Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
 
  43
  44	u32			idx;
  45
  46	bool			registered;
  47	bool			persistent;
  48	bool			polling_paused;
  49	bool			suspended;
  50
  51	const struct rfkill_ops	*ops;
  52	void			*data;
  53
  54#ifdef CONFIG_RFKILL_LEDS
  55	struct led_trigger	led_trigger;
  56	const char		*ledtrigname;
  57#endif
  58
  59	struct device		dev;
  60	struct list_head	node;
  61
  62	struct delayed_work	poll_work;
  63	struct work_struct	uevent_work;
  64	struct work_struct	sync_work;
  65	char			name[];
  66};
  67#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  68
  69struct rfkill_int_event {
  70	struct list_head	list;
  71	struct rfkill_event	ev;
  72};
  73
  74struct rfkill_data {
  75	struct list_head	list;
  76	struct list_head	events;
  77	struct mutex		mtx;
  78	wait_queue_head_t	read_wait;
  79	bool			input_handler;
 
  80};
  81
  82
  83MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  84MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  85MODULE_DESCRIPTION("RF switch support");
  86MODULE_LICENSE("GPL");
  87
  88
  89/*
  90 * The locking here should be made much smarter, we currently have
  91 * a bit of a stupid situation because drivers might want to register
  92 * the rfkill struct under their own lock, and take this lock during
  93 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  94 *
  95 * To fix that, we need to rework this code here to be mostly lock-free
  96 * and only use the mutex for list manipulations, not to protect the
  97 * various other global variables. Then we can avoid holding the mutex
  98 * around driver operations, and all is happy.
  99 */
 100static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 101static DEFINE_MUTEX(rfkill_global_mutex);
 102static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 103
 104static unsigned int rfkill_default_state = 1;
 105module_param_named(default_state, rfkill_default_state, uint, 0444);
 106MODULE_PARM_DESC(default_state,
 107		 "Default initial state for all radio types, 0 = radio off");
 108
 109static struct {
 110	bool cur, sav;
 111} rfkill_global_states[NUM_RFKILL_TYPES];
 112
 113static bool rfkill_epo_lock_active;
 114
 115
 116#ifdef CONFIG_RFKILL_LEDS
 117static void rfkill_led_trigger_event(struct rfkill *rfkill)
 118{
 119	struct led_trigger *trigger;
 120
 121	if (!rfkill->registered)
 122		return;
 123
 124	trigger = &rfkill->led_trigger;
 125
 126	if (rfkill->state & RFKILL_BLOCK_ANY)
 127		led_trigger_event(trigger, LED_OFF);
 128	else
 129		led_trigger_event(trigger, LED_FULL);
 130}
 131
 132static int rfkill_led_trigger_activate(struct led_classdev *led)
 133{
 134	struct rfkill *rfkill;
 135
 136	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 137
 138	rfkill_led_trigger_event(rfkill);
 139
 140	return 0;
 141}
 142
 143const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 144{
 145	return rfkill->led_trigger.name;
 146}
 147EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 148
 149void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 150{
 151	BUG_ON(!rfkill);
 152
 153	rfkill->ledtrigname = name;
 154}
 155EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 156
 157static int rfkill_led_trigger_register(struct rfkill *rfkill)
 158{
 159	rfkill->led_trigger.name = rfkill->ledtrigname
 160					? : dev_name(&rfkill->dev);
 161	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 162	return led_trigger_register(&rfkill->led_trigger);
 163}
 164
 165static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 166{
 167	led_trigger_unregister(&rfkill->led_trigger);
 168}
 169
 170static struct led_trigger rfkill_any_led_trigger;
 171static struct led_trigger rfkill_none_led_trigger;
 172static struct work_struct rfkill_global_led_trigger_work;
 173
 174static void rfkill_global_led_trigger_worker(struct work_struct *work)
 175{
 176	enum led_brightness brightness = LED_OFF;
 177	struct rfkill *rfkill;
 178
 179	mutex_lock(&rfkill_global_mutex);
 180	list_for_each_entry(rfkill, &rfkill_list, node) {
 181		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 182			brightness = LED_FULL;
 183			break;
 184		}
 185	}
 186	mutex_unlock(&rfkill_global_mutex);
 187
 188	led_trigger_event(&rfkill_any_led_trigger, brightness);
 189	led_trigger_event(&rfkill_none_led_trigger,
 190			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 191}
 192
 193static void rfkill_global_led_trigger_event(void)
 194{
 195	schedule_work(&rfkill_global_led_trigger_work);
 196}
 197
 198static int rfkill_global_led_trigger_register(void)
 199{
 200	int ret;
 201
 202	INIT_WORK(&rfkill_global_led_trigger_work,
 203			rfkill_global_led_trigger_worker);
 204
 205	rfkill_any_led_trigger.name = "rfkill-any";
 206	ret = led_trigger_register(&rfkill_any_led_trigger);
 207	if (ret)
 208		return ret;
 209
 210	rfkill_none_led_trigger.name = "rfkill-none";
 211	ret = led_trigger_register(&rfkill_none_led_trigger);
 212	if (ret)
 213		led_trigger_unregister(&rfkill_any_led_trigger);
 214	else
 215		/* Delay activation until all global triggers are registered */
 216		rfkill_global_led_trigger_event();
 217
 218	return ret;
 219}
 220
 221static void rfkill_global_led_trigger_unregister(void)
 222{
 223	led_trigger_unregister(&rfkill_none_led_trigger);
 224	led_trigger_unregister(&rfkill_any_led_trigger);
 225	cancel_work_sync(&rfkill_global_led_trigger_work);
 226}
 227#else
 228static void rfkill_led_trigger_event(struct rfkill *rfkill)
 229{
 230}
 231
 232static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 233{
 234	return 0;
 235}
 236
 237static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 238{
 239}
 240
 241static void rfkill_global_led_trigger_event(void)
 242{
 243}
 244
 245static int rfkill_global_led_trigger_register(void)
 246{
 247	return 0;
 248}
 249
 250static void rfkill_global_led_trigger_unregister(void)
 251{
 252}
 253#endif /* CONFIG_RFKILL_LEDS */
 254
 255static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
 
