Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Resource Director Technology(RDT)
  4 * - Monitoring code
  5 *
  6 * Copyright (C) 2017 Intel Corporation
  7 *
  8 * Author:
  9 *    Vikas Shivappa <vikas.shivappa@intel.com>
 10 *
 11 * This replaces the cqm.c based on perf but we reuse a lot of
 12 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
 13 *
 14 * More information about RDT be found in the Intel (R) x86 Architecture
 15 * Software Developer Manual June 2016, volume 3, section 17.17.
 16 */
 17
 18#include <linux/module.h>
 
 19#include <linux/slab.h>
 
 20#include <asm/cpu_device_id.h>
 
 
 21#include "internal.h"
 22
 23struct rmid_entry {
 24	u32				rmid;
 25	int				busy;
 26	struct list_head		list;
 27};
 28
 29/**
 30 * @rmid_free_lru    A least recently used list of free RMIDs
 31 *     These RMIDs are guaranteed to have an occupancy less than the
 32 *     threshold occupancy
 33 */
 34static LIST_HEAD(rmid_free_lru);
 35
 36/**
 37 * @rmid_limbo_count     count of currently unused but (potentially)
 38 *     dirty RMIDs.
 39 *     This counts RMIDs that no one is currently using but that
 40 *     may have a occupancy value > intel_cqm_threshold. User can change
 41 *     the threshold occupancy value.
 42 */
 43static unsigned int rmid_limbo_count;
 44
 45/**
 46 * @rmid_entry - The entry in the limbo and free lists.
 47 */
 48static struct rmid_entry	*rmid_ptrs;
 49
 50/*
 51 * Global boolean for rdt_monitor which is true if any
 52 * resource monitoring is enabled.
 53 */
 54bool rdt_mon_capable;
 55
 56/*
 57 * Global to indicate which monitoring events are enabled.
 58 */
 59unsigned int rdt_mon_features;
 60
 61/*
 62 * This is the threshold cache occupancy at which we will consider an
 63 * RMID available for re-allocation.
 64 */
 65unsigned int resctrl_cqm_threshold;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 66
 67static inline struct rmid_entry *__rmid_entry(u32 rmid)
 68{
 69	struct rmid_entry *entry;
 70
 71	entry = &rmid_ptrs[rmid];
 72	WARN_ON(entry->rmid != rmid);
 73
 74	return entry;
 75}
 76
 77static u64 __rmid_read(u32 rmid, u32 eventid)
 78{
 79	u64 val;
 80
 81	/*
 82	 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
 83	 * with a valid event code for supported resource type and the bits
 84	 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
 85	 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
 86	 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
 87	 * are error bits.
 88	 */
 89	wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
 90	rdmsrl(MSR_IA32_QM_CTR, val);
 91
 92	return val;
 
 
 
 
 
 
 93}
 94
 95static bool rmid_dirty(struct rmid_entry *entry)
 
 
 96{
 97	u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
 
 
 
 
 
 
 
 98
 99	return val >= resctrl_cqm_threshold;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100}
101
102/*
103 * Check the RMIDs that are marked as busy for this domain. If the
104 * reported LLC occupancy is below the threshold clear the busy bit and
105 * decrement the count. If the busy count gets to zero on an RMID, we
106 * free the RMID
107 */
108void __check_limbo(struct rdt_domain *d, bool force_free)
109{
 
110	struct rmid_entry *entry;
111	struct rdt_resource *r;
112	u32 crmid = 1, nrmid;
113
114	r = &rdt_resources_all[RDT_RESOURCE_L3];
115
116	/*
117	 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
118	 * are marked as busy for occupancy < threshold. If the occupancy
119	 * is less than the threshold decrement the busy counter of the
120	 * RMID and move it to the free list when the counter reaches 0.
121	 */
122	for (;;) {
123		nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
124		if (nrmid >= r->num_rmid)
125			break;
126
127		entry = __rmid_entry(nrmid);
128		if (force_free || !rmid_dirty(entry)) {
 
 
 
 
 
 
 
 
129			clear_bit(entry->rmid, d->rmid_busy_llc);
130			if (!--entry->busy) {
131				rmid_limbo_count--;
132				list_add_tail(&entry->list, &rmid_free_lru);
133			}
134		}
135		crmid = nrmid + 1;
136	}
137}
138
139bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
140{
141	return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
142}
143
144/*
145 * As of now the RMIDs allocation is global.
146 * However we keep track of which packages the RMIDs
147 * are used to optimize the limbo list management.
148 */
149int alloc_rmid(void)
150{
151	struct rmid_entry *entry;
152
153	lockdep_assert_held(&rdtgroup_mutex);
154
155	if (list_empty(&rmid_free_lru))
156		return rmid_limbo_count ? -EBUSY : -ENOSPC;
157
158	entry = list_first_entry(&rmid_free_lru,
159				 struct rmid_entry, list);
160	list_del(&entry->list);
161
162	return entry->rmid;
163}
164
165static void add_rmid_to_limbo(struct rmid_entry *entry)
166{
167	struct rdt_resource *r;
168	struct rdt_domain *d;
169	int cpu;
170	u64 val;
171
172	r = &rdt_resources_all[RDT_RESOURCE_L3];
173
174	entry->busy = 0;
175	cpu = get_cpu();
176	list_for_each_entry(d, &r->domains, list) {
177		if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
178			val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
179			if (val <= resctrl_cqm_threshold)
 
