Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * bpf_jit_comp.c: BPF JIT compiler
   4 *
   5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
   6 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
 
 
 
 
 
   7 */
   8#include <linux/netdevice.h>
   9#include <linux/filter.h>
  10#include <linux/if_vlan.h>
  11#include <linux/bpf.h>
  12
  13#include <asm/set_memory.h>
  14#include <asm/nospec-branch.h>
  15
 
 
 
 
 
 
 
 
 
  16static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  17{
  18	if (len == 1)
  19		*ptr = bytes;
  20	else if (len == 2)
  21		*(u16 *)ptr = bytes;
  22	else {
  23		*(u32 *)ptr = bytes;
  24		barrier();
  25	}
  26	return ptr + len;
  27}
  28
  29#define EMIT(bytes, len) \
  30	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
  31
  32#define EMIT1(b1)		EMIT(b1, 1)
  33#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
  34#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  35#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
  36
  37#define EMIT1_off32(b1, off) \
  38	do { EMIT1(b1); EMIT(off, 4); } while (0)
  39#define EMIT2_off32(b1, b2, off) \
  40	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
  41#define EMIT3_off32(b1, b2, b3, off) \
  42	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
  43#define EMIT4_off32(b1, b2, b3, b4, off) \
  44	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
  45
  46static bool is_imm8(int value)
  47{
  48	return value <= 127 && value >= -128;
  49}
  50
  51static bool is_simm32(s64 value)
  52{
  53	return value == (s64)(s32)value;
  54}
  55
  56static bool is_uimm32(u64 value)
  57{
  58	return value == (u64)(u32)value;
  59}
  60
  61/* mov dst, src */
  62#define EMIT_mov(DST, SRC)								 \
  63	do {										 \
  64		if (DST != SRC)								 \
  65			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
  66	} while (0)
  67
  68static int bpf_size_to_x86_bytes(int bpf_size)
  69{
  70	if (bpf_size == BPF_W)
  71		return 4;
  72	else if (bpf_size == BPF_H)
  73		return 2;
  74	else if (bpf_size == BPF_B)
  75		return 1;
  76	else if (bpf_size == BPF_DW)
  77		return 4; /* imm32 */
  78	else
  79		return 0;
  80}
  81
  82/*
  83 * List of x86 cond jumps opcodes (. + s8)
  84 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
  85 */
  86#define X86_JB  0x72
  87#define X86_JAE 0x73
  88#define X86_JE  0x74
  89#define X86_JNE 0x75
  90#define X86_JBE 0x76
  91#define X86_JA  0x77
  92#define X86_JL  0x7C
  93#define X86_JGE 0x7D
  94#define X86_JLE 0x7E
  95#define X86_JG  0x7F
  96
  97/* Pick a register outside of BPF range for JIT internal work */
 
 
 
  98#define AUX_REG (MAX_BPF_JIT_REG + 1)
  99
 100/*
 101 * The following table maps BPF registers to x86-64 registers.
 102 *
 103 * x86-64 register R12 is unused, since if used as base address
 104 * register in load/store instructions, it always needs an
 105 * extra byte of encoding and is callee saved.
 106 *
 107 * Also x86-64 register R9 is unused. x86-64 register R10 is
 108 * used for blinding (if enabled).
 109 */
 110static const int reg2hex[] = {
 111	[BPF_REG_0] = 0,  /* RAX */
 112	[BPF_REG_1] = 7,  /* RDI */
 113	[BPF_REG_2] = 6,  /* RSI */
 114	[BPF_REG_3] = 2,  /* RDX */
 115	[BPF_REG_4] = 1,  /* RCX */
 116	[BPF_REG_5] = 0,  /* R8  */
 117	[BPF_REG_6] = 3,  /* RBX callee saved */
 118	[BPF_REG_7] = 5,  /* R13 callee saved */
 119	[BPF_REG_8] = 6,  /* R14 callee saved */
 120	[BPF_REG_9] = 7,  /* R15 callee saved */
 121	[BPF_REG_FP] = 5, /* RBP readonly */
 122	[BPF_REG_AX] = 2, /* R10 temp register */
 123	[AUX_REG] = 3,    /* R11 temp register */
 124};
 125
 126/*
 127 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
 128 * which need extra byte of encoding.
 129 * rax,rcx,...,rbp have simpler encoding
 130 */
 131static bool is_ereg(u32 reg)
 132{
 133	return (1 << reg) & (BIT(BPF_REG_5) |
 134			     BIT(AUX_REG) |
 135			     BIT(BPF_REG_7) |
 136			     BIT(BPF_REG_8) |
 137			     BIT(BPF_REG_9) |
 138			     BIT(BPF_REG_AX));
 139}
 140
 141static bool is_axreg(u32 reg)
 142{
 143	return reg == BPF_REG_0;
 144}
 145
 146/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
 147static u8 add_1mod(u8 byte, u32 reg)
 148{
 149	if (is_ereg(reg))
 150		byte |= 1;
 151	return byte;
 152}
 153
 154static u8 add_2mod(u8 byte, u32 r1, u32 r2)
 155{
 156	if (is_ereg(r1))
 157		byte |= 1;
 158	if (is_ereg(r2))
 159		byte |= 4;
 160	return byte;
 161}
 162
 163/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
 164static u8 add_1reg(u8 byte, u32 dst_reg)
 165{
 166	return byte + reg2hex[dst_reg];
 167}
 168
 169/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
 170static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
 171{
 172	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
 173}
 174
 175static void jit_fill_hole(void *area, unsigned int size)
 176{
 177	/* Fill whole space with INT3 instructions */
 178	memset(area, 0xcc, size);
 179}
 180
 181struct jit_context {
 182	int cleanup_addr; /* Epilogue code offset */
 
 
 183};
 184
 185/* Maximum number of bytes emitted while JITing one eBPF insn */
 186#define BPF_MAX_INSN_SIZE	128
 187#define BPF_INSN_SAFETY		64
 188
 189#define PROLOGUE_SIZE		20
 
 
 190
 191/*
 192 * Emit x86-64 prologue code for BPF program and check its size.
 
 193 * bpf_tail_call helper will skip it while jumping into another program
 194 */
 195static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
 196{
 197	u8 *prog = *pprog;
 198	int cnt = 0;
 199
 200	EMIT1(0x55);             /* push rbp */
 201	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
 202	/* sub rsp, rounded_stack_depth */
 203	EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
 204	EMIT1(0x53);             /* push rbx */
 205	EMIT2(0x41, 0x55);       /* push r13 */
 206	EMIT2(0x41, 0x56);       /* push r14 */
 207	EMIT2(0x41, 0x57);       /* push r15 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208	if (!ebpf_from_cbpf) {
 209		/* zero init tail_call_cnt */
 210		EMIT2(0x6a, 0x00);
 
 
 
 
 
 
 
 
 
 211		BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
 212	}
 
 213	*pprog = prog;
 214}
 215
 216/*
 217 * Generate the following code:
 218 *
 219 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
 220 *   if (index >= array->map.max_entries)
 221 *     goto out;
 222 *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
 223 *     goto out;
 224 *   prog = array->ptrs[index];
 225 *   if (prog == NULL)
 226 *     goto out;
 227 *   goto *(prog->bpf_func + prologue_size);
 228 * out:
 229 */
 230static void emit_bpf_tail_call(u8 **pprog)
 231{
 232	u8 *prog = *pprog;
 233	int label1, label2, label3;
 234	int cnt = 0;
 235
 236	/*
 237	 * rdi - pointer to ctx
 238	 * rsi - pointer to bpf_array
 239	 * rdx - index in bpf_array
 240	 */
 241
 242	/*
 243	 * if (index >= array->map.max_entries)
 244	 *	goto out;
 245	 */
 246	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
 247	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
 248	      offsetof(struct bpf_array, map.max_entries));
 249#define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
 250	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
 251	label1 = cnt;
 252
 253	/*
 254	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
 255	 *	goto out;
 256	 */
 257	EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
 258	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
 259#define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
 260	EMIT2(X86_JA, OFFSET2);                   /* ja out */
 261	label2 = cnt;
 262	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
 263	EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
 264
 265	/* prog = array->ptrs[index]; */
 266	EMIT4_off32(0x48, 0x8B, 0x84, 0xD6,       /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
 267		    offsetof(struct bpf_array, ptrs));
 268
 269	/*
 270	 * if (prog == NULL)
 271	 *	goto out;
 272	 */
 273	EMIT3(0x48, 0x85, 0xC0);		  /* test rax,rax */
 274#define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
 275	EMIT2(X86_JE, OFFSET3);                   /* je out */
 276	label3 = cnt;
 277
 278	/* goto *(prog->bpf_func + prologue_size); */
 279	EMIT4(0x48, 0x8B, 0x40,                   /* mov rax, qword ptr [rax + 32] */
 280	      offsetof(struct bpf_prog, bpf_func));
 281	EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE);   /* add rax, prologue_size */
 282
 283	/*
 284	 * Wow we're ready to jump into next BPF program
 285	 * rdi == ctx (1st arg)
 286	 * rax == prog->bpf_func + prologue_size
 287	 */
 288	RETPOLINE_RAX_BPF_JIT();
 289
 290	/* out: */
 291	BUILD_BUG_ON(cnt - label1 != OFFSET1);
 292	BUILD_BUG_ON(cnt - label2 != OFFSET2);
 293	BUILD_BUG_ON(cnt - label3 != OFFSET3);
 294	*pprog = prog;
 295}
 296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
 298			   u32 dst_reg, const u32 imm32)
 299{
 300	u8 *prog = *pprog;
 301	u8 b1, b2, b3;
 302	int cnt = 0;
 303
 304	/*
 305	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
 306	 * (which zero-extends imm32) to save 2 bytes.
 307	 */
 308	if (sign_propagate && (s32)imm32 < 0) {
 309		/* 'mov %rax, imm32' sign extends imm32 */
 310		b1 = add_1mod(0x48, dst_reg);
 311		b2 = 0xC7;
 312		b3 = 0xC0;
 313		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
 314		goto done;
 315	}
 316
 317	/*
 318	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
 319	 * to save 3 bytes.
 320	 */
 321	if (imm32 == 0) {
 322		if (is_ereg(dst_reg))
 323			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
 324		b2 = 0x31; /* xor */
 325		b3 = 0xC0;
 326		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
 327		goto done;
 328	}
 329
 330	/* mov %eax, imm32 */
 331	if (is_ereg(dst_reg))
 332		EMIT1(add_1mod(0x40, dst_reg));
 333	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
 334done:
 335	*pprog = prog;
 336}
 337
 338static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
 339			   const u32 imm32_hi, const u32 imm32_lo)
 340{
 341	u8 *prog = *pprog;
 342	int cnt = 0;
 343
 344	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
 345		/*
 346		 * For emitting plain u32, where sign bit must not be
 347		 * propagated LLVM tends to load imm64 over mov32
 348		 * directly, so save couple of bytes by just doing
 349		 * 'mov %eax, imm32' instead.
 350		 */
 351		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
 352	} else {
 353		/* movabsq %rax, imm64 */
 354		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
 355		EMIT(imm32_lo, 4);
 356		EMIT(imm32_hi, 4);
 357	}
 358
 359	*pprog = prog;
 360}
 361
 362static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
 363{
 364	u8 *prog = *pprog;
 365	int cnt = 0;
 366
 367	if (is64) {
 368		/* mov dst, src */
 369		EMIT_mov(dst_reg, src_reg);
 370	} else {
 371		/* mov32 dst, src */
 372		if (is_ereg(dst_reg) || is_ereg(src_reg))
 373			EMIT1(add_2mod(0x40, dst_reg, src_reg));
 374		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
 375	}
 376
 377	*pprog = prog;
 378}
 379
 380static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
 381		  int oldproglen, struct jit_context *ctx)
 382{
 383	struct bpf_insn *insn = bpf_prog->insnsi;
 384	int insn_cnt = bpf_prog->len;
 
