Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * handle transition of Linux booting another kernel
  4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
  7#define pr_fmt(fmt)	"kexec: " fmt
  8
  9#include <linux/mm.h>
 10#include <linux/kexec.h>
 11#include <linux/string.h>
 12#include <linux/gfp.h>
 13#include <linux/reboot.h>
 14#include <linux/numa.h>
 15#include <linux/ftrace.h>
 16#include <linux/io.h>
 17#include <linux/suspend.h>
 18#include <linux/vmalloc.h>
 19#include <linux/efi.h>
 
 20
 21#include <asm/init.h>
 22#include <asm/pgtable.h>
 23#include <asm/tlbflush.h>
 24#include <asm/mmu_context.h>
 25#include <asm/io_apic.h>
 26#include <asm/debugreg.h>
 27#include <asm/kexec-bzimage64.h>
 28#include <asm/setup.h>
 29#include <asm/set_memory.h>
 
 30
 31#ifdef CONFIG_ACPI
 32/*
 33 * Used while adding mapping for ACPI tables.
 34 * Can be reused when other iomem regions need be mapped
 35 */
 36struct init_pgtable_data {
 37	struct x86_mapping_info *info;
 38	pgd_t *level4p;
 39};
 40
 41static int mem_region_callback(struct resource *res, void *arg)
 42{
 43	struct init_pgtable_data *data = arg;
 44	unsigned long mstart, mend;
 45
 46	mstart = res->start;
 47	mend = mstart + resource_size(res) - 1;
 48
 49	return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
 50}
 51
 52static int
 53map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
 54{
 55	struct init_pgtable_data data;
 56	unsigned long flags;
 57	int ret;
 58
 59	data.info = info;
 60	data.level4p = level4p;
 61	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 62
 63	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
 64				  &data, mem_region_callback);
 65	if (ret && ret != -EINVAL)
 66		return ret;
 67
 68	/* ACPI tables could be located in ACPI Non-volatile Storage region */
 69	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
 70				  &data, mem_region_callback);
 71	if (ret && ret != -EINVAL)
 72		return ret;
 73
 74	return 0;
 75}
 76#else
 77static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
 78#endif
 79
 80#ifdef CONFIG_KEXEC_FILE
 81const struct kexec_file_ops * const kexec_file_loaders[] = {
 82		&kexec_bzImage64_ops,
 83		NULL
 84};
 85#endif
 86
 87static int
 88map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
 89{
 90#ifdef CONFIG_EFI
 91	unsigned long mstart, mend;
 92
 93	if (!efi_enabled(EFI_BOOT))
 94		return 0;
 95
 96	mstart = (boot_params.efi_info.efi_systab |
 97			((u64)boot_params.efi_info.efi_systab_hi<<32));
 98
 99	if (efi_enabled(EFI_64BIT))
100		mend = mstart + sizeof(efi_system_table_64_t);
101	else
102		mend = mstart + sizeof(efi_system_table_32_t);
103
104	if (!mstart)
105		return 0;
106
107	return kernel_ident_mapping_init(info, level4p, mstart, mend);
108#endif
109	return 0;
110}
111
112static void free_transition_pgtable(struct kimage *image)
113{
114	free_page((unsigned long)image->arch.p4d);
115	image->arch.p4d = NULL;
116	free_page((unsigned long)image->arch.pud);
117	image->arch.pud = NULL;
118	free_page((unsigned long)image->arch.pmd);
119	image->arch.pmd = NULL;
120	free_page((unsigned long)image->arch.pte);
121	image->arch.pte = NULL;
122}
123
124static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
125{
126	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
127	unsigned long vaddr, paddr;
128	int result = -ENOMEM;
129	p4d_t *p4d;
130	pud_t *pud;
131	pmd_t *pmd;
132	pte_t *pte;
133
134	vaddr = (unsigned long)relocate_kernel;
135	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
136	pgd += pgd_index(vaddr);
137	if (!pgd_present(*pgd)) {
138		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
139		if (!p4d)
140			goto err;
141		image->arch.p4d = p4d;
142		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
143	}
144	p4d = p4d_offset(pgd, vaddr);
145	if (!p4d_present(*p4d)) {
146		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
147		if (!pud)
148			goto err;
149		image->arch.pud = pud;
150		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
151	}
152	pud = pud_offset(p4d, vaddr);
153	if (!pud_present(*pud)) {
154		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
155		if (!pmd)
156			goto err;
157		image->arch.pmd = pmd;
158		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
159	}
160	pmd = pmd_offset(pud, vaddr);
161	if (!pmd_present(*pmd)) {
162		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
163		if (!pte)
164			goto err;
165		image->arch.pte = pte;
166		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
167	}
168	pte = pte_offset_kernel(pmd, vaddr);
169
170	if (sev_active())
171		prot = PAGE_KERNEL_EXEC;
172
173	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
174	return 0;
175err:
