8 *prog = *pprog;
198 int cnt = 0;
199
200 EMIT1(0x55); /* push rbp */
201 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
202 /* sub rsp, rounded_stack_depth */
203 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
204 EMIT1(0x53); /* push rbx */
205 EMIT2(0x41, 0x55); /* push r13 */
206 EMIT2(0x41, 0x56); /* push r14 */
207 EMIT2(0x41, 0x57); /* push r15 */
208 if (!ebpf_from_cbpf) {
209 /* zero init tail_call_cnt */
210 EMIT2(0x6a, 0x00);
211 BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
212 }
213 *pprog = prog;
214}
215
216/*
217 * Generate the following code:
218 *
219 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
220 * if (index >= array->map.max_entries)
221 * goto out;
222 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
223 * goto out;
224 * prog = array->ptrs[index];
225 * if (prog == NULL)
226 * goto out;
227 * goto *(prog->bpf_func + prologue_size);
228 * out:
229 */
230static void emit_bpf_tail_call(u8 **pprog)
231{
232 u8 *prog = *pprog;
233 int label1, label2, label3;
234 int cnt = 0;
235
236 /*
237 * rdi - pointer to ctx
238 * rsi - pointer to bpf_array
239 * rdx - index in bpf_array
240 */
241
242 /*
243 * if (index >= array->map.max_entries)
244 * goto out;
245 */
246 EMIT2(0x89, 0xD2); /* mov edx, edx */
247 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
248 offsetof(struct bpf_array, map.max_entries));
249#define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
250 EMIT2(X86_JBE, OFFSET1); /* jbe out */
251 label1 = cnt;
252
253 /*
254 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
255 * goto out;
256 */
257 EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
258 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
259#define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
260 EMIT2(X86_JA, OFFSET2); /* ja out */
261 label2 = cnt;
262 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
263 EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
264
265 /* prog = array->ptrs[index]; */
266 EMIT4_off32(0x48, 0x8B, 0x84, 0xD6, /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
267 offsetof(struct bpf_array, ptrs));
268
269 /*
270 * if (prog == NULL)
271 * goto out;
272 */
273 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
274#define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
275 EMIT2(X86_JE, OFFSET3); /* je out */
276 label3 = cnt;
277
278 /* goto *(prog->bpf_func + prologue_size); */
279 EMIT4(0x48, 0x8B, 0x40, /* mov rax, qword ptr [rax + 32] */
280 offsetof(struct bpf_prog, bpf_func));
281 EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE); /* add rax, prologue_size */
282
283 /*
284 * Wow we're ready to jump into next BPF program
285 * rdi == ctx (1st arg)
286 * rax == prog->bpf_func + prologue_size
287 */
288 RETPOLINE_RAX_BPF_JIT();
289
290 /* out: */
291 BUILD_BUG_ON(cnt - label1 != OFFSET1);
292 BUILD_BUG_ON(cnt - label2 != OFFSET2);
293 BUILD_BUG_ON(cnt - label3 != OFFSET3);
294 *pprog = prog;
295}
296
297static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
298 u32 dst_reg, const u32 imm32)
299{
300 u8 *prog = *pprog;
301 u8 b1, b2, b3;
302 int cnt = 0;
303
304 /*
305 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
306 * (which zero-extends imm32) to save 2 bytes.
307 */
308 if (sign_propagate && (s32)imm32 < 0) {
309 /* 'mov %rax, imm32' sign extends imm32 */
310 b1 = add_1mod(0x48, dst_reg);
311 b2 = 0xC7;
312 b3 = 0xC0;
313 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
314 goto done;
315 }
316
317 /*
318 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
319 * to save 3 bytes.
320 */
321 if (imm32 == 0) {
322 if (is_ereg(dst_reg))
323 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
324 b2 = 0x31; /* xor */
325 b3 = 0xC0;
326 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
327 goto done;
328 }
329
330 /* mov %eax, imm32 */
331 if (is_ereg(dst_reg))
332 EMIT1(add_1mod(0x40, dst_reg));
333 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
334done:
335 *pprog = prog;
336}
337
338static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
339 const u32 imm32_hi, const u32 imm32_lo)
340{
341 u8 *prog = *pprog;
342 int cnt = 0;
343
344 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
345 /*
346 * For emitting plain u32, where sign bit must not be
347 * propagated LLVM tends to load imm64 over mov32
348 * directly, so save couple of bytes by just doing
349 * 'mov %eax, imm32' instead.
350 */
351 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
352 } else {
353 /* movabsq %rax, imm64 */
354 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
355 EMIT(imm32_lo, 4);
356 EMIT(imm32_hi, 4);
357 }
358
359 *pprog = prog;
360}
361
362static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
363{
364 u8 *prog = *pprog;
365 int cnt = 0;
366
367 if (is64) {
368 /* mov dst, src */
369 EMIT_mov(dst_reg, src_reg);
370 } else {
371 /* mov32 dst, src */
372 if (is_ereg(dst_reg) || is_ereg(src_reg))
373 EMIT1(add_2mod(0x40, dst_reg, src_reg));
374 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
375 }
376
377 *pprog = prog;
378}
379
380static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
381 int oldproglen, struct jit_context *ctx)
382{
383 struct bpf_insn *insn = bpf_prog->insnsi;
384 int insn_cnt = bpf_prog->len;
385 bool seen_exit = false;
386 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
387 int i, cnt = 0;
388 int proglen = 0;
389 u8 *prog = temp;
390
391 emit_prologue(&prog, bpf_prog->aux->stack_depth,
392 bpf_prog_was_classic(bpf_prog));
393 addrs[0] = prog - temp;
394
395 for (i = 1; i <= insn_cnt; i++, insn++) {
396 const s32 imm32 = insn->imm;
397 u32 dst_reg = insn->dst_reg;
398 u32 src_reg = insn->src_reg;
399 u8 b2 = 0, b3 = 0;
400 s64 jmp_offset;
401 u8 jmp_cond;
402 int ilen;
403 u8 *func;
404
405 switch (insn->code) {
406 /* ALU */
407 case BPF_ALU | BPF_ADD | BPF_X:
408 case BPF_ALU | BPF_SUB | BPF_X:
409 case BPF_ALU | BPF_AND | BPF_X:
410 case BPF_ALU | BPF_OR | BPF_X:
411 case BPF_ALU | BPF_XOR | BPF_X:
412 case BPF_ALU64 | BPF_ADD | BPF_X:
413 case BPF_ALU64 | BPF_SUB | BPF_X:
414 case BPF_ALU64 | BPF_AND | BPF_X:
415 case BPF_ALU64 | BPF_OR | BPF_X:
416 case BPF_ALU64 | BPF_XOR | BPF_X:
417 switch (BPF_OP(insn->code)) {
418 case BPF_ADD: b2 = 0x01; break;
419 case BPF_SUB: b2 = 0x29; break;
420 case BPF_AND: b2 = 0x21; break;
421 case BPF_OR: b2 = 0x09; break;
422 case BPF_XOR: b2 = 0x31; break;
423 }
424 if (BPF_CLASS(insn->code) == BPF_ALU64)
425 EMIT1(add_2mod(0x48, dst_reg, src_reg));
426 else if (is_ereg(dst_reg) || is_ereg(src_reg))
427 EMIT1(add_2mod(0x40, dst_reg, src_reg));
428 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
429 break;
430
431 case BPF_ALU64 | BPF_MOV | BPF_X:
432 case BPF_ALU | BPF_MOV | BPF_X:
433 emit_mov_reg(&prog,
434 BPF_CLASS(insn->code) == BPF_ALU64,
435 dst_reg, src_reg);
436 break;
437
438 /* neg dst */
439 case BPF_ALU | BPF_NEG:
440 case BPF_ALU64 | BPF_NEG:
441 if (BPF_CLASS(insn->code) == BPF_ALU64)
442 EMIT1(add_1mod(0x48, dst_reg));
443 else if (is_ereg(dst_reg))
444 EMIT1(add_1mod(0x40, dst_reg));
445 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
446 break;
447
448 case BPF_ALU | BPF_ADD | BPF_K:
449 case BPF_ALU | BPF_SUB | BPF_K:
450 case BPF_ALU | BPF_AND | BPF_K:
451 case BPF_ALU | BPF_OR | BPF_K:
452 case BPF_ALU | BPF_XOR | BPF_K:
453 case BPF_ALU64 | BPF_ADD | BPF_K:
454 case BPF_ALU64 | BPF_SUB | BPF_K:
455 case BPF_ALU64 | BPF_AND | BPF_K:
456 case BPF_ALU64 | BPF_OR | BPF_K:
457 case BPF_ALU64 | BPF_XOR | BPF_K:
458 if (BPF_CLASS(insn->code) == BPF_ALU64)
459 EMIT1(add_1mod(0x48, dst_reg));
460 else if (is_ereg(dst_reg))
461 EMIT1(add_1mod(0x40, dst_reg));
462
463 /*
464 * b3 holds 'normal' opcode, b2 short form only valid
465 * in case dst is eax/rax.
466 */
467 switch (BPF_OP(insn->code)) {
468 case BPF_ADD:
469 b3 = 0xC0;
470 b2 = 0x05;
471 break;
472 case BPF_SUB:
473 b3 = 0xE8;
474 b2 = 0x2D;
475 break;
476 case BPF_AND:
477 b3 = 0xE0;
478 b2 = 0x25;
479 break;
480 case BPF_OR:
481 b3 = 0xC8;
482 b2 = 0x0D;
483 break;
484 case BPF_XOR:
485 b3 = 0xF0;
486 b2 = 0x35;
487 break;
488 }
489
490 if (is_imm8(imm32))
491 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
492 else if (is_axreg(dst_reg))
493 EMIT1_off32(b2, imm32);
494 else
495 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
496 break;
497
498 case BPF_ALU64 | BPF_MOV | BPF_K:
499 case BPF_ALU | BPF_MOV | BPF_K:
500 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
501 dst_reg, imm32);
502 break;
503
504 case BPF_LD | BPF_IMM | BPF_DW:
505 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
506 insn++;
507 i++;
508 break;
509
510 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
511 case BPF_ALU | BPF_MOD | BPF_X:
512 case BPF_ALU | BPF_DIV | BPF_X:
513 case BPF_ALU | BPF_MOD | BPF_K:
514 case BPF_ALU | BPF_DIV | BPF_K:
515 case BPF_ALU64 | BPF_MOD | BPF_X:
516 case BPF_ALU64 | BPF_DIV | BPF_X:
517 case BPF_ALU64 | BPF_MOD | BPF_K:
518 case BPF_ALU64 | BPF_DIV | BPF_K:
519 EMIT1(0x50); /* push rax */
520 EMIT1(0x52); /* push rdx */
521
522 if (BPF_SRC(insn->code) == BPF_X)
523 /* mov r11, src_reg */
524 EMIT_mov(AUX_REG, src_reg);
525 else
526 /* mov r11, imm32 */
527 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
528
529 /* mov rax, dst_reg */
530 EMIT_mov(BPF_REG_0, dst_reg);
531
532 /*
533 * xor edx, edx
534 * equivalent to 'xor rdx, rdx', but one byte less
535 */
536 EMIT2(0x31, 0xd2);
537
538 if (BPF_CLASS(insn->code) == BPF_ALU64)
539 /* div r11 */
540 EMIT3(0x49, 0xF7, 0xF3);
541 else
542 /* div r11d */
543 EMIT3(0x41, 0xF7, 0xF3);
544
545 if (BPF_OP(insn->code) == BPF_MOD)
546 /* mov r11, rdx */
547 EMIT3(0x49, 0x89, 0xD3);
548 else
549 /* mov r11, rax */
550 EMIT3(0x49, 0x89, 0xC3);
551
552 EMIT1(0x5A); /* pop rdx */
553 EMIT1(0x58); /* pop rax */
554
555 /* mov dst_reg, r11 */
556 EMIT_mov(dst_reg, AUX_REG);
557 break;
558
559 case BPF_ALU | BPF_MUL | BPF_K:
560 case BPF_ALU | BPF_MUL | BPF_X:
561 case BPF_ALU64 | BPF_MUL | BPF_K:
562 case BPF_ALU64 | BPF_MUL | BPF_X:
563 {
564 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
565
566 if (dst_reg != BPF_REG_0)
567 EMIT1(0x50); /* push rax */
568 if (dst_reg != BPF_REG_3)
569 EMIT1(0x52); /* push rdx */
570
571 /* mov r11, dst_reg */
572 EMIT_mov(AUX_REG, dst_reg);
573
574 if (BPF_SRC(insn->code) == BPF_X)
575 emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
576 else
577 emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
578
579 if (is64)
580 EMIT1(add_1mod(0x48, AUX_REG));
581 else if (is_ereg(AUX_REG))
582 EMIT1(add_1mod(0x40, AUX_REG));
583 /* mul(q) r11 */
584 EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
585
586 if (dst_reg != BPF_REG_3)
587 EMIT1(0x5A); /* pop rdx */
588 if (dst_reg != BPF_REG_0) {
589 /* mov dst_reg, rax */
590 EMIT_mov(dst_reg, BPF_REG_0);
591 EMIT1(0x58); /* pop rax */
592 }
593 break;
594 }
595 /* Shifts */
596 case BPF_ALU | BPF_LSH | BPF_K:
597 case BPF_ALU | BPF_RSH | BPF_K:
598 case BPF_ALU | BPF_ARSH | BPF_K:
599 case BPF_ALU64 | BPF_LSH | BPF_K:
600 case BPF_ALU64 | BPF_RSH | BPF_K:
601 case BPF_ALU64 | BPF_ARSH | BPF_K:
602 if (BPF_CLASS(insn->code) == BPF_ALU64)
603 EMIT1(add_1mod(0x48, dst_reg));
604 else if (is_ereg(dst_reg))
605 EMIT1(add_1mod(0x40, dst_reg));
606
607 switch (BPF_OP(insn->code)) {
608 case BPF_LSH: b3 = 0xE0; break;
609 case BPF_RSH: b3 = 0xE8; break;
610 case BPF_ARSH: b3 = 0xF8; break;
611 }
612
613 if (imm32 == 1)
614 EMIT2(0xD1, add_1reg(b3, dst_reg));
615 else
616 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
617 break;
618
619 case BPF_ALU | BPF_LSH | BPF_X:
620 case BPF_ALU | BPF_RSH | BPF_X:
621 case BPF_ALU | BPF_ARSH | BPF_X:
622 case BPF_ALU64 | BPF_LSH | BPF_X:
623 case BPF_ALU64 | BPF_RSH | BPF_X:
624 case BPF_ALU64 | BPF_ARSH | BPF_X:
