Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * handle transition of Linux booting another kernel
  4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
  7#define pr_fmt(fmt)	"kexec: " fmt
  8
  9#include <linux/mm.h>
 10#include <linux/kexec.h>
 11#include <linux/string.h>
 12#include <linux/gfp.h>
 13#include <linux/reboot.h>
 14#include <linux/numa.h>
 15#include <linux/ftrace.h>
 16#include <linux/io.h>
 17#include <linux/suspend.h>
 18#include <linux/vmalloc.h>
 19#include <linux/efi.h>
 20
 21#include <asm/init.h>
 22#include <asm/pgtable.h>
 23#include <asm/tlbflush.h>
 24#include <asm/mmu_context.h>
 25#include <asm/io_apic.h>
 26#include <asm/debugreg.h>
 27#include <asm/kexec-bzimage64.h>
 28#include <asm/setup.h>
 29#include <asm/set_memory.h>
 30
 31#ifdef CONFIG_ACPI
 32/*
 33 * Used while adding mapping for ACPI tables.
 34 * Can be reused when other iomem regions need be mapped
 35 */
 36struct init_pgtable_data {
 37	struct x86_mapping_info *info;
 38	pgd_t *level4p;
 39};
 40
 41static int mem_region_callback(struct resource *res, void *arg)
 42{
 43	struct init_pgtable_data *data = arg;
 44	unsigned long mstart, mend;
 45
 46	mstart = res->start;
 47	mend = mstart + resource_size(res) - 1;
 48
 49	return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
 50}
 51
 52static int
 53map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
 54{
 55	struct init_pgtable_data data;
 56	unsigned long flags;
 57	int ret;
 58
 59	data.info = info;
 60	data.level4p = level4p;
 61	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 62
 63	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
 64				  &data, mem_region_callback);
 65	if (ret && ret != -EINVAL)
 66		return ret;
 67
 68	/* ACPI tables could be located in ACPI Non-volatile Storage region */
 69	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
 70				  &data, mem_region_callback);
 71	if (ret && ret != -EINVAL)
 72		return ret;
 73
 74	return 0;
 75}
 76#else
 77static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
 78#endif
 79
 80#ifdef CONFIG_KEXEC_FILE
 81const struct kexec_file_ops * const kexec_file_loaders[] = {
 82		&kexec_bzImage64_ops,
 83		NULL
 84};
 85#endif
 86
 87static int
 88map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
 89{
 90#ifdef CONFIG_EFI
 91	unsigned long mstart, mend;
 92
 93	if (!efi_enabled(EFI_BOOT))
 94		return 0;
 95
 96	mstart = (boot_params.efi_info.efi_systab |
 97			((u64)boot_params.efi_info.efi_systab_hi<<32));
 98
 99	if (efi_enabled(EFI_64BIT))
100		mend = mstart + sizeof(efi_system_table_64_t);
101	else
102		mend = mstart + sizeof(efi_system_table_32_t);
103
104	if (!mstart)
105		return 0;
106
107	return kernel_ident_mapping_init(info, level4p, mstart, mend);
108#endif
109	return 0;
110}
111
112static void free_transition_pgtable(struct kimage *image)
113{
114	free_page((unsigned long)image->arch.p4d);
115	image->arch.p4d = NULL;
116	free_page((unsigned long)image->arch.pud);
117	image->arch.pud = NULL;
118	free_page((unsigned long)image->arch.pmd);
119	image->arch.pmd = NULL;
120	free_page((unsigned long)image->arch.pte);
121	image->arch.pte = NULL;
122}
123
124static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
125{
126	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
127	unsigned long vaddr, paddr;
128	int result = -ENOMEM;
129	p4d_t *p4d;
130	pud_t *pud;
131	pmd_t *pmd;
132	pte_t *pte;
133
134	vaddr = (unsigned long)relocate_kernel;
135	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
136	pgd += pgd_index(vaddr);
137	if (!pgd_present(*pgd)) {
138		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
139		if (!p4d)
140			goto err;
141		image->arch.p4d = p4d;
142		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
143	}
144	p4d = p4d_offset(pgd, vaddr);
145	if (!p4d_present(*p4d)) {
146		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
147		if (!pud)
148			goto err;
149		image->arch.pud = pud;
150		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
151	}
152	pud = pud_offset(p4d, vaddr);
153	if (!pud_present(*pud)) {
154		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
155		if (!pmd)
156			goto err;
157		image->arch.pmd = pmd;
158		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
159	}
160	pmd = pmd_offset(pud, vaddr);
161	if (!pmd_present(*pmd)) {
162		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
163		if (!pte)
164			goto err;
165		image->arch.pte = pte;
166		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
167	}
168	pte = pte_offset_kernel(pmd, vaddr);
169
170	if (sev_active())
171		prot = PAGE_KERNEL_EXEC;
172
173	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
174	return 0;
175err:
176	return result;
177}
178
179static void *alloc_pgt_page(void *data)
180{
181	struct kimage *image = (struct kimage *)data;
182	struct page *page;
183	void *p = NULL;
184
185	page = kimage_alloc_control_pages(image, 0);
186	if (page) {
187		p = page_address(page);
188		clear_page(p);
189	}
190
191	return p;
192}
193
194static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
195{
196	struct x86_mapping_info info = {
197		.alloc_pgt_page	= alloc_pgt_page,
198		.context	= image,
199		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
200		.kernpg_flag	= _KERNPG_TABLE_NOENC,
201	};
202	unsigned long mstart, mend;
203	pgd_t *level4p;
204	int result;
205	int i;
206
207	level4p = (pgd_t *)__va(start_pgtable);
208	clear_page(level4p);
209
210	if (sev_active()) {
211		info.page_flag   |= _PAGE_ENC;
212		info.kernpg_flag |= _PAGE_ENC;
213	}
214
215	if (direct_gbpages)
216		info.direct_gbpages = true;
217
218	for (i = 0; i < nr_pfn_mapped; i++) {
219		mstart = pfn_mapped[i].start << PAGE_SHIFT;
220		mend   = pfn_mapped[i].end << PAGE_SHIFT;
221
222		result = kernel_ident_mapping_init(&info,
223						 level4p, mstart, mend);
224		if (result)
225			return result;
226	}
227
228	/*
229	 * segments's mem ranges could be outside 0 ~ max_pfn,
230	 * for example when jump back to original kernel from kexeced kernel.
231	 * or first kernel is booted with user mem map, and second kernel
232	 * could be loaded out of that range.
233	 */
234	for (i = 0; i < image->nr_segments; i++) {
235		mstart = image->segment[i].mem;
236		mend   = mstart + image->segment[i].memsz;
237
238		result = kernel_ident_mapping_init(&info,
239						 level4p, mstart, mend);
240
241		if (result)
242			return result;
243	}
244
245	/*
246	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
247	 * not covered by pfn_mapped.
248	 */
249	result = map_efi_systab(&info, level4p);
250	if (result)
251		return result;
252
253	result = map_acpi_tables(&info, level4p);
254	if (result)
255		return result;
256
257	return init_transition_pgtable(image, level4p);
258}
259
260static void set_idt(void *newidt, u16 limit)
261{
262	struct desc_ptr curidt;
263
264	/* x86-64 supports unaliged loads & stores */
265	curidt.size    = limit;
266	curidt.address = (unsigned long)newidt;
267
268	__asm__ __volatile__ (
269		"lidtq %0\n"
270		: : "m" (curidt)
271		);
272};
273
274
275static void set_gdt(void *newgdt, u16 limit)
276{
277	struct desc_ptr curgdt;
278
279	/* x86-64 supports unaligned loads & stores */
280	curgdt.size    = limit;
281	curgdt.address = (unsigned long)newgdt;
282
283	__asm__ __volatile__ (
284		"lgdtq %0\n"
285		: : "m" (curgdt)
286		);
287};
288
289static void load_segments(void)
290{
291	__asm__ __volatile__ (
292		"\tmovl %0,%%ds\n"
293		"\tmovl %0,%%es\n"
294		"\tmovl %0,%%ss\n"
295		"\tmovl %0,%%fs\n"
296		"\tmovl %0,%%gs\n"
297		: : "a" (__KERNEL_DS) : "memory"
298		);
299}
300
301#ifdef CONFIG_KEXEC_FILE
302/* Update purgatory as needed after various image segments have been prepared */
303static int arch_update_purgatory(struct kimage *image)
304{
305	int ret = 0;
306
307	if (!image->file_mode)
308		return 0;
309
310	/* Setup copying of backup region */
311	if (image->type == KEXEC_TYPE_CRASH) {
312		ret = kexec_purgatory_get_set_symbol(image,
313				"purgatory_backup_dest",
314				&image->arch.backup_load_addr,
315				sizeof(image->arch.backup_load_addr), 0);
316		if (ret)
317			return ret;
318
319		ret = kexec_purgatory_get_set_symbol(image,
320				"purgatory_backup_src",
321				&image->arch.backup_src_start,
322				sizeof(image->arch.backup_src_start), 0);
323		if (ret)
324			return ret;
325
326		ret = kexec_purgatory_get_set_symbol(image,
327				"purgatory_backup_sz",
328				&image->arch.backup_src_sz,
329				sizeof(image->arch.backup_src_sz), 0);
330		if (ret)
331			return ret;
332	}
333
334	return ret;
335}
336#else /* !CONFIG_KEXEC_FILE */
337static inline int arch_update_purgatory(struct kimage *image)
338{
339	return 0;
340}
341#endif /* CONFIG_KEXEC_FILE */
342
343int machine_kexec_prepare(struct kimage *image)
344{
345	unsigned long start_pgtable;
346	int result;
347
348	/* Calculate the offsets */
349	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
350
351	/* Setup the identity mapped 64bit page table */
352	result = init_pgtable(image, start_pgtable);
353	if (result)
354		return result;
355
356	/* update purgatory as needed */
357	result = arch_update_purgatory(image);
358	if (result)
359		return result;
360
361	return 0;
362}
363
364void machine_kexec_cleanup(struct kimage *image)
365{
366	free_transition_pgtable(image);
367}
368
369/*
370 * Do not allocate memory (or fail in any way) in machine_kexec().