 
 385	bool seen_exit = false;
 386	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
 387	int i, cnt = 0;
 388	int proglen = 0;
 389	u8 *prog = temp;
 390
 391	emit_prologue(&prog, bpf_prog->aux->stack_depth,
 392		      bpf_prog_was_classic(bpf_prog));
 393	addrs[0] = prog - temp;
 394
 395	for (i = 1; i <= insn_cnt; i++, insn++) {
 
 
 
 396		const s32 imm32 = insn->imm;
 397		u32 dst_reg = insn->dst_reg;
 398		u32 src_reg = insn->src_reg;
 399		u8 b2 = 0, b3 = 0;
 400		s64 jmp_offset;
 401		u8 jmp_cond;
 
 402		int ilen;
 403		u8 *func;
 404
 
 
 
 405		switch (insn->code) {
 406			/* ALU */
 407		case BPF_ALU | BPF_ADD | BPF_X:
 408		case BPF_ALU | BPF_SUB | BPF_X:
 409		case BPF_ALU | BPF_AND | BPF_X:
 410		case BPF_ALU | BPF_OR | BPF_X:
 411		case BPF_ALU | BPF_XOR | BPF_X:
 412		case BPF_ALU64 | BPF_ADD | BPF_X:
 413		case BPF_ALU64 | BPF_SUB | BPF_X:
 414		case BPF_ALU64 | BPF_AND | BPF_X:
 415		case BPF_ALU64 | BPF_OR | BPF_X:
 416		case BPF_ALU64 | BPF_XOR | BPF_X:
 417			switch (BPF_OP(insn->code)) {
 418			case BPF_ADD: b2 = 0x01; break;
 419			case BPF_SUB: b2 = 0x29; break;
 420			case BPF_AND: b2 = 0x21; break;
 421			case BPF_OR: b2 = 0x09; break;
 422			case BPF_XOR: b2 = 0x31; break;
 423			}
 424			if (BPF_CLASS(insn->code) == BPF_ALU64)
 425				EMIT1(add_2mod(0x48, dst_reg, src_reg));
 426			else if (is_ereg(dst_reg) || is_ereg(src_reg))
 427				EMIT1(add_2mod(0x40, dst_reg, src_reg));
 428			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
 429			break;
 430
 431		case BPF_ALU64 | BPF_MOV | BPF_X:
 432		case BPF_ALU | BPF_MOV | BPF_X:
 433			emit_mov_reg(&prog,
 434				     BPF_CLASS(insn->code) == BPF_ALU64,
 435				     dst_reg, src_reg);
 436			break;
 437
 438			/* neg dst */
 439		case BPF_ALU | BPF_NEG:
 440		case BPF_ALU64 | BPF_NEG:
 441			if (BPF_CLASS(insn->code) == BPF_ALU64)
 442				EMIT1(add_1mod(0x48, dst_reg));
 443			else if (is_ereg(dst_reg))
 444				EMIT1(add_1mod(0x40, dst_reg));
 445			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
 446			break;
 447
 448		case BPF_ALU | BPF_ADD | BPF_K:
 449		case BPF_ALU | BPF_SUB | BPF_K:
 450		case BPF_ALU | BPF_AND | BPF_K:
 451		case BPF_ALU | BPF_OR | BPF_K:
 452		case BPF_ALU | BPF_XOR | BPF_K:
 453		case BPF_ALU64 | BPF_ADD | BPF_K:
 454		case BPF_ALU64 | BPF_SUB | BPF_K:
 455		case BPF_ALU64 | BPF_AND | BPF_K:
 456		case BPF_ALU64 | BPF_OR | BPF_K:
 457		case BPF_ALU64 | BPF_XOR | BPF_K:
 458			if (BPF_CLASS(insn->code) == BPF_ALU64)
 459				EMIT1(add_1mod(0x48, dst_reg));
 460			else if (is_ereg(dst_reg))
 461				EMIT1(add_1mod(0x40, dst_reg));
 462
 463			/*
 464			 * b3 holds 'normal' opcode, b2 short form only valid
 465			 * in case dst is eax/rax.
 466			 */
 467			switch (BPF_OP(insn->code)) {
 468			case BPF_ADD:
 469				b3 = 0xC0;
 470				b2 = 0x05;
 471				break;
 472			case BPF_SUB:
 473				b3 = 0xE8;
 474				b2 = 0x2D;
 475				break;
 476			case BPF_AND:
 477				b3 = 0xE0;
 478				b2 = 0x25;
 479				break;
 480			case BPF_OR:
 481				b3 = 0xC8;
 482				b2 = 0x0D;
 483				break;
 484			case BPF_XOR:
 485				b3 = 0xF0;
 486				b2 = 0x35;
 487				break;
 488			}
 489
 490			if (is_imm8(imm32))
 491				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
 492			else if (is_axreg(dst_reg))
 493				EMIT1_off32(b2, imm32);
 494			else
 495				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
 496			break;
 497
 498		case BPF_ALU64 | BPF_MOV | BPF_K:
 499		case BPF_ALU | BPF_MOV | BPF_K:
 500			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
 501				       dst_reg, imm32);
 502			break;
 503
 504		case BPF_LD | BPF_IMM | BPF_DW:
 505			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
 506			insn++;
 507			i++;
 508			break;
 509
 510			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
 511		case BPF_ALU | BPF_MOD | BPF_X:
 512		case BPF_ALU | BPF_DIV | BPF_X:
 513		case BPF_ALU | BPF_MOD | BPF_K:
 514		case BPF_ALU | BPF_DIV | BPF_K:
 515		case BPF_ALU64 | BPF_MOD | BPF_X:
 516		case BPF_ALU64 | BPF_DIV | BPF_X:
 517		case BPF_ALU64 | BPF_MOD | BPF_K:
 518		case BPF_ALU64 | BPF_DIV | BPF_K:
 519			EMIT1(0x50); /* push rax */
 520			EMIT1(0x52); /* push rdx */
 521
 522			if (BPF_SRC(insn->code) == BPF_X)
 523				/* mov r11, src_reg */
 524				EMIT_mov(AUX_REG, src_reg);
 525			else
 526				/* mov r11, imm32 */
 527				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
 528
 529			/* mov rax, dst_reg */
 530			EMIT_mov(BPF_REG_0, dst_reg);
 531
 532			/*
 533			 * xor edx, edx
 534			 * equivalent to 'xor rdx, rdx', but one byte less
 535			 */
 536			EMIT2(0x31, 0xd2);
 537
 538			if (BPF_CLASS(insn->code) == BPF_ALU64)
 539				/* div r11 */
 540				EMIT3(0x49, 0xF7, 0xF3);
 541			else
 542				/* div r11d */
 543				EMIT3(0x41, 0xF7, 0xF3);
 544
 545			if (BPF_OP(insn->code) == BPF_MOD)
 546				/* mov r11, rdx */
 547				EMIT3(0x49, 0x89, 0xD3);
 548			else
 549				/* mov r11, rax */
 550				EMIT3(0x49, 0x89, 0xC3);
 551
 552			EMIT1(0x5A); /* pop rdx */
 553			EMIT1(0x58); /* pop rax */
 554
 555			/* mov dst_reg, r11 */
 556			EMIT_mov(dst_reg, AUX_REG);
 557			break;
 558
 559		case BPF_ALU | BPF_MUL | BPF_K:
 560		case BPF_ALU | BPF_MUL | BPF_X:
 561		case BPF_ALU64 | BPF_MUL | BPF_K:
 562		case BPF_ALU64 | BPF_MUL | BPF_X:
 563		{
 564			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
 565
 566			if (dst_reg != BPF_REG_0)
 567				EMIT1(0x50); /* push rax */
 568			if (dst_reg != BPF_REG_3)
 569				EMIT1(0x52); /* push rdx */
 570
 571			/* mov r11, dst_reg */
 572			EMIT_mov(AUX_REG, dst_reg);
 573
 574			if (BPF_SRC(insn->code) == BPF_X)
 575				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
 576			else
 577				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
 578
 579			if (is64)
 580				EMIT1(add_1mod(0x48, AUX_REG));
 581			else if (is_ereg(AUX_REG))
 582				EMIT1(add_1mod(0x40, AUX_REG));
 583			/* mul(q) r11 */
 584			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
 585
 586			if (dst_reg != BPF_REG_3)
 587				EMIT1(0x5A); /* pop rdx */
 588			if (dst_reg != BPF_REG_0) {
 589				/* mov dst_reg, rax */
 590				EMIT_mov(dst_reg, BPF_REG_0);
 591				EMIT1(0x58); /* pop rax */
 592			}
 593			break;
 594		}
 595			/* Shifts */
 596		case BPF_ALU | BPF_LSH | BPF_K:
 597		case BPF_ALU | BPF_RSH | BPF_K:
 598		case BPF_ALU | BPF_ARSH | BPF_K:
 599		case BPF_ALU64 | BPF_LSH | BPF_K:
 600		case BPF_ALU64 | BPF_RSH | BPF_K:
 601		case BPF_ALU64 | BPF_ARSH | BPF_K:
 602			if (BPF_CLASS(insn->code) == BPF_ALU64)
 603				EMIT1(add_1mod(0x48, dst_reg));
 604			else if (is_ereg(dst_reg))
 605				EMIT1(add_1mod(0x40, dst_reg));
 606
 607			switch (BPF_OP(insn->code)) {
 608			case BPF_LSH: b3 = 0xE0; break;
 609			case BPF_RSH: b3 = 0xE8; break;
 610			case BPF_ARSH: b3 = 0xF8; break;
 611			}
 612
 613			if (imm32 == 1)
 614				EMIT2(0xD1, add_1reg(b3, dst_reg));
 615			else
 616				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
 617			break;
 618
 619		case BPF_ALU | BPF_LSH | BPF_X:
 620		case BPF_ALU | BPF_RSH | BPF_X:
 621		case BPF_ALU | BPF_ARSH | BPF_X:
 622		case BPF_ALU64 | BPF_LSH | BPF_X:
 623		case BPF_ALU64 | BPF_RSH | BPF_X:
 624		case BPF_ALU64 | BPF_ARSH | BPF_X:
 625
 626			/* Check for bad case when dst_reg == rcx */
 627			if (dst_reg == BPF_REG_4) {
 628				/* mov r11, dst_reg */
 629				EMIT_mov(AUX_REG, dst_reg);
 630				dst_reg = AUX_REG;
 631			}
 632
 633			if (src_reg != BPF_REG_4) { /* common case */
 634				EMIT1(0x51); /* push rcx */
 635
 636				/* mov rcx, src_reg */
 637				EMIT_mov(BPF_REG_4, src_reg);
 638			}
 639
 640			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
 641			if (BPF_CLASS(insn->code) == BPF_ALU64)
 642				EMIT1(add_1mod(0x48, dst_reg));
 643			else if (is_ereg(dst_reg))
 644				EMIT1(add_1mod(0x40, dst_reg));
 645
 646			switch (BPF_OP(insn->code)) {
 647			case BPF_LSH: b3 = 0xE0; break;
 648			case BPF_RSH: b3 = 0xE8; break;
 649			case BPF_ARSH: b3 = 0xF8; break;
 650			}
 651			EMIT2(0xD3, add_1reg(b3, dst_reg));
 652
 653			if (src_reg != BPF_REG_4)
 654				EMIT1(0x59); /* pop rcx */
 655
 656			if (insn->dst_reg == BPF_REG_4)
 657				/* mov dst_reg, r11 */
 658				EMIT_mov(insn->dst_reg, AUX_REG);
 659			break;
 660
 661		case BPF_ALU | BPF_END | BPF_FROM_BE:
 662			switch (imm32) {
 663			case 16:
 664				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
 665				EMIT1(0x66);
 666				if (is_ereg(dst_reg))
 667					EMIT1(0x41);
 668				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
 669
 670				/* Emit 'movzwl eax, ax' */
 671				if (is_ereg(dst_reg))
 672					EMIT3(0x45, 0x0F, 0xB7);
 673				else
 674					EMIT2(0x0F, 0xB7);
 675				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
 676				break;
 677			case 32:
 678				/* Emit 'bswap eax' to swap lower 4 bytes */
 679				if (is_ereg(dst_reg))
 680					EMIT2(0x41, 0x0F);
 681				else
 682					EMIT1(0x0F);
 683				EMIT1(add_1reg(0xC8, dst_reg));
 684				break;
 685			case 64:
 686				/* Emit 'bswap rax' to swap 8 bytes */
 687				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
 688				      add_1reg(0xC8, dst_reg));
 689				break;
 690			}
 691			break;
 692
 693		case BPF_ALU | BPF_END | BPF_FROM_LE:
 694			switch (imm32) {
 695			case 16:
 696				/*
 697				 * Emit 'movzwl eax, ax' to zero extend 16-bit
 698				 * into 64 bit
 699				 */
 700				if (is_ereg(dst_reg))
 701					EMIT3(0x45, 0x0F, 0xB7);
 702				else
 703					EMIT2(0x0F, 0xB7);
 704				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
 705				break;
 706			case 32:
 707				/* Emit 'mov eax, eax' to clear upper 32-bits */
 708				if (is_ereg(dst_reg))
 709					EMIT1(0x45);
 710				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
 711				break;
 712			case 64:
 713				/* nop */
 714				break;
 715			}
 716			break;
 717
 718			/* ST: *(u8*)(dst_reg + off) = imm */
 719		case BPF_ST | BPF_MEM | BPF_B:
 720			if (is_ereg(dst_reg))
 721				EMIT2(0x41, 0xC6);
 722			else
 723				EMIT1(0xC6);
 724			goto st;
 725		case BPF_ST | BPF_MEM | BPF_H:
 726			if (is_ereg(dst_reg))
 727				EMIT3(0x66, 0x41, 0xC7);
 728			else
 729				EMIT2(0x66, 0xC7);
 730			goto st;
 731		case BPF_ST | BPF_MEM | BPF_W:
 732			if (is_ereg(dst_reg))
 733				EMIT2(0x41, 0xC7);
 734			else
 735				EMIT1(0xC7);
 736			goto st;
 737		case BPF_ST | BPF_MEM | BPF_DW:
 738			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
 739
 740st:			if (is_imm8(insn->off))
 741				EMIT2(add_1reg(0x40, dst_reg), insn->off);
 742			else
 743				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
 744
 745			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
 746			break;
 747
 748			/* STX: *(u8*)(dst_reg + off) = src_reg */
 749		case BPF_STX | BPF_MEM | BPF_B:
 750			/* Emit 'mov byte ptr [rax + off], al' */
 751			if (is_ereg(dst_reg) || is_ereg(src_reg) ||
 752			    /* We have to add extra byte for x86 SIL, DIL regs */
 753			    src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
 754				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
 755			else
 756				EMIT1(0x88);
 757			goto stx;
 758		case BPF_STX | BPF_MEM | BPF_H:
 759			if (is_ereg(dst_reg) || is_ereg(src_reg))
 760				EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
 761			else
 762				EMIT2(0x66, 0x89);
 763			goto stx;
 764		case BPF_STX | BPF_MEM | BPF_W:
 765			if (is_ereg(dst_reg) || is_ereg(src_reg))
 766				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
 767			else
 768				EMIT1(0x89);
 769			goto stx;
 770		case BPF_STX | BPF_MEM | BPF_DW:
 771			EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
 772stx:			if (is_imm8(insn->off))
 773				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
 774			else
 775				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
 776					    insn->off);
 777			break;
 778
 779			/* LDX: dst_reg = *(u8*)(src_reg + off) */
 780		case BPF_LDX | BPF_MEM | BPF_B:
 781			/* Emit 'movzx rax, byte ptr [rax + off]' */
 782			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
 783			goto ldx;
 784		case BPF_LDX | BPF_MEM | BPF_H:
 785			/* Emit 'movzx rax, word ptr [rax + off]' */
 786			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
 787			goto ldx;
 788		case BPF_LDX | BPF_MEM | BPF_W:
 789			/* Emit 'mov eax, dword ptr [rax+0x14]' */
 790			if (is_ereg(dst_reg) || is_ereg(src_reg))
 791				EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
 792			else
 793				EMIT1(0x8B);
 794			goto ldx;
 795		case BPF_LDX | BPF_MEM | BPF_DW:
 796			/* Emit 'mov rax, qword ptr [rax+0x14]' */
 797			EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
 798ldx:			/*
 799			 * If insn->off == 0 we can save one extra byte, but
 800			 * special case of x86 R13 which always needs an offset
 801			 * is not worth the hassle
 802			 */
 803			if (is_imm8(insn->off))
 804				EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
 805			else
 806				EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
 807					    insn->off);
 808			break;
 809
 810			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
 811		case BPF_STX | BPF_XADD | BPF_W:
 812			/* Emit 'lock add dword ptr [rax + off], eax' */
 813			if (is_ereg(dst_reg) || is_ereg(src_reg))
 814				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
 815			else
 816				EMIT2(0xF0, 0x01);
 817			goto xadd;
 818		case BPF_STX | BPF_XADD | BPF_DW:
 819			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
 820xadd:			if (is_imm8(insn->off))
 821				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
 822			else
 823				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
 824					    insn->off);
 825			break;
 826
 827			/* call */
 828		case BPF_JMP | BPF_CALL:
 829			func = (u8 *) __bpf_call_base + imm32;
 830			jmp_offset = func - (image + addrs[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831			if (!imm32 || !is_simm32(jmp_offset)) {
 832				pr_err("unsupported BPF func %d addr %p image %p\n",
 833				       imm32, func, image);
 834				return -EINVAL;
 835			}
 836			EMIT1_off32(0xE8, jmp_offset);
 
