Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | // SPDX-License-Identifier: GPL-2.0 /* * arch/parisc/kernel/kprobes.c * * PA-RISC kprobes implementation * * Copyright (c) 2019 Sven Schnelle <svens@stackframe.org> * Copyright (c) 2022 Helge Deller <deller@gmx.de> */ #include <linux/types.h> #include <linux/kprobes.h> #include <linux/slab.h> #include <asm/cacheflush.h> #include <asm/patch.h> DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); int __kprobes arch_prepare_kprobe(struct kprobe *p) { if ((unsigned long)p->addr & 3UL) return -EINVAL; p->ainsn.insn = get_insn_slot(); if (!p->ainsn.insn) return -ENOMEM; /* * Set up new instructions. Second break instruction will * trigger call of parisc_kprobe_ss_handler(). */ p->opcode = *p->addr; p->ainsn.insn[0] = p->opcode; p->ainsn.insn[1] = PARISC_KPROBES_BREAK_INSN2; flush_insn_slot(p); return 0; } void __kprobes arch_remove_kprobe(struct kprobe *p) { if (!p->ainsn.insn) return; free_insn_slot(p->ainsn.insn, 0); p->ainsn.insn = NULL; } void __kprobes arch_arm_kprobe(struct kprobe *p) { patch_text(p->addr, PARISC_KPROBES_BREAK_INSN); } void __kprobes arch_disarm_kprobe(struct kprobe *p) { patch_text(p->addr, p->opcode); } static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; } static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); kcb->kprobe_status = kcb->prev_kprobe.status; } static inline void __kprobes set_current_kprobe(struct kprobe *p) { __this_cpu_write(current_kprobe, p); } static void __kprobes setup_singlestep(struct kprobe *p, struct kprobe_ctlblk *kcb, struct pt_regs *regs) { kcb->iaoq[0] = regs->iaoq[0]; kcb->iaoq[1] = regs->iaoq[1]; instruction_pointer_set(regs, (unsigned long)p->ainsn.insn); } int __kprobes parisc_kprobe_break_handler(struct pt_regs *regs) { struct kprobe *p; struct kprobe_ctlblk *kcb; preempt_disable(); kcb = get_kprobe_ctlblk(); p = get_kprobe((unsigned long *)regs->iaoq[0]); if (!p) { preempt_enable_no_resched(); return 0; } if (kprobe_running()) { /* * We have reentered the kprobe_handler, since another kprobe * was hit while within the handler, we save the original * kprobes and single step on the instruction of the new probe * without calling any user handlers to avoid recursive * kprobes. */ save_previous_kprobe(kcb); set_current_kprobe(p); kprobes_inc_nmissed_count(p); setup_singlestep(p, kcb, regs); kcb->kprobe_status = KPROBE_REENTER; return 1; } set_current_kprobe(p); kcb->kprobe_status = KPROBE_HIT_ACTIVE; /* If we have no pre-handler or it returned 0, we continue with * normal processing. If we have a pre-handler and it returned * non-zero - which means user handler setup registers to exit * to another instruction, we must skip the single stepping. */ if (!p->pre_handler || !p->pre_handler(p, regs)) { setup_singlestep(p, kcb, regs); kcb->kprobe_status = KPROBE_HIT_SS; } else { reset_current_kprobe(); preempt_enable_no_resched(); } return 1; } int __kprobes parisc_kprobe_ss_handler(struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); struct kprobe *p = kprobe_running(); if (!p) return 0; if (regs->iaoq[0] != (unsigned long)p->ainsn.insn+4) return 0; /* restore back original saved kprobe variables and continue */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); return 1; } /* for absolute branch instructions we can copy iaoq_b. for relative * branch instructions we need to calculate the new address based on the * difference between iaoq_f and iaoq_b. We cannot use iaoq_b without * modifications because it's based on our ainsn.insn address. */ if (p->post_handler) p->post_handler(p, regs, 0); switch (regs->iir >> 26) { case 0x38: /* BE */ case 0x39: /* BE,L */ case 0x3a: /* BV */ case 0x3b: /* BVE */ /* for absolute branches, regs->iaoq[1] has already the right * address */ regs->iaoq[0] = kcb->iaoq[1]; break; default: regs->iaoq[0] = kcb->iaoq[1]; regs->iaoq[1] = regs->iaoq[0] + 4; break; } kcb->kprobe_status = KPROBE_HIT_SSDONE; reset_current_kprobe(); return 1; } void __kretprobe_trampoline(void) { asm volatile("nop"); asm volatile("nop"); } static int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs); static struct kprobe trampoline_p = { .pre_handler = trampoline_probe_handler }; static int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) { __kretprobe_trampoline_handler(regs, NULL); return 1; } void arch_kretprobe_fixup_return(struct pt_regs *regs, kprobe_opcode_t *correct_ret_addr) { regs->gr[2] = (unsigned long)correct_ret_addr; } void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) { ri->ret_addr = (kprobe_opcode_t *)regs->gr[2]; ri->fp = NULL; /* Replace the return addr with trampoline addr. */ regs->gr[2] = (unsigned long)trampoline_p.addr; } int __kprobes arch_trampoline_kprobe(struct kprobe *p) { return p->addr == trampoline_p.addr; } int __init arch_init_kprobes(void) { trampoline_p.addr = (kprobe_opcode_t *) dereference_function_descriptor(__kretprobe_trampoline); return register_kprobe(&trampoline_p); } |