371 * We are past the point of no return, committed to rebooting now.
372 */
373void machine_kexec(struct kimage *image)
374{
375	unsigned long page_list[PAGES_NR];
376	void *control_page;
377	int save_ftrace_enabled;
378
379#ifdef CONFIG_KEXEC_JUMP
380	if (image->preserve_context)
381		save_processor_state();
382#endif
383
384	save_ftrace_enabled = __ftrace_enabled_save();
385
386	/* Interrupts aren't acceptable while we reboot */
387	local_irq_disable();
388	hw_breakpoint_disable();
389
390	if (image->preserve_context) {
391#ifdef CONFIG_X86_IO_APIC
392		/*
393		 * We need to put APICs in legacy mode so that we can
394		 * get timer interrupts in second kernel. kexec/kdump
395		 * paths already have calls to restore_boot_irq_mode()
396		 * in one form or other. kexec jump path also need one.
397		 */
398		clear_IO_APIC();
399		restore_boot_irq_mode();
400#endif
401	}
402
403	control_page = page_address(image->control_code_page) + PAGE_SIZE;
404	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
405
406	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
407	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
408	page_list[PA_TABLE_PAGE] =
409	  (unsigned long)__pa(page_address(image->control_code_page));
410
411	if (image->type == KEXEC_TYPE_DEFAULT)
412		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
413						<< PAGE_SHIFT);
414
415	/*
416	 * The segment registers are funny things, they have both a
417	 * visible and an invisible part.  Whenever the visible part is
418	 * set to a specific selector, the invisible part is loaded
419	 * with from a table in memory.  At no other time is the
420	 * descriptor table in memory accessed.
421	 *
422	 * I take advantage of this here by force loading the
423	 * segments, before I zap the gdt with an invalid value.
424	 */
425	load_segments();
426	/*
427	 * The gdt & idt are now invalid.
428	 * If you want to load them you must set up your own idt & gdt.
429	 */
430	set_gdt(phys_to_virt(0), 0);
431	set_idt(phys_to_virt(0), 0);
432
433	/* now call it */
434	image->start = relocate_kernel((unsigned long)image->head,
435				       (unsigned long)page_list,
436				       image->start,
437				       image->preserve_context,
438				       sme_active());
439
440#ifdef CONFIG_KEXEC_JUMP
441	if (image->preserve_context)
442		restore_processor_state();
443#endif
444
445	__ftrace_enabled_restore(save_ftrace_enabled);
446}
447
448void arch_crash_save_vmcoreinfo(void)
449{
450	u64 sme_mask = sme_me_mask;
451
452	VMCOREINFO_NUMBER(phys_base);
453	VMCOREINFO_SYMBOL(init_top_pgt);
454	vmcoreinfo_append_str("NUMBER(pgtable_l5_enabled)=%d\n",
455			pgtable_l5_enabled());
456
457#ifdef CONFIG_NUMA
458	VMCOREINFO_SYMBOL(node_data);
459	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
460#endif
461	vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
462			      kaslr_offset());
463	VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
464	VMCOREINFO_NUMBER(sme_mask);
465}
466
467/* arch-dependent functionality related to kexec file-based syscall */
468
469#ifdef CONFIG_KEXEC_FILE
470void *arch_kexec_kernel_image_load(struct kimage *image)
471{
472	vfree(image->arch.elf_headers);
473	image->arch.elf_headers = NULL;
474
475	if (!image->fops || !image->fops->load)
476		return ERR_PTR(-ENOEXEC);
477
478	return image->fops->load(image, image->kernel_buf,
479				 image->kernel_buf_len, image->initrd_buf,
480				 image->initrd_buf_len, image->cmdline_buf,
481				 image->cmdline_buf_len);
482}
483
484/*
485 * Apply purgatory relocations.