 
 
 
 
 
 
 
 
 837			break;
 838
 839		case BPF_JMP | BPF_TAIL_CALL:
 840			emit_bpf_tail_call(&prog);
 841			break;
 842
 843			/* cond jump */
 844		case BPF_JMP | BPF_JEQ | BPF_X:
 845		case BPF_JMP | BPF_JNE | BPF_X:
 846		case BPF_JMP | BPF_JGT | BPF_X:
 847		case BPF_JMP | BPF_JLT | BPF_X:
 848		case BPF_JMP | BPF_JGE | BPF_X:
 849		case BPF_JMP | BPF_JLE | BPF_X:
 850		case BPF_JMP | BPF_JSGT | BPF_X:
 851		case BPF_JMP | BPF_JSLT | BPF_X:
 852		case BPF_JMP | BPF_JSGE | BPF_X:
 853		case BPF_JMP | BPF_JSLE | BPF_X:
 854		case BPF_JMP32 | BPF_JEQ | BPF_X:
 855		case BPF_JMP32 | BPF_JNE | BPF_X:
 856		case BPF_JMP32 | BPF_JGT | BPF_X:
 857		case BPF_JMP32 | BPF_JLT | BPF_X:
 858		case BPF_JMP32 | BPF_JGE | BPF_X:
 859		case BPF_JMP32 | BPF_JLE | BPF_X:
 860		case BPF_JMP32 | BPF_JSGT | BPF_X:
 861		case BPF_JMP32 | BPF_JSLT | BPF_X:
 862		case BPF_JMP32 | BPF_JSGE | BPF_X:
 863		case BPF_JMP32 | BPF_JSLE | BPF_X:
 864			/* cmp dst_reg, src_reg */
 865			if (BPF_CLASS(insn->code) == BPF_JMP)
 866				EMIT1(add_2mod(0x48, dst_reg, src_reg));
 867			else if (is_ereg(dst_reg) || is_ereg(src_reg))
 868				EMIT1(add_2mod(0x40, dst_reg, src_reg));
 869			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
 870			goto emit_cond_jmp;
 871
 872		case BPF_JMP | BPF_JSET | BPF_X:
 873		case BPF_JMP32 | BPF_JSET | BPF_X:
 874			/* test dst_reg, src_reg */
 875			if (BPF_CLASS(insn->code) == BPF_JMP)
 876				EMIT1(add_2mod(0x48, dst_reg, src_reg));
 877			else if (is_ereg(dst_reg) || is_ereg(src_reg))
 878				EMIT1(add_2mod(0x40, dst_reg, src_reg));
 879			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
 880			goto emit_cond_jmp;
 881
 882		case BPF_JMP | BPF_JSET | BPF_K:
 883		case BPF_JMP32 | BPF_JSET | BPF_K:
 884			/* test dst_reg, imm32 */
 885			if (BPF_CLASS(insn->code) == BPF_JMP)
 886				EMIT1(add_1mod(0x48, dst_reg));
 887			else if (is_ereg(dst_reg))
 888				EMIT1(add_1mod(0x40, dst_reg));
 889			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
 890			goto emit_cond_jmp;
 891
 892		case BPF_JMP | BPF_JEQ | BPF_K:
 893		case BPF_JMP | BPF_JNE | BPF_K:
 894		case BPF_JMP | BPF_JGT | BPF_K:
 895		case BPF_JMP | BPF_JLT | BPF_K:
 896		case BPF_JMP | BPF_JGE | BPF_K:
 897		case BPF_JMP | BPF_JLE | BPF_K:
 898		case BPF_JMP | BPF_JSGT | BPF_K:
 899		case BPF_JMP | BPF_JSLT | BPF_K:
 900		case BPF_JMP | BPF_JSGE | BPF_K:
 901		case BPF_JMP | BPF_JSLE | BPF_K:
 902		case BPF_JMP32 | BPF_JEQ | BPF_K:
 903		case BPF_JMP32 | BPF_JNE | BPF_K:
 904		case BPF_JMP32 | BPF_JGT | BPF_K:
 905		case BPF_JMP32 | BPF_JLT | BPF_K:
 906		case BPF_JMP32 | BPF_JGE | BPF_K:
 907		case BPF_JMP32 | BPF_JLE | BPF_K:
 908		case BPF_JMP32 | BPF_JSGT | BPF_K:
 909		case BPF_JMP32 | BPF_JSLT | BPF_K:
 910		case BPF_JMP32 | BPF_JSGE | BPF_K:
 911		case BPF_JMP32 | BPF_JSLE | BPF_K:
 912			/* cmp dst_reg, imm8/32 */
 913			if (BPF_CLASS(insn->code) == BPF_JMP)
 914				EMIT1(add_1mod(0x48, dst_reg));
 915			else if (is_ereg(dst_reg))
 916				EMIT1(add_1mod(0x40, dst_reg));
 917
 918			if (is_imm8(imm32))
 919				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
 920			else
 921				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
 922
 923emit_cond_jmp:		/* Convert BPF opcode to x86 */
 924			switch (BPF_OP(insn->code)) {
 925			case BPF_JEQ:
 926				jmp_cond = X86_JE;
 927				break;
 928			case BPF_JSET:
 929			case BPF_JNE:
 930				jmp_cond = X86_JNE;
 931				break;
 932			case BPF_JGT:
 933				/* GT is unsigned '>', JA in x86 */
 934				jmp_cond = X86_JA;
 935				break;
 936			case BPF_JLT:
 937				/* LT is unsigned '<', JB in x86 */
 938				jmp_cond = X86_JB;
 939				break;
 940			case BPF_JGE:
 941				/* GE is unsigned '>=', JAE in x86 */
 942				jmp_cond = X86_JAE;
 943				break;
 944			case BPF_JLE:
 945				/* LE is unsigned '<=', JBE in x86 */
 946				jmp_cond = X86_JBE;
 947				break;
 948			case BPF_JSGT:
 949				/* Signed '>', GT in x86 */
 950				jmp_cond = X86_JG;
 951				break;
 952			case BPF_JSLT:
 953				/* Signed '<', LT in x86 */
 954				jmp_cond = X86_JL;
 955				break;
 956			case BPF_JSGE:
 957				/* Signed '>=', GE in x86 */
 958				jmp_cond = X86_JGE;
 959				break;
 960			case BPF_JSLE:
 961				/* Signed '<=', LE in x86 */
 962				jmp_cond = X86_JLE;
 963				break;
 964			default: /* to silence GCC warning */
 965				return -EFAULT;
 966			}
 967			jmp_offset = addrs[i + insn->off] - addrs[i];
 968			if (is_imm8(jmp_offset)) {
 969				EMIT2(jmp_cond, jmp_offset);
 970			} else if (is_simm32(jmp_offset)) {
 971				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
 972			} else {
 973				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
 974				return -EFAULT;
 975			}
 976
 977			break;
 978
 979		case BPF_JMP | BPF_JA:
 980			if (insn->off == -1)
 981				/* -1 jmp instructions will always jump
 982				 * backwards two bytes. Explicitly handling
 983				 * this case avoids wasting too many passes
 984				 * when there are long sequences of replaced
 985				 * dead code.
 986				 */
 987				jmp_offset = -2;
 988			else
 989				jmp_offset = addrs[i + insn->off] - addrs[i];
 990
 991			if (!jmp_offset)
 992				/* Optimize out nop jumps */
 993				break;
 994emit_jmp:
 995			if (is_imm8(jmp_offset)) {
 996				EMIT2(0xEB, jmp_offset);
 997			} else if (is_simm32(jmp_offset)) {
 998				EMIT1_off32(0xE9, jmp_offset);
 999			} else {
1000				pr_err("jmp gen bug %llx\n", jmp_offset);
1001				return -EFAULT;
1002			}
1003			break;
1004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005		case BPF_JMP | BPF_EXIT:
1006			if (seen_exit) {
1007				jmp_offset = ctx->cleanup_addr - addrs[i];
1008				goto emit_jmp;
1009			}
1010			seen_exit = true;
1011			/* Update cleanup_addr */
1012			ctx->cleanup_addr = proglen;
1013			if (!bpf_prog_was_classic(bpf_prog))
1014				EMIT1(0x5B); /* get rid of tail_call_cnt */
1015			EMIT2(0x41, 0x5F);   /* pop r15 */
1016			EMIT2(0x41, 0x5E);   /* pop r14 */
1017			EMIT2(0x41, 0x5D);   /* pop r13 */
1018			EMIT1(0x5B);         /* pop rbx */
1019			EMIT1(0xC9);         /* leave */
1020			EMIT1(0xC3);         /* ret */
 