176	return result;
177}
178
179static void *alloc_pgt_page(void *data)
180{
181	struct kimage *image = (struct kimage *)data;
182	struct page *page;
183	void *p = NULL;
184
185	page = kimage_alloc_control_pages(image, 0);
186	if (page) {
187		p = page_address(page);
188		clear_page(p);
189	}
190
191	return p;
192}
193
194static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
195{
196	struct x86_mapping_info info = {
197		.alloc_pgt_page	= alloc_pgt_page,
198		.context	= image,
199		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
200		.kernpg_flag	= _KERNPG_TABLE_NOENC,
201	};
202	unsigned long mstart, mend;
203	pgd_t *level4p;
204	int result;
205	int i;
206
207	level4p = (pgd_t *)__va(start_pgtable);
208	clear_page(level4p);
209
210	if (sev_active()) {
211		info.page_flag   |= _PAGE_ENC;
212		info.kernpg_flag |= _PAGE_ENC;
213	}
214
215	if (direct_gbpages)
216		info.direct_gbpages = true;
217
218	for (i = 0; i < nr_pfn_mapped; i++) {
219		mstart = pfn_mapped[i].start << PAGE_SHIFT;
220		mend   = pfn_mapped[i].end << PAGE_SHIFT;
221
222		result = kernel_ident_mapping_init(&info,
223						 level4p, mstart, mend);
224		if (result)
225			return result;
226	}
227
228	/*
229	 * segments's mem ranges could be outside 0 ~ max_pfn,
230	 * for example when jump back to original kernel from kexeced kernel.
231	 * or first kernel is booted with user mem map, and second kernel
232	 * could be loaded out of that range.
233	 */
234	for (i = 0; i < image->nr_segments; i++) {
235		mstart = image->segment[i].mem;
236		mend   = mstart + image->segment[i].memsz;
237
238		result = kernel_ident_mapping_init(&info,
239						 level4p, mstart, mend);
240
241		if (result)
242			return result;
243	}
244
245	/*
246	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
247	 * not covered by pfn_mapped.
248	 */
249	result = map_efi_systab(&info, level4p);
250	if (result)
251		return result;
252
253	result = map_acpi_tables(&info, level4p);
254	if (result)
255		return result;
256
257	return init_transition_pgtable(image, level4p);
258}
259
260static void set_idt(void *newidt, u16 limit)
261{
262	struct desc_ptr curidt;
263
264	/* x86-64 supports unaliged loads & stores */
265	curidt.size    = limit;
266	curidt.address = (unsigned long)newidt;
267
268	__asm__ __volatile__ (
269		"lidtq %0\n"
270		: : "m" (curidt)
271		);
272};
273
274
275static void set_gdt(void *newgdt, u16 limit)
276{
277	struct desc_ptr curgdt;
278
279	/* x86-64 supports unaligned loads & stores */
280	curgdt.size    = limit;
281	curgdt.address = (unsigned long)newgdt;
282
283	__asm__ __volatile__ (
284		"lgdtq %0\n"
285		: : "m" (curgdt)
286		);
287};
288
289static void load_segments(void)
290{
291	__asm__ __volatile__ (
292		"\tmovl %0,%%ds\n"
293		"\tmovl %0,%%es\n"
294		"\tmovl %0,%%ss\n"
295		"\tmovl %0,%%fs\n"
296		"\tmovl %0,%%gs\n"
297		: : "a" (__KERNEL_DS) : "memory"
298		);
299}
300
301#ifdef CONFIG_KEXEC_FILE
302/* Update purgatory as needed after various image segments have been prepared */
303static int arch_update_purgatory(struct kimage *image)
304{
305	int ret = 0;
306
307	if (!image->file_mode)
308		return 0;
309
310	/* Setup copying of backup region */
311	if (image->type == KEXEC_TYPE_CRASH) {
312		ret = kexec_purgatory_get_set_symbol(image,
313				"purgatory_backup_dest",
314				&image->arch.backup_load_addr,
315				sizeof(image->arch.backup_load_addr), 0);
316		if (ret)
317			return ret;
318
319		ret = kexec_purgatory_get_set_symbol(image,
320				"purgatory_backup_src",
321				&image->arch.backup_src_start,
322				sizeof(image->arch.backup_src_start), 0);
323		if (ret)
324			return ret;
325
326		ret = kexec_purgatory_get_set_symbol(image,
327				"purgatory_backup_sz",
328				&image->arch.backup_src_sz,
329				sizeof(image->arch.backup_src_sz), 0);
330		if (ret)
331			return ret;
332	}
333
334	return ret;
335}
336#else /* !CONFIG_KEXEC_FILE */
337static inline int arch_update_purgatory(struct kimage *image)
338{
339	return 0;
340}
341#endif /* CONFIG_KEXEC_FILE */
342
343int machine_kexec_prepare(struct kimage *image)
344{
345	unsigned long start_pgtable;
346	int result;
347
348	/* Calculate the offsets */
349	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
350
351	/* Setup the identity mapped 64bit page table */
352	result = init_pgtable(image, start_pgtable);
353	if (result)
354		return result;
355
356	/* update purgatory as needed */
357	result = arch_update_purgatory(image);
358	if (result)
359		return result;
360
361	return 0;
362}
363
364void machine_kexec_cleanup(struct kimage *image)
365{
366	free_transition_pgtable(image);
367}
368
369/*
370 * Do not allocate memory (or fail in any way) in machine_kexec().