 
180				continue;
181		}
182
183		/*
184		 * For the first limbo RMID in the domain,
185		 * setup up the limbo worker.
186		 */
187		if (!has_busy_rmid(r, d))
188			cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
189		set_bit(entry->rmid, d->rmid_busy_llc);
190		entry->busy++;
191	}
192	put_cpu();
193
194	if (entry->busy)
195		rmid_limbo_count++;
196	else
197		list_add_tail(&entry->list, &rmid_free_lru);
198}
199
200void free_rmid(u32 rmid)
201{
202	struct rmid_entry *entry;
203
204	if (!rmid)
205		return;
206
207	lockdep_assert_held(&rdtgroup_mutex);
208
209	entry = __rmid_entry(rmid);
210
211	if (is_llc_occupancy_enabled())
212		add_rmid_to_limbo(entry);
213	else
214		list_add_tail(&entry->list, &rmid_free_lru);
215}
216
217static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr)
218{
219	u64 shift = 64 - MBM_CNTR_WIDTH, chunks;
220
221	chunks = (cur_msr << shift) - (prev_msr << shift);
222	return chunks >>= shift;
223}
224
225static int __mon_event_count(u32 rmid, struct rmid_read *rr)
226{
227	struct mbm_state *m;
228	u64 chunks, tval;
 
 
 
 
 
 
 
229
230	tval = __rmid_read(rmid, rr->evtid);
231	if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
232		rr->val = tval;
233		return -EINVAL;
234	}
235	switch (rr->evtid) {
236	case QOS_L3_OCCUP_EVENT_ID:
237		rr->val += tval;
238		return 0;
239	case QOS_L3_MBM_TOTAL_EVENT_ID:
240		m = &rr->d->mbm_total[rmid];
241		break;
242	case QOS_L3_MBM_LOCAL_EVENT_ID:
243		m = &rr->d->mbm_local[rmid];
244		break;
245	default:
246		/*
247		 * Code would never reach here because
248		 * an invalid event id would fail the __rmid_read.
249		 */
250		return -EINVAL;
251	}
252
253	if (rr->first) {
254		memset(m, 0, sizeof(struct mbm_state));
255		m->prev_bw_msr = m->prev_msr = tval;
256		return 0;
257	}
258
259	chunks = mbm_overflow_count(m->prev_msr, tval);
260	m->chunks += chunks;
261	m->prev_msr = tval;
262
263	rr->val += m->chunks;
264	return 0;
265}
266
267/*
 
 
 
 
 
268 * Supporting function to calculate the memory bandwidth
269 * and delta bandwidth in MBps.
 
 
270 */
271static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
272{
273	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
274	struct mbm_state *m = &rr->d->mbm_local[rmid];
275	u64 tval, cur_bw, chunks;
276
277	tval = __rmid_read(rmid, rr->evtid);
278	if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
279		return;
280
281	chunks = mbm_overflow_count(m->prev_bw_msr, tval);
282	m->chunks_bw += chunks;
283	m->chunks = m->chunks_bw;
284	cur_bw = (chunks * r->mon_scale) >> 20;
285
286	if (m->delta_comp)
287		m->delta_bw = abs(cur_bw - m->prev_bw);
288	m->delta_comp = false;
289	m->prev_bw = cur_bw;
290	m->prev_bw_msr = tval;
291}
292
293/*
294 * This is called via IPI to read the CQM/MBM counters
295 * on a domain.
296 */
297void mon_event_count(void *info)
298{
299	struct rdtgroup *rdtgrp, *entry;
300	struct rmid_read *rr = info;
301	struct list_head *head;
 
302
303	rdtgrp = rr->rgrp;
304
305	if (__mon_event_count(rdtgrp->mon.rmid, rr))
306		return;
307
308	/*
309	 * For Ctrl groups read data from child monitor groups.
 
 
310	 */
311	head = &rdtgrp->mon.crdtgrp_list;
312
313	if (rdtgrp->type == RDTCTRL_GROUP) {
314		list_for_each_entry(entry, head, mon.crdtgrp_list) {
315			if (__mon_event_count(entry->mon.rmid, rr))
316				return;
317		}
318	}
 
 
 
 
 
 
 
 
319}
320
321/*
322 * Feedback loop for MBA software controller (mba_sc)
323 *
324 * mba_sc is a feedback loop where we periodically read MBM counters and
325 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
326 * that:
327 *
328 *   current bandwdith(cur_bw) < user specified bandwidth(user_bw)
329 *
330 * This uses the MBM counters to measure the bandwidth and MBA throttle
331 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
332 * fact that resctrl rdtgroups have both monitoring and control.
333 *
334 * The frequency of the checks is 1s and we just tag along the MBM overflow
335 * timer. Having 1s interval makes the calculation of bandwidth simpler.
336 *
337 * Although MBA's goal is to restrict the bandwidth to a maximum, there may
338 * be a need to increase the bandwidth to avoid uncecessarily restricting
339 * the L2 <-> L3 traffic.
340 *
341 * Since MBA controls the L2 external bandwidth where as MBM measures the
342 * L3 external bandwidth the following sequence could lead to such a
343 * situation.
344 *
345 * Consider an rdtgroup which had high L3 <-> memory traffic in initial
346 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
347 * after some time rdtgroup has mostly L2 <-> L3 traffic.
348 *
349 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
350 * throttle MSRs already have low percentage values.  To avoid
351 * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
352 */
353static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
354{
355	u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val;
356	struct mbm_state *pmbm_data, *cmbm_data;
357	u32 cur_bw, delta_bw, user_bw;
358	struct rdt_resource *r_mba;
359	struct rdt_domain *dom_mba;
360	struct list_head *head;
361	struct rdtgroup *entry;
362
363	if (!is_mbm_local_enabled())
364		return;
365
366	r_mba = &rdt_resources_all[RDT_RESOURCE_MBA];
 
