Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0
   2/*  Copyright(c) 2016-20 Intel Corporation. */
   3
   4#include <linux/lockdep.h>
   5#include <linux/mm.h>
   6#include <linux/mman.h>
   7#include <linux/shmem_fs.h>
   8#include <linux/suspend.h>
   9#include <linux/sched/mm.h>
  10#include <asm/sgx.h>
  11#include "encl.h"
  12#include "encls.h"
  13#include "sgx.h"
  14
  15static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
  16			    struct sgx_backing *backing);
  17
  18#define PCMDS_PER_PAGE (PAGE_SIZE / sizeof(struct sgx_pcmd))
  19/*
  20 * 32 PCMD entries share a PCMD page. PCMD_FIRST_MASK is used to
  21 * determine the page index associated with the first PCMD entry
  22 * within a PCMD page.
  23 */
  24#define PCMD_FIRST_MASK GENMASK(4, 0)
  25
  26/**
  27 * reclaimer_writing_to_pcmd() - Query if any enclave page associated with
  28 *                               a PCMD page is in process of being reclaimed.
  29 * @encl:        Enclave to which PCMD page belongs
  30 * @start_addr:  Address of enclave page using first entry within the PCMD page
  31 *
  32 * When an enclave page is reclaimed some Paging Crypto MetaData (PCMD) is
  33 * stored. The PCMD data of a reclaimed enclave page contains enough
  34 * information for the processor to verify the page at the time
  35 * it is loaded back into the Enclave Page Cache (EPC).
  36 *
  37 * The backing storage to which enclave pages are reclaimed is laid out as
  38 * follows:
  39 * Encrypted enclave pages:SECS page:PCMD pages
  40 *
  41 * Each PCMD page contains the PCMD metadata of
  42 * PAGE_SIZE/sizeof(struct sgx_pcmd) enclave pages.
  43 *
  44 * A PCMD page can only be truncated if it is (a) empty, and (b) not in the
  45 * process of getting data (and thus soon being non-empty). (b) is tested with
  46 * a check if an enclave page sharing the PCMD page is in the process of being
  47 * reclaimed.
  48 *
  49 * The reclaimer sets the SGX_ENCL_PAGE_BEING_RECLAIMED flag when it
  50 * intends to reclaim that enclave page - it means that the PCMD page
  51 * associated with that enclave page is about to get some data and thus
  52 * even if the PCMD page is empty, it should not be truncated.
  53 *
  54 * Context: Enclave mutex (&sgx_encl->lock) must be held.
  55 * Return: 1 if the reclaimer is about to write to the PCMD page
  56 *         0 if the reclaimer has no intention to write to the PCMD page
  57 */
  58static int reclaimer_writing_to_pcmd(struct sgx_encl *encl,
  59				     unsigned long start_addr)
  60{
  61	int reclaimed = 0;
  62	int i;
  63
  64	/*
  65	 * PCMD_FIRST_MASK is based on number of PCMD entries within
  66	 * PCMD page being 32.
  67	 */
  68	BUILD_BUG_ON(PCMDS_PER_PAGE != 32);
  69
  70	for (i = 0; i < PCMDS_PER_PAGE; i++) {
  71		struct sgx_encl_page *entry;
  72		unsigned long addr;
  73
  74		addr = start_addr + i * PAGE_SIZE;
  75
  76		/*
  77		 * Stop when reaching the SECS page - it does not
  78		 * have a page_array entry and its reclaim is
  79		 * started and completed with enclave mutex held so
  80		 * it does not use the SGX_ENCL_PAGE_BEING_RECLAIMED
  81		 * flag.
  82		 */
  83		if (addr == encl->base + encl->size)
  84			break;
  85
  86		entry = xa_load(&encl->page_array, PFN_DOWN(addr));
  87		if (!entry)
  88			continue;
  89
  90		/*
  91		 * VA page slot ID uses same bit as the flag so it is important
  92		 * to ensure that the page is not already in backing store.
  93		 */
  94		if (entry->epc_page &&
  95		    (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)) {
  96			reclaimed = 1;
  97			break;
  98		}
  99	}
 100
 101	return reclaimed;
 102}
 103
 104/*
 105 * Calculate byte offset of a PCMD struct associated with an enclave page. PCMD's
 106 * follow right after the EPC data in the backing storage. In addition to the
 107 * visible enclave pages, there's one extra page slot for SECS, before PCMD
 108 * structs.
 109 */
 110static inline pgoff_t sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl *encl,
 111							    unsigned long page_index)
 112{
 113	pgoff_t epc_end_off = encl->size + sizeof(struct sgx_secs);
 114
 115	return epc_end_off + page_index * sizeof(struct sgx_pcmd);
 116}
 117
 118/*
 119 * Free a page from the backing storage in the given page index.
 120 */
 121static inline void sgx_encl_truncate_backing_page(struct sgx_encl *encl, unsigned long page_index)
 122{
 123	struct inode *inode = file_inode(encl->backing);
 124
 125	shmem_truncate_range(inode, PFN_PHYS(page_index), PFN_PHYS(page_index) + PAGE_SIZE - 1);
 126}
 127
 128/*
 129 * ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC
 130 * Pages" in the SDM.
 131 */
 132static int __sgx_encl_eldu(struct sgx_encl_page *encl_page,
 133			   struct sgx_epc_page *epc_page,
 134			   struct sgx_epc_page *secs_page)
 135{
 136	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
 137	struct sgx_encl *encl = encl_page->encl;
 138	pgoff_t page_index, page_pcmd_off;
 139	unsigned long pcmd_first_page;
 140	struct sgx_pageinfo pginfo;
 141	struct sgx_backing b;
 142	bool pcmd_page_empty;
 143	u8 *pcmd_page;
 144	int ret;
 145
 146	if (secs_page)
 147		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
 148	else
 149		page_index = PFN_DOWN(encl->size);
 150
 151	/*
 152	 * Address of enclave page using the first entry within the PCMD page.