371 * We are past the point of no return, committed to rebooting now.
372 */
373void machine_kexec(struct kimage *image)
374{
375	unsigned long page_list[PAGES_NR];
376	void *control_page;
377	int save_ftrace_enabled;
378
379#ifdef CONFIG_KEXEC_JUMP
380	if (image->preserve_context)
381		save_processor_state();
382#endif
383
384	save_ftrace_enabled = __ftrace_enabled_save();
385
386	/* Interrupts aren't acceptable while we reboot */
387	local_irq_disable();
388	hw_breakpoint_disable();
 
389
390	if (image->preserve_context) {
391#ifdef CONFIG_X86_IO_APIC
392		/*
393		 * We need to put APICs in legacy mode so that we can
394		 * get timer interrupts in second kernel. kexec/kdump
395		 * paths already have calls to restore_boot_irq_mode()
396		 * in one form or other. kexec jump path also need one.
397		 */
398		clear_IO_APIC();
399		restore_boot_irq_mode();
400#endif
401	}
402
403	control_page = page_address(image->control_code_page) + PAGE_SIZE;
404	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
405
406	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
407	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
408	page_list[PA_TABLE_PAGE] =
409	  (unsigned long)__pa(page_address(image->control_code_page));
410
411	if (image->type == KEXEC_TYPE_DEFAULT)
412		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
413						<< PAGE_SHIFT);
414
415	/*
416	 * The segment registers are funny things, they have both a
417	 * visible and an invisible part.  Whenever the visible part is
418	 * set to a specific selector, the invisible part is loaded
419	 * with from a table in memory.  At no other time is the
420	 * descriptor table in memory accessed.
421	 *
422	 * I take advantage of this here by force loading the
423	 * segments, before I zap the gdt with an invalid value.
424	 */
425	load_segments();
426	/*
427	 * The gdt & idt are now invalid.
428	 * If you want to load them you must set up your own idt & gdt.
429	 */
430	set_gdt(phys_to_virt(0), 0);
431	set_idt(phys_to_virt(0), 0);
432
433	/* now call it */
434	image->start = relocate_kernel((unsigned long)image->head,
435				       (unsigned long)page_list,
436				       image->start,
437				       image->preserve_context,
438				       sme_active());
439
440#ifdef CONFIG_KEXEC_JUMP
441	if (image->preserve_context)
442		restore_processor_state();
443#endif
444
445	__ftrace_enabled_restore(save_ftrace_enabled);
446}
447
448void arch_crash_save_vmcoreinfo(void)
449{
450	u64 sme_mask = sme_me_mask;
451
452	VMCOREINFO_NUMBER(phys_base);
453	VMCOREINFO_SYMBOL(init_top_pgt);
454	vmcoreinfo_append_str("NUMBER(pgtable_l5_enabled)=%d\n",
455			pgtable_l5_enabled());
456
457#ifdef CONFIG_NUMA
458	VMCOREINFO_SYMBOL(node_data);
459	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
460#endif
461	vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
462			      kaslr_offset());
463	VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
464	VMCOREINFO_NUMBER(sme_mask);
465}
466
467/* arch-dependent functionality related to kexec file-based syscall */
468
469#ifdef CONFIG_KEXEC_FILE
470void *arch_kexec_kernel_image_load(struct kimage *image)
471{
472	vfree(image->arch.elf_headers);
473	image->arch.elf_headers = NULL;
474
475	if (!image->fops || !image->fops->load)
476		return ERR_PTR(-ENOEXEC);
477
478	return image->fops->load(image, image->kernel_buf,
479				 image->kernel_buf_len, image->initrd_buf,
480				 image->initrd_buf_len, image->cmdline_buf,
481				 image->cmdline_buf_len);
482}
483
484/*
485 * Apply purgatory relocations.