367	closid = rgrp->closid;
368	rmid = rgrp->mon.rmid;
369	pmbm_data = &dom_mbm->mbm_local[rmid];
370
371	dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
372	if (!dom_mba) {
373		pr_warn_once("Failure to get domain for MBA update\n");
374		return;
375	}
376
377	cur_bw = pmbm_data->prev_bw;
378	user_bw = dom_mba->mbps_val[closid];
379	delta_bw = pmbm_data->delta_bw;
380	cur_msr_val = dom_mba->ctrl_val[closid];
 
 
381
382	/*
383	 * For Ctrl groups read data from child monitor groups.
384	 */
385	head = &rgrp->mon.crdtgrp_list;
386	list_for_each_entry(entry, head, mon.crdtgrp_list) {
387		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
388		cur_bw += cmbm_data->prev_bw;
389		delta_bw += cmbm_data->delta_bw;
390	}
391
392	/*
393	 * Scale up/down the bandwidth linearly for the ctrl group.  The
394	 * bandwidth step is the bandwidth granularity specified by the
395	 * hardware.
396	 *
397	 * The delta_bw is used when increasing the bandwidth so that we
398	 * dont alternately increase and decrease the control values
399	 * continuously.
400	 *
401	 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
402	 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
403	 * switching between 90 and 110 continuously if we only check
404	 * cur_bw < user_bw.
405	 */
406	if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
407		new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
408	} else if (cur_msr_val < MAX_MBA_BW &&
409		   (user_bw > (cur_bw + delta_bw))) {
410		new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
411	} else {
412		return;
413	}
414
415	cur_msr = r_mba->msr_base + closid;
416	wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba));
417	dom_mba->ctrl_val[closid] = new_msr_val;
418
419	/*
420	 * Delta values are updated dynamically package wise for each
421	 * rdtgrp everytime the throttle MSR changes value.
422	 *
423	 * This is because (1)the increase in bandwidth is not perfectly
424	 * linear and only "approximately" linear even when the hardware
425	 * says it is linear.(2)Also since MBA is a core specific
426	 * mechanism, the delta values vary based on number of cores used
427	 * by the rdtgrp.
428	 */
429	pmbm_data->delta_comp = true;
430	list_for_each_entry(entry, head, mon.crdtgrp_list) {
431		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
432		cmbm_data->delta_comp = true;
433	}
434}
435
436static void mbm_update(struct rdt_domain *d, int rmid)
437{
438	struct rmid_read rr;
439
440	rr.first = false;
 
441	rr.d = d;
442
443	/*
444	 * This is protected from concurrent reads from user
445	 * as both the user and we hold the global mutex.
446	 */
447	if (is_mbm_total_enabled()) {
448		rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
 
449		__mon_event_count(rmid, &rr);
450	}
451	if (is_mbm_local_enabled()) {
452		rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
 
 
453
454		/*
455		 * Call the MBA software controller only for the
456		 * control groups and when user has enabled
457		 * the software controller explicitly.
458		 */
459		if (!is_mba_sc(NULL))
460			__mon_event_count(rmid, &rr);
461		else
462			mbm_bw_count(rmid, &rr);
463	}
464}
465
466/*
467 * Handler to scan the limbo list and move the RMIDs
468 * to free list whose occupancy < threshold_occupancy.
469 */
470void cqm_handle_limbo(struct work_struct *work)
471{
472	unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
473	int cpu = smp_processor_id();
474	struct rdt_resource *r;
475	struct rdt_domain *d;
476
477	mutex_lock(&rdtgroup_mutex);
478
479	r = &rdt_resources_all[RDT_RESOURCE_L3];
480	d = get_domain_from_cpu(cpu, r);
481
482	if (!d) {
483		pr_warn_once("Failure to get domain for limbo worker\n");
484		goto out_unlock;
485	}
486
487	__check_limbo(d, false);
488
489	if (has_busy_rmid(r, d))
490		schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
491
492out_unlock:
493	mutex_unlock(&rdtgroup_mutex);
494}
495
496void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
497{
498	unsigned long delay = msecs_to_jiffies(delay_ms);
499	int cpu;
500
501	cpu = cpumask_any(&dom->cpu_mask);
502	dom->cqm_work_cpu = cpu;
503
504	schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
505}
506
507void mbm_handle_overflow(struct work_struct *work)
508{
509	unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
510	struct rdtgroup *prgrp, *crgrp;
511	int cpu = smp_processor_id();
512	struct list_head *head;
 
