Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0
   2/*  Copyright(c) 2016-20 Intel Corporation. */
   3
   4#include <linux/lockdep.h>
   5#include <linux/mm.h>
   6#include <linux/mman.h>
   7#include <linux/shmem_fs.h>
   8#include <linux/suspend.h>
   9#include <linux/sched/mm.h>
  10#include <asm/sgx.h>
  11#include "encl.h"
  12#include "encls.h"
  13#include "sgx.h"
  14
  15static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
  16			    struct sgx_backing *backing);
  17
  18#define PCMDS_PER_PAGE (PAGE_SIZE / sizeof(struct sgx_pcmd))
  19/*
  20 * 32 PCMD entries share a PCMD page. PCMD_FIRST_MASK is used to
  21 * determine the page index associated with the first PCMD entry
  22 * within a PCMD page.
  23 */
  24#define PCMD_FIRST_MASK GENMASK(4, 0)
  25
  26/**
  27 * reclaimer_writing_to_pcmd() - Query if any enclave page associated with
  28 *                               a PCMD page is in process of being reclaimed.
  29 * @encl:        Enclave to which PCMD page belongs
  30 * @start_addr:  Address of enclave page using first entry within the PCMD page
  31 *
  32 * When an enclave page is reclaimed some Paging Crypto MetaData (PCMD) is
  33 * stored. The PCMD data of a reclaimed enclave page contains enough
  34 * information for the processor to verify the page at the time
  35 * it is loaded back into the Enclave Page Cache (EPC).
  36 *
  37 * The backing storage to which enclave pages are reclaimed is laid out as
  38 * follows:
  39 * Encrypted enclave pages:SECS page:PCMD pages
  40 *
  41 * Each PCMD page contains the PCMD metadata of
  42 * PAGE_SIZE/sizeof(struct sgx_pcmd) enclave pages.
  43 *
  44 * A PCMD page can only be truncated if it is (a) empty, and (b) not in the
  45 * process of getting data (and thus soon being non-empty). (b) is tested with
  46 * a check if an enclave page sharing the PCMD page is in the process of being
  47 * reclaimed.
  48 *
  49 * The reclaimer sets the SGX_ENCL_PAGE_BEING_RECLAIMED flag when it
  50 * intends to reclaim that enclave page - it means that the PCMD page
  51 * associated with that enclave page is about to get some data and thus
  52 * even if the PCMD page is empty, it should not be truncated.
  53 *
  54 * Context: Enclave mutex (&sgx_encl->lock) must be held.
  55 * Return: 1 if the reclaimer is about to write to the PCMD page
  56 *         0 if the reclaimer has no intention to write to the PCMD page
  57 */
  58static int reclaimer_writing_to_pcmd(struct sgx_encl *encl,
  59				     unsigned long start_addr)
  60{
  61	int reclaimed = 0;
  62	int i;
  63
  64	/*
  65	 * PCMD_FIRST_MASK is based on number of PCMD entries within
  66	 * PCMD page being 32.
  67	 */
  68	BUILD_BUG_ON(PCMDS_PER_PAGE != 32);
  69
  70	for (i = 0; i < PCMDS_PER_PAGE; i++) {
  71		struct sgx_encl_page *entry;
  72		unsigned long addr;
  73
  74		addr = start_addr + i * PAGE_SIZE;
  75
  76		/*
  77		 * Stop when reaching the SECS page - it does not
  78		 * have a page_array entry and its reclaim is
  79		 * started and completed with enclave mutex held so
  80		 * it does not use the SGX_ENCL_PAGE_BEING_RECLAIMED
  81		 * flag.
  82		 */
  83		if (addr == encl->base + encl->size)
  84			break;
  85
  86		entry = xa_load(&encl->page_array, PFN_DOWN(addr));
  87		if (!entry)
  88			continue;
  89
  90		/*
  91		 * VA page slot ID uses same bit as the flag so it is important
  92		 * to ensure that the page is not already in backing store.
  93		 */
  94		if (entry->epc_page &&
  95		    (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)) {
  96			reclaimed = 1;
  97			break;
  98		}
  99	}
 100
 101	return reclaimed;
 102}
 103
 104/*
 105 * Calculate byte offset of a PCMD struct associated with an enclave page. PCMD's
 106 * follow right after the EPC data in the backing storage. In addition to the
 107 * visible enclave pages, there's one extra page slot for SECS, before PCMD
 108 * structs.
 109 */
 110static inline pgoff_t sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl *encl,
 111							    unsigned long page_index)
 112{
 113	pgoff_t epc_end_off = encl->size + sizeof(struct sgx_secs);
 114
 115	return epc_end_off + page_index * sizeof(struct sgx_pcmd);
 116}
 117
 118/*
 119 * Free a page from the backing storage in the given page index.
 120 */
 121static inline void sgx_encl_truncate_backing_page(struct sgx_encl *encl, unsigned long page_index)
 122{
 123	struct inode *inode = file_inode(encl->backing);
 124
 125	shmem_truncate_range(inode, PFN_PHYS(page_index), PFN_PHYS(page_index) + PAGE_SIZE - 1);
 126}
 127
 128/*
 129 * ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC
 130 * Pages" in the SDM.
 131 */
 132static int __sgx_encl_eldu(struct sgx_encl_page *encl_page,
 133			   struct sgx_epc_page *epc_page,
 134			   struct sgx_epc_page *secs_page)
 135{
 136	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
 137	struct sgx_encl *encl = encl_page->encl;
 138	pgoff_t page_index, page_pcmd_off;
 139	unsigned long pcmd_first_page;
 140	struct sgx_pageinfo pginfo;
 141	struct sgx_backing b;
 142	bool pcmd_page_empty;
 143	u8 *pcmd_page;
 144	int ret;
 145
 146	if (secs_page)
 147		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
 148	else
 149		page_index = PFN_DOWN(encl->size);
 150
 151	/*
 152	 * Address of enclave page using the first entry within the PCMD page.