486 *
487 * @pi:		Purgatory to be relocated.
488 * @section:	Section relocations applying to.
489 * @relsec:	Section containing RELAs.
490 * @symtabsec:	Corresponding symtab.
491 *
492 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
493 */
494int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
495				     Elf_Shdr *section, const Elf_Shdr *relsec,
496				     const Elf_Shdr *symtabsec)
497{
498	unsigned int i;
499	Elf64_Rela *rel;
500	Elf64_Sym *sym;
501	void *location;
502	unsigned long address, sec_base, value;
503	const char *strtab, *name, *shstrtab;
504	const Elf_Shdr *sechdrs;
505
506	/* String & section header string table */
507	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
508	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
509	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
510
511	rel = (void *)pi->ehdr + relsec->sh_offset;
512
513	pr_debug("Applying relocate section %s to %u\n",
514		 shstrtab + relsec->sh_name, relsec->sh_info);
515
516	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
517
518		/*
519		 * rel[i].r_offset contains byte offset from beginning
520		 * of section to the storage unit affected.
521		 *
522		 * This is location to update. This is temporary buffer
523		 * where section is currently loaded. This will finally be
524		 * loaded to a different address later, pointed to by
525		 * ->sh_addr. kexec takes care of moving it
526		 *  (kexec_load_segment()).
527		 */
528		location = pi->purgatory_buf;
529		location += section->sh_offset;
530		location += rel[i].r_offset;
531
532		/* Final address of the location */
533		address = section->sh_addr + rel[i].r_offset;
534
535		/*
536		 * rel[i].r_info contains information about symbol table index
537		 * w.r.t which relocation must be made and type of relocation
538		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
539		 * these respectively.
540		 */
541		sym = (void *)pi->ehdr + symtabsec->sh_offset;
542		sym += ELF64_R_SYM(rel[i].r_info);
543
544		if (sym->st_name)
545			name = strtab + sym->st_name;
546		else
547			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
548
549		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
550			 name, sym->st_info, sym->st_shndx, sym->st_value,
551			 sym->st_size);
552
553		if (sym->st_shndx == SHN_UNDEF) {
554			pr_err("Undefined symbol: %s\n", name);
555			return -ENOEXEC;
556		}
557
558		if (sym->st_shndx == SHN_COMMON) {
559			pr_err("symbol '%s' in common section\n", name);
560			return -ENOEXEC;
561		}
562
563		if (sym->st_shndx == SHN_ABS)
564			sec_base = 0;
565		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
566			pr_err("Invalid section %d for symbol %s\n",
567			       sym->st_shndx, name);
568			return -ENOEXEC;
569		} else
570			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
571
572		value = sym->st_value;
573		value += sec_base;
574		value += rel[i].r_addend;
575
576		switch (ELF64_R_TYPE(rel[i].r_info)) {
577		case R_X86_64_NONE:
578			break;
579		case R_X86_64_64:
580			*(u64 *)location = value;
581			break;
582		case R_X86_64_32:
583			*(u32 *)location = value;
584			if (value != *(u32 *)location)
585				goto overflow;
586			break;
587		case R_X86_64_32S:
588			*(s32 *)location = value;
589			if ((s64)value != *(s32 *)location)
590				goto overflow;
591			break;
592		case R_X86_64_PC32:
593		case R_X86_64_PLT32:
594			value -= (u64)address;
595			*(u32 *)location = value;
596			break;
597		default:
598			pr_err("Unknown rela relocation: %llu\n",
599			       ELF64_R_TYPE(rel[i].r_info));
600			return -ENOEXEC;
601		}
602	}
603	return 0;
604
605overflow:
606	pr_err("Overflow in relocation type %d value 0x%lx\n",
607	       (int)ELF64_R_TYPE(rel[i].r_info), value);
608	return -ENOEXEC;
609}
610#endif /* CONFIG_KEXEC_FILE */
611
612static int
613kexec_mark_range(unsigned long start, unsigned long end, bool protect)
614{
615	struct page *page;
616	unsigned int nr_pages;
617
618	/*
619	 * For physical range: [start, end]. We must skip the unassigned
620	 * crashk resource with zero-valued "end" member.