513	struct rdt_domain *d;
514
515	mutex_lock(&rdtgroup_mutex);
516
517	if (!static_branch_likely(&rdt_enable_key))
518		goto out_unlock;
519
520	d = get_domain_from_cpu(cpu, &rdt_resources_all[RDT_RESOURCE_L3]);
521	if (!d)
522		goto out_unlock;
523
524	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
525		mbm_update(d, prgrp->mon.rmid);
526
527		head = &prgrp->mon.crdtgrp_list;
528		list_for_each_entry(crgrp, head, mon.crdtgrp_list)
529			mbm_update(d, crgrp->mon.rmid);
530
531		if (is_mba_sc(NULL))
532			update_mba_bw(prgrp, d);
533	}
534
535	schedule_delayed_work_on(cpu, &d->mbm_over, delay);
536
537out_unlock:
538	mutex_unlock(&rdtgroup_mutex);
539}
540
541void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
542{
543	unsigned long delay = msecs_to_jiffies(delay_ms);
544	int cpu;
545
546	if (!static_branch_likely(&rdt_enable_key))
547		return;
548	cpu = cpumask_any(&dom->cpu_mask);
549	dom->mbm_work_cpu = cpu;
550	schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
551}
552
553static int dom_data_init(struct rdt_resource *r)
554{
555	struct rmid_entry *entry = NULL;
556	int i, nr_rmids;
557
558	nr_rmids = r->num_rmid;
559	rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
560	if (!rmid_ptrs)
561		return -ENOMEM;
562
563	for (i = 0; i < nr_rmids; i++) {
564		entry = &rmid_ptrs[i];
565		INIT_LIST_HEAD(&entry->list);
566
567		entry->rmid = i;
568		list_add_tail(&entry->list, &rmid_free_lru);
569	}
570
571	/*
572	 * RMID 0 is special and is always allocated. It's used for all
573	 * tasks that are not monitored.
574	 */
575	entry = __rmid_entry(0);
576	list_del(&entry->list);
577
578	return 0;
579}
580
581static struct mon_evt llc_occupancy_event = {
582	.name		= "llc_occupancy",
583	.evtid		= QOS_L3_OCCUP_EVENT_ID,
584};
585
586static struct mon_evt mbm_total_event = {
587	.name		= "mbm_total_bytes",
588	.evtid		= QOS_L3_MBM_TOTAL_EVENT_ID,
589};
590
591static struct mon_evt mbm_local_event = {
592	.name		= "mbm_local_bytes",
593	.evtid		= QOS_L3_MBM_LOCAL_EVENT_ID,
594};
595
596/*
597 * Initialize the event list for the resource.
598 *
599 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
600 * because as per the SDM the total and local memory bandwidth
601 * are enumerated as part of L3 monitoring.
602 */
603static void l3_mon_evt_init(struct rdt_resource *r)
604{
605	INIT_LIST_HEAD(&r->evt_list);
606
607	if (is_llc_occupancy_enabled())
608		list_add_tail(&llc_occupancy_event.list, &r->evt_list);
609	if (is_mbm_total_enabled())
610		list_add_tail(&mbm_total_event.list, &r->evt_list);
611	if (is_mbm_local_enabled())
612		list_add_tail(&mbm_local_event.list, &r->evt_list);
613}
614
615int rdt_get_mon_l3_config(struct rdt_resource *r)
616{
617	unsigned int cl_size = boot_cpu_data.x86_cache_size;
 
 
618	int ret;
619
620	r->mon_scale = boot_cpu_data.x86_cache_occ_scale;
 
621	r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
 
 
 
 
 
 
622
623	/*
624	 * A reasonable upper limit on the max threshold is the number
625	 * of lines tagged per RMID if all RMIDs have the same number of
626	 * lines tagged in the LLC.
627	 *
628	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
629	 */
630	resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid;
631
632	/* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
633	resctrl_cqm_threshold /= r->mon_scale;
 
 
 