 153	 */
 154	pcmd_first_page = PFN_PHYS(page_index & ~PCMD_FIRST_MASK) + encl->base;
 155
 156	page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
 157
 158	ret = sgx_encl_lookup_backing(encl, page_index, &b);
 159	if (ret)
 160		return ret;
 161
 162	pginfo.addr = encl_page->desc & PAGE_MASK;
 163	pginfo.contents = (unsigned long)kmap_local_page(b.contents);
 164	pcmd_page = kmap_local_page(b.pcmd);
 165	pginfo.metadata = (unsigned long)pcmd_page + b.pcmd_offset;
 166
 167	if (secs_page)
 168		pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page);
 169	else
 170		pginfo.secs = 0;
 171
 172	ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page),
 173		     sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset);
 174	if (ret) {
 175		if (encls_failed(ret))
 176			ENCLS_WARN(ret, "ELDU");
 177
 178		ret = -EFAULT;
 179	}
 180
 181	memset(pcmd_page + b.pcmd_offset, 0, sizeof(struct sgx_pcmd));
 182	set_page_dirty(b.pcmd);
 183
 184	/*
 185	 * The area for the PCMD in the page was zeroed above.  Check if the
 186	 * whole page is now empty meaning that all PCMD's have been zeroed:
 187	 */
 188	pcmd_page_empty = !memchr_inv(pcmd_page, 0, PAGE_SIZE);
 189
 190	kunmap_local(pcmd_page);
 191	kunmap_local((void *)(unsigned long)pginfo.contents);
 192
 193	get_page(b.pcmd);
 194	sgx_encl_put_backing(&b);
 195
 196	sgx_encl_truncate_backing_page(encl, page_index);
 197
 198	if (pcmd_page_empty && !reclaimer_writing_to_pcmd(encl, pcmd_first_page)) {
 199		sgx_encl_truncate_backing_page(encl, PFN_DOWN(page_pcmd_off));
 200		pcmd_page = kmap_local_page(b.pcmd);
 201		if (memchr_inv(pcmd_page, 0, PAGE_SIZE))
 202			pr_warn("PCMD page not empty after truncate.\n");
 203		kunmap_local(pcmd_page);
 204	}
 205
 206	put_page(b.pcmd);
 207
 208	return ret;
 209}
 210
 211static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page,
 212					  struct sgx_epc_page *secs_page)
 213{
 214
 215	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
 216	struct sgx_encl *encl = encl_page->encl;
 217	struct sgx_epc_page *epc_page;
 218	int ret;
 219
 220	epc_page = sgx_alloc_epc_page(encl_page, false);
 221	if (IS_ERR(epc_page))
 222		return epc_page;
 223
 224	ret = __sgx_encl_eldu(encl_page, epc_page, secs_page);
 225	if (ret) {
 226		sgx_encl_free_epc_page(epc_page);
 227		return ERR_PTR(ret);
 228	}
 229
 230	sgx_free_va_slot(encl_page->va_page, va_offset);
 231	list_move(&encl_page->va_page->list, &encl->va_pages);
 232	encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK;
 233	encl_page->epc_page = epc_page;
 234
 235	return epc_page;
 236}
 237
 238static struct sgx_encl_page *__sgx_encl_load_page(struct sgx_encl *encl,
 239						  struct sgx_encl_page *entry)
 240{
 241	struct sgx_epc_page *epc_page;
 242
 243	/* Entry successfully located. */
 244	if (entry->epc_page) {
 245		if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)
 246			return ERR_PTR(-EBUSY);
 247
 248		return entry;
 249	}
 250
 251	if (!(encl->secs.epc_page)) {
 252		epc_page = sgx_encl_eldu(&encl->secs, NULL);
 253		if (IS_ERR(epc_page))
 254			return ERR_CAST(epc_page);
 255	}
 256
 257	epc_page = sgx_encl_eldu(entry, encl->secs.epc_page);
 258	if (IS_ERR(epc_page))
 259		return ERR_CAST(epc_page);
 260
 261	encl->secs_child_cnt++;
 262	sgx_mark_page_reclaimable(entry->epc_page);
 263
 264	return entry;
 265}
 266
 267static struct sgx_encl_page *sgx_encl_load_page_in_vma(struct sgx_encl *encl,
 268						       unsigned long addr,
 269						       unsigned long vm_flags)
 270{
 271	unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS;
 272	struct sgx_encl_page *entry;
 273
 274	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
 275	if (!entry)
 276		return ERR_PTR(-EFAULT);
 277
 278	/*
 279	 * Verify that the page has equal or higher build time
 280	 * permissions than the VMA permissions (i.e. the subset of {VM_READ,
 281	 * VM_WRITE, VM_EXECUTE} in vma->vm_flags).
 282	 */
 283	if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits)
 284		return ERR_PTR(-EFAULT);
 285
 286	return __sgx_encl_load_page(encl, entry);
 287}
 288
 289struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl,
 290					 unsigned long addr)
 291{
 292	struct sgx_encl_page *entry;
 293
 294	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
 295	if (!entry)
 296		return ERR_PTR(-EFAULT);
 297
 298	return __sgx_encl_load_page(encl, entry);
 299}
 300
 301/**
 302 * sgx_encl_eaug_page() - Dynamically add page to initialized enclave
 303 * @vma:	VMA obtained from fault info from where page is accessed
 304 * @encl:	enclave accessing the page
 305 * @addr:	address that triggered the page fault
 306 *
 307 * When an initialized enclave accesses a page with no backing EPC page
 308 * on a SGX2 system then the EPC can be added dynamically via the SGX2
 309 * ENCLS[EAUG] instruction.
 310 *
 311 * Returns: Appropriate vm_fault_t: VM_FAULT_NOPAGE when PTE was installed
 312 * successfully, VM_FAULT_SIGBUS or VM_FAULT_OOM as error otherwise.
