Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * arch/parisc/kernel/kprobes.c
  4 *
  5 * PA-RISC kprobes implementation
  6 *
  7 * Copyright (c) 2019 Sven Schnelle <svens@stackframe.org>
 
  8 */
  9
 10#include <linux/types.h>
 11#include <linux/kprobes.h>
 12#include <linux/slab.h>
 13#include <asm/cacheflush.h>
 14#include <asm/patch.h>
 15
 16DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 17DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 18
 19int __kprobes arch_prepare_kprobe(struct kprobe *p)
 20{
 21	if ((unsigned long)p->addr & 3UL)
 22		return -EINVAL;
 23
 24	p->ainsn.insn = get_insn_slot();
 25	if (!p->ainsn.insn)
 26		return -ENOMEM;
 27
 28	memcpy(p->ainsn.insn, p->addr,
 29		MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
 
 
 30	p->opcode = *p->addr;
 
 
 
 31	flush_insn_slot(p);
 32	return 0;
 33}
 34
 35void __kprobes arch_remove_kprobe(struct kprobe *p)
 36{
 37	if (!p->ainsn.insn)
 38		return;
 39
 40	free_insn_slot(p->ainsn.insn, 0);
 41	p->ainsn.insn = NULL;
 42}
 43
 44void __kprobes arch_arm_kprobe(struct kprobe *p)
 45{
 46	patch_text(p->addr, PARISC_KPROBES_BREAK_INSN);
 47}
 48
 49void __kprobes arch_disarm_kprobe(struct kprobe *p)
 50{
 51	patch_text(p->addr, p->opcode);
 52}
 53
 54static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 55{
 56	kcb->prev_kprobe.kp = kprobe_running();
 57	kcb->prev_kprobe.status = kcb->kprobe_status;
 58}
 59
 60static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 61{
 62	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 63	kcb->kprobe_status = kcb->prev_kprobe.status;
 64}
 65
 66static inline void __kprobes set_current_kprobe(struct kprobe *p)
 67{
 68	__this_cpu_write(current_kprobe, p);
 69}
 70
 71static void __kprobes setup_singlestep(struct kprobe *p,
 72		struct kprobe_ctlblk *kcb, struct pt_regs *regs)
 73{
 74	kcb->iaoq[0] = regs->iaoq[0];
 75	kcb->iaoq[1] = regs->iaoq[1];
 76	regs->iaoq[0] = (unsigned long)p->ainsn.insn;
 77	mtctl(0, 0);
 78	regs->gr[0] |= PSW_R;
 79}
 80
 81int __kprobes parisc_kprobe_break_handler(struct pt_regs *regs)
 82{
 83	struct kprobe *p;
 84	struct kprobe_ctlblk *kcb;
 85
 86	preempt_disable();
 87
 88	kcb = get_kprobe_ctlblk();
 89	p = get_kprobe((unsigned long *)regs->iaoq[0]);
 90
 91	if (!p) {
 92		preempt_enable_no_resched();
 93		return 0;
 94	}
 95
 96	if (kprobe_running()) {
 97		/*
 98		 * We have reentered the kprobe_handler, since another kprobe
 99		 * was hit while within the handler, we save the original
100		 * kprobes and single step on the instruction of the new probe
101		 * without calling any user handlers to avoid recursive
102		 * kprobes.
103		 */
104		save_previous_kprobe(kcb);
105		set_current_kprobe(p);
106		kprobes_inc_nmissed_count(p);
107		setup_singlestep(p, kcb, regs);
108		kcb->kprobe_status = KPROBE_REENTER;
109		return 1;
110	}
111
112	set_current_kprobe(p);
113	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
114
115	/* If we have no pre-handler or it returned 0, we continue with
116	 * normal processing. If we have a pre-handler and it returned
117	 * non-zero - which means user handler setup registers to exit
118	 * to another instruction, we must skip the single stepping.
119	 */
120
121	if (!p->pre_handler || !p->pre_handler(p, regs)) {
122		setup_singlestep(p, kcb, regs);
123		kcb->kprobe_status = KPROBE_HIT_SS;
124	} else {
125		reset_current_kprobe();
126		preempt_enable_no_resched();
127	}
128	return 1;
129}
130
131int __kprobes parisc_kprobe_ss_handler(struct pt_regs *regs)
132{
133	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
134	struct kprobe *p = kprobe_running();
135
136	if (!p)
137		return 0;
138
139	if (regs->iaoq[0] != (unsigned long)p->ainsn.insn+4)
140		return 0;
141
142	/* restore back original saved kprobe variables and continue */
143	if (kcb->kprobe_status == KPROBE_REENTER) {
144		restore_previous_kprobe(kcb);
145		return 1;
146	}
147
148	/* for absolute branch instructions we can copy iaoq_b. for relative
149	 * branch instructions we need to calculate the new address based on the
150	 * difference between iaoq_f and iaoq_b. We cannot use iaoq_b without
151	 * modificationt because it's based on our ainsn.insn address.
152	 */
153
154	if (p->post_handler)
155		p->post_handler(p, regs, 0);
156
157	switch (regs->iir >> 26) {
158	case 0x38: /* BE */
159	case 0x39: /* BE,L */
160	case 0x3a: /* BV */
161	case 0x3b: /* BVE */
162		/* for absolute branches, regs->iaoq[1] has already the right
163		 * address
164		 */
165		regs->iaoq[0] = kcb->iaoq[1];
166		break;
167	default:
168		regs->iaoq[1] = kcb->iaoq[0];
169		regs->iaoq[1] += (regs->iaoq[1] - regs->iaoq[0]) + 4;
170		regs->iaoq[0] = kcb->iaoq[1];
 