 
634
635	ret = dom_data_init(r);
636	if (ret)
637		return ret;
638
639	l3_mon_evt_init(r);
640
641	r->mon_capable = true;
642	r->mon_enabled = true;
643
644	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Resource Director Technology(RDT)
  4 * - Monitoring code
  5 *
  6 * Copyright (C) 2017 Intel Corporation
  7 *
  8 * Author:
  9 *    Vikas Shivappa <vikas.shivappa@intel.com>
 10 *
 11 * This replaces the cqm.c based on perf but we reuse a lot of
 12 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
 13 *
 14 * More information about RDT be found in the Intel (R) x86 Architecture
 15 * Software Developer Manual June 2016, volume 3, section 17.17.
 16 */
 17
 18#include <linux/module.h>
 19#include <linux/sizes.h>
 20#include <linux/slab.h>
 21
 22#include <asm/cpu_device_id.h>
 23#include <asm/resctrl.h>
 24
 25#include "internal.h"
 26
 27struct rmid_entry {
 28	u32				rmid;
 29	int				busy;
 30	struct list_head		list;
 31};
 32
 33/**
 34 * @rmid_free_lru    A least recently used list of free RMIDs
 35 *     These RMIDs are guaranteed to have an occupancy less than the
 36 *     threshold occupancy
 37 */
 38static LIST_HEAD(rmid_free_lru);
 39
 40/**
 41 * @rmid_limbo_count     count of currently unused but (potentially)
 42 *     dirty RMIDs.
 43 *     This counts RMIDs that no one is currently using but that
 44 *     may have a occupancy value > resctrl_rmid_realloc_threshold. User can
 45 *     change the threshold occupancy value.
 46 */
 47static unsigned int rmid_limbo_count;
 48
 49/**
 50 * @rmid_entry - The entry in the limbo and free lists.
 51 */
 52static struct rmid_entry	*rmid_ptrs;
 53
 54/*
 55 * Global boolean for rdt_monitor which is true if any
 56 * resource monitoring is enabled.
 57 */
 58bool rdt_mon_capable;
 59
 60/*
 61 * Global to indicate which monitoring events are enabled.
 62 */
 63unsigned int rdt_mon_features;
 64
 65/*
 66 * This is the threshold cache occupancy in bytes at which we will consider an
 67 * RMID available for re-allocation.
 68 */
 69unsigned int resctrl_rmid_realloc_threshold;
 70
 71/*
 72 * This is the maximum value for the reallocation threshold, in bytes.
 73 */
 74unsigned int resctrl_rmid_realloc_limit;
 75
 76#define CF(cf)	((unsigned long)(1048576 * (cf) + 0.5))
 77
 78/*
 79 * The correction factor table is documented in Documentation/x86/resctrl.rst.
 80 * If rmid > rmid threshold, MBM total and local values should be multiplied
 81 * by the correction factor.
 82 *
 83 * The original table is modified for better code:
 84 *
 85 * 1. The threshold 0 is changed to rmid count - 1 so don't do correction
 86 *    for the case.
 87 * 2. MBM total and local correction table indexed by core counter which is
 88 *    equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27.
 89 * 3. The correction factor is normalized to 2^20 (1048576) so it's faster
 90 *    to calculate corrected value by shifting:
 91 *    corrected_value = (original_value * correction_factor) >> 20
 92 */
 93static const struct mbm_correction_factor_table {
 94	u32 rmidthreshold;
 95	u64 cf;
 96} mbm_cf_table[] __initconst = {
 97	{7,	CF(1.000000)},
 98	{15,	CF(1.000000)},
 99	{15,	CF(0.969650)},
100	{31,	CF(1.000000)},
101	{31,	CF(1.066667)},
102	{31,	CF(0.969650)},
103	{47,	CF(1.142857)},
104	{63,	CF(1.000000)},
105	{63,	CF(1.185115)},
106	{63,	CF(1.066553)},
107	{79,	CF(1.454545)},
108	{95,	CF(1.000000)},
109	{95,	CF(1.230769)},
110	{95,	CF(1.142857)},
111	{95,	CF(1.066667)},
112	{127,	CF(1.000000)},
113	{127,	CF(1.254863)},
114	{127,	CF(1.185255)},
115	{151,	CF(1.000000)},
116	{127,	CF(1.066667)},
117	{167,	CF(1.000000)},
118	{159,	CF(1.454334)},
119	{183,	CF(1.000000)},
120	{127,	CF(0.969744)},
121	{191,	CF(1.280246)},
122	{191,	CF(1.230921)},
123	{215,	CF(1.000000)},
124	{191,	CF(1.143118)},
125};
126
127static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX;
128static u64 mbm_cf __read_mostly;
129
130static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val)
131{
132	/* Correct MBM value. */
133	if (rmid > mbm_cf_rmidthreshold)
134		val = (val * mbm_cf) >> 20;
135
136	return val;
137}
138
139static inline struct rmid_entry *__rmid_entry(u32 rmid)
140{
141	struct rmid_entry *entry;
142
143	entry = &rmid_ptrs[rmid];
144	WARN_ON(entry->rmid != rmid);
145
146	return entry;
147}
148
149static int __rmid_read(u32 rmid, enum resctrl_event_id eventid, u64 *val)
150{
151	u64 msr_val;
152
153	/*
154	 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
155	 * with a valid event code for supported resource type and the bits
156	 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
157	 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
158	 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
159	 * are error bits.
160	 */
161	wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
162	rdmsrl(MSR_IA32_QM_CTR, msr_val);
163
164	if (msr_val & RMID_VAL_ERROR)
165		return -EIO;
166	if (msr_val & RMID_VAL_UNAVAIL)
167		return -EINVAL;
168
169	*val = msr_val;
170	return 0;
171}
172
173static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_domain *hw_dom,
174						 u32 rmid,
175						 enum resctrl_event_id eventid)
176{
177	switch (eventid) {
178	case QOS_L3_OCCUP_EVENT_ID:
179		return NULL;
180	case QOS_L3_MBM_TOTAL_EVENT_ID:
181		return &hw_dom->arch_mbm_total[rmid];
182	case QOS_L3_MBM_LOCAL_EVENT_ID:
183		return &hw_dom->arch_mbm_local[rmid];
184	}
185
186	/* Never expect to get here */
187	WARN_ON_ONCE(1);
188
189	return NULL;
190}
191
192void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_domain *d,
193			     u32 rmid, enum resctrl_event_id eventid)
194{
195	struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);
196	struct arch_mbm_state *am;
197
198	am = get_arch_mbm_state(hw_dom, rmid, eventid);
199	if (am) {
200		memset(am, 0, sizeof(*am));
201
202		/* Record any initial, non-zero count value. */
203		__rmid_read(rmid, eventid, &am->prev_msr);
204	}
205}
206
207static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
208{
209	u64 shift = 64 - width, chunks;
210
211	chunks = (cur_msr << shift) - (prev_msr << shift);
212	return chunks >> shift;
213}
214
215int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_domain *d,
216			   u32 rmid, enum resctrl_event_id eventid, u64 *val)
217{
218	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
219	struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);
220	struct arch_mbm_state *am;
221	u64 msr_val, chunks;
222	int ret;
223
224	if (!cpumask_test_cpu(smp_processor_id(), &d->cpu_mask))
225		return -EINVAL;
226
227	ret = __rmid_read(rmid, eventid, &msr_val);
228	if (ret)
229		return ret;
230
231	am = get_arch_mbm_state(hw_dom, rmid, eventid);
232	if (am) {
233		am->chunks += mbm_overflow_count(am->prev_msr, msr_val,
234						 hw_res->mbm_width);
235		chunks = get_corrected_mbm_count(rmid, am->chunks);
236		am->prev_msr = msr_val;
237	} else {
238		chunks = msr_val;
239	}
240
241	*val = chunks * hw_res->mon_scale;
242
243	return 0;
244}
245
246/*
247 * Check the RMIDs that are marked as busy for this domain. If the
248 * reported LLC occupancy is below the threshold clear the busy bit and
249 * decrement the count. If the busy count gets to zero on an RMID, we
250 * free the RMID
251 */
252void __check_limbo(struct rdt_domain *d, bool force_free)
253{
254	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
255	struct rmid_entry *entry;
 