 313 */
 314static vm_fault_t sgx_encl_eaug_page(struct vm_area_struct *vma,
 315				     struct sgx_encl *encl, unsigned long addr)
 316{
 317	vm_fault_t vmret = VM_FAULT_SIGBUS;
 318	struct sgx_pageinfo pginfo = {0};
 319	struct sgx_encl_page *encl_page;
 320	struct sgx_epc_page *epc_page;
 321	struct sgx_va_page *va_page;
 322	unsigned long phys_addr;
 323	u64 secinfo_flags;
 324	int ret;
 325
 326	if (!test_bit(SGX_ENCL_INITIALIZED, &encl->flags))
 327		return VM_FAULT_SIGBUS;
 328
 329	/*
 330	 * Ignore internal permission checking for dynamically added pages.
 331	 * They matter only for data added during the pre-initialization
 332	 * phase. The enclave decides the permissions by the means of
 333	 * EACCEPT, EACCEPTCOPY and EMODPE.
 334	 */
 335	secinfo_flags = SGX_SECINFO_R | SGX_SECINFO_W | SGX_SECINFO_X;
 336	encl_page = sgx_encl_page_alloc(encl, addr - encl->base, secinfo_flags);
 337	if (IS_ERR(encl_page))
 338		return VM_FAULT_OOM;
 339
 340	mutex_lock(&encl->lock);
 341
 342	epc_page = sgx_alloc_epc_page(encl_page, false);
 343	if (IS_ERR(epc_page)) {
 344		if (PTR_ERR(epc_page) == -EBUSY)
 345			vmret =  VM_FAULT_NOPAGE;
 346		goto err_out_unlock;
 347	}
 348
 349	va_page = sgx_encl_grow(encl, false);
 350	if (IS_ERR(va_page)) {
 351		if (PTR_ERR(va_page) == -EBUSY)
 352			vmret = VM_FAULT_NOPAGE;
 353		goto err_out_epc;
 354	}
 355
 356	if (va_page)
 357		list_add(&va_page->list, &encl->va_pages);
 358
 359	ret = xa_insert(&encl->page_array, PFN_DOWN(encl_page->desc),
 360			encl_page, GFP_KERNEL);
 361	/*
 362	 * If ret == -EBUSY then page was created in another flow while
 363	 * running without encl->lock
 364	 */
 365	if (ret)
 366		goto err_out_shrink;
 367
 368	pginfo.secs = (unsigned long)sgx_get_epc_virt_addr(encl->secs.epc_page);
 369	pginfo.addr = encl_page->desc & PAGE_MASK;
 370	pginfo.metadata = 0;
 371
 372	ret = __eaug(&pginfo, sgx_get_epc_virt_addr(epc_page));
 373	if (ret)
 374		goto err_out;
 375
 376	encl_page->encl = encl;
 377	encl_page->epc_page = epc_page;
 378	encl_page->type = SGX_PAGE_TYPE_REG;
 379	encl->secs_child_cnt++;
 380
 381	sgx_mark_page_reclaimable(encl_page->epc_page);
 382
 383	phys_addr = sgx_get_epc_phys_addr(epc_page);
 384	/*
 385	 * Do not undo everything when creating PTE entry fails - next #PF
 386	 * would find page ready for a PTE.
 387	 */
 388	vmret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
 389	if (vmret != VM_FAULT_NOPAGE) {
 390		mutex_unlock(&encl->lock);
 391		return VM_FAULT_SIGBUS;
 392	}
 393	mutex_unlock(&encl->lock);
 394	return VM_FAULT_NOPAGE;
 395
 396err_out:
 397	xa_erase(&encl->page_array, PFN_DOWN(encl_page->desc));
 398
 399err_out_shrink:
 400	sgx_encl_shrink(encl, va_page);
 401err_out_epc:
 402	sgx_encl_free_epc_page(epc_page);
 403err_out_unlock:
 404	mutex_unlock(&encl->lock);
 405	kfree(encl_page);
 406
 407	return vmret;
 408}
 409
 410static vm_fault_t sgx_vma_fault(struct vm_fault *vmf)
 411{
 412	unsigned long addr = (unsigned long)vmf->address;
 413	struct vm_area_struct *vma = vmf->vma;
 414	struct sgx_encl_page *entry;
 415	unsigned long phys_addr;
 416	struct sgx_encl *encl;
 417	vm_fault_t ret;
 418
 419	encl = vma->vm_private_data;
 420
 421	/*
 422	 * It's very unlikely but possible that allocating memory for the
 423	 * mm_list entry of a forked process failed in sgx_vma_open(). When
 424	 * this happens, vm_private_data is set to NULL.
 425	 */
 426	if (unlikely(!encl))
 427		return VM_FAULT_SIGBUS;
 428
 429	/*
 430	 * The page_array keeps track of all enclave pages, whether they
 431	 * are swapped out or not. If there is no entry for this page and
 432	 * the system supports SGX2 then it is possible to dynamically add
 433	 * a new enclave page. This is only possible for an initialized
 434	 * enclave that will be checked for right away.
 435	 */
 436	if (cpu_feature_enabled(X86_FEATURE_SGX2) &&
 437	    (!xa_load(&encl->page_array, PFN_DOWN(addr))))
 438		return sgx_encl_eaug_page(vma, encl, addr);
 439
 440	mutex_lock(&encl->lock);
 441
 442	entry = sgx_encl_load_page_in_vma(encl, addr, vma->vm_flags);
 443	if (IS_ERR(entry)) {
 444		mutex_unlock(&encl->lock);
 445
 446		if (PTR_ERR(entry) == -EBUSY)
 447			return VM_FAULT_NOPAGE;
 448
 449		return VM_FAULT_SIGBUS;
 450	}
 451
 452	phys_addr = sgx_get_epc_phys_addr(entry->epc_page);
 453
 454	ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
 455	if (ret != VM_FAULT_NOPAGE) {
 456		mutex_unlock(&encl->lock);
 457
 458		return VM_FAULT_SIGBUS;
 459	}
 460
 461	sgx_encl_test_and_clear_young(vma->vm_mm, entry);
 462	mutex_unlock(&encl->lock);
 463
 464	return VM_FAULT_NOPAGE;
 465}
 466
 467static void sgx_vma_open(struct vm_area_struct *vma)
 468{
 469	struct sgx_encl *encl = vma->vm_private_data;
 470
 471	/*
 472	 * It's possible but unlikely that vm_private_data is NULL. This can
 473	 * happen in a grandchild of a process, when sgx_encl_mm_add() had
 474	 * failed to allocate memory in this callback.