171		break;
172	}
173	kcb->kprobe_status = KPROBE_HIT_SSDONE;
174	reset_current_kprobe();
175	return 1;
176}
177
178static inline void kretprobe_trampoline(void)
179{
180	asm volatile("nop");
181	asm volatile("nop");
182}
183
184static int __kprobes trampoline_probe_handler(struct kprobe *p,
185					      struct pt_regs *regs);
186
187static struct kprobe trampoline_p = {
188	.pre_handler = trampoline_probe_handler
189};
190
191static int __kprobes trampoline_probe_handler(struct kprobe *p,
192					      struct pt_regs *regs)
193{
194	struct kretprobe_instance *ri = NULL;
195	struct hlist_head *head, empty_rp;
196	struct hlist_node *tmp;
197	unsigned long flags, orig_ret_address = 0;
198	unsigned long trampoline_address = (unsigned long)trampoline_p.addr;
199	kprobe_opcode_t *correct_ret_addr = NULL;
200
201	INIT_HLIST_HEAD(&empty_rp);
202	kretprobe_hash_lock(current, &head, &flags);
203
204	/*
205	 * It is possible to have multiple instances associated with a given
206	 * task either because multiple functions in the call path have
207	 * a return probe installed on them, and/or more than one return
208	 * probe was registered for a target function.
209	 *
210	 * We can handle this because:
211	 *     - instances are always inserted at the head of the list
212	 *     - when multiple return probes are registered for the same
213	 *       function, the first instance's ret_addr will point to the
214	 *       real return address, and all the rest will point to
215	 *       kretprobe_trampoline
216	 */
217	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
218		if (ri->task != current)
219			/* another task is sharing our hash bucket */
220			continue;
221
222		orig_ret_address = (unsigned long)ri->ret_addr;
223
224		if (orig_ret_address != trampoline_address)
225			/*
226			 * This is the real return address. Any other
227			 * instances associated with this task are for
228			 * other calls deeper on the call stack
229			 */
230			break;
231	}
232
233	kretprobe_assert(ri, orig_ret_address, trampoline_address);
234
235	correct_ret_addr = ri->ret_addr;
236	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
237		if (ri->task != current)
238			/* another task is sharing our hash bucket */
239			continue;
240
241		orig_ret_address = (unsigned long)ri->ret_addr;
242		if (ri->rp && ri->rp->handler) {
243			__this_cpu_write(current_kprobe, &ri->rp->kp);
244			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
245			ri->ret_addr = correct_ret_addr;
246			ri->rp->handler(ri, regs);
247			__this_cpu_write(current_kprobe, NULL);
248		}
249
250		recycle_rp_inst(ri, &empty_rp);
251
252		if (orig_ret_address != trampoline_address)
253			/*
254			 * This is the real return address. Any other
255			 * instances associated with this task are for
256			 * other calls deeper on the call stack
257			 */
258			break;
259	}
260
261	kretprobe_hash_unlock(current, &flags);
262
263	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
264		hlist_del(&ri->hlist);
265		kfree(ri);
266	}
267	instruction_pointer_set(regs, orig_ret_address);
268	return 1;
269}
270
 