256	u32 crmid = 1, nrmid;
257	bool rmid_dirty;
258	u64 val = 0;
259
260	/*
261	 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
262	 * are marked as busy for occupancy < threshold. If the occupancy
263	 * is less than the threshold decrement the busy counter of the
264	 * RMID and move it to the free list when the counter reaches 0.
265	 */
266	for (;;) {
267		nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
268		if (nrmid >= r->num_rmid)
269			break;
270
271		entry = __rmid_entry(nrmid);
272
273		if (resctrl_arch_rmid_read(r, d, entry->rmid,
274					   QOS_L3_OCCUP_EVENT_ID, &val)) {
275			rmid_dirty = true;
276		} else {
277			rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
278		}
279
280		if (force_free || !rmid_dirty) {
281			clear_bit(entry->rmid, d->rmid_busy_llc);
282			if (!--entry->busy) {
283				rmid_limbo_count--;
284				list_add_tail(&entry->list, &rmid_free_lru);
285			}
286		}
287		crmid = nrmid + 1;
288	}
289}
290
291bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
292{
293	return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
294}
295
296/*
297 * As of now the RMIDs allocation is global.
298 * However we keep track of which packages the RMIDs
299 * are used to optimize the limbo list management.
300 */
301int alloc_rmid(void)
302{
303	struct rmid_entry *entry;
304
305	lockdep_assert_held(&rdtgroup_mutex);
306
307	if (list_empty(&rmid_free_lru))
308		return rmid_limbo_count ? -EBUSY : -ENOSPC;
309
310	entry = list_first_entry(&rmid_free_lru,
311				 struct rmid_entry, list);
312	list_del(&entry->list);
313
314	return entry->rmid;
315}
316
317static void add_rmid_to_limbo(struct rmid_entry *entry)
318{
319	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
320	struct rdt_domain *d;
321	int cpu, err;
322	u64 val = 0;
 
 
323
324	entry->busy = 0;
325	cpu = get_cpu();
326	list_for_each_entry(d, &r->domains, list) {
327		if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
328			err = resctrl_arch_rmid_read(r, d, entry->rmid,
329						     QOS_L3_OCCUP_EVENT_ID,
330						     &val);
331			if (err || val <= resctrl_rmid_realloc_threshold)
332				continue;
333		}
334
335		/*
336		 * For the first limbo RMID in the domain,
337		 * setup up the limbo worker.
338		 */
339		if (!has_busy_rmid(r, d))
340			cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
341		set_bit(entry->rmid, d->rmid_busy_llc);
342		entry->busy++;
343	}
344	put_cpu();
345
346	if (entry->busy)
347		rmid_limbo_count++;
348	else
349		list_add_tail(&entry->list, &rmid_free_lru);
350}
351
352void free_rmid(u32 rmid)
353{
354	struct rmid_entry *entry;
355
356	if (!rmid)
357		return;
358
359	lockdep_assert_held(&rdtgroup_mutex);
360
361	entry = __rmid_entry(rmid);
362
363	if (is_llc_occupancy_enabled())
364		add_rmid_to_limbo(entry);
365	else
366		list_add_tail(&entry->list, &rmid_free_lru);
367}
368
 
 
 
 
 
 
 
 
369static int __mon_event_count(u32 rmid, struct rmid_read *rr)
370{
371	struct mbm_state *m;
372	u64 tval = 0;
373
374	if (rr->first)
375		resctrl_arch_reset_rmid(rr->r, rr->d, rmid, rr->evtid);
376
377	rr->err = resctrl_arch_rmid_read(rr->r, rr->d, rmid, rr->evtid, &tval);
378	if (rr->err)
379		return rr->err;
380
 
 
 
 
 
381	switch (rr->evtid) {
382	case QOS_L3_OCCUP_EVENT_ID:
383		rr->val += tval;
384		return 0;
385	case QOS_L3_MBM_TOTAL_EVENT_ID:
386		m = &rr->d->mbm_total[rmid];
387		break;
388	case QOS_L3_MBM_LOCAL_EVENT_ID:
389		m = &rr->d->mbm_local[rmid];
390		break;
391	default:
392		/*
393		 * Code would never reach here because an invalid
394		 * event id would fail in resctrl_arch_rmid_read().
395		 */
396		return -EINVAL;
397	}
398
399	if (rr->first) {
400		memset(m, 0, sizeof(struct mbm_state));
 
401		return 0;
402	}
403
404	rr->val += tval;
 
 
405
 
406	return 0;
407}
408
409/*
410 * mbm_bw_count() - Update bw count from values previously read by
411 *		    __mon_event_count().
412 * @rmid:	The rmid used to identify the cached mbm_state.
413 * @rr:		The struct rmid_read populated by __mon_event_count().
414 *
415 * Supporting function to calculate the memory bandwidth
416 * and delta bandwidth in MBps. The chunks value previously read by
417 * __mon_event_count() is compared with the chunks value from the previous
418 * invocation. This must be called once per second to maintain values in MBps.
419 */
420static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
421{
 
422	struct mbm_state *m = &rr->d->mbm_local[rmid];
423	u64 cur_bw, bytes, cur_bytes;
424
425	cur_bytes = rr->val;
426	bytes = cur_bytes - m->prev_bw_bytes;
427	m->prev_bw_bytes = cur_bytes;
428
429	cur_bw = bytes / SZ_1M;
 
 
 
430
431	if (m->delta_comp)
432		m->delta_bw = abs(cur_bw - m->prev_bw);
433	m->delta_comp = false;
434	m->prev_bw = cur_bw;
 
435}
436
437/*
438 * This is called via IPI to read the CQM/MBM counters
439 * on a domain.
440 */
441void mon_event_count(void *info)
442{
443	struct rdtgroup *rdtgrp, *entry;
444	struct rmid_read *rr = info;
445	struct list_head *head;
446	int ret;
447
448	rdtgrp = rr->rgrp;
449
450	ret = __mon_event_count(rdtgrp->mon.rmid, rr);
 