621	 */
622	if (!end || start > end)
623		return 0;
624
625	page = pfn_to_page(start >> PAGE_SHIFT);
626	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
627	if (protect)
628		return set_pages_ro(page, nr_pages);
629	else
630		return set_pages_rw(page, nr_pages);
631}
632
633static void kexec_mark_crashkres(bool protect)
634{
635	unsigned long control;
636
637	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
638
639	/* Don't touch the control code page used in crash_kexec().*/
640	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
641	/* Control code page is located in the 2nd page. */
642	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
643	control += KEXEC_CONTROL_PAGE_SIZE;
644	kexec_mark_range(control, crashk_res.end, protect);
645}
646
647void arch_kexec_protect_crashkres(void)
648{
649	kexec_mark_crashkres(true);
650}
651
652void arch_kexec_unprotect_crashkres(void)
653{
654	kexec_mark_crashkres(false);
655}
656
657/*
658 * During a traditional boot under SME, SME will encrypt the kernel,
659 * so the SME kexec kernel also needs to be un-encrypted in order to
660 * replicate a normal SME boot.
661 *
662 * During a traditional boot under SEV, the kernel has already been
663 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
664 * order to replicate a normal SEV boot.
665 */
666int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
667{
668	if (sev_active())
669		return 0;
670
671	/*
672	 * If SME is active we need to be sure that kexec pages are
673	 * not encrypted because when we boot to the new kernel the
674	 * pages won't be accessed encrypted (initially).
675	 */
676	return set_memory_decrypted((unsigned long)vaddr, pages);
677}
678
679void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
680{
681	if (sev_active())
682		return;
683
684	/*
685	 * If SME is active we need to reset the pages back to being
686	 * an encrypted mapping before freeing them.
687	 */
688	set_memory_encrypted((unsigned long)vaddr, pages);
689}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * handle transition of Linux booting another kernel
  4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
  7#define pr_fmt(fmt)	"kexec: " fmt
  8
  9#include <linux/mm.h>
 10#include <linux/kexec.h>
 11#include <linux/string.h>
 12#include <linux/gfp.h>
 13#include <linux/reboot.h>
 14#include <linux/numa.h>
 15#include <linux/ftrace.h>
 16#include <linux/io.h>
 17#include <linux/suspend.h>
 18#include <linux/vmalloc.h>
 19#include <linux/efi.h>
 20
 21#include <asm/init.h>
 
 22#include <asm/tlbflush.h>
 23#include <asm/mmu_context.h>
 24#include <asm/io_apic.h>
 25#include <asm/debugreg.h>
 26#include <asm/kexec-bzimage64.h>
 27#include <asm/setup.h>
 28#include <asm/set_memory.h>
 29
 30#ifdef CONFIG_ACPI
 31/*
 32 * Used while adding mapping for ACPI tables.
 33 * Can be reused when other iomem regions need be mapped
 34 */
 35struct init_pgtable_data {
 36	struct x86_mapping_info *info;
 37	pgd_t *level4p;
 38};
 39
 40static int mem_region_callback(struct resource *res, void *arg)
 41{
 42	struct init_pgtable_data *data = arg;
 43	unsigned long mstart, mend;
 44
 45	mstart = res->start;
 46	mend = mstart + resource_size(res) - 1;
 47
 48	return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
 49}
 50
 51static int
 52map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
 53{
 54	struct init_pgtable_data data;
 55	unsigned long flags;
 56	int ret;
 57
 58	data.info = info;
 59	data.level4p = level4p;
 60	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 61
 62	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
 63				  &data, mem_region_callback);
 64	if (ret && ret != -EINVAL)
 65		return ret;
 66
 67	/* ACPI tables could be located in ACPI Non-volatile Storage region */
 68	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
 69				  &data, mem_region_callback);
 70	if (ret && ret != -EINVAL)
 71		return ret;
 72
 73	return 0;
 74}
 75#else
 76static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
 77#endif
 78
 79#ifdef CONFIG_KEXEC_FILE
 80const struct kexec_file_ops * const kexec_file_loaders[] = {
 81		&kexec_bzImage64_ops,
 82		NULL
 83};
 84#endif
 85
 86static int
 87map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
 88{
 89#ifdef CONFIG_EFI
 90	unsigned long mstart, mend;
 91
 92	if (!efi_enabled(EFI_BOOT))
 93		return 0;
 94
 95	mstart = (boot_params.efi_info.efi_systab |
 96			((u64)boot_params.efi_info.efi_systab_hi<<32));
 97
 98	if (efi_enabled(EFI_64BIT))
 99		mend = mstart + sizeof(efi_system_table_64_t);
100	else
101		mend = mstart + sizeof(efi_system_table_32_t);
102
103	if (!mstart)
104		return 0;
105
106	return kernel_ident_mapping_init(info, level4p, mstart, mend);
107#endif
108	return 0;
109}
110
111static void free_transition_pgtable(struct kimage *image)