 
 
 
 
1021			break;
1022
1023		default:
1024			/*
1025			 * By design x86-64 JIT should support all BPF instructions.
1026			 * This error will be seen if new instruction was added
1027			 * to the interpreter, but not to the JIT, or if there is
1028			 * junk in bpf_prog.
1029			 */
1030			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1031			return -EINVAL;
1032		}
1033
1034		ilen = prog - temp;
1035		if (ilen > BPF_MAX_INSN_SIZE) {
1036			pr_err("bpf_jit: fatal insn size error\n");
1037			return -EFAULT;
1038		}
1039
1040		if (image) {
1041			if (unlikely(proglen + ilen > oldproglen)) {
1042				pr_err("bpf_jit: fatal error\n");
1043				return -EFAULT;
1044			}
1045			memcpy(image + proglen, temp, ilen);
1046		}
1047		proglen += ilen;
1048		addrs[i] = proglen;
1049		prog = temp;
1050	}
1051	return proglen;
1052}
1053
1054struct x64_jit_data {
1055	struct bpf_binary_header *header;
1056	int *addrs;
1057	u8 *image;
1058	int proglen;
1059	struct jit_context ctx;
1060};
1061
1062struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1063{
1064	struct bpf_binary_header *header = NULL;
1065	struct bpf_prog *tmp, *orig_prog = prog;
1066	struct x64_jit_data *jit_data;
1067	int proglen, oldproglen = 0;
1068	struct jit_context ctx = {};
1069	bool tmp_blinded = false;
1070	bool extra_pass = false;
1071	u8 *image = NULL;
1072	int *addrs;
1073	int pass;
1074	int i;
1075
1076	if (!prog->jit_requested)
1077		return orig_prog;
1078
1079	tmp = bpf_jit_blind_constants(prog);
1080	/*
1081	 * If blinding was requested and we failed during blinding,
1082	 * we must fall back to the interpreter.
1083	 */
1084	if (IS_ERR(tmp))
1085		return orig_prog;
1086	if (tmp != prog) {
1087		tmp_blinded = true;
1088		prog = tmp;
1089	}
1090
1091	jit_data = prog->aux->jit_data;
1092	if (!jit_data) {
1093		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1094		if (!jit_data) {
1095			prog = orig_prog;
1096			goto out;
1097		}
1098		prog->aux->jit_data = jit_data;
1099	}
1100	addrs = jit_data->addrs;
1101	if (addrs) {
1102		ctx = jit_data->ctx;
1103		oldproglen = jit_data->proglen;
1104		image = jit_data->image;
1105		header = jit_data->header;
1106		extra_pass = true;
1107		goto skip_init_addrs;
1108	}
1109	addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
1110	if (!addrs) {
1111		prog = orig_prog;
1112		goto out_addrs;
1113	}
1114
1115	/*
1116	 * Before first pass, make a rough estimation of addrs[]
1117	 * each BPF instruction is translated to less than 64 bytes
1118	 */
1119	for (proglen = 0, i = 0; i <= prog->len; i++) {
1120		proglen += 64;
1121		addrs[i] = proglen;
1122	}
1123	ctx.cleanup_addr = proglen;
1124skip_init_addrs:
1125
1126	/*
1127	 * JITed image shrinks with every pass and the loop iterates
1128	 * until the image stops shrinking. Very large BPF programs
1129	 * may converge on the last pass. In such case do one more
1130	 * pass to emit the final image.
1131	 */
1132	for (pass = 0; pass < 20 || image; pass++) {
1133		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1134		if (proglen <= 0) {
1135out_image:
1136			image = NULL;
1137			if (header)
1138				bpf_jit_binary_free(header);
1139			prog = orig_prog;
1140			goto out_addrs;
1141		}
1142		if (image) {
1143			if (proglen != oldproglen) {
1144				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1145				       proglen, oldproglen);
1146				goto out_image;
1147			}
1148			break;
1149		}
1150		if (proglen == oldproglen) {
1151			header = bpf_jit_binary_alloc(proglen, &image,
1152						      1, jit_fill_hole);
1153			if (!header) {
1154				prog = orig_prog;
1155				goto out_addrs;
1156			}
1157		}
1158		oldproglen = proglen;
1159		cond_resched();
1160	}
1161
1162	if (bpf_jit_enable > 1)
1163		bpf_jit_dump(prog->len, proglen, pass + 1, image);
1164
1165	if (image) {
1166		if (!prog->is_func || extra_pass) {
1167			bpf_jit_binary_lock_ro(header);
1168		} else {
1169			jit_data->addrs = addrs;
1170			jit_data->ctx = ctx;
1171			jit_data->proglen = proglen;
1172			jit_data->image = image;
1173			jit_data->header = header;
1174		}
1175		prog->bpf_func = (void *)image;
1176		prog->jited = 1;
1177		prog->jited_len = proglen;
1178	} else {
1179		prog = orig_prog;
1180	}
1181
1182	if (!image || !prog->is_func || extra_pass) {
1183		if (image)
1184			bpf_prog_fill_jited_linfo(prog, addrs + 1);
1185out_addrs:
1186		kfree(addrs);
1187		kfree(jit_data);
1188		prog->aux->jit_data = NULL;
1189	}
1190out:
1191	if (tmp_blinded)
1192		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1193					   tmp : orig_prog);
1194	return prog;
1195}
v4.17
   1/* bpf_jit_comp.c : BPF JIT compiler
 
 
   2 *
   3 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
   4 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; version 2
   9 * of the License.
  10 */
  11#include <linux/netdevice.h>
  12#include <linux/filter.h>
  13#include <linux/if_vlan.h>
  14#include <linux/bpf.h>
  15
  16#include <asm/set_memory.h>
  17#include <asm/nospec-branch.h>
  18
  19/*
  20 * assembly code in arch/x86/net/bpf_jit.S
  21 */
  22extern u8 sk_load_word[], sk_load_half[], sk_load_byte[];
  23extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
  24extern u8 sk_load_byte_positive_offset[];
  25extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
  26extern u8 sk_load_byte_negative_offset[];
  27
  28static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  29{
  30	if (len == 1)
  31		*ptr = bytes;
  32	else if (len == 2)
  33		*(u16 *)ptr = bytes;
  34	else {
  35		*(u32 *)ptr = bytes;
  36		barrier();
  37	}
  38	return ptr + len;
  39}
  40
  41#define EMIT(bytes, len) \
  42	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
  43
  44#define EMIT1(b1)		EMIT(b1, 1)
  45#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
  46#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  47#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
 
  48#define EMIT1_off32(b1, off) \
  49	do {EMIT1(b1); EMIT(off, 4); } while (0)
  50#define EMIT2_off32(b1, b2, off) \
  51	do {EMIT2(b1, b2); EMIT(off, 4); } while (0)
  52#define EMIT3_off32(b1, b2, b3, off) \
  53	do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
  54#define EMIT4_off32(b1, b2, b3, b4, off) \
  55	do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
  56
  57static bool is_imm8(int value)
  58{
  59	return value <= 127 && value >= -128;
  60}
  61
  62static bool is_simm32(s64 value)
  63{
  64	return value == (s64)(s32)value;
  65}
  66
  67static bool is_uimm32(u64 value)
  68{
  69	return value == (u64)(u32)value;
  70}
  71
  72/* mov dst, src */
  73#define EMIT_mov(DST, SRC) \
  74	do {if (DST != SRC) \
  75		EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
 
  76	} while (0)
  77
  78static int bpf_size_to_x86_bytes(int bpf_size)
  79{
  80	if (bpf_size == BPF_W)
  81		return 4;
  82	else if (bpf_size == BPF_H)
  83		return 2;
  84	else if (bpf_size == BPF_B)
  85		return 1;
  86	else if (bpf_size == BPF_DW)
  87		return 4; /* imm32 */
  88	else
  89		return 0;
  90}
  91
  92/* list of x86 cond jumps opcodes (. + s8)
 
  93 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
  94 */
  95#define X86_JB  0x72
  96#define X86_JAE 0x73
  97#define X86_JE  0x74
  98#define X86_JNE 0x75
  99#define X86_JBE 0x76
 100#define X86_JA  0x77
 101#define X86_JL  0x7C
 102#define X86_JGE 0x7D
 103#define X86_JLE 0x7E
 104#define X86_JG  0x7F
 105
 106#define CHOOSE_LOAD_FUNC(K, func) \
 107	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
 108
 109/* pick a register outside of BPF range for JIT internal work */
 110#define AUX_REG (MAX_BPF_JIT_REG + 1)
 111
 112/* The following table maps BPF registers to x64 registers.
 