451
452	/*
453	 * For Ctrl groups read data from child monitor groups and
454	 * add them together. Count events which are read successfully.
455	 * Discard the rmid_read's reporting errors.
456	 */
457	head = &rdtgrp->mon.crdtgrp_list;
458
459	if (rdtgrp->type == RDTCTRL_GROUP) {
460		list_for_each_entry(entry, head, mon.crdtgrp_list) {
461			if (__mon_event_count(entry->mon.rmid, rr) == 0)
462				ret = 0;
463		}
464	}
465
466	/*
467	 * __mon_event_count() calls for newly created monitor groups may
468	 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
469	 * Discard error if any of the monitor event reads succeeded.
470	 */
471	if (ret == 0)
472		rr->err = 0;
473}
474
475/*
476 * Feedback loop for MBA software controller (mba_sc)
477 *
478 * mba_sc is a feedback loop where we periodically read MBM counters and
479 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
480 * that:
481 *
482 *   current bandwidth(cur_bw) < user specified bandwidth(user_bw)
483 *
484 * This uses the MBM counters to measure the bandwidth and MBA throttle
485 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
486 * fact that resctrl rdtgroups have both monitoring and control.
487 *
488 * The frequency of the checks is 1s and we just tag along the MBM overflow
489 * timer. Having 1s interval makes the calculation of bandwidth simpler.
490 *
491 * Although MBA's goal is to restrict the bandwidth to a maximum, there may
492 * be a need to increase the bandwidth to avoid unnecessarily restricting
493 * the L2 <-> L3 traffic.
494 *
495 * Since MBA controls the L2 external bandwidth where as MBM measures the
496 * L3 external bandwidth the following sequence could lead to such a
497 * situation.
498 *
499 * Consider an rdtgroup which had high L3 <-> memory traffic in initial
500 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
501 * after some time rdtgroup has mostly L2 <-> L3 traffic.
502 *
503 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
504 * throttle MSRs already have low percentage values.  To avoid
505 * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
506 */
507static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
508{
509	u32 closid, rmid, cur_msr_val, new_msr_val;
510	struct mbm_state *pmbm_data, *cmbm_data;
511	u32 cur_bw, delta_bw, user_bw;
512	struct rdt_resource *r_mba;
513	struct rdt_domain *dom_mba;
514	struct list_head *head;
515	struct rdtgroup *entry;
516
517	if (!is_mbm_local_enabled())
518		return;
519
520	r_mba = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
521
522	closid = rgrp->closid;
523	rmid = rgrp->mon.rmid;
524	pmbm_data = &dom_mbm->mbm_local[rmid];
525
526	dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
527	if (!dom_mba) {
528		pr_warn_once("Failure to get domain for MBA update\n");
529		return;
530	}
531
532	cur_bw = pmbm_data->prev_bw;
533	user_bw = dom_mba->mbps_val[closid];
534	delta_bw = pmbm_data->delta_bw;
535
536	/* MBA resource doesn't support CDP */
537	cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
538
539	/*
540	 * For Ctrl groups read data from child monitor groups.
541	 */
542	head = &rgrp->mon.crdtgrp_list;
543	list_for_each_entry(entry, head, mon.crdtgrp_list) {
544		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
545		cur_bw += cmbm_data->prev_bw;
546		delta_bw += cmbm_data->delta_bw;
547	}
548
549	/*
550	 * Scale up/down the bandwidth linearly for the ctrl group.  The
551	 * bandwidth step is the bandwidth granularity specified by the
552	 * hardware.
553	 *
554	 * The delta_bw is used when increasing the bandwidth so that we
555	 * dont alternately increase and decrease the control values
556	 * continuously.
557	 *
558	 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
559	 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
560	 * switching between 90 and 110 continuously if we only check
561	 * cur_bw < user_bw.
562	 */
563	if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
564		new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
565	} else if (cur_msr_val < MAX_MBA_BW &&
566		   (user_bw > (cur_bw + delta_bw))) {
567		new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
568	} else {
569		return;
570	}
571
572	resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
 
 
573
574	/*
575	 * Delta values are updated dynamically package wise for each
576	 * rdtgrp every time the throttle MSR changes value.
577	 *
578	 * This is because (1)the increase in bandwidth is not perfectly
579	 * linear and only "approximately" linear even when the hardware
580	 * says it is linear.(2)Also since MBA is a core specific
581	 * mechanism, the delta values vary based on number of cores used
582	 * by the rdtgrp.
583	 */
584	pmbm_data->delta_comp = true;
585	list_for_each_entry(entry, head, mon.crdtgrp_list) {
586		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
587		cmbm_data->delta_comp = true;
588	}
589}
590
591static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid)
592{
593	struct rmid_read rr;
594
595	rr.first = false;
596	rr.r = r;
597	rr.d = d;
598
599	/*
600	 * This is protected from concurrent reads from user
601	 * as both the user and we hold the global mutex.
602	 */
603	if (is_mbm_total_enabled()) {
604		rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
605		rr.val = 0;
606		__mon_event_count(rmid, &rr);
607	}
608	if (is_mbm_local_enabled()) {
609		rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
610		rr.val = 0;
611		__mon_event_count(rmid, &rr);
612
613		/*
614		 * Call the MBA software controller only for the
615		 * control groups and when user has enabled
616		 * the software controller explicitly.
617		 */
618		if (is_mba_sc(NULL))
 
 
619			mbm_bw_count(rmid, &rr);
620	}
621}
622
623/*
624 * Handler to scan the limbo list and move the RMIDs
625 * to free list whose occupancy < threshold_occupancy.
626 */
627void cqm_handle_limbo(struct work_struct *work)
628{
629	unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
630	int cpu = smp_processor_id();
631	struct rdt_resource *r;
632	struct rdt_domain *d;
633
634	mutex_lock(&rdtgroup_mutex);
635
636	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
637	d = container_of(work, struct rdt_domain, cqm_limbo.work);
 