112{
113	free_page((unsigned long)image->arch.p4d);
114	image->arch.p4d = NULL;
115	free_page((unsigned long)image->arch.pud);
116	image->arch.pud = NULL;
117	free_page((unsigned long)image->arch.pmd);
118	image->arch.pmd = NULL;
119	free_page((unsigned long)image->arch.pte);
120	image->arch.pte = NULL;
121}
122
123static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
124{
125	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
126	unsigned long vaddr, paddr;
127	int result = -ENOMEM;
128	p4d_t *p4d;
129	pud_t *pud;
130	pmd_t *pmd;
131	pte_t *pte;
132
133	vaddr = (unsigned long)relocate_kernel;
134	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
135	pgd += pgd_index(vaddr);
136	if (!pgd_present(*pgd)) {
137		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
138		if (!p4d)
139			goto err;
140		image->arch.p4d = p4d;
141		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
142	}
143	p4d = p4d_offset(pgd, vaddr);
144	if (!p4d_present(*p4d)) {
145		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
146		if (!pud)
147			goto err;
148		image->arch.pud = pud;
149		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
150	}
151	pud = pud_offset(p4d, vaddr);
152	if (!pud_present(*pud)) {
153		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
154		if (!pmd)
155			goto err;
156		image->arch.pmd = pmd;
157		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
158	}
159	pmd = pmd_offset(pud, vaddr);
160	if (!pmd_present(*pmd)) {
161		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
162		if (!pte)
163			goto err;
164		image->arch.pte = pte;
165		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
166	}
167	pte = pte_offset_kernel(pmd, vaddr);
168
169	if (sev_active())
170		prot = PAGE_KERNEL_EXEC;
171
172	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
173	return 0;
174err:
175	return result;
176}
177
178static void *alloc_pgt_page(void *data)
179{
180	struct kimage *image = (struct kimage *)data;
181	struct page *page;
182	void *p = NULL;
183
184	page = kimage_alloc_control_pages(image, 0);
185	if (page) {
186		p = page_address(page);
187		clear_page(p);
188	}
189
190	return p;
191}
192
193static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
194{
195	struct x86_mapping_info info = {
196		.alloc_pgt_page	= alloc_pgt_page,
197		.context	= image,
198		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
199		.kernpg_flag	= _KERNPG_TABLE_NOENC,
200	};
201	unsigned long mstart, mend;
202	pgd_t *level4p;
203	int result;
204	int i;
205
206	level4p = (pgd_t *)__va(start_pgtable);
207	clear_page(level4p);
208
209	if (sev_active()) {
210		info.page_flag   |= _PAGE_ENC;
211		info.kernpg_flag |= _PAGE_ENC;
212	}
213
214	if (direct_gbpages)
215		info.direct_gbpages = true;
216
217	for (i = 0; i < nr_pfn_mapped; i++) {
218		mstart = pfn_mapped[i].start << PAGE_SHIFT;
219		mend   = pfn_mapped[i].end << PAGE_SHIFT;
220
221		result = kernel_ident_mapping_init(&info,
222						 level4p, mstart, mend);
223		if (result)
224			return result;
225	}
226
227	/*
228	 * segments's mem ranges could be outside 0 ~ max_pfn,
229	 * for example when jump back to original kernel from kexeced kernel.
230	 * or first kernel is booted with user mem map, and second kernel
231	 * could be loaded out of that range.
232	 */
233	for (i = 0; i < image->nr_segments; i++) {
234		mstart = image->segment[i].mem;
235		mend   = mstart + image->segment[i].memsz;
236
237		result = kernel_ident_mapping_init(&info,
238						 level4p, mstart, mend);
239
240		if (result)
241			return result;
242	}
243
244	/*
245	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
246	 * not covered by pfn_mapped.
247	 */
248	result = map_efi_systab(&info, level4p);
249	if (result)
250		return result;
251
252	result = map_acpi_tables(&info, level4p);
253	if (result)
254		return result;
255
256	return init_transition_pgtable(image, level4p);
257}
258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259static void load_segments(void)
260{
261	__asm__ __volatile__ (
262		"\tmovl %0,%%ds\n"
263		"\tmovl %0,%%es\n"
264		"\tmovl %0,%%ss\n"
265		"\tmovl %0,%%fs\n"
266		"\tmovl %0,%%gs\n"
267		: : "a" (__KERNEL_DS) : "memory"
268		);
269}
270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271int machine_kexec_prepare(struct kimage *image)
272{
273	unsigned long start_pgtable;
274	int result;
275
276	/* Calculate the offsets */
277	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
278
279	/* Setup the identity mapped 64bit page table */
280	result = init_pgtable(image, start_pgtable);
281	if (result)
282		return result;
283
 
 
 
 
 
284	return 0;
285}
286
287void machine_kexec_cleanup(struct kimage *image)
288{
289	free_transition_pgtable(image);
290}
291
292/*
293 * Do not allocate memory (or fail in any way) in machine_kexec().