 113 *
 114 * x64 register r12 is unused, since if used as base address
 115 * register in load/store instructions, it always needs an
 116 * extra byte of encoding and is callee saved.
 117 *
 118 *  r9 caches skb->len - skb->data_len
 119 * r10 caches skb->data, and used for blinding (if enabled)
 120 */
 121static const int reg2hex[] = {
 122	[BPF_REG_0] = 0,  /* rax */
 123	[BPF_REG_1] = 7,  /* rdi */
 124	[BPF_REG_2] = 6,  /* rsi */
 125	[BPF_REG_3] = 2,  /* rdx */
 126	[BPF_REG_4] = 1,  /* rcx */
 127	[BPF_REG_5] = 0,  /* r8 */
 128	[BPF_REG_6] = 3,  /* rbx callee saved */
 129	[BPF_REG_7] = 5,  /* r13 callee saved */
 130	[BPF_REG_8] = 6,  /* r14 callee saved */
 131	[BPF_REG_9] = 7,  /* r15 callee saved */
 132	[BPF_REG_FP] = 5, /* rbp readonly */
 133	[BPF_REG_AX] = 2, /* r10 temp register */
 134	[AUX_REG] = 3,    /* r11 temp register */
 135};
 136
 137/* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15
 
 138 * which need extra byte of encoding.
 139 * rax,rcx,...,rbp have simpler encoding
 140 */
 141static bool is_ereg(u32 reg)
 142{
 143	return (1 << reg) & (BIT(BPF_REG_5) |
 144			     BIT(AUX_REG) |
 145			     BIT(BPF_REG_7) |
 146			     BIT(BPF_REG_8) |
 147			     BIT(BPF_REG_9) |
 148			     BIT(BPF_REG_AX));
 149}
 150
 151static bool is_axreg(u32 reg)
 152{
 153	return reg == BPF_REG_0;
 154}
 155
 156/* add modifiers if 'reg' maps to x64 registers r8..r15 */
 157static u8 add_1mod(u8 byte, u32 reg)
 158{
 159	if (is_ereg(reg))
 160		byte |= 1;
 161	return byte;
 162}
 163
 164static u8 add_2mod(u8 byte, u32 r1, u32 r2)
 165{
 166	if (is_ereg(r1))
 167		byte |= 1;
 168	if (is_ereg(r2))
 169		byte |= 4;
 170	return byte;
 171}
 172
 173/* encode 'dst_reg' register into x64 opcode 'byte' */
 174static u8 add_1reg(u8 byte, u32 dst_reg)
 175{
 176	return byte + reg2hex[dst_reg];
 177}
 178
 179/* encode 'dst_reg' and 'src_reg' registers into x64 opcode 'byte' */
 180static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
 181{
 182	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
 183}
 184
 185static void jit_fill_hole(void *area, unsigned int size)
 186{
 187	/* fill whole space with int3 instructions */
 188	memset(area, 0xcc, size);
 189}
 190
 191struct jit_context {
 192	int cleanup_addr; /* epilogue code offset */
 193	bool seen_ld_abs;
 194	bool seen_ax_reg;
 195};
 196
 197/* maximum number of bytes emitted while JITing one eBPF insn */
 198#define BPF_MAX_INSN_SIZE	128
 199#define BPF_INSN_SAFETY		64
 200
 201#define AUX_STACK_SPACE \
 202	(32 /* space for rbx, r13, r14, r15 */ + \
 203	 8 /* space for skb_copy_bits() buffer */)
 204
 205#define PROLOGUE_SIZE 37
 206
 207/* emit x64 prologue code for BPF program and check it's size.
 208 * bpf_tail_call helper will skip it while jumping into another program
 209 */
 210static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
 211{
 212	u8 *prog = *pprog;
 213	int cnt = 0;
 214
 215	EMIT1(0x55); /* push rbp */
 216	EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */
 217
 218	/* sub rsp, rounded_stack_depth + AUX_STACK_SPACE */
 219	EMIT3_off32(0x48, 0x81, 0xEC,
 220		    round_up(stack_depth, 8) + AUX_STACK_SPACE);
 221
 222	/* sub rbp, AUX_STACK_SPACE */
 223	EMIT4(0x48, 0x83, 0xED, AUX_STACK_SPACE);
 224
 225	/* all classic BPF filters use R6(rbx) save it */
 226
 227	/* mov qword ptr [rbp+0],rbx */
 228	EMIT4(0x48, 0x89, 0x5D, 0);
 229
 230	/* bpf_convert_filter() maps classic BPF register X to R7 and uses R8
 231	 * as temporary, so all tcpdump filters need to spill/fill R7(r13) and
 232	 * R8(r14). R9(r15) spill could be made conditional, but there is only
 233	 * one 'bpf_error' return path out of helper functions inside bpf_jit.S
 234	 * The overhead of extra spill is negligible for any filter other
 235	 * than synthetic ones. Therefore not worth adding complexity.
 236	 */
 237
 238	/* mov qword ptr [rbp+8],r13 */
 239	EMIT4(0x4C, 0x89, 0x6D, 8);
 240	/* mov qword ptr [rbp+16],r14 */
 241	EMIT4(0x4C, 0x89, 0x75, 16);
 242	/* mov qword ptr [rbp+24],r15 */
 243	EMIT4(0x4C, 0x89, 0x7D, 24);
 244
 245	if (!ebpf_from_cbpf) {
 246		/* Clear the tail call counter (tail_call_cnt): for eBPF tail
 247		 * calls we need to reset the counter to 0. It's done in two
 248		 * instructions, resetting rax register to 0, and moving it
 249		 * to the counter location.
 250		 */
 251
 252		/* xor eax, eax */
 253		EMIT2(0x31, 0xc0);
 254		/* mov qword ptr [rbp+32], rax */
 255		EMIT4(0x48, 0x89, 0x45, 32);
 256
 257		BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
 258	}
 259
 260	*pprog = prog;
 261}
 262
 263/* generate the following code:
 
 
 264 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
 265 *   if (index >= array->map.max_entries)
 266 *     goto out;
 267 *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
 268 *     goto out;
 269 *   prog = array->ptrs[index];
 270 *   if (prog == NULL)
 271 *     goto out;
 272 *   goto *(prog->bpf_func + prologue_size);
 273 * out:
 274 */
 275static void emit_bpf_tail_call(u8 **pprog)
 276{
 277	u8 *prog = *pprog;
 278	int label1, label2, label3;
 279	int cnt = 0;
 280
 281	/* rdi - pointer to ctx
 
 282	 * rsi - pointer to bpf_array
 283	 * rdx - index in bpf_array
 284	 */
 285
 286	/* if (index >= array->map.max_entries)
 287	 *   goto out;
 
 288	 */
 289	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
 290	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
 291	      offsetof(struct bpf_array, map.max_entries));
 292#define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* number of bytes to jump */
 293	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
 294	label1 = cnt;
 295
 296	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
 297	 *   goto out;
 
 298	 */
 299	EMIT2_off32(0x8B, 0x85, 36);              /* mov eax, dword ptr [rbp + 36] */
 300	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
 301#define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
 302	EMIT2(X86_JA, OFFSET2);                   /* ja out */
 303	label2 = cnt;
 304	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
 305	EMIT2_off32(0x89, 0x85, 36);              /* mov dword ptr [rbp + 36], eax */
 306
 307	/* prog = array->ptrs[index]; */
 308	EMIT4_off32(0x48, 0x8B, 0x84, 0xD6,       /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
 309		    offsetof(struct bpf_array, ptrs));
 310
 311	/* if (prog == NULL)
 312	 *   goto out;
 
 313	 */
 314	EMIT3(0x48, 0x85, 0xC0);		  /* test rax,rax */
 315#define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
 316	EMIT2(X86_JE, OFFSET3);                   /* je out */
 317	label3 = cnt;
 318
 319	/* goto *(prog->bpf_func + prologue_size); */
 320	EMIT4(0x48, 0x8B, 0x40,                   /* mov rax, qword ptr [rax + 32] */
 321	      offsetof(struct bpf_prog, bpf_func));
 322	EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE);   /* add rax, prologue_size */
 323
 324	/* now we're ready to jump into next BPF program
 
 325	 * rdi == ctx (1st arg)
 326	 * rax == prog->bpf_func + prologue_size
 327	 */
 328	RETPOLINE_RAX_BPF_JIT();
 329
 330	/* out: */
 331	BUILD_BUG_ON(cnt - label1 != OFFSET1);
 332	BUILD_BUG_ON(cnt - label2 != OFFSET2);
 333	BUILD_BUG_ON(cnt - label3 != OFFSET3);
 334	*pprog = prog;
 335}
 336
 337
 338static void emit_load_skb_data_hlen(u8 **pprog)
 339{
 340	u8 *prog = *pprog;
 341	int cnt = 0;
 342
 343	/* r9d = skb->len - skb->data_len (headlen)
 344	 * r10 = skb->data
 345	 */
 346	/* mov %r9d, off32(%rdi) */
 347	EMIT3_off32(0x44, 0x8b, 0x8f, offsetof(struct sk_buff, len));
 348
 349	/* sub %r9d, off32(%rdi) */
 350	EMIT3_off32(0x44, 0x2b, 0x8f, offsetof(struct sk_buff, data_len));
 351
 352	/* mov %r10, off32(%rdi) */
 353	EMIT3_off32(0x4c, 0x8b, 0x97, offsetof(struct sk_buff, data));
 354	*pprog = prog;
 355}
 356
 357static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
 358			   u32 dst_reg, const u32 imm32)
 359{
 360	u8 *prog = *pprog;
 361	u8 b1, b2, b3;
 362	int cnt = 0;
 363
 364	/* optimization: if imm32 is positive, use 'mov %eax, imm32'
 
 365	 * (which zero-extends imm32) to save 2 bytes.
 366	 */
 367	if (sign_propagate && (s32)imm32 < 0) {
 368		/* 'mov %rax, imm32' sign extends imm32 */
 369		b1 = add_1mod(0x48, dst_reg);
 370		b2 = 0xC7;
 371		b3 = 0xC0;
 372		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
 373		goto done;
 374	}
 375
 376	/* optimization: if imm32 is zero, use 'xor %eax, %eax'
 
 377	 * to save 3 bytes.
 378	 */
 379	if (imm32 == 0) {
 380		if (is_ereg(dst_reg))
 381			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
 382		b2 = 0x31; /* xor */
 383		b3 = 0xC0;
 384		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
 385		goto done;
 386	}
 387
 388	/* mov %eax, imm32 */
 389	if (is_ereg(dst_reg))
 390		EMIT1(add_1mod(0x40, dst_reg));
 391	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
 392done:
 393	*pprog = prog;
 394}
 395
 396static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
 397			   const u32 imm32_hi, const u32 imm32_lo)
 398{
 399	u8 *prog = *pprog;
 400	int cnt = 0;
 401
 402	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
 403		/* For emitting plain u32, where sign bit must not be
 