 475	 */
 476	if (unlikely(!encl))
 477		return;
 478
 479	if (sgx_encl_mm_add(encl, vma->vm_mm))
 480		vma->vm_private_data = NULL;
 481}
 482
 483
 484/**
 485 * sgx_encl_may_map() - Check if a requested VMA mapping is allowed
 486 * @encl:		an enclave pointer
 487 * @start:		lower bound of the address range, inclusive
 488 * @end:		upper bound of the address range, exclusive
 489 * @vm_flags:		VMA flags
 490 *
 491 * Iterate through the enclave pages contained within [@start, @end) to verify
 492 * that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC}
 493 * do not contain any permissions that are not contained in the build time
 494 * permissions of any of the enclave pages within the given address range.
 495 *
 496 * An enclave creator must declare the strongest permissions that will be
 497 * needed for each enclave page. This ensures that mappings have the identical
 498 * or weaker permissions than the earlier declared permissions.
 499 *
 500 * Return: 0 on success, -EACCES otherwise
 501 */
 502int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start,
 503		     unsigned long end, unsigned long vm_flags)
 504{
 505	unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS;
 506	struct sgx_encl_page *page;
 507	unsigned long count = 0;
 508	int ret = 0;
 509
 510	XA_STATE(xas, &encl->page_array, PFN_DOWN(start));
 511
 512	/* Disallow mapping outside enclave's address range. */
 513	if (test_bit(SGX_ENCL_INITIALIZED, &encl->flags) &&
 514	    (start < encl->base || end > encl->base + encl->size))
 515		return -EACCES;
 516
 517	/*
 518	 * Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might
 519	 * conflict with the enclave page permissions.
 520	 */
 521	if (current->personality & READ_IMPLIES_EXEC)
 522		return -EACCES;
 523
 524	mutex_lock(&encl->lock);
 525	xas_lock(&xas);
 526	xas_for_each(&xas, page, PFN_DOWN(end - 1)) {
 527		if (~page->vm_max_prot_bits & vm_prot_bits) {
 528			ret = -EACCES;
 529			break;
 530		}
 531
 532		/* Reschedule on every XA_CHECK_SCHED iteration. */
 533		if (!(++count % XA_CHECK_SCHED)) {
 534			xas_pause(&xas);
 535			xas_unlock(&xas);
 536			mutex_unlock(&encl->lock);
 537
 538			cond_resched();
 539
 540			mutex_lock(&encl->lock);
 541			xas_lock(&xas);
 542		}
 543	}
 544	xas_unlock(&xas);
 545	mutex_unlock(&encl->lock);
 546
 547	return ret;
 548}
 549
 550static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start,
 551			    unsigned long end, unsigned long newflags)
 552{
 553	return sgx_encl_may_map(vma->vm_private_data, start, end, newflags);
 554}
 555
 556static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page,
 557			       unsigned long addr, void *data)
 558{
 559	unsigned long offset = addr & ~PAGE_MASK;
 560	int ret;
 561
 562
 563	ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
 564	if (ret)
 565		return -EIO;
 566
 567	return 0;
 568}
 569
 570static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page,
 571				unsigned long addr, void *data)
 572{
 573	unsigned long offset = addr & ~PAGE_MASK;
 574	int ret;
 575
 576	ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
 577	if (ret)
 578		return -EIO;
 579
 580	return 0;
 581}
 582
 583/*
 584 * Load an enclave page to EPC if required, and take encl->lock.
 585 */
 586static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl,
 587						   unsigned long addr,
 588						   unsigned long vm_flags)
 589{
 590	struct sgx_encl_page *entry;
 591
 592	for ( ; ; ) {
 593		mutex_lock(&encl->lock);
 594
 595		entry = sgx_encl_load_page_in_vma(encl, addr, vm_flags);
 596		if (PTR_ERR(entry) != -EBUSY)
 597			break;
 598
 599		mutex_unlock(&encl->lock);
 600	}
 601
 602	if (IS_ERR(entry))
 603		mutex_unlock(&encl->lock);
 604
 605	return entry;
 606}
 607
 608static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr,
 609			  void *buf, int len, int write)
 610{
 611	struct sgx_encl *encl = vma->vm_private_data;
 612	struct sgx_encl_page *entry = NULL;
 613	char data[sizeof(unsigned long)];
 614	unsigned long align;
 615	int offset;
 616	int cnt;
 617	int ret = 0;
 618	int i;
 619
 620	/*
 621	 * If process was forked, VMA is still there but vm_private_data is set
 622	 * to NULL.