 
 
 
 
 
271void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
272				      struct pt_regs *regs)
273{
274	ri->ret_addr = (kprobe_opcode_t *)regs->gr[2];
 
275
276	/* Replace the return addr with trampoline addr. */
277	regs->gr[2] = (unsigned long)trampoline_p.addr;
278}
279
280int __kprobes arch_trampoline_kprobe(struct kprobe *p)
281{
282	return p->addr == trampoline_p.addr;
283}
284
285int __init arch_init_kprobes(void)
286{
287	trampoline_p.addr = (kprobe_opcode_t *)
288		dereference_function_descriptor(kretprobe_trampoline);
289	return register_kprobe(&trampoline_p);
290}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * arch/parisc/kernel/kprobes.c
  4 *
  5 * PA-RISC kprobes implementation
  6 *
  7 * Copyright (c) 2019 Sven Schnelle <svens@stackframe.org>
  8 * Copyright (c) 2022 Helge Deller <deller@gmx.de>
  9 */
 10
 11#include <linux/types.h>
 12#include <linux/kprobes.h>
 13#include <linux/slab.h>
 14#include <asm/cacheflush.h>
 15#include <asm/patch.h>
 16
 17DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 18DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 19
 20int __kprobes arch_prepare_kprobe(struct kprobe *p)
 21{
 22	if ((unsigned long)p->addr & 3UL)
 23		return -EINVAL;
 24
 25	p->ainsn.insn = get_insn_slot();
 26	if (!p->ainsn.insn)
 27		return -ENOMEM;
 28
 29	/*
 30	 * Set up new instructions. Second break instruction will
 31	 * trigger call of parisc_kprobe_ss_handler().
 32	 */
 33	p->opcode = *p->addr;
 34	p->ainsn.insn[0] = p->opcode;
 35	p->ainsn.insn[1] = PARISC_KPROBES_BREAK_INSN2;
 36
 37	flush_insn_slot(p);
 38	return 0;
 39}
 40
 41void __kprobes arch_remove_kprobe(struct kprobe *p)
 42{
 43	if (!p->ainsn.insn)
 44		return;
 45
 46	free_insn_slot(p->ainsn.insn, 0);
 47	p->ainsn.insn = NULL;
 48}
 49
 50void __kprobes arch_arm_kprobe(struct kprobe *p)
 51{
 52	patch_text(p->addr, PARISC_KPROBES_BREAK_INSN);
 53}
 54
 55void __kprobes arch_disarm_kprobe(struct kprobe *p)
 56{
 57	patch_text(p->addr, p->opcode);
 58}
 59
 60static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 61{
 62	kcb->prev_kprobe.kp = kprobe_running();
 63	kcb->prev_kprobe.status = kcb->kprobe_status;
 64}
 65
 66static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 67{
 68	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 69	kcb->kprobe_status = kcb->prev_kprobe.status;
 70}
 71
 72static inline void __kprobes set_current_kprobe(struct kprobe *p)
 73{
 74	__this_cpu_write(current_kprobe, p);
 75}
 76
 77static void __kprobes setup_singlestep(struct kprobe *p,
 78		struct kprobe_ctlblk *kcb, struct pt_regs *regs)
 79{
 80	kcb->iaoq[0] = regs->iaoq[0];
 81	kcb->iaoq[1] = regs->iaoq[1];
 82	instruction_pointer_set(regs, (unsigned long)p->ainsn.insn);
 