 256			      enum rfkill_operation op)
 257{
 258	unsigned long flags;
 259
 260	ev->idx = rfkill->idx;
 261	ev->type = rfkill->type;
 262	ev->op = op;
 263
 264	spin_lock_irqsave(&rfkill->lock, flags);
 265	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 266	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 267					RFKILL_BLOCK_SW_PREV));
 
 268	spin_unlock_irqrestore(&rfkill->lock, flags);
 269}
 270
 271static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 272{
 273	struct rfkill_data *data;
 274	struct rfkill_int_event *ev;
 275
 276	list_for_each_entry(data, &rfkill_fds, list) {
 277		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 278		if (!ev)
 279			continue;
 280		rfkill_fill_event(&ev->ev, rfkill, op);
 281		mutex_lock(&data->mtx);
 282		list_add_tail(&ev->list, &data->events);
 283		mutex_unlock(&data->mtx);
 284		wake_up_interruptible(&data->read_wait);
 285	}
 286}
 287
 288static void rfkill_event(struct rfkill *rfkill)
 289{
 290	if (!rfkill->registered)
 291		return;
 292
 293	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 294
 295	/* also send event to /dev/rfkill */
 296	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 297}
 298
 299/**
 300 * rfkill_set_block - wrapper for set_block method
 301 *
 302 * @rfkill: the rfkill struct to use
 303 * @blocked: the new software state
 304 *
 305 * Calls the set_block method (when applicable) and handles notifications
 306 * etc. as well.
 307 */
 308static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 309{
 310	unsigned long flags;
 311	bool prev, curr;
 312	int err;
 313
 314	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 315		return;
 316
 317	/*
 318	 * Some platforms (...!) generate input events which affect the
 319	 * _hard_ kill state -- whenever something tries to change the
 320	 * current software state query the hardware state too.
 321	 */
 322	if (rfkill->ops->query)
 323		rfkill->ops->query(rfkill, rfkill->data);
 324
 325	spin_lock_irqsave(&rfkill->lock, flags);
 326	prev = rfkill->state & RFKILL_BLOCK_SW;
 327
 328	if (prev)
 329		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 330	else
 331		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 332
 333	if (blocked)
 334		rfkill->state |= RFKILL_BLOCK_SW;
 335	else
 336		rfkill->state &= ~RFKILL_BLOCK_SW;
 337
 338	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 339	spin_unlock_irqrestore(&rfkill->lock, flags);
 340
 341	err = rfkill->ops->set_block(rfkill->data, blocked);
 342
 343	spin_lock_irqsave(&rfkill->lock, flags);
 344	if (err) {
 345		/*
 346		 * Failed -- reset status to _PREV, which may be different
 347		 * from what we have set _PREV to earlier in this function
 348		 * if rfkill_set_sw_state was invoked.
 349		 */
 350		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 351			rfkill->state |= RFKILL_BLOCK_SW;
 352		else
 353			rfkill->state &= ~RFKILL_BLOCK_SW;
 354	}
 355	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 356	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 357	curr = rfkill->state & RFKILL_BLOCK_SW;
 358	spin_unlock_irqrestore(&rfkill->lock, flags);
 359
 360	rfkill_led_trigger_event(rfkill);
 361	rfkill_global_led_trigger_event();
 362
 363	if (prev != curr)
 364		rfkill_event(rfkill);
 365}
 366
 367static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 368{
 369	int i;
 370
 371	if (type != RFKILL_TYPE_ALL) {
 372		rfkill_global_states[type].cur = blocked;
 373		return;
 374	}
 375
 376	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 377		rfkill_global_states[i].cur = blocked;
 378}
 379
 380#ifdef CONFIG_RFKILL_INPUT
 381static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 382
 383/**
 384 * __rfkill_switch_all - Toggle state of all switches of given type
 385 * @type: type of interfaces to be affected
 386 * @blocked: the new state
 387 *