625
626 /* Check for bad case when dst_reg == rcx */
627 if (dst_reg == BPF_REG_4) {
628 /* mov r11, dst_reg */
629 EMIT_mov(AUX_REG, dst_reg);
630 dst_reg = AUX_REG;
631 }
632
633 if (src_reg != BPF_REG_4) { /* common case */
634 EMIT1(0x51); /* push rcx */
635
636 /* mov rcx, src_reg */
637 EMIT_mov(BPF_REG_4, src_reg);
638 }
639
640 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
641 if (BPF_CLASS(insn->code) == BPF_ALU64)
642 EMIT1(add_1mod(0x48, dst_reg));
643 else if (is_ereg(dst_reg))
644 EMIT1(add_1mod(0x40, dst_reg));
645
646 switch (BPF_OP(insn->code)) {
647 case BPF_LSH: b3 = 0xE0; break;
648 case BPF_RSH: b3 = 0xE8; break;
649 case BPF_ARSH: b3 = 0xF8; break;
650 }
651 EMIT2(0xD3, add_1reg(b3, dst_reg));
652
653 if (src_reg != BPF_REG_4)
654 EMIT1(0x59); /* pop rcx */
655
656 if (insn->dst_reg == BPF_REG_4)
657 /* mov dst_reg, r11 */
658 EMIT_mov(insn->dst_reg, AUX_REG);
659 break;
660
661 case BPF_ALU | BPF_END | BPF_FROM_BE:
662 switch (imm32) {
663 case 16:
664 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
665 EMIT1(0x66);
666 if (is_ereg(dst_reg))
667 EMIT1(0x41);
668 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
669
670 /* Emit 'movzwl eax, ax' */
671 if (is_ereg(dst_reg))
672 EMIT3(0x45, 0x0F, 0xB7);
673 else
674 EMIT2(0x0F, 0xB7);
675 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
676 break;
677 case 32:
678 /* Emit 'bswap eax' to swap lower 4 bytes */
679 if (is_ereg(dst_reg))
680 EMIT2(0x41, 0x0F);
681 else
682 EMIT1(0x0F);
683 EMIT1(add_1reg(0xC8, dst_reg));
684 break;
685 case 64:
686 /* Emit 'bswap rax' to swap 8 bytes */
687 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
688 add_1reg(0xC8, dst_reg));
689 break;
690 }
691 break;
692
693 case BPF_ALU | BPF_END | BPF_FROM_LE:
694 switch (imm32) {
695 case 16:
696 /*
697 * Emit 'movzwl eax, ax' to zero extend 16-bit
698 * into 64 bit
699 */
700 if (is_ereg(dst_reg))
701 EMIT3(0x45, 0x0F, 0xB7);
702 else
703 EMIT2(0x0F, 0xB7);
704 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
705 break;
706 case 32:
707 /* Emit 'mov eax, eax' to clear upper 32-bits */
708 if (is_ereg(dst_reg))
709 EMIT1(0x45);
710 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
711 break;
712 case 64:
713 /* nop */
714 break;
715 }
716 break;
717
718 /* ST: *(u8*)(dst_reg + off) = imm */
719 case BPF_ST | BPF_MEM | BPF_B:
720 if (is_ereg(dst_reg))
721 EMIT2(0x41, 0xC6);
722 else
723 EMIT1(0xC6);
724 goto st;
725 case BPF_ST | BPF_MEM | BPF_H:
726 if (is_ereg(dst_reg))
727 EMIT3(0x66, 0x41, 0xC7);
728 else
729 EMIT2(0x66, 0xC7);
730 goto st;
731 case BPF_ST | BPF_MEM | BPF_W:
732 if (is_ereg(dst_reg))
733 EMIT2(0x41, 0xC7);
734 else
735 EMIT1(0xC7);
736 goto st;
737 case BPF_ST | BPF_MEM | BPF_DW:
738 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
739
740st: if (is_imm8(insn->off))
741 EMIT2(add_1reg(0x40, dst_reg), insn->off);
742 else
743 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
744
745 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
746 break;
747
748 /* STX: *(u8*)(dst_reg + off) = src_reg */
749 case BPF_STX | BPF_MEM | BPF_B:
750 /* Emit 'mov byte ptr [rax + off], al' */
751 if (is_ereg(dst_reg) || is_ereg(src_reg) ||
752 /* We have to add extra byte for x86 SIL, DIL regs */
753 src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
754 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
755 else
756 EMIT1(0x88);
757 goto stx;
758 case BPF_STX | BPF_MEM | BPF_H:
759 if (is_ereg(dst_reg) || is_ereg(src_reg))
760 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
761 else
762 EMIT2(0x66, 0x89);
763 goto stx;
764 case BPF_STX | BPF_MEM | BPF_W:
765 if (is_ereg(dst_reg) || is_ereg(src_reg))
766 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
767 else
768 EMIT1(0x89);
769 goto stx;
770 case BPF_STX | BPF_MEM | BPF_DW:
771 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
772stx: if (is_imm8(insn->off))
773 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
774 else
775 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
776 insn->off);
777 break;
778
779 /* LDX: dst_reg = *(u8*)(src_reg + off) */
780 case BPF_LDX | BPF_MEM | BPF_B:
781 /* Emit 'movzx rax, byte ptr [rax + off]' */
782 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
783 goto ldx;
784 case BPF_LDX | BPF_MEM | BPF_H:
785 /* Emit 'movzx rax, word ptr [rax + off]' */
786 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
787 goto ldx;
788 case BPF_LDX | BPF_MEM | BPF_W:
789 /* Emit 'mov eax, dword ptr [rax+0x14]' */
790 if (is_ereg(dst_reg) || is_ereg(src_reg))
791 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
792 else
793 EMIT1(0x8B);
794 goto ldx;
795 case BPF_LDX | BPF_MEM | BPF_DW:
796 /* Emit 'mov rax, qword ptr [rax+0x14]' */
797 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
798ldx: /*
799 * If insn->off == 0 we can save one extra byte, but
800 * special case of x86 R13 which always needs an offset
801 * is not worth the hassle
802 */
803 if (is_imm8(insn->off))
804 EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
805 else
806 EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
807 insn->off);
808 break;
809
810 /* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
811 case BPF_STX | BPF_XADD | BPF_W:
812 /* Emit 'lock add dword ptr [rax + off], eax' */
813 if (is_ereg(dst_reg) || is_ereg(src_reg))
814 EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
815 else
816 EMIT2(0xF0, 0x01);
817 goto xadd;
818 case BPF_STX | BPF_XADD | BPF_DW:
819 EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
820xadd: if (is_imm8(insn->off))
821 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
822 else
823 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
824 insn->off);
825 break;
826
827 /* call */
828 case BPF_JMP | BPF_CALL:
829 func = (u8 *) __bpf_call_base + imm32;
830 jmp_offset = func - (image + addrs[i]);
831 if (!imm32 || !is_simm32(jmp_offset)) {
832 pr_err("unsupported BPF func %d addr %p image %p\n",
833 imm32, func, image);
834 return -EINVAL;
835 }
836 EMIT1_off32(0xE8, jmp_offset);
837 break;
838
839 case BPF_JMP | BPF_TAIL_CALL:
840 emit_bpf_tail_call(&prog);
841 break;
842
843 /* cond jump */
844 case BPF_JMP | BPF_JEQ | BPF_X:
845 case BPF_JMP | BPF_JNE | BPF_X:
846 case BPF_JMP | BPF_JGT | BPF_X:
847 case BPF_JMP | BPF_JLT | BPF_X:
848 case BPF_JMP | BPF_JGE | BPF_X:
849 case BPF_JMP | BPF_JLE | BPF_X:
850 case BPF_JMP | BPF_JSGT | BPF_X:
851 case BPF_JMP | BPF_JSLT | BPF_X:
852 case BPF_JMP | BPF_JSGE | BPF_X:
853 case BPF_JMP | BPF_JSLE | BPF_X:
854 case BPF_JMP32 | BPF_JEQ | BPF_X:
855 case BPF_JMP32 | BPF_JNE | BPF_X:
856 case BPF_JMP32 | BPF_JGT | BPF_X:
857 case BPF_JMP32 | BPF_JLT | BPF_X:
858 case BPF_JMP32 | BPF_JGE | BPF_X:
859 case BPF_JMP32 | BPF_JLE | BPF_X:
860 case BPF_JMP32 | BPF_JSGT | BPF_X:
861 case BPF_JMP32 | BPF_JSLT | BPF_X:
862 case BPF_JMP32 | BPF_JSGE | BPF_X:
863 case BPF_JMP32 | BPF_JSLE | BPF_X:
864 /* cmp dst_reg, src_reg */
865 if (BPF_CLASS(insn->code) == BPF_JMP)
866 EMIT1(add_2mod(0x48, dst_reg, src_reg));
867 else if (is_ereg(dst_reg) || is_ereg(src_reg))
868 EMIT1(add_2mod(0x40, dst_reg, src_reg));
869 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
870 goto emit_cond_jmp;
871
872 case BPF_JMP | BPF_JSET | BPF_X:
873 case BPF_JMP32 | BPF_JSET | BPF_X:
874 /* test dst_reg, src_reg */
875 if (BPF_CLASS(insn->code) == BPF_JMP)
876 EMIT1(add_2mod(0x48, dst_reg, src_reg));
877 else if (is_ereg(dst_reg) || is_ereg(src_reg))
878 EMIT1(add_2mod(0x40, dst_reg, src_reg));
879 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
880 goto emit_cond_jmp;
881
882 case BPF_JMP | BPF_JSET | BPF_K:
883 case BPF_JMP32 | BPF_JSET | BPF_K:
884 /* test dst_reg, imm32 */
885 if (BPF_CLASS(insn->code) == BPF_JMP)
886 EMIT1(add_1mod(0x48, dst_reg));
887 else if (is_ereg(dst_reg))
888 EMIT1(add_1mod(0x40, dst_reg));
889 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
890 goto emit_cond_jmp;
891
892 case BPF_JMP | BPF_JEQ | BPF_K:
893 case BPF_JMP | BPF_JNE | BPF_K:
894 case BPF_JMP | BPF_JGT | BPF_K:
895 case BPF_JMP | BPF_JLT | BPF_K:
896 case BPF_JMP | BPF_JGE | BPF_K:
897 case BPF_JMP | BPF_JLE | BPF_K:
898 case BPF_JMP | BPF_JSGT | BPF_K:
899 case BPF_JMP | BPF_JSLT | BPF_K:
900 case BPF_JMP | BPF_JSGE | BPF_K:
901 case BPF_JMP | BPF_JSLE | BPF_K:
902 case BPF_JMP32 | BPF_JEQ | BPF_K:
903 case BPF_JMP32 | BPF_JNE | BPF_K:
904 case BPF_JMP32 | BPF_JGT | BPF_K:
905 case BPF_JMP32 | BPF_JLT | BPF_K:
906 case BPF_JMP32 | BPF_JGE | BPF_K:
907 case BPF_JMP32 | BPF_JLE | BPF_K:
908 case BPF_JMP32 | BPF_JSGT | BPF_K:
909 case BPF_JMP32 | BPF_JSLT | BPF_K:
910 case BPF_JMP32 | BPF_JSGE | BPF_K:
911 case BPF_JMP32 | BPF_JSLE | BPF_K:
912 /* cmp dst_reg, imm8/32 */
913 if (BPF_CLASS(insn->code) == BPF_JMP)
914 EMIT1(add_1mod(0x48, dst_reg));
915 else if (is_ereg(dst_reg))
916 EMIT1(add_1mod(0x40, dst_reg));
917
918 if (is_imm8(imm32))
919 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
920 else
921 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
922
923emit_cond_jmp: /* Convert BPF opcode to x86 */
924 switch (BPF_OP(insn->code)) {
925 case BPF_JEQ:
926 jmp_cond = X86_JE;
927 break;
928 case BPF_JSET:
929 case BPF_JNE:
930 jmp_cond = X86_JNE;
931 break;
932 case BPF_JGT:
933 /* GT is unsigned '>', JA in x86 */
934 jmp_cond = X86_JA;
935 break;
936 case BPF_JLT:
937 /* LT is unsigned '<', JB in x86 */
938 jmp_cond = X86_JB;
939 break;
940 case BPF_JGE:
941 /* GE is unsigned '>=', JAE in x86 */
942 jmp_cond = X86_JAE;
943 break;
944 case BPF_JLE:
945 /* LE is unsigned '<=', JBE in x86 */
946 jmp_cond = X86_JBE;
947 break;
948 case BPF_JSGT:
949 /* Signed '>', GT in x86 */
950 jmp_cond = X86_JG;
951 break;
952 case BPF_JSLT:
953 /* Signed '<', LT in x86 */
954 jmp_cond = X86_JL;
955 break;
956 case BPF_JSGE:
957 /* Signed '>=', GE in x86 */
958 jmp_cond = X86_JGE;
959 break;
960 case BPF_JSLE:
961 /* Signed '<=', LE in x86 */
962 jmp_cond = X86_JLE;
963 break;
964 default: /* to silence GCC warning */
965 return -EFAULT;
966 }
967 jmp_offset = addrs[i + insn->off] - addrs[i];
968 if (is_imm8(jmp_offset)) {
969 EMIT2(jmp_cond, jmp_offset);
970 } else if (is_simm32(jmp_offset)) {
971 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
972 } else {
973 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
974 return -EFAULT;
975 }
976
977 break;
978
979 case BPF_JMP | BPF_JA:
980 if (insn->off == -1)
981 /* -1 jmp instructions will always jump
982 * backwards two bytes. Explicitly handling
983 * this case avoids wasting too many passes
984 * when there are long sequences of replaced
985 * dead code.
986 */
987 jmp_offset = -2;
988 else
989 jmp_offset = addrs[i + insn->off] - addrs[i];
990
991 if (!jmp_offset)
992 /* Optimize out nop jumps */
993 break;
994emit_jmp:
995 if (is_imm8(jmp_offset)) {
996 EMIT2(0xEB, jmp_offset);
997 } else if (is_simm32(jmp_offset)) {
998 EMIT1_off32(0xE9, jmp_offset);
999 } else {
1000 pr_err("jmp gen bug %llx\n", jmp_offset);
1001 return -EFAULT;
1002 }
1003 break;
1004
1005 case BPF_JMP | BPF_EXIT:
1006 if (seen_exit) {
1007 jmp_offset = ctx->cleanup_addr - addrs[i];
1008 goto emit_jmp;
1009 }
1010 seen_exit = true;
1011 /* Update cleanup_addr */
1012 ctx->cleanup_addr = proglen;
1013 if (!bpf_prog_was_classic(bpf_prog))
1014 EMIT1(0x5B); /* get rid of tail_call_cnt */
1015 EMIT2(0x41, 0x5F); /* pop r15 */
1016 EMIT2(0x41, 0x5E); /* pop r14 */
1017 EMIT2(0x41, 0x5D); /* pop r13 */
1018 EMIT1(0x5B); /* pop rbx */
1019 EMIT1(0xC9); /* leave */
1020 EMIT1(0xC3); /* ret */
1021 break;
1022
1023 default:
1024 /*
1025 * By design x86-64 JIT should support all BPF instructions.
1026 * This error will be seen if new instruction was added
1027 * to the interpreter, but not to the JIT, or if there is
1028 * junk in bpf_prog.