 623	 */
 624	if (!encl)
 625		return -EFAULT;
 626
 627	if (!test_bit(SGX_ENCL_DEBUG, &encl->flags))
 628		return -EFAULT;
 629
 630	for (i = 0; i < len; i += cnt) {
 631		entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK,
 632					      vma->vm_flags);
 633		if (IS_ERR(entry)) {
 634			ret = PTR_ERR(entry);
 635			break;
 636		}
 637
 638		align = ALIGN_DOWN(addr + i, sizeof(unsigned long));
 639		offset = (addr + i) & (sizeof(unsigned long) - 1);
 640		cnt = sizeof(unsigned long) - offset;
 641		cnt = min(cnt, len - i);
 642
 643		ret = sgx_encl_debug_read(encl, entry, align, data);
 644		if (ret)
 645			goto out;
 646
 647		if (write) {
 648			memcpy(data + offset, buf + i, cnt);
 649			ret = sgx_encl_debug_write(encl, entry, align, data);
 650			if (ret)
 651				goto out;
 652		} else {
 653			memcpy(buf + i, data + offset, cnt);
 654		}
 655
 656out:
 657		mutex_unlock(&encl->lock);
 658
 659		if (ret)
 660			break;
 661	}
 662
 663	return ret < 0 ? ret : i;
 664}
 665
 666const struct vm_operations_struct sgx_vm_ops = {
 667	.fault = sgx_vma_fault,
 668	.mprotect = sgx_vma_mprotect,
 669	.open = sgx_vma_open,
 670	.access = sgx_vma_access,
 671};
 672
 673/**
 674 * sgx_encl_release - Destroy an enclave instance
 675 * @ref:	address of a kref inside &sgx_encl
 676 *
 677 * Used together with kref_put(). Frees all the resources associated with the
 678 * enclave and the instance itself.
 679 */
 680void sgx_encl_release(struct kref *ref)
 681{
 682	struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount);
 683	unsigned long max_page_index = PFN_DOWN(encl->base + encl->size - 1);
 684	struct sgx_va_page *va_page;
 685	struct sgx_encl_page *entry;
 686	unsigned long count = 0;
 687
 688	XA_STATE(xas, &encl->page_array, PFN_DOWN(encl->base));
 689
 690	xas_lock(&xas);
 691	xas_for_each(&xas, entry, max_page_index) {
 692		if (entry->epc_page) {
 693			/*
 694			 * The page and its radix tree entry cannot be freed
 695			 * if the page is being held by the reclaimer.
 696			 */
 697			if (sgx_unmark_page_reclaimable(entry->epc_page))
 698				continue;
 699
 700			sgx_encl_free_epc_page(entry->epc_page);
 701			encl->secs_child_cnt--;
 702			entry->epc_page = NULL;
 703		}
 704
 705		kfree(entry);
 706		/*
 707		 * Invoke scheduler on every XA_CHECK_SCHED iteration
 708		 * to prevent soft lockups.
 709		 */
 710		if (!(++count % XA_CHECK_SCHED)) {
 711			xas_pause(&xas);
 712			xas_unlock(&xas);
 713
 714			cond_resched();
 715
 716			xas_lock(&xas);
 717		}
 718	}
 719	xas_unlock(&xas);
 720
 721	xa_destroy(&encl->page_array);
 722
 723	if (!encl->secs_child_cnt && encl->secs.epc_page) {
 724		sgx_encl_free_epc_page(encl->secs.epc_page);
 725		encl->secs.epc_page = NULL;
 726	}
 727
 728	while (!list_empty(&encl->va_pages)) {
 729		va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
 730					   list);
 731		list_del(&va_page->list);
 732		sgx_encl_free_epc_page(va_page->epc_page);
 733		kfree(va_page);
 734	}
 735
 736	if (encl->backing)
 737		fput(encl->backing);
 738
 739	cleanup_srcu_struct(&encl->srcu);
 740
 741	WARN_ON_ONCE(!list_empty(&encl->mm_list));
 742
 743	/* Detect EPC page leak's. */
 744	WARN_ON_ONCE(encl->secs_child_cnt);
 745	WARN_ON_ONCE(encl->secs.epc_page);
 746
 747	kfree(encl);
 748}
 749
 750/*
 751 * 'mm' is exiting and no longer needs mmu notifications.
 752 */
 753static void sgx_mmu_notifier_release(struct mmu_notifier *mn,
 754				     struct mm_struct *mm)
 755{
 756	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
 757	struct sgx_encl_mm *tmp = NULL;
 758
 759	/*
 760	 * The enclave itself can remove encl_mm.  Note, objects can't be moved
 761	 * off an RCU protected list, but deletion is ok.
 762	 */
 763	spin_lock(&encl_mm->encl->mm_lock);
 764	list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) {
 765		if (tmp == encl_mm) {
 766			list_del_rcu(&encl_mm->list);
 767			break;
 768		}
 769	}
 770	spin_unlock(&encl_mm->encl->mm_lock);
 771
 772	if (tmp == encl_mm) {
 773		synchronize_srcu(&encl_mm->encl->srcu);
 774		mmu_notifier_put(mn);
 775	}
 776}
 777
 778static void sgx_mmu_notifier_free(struct mmu_notifier *mn)
 779{
 780	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
 781
 782	/* 'encl_mm' is going away, put encl_mm->encl reference: */
 783	kref_put(&encl_mm->encl->refcount, sgx_encl_release);
 784
 785	kfree(encl_mm);
 786}
 787
 788static const struct mmu_notifier_ops sgx_mmu_notifier_ops = {
 789	.release		= sgx_mmu_notifier_release,
 790	.free_notifier		= sgx_mmu_notifier_free,
 791};
 792
 793static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl,
 794					    struct mm_struct *mm)
 795{
 796	struct sgx_encl_mm *encl_mm = NULL;
 797	struct sgx_encl_mm *tmp;
 798	int idx;
 799
 800	idx = srcu_read_lock(&encl->srcu);
 801
 802	list_for_each_entry_rcu(tmp, &encl->mm_list, list) {
 803		if (tmp->mm == mm) {
 804			encl_mm = tmp;
 805			break;
 806		}
 807	}
 808
 809	srcu_read_unlock(&encl->srcu, idx);
 810
 811	return encl_mm;
 812}
 813
 814int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm)
 815{
 816	struct sgx_encl_mm *encl_mm;
 817	int ret;
 818
 819	/*
 820	 * Even though a single enclave may be mapped into an mm more than once,
 821	 * each 'mm' only appears once on encl->mm_list. This is guaranteed by
 822	 * holding the mm's mmap lock for write before an mm can be added or
 823	 * remove to an encl->mm_list.