 153	 */
 154	pcmd_first_page = PFN_PHYS(page_index & ~PCMD_FIRST_MASK) + encl->base;
 155
 156	page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
 157
 158	ret = sgx_encl_lookup_backing(encl, page_index, &b);
 159	if (ret)
 160		return ret;
 161
 162	pginfo.addr = encl_page->desc & PAGE_MASK;
 163	pginfo.contents = (unsigned long)kmap_local_page(b.contents);
 164	pcmd_page = kmap_local_page(b.pcmd);
 165	pginfo.metadata = (unsigned long)pcmd_page + b.pcmd_offset;
 166
 167	if (secs_page)
 168		pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page);
 169	else
 170		pginfo.secs = 0;
 171
 172	ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page),
 173		     sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset);
 174	if (ret) {
 175		if (encls_failed(ret))
 176			ENCLS_WARN(ret, "ELDU");
 177
 178		ret = -EFAULT;
 179	}
 180
 181	memset(pcmd_page + b.pcmd_offset, 0, sizeof(struct sgx_pcmd));
 182	set_page_dirty(b.pcmd);
 183
 184	/*
 185	 * The area for the PCMD in the page was zeroed above.  Check if the
 186	 * whole page is now empty meaning that all PCMD's have been zeroed:
 187	 */
 188	pcmd_page_empty = !memchr_inv(pcmd_page, 0, PAGE_SIZE);
 189
 190	kunmap_local(pcmd_page);
 191	kunmap_local((void *)(unsigned long)pginfo.contents);
 192
 193	get_page(b.pcmd);
 194	sgx_encl_put_backing(&b);
 195
 196	sgx_encl_truncate_backing_page(encl, page_index);
 197
 198	if (pcmd_page_empty && !reclaimer_writing_to_pcmd(encl, pcmd_first_page)) {
 199		sgx_encl_truncate_backing_page(encl, PFN_DOWN(page_pcmd_off));
 200		pcmd_page = kmap_local_page(b.pcmd);
 201		if (memchr_inv(pcmd_page, 0, PAGE_SIZE))
 202			pr_warn("PCMD page not empty after truncate.\n");
 203		kunmap_local(pcmd_page);
 204	}
 205
 206	put_page(b.pcmd);
 207
 208	return ret;
 209}
 210
 211static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page,
 212					  struct sgx_epc_page *secs_page)
 213{
 214
 215	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
 216	struct sgx_encl *encl = encl_page->encl;
 217	struct sgx_epc_page *epc_page;
 218	int ret;
 219
 220	epc_page = sgx_alloc_epc_page(encl_page, false);
 221	if (IS_ERR(epc_page))
 222		return epc_page;
 223
 224	ret = __sgx_encl_eldu(encl_page, epc_page, secs_page);
 225	if (ret) {
 226		sgx_encl_free_epc_page(epc_page);
 227		return ERR_PTR(ret);
 228	}
 229
 230	sgx_free_va_slot(encl_page->va_page, va_offset);
 231	list_move(&encl_page->va_page->list, &encl->va_pages);
 232	encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK;
 233	encl_page->epc_page = epc_page;
 234
 235	return epc_page;
 236}
 237
 238/*
 239 * Ensure the SECS page is not swapped out.  Must be called with encl->lock
 240 * to protect the enclave states including SECS and ensure the SECS page is
 241 * not swapped out again while being used.
 242 */
 243static struct sgx_epc_page *sgx_encl_load_secs(struct sgx_encl *encl)
 244{
 245	struct sgx_epc_page *epc_page = encl->secs.epc_page;
 246
 247	if (!epc_page)
 248		epc_page = sgx_encl_eldu(&encl->secs, NULL);
 249
 250	return epc_page;
 251}
 252
 253static struct sgx_encl_page *__sgx_encl_load_page(struct sgx_encl *encl,
 254						  struct sgx_encl_page *entry)
 255{
 256	struct sgx_epc_page *epc_page;
 257
 258	/* Entry successfully located. */
 259	if (entry->epc_page) {
 260		if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)
 261			return ERR_PTR(-EBUSY);
 262
 263		return entry;
 264	}
 265
 266	epc_page = sgx_encl_load_secs(encl);
 267	if (IS_ERR(epc_page))
 268		return ERR_CAST(epc_page);
 269
 270	epc_page = sgx_encl_eldu(entry, encl->secs.epc_page);
 271	if (IS_ERR(epc_page))
 272		return ERR_CAST(epc_page);
 273
 274	encl->secs_child_cnt++;
 275	sgx_mark_page_reclaimable(entry->epc_page);
 276
 277	return entry;
 278}
 279
 280static struct sgx_encl_page *sgx_encl_load_page_in_vma(struct sgx_encl *encl,
 281						       unsigned long addr,
 282						       unsigned long vm_flags)
 283{
 284	unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS;
 285	struct sgx_encl_page *entry;
 286
 287	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
 288	if (!entry)
 289		return ERR_PTR(-EFAULT);
 290
 291	/*
 292	 * Verify that the page has equal or higher build time
 293	 * permissions than the VMA permissions (i.e. the subset of {VM_READ,
 294	 * VM_WRITE, VM_EXECUTE} in vma->vm_flags).
 295	 */
 296	if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits)
 297		return ERR_PTR(-EFAULT);
 298
 299	return __sgx_encl_load_page(encl, entry);
 300}
 301
 302struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl,
 303					 unsigned long addr)
 304{
 305	struct sgx_encl_page *entry;
 306
 307	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
 308	if (!entry)
 309		return ERR_PTR(-EFAULT);
 310
 311	return __sgx_encl_load_page(encl, entry);
 312}
 313
 314/**
 315 * sgx_encl_eaug_page() - Dynamically add page to initialized enclave
 316 * @vma:	VMA obtained from fault info from where page is accessed
 317 * @encl:	enclave accessing the page
 318 * @addr:	address that triggered the page fault
 319 *
 320 * When an initialized enclave accesses a page with no backing EPC page
 321 * on a SGX2 system then the EPC can be added dynamically via the SGX2
 322 * ENCLS[EAUG] instruction.