1029 */
1030 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1031 return -EINVAL;
1032 }
1033
1034 ilen = prog - temp;
1035 if (ilen > BPF_MAX_INSN_SIZE) {
1036 pr_err("bpf_jit: fatal insn size error\n");
1037 return -EFAULT;
1038 }
1039
1040 if (image) {
1041 if (unlikely(proglen + ilen > oldproglen)) {
1042 pr_err("bpf_jit: fatal error\n");
1043 return -EFAULT;
1044 }
1045 memcpy(image + proglen, temp, ilen);
1046 }
1047 proglen += ilen;
1048 addrs[i] = proglen;
1049 prog = temp;
1050 }
1051 return proglen;
1052}
1053
1054struct x64_jit_data {
1055 struct bpf_binary_header *header;
1056 int *addrs;
1057 u8 *image;
1058 int proglen;
1059 struct jit_context ctx;
1060};
1061
1062struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1063{
1064 struct bpf_binary_header *header = NULL;
1065 struct bpf_prog *tmp, *orig_prog = prog;
1066 struct x64_jit_data *jit_data;
1067 int proglen, oldproglen = 0;
1068 struct jit_context ctx = {};
1069 bool tmp_blinded = false;
1070 bool extra_pass = false;
1071 u8 *image = NULL;
1072 int *addrs;
1073 int pass;
1074 int i;
1075
1076 if (!prog->jit_requested)
1077 return orig_prog;
1078
1079 tmp = bpf_jit_blind_constants(prog);
1080 /*
1081 * If blinding was requested and we failed during blinding,
1082 * we must fall back to the interpreter.
1083 */
1084 if (IS_ERR(tmp))
1085 return orig_prog;
1086 if (tmp != prog) {
1087 tmp_blinded = true;
1088 prog = tmp;
1089 }
1090
1091 jit_data = prog->aux->jit_data;
1092 if (!jit_data) {
1093 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1094 if (!jit_data) {
1095 prog = orig_prog;
1096 goto out;
1097 }
1098 prog->aux->jit_data = jit_data;
1099 }
1100 addrs = jit_data->addrs;
1101 if (addrs) {
1102 ctx = jit_data->ctx;
1103 oldproglen = jit_data->proglen;
1104 image = jit_data->image;
1105 header = jit_data->header;
1106 extra_pass = true;
1107 goto skip_init_addrs;
1108 }
1109 addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
1110 if (!addrs) {
1111 prog = orig_prog;
1112 goto out_addrs;
1113 }
1114
1115 /*
1116 * Before first pass, make a rough estimation of addrs[]
1117 * each BPF instruction is translated to less than 64 bytes
1118 */
1119 for (proglen = 0, i = 0; i <= prog->len; i++) {
1120 proglen += 64;
1121 addrs[i] = proglen;
1122 }
1123 ctx.cleanup_addr = proglen;
1124skip_init_addrs:
1125
1126 /*
1127 * JITed image shrinks with every pass and the loop iterates
1128 * until the image stops shrinking. Very large BPF programs
1129 * may converge on the last pass. In such case do one more
1130 * pass to emit the final image.
1131 */
1132 for (pass = 0; pass < 20 || image; pass++) {
1133 proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1134 if (proglen <= 0) {
1135out_image:
1136 image = NULL;
1137 if (header)
1138 bpf_jit_binary_free(header);
1139 prog = orig_prog;
1140 goto out_addrs;
1141 }
1142 if (image) {
1143 if (proglen != oldproglen) {
1144 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1145 proglen, oldproglen);
1146 goto out_image;
1147 }
1148 break;
1149 }
1150 if (proglen == oldproglen) {
1151 header = bpf_jit_binary_alloc(proglen, &image,
1152 1, jit_fill_hole);
1153 if (!header) {
1154 prog = orig_prog;
1155 goto out_addrs;
1156 }
1157 }
1158 oldproglen = proglen;
1159 cond_resched();
1160 }
1161
1162 if (bpf_jit_enable > 1)
1163 bpf_jit_dump(prog->len, proglen, pass + 1, image);
1164
1165 if (image) {
1166 if (!prog->is_func || extra_pass) {
1167 bpf_jit_binary_lock_ro(header);
1168 } else {
1169 jit_data->addrs = addrs;
1170 jit_data->ctx = ctx;
1171 jit_data->proglen = proglen;
1172 jit_data->image = image;
1173 jit_data->header = header;
1174 }
1175 prog->bpf_func = (void *)image;
1176 prog->jited = 1;
1177 prog->jited_len = proglen;
1178 } else {
1179 prog = orig_prog;
1180 }
1181
1182 if (!image || !prog->is_func || extra_pass) {
1183 if (image)
1184 bpf_prog_fill_jited_linfo(prog, addrs + 1);
1185out_addrs:
1186 kfree(addrs);
1187 kfree(jit_data);
1188 prog->aux->jit_data = NULL;
1189 }
1190out:
1191 if (tmp_blinded)
1192 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1193 tmp : orig_prog);
1194 return prog;
1195}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * BPF JIT compiler
4 *
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 */
8#include <linux/netdevice.h>
9#include <linux/filter.h>
10#include <linux/if_vlan.h>
11#include <linux/bpf.h>
12#include <linux/memory.h>
13#include <linux/sort.h>
14#include <asm/extable.h>
15#include <asm/ftrace.h>
16#include <asm/set_memory.h>
17#include <asm/nospec-branch.h>
18#include <asm/text-patching.h>
19
20static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21{
22 if (len == 1)
23 *ptr = bytes;
24 else if (len == 2)
25 *(u16 *)ptr = bytes;
26 else {
27 *(u32 *)ptr = bytes;
28 barrier();
29 }
30 return ptr + len;
31}
32
33#define EMIT(bytes, len) \
34 do { prog = emit_code(prog, bytes, len); } while (0)
35
36#define EMIT1(b1) EMIT(b1, 1)
37#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
38#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40
41#define EMIT1_off32(b1, off) \
42 do { EMIT1(b1); EMIT(off, 4); } while (0)
43#define EMIT2_off32(b1, b2, off) \
44 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45#define EMIT3_off32(b1, b2, b3, off) \
46 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47#define EMIT4_off32(b1, b2, b3, b4, off) \
48 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49
50#ifdef CONFIG_X86_KERNEL_IBT
51#define EMIT_ENDBR() EMIT(gen_endbr(), 4)
52#else
53#define EMIT_ENDBR()
54#endif
55
56static bool is_imm8(int value)
57{
58 return value <= 127 && value >= -128;
59}
60
61static bool is_simm32(s64 value)
62{
63 return value == (s64)(s32)value;
64}
65
66static bool is_uimm32(u64 value)
67{
68 return value == (u64)(u32)value;
69}
70
71/* mov dst, src */
72#define EMIT_mov(DST, SRC) \
73 do { \
74 if (DST != SRC) \
75 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
76 } while (0)
77
78static int bpf_size_to_x86_bytes(int bpf_size)
79{
80 if (bpf_size == BPF_W)
81 return 4;
82 else if (bpf_size == BPF_H)
83 return 2;
84 else if (bpf_size == BPF_B)
85 return 1;
86 else if (bpf_size == BPF_DW)
87 return 4; /* imm32 */
88 else
89 return 0;
90}
91
92/*
93 * List of x86 cond jumps opcodes (. + s8)
94 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
95 */
96#define X86_JB 0x72
97#define X86_JAE 0x73
98#define X86_JE 0x74
99#define X86_JNE 0x75
100#define X86_JBE 0x76
101#define X86_JA 0x77
102#define X86_JL 0x7C
103#define X86_JGE 0x7D
104#define X86_JLE 0x7E
105#define X86_JG 0x7F
106
107/* Pick a register outside of BPF range for JIT internal work */
108#define AUX_REG (MAX_BPF_JIT_REG + 1)
109#define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
110
111/*
112 * The following table maps BPF registers to x86-64 registers.
113 *
114 * x86-64 register R12 is unused, since if used as base address
115 * register in load/store instructions, it always needs an
116 * extra byte of encoding and is callee saved.
117 *
118 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
119 * trampoline. x86-64 register R10 is used for blinding (if enabled).
120 */
121static const int reg2hex[] = {
122 [BPF_REG_0] = 0, /* RAX */
123 [BPF_REG_1] = 7, /* RDI */
124 [BPF_REG_2] = 6, /* RSI */
125 [BPF_REG_3] = 2, /* RDX */
126 [BPF_REG_4] = 1, /* RCX */
127 [BPF_REG_5] = 0, /* R8 */
128 [BPF_REG_6] = 3, /* RBX callee saved */
129 [BPF_REG_7] = 5, /* R13 callee saved */
130 [BPF_REG_8] = 6, /* R14 callee saved */
131 [BPF_REG_9] = 7, /* R15 callee saved */
132 [BPF_REG_FP] = 5, /* RBP readonly */
133 [BPF_REG_AX] = 2, /* R10 temp register */
134 [AUX_REG] = 3, /* R11 temp register */
135 [X86_REG_R9] = 1, /* R9 register, 6th function argument */
136};
137
138static const int reg2pt_regs[] = {
139 [BPF_REG_0] = offsetof(struct pt_regs, ax),
140 [BPF_REG_1] = offsetof(struct pt_regs, di),
141 [BPF_REG_2] = offsetof(struct pt_regs, si),
142 [BPF_REG_3] = offsetof(struct pt_regs, dx),
143 [BPF_REG_4] = offsetof(struct pt_regs, cx),
144 [BPF_REG_5] = offsetof(struct pt_regs, r8),
145 [BPF_REG_6] = offsetof(struct pt_regs, bx),
146 [BPF_REG_7] = offsetof(struct pt_regs, r13),
147 [BPF_REG_8] = offsetof(struct pt_regs, r14),
148 [BPF_REG_9] = offsetof(struct pt_regs, r15),
149};
150
151/*
152 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
153 * which need extra byte of encoding.
154 * rax,rcx,...,rbp have simpler encoding
155 */
156static bool is_ereg(u32 reg)
157{
158 return (1 << reg) & (BIT(BPF_REG_5) |
159 BIT(AUX_REG) |
160 BIT(BPF_REG_7) |
161 BIT(BPF_REG_8) |
162 BIT(BPF_REG_9) |
163 BIT(X86_REG_R9) |
164 BIT(BPF_REG_AX));
165}
166
167/*
168 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
169 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
170 * of encoding. al,cl,dl,bl have simpler encoding.
171 */
172static bool is_ereg_8l(u32 reg)
173{
174 return is_ereg(reg) ||
175 (1 << reg) & (BIT(BPF_REG_1) |
176 BIT(BPF_REG_2) |
177 BIT(BPF_REG_FP));
178}
179
180static bool is_axreg(u32 reg)
181{
182 return reg == BPF_REG_0;
183}
184
185/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
186static u8 add_1mod(u8 byte, u32 reg)
187{
188 if (is_ereg(reg))
189 byte |= 1;
190 return byte;
191}
192
193static u8 add_2mod(u8 byte, u32 r1, u32 r2)
194{
195 if (is_ereg(r1))
196 byte |= 1;
197 if (is_ereg(r2))
198 byte |= 4;
199 return byte;
200}
201
202/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
203static u8 add_1reg(u8 byte, u32 dst_reg)
204{
205 return byte + reg2hex[dst_reg];
206}
207
208/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
209static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
210{
211 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
212}
213
214/* Some 1-byte opcodes for binary ALU operations */
215static u8 simple_alu_opcodes[] = {
216 [BPF_ADD] = 0x01,
217 [BPF_SUB] = 0x29,
218 [BPF_AND] = 0x21,
219 [BPF_OR] = 0x09,
220 [BPF_XOR] = 0x31,
221 [BPF_LSH] = 0xE0,
222 [BPF_RSH] = 0xE8,
223 [BPF_ARSH] = 0xF8,
224};
225
226static void jit_fill_hole(void *area, unsigned int size)
227{
228 /* Fill whole space with INT3 instructions */
229 memset(area, 0xcc, size);
230}
231
232int bpf_arch_text_invalidate(void *dst, size_t len)
233{
234 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
235}
236
237struct jit_context {
238 int cleanup_addr; /* Epilogue code offset */
239
240 /*
241 * Program specific offsets of labels in the code; these rely on the
242 * JIT doing at least 2 passes, recording the position on the first
243 * pass, only to generate the correct offset on the second pass.
244 */
245 int tail_call_direct_label;
246 int tail_call_indirect_label;
247};
248
249/* Maximum number of bytes emitted while JITing one eBPF insn */
250#define BPF_MAX_INSN_SIZE 128
251#define BPF_INSN_SAFETY 64
252
253/* Number of bytes emit_patch() needs to generate instructions */
254#define X86_PATCH_SIZE 5
255/* Number of bytes that will be skipped on tailcall */
256#define X86_TAIL_CALL_OFFSET (11 + ENDBR_INSN_SIZE)
257
258static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
259{
260 u8 *prog = *pprog;
261
262 if (callee_regs_used[0])
263 EMIT1(0x53); /* push rbx */
264 if (callee_regs_used[1])
265 EMIT2(0x41, 0x55); /* push r13 */
266 if (callee_regs_used[2])
267 EMIT2(0x41, 0x56); /* push r14 */
268 if (callee_regs_used[3])
269 EMIT2(0x41, 0x57); /* push r15 */
270 *pprog = prog;
271}
272
273static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
274{
275 u8 *prog = *pprog;
276
277 if (callee_regs_used[3])
278 EMIT2(0x41, 0x5F); /* pop r15 */
279 if (callee_regs_used[2])
280 EMIT2(0x41, 0x5E); /* pop r14 */
281 if (callee_regs_used[1])
282 EMIT2(0x41, 0x5D); /* pop r13 */
283 if (callee_regs_used[0])
284 EMIT1(0x5B); /* pop rbx */
285 *pprog = prog;
286}
287
288/*
289 * Emit x86-64 prologue code for BPF program.