294 * We are past the point of no return, committed to rebooting now.
295 */
296void machine_kexec(struct kimage *image)
297{
298	unsigned long page_list[PAGES_NR];
299	void *control_page;
300	int save_ftrace_enabled;
301
302#ifdef CONFIG_KEXEC_JUMP
303	if (image->preserve_context)
304		save_processor_state();
305#endif
306
307	save_ftrace_enabled = __ftrace_enabled_save();
308
309	/* Interrupts aren't acceptable while we reboot */
310	local_irq_disable();
311	hw_breakpoint_disable();
312
313	if (image->preserve_context) {
314#ifdef CONFIG_X86_IO_APIC
315		/*
316		 * We need to put APICs in legacy mode so that we can
317		 * get timer interrupts in second kernel. kexec/kdump
318		 * paths already have calls to restore_boot_irq_mode()
319		 * in one form or other. kexec jump path also need one.
320		 */
321		clear_IO_APIC();
322		restore_boot_irq_mode();
323#endif
324	}
325
326	control_page = page_address(image->control_code_page) + PAGE_SIZE;
327	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
328
329	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
330	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
331	page_list[PA_TABLE_PAGE] =
332	  (unsigned long)__pa(page_address(image->control_code_page));
333
334	if (image->type == KEXEC_TYPE_DEFAULT)
335		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
336						<< PAGE_SHIFT);
337
338	/*
339	 * The segment registers are funny things, they have both a
340	 * visible and an invisible part.  Whenever the visible part is
341	 * set to a specific selector, the invisible part is loaded
342	 * with from a table in memory.  At no other time is the
343	 * descriptor table in memory accessed.
344	 *
345	 * I take advantage of this here by force loading the
346	 * segments, before I zap the gdt with an invalid value.
347	 */
348	load_segments();
349	/*
350	 * The gdt & idt are now invalid.
351	 * If you want to load them you must set up your own idt & gdt.
352	 */
353	native_idt_invalidate();
354	native_gdt_invalidate();
355
356	/* now call it */
357	image->start = relocate_kernel((unsigned long)image->head,
358				       (unsigned long)page_list,
359				       image->start,
360				       image->preserve_context,
361				       sme_active());
362
363#ifdef CONFIG_KEXEC_JUMP
364	if (image->preserve_context)
365		restore_processor_state();
366#endif
367
368	__ftrace_enabled_restore(save_ftrace_enabled);
369}
370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371/* arch-dependent functionality related to kexec file-based syscall */
372
373#ifdef CONFIG_KEXEC_FILE
374void *arch_kexec_kernel_image_load(struct kimage *image)
375{
376	vfree(image->elf_headers);
377	image->elf_headers = NULL;
378
379	if (!image->fops || !image->fops->load)
380		return ERR_PTR(-ENOEXEC);
381
382	return image->fops->load(image, image->kernel_buf,
383				 image->kernel_buf_len, image->initrd_buf,
384				 image->initrd_buf_len, image->cmdline_buf,
385				 image->cmdline_buf_len);
386}
387
388/*
389 * Apply purgatory relocations.
390 *
391 * @pi:		Purgatory to be relocated.
392 * @section:	Section relocations applying to.
393 * @relsec:	Section containing RELAs.
394 * @symtabsec:	Corresponding symtab.
395 *
396 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
397 */
398int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
399				     Elf_Shdr *section, const Elf_Shdr *relsec,
400				     const Elf_Shdr *symtabsec)
401{
402	unsigned int i;
403	Elf64_Rela *rel;
404	Elf64_Sym *sym;
405	void *location;
406	unsigned long address, sec_base, value;
407	const char *strtab, *name, *shstrtab;
408	const Elf_Shdr *sechdrs;
409
410	/* String & section header string table */
411	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
412	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
413	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
414
415	rel = (void *)pi->ehdr + relsec->sh_offset;
416
417	pr_debug("Applying relocate section %s to %u\n",
418		 shstrtab + relsec->sh_name, relsec->sh_info);
419
420	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
421
422		/*
423		 * rel[i].r_offset contains byte offset from beginning
424		 * of section to the storage unit affected.
425		 *
426		 * This is location to update. This is temporary buffer
427		 * where section is currently loaded. This will finally be
428		 * loaded to a different address later, pointed to by
429		 * ->sh_addr. kexec takes care of moving it
430		 *  (kexec_load_segment()).