 404		 * propagated LLVM tends to load imm64 over mov32
 405		 * directly, so save couple of bytes by just doing
 406		 * 'mov %eax, imm32' instead.
 407		 */
 408		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
 409	} else {
 410		/* movabsq %rax, imm64 */
 411		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
 412		EMIT(imm32_lo, 4);
 413		EMIT(imm32_hi, 4);
 414	}
 415
 416	*pprog = prog;
 417}
 418
 419static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
 420{
 421	u8 *prog = *pprog;
 422	int cnt = 0;
 423
 424	if (is64) {
 425		/* mov dst, src */
 426		EMIT_mov(dst_reg, src_reg);
 427	} else {
 428		/* mov32 dst, src */
 429		if (is_ereg(dst_reg) || is_ereg(src_reg))
 430			EMIT1(add_2mod(0x40, dst_reg, src_reg));
 431		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
 432	}
 433
 434	*pprog = prog;
 435}
 436
 437static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
 438		  int oldproglen, struct jit_context *ctx)
 439{
 440	struct bpf_insn *insn = bpf_prog->insnsi;
 441	int insn_cnt = bpf_prog->len;
 442	bool seen_ld_abs = ctx->seen_ld_abs | (oldproglen == 0);
 443	bool seen_ax_reg = ctx->seen_ax_reg | (oldproglen == 0);
 444	bool seen_exit = false;
 445	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
 446	int i, cnt = 0;
 447	int proglen = 0;
 448	u8 *prog = temp;
 449
 450	emit_prologue(&prog, bpf_prog->aux->stack_depth,
 451		      bpf_prog_was_classic(bpf_prog));
 
 452
 453	if (seen_ld_abs)
 454		emit_load_skb_data_hlen(&prog);
 455
 456	for (i = 0; i < insn_cnt; i++, insn++) {
 457		const s32 imm32 = insn->imm;
 458		u32 dst_reg = insn->dst_reg;
 459		u32 src_reg = insn->src_reg;
 460		u8 b2 = 0, b3 = 0;
 461		s64 jmp_offset;
 462		u8 jmp_cond;
 463		bool reload_skb_data;
 464		int ilen;
 465		u8 *func;
 466
 467		if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
 468			ctx->seen_ax_reg = seen_ax_reg = true;
 469
 470		switch (insn->code) {
 471			/* ALU */
 472		case BPF_ALU | BPF_ADD | BPF_X:
 473		case BPF_ALU | BPF_SUB | BPF_X:
 474		case BPF_ALU | BPF_AND | BPF_X:
 475		case BPF_ALU | BPF_OR | BPF_X:
 476		case BPF_ALU | BPF_XOR | BPF_X:
 477		case BPF_ALU64 | BPF_ADD | BPF_X:
 478		case BPF_ALU64 | BPF_SUB | BPF_X:
 479		case BPF_ALU64 | BPF_AND | BPF_X:
 480		case BPF_ALU64 | BPF_OR | BPF_X:
 481		case BPF_ALU64 | BPF_XOR | BPF_X:
 482			switch (BPF_OP(insn->code)) {
 483			case BPF_ADD: b2 = 0x01; break;
 484			case BPF_SUB: b2 = 0x29; break;
 485			case BPF_AND: b2 = 0x21; break;
 486			case BPF_OR: b2 = 0x09; break;
 487			case BPF_XOR: b2 = 0x31; break;
 488			}
 489			if (BPF_CLASS(insn->code) == BPF_ALU64)
 490				EMIT1(add_2mod(0x48, dst_reg, src_reg));
 491			else if (is_ereg(dst_reg) || is_ereg(src_reg))
 492				EMIT1(add_2mod(0x40, dst_reg, src_reg));
 493			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
 494			break;
 495
 496		case BPF_ALU64 | BPF_MOV | BPF_X:
 497		case BPF_ALU | BPF_MOV | BPF_X:
 498			emit_mov_reg(&prog,
 499				     BPF_CLASS(insn->code) == BPF_ALU64,
 500				     dst_reg, src_reg);
 501			break;
 502
 503			/* neg dst */
 504		case BPF_ALU | BPF_NEG:
 505		case BPF_ALU64 | BPF_NEG:
 506			if (BPF_CLASS(insn->code) == BPF_ALU64)
 507				EMIT1(add_1mod(0x48, dst_reg));
 508			else if (is_ereg(dst_reg))
 509				EMIT1(add_1mod(0x40, dst_reg));
 510			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
 511			break;
 512
 513		case BPF_ALU | BPF_ADD | BPF_K:
 514		case BPF_ALU | BPF_SUB | BPF_K:
 515		case BPF_ALU | BPF_AND | BPF_K:
 516		case BPF_ALU | BPF_OR | BPF_K:
 517		case BPF_ALU | BPF_XOR | BPF_K:
 518		case BPF_ALU64 | BPF_ADD | BPF_K:
 519		case BPF_ALU64 | BPF_SUB | BPF_K:
 520		case BPF_ALU64 | BPF_AND | BPF_K:
 521		case BPF_ALU64 | BPF_OR | BPF_K:
 522		case BPF_ALU64 | BPF_XOR | BPF_K:
 523			if (BPF_CLASS(insn->code) == BPF_ALU64)
 524				EMIT1(add_1mod(0x48, dst_reg));
 525			else if (is_ereg(dst_reg))
 526				EMIT1(add_1mod(0x40, dst_reg));
 527
 528			/* b3 holds 'normal' opcode, b2 short form only valid
 
 529			 * in case dst is eax/rax.
 530			 */
 531			switch (BPF_OP(insn->code)) {
 532			case BPF_ADD:
 533				b3 = 0xC0;
 534				b2 = 0x05;
 535				break;
 536			case BPF_SUB:
 537				b3 = 0xE8;
 538				b2 = 0x2D;
 539				break;
 540			case BPF_AND:
 541				b3 = 0xE0;
 542				b2 = 0x25;
 543				break;
 544			case BPF_OR:
 545				b3 = 0xC8;
 546				b2 = 0x0D;
 547				break;
 548			case BPF_XOR:
 549				b3 = 0xF0;
 550				b2 = 0x35;
 551				break;
 552			}
 553
 554			if (is_imm8(imm32))
 555				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
 556			else if (is_axreg(dst_reg))
 557				EMIT1_off32(b2, imm32);
 558			else
 559				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
 560			break;
 561
 562		case BPF_ALU64 | BPF_MOV | BPF_K:
 563		case BPF_ALU | BPF_MOV | BPF_K:
 564			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
 565				       dst_reg, imm32);
 566			break;
 567
 568		case BPF_LD | BPF_IMM | BPF_DW:
 569			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
 570			insn++;
 571			i++;
 572			break;
 573
 574			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
 575		case BPF_ALU | BPF_MOD | BPF_X:
 576		case BPF_ALU | BPF_DIV | BPF_X:
 577		case BPF_ALU | BPF_MOD | BPF_K:
 578		case BPF_ALU | BPF_DIV | BPF_K:
 579		case BPF_ALU64 | BPF_MOD | BPF_X:
 580		case BPF_ALU64 | BPF_DIV | BPF_X:
 581		case BPF_ALU64 | BPF_MOD | BPF_K:
 582		case BPF_ALU64 | BPF_DIV | BPF_K:
 583			EMIT1(0x50); /* push rax */
 584			EMIT1(0x52); /* push rdx */
 585
 586			if (BPF_SRC(insn->code) == BPF_X)
 587				/* mov r11, src_reg */
 588				EMIT_mov(AUX_REG, src_reg);
 589			else
 590				/* mov r11, imm32 */
 591				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
 592
 593			/* mov rax, dst_reg */
 594			EMIT_mov(BPF_REG_0, dst_reg);
 595
 596			/* xor edx, edx
 
 597			 * equivalent to 'xor rdx, rdx', but one byte less
 598			 */
 599			EMIT2(0x31, 0xd2);
 600
 601			if (BPF_CLASS(insn->code) == BPF_ALU64)
 602				/* div r11 */
 603				EMIT3(0x49, 0xF7, 0xF3);
 604			else
 605				/* div r11d */
 606				EMIT3(0x41, 0xF7, 0xF3);
 607
 608			if (BPF_OP(insn->code) == BPF_MOD)
 609				/* mov r11, rdx */
 610				EMIT3(0x49, 0x89, 0xD3);
 611			else
 612				/* mov r11, rax */
 613				EMIT3(0x49, 0x89, 0xC3);
 614
 615			EMIT1(0x5A); /* pop rdx */
 616			EMIT1(0x58); /* pop rax */
 617
 618			/* mov dst_reg, r11 */
 619			EMIT_mov(dst_reg, AUX_REG);
 620			break;
 621
 622		case BPF_ALU | BPF_MUL | BPF_K:
 623		case BPF_ALU | BPF_MUL | BPF_X:
 624		case BPF_ALU64 | BPF_MUL | BPF_K:
 625		case BPF_ALU64 | BPF_MUL | BPF_X:
 626		{
 627			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
 628
 629			if (dst_reg != BPF_REG_0)
 630				EMIT1(0x50); /* push rax */
 631			if (dst_reg != BPF_REG_3)
 632				EMIT1(0x52); /* push rdx */
 633
 634			/* mov r11, dst_reg */
 635			EMIT_mov(AUX_REG, dst_reg);
 636
 637			if (BPF_SRC(insn->code) == BPF_X)
 638				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
 639			else
 640				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
 641
 642			if (is64)
 643				EMIT1(add_1mod(0x48, AUX_REG));
 644			else if (is_ereg(AUX_REG))
 645				EMIT1(add_1mod(0x40, AUX_REG));
 646			/* mul(q) r11 */
 647			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
 648
 649			if (dst_reg != BPF_REG_3)
 650				EMIT1(0x5A); /* pop rdx */
 651			if (dst_reg != BPF_REG_0) {
 652				/* mov dst_reg, rax */
 653				EMIT_mov(dst_reg, BPF_REG_0);
 654				EMIT1(0x58); /* pop rax */
 655			}
 656			break;
 657		}
 658			/* shifts */
 659		case BPF_ALU | BPF_LSH | BPF_K:
 660		case BPF_ALU | BPF_RSH | BPF_K:
 661		case BPF_ALU | BPF_ARSH | BPF_K:
 662		case BPF_ALU64 | BPF_LSH | BPF_K:
 663		case BPF_ALU64 | BPF_RSH | BPF_K:
 664		case BPF_ALU64 | BPF_ARSH | BPF_K:
 665			if (BPF_CLASS(insn->code) == BPF_ALU64)
 666				EMIT1(add_1mod(0x48, dst_reg));
 667			else if (is_ereg(dst_reg))
 668				EMIT1(add_1mod(0x40, dst_reg));
 669
 670			switch (BPF_OP(insn->code)) {
 671			case BPF_LSH: b3 = 0xE0; break;
 672			case BPF_RSH: b3 = 0xE8; break;
 673			case BPF_ARSH: b3 = 0xF8; break;
 674			}
 675
 676			if (imm32 == 1)
 677				EMIT2(0xD1, add_1reg(b3, dst_reg));
 678			else
 679				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
 680			break;
 681
 682		case BPF_ALU | BPF_LSH | BPF_X:
 683		case BPF_ALU | BPF_RSH | BPF_X:
 684		case BPF_ALU | BPF_ARSH | BPF_X:
 685		case BPF_ALU64 | BPF_LSH | BPF_X:
 686		case BPF_ALU64 | BPF_RSH | BPF_X:
 687		case BPF_ALU64 | BPF_ARSH | BPF_X:
 688
 689			/* check for bad case when dst_reg == rcx */
 690			if (dst_reg == BPF_REG_4) {
 691				/* mov r11, dst_reg */
 692				EMIT_mov(AUX_REG, dst_reg);
 693				dst_reg = AUX_REG;
 694			}
 695
 696			if (src_reg != BPF_REG_4) { /* common case */
 697				EMIT1(0x51); /* push rcx */
 698
 699				/* mov rcx, src_reg */
 700				EMIT_mov(BPF_REG_4, src_reg);
 701			}
 702
 703			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
 704			if (BPF_CLASS(insn->code) == BPF_ALU64)
 705				EMIT1(add_1mod(0x48, dst_reg));
 706			else if (is_ereg(dst_reg))
 707				EMIT1(add_1mod(0x40, dst_reg));
 708
 709			switch (BPF_OP(insn->code)) {
 710			case BPF_LSH: b3 = 0xE0; break;
 711			case BPF_RSH: b3 = 0xE8; break;
 712			case BPF_ARSH: b3 = 0xF8; break;
 713			}
 714			EMIT2(0xD3, add_1reg(b3, dst_reg));
 715
 716			if (src_reg != BPF_REG_4)
 717				EMIT1(0x59); /* pop rcx */
 718
 719			if (insn->dst_reg == BPF_REG_4)
 720				/* mov dst_reg, r11 */
 721				EMIT_mov(insn->dst_reg, AUX_REG);
 722			break;
 723
 724		case BPF_ALU | BPF_END | BPF_FROM_BE:
 725			switch (imm32) {
 726			case 16:
 727				/* emit 'ror %ax, 8' to swap lower 2 bytes */
 728				EMIT1(0x66);
 729				if (is_ereg(dst_reg))
 730					EMIT1(0x41);
 731				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
 732
 733				/* emit 'movzwl eax, ax' */
 734				if (is_ereg(dst_reg))
 735					EMIT3(0x45, 0x0F, 0xB7);
 736				else
 737					EMIT2(0x0F, 0xB7);
 738				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
 739				break;
 740			case 32:
 741				/* emit 'bswap eax' to swap lower 4 bytes */
 742				if (is_ereg(dst_reg))
 743					EMIT2(0x41, 0x0F);
 744				else
 745					EMIT1(0x0F);
 746				EMIT1(add_1reg(0xC8, dst_reg));
 747				break;
 748			case 64:
 749				/* emit 'bswap rax' to swap 8 bytes */
 750				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
 751				      add_1reg(0xC8, dst_reg));
 752				break;
 753			}
 754			break;
 755
 756		case BPF_ALU | BPF_END | BPF_FROM_LE:
 757			switch (imm32) {
 758			case 16:
 759				/* emit 'movzwl eax, ax' to zero extend 16-bit
 