486 *
487 * @pi:		Purgatory to be relocated.
488 * @section:	Section relocations applying to.
489 * @relsec:	Section containing RELAs.
490 * @symtabsec:	Corresponding symtab.
491 *
492 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
493 */
494int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
495				     Elf_Shdr *section, const Elf_Shdr *relsec,
496				     const Elf_Shdr *symtabsec)
497{
498	unsigned int i;
499	Elf64_Rela *rel;
500	Elf64_Sym *sym;
501	void *location;
502	unsigned long address, sec_base, value;
503	const char *strtab, *name, *shstrtab;
504	const Elf_Shdr *sechdrs;
505
506	/* String & section header string table */
507	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
508	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
509	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
510
511	rel = (void *)pi->ehdr + relsec->sh_offset;
512
513	pr_debug("Applying relocate section %s to %u\n",
514		 shstrtab + relsec->sh_name, relsec->sh_info);
515
516	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
517
518		/*
519		 * rel[i].r_offset contains byte offset from beginning
520		 * of section to the storage unit affected.
521		 *
522		 * This is location to update. This is temporary buffer
523		 * where section is currently loaded. This will finally be
524		 * loaded to a different address later, pointed to by
525		 * ->sh_addr. kexec takes care of moving it
526		 *  (kexec_load_segment()).
527		 */
528		location = pi->purgatory_buf;
529		location += section->sh_offset;
530		location += rel[i].r_offset;
531
532		/* Final address of the location */
533		address = section->sh_addr + rel[i].r_offset;
534
535		/*
536		 * rel[i].r_info contains information about symbol table index
537		 * w.r.t which relocation must be made and type of relocation
538		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
539		 * these respectively.
540		 */
541		sym = (void *)pi->ehdr + symtabsec->sh_offset;
542		sym += ELF64_R_SYM(rel[i].r_info);
543
544		if (sym->st_name)
545			name = strtab + sym->st_name;
546		else
547			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
548
549		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
550			 name, sym->st_info, sym->st_shndx, sym->st_value,
551			 sym->st_size);
552
553		if (sym->st_shndx == SHN_UNDEF) {
554			pr_err("Undefined symbol: %s\n", name);
555			return -ENOEXEC;
556		}
557
558		if (sym->st_shndx == SHN_COMMON) {
559			pr_err("symbol '%s' in common section\n", name);
560			return -ENOEXEC;
561		}
562
563		if (sym->st_shndx == SHN_ABS)
564			sec_base = 0;
565		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
566			pr_err("Invalid section %d for symbol %s\n",
567			       sym->st_shndx, name);
568			return -ENOEXEC;
569		} else
570			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
571
572		value = sym->st_value;
573		value += sec_base;
574		value += rel[i].r_addend;
575
576		switch (ELF64_R_TYPE(rel[i].r_info)) {
577		case R_X86_64_NONE:
578			break;
579		case R_X86_64_64:
580			*(u64 *)location = value;
581			break;
582		case R_X86_64_32:
583			*(u32 *)location = value;
584			if (value != *(u32 *)location)
585				goto overflow;
586			break;
587		case R_X86_64_32S:
588			*(s32 *)location = value;
589			if ((s64)value != *(s32 *)location)
590				goto overflow;
591			break;
592		case R_X86_64_PC32:
593		case R_X86_64_PLT32:
594			value -= (u64)address;
595			*(u32 *)location = value;
596			break;
597		default:
598			pr_err("Unknown rela relocation: %llu\n",
599			       ELF64_R_TYPE(rel[i].r_info));
600			return -ENOEXEC;
601		}
602	}
603	return 0;
604
605overflow:
606	pr_err("Overflow in relocation type %d value 0x%lx\n",
607	       (int)ELF64_R_TYPE(rel[i].r_info), value);
608	return -ENOEXEC;
609}
 
 
 
 
 
 
 
 
 
610#endif /* CONFIG_KEXEC_FILE */
611
612static int
613kexec_mark_range(unsigned long start, unsigned long end, bool protect)
614{
615	struct page *page;
616	unsigned int nr_pages;
617
618	/*
619	 * For physical range: [start, end]. We must skip the unassigned
620	 * crashk resource with zero-valued "end" member.