290 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
291 * while jumping to another program
292 */
293static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
294 bool tail_call_reachable, bool is_subprog)
295{
296 u8 *prog = *pprog;
297
298 /* BPF trampoline can be made to work without these nops,
299 * but let's waste 5 bytes for now and optimize later
300 */
301 EMIT_ENDBR();
302 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
303 prog += X86_PATCH_SIZE;
304 if (!ebpf_from_cbpf) {
305 if (tail_call_reachable && !is_subprog)
306 EMIT2(0x31, 0xC0); /* xor eax, eax */
307 else
308 EMIT2(0x66, 0x90); /* nop2 */
309 }
310 EMIT1(0x55); /* push rbp */
311 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
312
313 /* X86_TAIL_CALL_OFFSET is here */
314 EMIT_ENDBR();
315
316 /* sub rsp, rounded_stack_depth */
317 if (stack_depth)
318 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
319 if (tail_call_reachable)
320 EMIT1(0x50); /* push rax */
321 *pprog = prog;
322}
323
324static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
325{
326 u8 *prog = *pprog;
327 s64 offset;
328
329 offset = func - (ip + X86_PATCH_SIZE);
330 if (!is_simm32(offset)) {
331 pr_err("Target call %p is out of range\n", func);
332 return -ERANGE;
333 }
334 EMIT1_off32(opcode, offset);
335 *pprog = prog;
336 return 0;
337}
338
339static int emit_call(u8 **pprog, void *func, void *ip)
340{
341 return emit_patch(pprog, func, ip, 0xE8);
342}
343
344static int emit_rsb_call(u8 **pprog, void *func, void *ip)
345{
346 OPTIMIZER_HIDE_VAR(func);
347 x86_call_depth_emit_accounting(pprog, func);
348 return emit_patch(pprog, func, ip, 0xE8);
349}
350
351static int emit_jump(u8 **pprog, void *func, void *ip)
352{
353 return emit_patch(pprog, func, ip, 0xE9);
354}
355
356static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
357 void *old_addr, void *new_addr)
358{
359 const u8 *nop_insn = x86_nops[5];
360 u8 old_insn[X86_PATCH_SIZE];
361 u8 new_insn[X86_PATCH_SIZE];
362 u8 *prog;
363 int ret;
364
365 memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
366 if (old_addr) {
367 prog = old_insn;
368 ret = t == BPF_MOD_CALL ?
369 emit_call(&prog, old_addr, ip) :
370 emit_jump(&prog, old_addr, ip);
371 if (ret)
372 return ret;
373 }
374
375 memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
376 if (new_addr) {
377 prog = new_insn;
378 ret = t == BPF_MOD_CALL ?
379 emit_call(&prog, new_addr, ip) :
380 emit_jump(&prog, new_addr, ip);
381 if (ret)
382 return ret;
383 }
384
385 ret = -EBUSY;
386 mutex_lock(&text_mutex);
387 if (memcmp(ip, old_insn, X86_PATCH_SIZE))
388 goto out;
389 ret = 1;
390 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
391 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
392 ret = 0;
393 }
394out:
395 mutex_unlock(&text_mutex);
396 return ret;
397}
398
399int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
400 void *old_addr, void *new_addr)
401{
402 if (!is_kernel_text((long)ip) &&
403 !is_bpf_text_address((long)ip))
404 /* BPF poking in modules is not supported */
405 return -EINVAL;
406
407 /*
408 * See emit_prologue(), for IBT builds the trampoline hook is preceded
409 * with an ENDBR instruction.
410 */
411 if (is_endbr(*(u32 *)ip))
412 ip += ENDBR_INSN_SIZE;
413
414 return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
415}
416
417#define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8)
418
419static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
420{
421 u8 *prog = *pprog;
422
423 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
424 EMIT_LFENCE();
425 EMIT2(0xFF, 0xE0 + reg);
426 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
427 OPTIMIZER_HIDE_VAR(reg);
428 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
429 emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
430 else
431 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
432 } else {
433 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */
434 if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
435 EMIT1(0xCC); /* int3 */
436 }
437
438 *pprog = prog;
439}
440
441static void emit_return(u8 **pprog, u8 *ip)
442{
443 u8 *prog = *pprog;
444
445 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
446 emit_jump(&prog, x86_return_thunk, ip);
447 } else {
448 EMIT1(0xC3); /* ret */
449 if (IS_ENABLED(CONFIG_SLS))
450 EMIT1(0xCC); /* int3 */
451 }
452
453 *pprog = prog;
454}
455
456/*
457 * Generate the following code:
458 *
459 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
460 * if (index >= array->map.max_entries)
461 * goto out;
462 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
463 * goto out;
464 * prog = array->ptrs[index];
465 * if (prog == NULL)
466 * goto out;
467 * goto *(prog->bpf_func + prologue_size);
468 * out:
469 */
470static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
471 u32 stack_depth, u8 *ip,
472 struct jit_context *ctx)
473{
474 int tcc_off = -4 - round_up(stack_depth, 8);
475 u8 *prog = *pprog, *start = *pprog;
476 int offset;
477
478 /*
479 * rdi - pointer to ctx
480 * rsi - pointer to bpf_array
481 * rdx - index in bpf_array
482 */
483
484 /*
485 * if (index >= array->map.max_entries)
486 * goto out;
487 */
488 EMIT2(0x89, 0xD2); /* mov edx, edx */
489 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
490 offsetof(struct bpf_array, map.max_entries));
491
492 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
493 EMIT2(X86_JBE, offset); /* jbe out */
494
495 /*
496 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
497 * goto out;
498 */
499 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
500 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
501
502 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
503 EMIT2(X86_JAE, offset); /* jae out */
504 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
505 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
506
507 /* prog = array->ptrs[index]; */
508 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
509 offsetof(struct bpf_array, ptrs));
510
511 /*
512 * if (prog == NULL)
513 * goto out;
514 */
515 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */
516
517 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
518 EMIT2(X86_JE, offset); /* je out */
519
520 pop_callee_regs(&prog, callee_regs_used);
521
522 EMIT1(0x58); /* pop rax */
523 if (stack_depth)
524 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */
525 round_up(stack_depth, 8));
526
527 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
528 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */
529 offsetof(struct bpf_prog, bpf_func));
530 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */
531 X86_TAIL_CALL_OFFSET);
532 /*
533 * Now we're ready to jump into next BPF program
534 * rdi == ctx (1st arg)
535 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
536 */
537 emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
538
539 /* out: */
540 ctx->tail_call_indirect_label = prog - start;
541 *pprog = prog;
542}
543
544static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
545 u8 **pprog, u8 *ip,
546 bool *callee_regs_used, u32 stack_depth,
547 struct jit_context *ctx)
548{
549 int tcc_off = -4 - round_up(stack_depth, 8);
550 u8 *prog = *pprog, *start = *pprog;
551 int offset;
552
553 /*
554 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
555 * goto out;
556 */
557 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
558 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
559
560 offset = ctx->tail_call_direct_label - (prog + 2 - start);
561 EMIT2(X86_JAE, offset); /* jae out */
562 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
563 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
564
565 poke->tailcall_bypass = ip + (prog - start);
566 poke->adj_off = X86_TAIL_CALL_OFFSET;
567 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
568 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
569
570 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
571 poke->tailcall_bypass);
572
573 pop_callee_regs(&prog, callee_regs_used);
574 EMIT1(0x58); /* pop rax */
575 if (stack_depth)
576 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
577
578 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
579 prog += X86_PATCH_SIZE;
580
581 /* out: */
582 ctx->tail_call_direct_label = prog - start;
583
584 *pprog = prog;
585}
586
587static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
588{
589 struct bpf_jit_poke_descriptor *poke;
590 struct bpf_array *array;
591 struct bpf_prog *target;
592 int i, ret;
593
594 for (i = 0; i < prog->aux->size_poke_tab; i++) {
595 poke = &prog->aux->poke_tab[i];
596 if (poke->aux && poke->aux != prog->aux)
597 continue;
598
599 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
600
601 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
602 continue;
603
604 array = container_of(poke->tail_call.map, struct bpf_array, map);
605 mutex_lock(&array->aux->poke_mutex);
606 target = array->ptrs[poke->tail_call.key];
607 if (target) {
608 ret = __bpf_arch_text_poke(poke->tailcall_target,
609 BPF_MOD_JUMP, NULL,
610 (u8 *)target->bpf_func +
611 poke->adj_off);
612 BUG_ON(ret < 0);
613 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
614 BPF_MOD_JUMP,
615 (u8 *)poke->tailcall_target +
616 X86_PATCH_SIZE, NULL);
617 BUG_ON(ret < 0);
618 }
619 WRITE_ONCE(poke->tailcall_target_stable, true);
620 mutex_unlock(&array->aux->poke_mutex);
621 }
622}
623
624static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
625 u32 dst_reg, const u32 imm32)
626{
627 u8 *prog = *pprog;
628 u8 b1, b2, b3;
629
630 /*
631 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
632 * (which zero-extends imm32) to save 2 bytes.
633 */
634 if (sign_propagate && (s32)imm32 < 0) {
635 /* 'mov %rax, imm32' sign extends imm32 */
636 b1 = add_1mod(0x48, dst_reg);
637 b2 = 0xC7;
638 b3 = 0xC0;
639 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
640 goto done;
641 }
642
643 /*
644 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
645 * to save 3 bytes.
646 */
647 if (imm32 == 0) {
648 if (is_ereg(dst_reg))
649 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
650 b2 = 0x31; /* xor */
651 b3 = 0xC0;
652 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
653 goto done;
654 }
655
656 /* mov %eax, imm32 */
657 if (is_ereg(dst_reg))
658 EMIT1(add_1mod(0x40, dst_reg));
659 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
660done:
661 *pprog = prog;
662}
663
664static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
665 const u32 imm32_hi, const u32 imm32_lo)
666{
667 u8 *prog = *pprog;
668
669 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
670 /*
671 * For emitting plain u32, where sign bit must not be
672 * propagated LLVM tends to load imm64 over mov32
673 * directly, so save couple of bytes by just doing
674 * 'mov %eax, imm32' instead.
675 */
676 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
677 } else {
678 /* movabsq rax, imm64 */
679 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
680 EMIT(imm32_lo, 4);
681 EMIT(imm32_hi, 4);
682 }
683
684 *pprog = prog;
685}
686
687static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
688{
689 u8 *prog = *pprog;
690
691 if (is64) {
692 /* mov dst, src */
693 EMIT_mov(dst_reg, src_reg);
694 } else {
695 /* mov32 dst, src */
696 if (is_ereg(dst_reg) || is_ereg(src_reg))
697 EMIT1(add_2mod(0x40, dst_reg, src_reg));
698 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
699 }
700
701 *pprog = prog;
702}
703
704/* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
705static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
706{
707 u8 *prog = *pprog;
708
709 if (is_imm8(off)) {
710 /* 1-byte signed displacement.
711 *
712 * If off == 0 we could skip this and save one extra byte, but
713 * special case of x86 R13 which always needs an offset is not
714 * worth the hassle
715 */
716 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
717 } else {
718 /* 4-byte signed displacement */
719 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
720 }
721 *pprog = prog;
722}
723
724/*
725 * Emit a REX byte if it will be necessary to address these registers
726 */
727static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
728{
729 u8 *prog = *pprog;
730
731 if (is64)
732 EMIT1(add_2mod(0x48, dst_reg, src_reg));
733 else if (is_ereg(dst_reg) || is_ereg(src_reg))
734 EMIT1(add_2mod(0x40, dst_reg, src_reg));
735 *pprog = prog;
736}
737
738/*
739 * Similar version of maybe_emit_mod() for a single register
740 */
741static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
742{
743 u8 *prog = *pprog;
744
745 if (is64)
746 EMIT1(add_1mod(0x48, reg));
747 else if (is_ereg(reg))
748 EMIT1(add_1mod(0x40, reg));
749 *pprog = prog;
750}
751
752/* LDX: dst_reg = *(u8*)(src_reg + off) */
753static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
754{
755 u8 *prog = *pprog;
756
757 switch (size) {
758 case BPF_B:
759 /* Emit 'movzx rax, byte ptr [rax + off]' */
760 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
761 break;
762 case BPF_H:
763 /* Emit 'movzx rax, word ptr [rax + off]' */
764 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
765 break;
766 case BPF_W:
767 /* Emit 'mov eax, dword ptr [rax+0x14]' */
768 if (is_ereg(dst_reg) || is_ereg(src_reg))
769 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
770 else
771 EMIT1(0x8B);
772 break;
773 case BPF_DW:
774 /* Emit 'mov rax, qword ptr [rax+0x14]' */
775 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
776 break;
777 }
778 emit_insn_suffix(&prog, src_reg, dst_reg, off);
779 *pprog = prog;
780}
781
782/* STX: *(u8*)(dst_reg + off) = src_reg */
783static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
784{
785 u8 *prog = *pprog;
786
787 switch (size) {
788 case BPF_B:
789 /* Emit 'mov byte ptr [rax + off], al' */
790 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
791 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
792 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
793 else
794 EMIT1(0x88);
795 break;
796 case BPF_H:
797 if (is_ereg(dst_reg) || is_ereg(src_reg))
798 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
799 else
800 EMIT2(0x66, 0x89);
801 break;
802 case BPF_W:
803 if (is_ereg(dst_reg) || is_ereg(src_reg))
804 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
805 else
806 EMIT1(0x89);
807 break;
808 case BPF_DW:
809 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
810 break;
811 }
812 emit_insn_suffix(&prog, dst_reg, src_reg, off);
813 *pprog = prog;
814}
815
816static int emit_atomic(u8 **pprog, u8 atomic_op,
817 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
818{
819 u8 *prog = *pprog;
820
821 EMIT1(0xF0); /* lock prefix */
822
823 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
824
825 /* emit opcode */
826 switch (atomic_op) {
827 case BPF_ADD:
828 case BPF_AND:
829 case BPF_OR:
830 case BPF_XOR:
831 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
832 EMIT1(simple_alu_opcodes[atomic_op]);
833 break;
834 case BPF_ADD | BPF_FETCH:
835 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
836 EMIT2(0x0F, 0xC1);
837 break;