 323 *
 324 * Returns: Appropriate vm_fault_t: VM_FAULT_NOPAGE when PTE was installed
 325 * successfully, VM_FAULT_SIGBUS or VM_FAULT_OOM as error otherwise.
 326 */
 327static vm_fault_t sgx_encl_eaug_page(struct vm_area_struct *vma,
 328				     struct sgx_encl *encl, unsigned long addr)
 329{
 330	vm_fault_t vmret = VM_FAULT_SIGBUS;
 331	struct sgx_pageinfo pginfo = {0};
 332	struct sgx_encl_page *encl_page;
 333	struct sgx_epc_page *epc_page;
 334	struct sgx_va_page *va_page;
 335	unsigned long phys_addr;
 336	u64 secinfo_flags;
 337	int ret;
 338
 339	if (!test_bit(SGX_ENCL_INITIALIZED, &encl->flags))
 340		return VM_FAULT_SIGBUS;
 341
 342	/*
 343	 * Ignore internal permission checking for dynamically added pages.
 344	 * They matter only for data added during the pre-initialization
 345	 * phase. The enclave decides the permissions by the means of
 346	 * EACCEPT, EACCEPTCOPY and EMODPE.
 347	 */
 348	secinfo_flags = SGX_SECINFO_R | SGX_SECINFO_W | SGX_SECINFO_X;
 349	encl_page = sgx_encl_page_alloc(encl, addr - encl->base, secinfo_flags);
 350	if (IS_ERR(encl_page))
 351		return VM_FAULT_OOM;
 352
 353	mutex_lock(&encl->lock);
 354
 355	epc_page = sgx_encl_load_secs(encl);
 356	if (IS_ERR(epc_page)) {
 357		if (PTR_ERR(epc_page) == -EBUSY)
 358			vmret = VM_FAULT_NOPAGE;
 359		goto err_out_unlock;
 360	}
 361
 362	epc_page = sgx_alloc_epc_page(encl_page, false);
 363	if (IS_ERR(epc_page)) {
 364		if (PTR_ERR(epc_page) == -EBUSY)
 365			vmret =  VM_FAULT_NOPAGE;
 366		goto err_out_unlock;
 367	}
 368
 369	va_page = sgx_encl_grow(encl, false);
 370	if (IS_ERR(va_page)) {
 371		if (PTR_ERR(va_page) == -EBUSY)
 372			vmret = VM_FAULT_NOPAGE;
 373		goto err_out_epc;
 374	}
 375
 376	if (va_page)
 377		list_add(&va_page->list, &encl->va_pages);
 378
 379	ret = xa_insert(&encl->page_array, PFN_DOWN(encl_page->desc),
 380			encl_page, GFP_KERNEL);
 381	/*
 382	 * If ret == -EBUSY then page was created in another flow while
 383	 * running without encl->lock
 384	 */
 385	if (ret)
 386		goto err_out_shrink;
 387
 388	pginfo.secs = (unsigned long)sgx_get_epc_virt_addr(encl->secs.epc_page);
 389	pginfo.addr = encl_page->desc & PAGE_MASK;
 390	pginfo.metadata = 0;
 391
 392	ret = __eaug(&pginfo, sgx_get_epc_virt_addr(epc_page));
 393	if (ret)
 394		goto err_out;
 395
 396	encl_page->encl = encl;
 397	encl_page->epc_page = epc_page;
 398	encl_page->type = SGX_PAGE_TYPE_REG;
 399	encl->secs_child_cnt++;
 400
 401	sgx_mark_page_reclaimable(encl_page->epc_page);
 402
 403	phys_addr = sgx_get_epc_phys_addr(epc_page);
 404	/*
 405	 * Do not undo everything when creating PTE entry fails - next #PF
 406	 * would find page ready for a PTE.
 407	 */
 408	vmret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
 409	if (vmret != VM_FAULT_NOPAGE) {
 410		mutex_unlock(&encl->lock);
 411		return VM_FAULT_SIGBUS;
 412	}
 413	mutex_unlock(&encl->lock);
 414	return VM_FAULT_NOPAGE;
 415
 416err_out:
 417	xa_erase(&encl->page_array, PFN_DOWN(encl_page->desc));
 418
 419err_out_shrink:
 420	sgx_encl_shrink(encl, va_page);
 421err_out_epc:
 422	sgx_encl_free_epc_page(epc_page);
 423err_out_unlock:
 424	mutex_unlock(&encl->lock);
 425	kfree(encl_page);
 426
 427	return vmret;
 428}
 429
 430static vm_fault_t sgx_vma_fault(struct vm_fault *vmf)
 431{
 432	unsigned long addr = (unsigned long)vmf->address;
 433	struct vm_area_struct *vma = vmf->vma;
 434	struct sgx_encl_page *entry;
 435	unsigned long phys_addr;
 436	struct sgx_encl *encl;
 437	vm_fault_t ret;
 438
 439	encl = vma->vm_private_data;
 440
 441	/*
 442	 * It's very unlikely but possible that allocating memory for the
 443	 * mm_list entry of a forked process failed in sgx_vma_open(). When
 444	 * this happens, vm_private_data is set to NULL.
 445	 */
 446	if (unlikely(!encl))
 447		return VM_FAULT_SIGBUS;
 448
 449	/*
 450	 * The page_array keeps track of all enclave pages, whether they
 451	 * are swapped out or not. If there is no entry for this page and
 452	 * the system supports SGX2 then it is possible to dynamically add
 453	 * a new enclave page. This is only possible for an initialized
 454	 * enclave that will be checked for right away.