 388 * This function sets the state of all switches of given type,
 389 * unless a specific switch is suspended.
 390 *
 391 * Caller must have acquired rfkill_global_mutex.
 392 */
 393static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 394{
 395	struct rfkill *rfkill;
 396
 397	rfkill_update_global_state(type, blocked);
 398	list_for_each_entry(rfkill, &rfkill_list, node) {
 399		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 400			continue;
 401
 402		rfkill_set_block(rfkill, blocked);
 403	}
 404}
 405
 406/**
 407 * rfkill_switch_all - Toggle state of all switches of given type
 408 * @type: type of interfaces to be affected
 409 * @blocked: the new state
 410 *
 411 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 412 * Please refer to __rfkill_switch_all() for details.
 413 *
 414 * Does nothing if the EPO lock is active.
 415 */
 416void rfkill_switch_all(enum rfkill_type type, bool blocked)
 417{
 418	if (atomic_read(&rfkill_input_disabled))
 419		return;
 420
 421	mutex_lock(&rfkill_global_mutex);
 422
 423	if (!rfkill_epo_lock_active)
 424		__rfkill_switch_all(type, blocked);
 425
 426	mutex_unlock(&rfkill_global_mutex);
 427}
 428
 429/**
 430 * rfkill_epo - emergency power off all transmitters
 431 *
 432 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 433 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 434 *
 435 * The global state before the EPO is saved and can be restored later
 436 * using rfkill_restore_states().
 437 */
 438void rfkill_epo(void)
 439{
 440	struct rfkill *rfkill;
 441	int i;
 442
 443	if (atomic_read(&rfkill_input_disabled))
 444		return;
 445
 446	mutex_lock(&rfkill_global_mutex);
 447
 448	rfkill_epo_lock_active = true;
 449	list_for_each_entry(rfkill, &rfkill_list, node)
 450		rfkill_set_block(rfkill, true);
 451
 452	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 453		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 454		rfkill_global_states[i].cur = true;
 455	}
 456
 457	mutex_unlock(&rfkill_global_mutex);
 458}
 459
 460/**
 461 * rfkill_restore_states - restore global states
 462 *
 463 * Restore (and sync switches to) the global state from the
 464 * states in rfkill_default_states.  This can undo the effects of
 465 * a call to rfkill_epo().
 466 */
 467void rfkill_restore_states(void)
 468{
 469	int i;
 470
 471	if (atomic_read(&rfkill_input_disabled))
 472		return;
 473
 474	mutex_lock(&rfkill_global_mutex);
 475
 476	rfkill_epo_lock_active = false;
 477	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 478		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 479	mutex_unlock(&rfkill_global_mutex);
 480}
 481
 482/**
 483 * rfkill_remove_epo_lock - unlock state changes
 484 *
 485 * Used by rfkill-input manually unlock state changes, when
 486 * the EPO switch is deactivated.
 487 */
 488void rfkill_remove_epo_lock(void)
 489{
 490	if (atomic_read(&rfkill_input_disabled))
 491		return;
 492
 493	mutex_lock(&rfkill_global_mutex);
 494	rfkill_epo_lock_active = false;
 495	mutex_unlock(&rfkill_global_mutex);
 496}
 497
 498/**
 499 * rfkill_is_epo_lock_active - returns true EPO is active
 500 *
 501 * Returns 0 (false) if there is NOT an active EPO condition,
 502 * and 1 (true) if there is an active EPO condition, which
 503 * locks all radios in one of the BLOCKED states.
 504 *
 505 * Can be called in atomic context.
 506 */
 507bool rfkill_is_epo_lock_active(void)
 508{
 509	return rfkill_epo_lock_active;
 510}
 511
 512/**
 513 * rfkill_get_global_sw_state - returns global state for a type
 514 * @type: the type to get the global state of
 515 *
 516 * Returns the current global state for a given wireless
 517 * device type.
 518 */
 519bool rfkill_get_global_sw_state(const enum rfkill_type type)
 520{
 521	return rfkill_global_states[type].cur;
 522}
 523#endif
 524
 525bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
 