838 case BPF_XCHG:
839 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
840 EMIT1(0x87);
841 break;
842 case BPF_CMPXCHG:
843 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
844 EMIT2(0x0F, 0xB1);
845 break;
846 default:
847 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
848 return -EFAULT;
849 }
850
851 emit_insn_suffix(&prog, dst_reg, src_reg, off);
852
853 *pprog = prog;
854 return 0;
855}
856
857bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
858{
859 u32 reg = x->fixup >> 8;
860
861 /* jump over faulting load and clear dest register */
862 *(unsigned long *)((void *)regs + reg) = 0;
863 regs->ip += x->fixup & 0xff;
864 return true;
865}
866
867static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
868 bool *regs_used, bool *tail_call_seen)
869{
870 int i;
871
872 for (i = 1; i <= insn_cnt; i++, insn++) {
873 if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
874 *tail_call_seen = true;
875 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
876 regs_used[0] = true;
877 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
878 regs_used[1] = true;
879 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
880 regs_used[2] = true;
881 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
882 regs_used[3] = true;
883 }
884}
885
886static void emit_nops(u8 **pprog, int len)
887{
888 u8 *prog = *pprog;
889 int i, noplen;
890
891 while (len > 0) {
892 noplen = len;
893
894 if (noplen > ASM_NOP_MAX)
895 noplen = ASM_NOP_MAX;
896
897 for (i = 0; i < noplen; i++)
898 EMIT1(x86_nops[noplen][i]);
899 len -= noplen;
900 }
901
902 *pprog = prog;
903}
904
905/* emit the 3-byte VEX prefix
906 *
907 * r: same as rex.r, extra bit for ModRM reg field
908 * x: same as rex.x, extra bit for SIB index field
909 * b: same as rex.b, extra bit for ModRM r/m, or SIB base
910 * m: opcode map select, encoding escape bytes e.g. 0x0f38
911 * w: same as rex.w (32 bit or 64 bit) or opcode specific
912 * src_reg2: additional source reg (encoded as BPF reg)
913 * l: vector length (128 bit or 256 bit) or reserved
914 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
915 */
916static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
917 bool w, u8 src_reg2, bool l, u8 pp)
918{
919 u8 *prog = *pprog;
920 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
921 u8 b1, b2;
922 u8 vvvv = reg2hex[src_reg2];
923
924 /* reg2hex gives only the lower 3 bit of vvvv */
925 if (is_ereg(src_reg2))
926 vvvv |= 1 << 3;
927
928 /*
929 * 2nd byte of 3-byte VEX prefix
930 * ~ means bit inverted encoding
931 *
932 * 7 0
933 * +---+---+---+---+---+---+---+---+
934 * |~R |~X |~B | m |
935 * +---+---+---+---+---+---+---+---+
936 */
937 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
938 /*
939 * 3rd byte of 3-byte VEX prefix
940 *
941 * 7 0
942 * +---+---+---+---+---+---+---+---+
943 * | W | ~vvvv | L | pp |
944 * +---+---+---+---+---+---+---+---+
945 */
946 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
947
948 EMIT3(b0, b1, b2);
949 *pprog = prog;
950}
951
952/* emit BMI2 shift instruction */
953static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
954{
955 u8 *prog = *pprog;
956 bool r = is_ereg(dst_reg);
957 u8 m = 2; /* escape code 0f38 */
958
959 emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
960 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
961 *pprog = prog;
962}
963
964#define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
965
966static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
967 int oldproglen, struct jit_context *ctx, bool jmp_padding)
968{
969 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
970 struct bpf_insn *insn = bpf_prog->insnsi;
971 bool callee_regs_used[4] = {};
972 int insn_cnt = bpf_prog->len;
973 bool tail_call_seen = false;
974 bool seen_exit = false;
975 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
976 int i, excnt = 0;
977 int ilen, proglen = 0;
978 u8 *prog = temp;
979 int err;
980
981 detect_reg_usage(insn, insn_cnt, callee_regs_used,
982 &tail_call_seen);
983
984 /* tail call's presence in current prog implies it is reachable */
985 tail_call_reachable |= tail_call_seen;
986
987 emit_prologue(&prog, bpf_prog->aux->stack_depth,
988 bpf_prog_was_classic(bpf_prog), tail_call_reachable,
989 bpf_prog->aux->func_idx != 0);
990 push_callee_regs(&prog, callee_regs_used);
991
992 ilen = prog - temp;
993 if (rw_image)
994 memcpy(rw_image + proglen, temp, ilen);
995 proglen += ilen;
996 addrs[0] = proglen;
997 prog = temp;
998
999 for (i = 1; i <= insn_cnt; i++, insn++) {
1000 const s32 imm32 = insn->imm;
1001 u32 dst_reg = insn->dst_reg;
1002 u32 src_reg = insn->src_reg;
1003 u8 b2 = 0, b3 = 0;
1004 u8 *start_of_ldx;
1005 s64 jmp_offset;
1006 u8 jmp_cond;
1007 u8 *func;
1008 int nops;
1009
1010 switch (insn->code) {
1011 /* ALU */
1012 case BPF_ALU | BPF_ADD | BPF_X:
1013 case BPF_ALU | BPF_SUB | BPF_X:
1014 case BPF_ALU | BPF_AND | BPF_X:
1015 case BPF_ALU | BPF_OR | BPF_X:
1016 case BPF_ALU | BPF_XOR | BPF_X:
1017 case BPF_ALU64 | BPF_ADD | BPF_X:
1018 case BPF_ALU64 | BPF_SUB | BPF_X:
1019 case BPF_ALU64 | BPF_AND | BPF_X:
1020 case BPF_ALU64 | BPF_OR | BPF_X:
1021 case BPF_ALU64 | BPF_XOR | BPF_X:
1022 maybe_emit_mod(&prog, dst_reg, src_reg,
1023 BPF_CLASS(insn->code) == BPF_ALU64);
1024 b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1025 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1026 break;
1027
1028 case BPF_ALU64 | BPF_MOV | BPF_X:
1029 case BPF_ALU | BPF_MOV | BPF_X:
1030 emit_mov_reg(&prog,
1031 BPF_CLASS(insn->code) == BPF_ALU64,
1032 dst_reg, src_reg);
1033 break;
1034
1035 /* neg dst */
1036 case BPF_ALU | BPF_NEG:
1037 case BPF_ALU64 | BPF_NEG:
1038 maybe_emit_1mod(&prog, dst_reg,
1039 BPF_CLASS(insn->code) == BPF_ALU64);
1040 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1041 break;
1042
1043 case BPF_ALU | BPF_ADD | BPF_K:
1044 case BPF_ALU | BPF_SUB | BPF_K:
1045 case BPF_ALU | BPF_AND | BPF_K:
1046 case BPF_ALU | BPF_OR | BPF_K:
1047 case BPF_ALU | BPF_XOR | BPF_K:
1048 case BPF_ALU64 | BPF_ADD | BPF_K:
1049 case BPF_ALU64 | BPF_SUB | BPF_K:
1050 case BPF_ALU64 | BPF_AND | BPF_K:
1051 case BPF_ALU64 | BPF_OR | BPF_K:
1052 case BPF_ALU64 | BPF_XOR | BPF_K:
1053 maybe_emit_1mod(&prog, dst_reg,
1054 BPF_CLASS(insn->code) == BPF_ALU64);
1055
1056 /*
1057 * b3 holds 'normal' opcode, b2 short form only valid
1058 * in case dst is eax/rax.
1059 */
1060 switch (BPF_OP(insn->code)) {
1061 case BPF_ADD:
1062 b3 = 0xC0;
1063 b2 = 0x05;
1064 break;
1065 case BPF_SUB:
1066 b3 = 0xE8;
1067 b2 = 0x2D;
1068 break;
1069 case BPF_AND:
1070 b3 = 0xE0;
1071 b2 = 0x25;
1072 break;
1073 case BPF_OR:
1074 b3 = 0xC8;
1075 b2 = 0x0D;
1076 break;
1077 case BPF_XOR:
1078 b3 = 0xF0;
1079 b2 = 0x35;
1080 break;
1081 }
1082
1083 if (is_imm8(imm32))
1084 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1085 else if (is_axreg(dst_reg))
1086 EMIT1_off32(b2, imm32);
1087 else
1088 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1089 break;
1090
1091 case BPF_ALU64 | BPF_MOV | BPF_K:
1092 case BPF_ALU | BPF_MOV | BPF_K:
1093 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1094 dst_reg, imm32);
1095 break;
1096
1097 case BPF_LD | BPF_IMM | BPF_DW:
1098 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1099 insn++;
1100 i++;
1101 break;
1102
1103 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1104 case BPF_ALU | BPF_MOD | BPF_X:
1105 case BPF_ALU | BPF_DIV | BPF_X:
1106 case BPF_ALU | BPF_MOD | BPF_K:
1107 case BPF_ALU | BPF_DIV | BPF_K:
1108 case BPF_ALU64 | BPF_MOD | BPF_X:
1109 case BPF_ALU64 | BPF_DIV | BPF_X:
1110 case BPF_ALU64 | BPF_MOD | BPF_K:
1111 case BPF_ALU64 | BPF_DIV | BPF_K: {
1112 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1113
1114 if (dst_reg != BPF_REG_0)
1115 EMIT1(0x50); /* push rax */
1116 if (dst_reg != BPF_REG_3)
1117 EMIT1(0x52); /* push rdx */
1118
1119 if (BPF_SRC(insn->code) == BPF_X) {
1120 if (src_reg == BPF_REG_0 ||
1121 src_reg == BPF_REG_3) {
1122 /* mov r11, src_reg */
1123 EMIT_mov(AUX_REG, src_reg);
1124 src_reg = AUX_REG;
1125 }
1126 } else {
1127 /* mov r11, imm32 */
1128 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1129 src_reg = AUX_REG;
1130 }
1131
1132 if (dst_reg != BPF_REG_0)
1133 /* mov rax, dst_reg */
1134 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1135
1136 /*
1137 * xor edx, edx
1138 * equivalent to 'xor rdx, rdx', but one byte less
1139 */
1140 EMIT2(0x31, 0xd2);
1141
1142 /* div src_reg */
1143 maybe_emit_1mod(&prog, src_reg, is64);
1144 EMIT2(0xF7, add_1reg(0xF0, src_reg));
1145
1146 if (BPF_OP(insn->code) == BPF_MOD &&
1147 dst_reg != BPF_REG_3)
1148 /* mov dst_reg, rdx */
1149 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1150 else if (BPF_OP(insn->code) == BPF_DIV &&
1151 dst_reg != BPF_REG_0)
1152 /* mov dst_reg, rax */
1153 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1154
1155 if (dst_reg != BPF_REG_3)
1156 EMIT1(0x5A); /* pop rdx */
1157 if (dst_reg != BPF_REG_0)
1158 EMIT1(0x58); /* pop rax */
1159 break;
1160 }
1161
1162 case BPF_ALU | BPF_MUL | BPF_K:
1163 case BPF_ALU64 | BPF_MUL | BPF_K:
1164 maybe_emit_mod(&prog, dst_reg, dst_reg,
1165 BPF_CLASS(insn->code) == BPF_ALU64);
1166
1167 if (is_imm8(imm32))
1168 /* imul dst_reg, dst_reg, imm8 */
1169 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1170 imm32);
1171 else
1172 /* imul dst_reg, dst_reg, imm32 */
1173 EMIT2_off32(0x69,
1174 add_2reg(0xC0, dst_reg, dst_reg),
1175 imm32);
1176 break;
1177
1178 case BPF_ALU | BPF_MUL | BPF_X:
1179 case BPF_ALU64 | BPF_MUL | BPF_X:
1180 maybe_emit_mod(&prog, src_reg, dst_reg,
1181 BPF_CLASS(insn->code) == BPF_ALU64);
1182
1183 /* imul dst_reg, src_reg */
1184 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1185 break;
1186
1187 /* Shifts */
1188 case BPF_ALU | BPF_LSH | BPF_K:
1189 case BPF_ALU | BPF_RSH | BPF_K:
1190 case BPF_ALU | BPF_ARSH | BPF_K:
1191 case BPF_ALU64 | BPF_LSH | BPF_K:
1192 case BPF_ALU64 | BPF_RSH | BPF_K:
1193 case BPF_ALU64 | BPF_ARSH | BPF_K:
1194 maybe_emit_1mod(&prog, dst_reg,
1195 BPF_CLASS(insn->code) == BPF_ALU64);
1196
1197 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1198 if (imm32 == 1)
1199 EMIT2(0xD1, add_1reg(b3, dst_reg));
1200 else
1201 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1202 break;
1203
1204 case BPF_ALU | BPF_LSH | BPF_X:
1205 case BPF_ALU | BPF_RSH | BPF_X:
1206 case BPF_ALU | BPF_ARSH | BPF_X:
1207 case BPF_ALU64 | BPF_LSH | BPF_X:
1208 case BPF_ALU64 | BPF_RSH | BPF_X:
1209 case BPF_ALU64 | BPF_ARSH | BPF_X:
1210 /* BMI2 shifts aren't better when shift count is already in rcx */
1211 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1212 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1213 bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1214 u8 op;
1215
1216 switch (BPF_OP(insn->code)) {
1217 case BPF_LSH:
1218 op = 1; /* prefix 0x66 */
1219 break;
1220 case BPF_RSH:
1221 op = 3; /* prefix 0xf2 */
1222 break;
1223 case BPF_ARSH:
1224 op = 2; /* prefix 0xf3 */
1225 break;
1226 }
1227
1228 emit_shiftx(&prog, dst_reg, src_reg, w, op);
1229
1230 break;
1231 }
1232
1233 if (src_reg != BPF_REG_4) { /* common case */
1234 /* Check for bad case when dst_reg == rcx */
1235 if (dst_reg == BPF_REG_4) {
1236 /* mov r11, dst_reg */
1237 EMIT_mov(AUX_REG, dst_reg);
1238 dst_reg = AUX_REG;
1239 } else {
1240 EMIT1(0x51); /* push rcx */
1241 }
1242 /* mov rcx, src_reg */
1243 EMIT_mov(BPF_REG_4, src_reg);
1244 }
1245
1246 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1247 maybe_emit_1mod(&prog, dst_reg,
1248 BPF_CLASS(insn->code) == BPF_ALU64);
1249
1250 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1251 EMIT2(0xD3, add_1reg(b3, dst_reg));
1252
1253 if (src_reg != BPF_REG_4) {
1254 if (insn->dst_reg == BPF_REG_4)
1255 /* mov dst_reg, r11 */
1256 EMIT_mov(insn->dst_reg, AUX_REG);
1257 else
1258 EMIT1(0x59); /* pop rcx */
1259 }
1260
1261 break;
1262
1263 case BPF_ALU | BPF_END | BPF_FROM_BE:
1264 switch (imm32) {
1265 case 16:
1266 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1267 EMIT1(0x66);
1268 if (is_ereg(dst_reg))
1269 EMIT1(0x41);
1270 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1271
1272 /* Emit 'movzwl eax, ax' */
1273 if (is_ereg(dst_reg))
1274 EMIT3(0x45, 0x0F, 0xB7);
1275 else
1276 EMIT2(0x0F, 0xB7);
1277 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1278 break;
1279 case 32:
1280 /* Emit 'bswap eax' to swap lower 4 bytes */
1281 if (is_ereg(dst_reg))
1282 EMIT2(0x41, 0x0F);
1283 else
1284 EMIT1(0x0F);
1285 EMIT1(add_1reg(0xC8, dst_reg));
1286 break;
1287 case 64:
1288 /* Emit 'bswap rax' to swap 8 bytes */
1289 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1290 add_1reg(0xC8, dst_reg));
1291 break;
1292 }
1293 break;
1294
1295 case BPF_ALU | BPF_END | BPF_FROM_LE:
1296 switch (imm32) {
1297 case 16:
1298 /*
1299 * Emit 'movzwl eax, ax' to zero extend 16-bit
1300 * into 64 bit
1301 */
1302 if (is_ereg(dst_reg))
1303 EMIT3(0x45, 0x0F, 0xB7);
1304 else
1305 EMIT2(0x0F, 0xB7);
1306 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1307 break;
1308 case 32:
1309 /* Emit 'mov eax, eax' to clear upper 32-bits */
1310 if (is_ereg(dst_reg))
1311 EMIT1(0x45);
1312 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1313 break;
1314 case 64:
1315 /* nop */
1316 break;
1317 }
1318 break;
1319
1320 /* speculation barrier */
1321 case BPF_ST | BPF_NOSPEC:
1322 EMIT_LFENCE();
1323 break;
1324
1325 /* ST: *(u8*)(dst_reg + off) = imm */
1326 case BPF_ST | BPF_MEM | BPF_B:
1327 if (is_ereg(dst_reg))
1328 EMIT2(0x41, 0xC6);
1329 else
1330 EMIT1(0xC6);
1331 goto st;
1332 case BPF_ST | BPF_MEM | BPF_H:
1333 if (is_ereg(dst_reg))
1334 EMIT3(0x66, 0x41, 0xC7);
1335 else
1336 EMIT2(0x66, 0xC7);
1337 goto st;
1338 case BPF_ST | BPF_MEM | BPF_W:
1339 if (is_ereg(dst_reg))
1340 EMIT2(0x41, 0xC7);
1341 else
1342 EMIT1(0xC7);
1343 goto st;
1344 case BPF_ST | BPF_MEM | BPF_DW:
1345 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1346
1347st: if (is_imm8(insn->off))
1348 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1349 else
1350 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1351
1352 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1353 break;
1354
1355 /* STX: *(u8*)(dst_reg + off) = src_reg */
1356 case BPF_STX | BPF_MEM | BPF_B:
1357 case BPF_STX | BPF_MEM | BPF_H:
1358 case BPF_STX | BPF_MEM | BPF_W:
1359 case BPF_STX | BPF_MEM | BPF_DW:
1360 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1361 break;
1362
1363 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1364 case BPF_LDX | BPF_MEM | BPF_B:
1365 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1366 case BPF_LDX | BPF_MEM | BPF_H:
1367 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1368 case BPF_LDX | BPF_MEM | BPF_W:
1369 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1370 case BPF_LDX | BPF_MEM | BPF_DW:
1371 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1372 if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1373 /* Though the verifier prevents negative insn->off in BPF_PROBE_MEM
1374 * add abs(insn->off) to the limit to make sure that negative
1375 * offset won't be an issue.