 455	 */
 456	if (cpu_feature_enabled(X86_FEATURE_SGX2) &&
 457	    (!xa_load(&encl->page_array, PFN_DOWN(addr))))
 458		return sgx_encl_eaug_page(vma, encl, addr);
 459
 460	mutex_lock(&encl->lock);
 461
 462	entry = sgx_encl_load_page_in_vma(encl, addr, vma->vm_flags);
 463	if (IS_ERR(entry)) {
 464		mutex_unlock(&encl->lock);
 465
 466		if (PTR_ERR(entry) == -EBUSY)
 467			return VM_FAULT_NOPAGE;
 468
 469		return VM_FAULT_SIGBUS;
 470	}
 471
 472	phys_addr = sgx_get_epc_phys_addr(entry->epc_page);
 473
 474	ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
 475	if (ret != VM_FAULT_NOPAGE) {
 476		mutex_unlock(&encl->lock);
 477
 478		return VM_FAULT_SIGBUS;
 479	}
 480
 481	sgx_encl_test_and_clear_young(vma->vm_mm, entry);
 482	mutex_unlock(&encl->lock);
 483
 484	return VM_FAULT_NOPAGE;
 485}
 486
 487static void sgx_vma_open(struct vm_area_struct *vma)
 488{
 489	struct sgx_encl *encl = vma->vm_private_data;
 490
 491	/*
 492	 * It's possible but unlikely that vm_private_data is NULL. This can
 493	 * happen in a grandchild of a process, when sgx_encl_mm_add() had
 494	 * failed to allocate memory in this callback.
 495	 */
 496	if (unlikely(!encl))
 497		return;
 498
 499	if (sgx_encl_mm_add(encl, vma->vm_mm))
 500		vma->vm_private_data = NULL;
 501}
 502
 503
 504/**
 505 * sgx_encl_may_map() - Check if a requested VMA mapping is allowed
 506 * @encl:		an enclave pointer
 507 * @start:		lower bound of the address range, inclusive
 508 * @end:		upper bound of the address range, exclusive
 509 * @vm_flags:		VMA flags
 510 *
 511 * Iterate through the enclave pages contained within [@start, @end) to verify
 512 * that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC}
 513 * do not contain any permissions that are not contained in the build time
 514 * permissions of any of the enclave pages within the given address range.
 515 *
 516 * An enclave creator must declare the strongest permissions that will be
 517 * needed for each enclave page. This ensures that mappings have the identical
 518 * or weaker permissions than the earlier declared permissions.
 519 *
 520 * Return: 0 on success, -EACCES otherwise
 521 */
 522int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start,
 523		     unsigned long end, unsigned long vm_flags)
 524{
 525	unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS;
 526	struct sgx_encl_page *page;
 527	unsigned long count = 0;
 528	int ret = 0;
 529
 530	XA_STATE(xas, &encl->page_array, PFN_DOWN(start));
 531
 532	/* Disallow mapping outside enclave's address range. */
 533	if (test_bit(SGX_ENCL_INITIALIZED, &encl->flags) &&
 534	    (start < encl->base || end > encl->base + encl->size))
 535		return -EACCES;
 536
 537	/*
 538	 * Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might
 539	 * conflict with the enclave page permissions.
 540	 */
 541	if (current->personality & READ_IMPLIES_EXEC)
 542		return -EACCES;
 543
 544	mutex_lock(&encl->lock);
 545	xas_lock(&xas);
 546	xas_for_each(&xas, page, PFN_DOWN(end - 1)) {
 547		if (~page->vm_max_prot_bits & vm_prot_bits) {
 548			ret = -EACCES;
 549			break;
 550		}
 551
 552		/* Reschedule on every XA_CHECK_SCHED iteration. */
 553		if (!(++count % XA_CHECK_SCHED)) {
 554			xas_pause(&xas);
 555			xas_unlock(&xas);
 556			mutex_unlock(&encl->lock);
 557
 558			cond_resched();
 559
 560			mutex_lock(&encl->lock);
 561			xas_lock(&xas);
 562		}
 563	}
 564	xas_unlock(&xas);
 565	mutex_unlock(&encl->lock);
 566
 567	return ret;
 568}
 569
 570static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start,
 571			    unsigned long end, unsigned long newflags)
 572{
 573	return sgx_encl_may_map(vma->vm_private_data, start, end, newflags);
 574}
 575
 576static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page,
 577			       unsigned long addr, void *data)
 578{
 579	unsigned long offset = addr & ~PAGE_MASK;
 580	int ret;
 581
 582
 583	ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
 584	if (ret)
 585		return -EIO;
 586
 587	return 0;
 588}
 589
 590static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page,
 591				unsigned long addr, void *data)
 592{
 593	unsigned long offset = addr & ~PAGE_MASK;
 594	int ret;
 595
 596	ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
 597	if (ret)
 598		return -EIO;
 599
 600	return 0;
 601}
 602
 603/*
 604 * Load an enclave page to EPC if required, and take encl->lock.
 605 */
 606static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl,
 607						   unsigned long addr,
 608						   unsigned long vm_flags)
 609{
 610	struct sgx_encl_page *entry;
 611
 612	for ( ; ; ) {
 613		mutex_lock(&encl->lock);
 614
 615		entry = sgx_encl_load_page_in_vma(encl, addr, vm_flags);
 616		if (PTR_ERR(entry) != -EBUSY)
 617			break;
 618
 619		mutex_unlock(&encl->lock);
 620	}
 621
 622	if (IS_ERR(entry))
 623		mutex_unlock(&encl->lock);
 624
 625	return entry;
 626}
 627
 628static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr,
 629			  void *buf, int len, int write)
 630{
 631	struct sgx_encl *encl = vma->vm_private_data;
 632	struct sgx_encl_page *entry = NULL;
 633	char data[sizeof(unsigned long)];
 634	unsigned long align;
 635	int offset;
 636	int cnt;
 637	int ret = 0;
 638	int i;
 639
 640	/*
 641	 * If process was forked, VMA is still there but vm_private_data is set
 642	 * to NULL.