 526{
 527	unsigned long flags;
 528	bool ret, prev;
 529
 530	BUG_ON(!rfkill);
 531
 
 
 
 
 
 532	spin_lock_irqsave(&rfkill->lock, flags);
 533	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
 534	if (blocked)
 535		rfkill->state |= RFKILL_BLOCK_HW;
 536	else
 537		rfkill->state &= ~RFKILL_BLOCK_HW;
 
 
 
 
 538	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 539	spin_unlock_irqrestore(&rfkill->lock, flags);
 540
 541	rfkill_led_trigger_event(rfkill);
 542	rfkill_global_led_trigger_event();
 543
 544	if (rfkill->registered && prev != blocked)
 545		schedule_work(&rfkill->uevent_work);
 546
 547	return ret;
 548}
 549EXPORT_SYMBOL(rfkill_set_hw_state);
 550
 551static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 552{
 553	u32 bit = RFKILL_BLOCK_SW;
 554
 555	/* if in a ops->set_block right now, use other bit */
 556	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 557		bit = RFKILL_BLOCK_SW_PREV;
 558
 559	if (blocked)
 560		rfkill->state |= bit;
 561	else
 562		rfkill->state &= ~bit;
 563}
 564
 565bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 566{
 567	unsigned long flags;
 568	bool prev, hwblock;
 569
 570	BUG_ON(!rfkill);
 571
 572	spin_lock_irqsave(&rfkill->lock, flags);
 573	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 574	__rfkill_set_sw_state(rfkill, blocked);
 575	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 576	blocked = blocked || hwblock;
 577	spin_unlock_irqrestore(&rfkill->lock, flags);
 578
 579	if (!rfkill->registered)
 580		return blocked;
 581
 582	if (prev != blocked && !hwblock)
 583		schedule_work(&rfkill->uevent_work);
 584
 585	rfkill_led_trigger_event(rfkill);
 586	rfkill_global_led_trigger_event();
 587
 588	return blocked;
 589}
 590EXPORT_SYMBOL(rfkill_set_sw_state);
 591
 592void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 593{
 594	unsigned long flags;
 595
 596	BUG_ON(!rfkill);
 597	BUG_ON(rfkill->registered);
 598
 599	spin_lock_irqsave(&rfkill->lock, flags);
 600	__rfkill_set_sw_state(rfkill, blocked);
 601	rfkill->persistent = true;
 602	spin_unlock_irqrestore(&rfkill->lock, flags);
 603}
 604EXPORT_SYMBOL(rfkill_init_sw_state);
 605
 606void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 607{
 608	unsigned long flags;
 609	bool swprev, hwprev;
 610
 611	BUG_ON(!rfkill);
 612
 613	spin_lock_irqsave(&rfkill->lock, flags);
 614
 615	/*
 616	 * No need to care about prev/setblock ... this is for uevent only
 617	 * and that will get triggered by rfkill_set_block anyway.
 618	 */
 619	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 620	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 621	__rfkill_set_sw_state(rfkill, sw);
 622	if (hw)
 623		rfkill->state |= RFKILL_BLOCK_HW;
 624	else
 625		rfkill->state &= ~RFKILL_BLOCK_HW;
 626
 627	spin_unlock_irqrestore(&rfkill->lock, flags);
 628
 629	if (!rfkill->registered) {