621	 */
622	if (!end || start > end)
623		return 0;
624
625	page = pfn_to_page(start >> PAGE_SHIFT);
626	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
627	if (protect)
628		return set_pages_ro(page, nr_pages);
629	else
630		return set_pages_rw(page, nr_pages);
631}
632
633static void kexec_mark_crashkres(bool protect)
634{
635	unsigned long control;
636
637	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
638
639	/* Don't touch the control code page used in crash_kexec().*/
640	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
641	/* Control code page is located in the 2nd page. */
642	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
643	control += KEXEC_CONTROL_PAGE_SIZE;
644	kexec_mark_range(control, crashk_res.end, protect);
645}
646
647void arch_kexec_protect_crashkres(void)
648{
649	kexec_mark_crashkres(true);
650}
651
652void arch_kexec_unprotect_crashkres(void)
653{
654	kexec_mark_crashkres(false);
655}
656
657/*
658 * During a traditional boot under SME, SME will encrypt the kernel,
659 * so the SME kexec kernel also needs to be un-encrypted in order to
660 * replicate a normal SME boot.
661 *
662 * During a traditional boot under SEV, the kernel has already been
663 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
664 * order to replicate a normal SEV boot.
665 */
666int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
667{
668	if (sev_active())
669		return 0;
670
671	/*
672	 * If SME is active we need to be sure that kexec pages are
673	 * not encrypted because when we boot to the new kernel the
674	 * pages won't be accessed encrypted (initially).
675	 */
676	return set_memory_decrypted((unsigned long)vaddr, pages);
677}
678
679void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
680{
681	if (sev_active())
682		return;
683
684	/*
685	 * If SME is active we need to reset the pages back to being
686	 * an encrypted mapping before freeing them.
687	 */
688	set_memory_encrypted((unsigned long)vaddr, pages);
689}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * handle transition of Linux booting another kernel
  4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
  7#define pr_fmt(fmt)	"kexec: " fmt
  8
  9#include <linux/mm.h>
 10#include <linux/kexec.h>
 11#include <linux/string.h>
 12#include <linux/gfp.h>
 13#include <linux/reboot.h>
 14#include <linux/numa.h>
 15#include <linux/ftrace.h>
 16#include <linux/io.h>
 17#include <linux/suspend.h>
 18#include <linux/vmalloc.h>
 19#include <linux/efi.h>
 20#include <linux/cc_platform.h>
 21
 22#include <asm/init.h>
 
 23#include <asm/tlbflush.h>
 24#include <asm/mmu_context.h>
 25#include <asm/io_apic.h>
 26#include <asm/debugreg.h>
 27#include <asm/kexec-bzimage64.h>
 28#include <asm/setup.h>
 29#include <asm/set_memory.h>
 30#include <asm/cpu.h>
 31
 32#ifdef CONFIG_ACPI
 33/*
 34 * Used while adding mapping for ACPI tables.
 35 * Can be reused when other iomem regions need be mapped
 36 */
 37struct init_pgtable_data {
 38	struct x86_mapping_info *info;
 39	pgd_t *level4p;
 40};
 41
 42static int mem_region_callback(struct resource *res, void *arg)
 43{
 44	struct init_pgtable_data *data = arg;
 45	unsigned long mstart, mend;
 46
 47	mstart = res->start;
 48	mend = mstart + resource_size(res) - 1;
 49
 50	return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
 51}
 52
 53static int
 54map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
 55{
 56	struct init_pgtable_data data;
 57	unsigned long flags;
 58	int ret;
 59
 60	data.info = info;
 61	data.level4p = level4p;
 62	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 63
 64	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
 65				  &data, mem_region_callback);
 66	if (ret && ret != -EINVAL)
 67		return ret;
 68
 69	/* ACPI tables could be located in ACPI Non-volatile Storage region */
 70	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
 71				  &data, mem_region_callback);
 72	if (ret && ret != -EINVAL)
 73		return ret;
 74
 75	return 0;
 76}
 77#else
 78static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
 79#endif
 80
 81#ifdef CONFIG_KEXEC_FILE
 82const struct kexec_file_ops * const kexec_file_loaders[] = {
 83		&kexec_bzImage64_ops,
 84		NULL
 85};
 86#endif
 87
 88static int
 89map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
 90{
 91#ifdef CONFIG_EFI
 92	unsigned long mstart, mend;
 93
 94	if (!efi_enabled(EFI_BOOT))
 95		return 0;
 96
 97	mstart = (boot_params.efi_info.efi_systab |
 98			((u64)boot_params.efi_info.efi_systab_hi<<32));
 99
100	if (efi_enabled(EFI_64BIT))
101		mend = mstart + sizeof(efi_system_table_64_t);
102	else
103		mend = mstart + sizeof(efi_system_table_32_t);
104
105	if (!mstart)
106		return 0;
107
108	return kernel_ident_mapping_init(info, level4p, mstart, mend);
109#endif
110	return 0;
111}
112
113static void free_transition_pgtable(struct kimage *image)