 643	 */
 644	if (!encl)
 645		return -EFAULT;
 646
 647	if (!test_bit(SGX_ENCL_DEBUG, &encl->flags))
 648		return -EFAULT;
 649
 650	for (i = 0; i < len; i += cnt) {
 651		entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK,
 652					      vma->vm_flags);
 653		if (IS_ERR(entry)) {
 654			ret = PTR_ERR(entry);
 655			break;
 656		}
 657
 658		align = ALIGN_DOWN(addr + i, sizeof(unsigned long));
 659		offset = (addr + i) & (sizeof(unsigned long) - 1);
 660		cnt = sizeof(unsigned long) - offset;
 661		cnt = min(cnt, len - i);
 662
 663		ret = sgx_encl_debug_read(encl, entry, align, data);
 664		if (ret)
 665			goto out;
 666
 667		if (write) {
 668			memcpy(data + offset, buf + i, cnt);
 669			ret = sgx_encl_debug_write(encl, entry, align, data);
 670			if (ret)
 671				goto out;
 672		} else {
 673			memcpy(buf + i, data + offset, cnt);
 674		}
 675
 676out:
 677		mutex_unlock(&encl->lock);
 678
 679		if (ret)
 680			break;
 681	}
 682
 683	return ret < 0 ? ret : i;
 684}
 685
 686const struct vm_operations_struct sgx_vm_ops = {
 687	.fault = sgx_vma_fault,
 688	.mprotect = sgx_vma_mprotect,
 689	.open = sgx_vma_open,
 690	.access = sgx_vma_access,
 691};
 692
 693/**
 694 * sgx_encl_release - Destroy an enclave instance
 695 * @ref:	address of a kref inside &sgx_encl
 696 *
 697 * Used together with kref_put(). Frees all the resources associated with the
 698 * enclave and the instance itself.
 699 */
 700void sgx_encl_release(struct kref *ref)
 701{
 702	struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount);
 703	unsigned long max_page_index = PFN_DOWN(encl->base + encl->size - 1);
 704	struct sgx_va_page *va_page;
 705	struct sgx_encl_page *entry;
 706	unsigned long count = 0;
 707
 708	XA_STATE(xas, &encl->page_array, PFN_DOWN(encl->base));
 709
 710	xas_lock(&xas);
 711	xas_for_each(&xas, entry, max_page_index) {
 712		if (entry->epc_page) {
 713			/*
 714			 * The page and its radix tree entry cannot be freed
 715			 * if the page is being held by the reclaimer.
 716			 */
 717			if (sgx_unmark_page_reclaimable(entry->epc_page))
 718				continue;
 719
 720			sgx_encl_free_epc_page(entry->epc_page);
 721			encl->secs_child_cnt--;
 722			entry->epc_page = NULL;
 723		}
 724
 725		kfree(entry);
 726		/*
 727		 * Invoke scheduler on every XA_CHECK_SCHED iteration
 728		 * to prevent soft lockups.
 729		 */
 730		if (!(++count % XA_CHECK_SCHED)) {
 731			xas_pause(&xas);
 732			xas_unlock(&xas);
 733
 734			cond_resched();
 735
 736			xas_lock(&xas);
 737		}
 738	}
 739	xas_unlock(&xas);
 740
 741	xa_destroy(&encl->page_array);
 742
 743	if (!encl->secs_child_cnt && encl->secs.epc_page) {
 744		sgx_encl_free_epc_page(encl->secs.epc_page);
 745		encl->secs.epc_page = NULL;
 746	}
 747
 748	while (!list_empty(&encl->va_pages)) {
 749		va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
 750					   list);
 751		list_del(&va_page->list);
 752		sgx_encl_free_epc_page(va_page->epc_page);
 753		kfree(va_page);
 754	}
 755
 756	if (encl->backing)
 757		fput(encl->backing);
 758
 759	cleanup_srcu_struct(&encl->srcu);
 760
 761	WARN_ON_ONCE(!list_empty(&encl->mm_list));
 762
 763	/* Detect EPC page leak's. */
 764	WARN_ON_ONCE(encl->secs_child_cnt);
 765	WARN_ON_ONCE(encl->secs.epc_page);
 766
 767	kfree(encl);
 768}
 769
 770/*
 771 * 'mm' is exiting and no longer needs mmu notifications.
 772 */
 773static void sgx_mmu_notifier_release(struct mmu_notifier *mn,
 774				     struct mm_struct *mm)
 775{
 776	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
 777	struct sgx_encl_mm *tmp = NULL;
 778	bool found = false;
 779
 780	/*
 781	 * The enclave itself can remove encl_mm.  Note, objects can't be moved
 782	 * off an RCU protected list, but deletion is ok.
 783	 */
 784	spin_lock(&encl_mm->encl->mm_lock);
 785	list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) {
 786		if (tmp == encl_mm) {
 787			list_del_rcu(&encl_mm->list);
 788			found = true;
 789			break;
 790		}
 791	}
 792	spin_unlock(&encl_mm->encl->mm_lock);
 793
 794	if (found) {
 795		synchronize_srcu(&encl_mm->encl->srcu);
 796		mmu_notifier_put(mn);
 797	}
 798}
 799
 800static void sgx_mmu_notifier_free(struct mmu_notifier *mn)
 801{
 802	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
 803
 804	/* 'encl_mm' is going away, put encl_mm->encl reference: */
 805	kref_put(&encl_mm->encl->refcount, sgx_encl_release);
 806
 807	kfree(encl_mm);
 808}
 809
 810static const struct mmu_notifier_ops sgx_mmu_notifier_ops = {
 811	.release		= sgx_mmu_notifier_release,
 812	.free_notifier		= sgx_mmu_notifier_free,
 813};
 814
 815static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl,
 816					    struct mm_struct *mm)
 817{
 818	struct sgx_encl_mm *encl_mm = NULL;
 819	struct sgx_encl_mm *tmp;
 820	int idx;
 821
 822	idx = srcu_read_lock(&encl->srcu);
 823
 824	list_for_each_entry_rcu(tmp, &encl->mm_list, list) {
 825		if (tmp->mm == mm) {
 826			encl_mm = tmp;
 827			break;
 828		}
 829	}
 830
 831	srcu_read_unlock(&encl->srcu, idx);
 832
 833	return encl_mm;
 834}
 835
 836int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm)
 837{
 838	struct sgx_encl_mm *encl_mm;
 839	int ret;
 840
 841	/*
 842	 * Even though a single enclave may be mapped into an mm more than once,
 843	 * each 'mm' only appears once on encl->mm_list. This is guaranteed by
 844	 * holding the mm's mmap lock for write before an mm can be added or
 845	 * remove to an encl->mm_list.