 630		rfkill->persistent = true;
 631	} else {
 632		if (swprev != sw || hwprev != hw)
 633			schedule_work(&rfkill->uevent_work);
 634
 635		rfkill_led_trigger_event(rfkill);
 636		rfkill_global_led_trigger_event();
 637	}
 638}
 639EXPORT_SYMBOL(rfkill_set_states);
 640
 641static const char * const rfkill_types[] = {
 642	NULL, /* RFKILL_TYPE_ALL */
 643	"wlan",
 644	"bluetooth",
 645	"ultrawideband",
 646	"wimax",
 647	"wwan",
 648	"gps",
 649	"fm",
 650	"nfc",
 651};
 652
 653enum rfkill_type rfkill_find_type(const char *name)
 654{
 655	int i;
 656
 657	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 658
 659	if (!name)
 660		return RFKILL_TYPE_ALL;
 661
 662	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 663		if (!strcmp(name, rfkill_types[i]))
 664			return i;
 665	return RFKILL_TYPE_ALL;
 666}
 667EXPORT_SYMBOL(rfkill_find_type);
 668
 669static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 670			 char *buf)
 671{
 672	struct rfkill *rfkill = to_rfkill(dev);
 673
 674	return sprintf(buf, "%s\n", rfkill->name);
 675}
 676static DEVICE_ATTR_RO(name);
 677
 678static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 679			 char *buf)
 680{
 681	struct rfkill *rfkill = to_rfkill(dev);
 682
 683	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
 684}
 685static DEVICE_ATTR_RO(type);
 686
 687static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 688			  char *buf)
 689{
 690	struct rfkill *rfkill = to_rfkill(dev);
 691
 692	return sprintf(buf, "%d\n", rfkill->idx);
 693}
 694static DEVICE_ATTR_RO(index);
 695
 696static ssize_t persistent_show(struct device *dev,
 697			       struct device_attribute *attr, char *buf)
 698{
 699	struct rfkill *rfkill = to_rfkill(dev);
 700
 701	return sprintf(buf, "%d\n", rfkill->persistent);
 702}
 703static DEVICE_ATTR_RO(persistent);
 704
 705static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 706			 char *buf)
 707{
 708	struct rfkill *rfkill = to_rfkill(dev);
 709
 710	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 711}
 712static DEVICE_ATTR_RO(hard);
 713
 714static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 715			 char *buf)
 716{
 717	struct rfkill *rfkill = to_rfkill(dev);
 718
 719	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 720}
 721
 722static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 723			  const char *buf, size_t count)
 724{
 725	struct rfkill *rfkill = to_rfkill(dev);
 726	unsigned long state;
 727	int err;
 728
 729	if (!capable(CAP_NET_ADMIN))
 730		return -EPERM;
 731
 732	err = kstrtoul(buf, 0, &state);
 733	if (err)
 734		return err;
 735
 736	if (state > 1 )
 737		return -EINVAL;
 738
 739	mutex_lock(&rfkill_global_mutex);
 740	rfkill_set_block(rfkill, state);
 741	mutex_unlock(&rfkill_global_mutex);
 742
 743	return count;
 744}
 745static DEVICE_ATTR_RW(soft);
 746
 
 
 
 
 
 
 
 
 