1376 * insn->off is s16, so it won't affect valid pointers.
1377 */
1378 u64 limit = TASK_SIZE_MAX + PAGE_SIZE + abs(insn->off);
1379 u8 *end_of_jmp1, *end_of_jmp2;
1380
1381 /* Conservatively check that src_reg + insn->off is a kernel address:
1382 * 1. src_reg + insn->off >= limit
1383 * 2. src_reg + insn->off doesn't become small positive.
1384 * Cannot do src_reg + insn->off >= limit in one branch,
1385 * since it needs two spare registers, but JIT has only one.
1386 */
1387
1388 /* movabsq r11, limit */
1389 EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1390 EMIT((u32)limit, 4);
1391 EMIT(limit >> 32, 4);
1392 /* cmp src_reg, r11 */
1393 maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1394 EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1395 /* if unsigned '<' goto end_of_jmp2 */
1396 EMIT2(X86_JB, 0);
1397 end_of_jmp1 = prog;
1398
1399 /* mov r11, src_reg */
1400 emit_mov_reg(&prog, true, AUX_REG, src_reg);
1401 /* add r11, insn->off */
1402 maybe_emit_1mod(&prog, AUX_REG, true);
1403 EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
1404 /* jmp if not carry to start_of_ldx
1405 * Otherwise ERR_PTR(-EINVAL) + 128 will be the user addr
1406 * that has to be rejected.
1407 */
1408 EMIT2(0x73 /* JNC */, 0);
1409 end_of_jmp2 = prog;
1410
1411 /* xor dst_reg, dst_reg */
1412 emit_mov_imm32(&prog, false, dst_reg, 0);
1413 /* jmp byte_after_ldx */
1414 EMIT2(0xEB, 0);
1415
1416 /* populate jmp_offset for JB above to jump to xor dst_reg */
1417 end_of_jmp1[-1] = end_of_jmp2 - end_of_jmp1;
1418 /* populate jmp_offset for JNC above to jump to start_of_ldx */
1419 start_of_ldx = prog;
1420 end_of_jmp2[-1] = start_of_ldx - end_of_jmp2;
1421 }
1422 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1423 if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1424 struct exception_table_entry *ex;
1425 u8 *_insn = image + proglen + (start_of_ldx - temp);
1426 s64 delta;
1427
1428 /* populate jmp_offset for JMP above */
1429 start_of_ldx[-1] = prog - start_of_ldx;
1430
1431 if (!bpf_prog->aux->extable)
1432 break;
1433
1434 if (excnt >= bpf_prog->aux->num_exentries) {
1435 pr_err("ex gen bug\n");
1436 return -EFAULT;
1437 }
1438 ex = &bpf_prog->aux->extable[excnt++];
1439
1440 delta = _insn - (u8 *)&ex->insn;
1441 if (!is_simm32(delta)) {
1442 pr_err("extable->insn doesn't fit into 32-bit\n");
1443 return -EFAULT;
1444 }
1445 /* switch ex to rw buffer for writes */
1446 ex = (void *)rw_image + ((void *)ex - (void *)image);
1447
1448 ex->insn = delta;
1449
1450 ex->data = EX_TYPE_BPF;
1451
1452 if (dst_reg > BPF_REG_9) {
1453 pr_err("verifier error\n");
1454 return -EFAULT;
1455 }
1456 /*
1457 * Compute size of x86 insn and its target dest x86 register.
1458 * ex_handler_bpf() will use lower 8 bits to adjust
1459 * pt_regs->ip to jump over this x86 instruction
1460 * and upper bits to figure out which pt_regs to zero out.
1461 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1462 * of 4 bytes will be ignored and rbx will be zero inited.
1463 */
1464 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1465 }
1466 break;
1467
1468 case BPF_STX | BPF_ATOMIC | BPF_W:
1469 case BPF_STX | BPF_ATOMIC | BPF_DW:
1470 if (insn->imm == (BPF_AND | BPF_FETCH) ||
1471 insn->imm == (BPF_OR | BPF_FETCH) ||
1472 insn->imm == (BPF_XOR | BPF_FETCH)) {
1473 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1474 u32 real_src_reg = src_reg;
1475 u32 real_dst_reg = dst_reg;
1476 u8 *branch_target;
1477
1478 /*
1479 * Can't be implemented with a single x86 insn.
1480 * Need to do a CMPXCHG loop.
1481 */
1482
1483 /* Will need RAX as a CMPXCHG operand so save R0 */
1484 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1485 if (src_reg == BPF_REG_0)
1486 real_src_reg = BPF_REG_AX;
1487 if (dst_reg == BPF_REG_0)
1488 real_dst_reg = BPF_REG_AX;
1489
1490 branch_target = prog;
1491 /* Load old value */
1492 emit_ldx(&prog, BPF_SIZE(insn->code),
1493 BPF_REG_0, real_dst_reg, insn->off);
1494 /*
1495 * Perform the (commutative) operation locally,
1496 * put the result in the AUX_REG.
1497 */
1498 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1499 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1500 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1501 add_2reg(0xC0, AUX_REG, real_src_reg));
1502 /* Attempt to swap in new value */
1503 err = emit_atomic(&prog, BPF_CMPXCHG,
1504 real_dst_reg, AUX_REG,
1505 insn->off,
1506 BPF_SIZE(insn->code));
1507 if (WARN_ON(err))
1508 return err;
1509 /*
1510 * ZF tells us whether we won the race. If it's
1511 * cleared we need to try again.
1512 */
1513 EMIT2(X86_JNE, -(prog - branch_target) - 2);
1514 /* Return the pre-modification value */
1515 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1516 /* Restore R0 after clobbering RAX */
1517 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1518 break;
1519 }
1520
1521 err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1522 insn->off, BPF_SIZE(insn->code));
1523 if (err)
1524 return err;
1525 break;
1526
1527 /* call */
1528 case BPF_JMP | BPF_CALL: {
1529 int offs;
1530
1531 func = (u8 *) __bpf_call_base + imm32;
1532 if (tail_call_reachable) {
1533 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1534 EMIT3_off32(0x48, 0x8B, 0x85,
1535 -round_up(bpf_prog->aux->stack_depth, 8) - 8);
1536 if (!imm32)
1537 return -EINVAL;
1538 offs = 7 + x86_call_depth_emit_accounting(&prog, func);
1539 } else {
1540 if (!imm32)
1541 return -EINVAL;
1542 offs = x86_call_depth_emit_accounting(&prog, func);
1543 }
1544 if (emit_call(&prog, func, image + addrs[i - 1] + offs))
1545 return -EINVAL;
1546 break;
1547 }
1548
1549 case BPF_JMP | BPF_TAIL_CALL:
1550 if (imm32)
1551 emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1552 &prog, image + addrs[i - 1],
1553 callee_regs_used,
1554 bpf_prog->aux->stack_depth,
1555 ctx);
1556 else
1557 emit_bpf_tail_call_indirect(&prog,
1558 callee_regs_used,
1559 bpf_prog->aux->stack_depth,
1560 image + addrs[i - 1],
1561 ctx);
1562 break;
1563
1564 /* cond jump */
1565 case BPF_JMP | BPF_JEQ | BPF_X:
1566 case BPF_JMP | BPF_JNE | BPF_X:
1567 case BPF_JMP | BPF_JGT | BPF_X:
1568 case BPF_JMP | BPF_JLT | BPF_X:
1569 case BPF_JMP | BPF_JGE | BPF_X:
1570 case BPF_JMP | BPF_JLE | BPF_X:
1571 case BPF_JMP | BPF_JSGT | BPF_X:
1572 case BPF_JMP | BPF_JSLT | BPF_X:
1573 case BPF_JMP | BPF_JSGE | BPF_X:
1574 case BPF_JMP | BPF_JSLE | BPF_X:
1575 case BPF_JMP32 | BPF_JEQ | BPF_X:
1576 case BPF_JMP32 | BPF_JNE | BPF_X:
1577 case BPF_JMP32 | BPF_JGT | BPF_X:
1578 case BPF_JMP32 | BPF_JLT | BPF_X:
1579 case BPF_JMP32 | BPF_JGE | BPF_X:
1580 case BPF_JMP32 | BPF_JLE | BPF_X:
1581 case BPF_JMP32 | BPF_JSGT | BPF_X:
1582 case BPF_JMP32 | BPF_JSLT | BPF_X:
1583 case BPF_JMP32 | BPF_JSGE | BPF_X:
1584 case BPF_JMP32 | BPF_JSLE | BPF_X:
1585 /* cmp dst_reg, src_reg */
1586 maybe_emit_mod(&prog, dst_reg, src_reg,
1587 BPF_CLASS(insn->code) == BPF_JMP);
1588 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1589 goto emit_cond_jmp;
1590
1591 case BPF_JMP | BPF_JSET | BPF_X:
1592 case BPF_JMP32 | BPF_JSET | BPF_X:
1593 /* test dst_reg, src_reg */
1594 maybe_emit_mod(&prog, dst_reg, src_reg,
1595 BPF_CLASS(insn->code) == BPF_JMP);
1596 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1597 goto emit_cond_jmp;
1598
1599 case BPF_JMP | BPF_JSET | BPF_K:
1600 case BPF_JMP32 | BPF_JSET | BPF_K:
1601 /* test dst_reg, imm32 */
1602 maybe_emit_1mod(&prog, dst_reg,
1603 BPF_CLASS(insn->code) == BPF_JMP);
1604 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1605 goto emit_cond_jmp;
1606
1607 case BPF_JMP | BPF_JEQ | BPF_K:
1608 case BPF_JMP | BPF_JNE | BPF_K:
1609 case BPF_JMP | BPF_JGT | BPF_K:
1610 case BPF_JMP | BPF_JLT | BPF_K:
1611 case BPF_JMP | BPF_JGE | BPF_K:
1612 case BPF_JMP | BPF_JLE | BPF_K:
1613 case BPF_JMP | BPF_JSGT | BPF_K:
1614 case BPF_JMP | BPF_JSLT | BPF_K:
1615 case BPF_JMP | BPF_JSGE | BPF_K:
1616 case BPF_JMP | BPF_JSLE | BPF_K:
1617 case BPF_JMP32 | BPF_JEQ | BPF_K:
1618 case BPF_JMP32 | BPF_JNE | BPF_K:
1619 case BPF_JMP32 | BPF_JGT | BPF_K:
1620 case BPF_JMP32 | BPF_JLT | BPF_K:
1621 case BPF_JMP32 | BPF_JGE | BPF_K:
1622 case BPF_JMP32 | BPF_JLE | BPF_K:
1623 case BPF_JMP32 | BPF_JSGT | BPF_K:
1624 case BPF_JMP32 | BPF_JSLT | BPF_K:
1625 case BPF_JMP32 | BPF_JSGE | BPF_K:
1626 case BPF_JMP32 | BPF_JSLE | BPF_K:
1627 /* test dst_reg, dst_reg to save one extra byte */
1628 if (imm32 == 0) {
1629 maybe_emit_mod(&prog, dst_reg, dst_reg,
1630 BPF_CLASS(insn->code) == BPF_JMP);
1631 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1632 goto emit_cond_jmp;
1633 }
1634
1635 /* cmp dst_reg, imm8/32 */
1636 maybe_emit_1mod(&prog, dst_reg,
1637 BPF_CLASS(insn->code) == BPF_JMP);
1638
1639 if (is_imm8(imm32))
1640 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1641 else
1642 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1643
1644emit_cond_jmp: /* Convert BPF opcode to x86 */
1645 switch (BPF_OP(insn->code)) {
1646 case BPF_JEQ:
1647 jmp_cond = X86_JE;
1648 break;
1649 case BPF_JSET:
1650 case BPF_JNE:
1651 jmp_cond = X86_JNE;
1652 break;
1653 case BPF_JGT:
1654 /* GT is unsigned '>', JA in x86 */
1655 jmp_cond = X86_JA;
1656 break;
1657 case BPF_JLT:
1658 /* LT is unsigned '<', JB in x86 */
1659 jmp_cond = X86_JB;
1660 break;
1661 case BPF_JGE:
1662 /* GE is unsigned '>=', JAE in x86 */
1663 jmp_cond = X86_JAE;
1664 break;
1665 case BPF_JLE:
1666 /* LE is unsigned '<=', JBE in x86 */
1667 jmp_cond = X86_JBE;
1668 break;
1669 case BPF_JSGT:
1670 /* Signed '>', GT in x86 */
1671 jmp_cond = X86_JG;
1672 break;
1673 case BPF_JSLT:
1674 /* Signed '<', LT in x86 */
1675 jmp_cond = X86_JL;
1676 break;
1677 case BPF_JSGE:
1678 /* Signed '>=', GE in x86 */
1679 jmp_cond = X86_JGE;
1680 break;
1681 case BPF_JSLE:
1682 /* Signed '<=', LE in x86 */
1683 jmp_cond = X86_JLE;
1684 break;
1685 default: /* to silence GCC warning */
1686 return -EFAULT;
1687 }
1688 jmp_offset = addrs[i + insn->off] - addrs[i];
1689 if (is_imm8(jmp_offset)) {
1690 if (jmp_padding) {
1691 /* To keep the jmp_offset valid, the extra bytes are
1692 * padded before the jump insn, so we subtract the
1693 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1694 *
1695 * If the previous pass already emits an imm8
1696 * jmp_cond, then this BPF insn won't shrink, so
1697 * "nops" is 0.