114{
115	free_page((unsigned long)image->arch.p4d);
116	image->arch.p4d = NULL;
117	free_page((unsigned long)image->arch.pud);
118	image->arch.pud = NULL;
119	free_page((unsigned long)image->arch.pmd);
120	image->arch.pmd = NULL;
121	free_page((unsigned long)image->arch.pte);
122	image->arch.pte = NULL;
123}
124
125static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
126{
127	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
128	unsigned long vaddr, paddr;
129	int result = -ENOMEM;
130	p4d_t *p4d;
131	pud_t *pud;
132	pmd_t *pmd;
133	pte_t *pte;
134
135	vaddr = (unsigned long)relocate_kernel;
136	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
137	pgd += pgd_index(vaddr);
138	if (!pgd_present(*pgd)) {
139		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
140		if (!p4d)
141			goto err;
142		image->arch.p4d = p4d;
143		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
144	}
145	p4d = p4d_offset(pgd, vaddr);
146	if (!p4d_present(*p4d)) {
147		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
148		if (!pud)
149			goto err;
150		image->arch.pud = pud;
151		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
152	}
153	pud = pud_offset(p4d, vaddr);
154	if (!pud_present(*pud)) {
155		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
156		if (!pmd)
157			goto err;
158		image->arch.pmd = pmd;
159		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
160	}
161	pmd = pmd_offset(pud, vaddr);
162	if (!pmd_present(*pmd)) {
163		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
164		if (!pte)
165			goto err;
166		image->arch.pte = pte;
167		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
168	}
169	pte = pte_offset_kernel(pmd, vaddr);
170
171	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
172		prot = PAGE_KERNEL_EXEC;
173
174	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
175	return 0;
176err:
177	return result;
178}
179
180static void *alloc_pgt_page(void *data)
181{
182	struct kimage *image = (struct kimage *)data;
183	struct page *page;
184	void *p = NULL;
185
186	page = kimage_alloc_control_pages(image, 0);
187	if (page) {
188		p = page_address(page);
189		clear_page(p);
190	}
191
192	return p;
193}
194
195static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
196{
197	struct x86_mapping_info info = {
198		.alloc_pgt_page	= alloc_pgt_page,
199		.context	= image,
200		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
201		.kernpg_flag	= _KERNPG_TABLE_NOENC,
202	};
203	unsigned long mstart, mend;
204	pgd_t *level4p;
205	int result;
206	int i;
207
208	level4p = (pgd_t *)__va(start_pgtable);
209	clear_page(level4p);
210
211	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
212		info.page_flag   |= _PAGE_ENC;
213		info.kernpg_flag |= _PAGE_ENC;
214	}
215
216	if (direct_gbpages)
217		info.direct_gbpages = true;
218
219	for (i = 0; i < nr_pfn_mapped; i++) {
220		mstart = pfn_mapped[i].start << PAGE_SHIFT;
221		mend   = pfn_mapped[i].end << PAGE_SHIFT;
222
223		result = kernel_ident_mapping_init(&info,
224						 level4p, mstart, mend);
225		if (result)
226			return result;
227	}
228
229	/*
230	 * segments's mem ranges could be outside 0 ~ max_pfn,
231	 * for example when jump back to original kernel from kexeced kernel.
232	 * or first kernel is booted with user mem map, and second kernel
233	 * could be loaded out of that range.
234	 */
235	for (i = 0; i < image->nr_segments; i++) {
236		mstart = image->segment[i].mem;
237		mend   = mstart + image->segment[i].memsz;
238
239		result = kernel_ident_mapping_init(&info,
240						 level4p, mstart, mend);
241
242		if (result)
243			return result;
244	}
245
246	/*
247	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
248	 * not covered by pfn_mapped.
249	 */
250	result = map_efi_systab(&info, level4p);
251	if (result)
252		return result;
253
254	result = map_acpi_tables(&info, level4p);
255	if (result)
256		return result;
257
258	return init_transition_pgtable(image, level4p);
259}
260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261static void load_segments(void)
262{
263	__asm__ __volatile__ (
264		"\tmovl %0,%%ds\n"
265		"\tmovl %0,%%es\n"
266		"\tmovl %0,%%ss\n"
267		"\tmovl %0,%%fs\n"
268		"\tmovl %0,%%gs\n"
269		: : "a" (__KERNEL_DS) : "memory"
270		);
271}
272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273int machine_kexec_prepare(struct kimage *image)
274{
275	unsigned long start_pgtable;
276	int result;
277
278	/* Calculate the offsets */
279	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
280
281	/* Setup the identity mapped 64bit page table */
282	result = init_pgtable(image, start_pgtable);
283	if (result)
284		return result;
285
 
 
 
 
 
286	return 0;
287}
288
289void machine_kexec_cleanup(struct kimage *image)
290{
291	free_transition_pgtable(image);
292}
293
294/*
295 * Do not allocate memory (or fail in any way) in machine_kexec().