 
 83}
 84
 85int __kprobes parisc_kprobe_break_handler(struct pt_regs *regs)
 86{
 87	struct kprobe *p;
 88	struct kprobe_ctlblk *kcb;
 89
 90	preempt_disable();
 91
 92	kcb = get_kprobe_ctlblk();
 93	p = get_kprobe((unsigned long *)regs->iaoq[0]);
 94
 95	if (!p) {
 96		preempt_enable_no_resched();
 97		return 0;
 98	}
 99
100	if (kprobe_running()) {
101		/*
102		 * We have reentered the kprobe_handler, since another kprobe
103		 * was hit while within the handler, we save the original
104		 * kprobes and single step on the instruction of the new probe
105		 * without calling any user handlers to avoid recursive
106		 * kprobes.
107		 */
108		save_previous_kprobe(kcb);
109		set_current_kprobe(p);
110		kprobes_inc_nmissed_count(p);
111		setup_singlestep(p, kcb, regs);
112		kcb->kprobe_status = KPROBE_REENTER;
113		return 1;
114	}
115
116	set_current_kprobe(p);
117	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
118
119	/* If we have no pre-handler or it returned 0, we continue with
120	 * normal processing. If we have a pre-handler and it returned
121	 * non-zero - which means user handler setup registers to exit
122	 * to another instruction, we must skip the single stepping.
123	 */
124
125	if (!p->pre_handler || !p->pre_handler(p, regs)) {
126		setup_singlestep(p, kcb, regs);
127		kcb->kprobe_status = KPROBE_HIT_SS;
128	} else {
129		reset_current_kprobe();
130		preempt_enable_no_resched();
131	}
132	return 1;
133}
134
135int __kprobes parisc_kprobe_ss_handler(struct pt_regs *regs)
136{
137	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
138	struct kprobe *p = kprobe_running();
139
140	if (!p)
141		return 0;
142
143	if (regs->iaoq[0] != (unsigned long)p->ainsn.insn+4)
144		return 0;
145
146	/* restore back original saved kprobe variables and continue */
147	if (kcb->kprobe_status == KPROBE_REENTER) {
148		restore_previous_kprobe(kcb);
149		return 1;
150	}
151
152	/* for absolute branch instructions we can copy iaoq_b. for relative
153	 * branch instructions we need to calculate the new address based on the
154	 * difference between iaoq_f and iaoq_b. We cannot use iaoq_b without
155	 * modifications because it's based on our ainsn.insn address.
156	 */
157
158	if (p->post_handler)
159		p->post_handler(p, regs, 0);
160
161	switch (regs->iir >> 26) {
162	case 0x38: /* BE */
163	case 0x39: /* BE,L */
164	case 0x3a: /* BV */
165	case 0x3b: /* BVE */
166		/* for absolute branches, regs->iaoq[1] has already the right
167		 * address
168		 */
169		regs->iaoq[0] = kcb->iaoq[1];
170		break;
171	default:
 
 
172		regs->iaoq[0] = kcb->iaoq[1];
173		regs->iaoq[1] = regs->iaoq[0] + 4;
174		break;
175	}
176	kcb->kprobe_status = KPROBE_HIT_SSDONE;
177	reset_current_kprobe();
178	return 1;
179}
180
181void __kretprobe_trampoline(void)
182{
183	asm volatile("nop");
184	asm volatile("nop");
185}
186
187static int __kprobes trampoline_probe_handler(struct kprobe *p,
188					      struct pt_regs *regs);
189
190static struct kprobe trampoline_p = {
191	.pre_handler = trampoline_probe_handler
192};
193
194static int __kprobes trampoline_probe_handler(struct kprobe *p,
195					      struct pt_regs *regs)
196{
197	__kretprobe_trampoline_handler(regs, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199	return 1;
200}
201
202void arch_kretprobe_fixup_return(struct pt_regs *regs,
203				 kprobe_opcode_t *correct_ret_addr)
204{
205	regs->gr[2] = (unsigned long)correct_ret_addr;
206}
207
208void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
209				      struct pt_regs *regs)
210{
211	ri->ret_addr = (kprobe_opcode_t *)regs->gr[2];
212	ri->fp = NULL;
213
214	/* Replace the return addr with trampoline addr. */
215	regs->gr[2] = (unsigned long)trampoline_p.addr;
216}
217
218int __kprobes arch_trampoline_kprobe(struct kprobe *p)
219{
220	return p->addr == trampoline_p.addr;
221}
222
223int __init arch_init_kprobes(void)
224{
225	trampoline_p.addr = (kprobe_opcode_t *)
226		dereference_function_descriptor(__kretprobe_trampoline);
227	return register_kprobe(&trampoline_p);
228}