 760				 * into 64 bit
 761				 */
 762				if (is_ereg(dst_reg))
 763					EMIT3(0x45, 0x0F, 0xB7);
 764				else
 765					EMIT2(0x0F, 0xB7);
 766				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
 767				break;
 768			case 32:
 769				/* emit 'mov eax, eax' to clear upper 32-bits */
 770				if (is_ereg(dst_reg))
 771					EMIT1(0x45);
 772				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
 773				break;
 774			case 64:
 775				/* nop */
 776				break;
 777			}
 778			break;
 779
 780			/* ST: *(u8*)(dst_reg + off) = imm */
 781		case BPF_ST | BPF_MEM | BPF_B:
 782			if (is_ereg(dst_reg))
 783				EMIT2(0x41, 0xC6);
 784			else
 785				EMIT1(0xC6);
 786			goto st;
 787		case BPF_ST | BPF_MEM | BPF_H:
 788			if (is_ereg(dst_reg))
 789				EMIT3(0x66, 0x41, 0xC7);
 790			else
 791				EMIT2(0x66, 0xC7);
 792			goto st;
 793		case BPF_ST | BPF_MEM | BPF_W:
 794			if (is_ereg(dst_reg))
 795				EMIT2(0x41, 0xC7);
 796			else
 797				EMIT1(0xC7);
 798			goto st;
 799		case BPF_ST | BPF_MEM | BPF_DW:
 800			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
 801
 802st:			if (is_imm8(insn->off))
 803				EMIT2(add_1reg(0x40, dst_reg), insn->off);
 804			else
 805				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
 806
 807			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
 808			break;
 809
 810			/* STX: *(u8*)(dst_reg + off) = src_reg */
 811		case BPF_STX | BPF_MEM | BPF_B:
 812			/* emit 'mov byte ptr [rax + off], al' */
 813			if (is_ereg(dst_reg) || is_ereg(src_reg) ||
 814			    /* have to add extra byte for x86 SIL, DIL regs */
 815			    src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
 816				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
 817			else
 818				EMIT1(0x88);
 819			goto stx;
 820		case BPF_STX | BPF_MEM | BPF_H:
 821			if (is_ereg(dst_reg) || is_ereg(src_reg))
 822				EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
 823			else
 824				EMIT2(0x66, 0x89);
 825			goto stx;
 826		case BPF_STX | BPF_MEM | BPF_W:
 827			if (is_ereg(dst_reg) || is_ereg(src_reg))
 828				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
 829			else
 830				EMIT1(0x89);
 831			goto stx;
 832		case BPF_STX | BPF_MEM | BPF_DW:
 833			EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
 834stx:			if (is_imm8(insn->off))
 835				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
 836			else
 837				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
 838					    insn->off);
 839			break;
 840
 841			/* LDX: dst_reg = *(u8*)(src_reg + off) */
 842		case BPF_LDX | BPF_MEM | BPF_B:
 843			/* emit 'movzx rax, byte ptr [rax + off]' */
 844			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
 845			goto ldx;
 846		case BPF_LDX | BPF_MEM | BPF_H:
 847			/* emit 'movzx rax, word ptr [rax + off]' */
 848			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
 849			goto ldx;
 850		case BPF_LDX | BPF_MEM | BPF_W:
 851			/* emit 'mov eax, dword ptr [rax+0x14]' */
 852			if (is_ereg(dst_reg) || is_ereg(src_reg))
 853				EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
 854			else
 855				EMIT1(0x8B);
 856			goto ldx;
 857		case BPF_LDX | BPF_MEM | BPF_DW:
 858			/* emit 'mov rax, qword ptr [rax+0x14]' */
 859			EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
 860ldx:			/* if insn->off == 0 we can save one extra byte, but
 861			 * special case of x86 r13 which always needs an offset
 
 862			 * is not worth the hassle
 863			 */
 864			if (is_imm8(insn->off))
 865				EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
 866			else
 867				EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
 868					    insn->off);
 869			break;
 870
 871			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
 872		case BPF_STX | BPF_XADD | BPF_W:
 873			/* emit 'lock add dword ptr [rax + off], eax' */
 874			if (is_ereg(dst_reg) || is_ereg(src_reg))
 875				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
 876			else
 877				EMIT2(0xF0, 0x01);
 878			goto xadd;
 879		case BPF_STX | BPF_XADD | BPF_DW:
 880			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
 881xadd:			if (is_imm8(insn->off))
 882				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
 883			else
 884				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
 885					    insn->off);
 886			break;
 887
 888			/* call */
 889		case BPF_JMP | BPF_CALL:
 890			func = (u8 *) __bpf_call_base + imm32;
 891			jmp_offset = func - (image + addrs[i]);
 892			if (seen_ld_abs) {
 893				reload_skb_data = bpf_helper_changes_pkt_data(func);
 894				if (reload_skb_data) {
 895					EMIT1(0x57); /* push %rdi */
 896					jmp_offset += 22; /* pop, mov, sub, mov */
 897				} else {
 898					EMIT2(0x41, 0x52); /* push %r10 */
 899					EMIT2(0x41, 0x51); /* push %r9 */
 900					/* need to adjust jmp offset, since
 901					 * pop %r9, pop %r10 take 4 bytes after call insn
 902					 */
 903					jmp_offset += 4;
 904				}
 905			}
 906			if (!imm32 || !is_simm32(jmp_offset)) {
 907				pr_err("unsupported bpf func %d addr %p image %p\n",
 908				       imm32, func, image);
 909				return -EINVAL;
 910			}
 911			EMIT1_off32(0xE8, jmp_offset);
 912			if (seen_ld_abs) {
 913				if (reload_skb_data) {
 914					EMIT1(0x5F); /* pop %rdi */
 915					emit_load_skb_data_hlen(&prog);
 916				} else {
 917					EMIT2(0x41, 0x59); /* pop %r9 */
 918					EMIT2(0x41, 0x5A); /* pop %r10 */
 919				}
 920			}
 921			break;
 922
 923		case BPF_JMP | BPF_TAIL_CALL:
 924			emit_bpf_tail_call(&prog);
 925			break;
 926
 927			/* cond jump */
 928		case BPF_JMP | BPF_JEQ | BPF_X:
 929		case BPF_JMP | BPF_JNE | BPF_X:
 930		case BPF_JMP | BPF_JGT | BPF_X:
 931		case BPF_JMP | BPF_JLT | BPF_X:
 932		case BPF_JMP | BPF_JGE | BPF_X:
 933		case BPF_JMP | BPF_JLE | BPF_X:
 934		case BPF_JMP | BPF_JSGT | BPF_X:
 935		case BPF_JMP | BPF_JSLT | BPF_X:
 936		case BPF_JMP | BPF_JSGE | BPF_X:
 937		case BPF_JMP | BPF_JSLE | BPF_X:
 
 
 
 
 
 
 
 
 
 
 938			/* cmp dst_reg, src_reg */
 939			EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39,
 940			      add_2reg(0xC0, dst_reg, src_reg));
 
 
 
 941			goto emit_cond_jmp;
 942
 943		case BPF_JMP | BPF_JSET | BPF_X:
 
 944			/* test dst_reg, src_reg */
 945			EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85,
 946			      add_2reg(0xC0, dst_reg, src_reg));
 
 
 
 947			goto emit_cond_jmp;
 948
 949		case BPF_JMP | BPF_JSET | BPF_K:
 
 950			/* test dst_reg, imm32 */
 951			EMIT1(add_1mod(0x48, dst_reg));
 
 
 
 952			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
 953			goto emit_cond_jmp;
 954
 955		case BPF_JMP | BPF_JEQ | BPF_K:
 956		case BPF_JMP | BPF_JNE | BPF_K:
 957		case BPF_JMP | BPF_JGT | BPF_K:
 958		case BPF_JMP | BPF_JLT | BPF_K:
 959		case BPF_JMP | BPF_JGE | BPF_K:
 960		case BPF_JMP | BPF_JLE | BPF_K:
 961		case BPF_JMP | BPF_JSGT | BPF_K:
 962		case BPF_JMP | BPF_JSLT | BPF_K:
 963		case BPF_JMP | BPF_JSGE | BPF_K:
 964		case BPF_JMP | BPF_JSLE | BPF_K:
 
 
 
 
 
 
 
 
 
 
 965			/* cmp dst_reg, imm8/32 */
 966			EMIT1(add_1mod(0x48, dst_reg));
 
 
 