296 * We are past the point of no return, committed to rebooting now.
297 */
298void machine_kexec(struct kimage *image)
299{
300	unsigned long page_list[PAGES_NR];
301	void *control_page;
302	int save_ftrace_enabled;
303
304#ifdef CONFIG_KEXEC_JUMP
305	if (image->preserve_context)
306		save_processor_state();
307#endif
308
309	save_ftrace_enabled = __ftrace_enabled_save();
310
311	/* Interrupts aren't acceptable while we reboot */
312	local_irq_disable();
313	hw_breakpoint_disable();
314	cet_disable();
315
316	if (image->preserve_context) {
317#ifdef CONFIG_X86_IO_APIC
318		/*
319		 * We need to put APICs in legacy mode so that we can
320		 * get timer interrupts in second kernel. kexec/kdump
321		 * paths already have calls to restore_boot_irq_mode()
322		 * in one form or other. kexec jump path also need one.
323		 */
324		clear_IO_APIC();
325		restore_boot_irq_mode();
326#endif
327	}
328
329	control_page = page_address(image->control_code_page) + PAGE_SIZE;
330	__memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
331
332	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
333	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
334	page_list[PA_TABLE_PAGE] =
335	  (unsigned long)__pa(page_address(image->control_code_page));
336
337	if (image->type == KEXEC_TYPE_DEFAULT)
338		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
339						<< PAGE_SHIFT);
340
341	/*
342	 * The segment registers are funny things, they have both a
343	 * visible and an invisible part.  Whenever the visible part is
344	 * set to a specific selector, the invisible part is loaded
345	 * with from a table in memory.  At no other time is the
346	 * descriptor table in memory accessed.
347	 *
348	 * I take advantage of this here by force loading the
349	 * segments, before I zap the gdt with an invalid value.
350	 */
351	load_segments();
352	/*
353	 * The gdt & idt are now invalid.
354	 * If you want to load them you must set up your own idt & gdt.
355	 */
356	native_idt_invalidate();
357	native_gdt_invalidate();
358
359	/* now call it */
360	image->start = relocate_kernel((unsigned long)image->head,
361				       (unsigned long)page_list,
362				       image->start,
363				       image->preserve_context,
364				       cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT));
365
366#ifdef CONFIG_KEXEC_JUMP
367	if (image->preserve_context)
368		restore_processor_state();
369#endif
370
371	__ftrace_enabled_restore(save_ftrace_enabled);
372}
373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374/* arch-dependent functionality related to kexec file-based syscall */
375
376#ifdef CONFIG_KEXEC_FILE
377void *arch_kexec_kernel_image_load(struct kimage *image)
378{
 
 
 
379	if (!image->fops || !image->fops->load)
380		return ERR_PTR(-ENOEXEC);
381
382	return image->fops->load(image, image->kernel_buf,
383				 image->kernel_buf_len, image->initrd_buf,
384				 image->initrd_buf_len, image->cmdline_buf,
385				 image->cmdline_buf_len);
386}
387
388/*
389 * Apply purgatory relocations.
390 *
391 * @pi:		Purgatory to be relocated.
392 * @section:	Section relocations applying to.
393 * @relsec:	Section containing RELAs.
394 * @symtabsec:	Corresponding symtab.
395 *
396 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
397 */
398int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
399				     Elf_Shdr *section, const Elf_Shdr *relsec,
400				     const Elf_Shdr *symtabsec)
401{
402	unsigned int i;
403	Elf64_Rela *rel;
404	Elf64_Sym *sym;
405	void *location;
406	unsigned long address, sec_base, value;
407	const char *strtab, *name, *shstrtab;
408	const Elf_Shdr *sechdrs;
409
410	/* String & section header string table */
411	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
412	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
413	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
414
415	rel = (void *)pi->ehdr + relsec->sh_offset;
416
417	pr_debug("Applying relocate section %s to %u\n",
418		 shstrtab + relsec->sh_name, relsec->sh_info);
419
420	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
421
422		/*
423		 * rel[i].r_offset contains byte offset from beginning
424		 * of section to the storage unit affected.
425		 *
426		 * This is location to update. This is temporary buffer
427		 * where section is currently loaded. This will finally be
428		 * loaded to a different address later, pointed to by
429		 * ->sh_addr. kexec takes care of moving it
430		 *  (kexec_load_segment()).
431		 */
432		location = pi->purgatory_buf;
433		location += section->sh_offset;
434		location += rel[i].r_offset;
435
436		/* Final address of the location */
437		address = section->sh_addr + rel[i].r_offset;
438
439		/*
440		 * rel[i].r_info contains information about symbol table index
441		 * w.r.t which relocation must be made and type of relocation
442		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
443		 * these respectively.