 824	 */
 825	mmap_assert_write_locked(mm);
 826
 827	/*
 828	 * It's possible that an entry already exists in the mm_list, because it
 829	 * is removed only on VFS release or process exit.
 830	 */
 831	if (sgx_encl_find_mm(encl, mm))
 832		return 0;
 833
 834	encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL);
 835	if (!encl_mm)
 836		return -ENOMEM;
 837
 838	/* Grab a refcount for the encl_mm->encl reference: */
 839	kref_get(&encl->refcount);
 840	encl_mm->encl = encl;
 841	encl_mm->mm = mm;
 842	encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops;
 843
 844	ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm);
 845	if (ret) {
 846		kfree(encl_mm);
 847		return ret;
 848	}
 849
 850	spin_lock(&encl->mm_lock);
 851	list_add_rcu(&encl_mm->list, &encl->mm_list);
 852	/* Pairs with smp_rmb() in sgx_zap_enclave_ptes(). */
 853	smp_wmb();
 854	encl->mm_list_version++;
 855	spin_unlock(&encl->mm_lock);
 856
 857	return 0;
 858}
 859
 860/**
 861 * sgx_encl_cpumask() - Query which CPUs might be accessing the enclave
 862 * @encl: the enclave
 863 *
 864 * Some SGX functions require that no cached linear-to-physical address
 865 * mappings are present before they can succeed. For example, ENCLS[EWB]
 866 * copies a page from the enclave page cache to regular main memory but
 867 * it fails if it cannot ensure that there are no cached
 868 * linear-to-physical address mappings referring to the page.
 869 *
 870 * SGX hardware flushes all cached linear-to-physical mappings on a CPU
 871 * when an enclave is exited via ENCLU[EEXIT] or an Asynchronous Enclave
 872 * Exit (AEX). Exiting an enclave will thus ensure cached linear-to-physical
 873 * address mappings are cleared but coordination with the tracking done within
 874 * the SGX hardware is needed to support the SGX functions that depend on this
 875 * cache clearing.
 876 *
 877 * When the ENCLS[ETRACK] function is issued on an enclave the hardware
 878 * tracks threads operating inside the enclave at that time. The SGX
 879 * hardware tracking require that all the identified threads must have
 880 * exited the enclave in order to flush the mappings before a function such
 881 * as ENCLS[EWB] will be permitted
 882 *
 883 * The following flow is used to support SGX functions that require that
 884 * no cached linear-to-physical address mappings are present:
 885 * 1) Execute ENCLS[ETRACK] to initiate hardware tracking.
 886 * 2) Use this function (sgx_encl_cpumask()) to query which CPUs might be
 887 *    accessing the enclave.
 888 * 3) Send IPI to identified CPUs, kicking them out of the enclave and
 889 *    thus flushing all locally cached linear-to-physical address mappings.
 890 * 4) Execute SGX function.
 891 *
 892 * Context: It is required to call this function after ENCLS[ETRACK].
 893 *          This will ensure that if any new mm appears (racing with
 894 *          sgx_encl_mm_add()) then the new mm will enter into the
 895 *          enclave with fresh linear-to-physical address mappings.
 896 *
 897 *          It is required that all IPIs are completed before a new
 898 *          ENCLS[ETRACK] is issued so be sure to protect steps 1 to 3
 899 *          of the above flow with the enclave's mutex.
 900 *
 901 * Return: cpumask of CPUs that might be accessing @encl
 902 */
 903const cpumask_t *sgx_encl_cpumask(struct sgx_encl *encl)
 904{
 905	cpumask_t *cpumask = &encl->cpumask;
 906	struct sgx_encl_mm *encl_mm;
 907	int idx;
 908
 909	cpumask_clear(cpumask);
 910
 911	idx = srcu_read_lock(&encl->srcu);
 912
 913	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
 914		if (!mmget_not_zero(encl_mm->mm))
 915			continue;
 916
 917		cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
 918
 919		mmput_async(encl_mm->mm);
 920	}
 921
 922	srcu_read_unlock(&encl->srcu, idx);
 923
 924	return cpumask;
 925}
 926
 927static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl,
 928					      pgoff_t index)
 929{
 930	struct address_space *mapping = encl->backing->f_mapping;
 931	gfp_t gfpmask = mapping_gfp_mask(mapping);
 932
 933	return shmem_read_mapping_page_gfp(mapping, index, gfpmask);
 934}
 935
 936/**
 937 * __sgx_encl_get_backing() - Pin the backing storage
 938 * @encl:	an enclave pointer
 939 * @page_index:	enclave page index
 940 * @backing:	data for accessing backing storage for the page
 941 *
 942 * Pin the backing storage pages for storing the encrypted contents and Paging
 943 * Crypto MetaData (PCMD) of an enclave page.
 944 *
 945 * Return:
 946 *   0 on success,
 947 *   -errno otherwise.
 948 */
 949static int __sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index,
 950			 struct sgx_backing *backing)
 951{
 952	pgoff_t page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
 953	struct page *contents;
 954	struct page *pcmd;
 955
 956	contents = sgx_encl_get_backing_page(encl, page_index);
 957	if (IS_ERR(contents))
 958		return PTR_ERR(contents);
 959
 960	pcmd = sgx_encl_get_backing_page(encl, PFN_DOWN(page_pcmd_off));
 961	if (IS_ERR(pcmd)) {
 962		put_page(contents);
 963		return PTR_ERR(pcmd);
 964	}
 965
 966	backing->contents = contents;
 967	backing->pcmd = pcmd;
 968	backing->pcmd_offset = page_pcmd_off & (PAGE_SIZE - 1);
 969
 970	return 0;
 971}
 972
 973/*
 974 * When called from ksgxd, returns the mem_cgroup of a struct mm stored
 975 * in the enclave's mm_list. When not called from ksgxd, just returns
 976 * the mem_cgroup of the current task.