 846	 */
 847	mmap_assert_write_locked(mm);
 848
 849	/*
 850	 * It's possible that an entry already exists in the mm_list, because it
 851	 * is removed only on VFS release or process exit.
 852	 */
 853	if (sgx_encl_find_mm(encl, mm))
 854		return 0;
 855
 856	encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL);
 857	if (!encl_mm)
 858		return -ENOMEM;
 859
 860	/* Grab a refcount for the encl_mm->encl reference: */
 861	kref_get(&encl->refcount);
 862	encl_mm->encl = encl;
 863	encl_mm->mm = mm;
 864	encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops;
 865
 866	ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm);
 867	if (ret) {
 868		kfree(encl_mm);
 869		return ret;
 870	}
 871
 872	spin_lock(&encl->mm_lock);
 873	list_add_rcu(&encl_mm->list, &encl->mm_list);
 874	/* Pairs with smp_rmb() in sgx_zap_enclave_ptes(). */
 875	smp_wmb();
 876	encl->mm_list_version++;
 877	spin_unlock(&encl->mm_lock);
 878
 879	return 0;
 880}
 881
 882/**
 883 * sgx_encl_cpumask() - Query which CPUs might be accessing the enclave
 884 * @encl: the enclave
 885 *
 886 * Some SGX functions require that no cached linear-to-physical address
 887 * mappings are present before they can succeed. For example, ENCLS[EWB]
 888 * copies a page from the enclave page cache to regular main memory but
 889 * it fails if it cannot ensure that there are no cached
 890 * linear-to-physical address mappings referring to the page.
 891 *
 892 * SGX hardware flushes all cached linear-to-physical mappings on a CPU
 893 * when an enclave is exited via ENCLU[EEXIT] or an Asynchronous Enclave
 894 * Exit (AEX). Exiting an enclave will thus ensure cached linear-to-physical
 895 * address mappings are cleared but coordination with the tracking done within
 896 * the SGX hardware is needed to support the SGX functions that depend on this
 897 * cache clearing.
 898 *
 899 * When the ENCLS[ETRACK] function is issued on an enclave the hardware
 900 * tracks threads operating inside the enclave at that time. The SGX
 901 * hardware tracking require that all the identified threads must have
 902 * exited the enclave in order to flush the mappings before a function such
 903 * as ENCLS[EWB] will be permitted
 904 *
 905 * The following flow is used to support SGX functions that require that
 906 * no cached linear-to-physical address mappings are present:
 907 * 1) Execute ENCLS[ETRACK] to initiate hardware tracking.
 908 * 2) Use this function (sgx_encl_cpumask()) to query which CPUs might be
 909 *    accessing the enclave.
 910 * 3) Send IPI to identified CPUs, kicking them out of the enclave and
 911 *    thus flushing all locally cached linear-to-physical address mappings.
 912 * 4) Execute SGX function.
 913 *
 914 * Context: It is required to call this function after ENCLS[ETRACK].
 915 *          This will ensure that if any new mm appears (racing with
 916 *          sgx_encl_mm_add()) then the new mm will enter into the
 917 *          enclave with fresh linear-to-physical address mappings.
 918 *
 919 *          It is required that all IPIs are completed before a new
 920 *          ENCLS[ETRACK] is issued so be sure to protect steps 1 to 3
 921 *          of the above flow with the enclave's mutex.
 922 *
 923 * Return: cpumask of CPUs that might be accessing @encl
 924 */
 925const cpumask_t *sgx_encl_cpumask(struct sgx_encl *encl)
 926{
 927	cpumask_t *cpumask = &encl->cpumask;
 928	struct sgx_encl_mm *encl_mm;
 929	int idx;
 930
 931	cpumask_clear(cpumask);
 932
 933	idx = srcu_read_lock(&encl->srcu);
 934
 935	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
 936		if (!mmget_not_zero(encl_mm->mm))
 937			continue;
 938
 939		cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
 940
 941		mmput_async(encl_mm->mm);
 942	}
 943
 944	srcu_read_unlock(&encl->srcu, idx);
 945
 946	return cpumask;
 947}
 948
 949static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl,
 950					      pgoff_t index)
 951{
 952	struct address_space *mapping = encl->backing->f_mapping;
 953	gfp_t gfpmask = mapping_gfp_mask(mapping);
 954
 955	return shmem_read_mapping_page_gfp(mapping, index, gfpmask);
 956}
 957
 958/**
 959 * __sgx_encl_get_backing() - Pin the backing storage
 960 * @encl:	an enclave pointer
 961 * @page_index:	enclave page index
 962 * @backing:	data for accessing backing storage for the page
 963 *
 964 * Pin the backing storage pages for storing the encrypted contents and Paging
 965 * Crypto MetaData (PCMD) of an enclave page.
 966 *
 967 * Return:
 968 *   0 on success,
 969 *   -errno otherwise.
 970 */
 971static int __sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index,
 972			 struct sgx_backing *backing)
 973{
 974	pgoff_t page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
 975	struct page *contents;
 976	struct page *pcmd;
 977
 978	contents = sgx_encl_get_backing_page(encl, page_index);
 979	if (IS_ERR(contents))
 980		return PTR_ERR(contents);
 981
 982	pcmd = sgx_encl_get_backing_page(encl, PFN_DOWN(page_pcmd_off));
 983	if (IS_ERR(pcmd)) {
 984		put_page(contents);
 985		return PTR_ERR(pcmd);
 986	}
 987
 988	backing->contents = contents;
 989	backing->pcmd = pcmd;
 990	backing->pcmd_offset = page_pcmd_off & (PAGE_SIZE - 1);
 991
 992	return 0;
 993}
 994
 995/*
 996 * When called from ksgxd, returns the mem_cgroup of a struct mm stored
 997 * in the enclave's mm_list. When not called from ksgxd, just returns
 998 * the mem_cgroup of the current task.