444		 */
445		sym = (void *)pi->ehdr + symtabsec->sh_offset;
446		sym += ELF64_R_SYM(rel[i].r_info);
447
448		if (sym->st_name)
449			name = strtab + sym->st_name;
450		else
451			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
452
453		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
454			 name, sym->st_info, sym->st_shndx, sym->st_value,
455			 sym->st_size);
456
457		if (sym->st_shndx == SHN_UNDEF) {
458			pr_err("Undefined symbol: %s\n", name);
459			return -ENOEXEC;
460		}
461
462		if (sym->st_shndx == SHN_COMMON) {
463			pr_err("symbol '%s' in common section\n", name);
464			return -ENOEXEC;
465		}
466
467		if (sym->st_shndx == SHN_ABS)
468			sec_base = 0;
469		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
470			pr_err("Invalid section %d for symbol %s\n",
471			       sym->st_shndx, name);
472			return -ENOEXEC;
473		} else
474			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
475
476		value = sym->st_value;
477		value += sec_base;
478		value += rel[i].r_addend;
479
480		switch (ELF64_R_TYPE(rel[i].r_info)) {
481		case R_X86_64_NONE:
482			break;
483		case R_X86_64_64:
484			*(u64 *)location = value;
485			break;
486		case R_X86_64_32:
487			*(u32 *)location = value;
488			if (value != *(u32 *)location)
489				goto overflow;
490			break;
491		case R_X86_64_32S:
492			*(s32 *)location = value;
493			if ((s64)value != *(s32 *)location)
494				goto overflow;
495			break;
496		case R_X86_64_PC32:
497		case R_X86_64_PLT32:
498			value -= (u64)address;
499			*(u32 *)location = value;
500			break;
501		default:
502			pr_err("Unknown rela relocation: %llu\n",
503			       ELF64_R_TYPE(rel[i].r_info));
504			return -ENOEXEC;
505		}
506	}
507	return 0;
508
509overflow:
510	pr_err("Overflow in relocation type %d value 0x%lx\n",
511	       (int)ELF64_R_TYPE(rel[i].r_info), value);
512	return -ENOEXEC;
513}
514
515int arch_kimage_file_post_load_cleanup(struct kimage *image)
516{
517	vfree(image->elf_headers);
518	image->elf_headers = NULL;
519	image->elf_headers_sz = 0;
520
521	return kexec_image_post_load_cleanup_default(image);
522}
523#endif /* CONFIG_KEXEC_FILE */
524
525static int
526kexec_mark_range(unsigned long start, unsigned long end, bool protect)
527{
528	struct page *page;
529	unsigned int nr_pages;
530
531	/*
532	 * For physical range: [start, end]. We must skip the unassigned
533	 * crashk resource with zero-valued "end" member.
534	 */
535	if (!end || start > end)
536		return 0;
537
538	page = pfn_to_page(start >> PAGE_SHIFT);
539	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
540	if (protect)
541		return set_pages_ro(page, nr_pages);
542	else
543		return set_pages_rw(page, nr_pages);
544}
545
546static void kexec_mark_crashkres(bool protect)
547{
548	unsigned long control;
549
550	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
551
552	/* Don't touch the control code page used in crash_kexec().*/
553	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
554	/* Control code page is located in the 2nd page. */
555	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
556	control += KEXEC_CONTROL_PAGE_SIZE;
557	kexec_mark_range(control, crashk_res.end, protect);
558}
559
560void arch_kexec_protect_crashkres(void)
561{
562	kexec_mark_crashkres(true);
563}
564
565void arch_kexec_unprotect_crashkres(void)
566{
567	kexec_mark_crashkres(false);
568}
569
570/*
571 * During a traditional boot under SME, SME will encrypt the kernel,
572 * so the SME kexec kernel also needs to be un-encrypted in order to
573 * replicate a normal SME boot.
574 *
575 * During a traditional boot under SEV, the kernel has already been
576 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
577 * order to replicate a normal SEV boot.
578 */
579int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
580{
581	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
582		return 0;
583
584	/*
585	 * If host memory encryption is active we need to be sure that kexec
586	 * pages are not encrypted because when we boot to the new kernel the
587	 * pages won't be accessed encrypted (initially).
588	 */
589	return set_memory_decrypted((unsigned long)vaddr, pages);
590}
591
592void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
593{
594	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
595		return;
596
597	/*
598	 * If host memory encryption is active we need to reset the pages back
599	 * to being an encrypted mapping before freeing them.
600	 */
601	set_memory_encrypted((unsigned long)vaddr, pages);
602}