431		 */
432		location = pi->purgatory_buf;
433		location += section->sh_offset;
434		location += rel[i].r_offset;
435
436		/* Final address of the location */
437		address = section->sh_addr + rel[i].r_offset;
438
439		/*
440		 * rel[i].r_info contains information about symbol table index
441		 * w.r.t which relocation must be made and type of relocation
442		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
443		 * these respectively.
444		 */
445		sym = (void *)pi->ehdr + symtabsec->sh_offset;
446		sym += ELF64_R_SYM(rel[i].r_info);
447
448		if (sym->st_name)
449			name = strtab + sym->st_name;
450		else
451			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
452
453		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
454			 name, sym->st_info, sym->st_shndx, sym->st_value,
455			 sym->st_size);
456
457		if (sym->st_shndx == SHN_UNDEF) {
458			pr_err("Undefined symbol: %s\n", name);
459			return -ENOEXEC;
460		}
461
462		if (sym->st_shndx == SHN_COMMON) {
463			pr_err("symbol '%s' in common section\n", name);
464			return -ENOEXEC;
465		}
466
467		if (sym->st_shndx == SHN_ABS)
468			sec_base = 0;
469		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
470			pr_err("Invalid section %d for symbol %s\n",
471			       sym->st_shndx, name);
472			return -ENOEXEC;
473		} else
474			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
475
476		value = sym->st_value;
477		value += sec_base;
478		value += rel[i].r_addend;
479
480		switch (ELF64_R_TYPE(rel[i].r_info)) {
481		case R_X86_64_NONE:
482			break;
483		case R_X86_64_64:
484			*(u64 *)location = value;
485			break;
486		case R_X86_64_32:
487			*(u32 *)location = value;
488			if (value != *(u32 *)location)
489				goto overflow;
490			break;
491		case R_X86_64_32S:
492			*(s32 *)location = value;
493			if ((s64)value != *(s32 *)location)
494				goto overflow;
495			break;
496		case R_X86_64_PC32:
497		case R_X86_64_PLT32:
498			value -= (u64)address;
499			*(u32 *)location = value;
500			break;
501		default:
502			pr_err("Unknown rela relocation: %llu\n",
503			       ELF64_R_TYPE(rel[i].r_info));
504			return -ENOEXEC;
505		}
506	}
507	return 0;
508
509overflow:
510	pr_err("Overflow in relocation type %d value 0x%lx\n",
511	       (int)ELF64_R_TYPE(rel[i].r_info), value);
512	return -ENOEXEC;
513}
514#endif /* CONFIG_KEXEC_FILE */
515
516static int
517kexec_mark_range(unsigned long start, unsigned long end, bool protect)
518{
519	struct page *page;
520	unsigned int nr_pages;
521
522	/*
523	 * For physical range: [start, end]. We must skip the unassigned
524	 * crashk resource with zero-valued "end" member.
525	 */
526	if (!end || start > end)
527		return 0;
528
529	page = pfn_to_page(start >> PAGE_SHIFT);
530	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
531	if (protect)
532		return set_pages_ro(page, nr_pages);
533	else
534		return set_pages_rw(page, nr_pages);
535}
536
537static void kexec_mark_crashkres(bool protect)
538{
539	unsigned long control;
540
541	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
542
543	/* Don't touch the control code page used in crash_kexec().*/
544	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
545	/* Control code page is located in the 2nd page. */
546	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
547	control += KEXEC_CONTROL_PAGE_SIZE;
548	kexec_mark_range(control, crashk_res.end, protect);
549}
550
551void arch_kexec_protect_crashkres(void)
552{
553	kexec_mark_crashkres(true);
554}
555
556void arch_kexec_unprotect_crashkres(void)
557{
558	kexec_mark_crashkres(false);
559}
560
561/*
562 * During a traditional boot under SME, SME will encrypt the kernel,
563 * so the SME kexec kernel also needs to be un-encrypted in order to
564 * replicate a normal SME boot.
565 *
566 * During a traditional boot under SEV, the kernel has already been
567 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
568 * order to replicate a normal SEV boot.
569 */
570int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
571{
572	if (sev_active())
573		return 0;
574
575	/*
576	 * If SME is active we need to be sure that kexec pages are
577	 * not encrypted because when we boot to the new kernel the
578	 * pages won't be accessed encrypted (initially).
579	 */
580	return set_memory_decrypted((unsigned long)vaddr, pages);
581}
582
583void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
584{
585	if (sev_active())
586		return;
587
588	/*
589	 * If SME is active we need to reset the pages back to being
590	 * an encrypted mapping before freeing them.
591	 */
592	set_memory_encrypted((unsigned long)vaddr, pages);
593}