 999 */
1000static struct mem_cgroup *sgx_encl_get_mem_cgroup(struct sgx_encl *encl)
1001{
1002	struct mem_cgroup *memcg = NULL;
1003	struct sgx_encl_mm *encl_mm;
1004	int idx;
1005
1006	/*
1007	 * If called from normal task context, return the mem_cgroup
1008	 * of the current task's mm. The remainder of the handling is for
1009	 * ksgxd.
1010	 */
1011	if (!current_is_ksgxd())
1012		return get_mem_cgroup_from_mm(current->mm);
1013
1014	/*
1015	 * Search the enclave's mm_list to find an mm associated with
1016	 * this enclave to charge the allocation to.
1017	 */
1018	idx = srcu_read_lock(&encl->srcu);
1019
1020	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
1021		if (!mmget_not_zero(encl_mm->mm))
1022			continue;
1023
1024		memcg = get_mem_cgroup_from_mm(encl_mm->mm);
1025
1026		mmput_async(encl_mm->mm);
1027
1028		break;
1029	}
1030
1031	srcu_read_unlock(&encl->srcu, idx);
1032
1033	/*
1034	 * In the rare case that there isn't an mm associated with
1035	 * the enclave, set memcg to the current active mem_cgroup.
1036	 * This will be the root mem_cgroup if there is no active
1037	 * mem_cgroup.
1038	 */
1039	if (!memcg)
1040		return get_mem_cgroup_from_mm(NULL);
1041
1042	return memcg;
1043}
1044
1045/**
1046 * sgx_encl_alloc_backing() - create a new backing storage page
1047 * @encl:	an enclave pointer
1048 * @page_index:	enclave page index
1049 * @backing:	data for accessing backing storage for the page
1050 *
1051 * When called from ksgxd, sets the active memcg from one of the
1052 * mms in the enclave's mm_list prior to any backing page allocation,
1053 * in order to ensure that shmem page allocations are charged to the
1054 * enclave.  Create a backing page for loading data back into an EPC page with
1055 * ELDU.  This function takes a reference on a new backing page which
1056 * must be dropped with a corresponding call to sgx_encl_put_backing().
1057 *
1058 * Return:
1059 *   0 on success,
1060 *   -errno otherwise.
1061 */
1062int sgx_encl_alloc_backing(struct sgx_encl *encl, unsigned long page_index,
1063			   struct sgx_backing *backing)
1064{
1065	struct mem_cgroup *encl_memcg = sgx_encl_get_mem_cgroup(encl);
1066	struct mem_cgroup *memcg = set_active_memcg(encl_memcg);
1067	int ret;
1068
1069	ret = __sgx_encl_get_backing(encl, page_index, backing);
1070
1071	set_active_memcg(memcg);
1072	mem_cgroup_put(encl_memcg);
1073
1074	return ret;
1075}
1076
1077/**
1078 * sgx_encl_lookup_backing() - retrieve an existing backing storage page
1079 * @encl:	an enclave pointer
1080 * @page_index:	enclave page index
1081 * @backing:	data for accessing backing storage for the page
1082 *
1083 * Retrieve a backing page for loading data back into an EPC page with ELDU.
1084 * It is the caller's responsibility to ensure that it is appropriate to use
1085 * sgx_encl_lookup_backing() rather than sgx_encl_alloc_backing(). If lookup is
1086 * not used correctly, this will cause an allocation which is not accounted for.
1087 * This function takes a reference on an existing backing page which must be
1088 * dropped with a corresponding call to sgx_encl_put_backing().
1089 *
1090 * Return:
1091 *   0 on success,
1092 *   -errno otherwise.
1093 */
1094static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
1095			   struct sgx_backing *backing)
1096{
1097	return __sgx_encl_get_backing(encl, page_index, backing);
1098}
1099
1100/**
1101 * sgx_encl_put_backing() - Unpin the backing storage
1102 * @backing:	data for accessing backing storage for the page
1103 */
1104void sgx_encl_put_backing(struct sgx_backing *backing)
1105{
1106	put_page(backing->pcmd);
1107	put_page(backing->contents);
1108}
1109
1110static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr,
1111					    void *data)
1112{
1113	pte_t pte;
1114	int ret;
1115
1116	ret = pte_young(*ptep);
1117	if (ret) {
1118		pte = pte_mkold(*ptep);
1119		set_pte_at((struct mm_struct *)data, addr, ptep, pte);
1120	}
1121
1122	return ret;
1123}
1124
1125/**
1126 * sgx_encl_test_and_clear_young() - Test and reset the accessed bit
1127 * @mm:		mm_struct that is checked
1128 * @page:	enclave page to be tested for recent access
1129 *
1130 * Checks the Access (A) bit from the PTE corresponding to the enclave page and
1131 * clears it.
1132 *
1133 * Return: 1 if the page has been recently accessed and 0 if not.