1698 *
1699 * On the other hand, if the previous pass emits an
1700 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1701 * keep the image from shrinking further.
1702 *
1703 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1704 * is 2 bytes, so the size difference is 4 bytes.
1705 */
1706 nops = INSN_SZ_DIFF - 2;
1707 if (nops != 0 && nops != 4) {
1708 pr_err("unexpected jmp_cond padding: %d bytes\n",
1709 nops);
1710 return -EFAULT;
1711 }
1712 emit_nops(&prog, nops);
1713 }
1714 EMIT2(jmp_cond, jmp_offset);
1715 } else if (is_simm32(jmp_offset)) {
1716 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1717 } else {
1718 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1719 return -EFAULT;
1720 }
1721
1722 break;
1723
1724 case BPF_JMP | BPF_JA:
1725 if (insn->off == -1)
1726 /* -1 jmp instructions will always jump
1727 * backwards two bytes. Explicitly handling
1728 * this case avoids wasting too many passes
1729 * when there are long sequences of replaced
1730 * dead code.
1731 */
1732 jmp_offset = -2;
1733 else
1734 jmp_offset = addrs[i + insn->off] - addrs[i];
1735
1736 if (!jmp_offset) {
1737 /*
1738 * If jmp_padding is enabled, the extra nops will
1739 * be inserted. Otherwise, optimize out nop jumps.
1740 */
1741 if (jmp_padding) {
1742 /* There are 3 possible conditions.
1743 * (1) This BPF_JA is already optimized out in
1744 * the previous run, so there is no need
1745 * to pad any extra byte (0 byte).
1746 * (2) The previous pass emits an imm8 jmp,
1747 * so we pad 2 bytes to match the previous
1748 * insn size.
1749 * (3) Similarly, the previous pass emits an
1750 * imm32 jmp, and 5 bytes is padded.
1751 */
1752 nops = INSN_SZ_DIFF;
1753 if (nops != 0 && nops != 2 && nops != 5) {
1754 pr_err("unexpected nop jump padding: %d bytes\n",
1755 nops);
1756 return -EFAULT;
1757 }
1758 emit_nops(&prog, nops);
1759 }
1760 break;
1761 }
1762emit_jmp:
1763 if (is_imm8(jmp_offset)) {
1764 if (jmp_padding) {
1765 /* To avoid breaking jmp_offset, the extra bytes
1766 * are padded before the actual jmp insn, so
1767 * 2 bytes is subtracted from INSN_SZ_DIFF.
1768 *
1769 * If the previous pass already emits an imm8
1770 * jmp, there is nothing to pad (0 byte).
1771 *
1772 * If it emits an imm32 jmp (5 bytes) previously
1773 * and now an imm8 jmp (2 bytes), then we pad
1774 * (5 - 2 = 3) bytes to stop the image from
1775 * shrinking further.
1776 */
1777 nops = INSN_SZ_DIFF - 2;
1778 if (nops != 0 && nops != 3) {
1779 pr_err("unexpected jump padding: %d bytes\n",
1780 nops);
1781 return -EFAULT;
1782 }
1783 emit_nops(&prog, INSN_SZ_DIFF - 2);
1784 }
1785 EMIT2(0xEB, jmp_offset);
1786 } else if (is_simm32(jmp_offset)) {
1787 EMIT1_off32(0xE9, jmp_offset);
1788 } else {
1789 pr_err("jmp gen bug %llx\n", jmp_offset);
1790 return -EFAULT;
1791 }
1792 break;
1793
1794 case BPF_JMP | BPF_EXIT:
1795 if (seen_exit) {
1796 jmp_offset = ctx->cleanup_addr - addrs[i];
1797 goto emit_jmp;
1798 }
1799 seen_exit = true;
1800 /* Update cleanup_addr */
1801 ctx->cleanup_addr = proglen;
1802 pop_callee_regs(&prog, callee_regs_used);
1803 EMIT1(0xC9); /* leave */
1804 emit_return(&prog, image + addrs[i - 1] + (prog - temp));
1805 break;
1806
1807 default:
1808 /*
1809 * By design x86-64 JIT should support all BPF instructions.
1810 * This error will be seen if new instruction was added
1811 * to the interpreter, but not to the JIT, or if there is
1812 * junk in bpf_prog.
1813 */
1814 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1815 return -EINVAL;
1816 }
1817
1818 ilen = prog - temp;
1819 if (ilen > BPF_MAX_INSN_SIZE) {
1820 pr_err("bpf_jit: fatal insn size error\n");
1821 return -EFAULT;
1822 }
1823
1824 if (image) {
1825 /*
1826 * When populating the image, assert that:
1827 *
1828 * i) We do not write beyond the allocated space, and
1829 * ii) addrs[i] did not change from the prior run, in order
1830 * to validate assumptions made for computing branch
1831 * displacements.
1832 */
1833 if (unlikely(proglen + ilen > oldproglen ||
1834 proglen + ilen != addrs[i])) {
1835 pr_err("bpf_jit: fatal error\n");
1836 return -EFAULT;
1837 }
1838 memcpy(rw_image + proglen, temp, ilen);
1839 }
1840 proglen += ilen;
1841 addrs[i] = proglen;
1842 prog = temp;
1843 }
1844
1845 if (image && excnt != bpf_prog->aux->num_exentries) {
1846 pr_err("extable is not populated\n");
1847 return -EFAULT;
1848 }
1849 return proglen;
1850}
1851
1852static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1853 int stack_size)
1854{
1855 int i, j, arg_size, nr_regs;
1856 /* Store function arguments to stack.
1857 * For a function that accepts two pointers the sequence will be:
1858 * mov QWORD PTR [rbp-0x10],rdi
1859 * mov QWORD PTR [rbp-0x8],rsi
1860 */
1861 for (i = 0, j = 0; i < min(nr_args, 6); i++) {
1862 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) {
1863 nr_regs = (m->arg_size[i] + 7) / 8;
1864 arg_size = 8;
1865 } else {
1866 nr_regs = 1;
1867 arg_size = m->arg_size[i];
1868 }
1869
1870 while (nr_regs) {
1871 emit_stx(prog, bytes_to_bpf_size(arg_size),
1872 BPF_REG_FP,
1873 j == 5 ? X86_REG_R9 : BPF_REG_1 + j,
1874 -(stack_size - j * 8));
1875 nr_regs--;
1876 j++;
1877 }
1878 }
1879}
1880
1881static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1882 int stack_size)
1883{
1884 int i, j, arg_size, nr_regs;
1885
1886 /* Restore function arguments from stack.
1887 * For a function that accepts two pointers the sequence will be:
1888 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1889 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1890 */
1891 for (i = 0, j = 0; i < min(nr_args, 6); i++) {
1892 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) {
1893 nr_regs = (m->arg_size[i] + 7) / 8;
1894 arg_size = 8;
1895 } else {
1896 nr_regs = 1;
1897 arg_size = m->arg_size[i];
1898 }
1899
1900 while (nr_regs) {
1901 emit_ldx(prog, bytes_to_bpf_size(arg_size),
1902 j == 5 ? X86_REG_R9 : BPF_REG_1 + j,
1903 BPF_REG_FP,
1904 -(stack_size - j * 8));
1905 nr_regs--;
1906 j++;
1907 }
1908 }
1909}
1910
1911static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1912 struct bpf_tramp_link *l, int stack_size,
1913 int run_ctx_off, bool save_ret)
1914{
1915 u8 *prog = *pprog;
1916 u8 *jmp_insn;
1917 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
1918 struct bpf_prog *p = l->link.prog;
1919 u64 cookie = l->cookie;
1920
1921 /* mov rdi, cookie */
1922 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
1923
1924 /* Prepare struct bpf_tramp_run_ctx.
1925 *
1926 * bpf_tramp_run_ctx is already preserved by
1927 * arch_prepare_bpf_trampoline().
1928 *
1929 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
1930 */
1931 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
1932
1933 /* arg1: mov rdi, progs[i] */
1934 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1935 /* arg2: lea rsi, [rbp - ctx_cookie_off] */
1936 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
1937
1938 if (emit_rsb_call(&prog, bpf_trampoline_enter(p), prog))
1939 return -EINVAL;
1940 /* remember prog start time returned by __bpf_prog_enter */
1941 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1942
1943 /* if (__bpf_prog_enter*(prog) == 0)
1944 * goto skip_exec_of_prog;
1945 */
1946 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
1947 /* emit 2 nops that will be replaced with JE insn */
1948 jmp_insn = prog;
1949 emit_nops(&prog, 2);
1950
1951 /* arg1: lea rdi, [rbp - stack_size] */
1952 EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1953 /* arg2: progs[i]->insnsi for interpreter */
1954 if (!p->jited)
1955 emit_mov_imm64(&prog, BPF_REG_2,
1956 (long) p->insnsi >> 32,
1957 (u32) (long) p->insnsi);
1958 /* call JITed bpf program or interpreter */
1959 if (emit_rsb_call(&prog, p->bpf_func, prog))
1960 return -EINVAL;
1961
1962 /*
1963 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1964 * of the previous call which is then passed on the stack to
1965 * the next BPF program.
1966 *
1967 * BPF_TRAMP_FENTRY trampoline may need to return the return
1968 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
1969 */
1970 if (save_ret)
1971 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1972
1973 /* replace 2 nops with JE insn, since jmp target is known */
1974 jmp_insn[0] = X86_JE;
1975 jmp_insn[1] = prog - jmp_insn - 2;
1976
1977 /* arg1: mov rdi, progs[i] */
1978 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1979 /* arg2: mov rsi, rbx <- start time in nsec */
1980 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1981 /* arg3: lea rdx, [rbp - run_ctx_off] */
1982 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
1983 if (emit_rsb_call(&prog, bpf_trampoline_exit(p), prog))
1984 return -EINVAL;
1985
1986 *pprog = prog;
1987 return 0;
1988}
1989
1990static void emit_align(u8 **pprog, u32 align)
1991{
1992 u8 *target, *prog = *pprog;
1993
1994 target = PTR_ALIGN(prog, align);
1995 if (target != prog)
1996 emit_nops(&prog, target - prog);
1997
1998 *pprog = prog;
1999}
2000
2001static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2002{
2003 u8 *prog = *pprog;
2004 s64 offset;
2005
2006 offset = func - (ip + 2 + 4);
2007 if (!is_simm32(offset)) {
2008 pr_err("Target %p is out of range\n", func);
2009 return -EINVAL;
2010 }
2011 EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2012 *pprog = prog;
2013 return 0;
2014}
2015
2016static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2017 struct bpf_tramp_links *tl, int stack_size,
2018 int run_ctx_off, bool save_ret)
2019{
2020 int i;
2021 u8 *prog = *pprog;
2022
2023 for (i = 0; i < tl->nr_links; i++) {
2024 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2025 run_ctx_off, save_ret))
2026 return -EINVAL;
2027 }
2028 *pprog = prog;
2029 return 0;
2030}
2031
2032static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2033 struct bpf_tramp_links *tl, int stack_size,
2034 int run_ctx_off, u8 **branches)
2035{
2036 u8 *prog = *pprog;
2037 int i;
2038
2039 /* The first fmod_ret program will receive a garbage return value.
2040 * Set this to 0 to avoid confusing the program.
2041 */
2042 emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2043 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2044 for (i = 0; i < tl->nr_links; i++) {
2045 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true))
2046 return -EINVAL;
2047
2048 /* mod_ret prog stored return value into [rbp - 8]. Emit:
2049 * if (*(u64 *)(rbp - 8) != 0)
2050 * goto do_fexit;
2051 */
2052 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
2053 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2054
2055 /* Save the location of the branch and Generate 6 nops
2056 * (4 bytes for an offset and 2 bytes for the jump) These nops
2057 * are replaced with a conditional jump once do_fexit (i.e. the
2058 * start of the fexit invocation) is finalized.
2059 */
2060 branches[i] = prog;
2061 emit_nops(&prog, 4 + 2);
2062 }
2063
2064 *pprog = prog;
2065 return 0;
2066}
2067
2068/* Example:
2069 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2070 * its 'struct btf_func_model' will be nr_args=2
2071 * The assembly code when eth_type_trans is executing after trampoline:
2072 *
2073 * push rbp
2074 * mov rbp, rsp
2075 * sub rsp, 16 // space for skb and dev
2076 * push rbx // temp regs to pass start time
2077 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack
2078 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack
2079 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2080 * mov rbx, rax // remember start time in bpf stats are enabled
2081 * lea rdi, [rbp - 16] // R1==ctx of bpf prog
2082 * call addr_of_jited_FENTRY_prog
2083 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2084 * mov rsi, rbx // prog start time
2085 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2086 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
2087 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
2088 * pop rbx
2089 * leave
2090 * ret
2091 *
2092 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2093 * replaced with 'call generated_bpf_trampoline'. When it returns
2094 * eth_type_trans will continue executing with original skb and dev pointers.
2095 *
2096 * The assembly code when eth_type_trans is called from trampoline:
2097 *
2098 * push rbp
2099 * mov rbp, rsp
2100 * sub rsp, 24 // space for skb, dev, return value
2101 * push rbx // temp regs to pass start time
2102 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack
2103 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack
2104 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2105 * mov rbx, rax // remember start time if bpf stats are enabled
2106 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2107 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
2108 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2109 * mov rsi, rbx // prog start time
2110 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2111 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
2112 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
2113 * call eth_type_trans+5 // execute body of eth_type_trans
2114 * mov qword ptr [rbp - 8], rax // save return value
2115 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2116 * mov rbx, rax // remember start time in bpf stats are enabled
2117 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2118 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
2119 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2120 * mov rsi, rbx // prog start time
2121 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2122 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
2123 * pop rbx
2124 * leave
2125 * add rsp, 8 // skip eth_type_trans's frame
2126 * ret // return to its caller
2127 */
2128int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2129 const struct btf_func_model *m, u32 flags,
2130 struct bpf_tramp_links *tlinks,
2131 void *func_addr)
2132{
2133 int ret, i, nr_args = m->nr_args, extra_nregs = 0;
2134 int regs_off, ip_off, args_off, stack_size = nr_args * 8, run_ctx_off;
2135 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2136 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2137 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2138 void *orig_call = func_addr;
2139 u8 **branches = NULL;
2140 u8 *prog;
2141 bool save_ret;
2142
2143 /* x86-64 supports up to 6 arguments. 7+ can be added in the future */
2144 if (nr_args > 6)
2145 return -ENOTSUPP;
2146
2147 for (i = 0; i < MAX_BPF_FUNC_ARGS; i++) {
2148 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2149 extra_nregs += (m->arg_size[i] + 7) / 8 - 1;
2150 }
2151 if (nr_args + extra_nregs > 6)
2152 return -ENOTSUPP;
2153 stack_size += extra_nregs * 8;
2154
2155 /* Generated trampoline stack layout:
2156 *
2157 * RBP + 8 [ return address ]
2158 * RBP + 0 [ RBP ]
2159 *
2160 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or
2161 * BPF_TRAMP_F_RET_FENTRY_RET flags
2162 *
2163 * [ reg_argN ] always
2164 * [ ... ]
2165 * RBP - regs_off [ reg_arg1 ] program's ctx pointer
2166 *
2167 * RBP - args_off [ arg regs count ] always
2168 *
2169 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
2170 *
2171 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2172 */
2173
2174 /* room for return value of orig_call or fentry prog */
2175 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2176 if (save_ret)
2177 stack_size += 8;
2178
2179 regs_off = stack_size;
2180
2181 /* args count */
2182 stack_size += 8;
2183 args_off = stack_size;
2184
2185 if (flags & BPF_TRAMP_F_IP_ARG)
2186 stack_size += 8; /* room for IP address argument */
2187
2188 ip_off = stack_size;
2189
2190 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2191 run_ctx_off = stack_size;
2192
2193 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2194 /* skip patched call instruction and point orig_call to actual
2195 * body of the kernel function.