 
 
 
 
638
639	__check_limbo(d, false);
640
641	if (has_busy_rmid(r, d))
642		schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
643
 
644	mutex_unlock(&rdtgroup_mutex);
645}
646
647void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
648{
649	unsigned long delay = msecs_to_jiffies(delay_ms);
650	int cpu;
651
652	cpu = cpumask_any(&dom->cpu_mask);
653	dom->cqm_work_cpu = cpu;
654
655	schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
656}
657
658void mbm_handle_overflow(struct work_struct *work)
659{
660	unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
661	struct rdtgroup *prgrp, *crgrp;
662	int cpu = smp_processor_id();
663	struct list_head *head;
664	struct rdt_resource *r;
665	struct rdt_domain *d;
666
667	mutex_lock(&rdtgroup_mutex);
668
669	if (!static_branch_likely(&rdt_mon_enable_key))
670		goto out_unlock;
671
672	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
673	d = container_of(work, struct rdt_domain, mbm_over.work);
 
674
675	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
676		mbm_update(r, d, prgrp->mon.rmid);
677
678		head = &prgrp->mon.crdtgrp_list;
679		list_for_each_entry(crgrp, head, mon.crdtgrp_list)
680			mbm_update(r, d, crgrp->mon.rmid);
681
682		if (is_mba_sc(NULL))
683			update_mba_bw(prgrp, d);
684	}
685
686	schedule_delayed_work_on(cpu, &d->mbm_over, delay);
687
688out_unlock:
689	mutex_unlock(&rdtgroup_mutex);
690}
691
692void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
693{
694	unsigned long delay = msecs_to_jiffies(delay_ms);
695	int cpu;
696
697	if (!static_branch_likely(&rdt_mon_enable_key))
698		return;
699	cpu = cpumask_any(&dom->cpu_mask);
700	dom->mbm_work_cpu = cpu;
701	schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
702}
703
704static int dom_data_init(struct rdt_resource *r)
705{
706	struct rmid_entry *entry = NULL;
707	int i, nr_rmids;
708
709	nr_rmids = r->num_rmid;
710	rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
711	if (!rmid_ptrs)
712		return -ENOMEM;
713
714	for (i = 0; i < nr_rmids; i++) {
715		entry = &rmid_ptrs[i];
716		INIT_LIST_HEAD(&entry->list);
717
718		entry->rmid = i;
719		list_add_tail(&entry->list, &rmid_free_lru);
720	}
721
722	/*
723	 * RMID 0 is special and is always allocated. It's used for all
724	 * tasks that are not monitored.
725	 */
726	entry = __rmid_entry(0);
727	list_del(&entry->list);
728
729	return 0;
730}
731
732static struct mon_evt llc_occupancy_event = {
733	.name		= "llc_occupancy",
734	.evtid		= QOS_L3_OCCUP_EVENT_ID,
735};
736
737static struct mon_evt mbm_total_event = {
738	.name		= "mbm_total_bytes",
739	.evtid		= QOS_L3_MBM_TOTAL_EVENT_ID,
740};
741
742static struct mon_evt mbm_local_event = {
743	.name		= "mbm_local_bytes",
744	.evtid		= QOS_L3_MBM_LOCAL_EVENT_ID,
745};
746
747/*
748 * Initialize the event list for the resource.
749 *
750 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
751 * because as per the SDM the total and local memory bandwidth
752 * are enumerated as part of L3 monitoring.
753 */
754static void l3_mon_evt_init(struct rdt_resource *r)
755{
756	INIT_LIST_HEAD(&r->evt_list);
757
758	if (is_llc_occupancy_enabled())
759		list_add_tail(&llc_occupancy_event.list, &r->evt_list);
760	if (is_mbm_total_enabled())
761		list_add_tail(&mbm_total_event.list, &r->evt_list);
762	if (is_mbm_local_enabled())
763		list_add_tail(&mbm_local_event.list, &r->evt_list);
764}
765
766int rdt_get_mon_l3_config(struct rdt_resource *r)
767{
768	unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
769	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
770	unsigned int threshold;
771	int ret;
772
773	resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024;
774	hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale;
775	r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
776	hw_res->mbm_width = MBM_CNTR_WIDTH_BASE;
777
778	if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
779		hw_res->mbm_width += mbm_offset;
780	else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
781		pr_warn("Ignoring impossible MBM counter offset\n");
782
783	/*
784	 * A reasonable upper limit on the max threshold is the number
785	 * of lines tagged per RMID if all RMIDs have the same number of
786	 * lines tagged in the LLC.
787	 *
788	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
789	 */
790	threshold = resctrl_rmid_realloc_limit / r->num_rmid;
791
792	/*
793	 * Because num_rmid may not be a power of two, round the value
794	 * to the nearest multiple of hw_res->mon_scale so it matches a
795	 * value the hardware will measure. mon_scale may not be a power of 2.
796	 */
797	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold);
798
799	ret = dom_data_init(r);
800	if (ret)
801		return ret;
802
803	l3_mon_evt_init(r);
804
805	r->mon_capable = true;
 
806
807	return 0;
808}
809
810void __init intel_rdt_mbm_apply_quirk(void)
811{
812	int cf_index;
813
814	cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1;
815	if (cf_index >= ARRAY_SIZE(mbm_cf_table)) {
816		pr_info("No MBM correction factor available\n");
817		return;
818	}
819
820	mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold;
821	mbm_cf = mbm_cf_table[cf_index].cf;
822}