 977 */
 978static struct mem_cgroup *sgx_encl_get_mem_cgroup(struct sgx_encl *encl)
 979{
 980	struct mem_cgroup *memcg = NULL;
 981	struct sgx_encl_mm *encl_mm;
 982	int idx;
 983
 984	/*
 985	 * If called from normal task context, return the mem_cgroup
 986	 * of the current task's mm. The remainder of the handling is for
 987	 * ksgxd.
 988	 */
 989	if (!current_is_ksgxd())
 990		return get_mem_cgroup_from_mm(current->mm);
 991
 992	/*
 993	 * Search the enclave's mm_list to find an mm associated with
 994	 * this enclave to charge the allocation to.
 995	 */
 996	idx = srcu_read_lock(&encl->srcu);
 997
 998	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
 999		if (!mmget_not_zero(encl_mm->mm))
1000			continue;
1001
1002		memcg = get_mem_cgroup_from_mm(encl_mm->mm);
1003
1004		mmput_async(encl_mm->mm);
1005
1006		break;
1007	}
1008
1009	srcu_read_unlock(&encl->srcu, idx);
1010
1011	/*
1012	 * In the rare case that there isn't an mm associated with
1013	 * the enclave, set memcg to the current active mem_cgroup.
1014	 * This will be the root mem_cgroup if there is no active
1015	 * mem_cgroup.
1016	 */
1017	if (!memcg)
1018		return get_mem_cgroup_from_mm(NULL);
1019
1020	return memcg;
1021}
1022
1023/**
1024 * sgx_encl_alloc_backing() - create a new backing storage page
1025 * @encl:	an enclave pointer
1026 * @page_index:	enclave page index
1027 * @backing:	data for accessing backing storage for the page
1028 *
1029 * When called from ksgxd, sets the active memcg from one of the
1030 * mms in the enclave's mm_list prior to any backing page allocation,
1031 * in order to ensure that shmem page allocations are charged to the
1032 * enclave.  Create a backing page for loading data back into an EPC page with
1033 * ELDU.  This function takes a reference on a new backing page which
1034 * must be dropped with a corresponding call to sgx_encl_put_backing().
1035 *
1036 * Return:
1037 *   0 on success,
1038 *   -errno otherwise.
1039 */
1040int sgx_encl_alloc_backing(struct sgx_encl *encl, unsigned long page_index,
1041			   struct sgx_backing *backing)
1042{
1043	struct mem_cgroup *encl_memcg = sgx_encl_get_mem_cgroup(encl);
1044	struct mem_cgroup *memcg = set_active_memcg(encl_memcg);
1045	int ret;
1046
1047	ret = __sgx_encl_get_backing(encl, page_index, backing);
1048
1049	set_active_memcg(memcg);
1050	mem_cgroup_put(encl_memcg);
1051
1052	return ret;
1053}
1054
1055/**
1056 * sgx_encl_lookup_backing() - retrieve an existing backing storage page
1057 * @encl:	an enclave pointer
1058 * @page_index:	enclave page index
1059 * @backing:	data for accessing backing storage for the page
1060 *
1061 * Retrieve a backing page for loading data back into an EPC page with ELDU.
1062 * It is the caller's responsibility to ensure that it is appropriate to use
1063 * sgx_encl_lookup_backing() rather than sgx_encl_alloc_backing(). If lookup is
1064 * not used correctly, this will cause an allocation which is not accounted for.
1065 * This function takes a reference on an existing backing page which must be
1066 * dropped with a corresponding call to sgx_encl_put_backing().
1067 *
1068 * Return:
1069 *   0 on success,
1070 *   -errno otherwise.
1071 */
1072static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
1073			   struct sgx_backing *backing)
1074{
1075	return __sgx_encl_get_backing(encl, page_index, backing);
1076}
1077
1078/**
1079 * sgx_encl_put_backing() - Unpin the backing storage
1080 * @backing:	data for accessing backing storage for the page
1081 */
1082void sgx_encl_put_backing(struct sgx_backing *backing)
1083{
1084	put_page(backing->pcmd);
1085	put_page(backing->contents);
1086}
1087
1088static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr,
1089					    void *data)
1090{
1091	pte_t pte;
1092	int ret;
1093
1094	ret = pte_young(*ptep);
1095	if (ret) {
1096		pte = pte_mkold(*ptep);
1097		set_pte_at((struct mm_struct *)data, addr, ptep, pte);
1098	}
1099
1100	return ret;
1101}
1102
1103/**
1104 * sgx_encl_test_and_clear_young() - Test and reset the accessed bit
1105 * @mm:		mm_struct that is checked
1106 * @page:	enclave page to be tested for recent access
1107 *
1108 * Checks the Access (A) bit from the PTE corresponding to the enclave page and
1109 * clears it.
1110 *
1111 * Return: 1 if the page has been recently accessed and 0 if not.
1112 */
1113int sgx_encl_test_and_clear_young(struct mm_struct *mm,
1114				  struct sgx_encl_page *page)
1115{
1116	unsigned long addr = page->desc & PAGE_MASK;
1117	struct sgx_encl *encl = page->encl;
1118	struct vm_area_struct *vma;
1119	int ret;
1120
1121	ret = sgx_encl_find(mm, addr, &vma);
1122	if (ret)
1123		return 0;
1124
1125	if (encl != vma->vm_private_data)
1126		return 0;
1127
1128	ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE,
1129				  sgx_encl_test_and_clear_young_cb, vma->vm_mm);
1130	if (ret < 0)
1131		return 0;
1132
1133	return ret;
1134}
1135
1136struct sgx_encl_page *sgx_encl_page_alloc(struct sgx_encl *encl,
1137					  unsigned long offset,
1138					  u64 secinfo_flags)
1139{
1140	struct sgx_encl_page *encl_page;
1141	unsigned long prot;
1142
1143	encl_page = kzalloc(sizeof(*encl_page), GFP_KERNEL);
1144	if (!encl_page)
1145		return ERR_PTR(-ENOMEM);
1146
1147	encl_page->desc = encl->base + offset;
1148	encl_page->encl = encl;
1149
1150	prot = _calc_vm_trans(secinfo_flags, SGX_SECINFO_R, PROT_READ)  |
1151	       _calc_vm_trans(secinfo_flags, SGX_SECINFO_W, PROT_WRITE) |
1152	       _calc_vm_trans(secinfo_flags, SGX_SECINFO_X, PROT_EXEC);
1153
1154	/*
1155	 * TCS pages must always RW set for CPU access while the SECINFO
1156	 * permissions are *always* zero - the CPU ignores the user provided
1157	 * values and silently overwrites them with zero permissions.