2196 */
2197 if (is_endbr(*(u32 *)orig_call))
2198 orig_call += ENDBR_INSN_SIZE;
2199 orig_call += X86_PATCH_SIZE;
2200 }
2201
2202 prog = image;
2203
2204 EMIT_ENDBR();
2205 /*
2206 * This is the direct-call trampoline, as such it needs accounting
2207 * for the __fentry__ call.
2208 */
2209 x86_call_depth_emit_accounting(&prog, NULL);
2210 EMIT1(0x55); /* push rbp */
2211 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2212 EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
2213 EMIT1(0x53); /* push rbx */
2214
2215 /* Store number of argument registers of the traced function:
2216 * mov rax, nr_args + extra_nregs
2217 * mov QWORD PTR [rbp - args_off], rax
2218 */
2219 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_args + extra_nregs);
2220 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -args_off);
2221
2222 if (flags & BPF_TRAMP_F_IP_ARG) {
2223 /* Store IP address of the traced function:
2224 * movabsq rax, func_addr
2225 * mov QWORD PTR [rbp - ip_off], rax
2226 */
2227 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2228 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2229 }
2230
2231 save_regs(m, &prog, nr_args, regs_off);
2232
2233 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2234 /* arg1: mov rdi, im */
2235 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2236 if (emit_rsb_call(&prog, __bpf_tramp_enter, prog)) {
2237 ret = -EINVAL;
2238 goto cleanup;
2239 }
2240 }
2241
2242 if (fentry->nr_links)
2243 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2244 flags & BPF_TRAMP_F_RET_FENTRY_RET))
2245 return -EINVAL;
2246
2247 if (fmod_ret->nr_links) {
2248 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2249 GFP_KERNEL);
2250 if (!branches)
2251 return -ENOMEM;
2252
2253 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2254 run_ctx_off, branches)) {
2255 ret = -EINVAL;
2256 goto cleanup;
2257 }
2258 }
2259
2260 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2261 restore_regs(m, &prog, nr_args, regs_off);
2262
2263 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2264 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8);
2265 EMIT2(0xff, 0xd0); /* call *rax */
2266 } else {
2267 /* call original function */
2268 if (emit_rsb_call(&prog, orig_call, prog)) {
2269 ret = -EINVAL;
2270 goto cleanup;
2271 }
2272 }
2273 /* remember return value in a stack for bpf prog to access */
2274 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2275 im->ip_after_call = prog;
2276 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2277 prog += X86_PATCH_SIZE;
2278 }
2279
2280 if (fmod_ret->nr_links) {
2281 /* From Intel 64 and IA-32 Architectures Optimization
2282 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2283 * Coding Rule 11: All branch targets should be 16-byte
2284 * aligned.
2285 */
2286 emit_align(&prog, 16);
2287 /* Update the branches saved in invoke_bpf_mod_ret with the
2288 * aligned address of do_fexit.
2289 */
2290 for (i = 0; i < fmod_ret->nr_links; i++)
2291 emit_cond_near_jump(&branches[i], prog, branches[i],
2292 X86_JNE);
2293 }
2294
2295 if (fexit->nr_links)
2296 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) {
2297 ret = -EINVAL;
2298 goto cleanup;
2299 }
2300
2301 if (flags & BPF_TRAMP_F_RESTORE_REGS)
2302 restore_regs(m, &prog, nr_args, regs_off);
2303
2304 /* This needs to be done regardless. If there were fmod_ret programs,
2305 * the return value is only updated on the stack and still needs to be
2306 * restored to R0.
2307 */
2308 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2309 im->ip_epilogue = prog;
2310 /* arg1: mov rdi, im */
2311 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2312 if (emit_rsb_call(&prog, __bpf_tramp_exit, prog)) {
2313 ret = -EINVAL;
2314 goto cleanup;
2315 }
2316 }
2317 /* restore return value of orig_call or fentry prog back into RAX */
2318 if (save_ret)
2319 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2320
2321 EMIT1(0x5B); /* pop rbx */
2322 EMIT1(0xC9); /* leave */
2323 if (flags & BPF_TRAMP_F_SKIP_FRAME)
2324 /* skip our return address and return to parent */
2325 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2326 emit_return(&prog, prog);
2327 /* Make sure the trampoline generation logic doesn't overflow */
2328 if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2329 ret = -EFAULT;
2330 goto cleanup;
2331 }
2332 ret = prog - (u8 *)image;
2333
2334cleanup:
2335 kfree(branches);
2336 return ret;
2337}
2338
2339static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2340{
2341 u8 *jg_reloc, *prog = *pprog;
2342 int pivot, err, jg_bytes = 1;
2343 s64 jg_offset;
2344
2345 if (a == b) {
2346 /* Leaf node of recursion, i.e. not a range of indices
2347 * anymore.
2348 */
2349 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
2350 if (!is_simm32(progs[a]))
2351 return -1;
2352 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2353 progs[a]);
2354 err = emit_cond_near_jump(&prog, /* je func */
2355 (void *)progs[a], image + (prog - buf),
2356 X86_JE);
2357 if (err)
2358 return err;
2359
2360 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2361
2362 *pprog = prog;
2363 return 0;
2364 }
2365
2366 /* Not a leaf node, so we pivot, and recursively descend into
2367 * the lower and upper ranges.
2368 */
2369 pivot = (b - a) / 2;
2370 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
2371 if (!is_simm32(progs[a + pivot]))
2372 return -1;
2373 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2374
2375 if (pivot > 2) { /* jg upper_part */
2376 /* Require near jump. */
2377 jg_bytes = 4;
2378 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2379 } else {
2380 EMIT2(X86_JG, 0);
2381 }
2382 jg_reloc = prog;
2383
2384 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */
2385 progs, image, buf);
2386 if (err)
2387 return err;
2388
2389 /* From Intel 64 and IA-32 Architectures Optimization
2390 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2391 * Coding Rule 11: All branch targets should be 16-byte
2392 * aligned.
2393 */
2394 emit_align(&prog, 16);
2395 jg_offset = prog - jg_reloc;
2396 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2397
2398 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
2399 b, progs, image, buf);
2400 if (err)
2401 return err;
2402
2403 *pprog = prog;
2404 return 0;
2405}
2406
2407static int cmp_ips(const void *a, const void *b)
2408{
2409 const s64 *ipa = a;
2410 const s64 *ipb = b;
2411
2412 if (*ipa > *ipb)
2413 return 1;
2414 if (*ipa < *ipb)
2415 return -1;
2416 return 0;
2417}
2418
2419int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2420{
2421 u8 *prog = buf;
2422
2423 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2424 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2425}
2426
2427struct x64_jit_data {
2428 struct bpf_binary_header *rw_header;
2429 struct bpf_binary_header *header;
2430 int *addrs;
2431 u8 *image;
2432 int proglen;
2433 struct jit_context ctx;
2434};
2435
2436#define MAX_PASSES 20
2437#define PADDING_PASSES (MAX_PASSES - 5)
2438
2439struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2440{
2441 struct bpf_binary_header *rw_header = NULL;
2442 struct bpf_binary_header *header = NULL;
2443 struct bpf_prog *tmp, *orig_prog = prog;
2444 struct x64_jit_data *jit_data;
2445 int proglen, oldproglen = 0;
2446 struct jit_context ctx = {};
2447 bool tmp_blinded = false;
2448 bool extra_pass = false;
2449 bool padding = false;
2450 u8 *rw_image = NULL;
2451 u8 *image = NULL;
2452 int *addrs;
2453 int pass;
2454 int i;
2455
2456 if (!prog->jit_requested)
2457 return orig_prog;
2458
2459 tmp = bpf_jit_blind_constants(prog);
2460 /*
2461 * If blinding was requested and we failed during blinding,
2462 * we must fall back to the interpreter.
2463 */
2464 if (IS_ERR(tmp))
2465 return orig_prog;
2466 if (tmp != prog) {
2467 tmp_blinded = true;
2468 prog = tmp;
2469 }
2470
2471 jit_data = prog->aux->jit_data;
2472 if (!jit_data) {
2473 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2474 if (!jit_data) {
2475 prog = orig_prog;
2476 goto out;
2477 }
2478 prog->aux->jit_data = jit_data;
2479 }
2480 addrs = jit_data->addrs;
2481 if (addrs) {
2482 ctx = jit_data->ctx;
2483 oldproglen = jit_data->proglen;
2484 image = jit_data->image;
2485 header = jit_data->header;
2486 rw_header = jit_data->rw_header;
2487 rw_image = (void *)rw_header + ((void *)image - (void *)header);
2488 extra_pass = true;
2489 padding = true;
2490 goto skip_init_addrs;
2491 }
2492 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2493 if (!addrs) {
2494 prog = orig_prog;
2495 goto out_addrs;
2496 }
2497
2498 /*
2499 * Before first pass, make a rough estimation of addrs[]
2500 * each BPF instruction is translated to less than 64 bytes
2501 */
2502 for (proglen = 0, i = 0; i <= prog->len; i++) {
2503 proglen += 64;
2504 addrs[i] = proglen;
2505 }
2506 ctx.cleanup_addr = proglen;
2507skip_init_addrs:
2508
2509 /*
2510 * JITed image shrinks with every pass and the loop iterates
2511 * until the image stops shrinking. Very large BPF programs
2512 * may converge on the last pass. In such case do one more
2513 * pass to emit the final image.
2514 */
2515 for (pass = 0; pass < MAX_PASSES || image; pass++) {
2516 if (!padding && pass >= PADDING_PASSES)
2517 padding = true;
2518 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
2519 if (proglen <= 0) {
2520out_image:
2521 image = NULL;
2522 if (header) {
2523 bpf_arch_text_copy(&header->size, &rw_header->size,
2524 sizeof(rw_header->size));
2525 bpf_jit_binary_pack_free(header, rw_header);
2526 }
2527 /* Fall back to interpreter mode */
2528 prog = orig_prog;
2529 if (extra_pass) {
2530 prog->bpf_func = NULL;
2531 prog->jited = 0;
2532 prog->jited_len = 0;
2533 }
2534 goto out_addrs;
2535 }
2536 if (image) {
2537 if (proglen != oldproglen) {
2538 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2539 proglen, oldproglen);
2540 goto out_image;
2541 }
2542 break;
2543 }
2544 if (proglen == oldproglen) {
2545 /*
2546 * The number of entries in extable is the number of BPF_LDX
2547 * insns that access kernel memory via "pointer to BTF type".
2548 * The verifier changed their opcode from LDX|MEM|size
2549 * to LDX|PROBE_MEM|size to make JITing easier.
2550 */
2551 u32 align = __alignof__(struct exception_table_entry);
2552 u32 extable_size = prog->aux->num_exentries *
2553 sizeof(struct exception_table_entry);
2554
2555 /* allocate module memory for x86 insns and extable */
2556 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2557 &image, align, &rw_header, &rw_image,
2558 jit_fill_hole);
2559 if (!header) {
2560 prog = orig_prog;
2561 goto out_addrs;
2562 }
2563 prog->aux->extable = (void *) image + roundup(proglen, align);
2564 }
2565 oldproglen = proglen;
2566 cond_resched();
2567 }
2568
2569 if (bpf_jit_enable > 1)
2570 bpf_jit_dump(prog->len, proglen, pass + 1, image);
2571
2572 if (image) {
2573 if (!prog->is_func || extra_pass) {
2574 /*
2575 * bpf_jit_binary_pack_finalize fails in two scenarios:
2576 * 1) header is not pointing to proper module memory;
2577 * 2) the arch doesn't support bpf_arch_text_copy().
2578 *
2579 * Both cases are serious bugs and justify WARN_ON.
2580 */
2581 if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2582 /* header has been freed */
2583 header = NULL;
2584 goto out_image;
2585 }
2586
2587 bpf_tail_call_direct_fixup(prog);
2588 } else {
2589 jit_data->addrs = addrs;
2590 jit_data->ctx = ctx;
2591 jit_data->proglen = proglen;
2592 jit_data->image = image;
2593 jit_data->header = header;
2594 jit_data->rw_header = rw_header;
2595 }
2596 prog->bpf_func = (void *)image;
2597 prog->jited = 1;
2598 prog->jited_len = proglen;
2599 } else {
2600 prog = orig_prog;
2601 }
2602
2603 if (!image || !prog->is_func || extra_pass) {
2604 if (image)
2605 bpf_prog_fill_jited_linfo(prog, addrs + 1);
2606out_addrs:
2607 kvfree(addrs);
2608 kfree(jit_data);
2609 prog->aux->jit_data = NULL;
2610 }
2611out:
2612 if (tmp_blinded)
2613 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2614 tmp : orig_prog);
2615 return prog;
2616}
2617
2618bool bpf_jit_supports_kfunc_call(void)
2619{
2620 return true;
2621}
2622
2623void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2624{
2625 if (text_poke_copy(dst, src, len) == NULL)
2626 return ERR_PTR(-EINVAL);
2627 return dst;
2628}
2629
2630/* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2631bool bpf_jit_supports_subprog_tailcalls(void)
2632{
2633 return true;
2634}
2635
2636void bpf_jit_free(struct bpf_prog *prog)
2637{
2638 if (prog->jited) {
2639 struct x64_jit_data *jit_data = prog->aux->jit_data;
2640 struct bpf_binary_header *hdr;
2641
2642 /*
2643 * If we fail the final pass of JIT (from jit_subprogs),
2644 * the program may not be finalized yet. Call finalize here
2645 * before freeing it.
2646 */
2647 if (jit_data) {
2648 bpf_jit_binary_pack_finalize(prog, jit_data->header,
2649 jit_data->rw_header);
2650 kvfree(jit_data->addrs);
2651 kfree(jit_data);
2652 }
2653 hdr = bpf_jit_binary_pack_hdr(prog);
2654 bpf_jit_binary_pack_free(hdr, NULL);
2655 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2656 }
2657
2658 bpf_prog_unlock_free(prog);
2659}