 967
 968			if (is_imm8(imm32))
 969				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
 970			else
 971				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
 972
 973emit_cond_jmp:		/* convert BPF opcode to x86 */
 974			switch (BPF_OP(insn->code)) {
 975			case BPF_JEQ:
 976				jmp_cond = X86_JE;
 977				break;
 978			case BPF_JSET:
 979			case BPF_JNE:
 980				jmp_cond = X86_JNE;
 981				break;
 982			case BPF_JGT:
 983				/* GT is unsigned '>', JA in x86 */
 984				jmp_cond = X86_JA;
 985				break;
 986			case BPF_JLT:
 987				/* LT is unsigned '<', JB in x86 */
 988				jmp_cond = X86_JB;
 989				break;
 990			case BPF_JGE:
 991				/* GE is unsigned '>=', JAE in x86 */
 992				jmp_cond = X86_JAE;
 993				break;
 994			case BPF_JLE:
 995				/* LE is unsigned '<=', JBE in x86 */
 996				jmp_cond = X86_JBE;
 997				break;
 998			case BPF_JSGT:
 999				/* signed '>', GT in x86 */
1000				jmp_cond = X86_JG;
1001				break;
1002			case BPF_JSLT:
1003				/* signed '<', LT in x86 */
1004				jmp_cond = X86_JL;
1005				break;
1006			case BPF_JSGE:
1007				/* signed '>=', GE in x86 */
1008				jmp_cond = X86_JGE;
1009				break;
1010			case BPF_JSLE:
1011				/* signed '<=', LE in x86 */
1012				jmp_cond = X86_JLE;
1013				break;
1014			default: /* to silence gcc warning */
1015				return -EFAULT;
1016			}
1017			jmp_offset = addrs[i + insn->off] - addrs[i];
1018			if (is_imm8(jmp_offset)) {
1019				EMIT2(jmp_cond, jmp_offset);
1020			} else if (is_simm32(jmp_offset)) {
1021				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1022			} else {
1023				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1024				return -EFAULT;
1025			}
1026
1027			break;
1028
1029		case BPF_JMP | BPF_JA:
1030			if (insn->off == -1)
1031				/* -1 jmp instructions will always jump
1032				 * backwards two bytes. Explicitly handling
1033				 * this case avoids wasting too many passes
1034				 * when there are long sequences of replaced
1035				 * dead code.
1036				 */
1037				jmp_offset = -2;
1038			else
1039				jmp_offset = addrs[i + insn->off] - addrs[i];
1040
1041			if (!jmp_offset)
1042				/* optimize out nop jumps */
1043				break;
1044emit_jmp:
1045			if (is_imm8(jmp_offset)) {
1046				EMIT2(0xEB, jmp_offset);
1047			} else if (is_simm32(jmp_offset)) {
1048				EMIT1_off32(0xE9, jmp_offset);
1049			} else {
1050				pr_err("jmp gen bug %llx\n", jmp_offset);
1051				return -EFAULT;
1052			}
1053			break;
1054
1055		case BPF_LD | BPF_IND | BPF_W:
1056			func = sk_load_word;
1057			goto common_load;
1058		case BPF_LD | BPF_ABS | BPF_W:
1059			func = CHOOSE_LOAD_FUNC(imm32, sk_load_word);
1060common_load:
1061			ctx->seen_ld_abs = seen_ld_abs = true;
1062			jmp_offset = func - (image + addrs[i]);
1063			if (!func || !is_simm32(jmp_offset)) {
1064				pr_err("unsupported bpf func %d addr %p image %p\n",
1065				       imm32, func, image);
1066				return -EINVAL;
1067			}
1068			if (BPF_MODE(insn->code) == BPF_ABS) {
1069				/* mov %esi, imm32 */
1070				EMIT1_off32(0xBE, imm32);
1071			} else {
1072				/* mov %rsi, src_reg */
1073				EMIT_mov(BPF_REG_2, src_reg);
1074				if (imm32) {
1075					if (is_imm8(imm32))
1076						/* add %esi, imm8 */
1077						EMIT3(0x83, 0xC6, imm32);
1078					else
1079						/* add %esi, imm32 */
1080						EMIT2_off32(0x81, 0xC6, imm32);
1081				}
1082			}
1083			/* skb pointer is in R6 (%rbx), it will be copied into
1084			 * %rdi if skb_copy_bits() call is necessary.
1085			 * sk_load_* helpers also use %r10 and %r9d.
1086			 * See bpf_jit.S
1087			 */
1088			if (seen_ax_reg)
1089				/* r10 = skb->data, mov %r10, off32(%rbx) */
1090				EMIT3_off32(0x4c, 0x8b, 0x93,
1091					    offsetof(struct sk_buff, data));
1092			EMIT1_off32(0xE8, jmp_offset); /* call */
1093			break;
1094
1095		case BPF_LD | BPF_IND | BPF_H:
1096			func = sk_load_half;
1097			goto common_load;
1098		case BPF_LD | BPF_ABS | BPF_H:
1099			func = CHOOSE_LOAD_FUNC(imm32, sk_load_half);
1100			goto common_load;
1101		case BPF_LD | BPF_IND | BPF_B:
1102			func = sk_load_byte;
1103			goto common_load;
1104		case BPF_LD | BPF_ABS | BPF_B:
1105			func = CHOOSE_LOAD_FUNC(imm32, sk_load_byte);
1106			goto common_load;
1107
1108		case BPF_JMP | BPF_EXIT:
1109			if (seen_exit) {
1110				jmp_offset = ctx->cleanup_addr - addrs[i];
1111				goto emit_jmp;
1112			}
1113			seen_exit = true;
1114			/* update cleanup_addr */
1115			ctx->cleanup_addr = proglen;
1116			/* mov rbx, qword ptr [rbp+0] */
1117			EMIT4(0x48, 0x8B, 0x5D, 0);
1118			/* mov r13, qword ptr [rbp+8] */
1119			EMIT4(0x4C, 0x8B, 0x6D, 8);
1120			/* mov r14, qword ptr [rbp+16] */
1121			EMIT4(0x4C, 0x8B, 0x75, 16);
1122			/* mov r15, qword ptr [rbp+24] */
1123			EMIT4(0x4C, 0x8B, 0x7D, 24);
1124
1125			/* add rbp, AUX_STACK_SPACE */
1126			EMIT4(0x48, 0x83, 0xC5, AUX_STACK_SPACE);
1127			EMIT1(0xC9); /* leave */
1128			EMIT1(0xC3); /* ret */
1129			break;
1130
1131		default:
1132			/* By design x64 JIT should support all BPF instructions
 
1133			 * This error will be seen if new instruction was added
1134			 * to interpreter, but not to JIT
1135			 * or if there is junk in bpf_prog
1136			 */
1137			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1138			return -EINVAL;
1139		}
1140
1141		ilen = prog - temp;
1142		if (ilen > BPF_MAX_INSN_SIZE) {
1143			pr_err("bpf_jit: fatal insn size error\n");
1144			return -EFAULT;
1145		}
1146
1147		if (image) {
1148			if (unlikely(proglen + ilen > oldproglen)) {
1149				pr_err("bpf_jit: fatal error\n");
1150				return -EFAULT;
1151			}
1152			memcpy(image + proglen, temp, ilen);
1153		}
1154		proglen += ilen;
1155		addrs[i] = proglen;
1156		prog = temp;
1157	}
1158	return proglen;
1159}
1160
1161struct x64_jit_data {
1162	struct bpf_binary_header *header;
1163	int *addrs;
1164	u8 *image;
1165	int proglen;
1166	struct jit_context ctx;
1167};
1168
1169struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1170{
1171	struct bpf_binary_header *header = NULL;
1172	struct bpf_prog *tmp, *orig_prog = prog;
1173	struct x64_jit_data *jit_data;
1174	int proglen, oldproglen = 0;
1175	struct jit_context ctx = {};
1176	bool tmp_blinded = false;
1177	bool extra_pass = false;
1178	u8 *image = NULL;
1179	int *addrs;
1180	int pass;
1181	int i;
1182
1183	if (!prog->jit_requested)
1184		return orig_prog;
1185
1186	tmp = bpf_jit_blind_constants(prog);
1187	/* If blinding was requested and we failed during blinding,
 
1188	 * we must fall back to the interpreter.
1189	 */
1190	if (IS_ERR(tmp))
1191		return orig_prog;
1192	if (tmp != prog) {
1193		tmp_blinded = true;
1194		prog = tmp;
1195	}
1196
1197	jit_data = prog->aux->jit_data;
1198	if (!jit_data) {
1199		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1200		if (!jit_data) {
1201			prog = orig_prog;
1202			goto out;
1203		}
1204		prog->aux->jit_data = jit_data;
1205	}
1206	addrs = jit_data->addrs;
1207	if (addrs) {
1208		ctx = jit_data->ctx;
1209		oldproglen = jit_data->proglen;
1210		image = jit_data->image;
1211		header = jit_data->header;
1212		extra_pass = true;
1213		goto skip_init_addrs;
1214	}
1215	addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL);
1216	if (!addrs) {
1217		prog = orig_prog;
1218		goto out_addrs;
1219	}
1220
1221	/* Before first pass, make a rough estimation of addrs[]
1222	 * each bpf instruction is translated to less than 64 bytes
 
1223	 */
1224	for (proglen = 0, i = 0; i < prog->len; i++) {
1225		proglen += 64;
1226		addrs[i] = proglen;
1227	}
1228	ctx.cleanup_addr = proglen;
1229skip_init_addrs:
1230
1231	/* JITed image shrinks with every pass and the loop iterates
1232	 * until the image stops shrinking. Very large bpf programs
 
1233	 * may converge on the last pass. In such case do one more
1234	 * pass to emit the final image
1235	 */
1236	for (pass = 0; pass < 20 || image; pass++) {
1237		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1238		if (proglen <= 0) {
1239out_image:
1240			image = NULL;
1241			if (header)
1242				bpf_jit_binary_free(header);
1243			prog = orig_prog;
1244			goto out_addrs;
1245		}
1246		if (image) {
1247			if (proglen != oldproglen) {
1248				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1249				       proglen, oldproglen);
1250				goto out_image;
1251			}
1252			break;
1253		}
1254		if (proglen == oldproglen) {
1255			header = bpf_jit_binary_alloc(proglen, &image,
1256						      1, jit_fill_hole);
1257			if (!header) {
1258				prog = orig_prog;
1259				goto out_addrs;
1260			}
1261		}
1262		oldproglen = proglen;
1263		cond_resched();
1264	}
1265
1266	if (bpf_jit_enable > 1)
1267		bpf_jit_dump(prog->len, proglen, pass + 1, image);
1268
1269	if (image) {
1270		if (!prog->is_func || extra_pass) {
1271			bpf_jit_binary_lock_ro(header);
1272		} else {
1273			jit_data->addrs = addrs;
1274			jit_data->ctx = ctx;
1275			jit_data->proglen = proglen;
1276			jit_data->image = image;
1277			jit_data->header = header;
1278		}
1279		prog->bpf_func = (void *)image;
1280		prog->jited = 1;
1281		prog->jited_len = proglen;
1282	} else {
1283		prog = orig_prog;
1284	}
1285
1286	if (!image || !prog->is_func || extra_pass) {
 
 
1287out_addrs:
1288		kfree(addrs);
1289		kfree(jit_data);
1290		prog->aux->jit_data = NULL;
1291	}
1292out:
1293	if (tmp_blinded)
1294		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1295					   tmp : orig_prog);
1296	return prog;
1297}