1158	 */
1159	if ((secinfo_flags & SGX_SECINFO_PAGE_TYPE_MASK) == SGX_SECINFO_TCS)
1160		prot |= PROT_READ | PROT_WRITE;
1161
1162	/* Calculate maximum of the VM flags for the page. */
1163	encl_page->vm_max_prot_bits = calc_vm_prot_bits(prot, 0);
1164
1165	return encl_page;
1166}
1167
1168/**
1169 * sgx_zap_enclave_ptes() - remove PTEs mapping the address from enclave
1170 * @encl: the enclave
1171 * @addr: page aligned pointer to single page for which PTEs will be removed
1172 *
1173 * Multiple VMAs may have an enclave page mapped. Remove the PTE mapping
1174 * @addr from each VMA. Ensure that page fault handler is ready to handle
1175 * new mappings of @addr before calling this function.
1176 */
1177void sgx_zap_enclave_ptes(struct sgx_encl *encl, unsigned long addr)
1178{
1179	unsigned long mm_list_version;
1180	struct sgx_encl_mm *encl_mm;
1181	struct vm_area_struct *vma;
1182	int idx, ret;
1183
1184	do {
1185		mm_list_version = encl->mm_list_version;
1186
1187		/* Pairs with smp_wmb() in sgx_encl_mm_add(). */
1188		smp_rmb();
1189
1190		idx = srcu_read_lock(&encl->srcu);
1191
1192		list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
1193			if (!mmget_not_zero(encl_mm->mm))
1194				continue;
1195
1196			mmap_read_lock(encl_mm->mm);
1197
1198			ret = sgx_encl_find(encl_mm->mm, addr, &vma);
1199			if (!ret && encl == vma->vm_private_data)
1200				zap_vma_ptes(vma, addr, PAGE_SIZE);
1201
1202			mmap_read_unlock(encl_mm->mm);
1203
1204			mmput_async(encl_mm->mm);
1205		}
1206
1207		srcu_read_unlock(&encl->srcu, idx);
1208	} while (unlikely(encl->mm_list_version != mm_list_version));
1209}
1210
1211/**
1212 * sgx_alloc_va_page() - Allocate a Version Array (VA) page
1213 * @reclaim: Reclaim EPC pages directly if none available. Enclave
1214 *           mutex should not be held if this is set.
1215 *
1216 * Allocate a free EPC page and convert it to a Version Array (VA) page.
1217 *
1218 * Return:
1219 *   a VA page,
1220 *   -errno otherwise
1221 */
1222struct sgx_epc_page *sgx_alloc_va_page(bool reclaim)
1223{
1224	struct sgx_epc_page *epc_page;
1225	int ret;
1226
1227	epc_page = sgx_alloc_epc_page(NULL, reclaim);
1228	if (IS_ERR(epc_page))
1229		return ERR_CAST(epc_page);
1230
1231	ret = __epa(sgx_get_epc_virt_addr(epc_page));
1232	if (ret) {
1233		WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret);
1234		sgx_encl_free_epc_page(epc_page);
1235		return ERR_PTR(-EFAULT);
1236	}
1237
1238	return epc_page;
1239}
1240
1241/**
1242 * sgx_alloc_va_slot - allocate a VA slot
1243 * @va_page:	a &struct sgx_va_page instance
1244 *
1245 * Allocates a slot from a &struct sgx_va_page instance.
1246 *
1247 * Return: offset of the slot inside the VA page
1248 */
1249unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page)
1250{
1251	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
1252
1253	if (slot < SGX_VA_SLOT_COUNT)
1254		set_bit(slot, va_page->slots);
1255
1256	return slot << 3;
1257}
1258
1259/**
1260 * sgx_free_va_slot - free a VA slot
1261 * @va_page:	a &struct sgx_va_page instance
1262 * @offset:	offset of the slot inside the VA page
1263 *
1264 * Frees a slot from a &struct sgx_va_page instance.
1265 */
1266void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset)
1267{
1268	clear_bit(offset >> 3, va_page->slots);
1269}
1270
1271/**
1272 * sgx_va_page_full - is the VA page full?
1273 * @va_page:	a &struct sgx_va_page instance
1274 *
1275 * Return: true if all slots have been taken
1276 */
1277bool sgx_va_page_full(struct sgx_va_page *va_page)
1278{
1279	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
1280
1281	return slot == SGX_VA_SLOT_COUNT;
1282}
1283
1284/**
1285 * sgx_encl_free_epc_page - free an EPC page assigned to an enclave
1286 * @page:	EPC page to be freed
1287 *
1288 * Free an EPC page assigned to an enclave. It does EREMOVE for the page, and
1289 * only upon success, it puts the page back to free page list.  Otherwise, it
1290 * gives a WARNING to indicate page is leaked.
1291 */
1292void sgx_encl_free_epc_page(struct sgx_epc_page *page)
1293{
1294	int ret;
1295
1296	WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED);
1297
1298	ret = __eremove(sgx_get_epc_virt_addr(page));
1299	if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret))
1300		return;
1301
1302	sgx_free_epc_page(page);
1303}