1134 */
1135int sgx_encl_test_and_clear_young(struct mm_struct *mm,
1136				  struct sgx_encl_page *page)
1137{
1138	unsigned long addr = page->desc & PAGE_MASK;
1139	struct sgx_encl *encl = page->encl;
1140	struct vm_area_struct *vma;
1141	int ret;
1142
1143	ret = sgx_encl_find(mm, addr, &vma);
1144	if (ret)
1145		return 0;
1146
1147	if (encl != vma->vm_private_data)
1148		return 0;
1149
1150	ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE,
1151				  sgx_encl_test_and_clear_young_cb, vma->vm_mm);
1152	if (ret < 0)
1153		return 0;
1154
1155	return ret;
1156}
1157
1158struct sgx_encl_page *sgx_encl_page_alloc(struct sgx_encl *encl,
1159					  unsigned long offset,
1160					  u64 secinfo_flags)
1161{
1162	struct sgx_encl_page *encl_page;
1163	unsigned long prot;
1164
1165	encl_page = kzalloc(sizeof(*encl_page), GFP_KERNEL);
1166	if (!encl_page)
1167		return ERR_PTR(-ENOMEM);
1168
1169	encl_page->desc = encl->base + offset;
1170	encl_page->encl = encl;
1171
1172	prot = _calc_vm_trans(secinfo_flags, SGX_SECINFO_R, PROT_READ)  |
1173	       _calc_vm_trans(secinfo_flags, SGX_SECINFO_W, PROT_WRITE) |
1174	       _calc_vm_trans(secinfo_flags, SGX_SECINFO_X, PROT_EXEC);
1175
1176	/*
1177	 * TCS pages must always RW set for CPU access while the SECINFO
1178	 * permissions are *always* zero - the CPU ignores the user provided
1179	 * values and silently overwrites them with zero permissions.
1180	 */
1181	if ((secinfo_flags & SGX_SECINFO_PAGE_TYPE_MASK) == SGX_SECINFO_TCS)
1182		prot |= PROT_READ | PROT_WRITE;
1183
1184	/* Calculate maximum of the VM flags for the page. */
1185	encl_page->vm_max_prot_bits = calc_vm_prot_bits(prot, 0);
1186
1187	return encl_page;
1188}
1189
1190/**
1191 * sgx_zap_enclave_ptes() - remove PTEs mapping the address from enclave
1192 * @encl: the enclave
1193 * @addr: page aligned pointer to single page for which PTEs will be removed
1194 *
1195 * Multiple VMAs may have an enclave page mapped. Remove the PTE mapping
1196 * @addr from each VMA. Ensure that page fault handler is ready to handle
1197 * new mappings of @addr before calling this function.
1198 */
1199void sgx_zap_enclave_ptes(struct sgx_encl *encl, unsigned long addr)
1200{
1201	unsigned long mm_list_version;
1202	struct sgx_encl_mm *encl_mm;
1203	struct vm_area_struct *vma;
1204	int idx, ret;
1205
1206	do {
1207		mm_list_version = encl->mm_list_version;
1208
1209		/* Pairs with smp_wmb() in sgx_encl_mm_add(). */
1210		smp_rmb();
1211
1212		idx = srcu_read_lock(&encl->srcu);
1213
1214		list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
1215			if (!mmget_not_zero(encl_mm->mm))
1216				continue;
1217
1218			mmap_read_lock(encl_mm->mm);
1219
1220			ret = sgx_encl_find(encl_mm->mm, addr, &vma);
1221			if (!ret && encl == vma->vm_private_data)
1222				zap_vma_ptes(vma, addr, PAGE_SIZE);
1223
1224			mmap_read_unlock(encl_mm->mm);
1225
1226			mmput_async(encl_mm->mm);
1227		}
1228
1229		srcu_read_unlock(&encl->srcu, idx);
1230	} while (unlikely(encl->mm_list_version != mm_list_version));
1231}
1232
1233/**
1234 * sgx_alloc_va_page() - Allocate a Version Array (VA) page
1235 * @reclaim: Reclaim EPC pages directly if none available. Enclave
1236 *           mutex should not be held if this is set.
1237 *
1238 * Allocate a free EPC page and convert it to a Version Array (VA) page.
1239 *
1240 * Return:
1241 *   a VA page,
1242 *   -errno otherwise
1243 */
1244struct sgx_epc_page *sgx_alloc_va_page(bool reclaim)
1245{
1246	struct sgx_epc_page *epc_page;
1247	int ret;
1248
1249	epc_page = sgx_alloc_epc_page(NULL, reclaim);
1250	if (IS_ERR(epc_page))
1251		return ERR_CAST(epc_page);
1252
1253	ret = __epa(sgx_get_epc_virt_addr(epc_page));
1254	if (ret) {
1255		WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret);
1256		sgx_encl_free_epc_page(epc_page);
1257		return ERR_PTR(-EFAULT);
1258	}
1259
1260	return epc_page;
1261}
1262
1263/**
1264 * sgx_alloc_va_slot - allocate a VA slot
1265 * @va_page:	a &struct sgx_va_page instance
1266 *
1267 * Allocates a slot from a &struct sgx_va_page instance.
1268 *
1269 * Return: offset of the slot inside the VA page
1270 */
1271unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page)
1272{
1273	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
1274
1275	if (slot < SGX_VA_SLOT_COUNT)
1276		set_bit(slot, va_page->slots);
1277
1278	return slot << 3;
1279}
1280
1281/**
1282 * sgx_free_va_slot - free a VA slot
1283 * @va_page:	a &struct sgx_va_page instance
1284 * @offset:	offset of the slot inside the VA page
1285 *
1286 * Frees a slot from a &struct sgx_va_page instance.
1287 */
1288void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset)
1289{
1290	clear_bit(offset >> 3, va_page->slots);
1291}
1292
1293/**
1294 * sgx_va_page_full - is the VA page full?
1295 * @va_page:	a &struct sgx_va_page instance
1296 *
1297 * Return: true if all slots have been taken
1298 */
1299bool sgx_va_page_full(struct sgx_va_page *va_page)
1300{
1301	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
1302
1303	return slot == SGX_VA_SLOT_COUNT;
1304}
1305
1306/**
1307 * sgx_encl_free_epc_page - free an EPC page assigned to an enclave
1308 * @page:	EPC page to be freed
1309 *
1310 * Free an EPC page assigned to an enclave. It does EREMOVE for the page, and
1311 * only upon success, it puts the page back to free page list.  Otherwise, it
1312 * gives a WARNING to indicate page is leaked.
1313 */
1314void sgx_encl_free_epc_page(struct sgx_epc_page *page)
1315{
1316	int ret;
1317
1318	WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED);
1319
1320	ret = __eremove(sgx_get_epc_virt_addr(page));
1321	if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret))
1322		return;
1323
1324	sgx_free_epc_page(page);
1325}