 
 747static u8 user_state_from_blocked(unsigned long state)
 748{
 749	if (state & RFKILL_BLOCK_HW)
 750		return RFKILL_USER_STATE_HARD_BLOCKED;
 751	if (state & RFKILL_BLOCK_SW)
 752		return RFKILL_USER_STATE_SOFT_BLOCKED;
 753
 754	return RFKILL_USER_STATE_UNBLOCKED;
 755}
 756
 757static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 758			  char *buf)
 759{
 760	struct rfkill *rfkill = to_rfkill(dev);
 761
 762	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 763}
 764
 765static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 766			   const char *buf, size_t count)
 767{
 768	struct rfkill *rfkill = to_rfkill(dev);
 769	unsigned long state;
 770	int err;
 771
 772	if (!capable(CAP_NET_ADMIN))
 773		return -EPERM;
 774
 775	err = kstrtoul(buf, 0, &state);
 776	if (err)
 777		return err;
 778
 779	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 780	    state != RFKILL_USER_STATE_UNBLOCKED)
 781		return -EINVAL;
 782
 783	mutex_lock(&rfkill_global_mutex);
 784	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 785	mutex_unlock(&rfkill_global_mutex);
 786
 787	return count;
 788}
 789static DEVICE_ATTR_RW(state);
 790
 791static struct attribute *rfkill_dev_attrs[] = {
 792	&dev_attr_name.attr,
 793	&dev_attr_type.attr,
 794	&dev_attr_index.attr,
 795	&dev_attr_persistent.attr,
 796	&dev_attr_state.attr,
 797	&dev_attr_soft.attr,
 798	&dev_attr_hard.attr,
 
 799	NULL,
 800};
 801ATTRIBUTE_GROUPS(rfkill_dev);
 802
 803static void rfkill_release(struct device *dev)
 804{
 805	struct rfkill *rfkill = to_rfkill(dev);
 806
 807	kfree(rfkill);
 808}
 809
 810static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 811{
 812	struct rfkill *rfkill = to_rfkill(dev);
 813	unsigned long flags;
 
 814	u32 state;
 815	int error;
 816
 817	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 818	if (error)
 819		return error;
 820	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 821			       rfkill_types[rfkill->type]);
 822	if (error)
 823		return error;
 824	spin_lock_irqsave(&rfkill->lock, flags);
 825	state = rfkill->state;
 
 826	spin_unlock_irqrestore(&rfkill->lock, flags);
 827	error = add_uevent_var(env, "RFKILL_STATE=%d",
 828			       user_state_from_blocked(state));
 829	return error;
 
 
 830}
 831
 832void rfkill_pause_polling(struct rfkill *rfkill)
 833{
 834	BUG_ON(!rfkill);
 835
 836	if (!rfkill->ops->poll)
 837		return;
 838
 839	rfkill->polling_paused = true;
 840	cancel_delayed_work_sync(&rfkill->poll_work);
 841}
 842EXPORT_SYMBOL(rfkill_pause_polling);
 843
 844void rfkill_resume_polling(struct rfkill *rfkill)
 845{
 846	BUG_ON(!rfkill);
 847
 848	if (!rfkill->ops->poll)
 849		return;
 850
 851	rfkill->polling_paused = false;
 852
 853	if (rfkill->suspended)
 854		return;
 855
 856	queue_delayed_work(system_power_efficient_wq,
 857			   &rfkill->poll_work, 0);
 858}
 859EXPORT_SYMBOL(rfkill_resume_polling);
 860
 861#ifdef CONFIG_PM_SLEEP
 862static int rfkill_suspend(struct device *dev)
 863{
 864	struct rfkill *rfkill = to_rfkill(dev);
 865
 866	rfkill->suspended = true;
 867	cancel_delayed_work_sync(&rfkill->poll_work);
 868
 869	return 0;
 870}
 871
 872static int rfkill_resume(struct device *dev)
 873{
 874	struct rfkill *rfkill = to_rfkill(dev);
 875	bool cur;
 876
 877	rfkill->suspended = false;
 878
 
 
 
 879	if (!rfkill->persistent) {
 880		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 881		rfkill_set_block(rfkill, cur);
 882	}
 883
 884	if (rfkill->ops->poll && !rfkill->polling_paused)
 885		queue_delayed_work(system_power_efficient_wq,
 886				   &rfkill->poll_work, 0);
 887
 888	return 0;
 889}
 890
 891static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 892#define RFKILL_PM_OPS (&rfkill_pm_ops)
 893#else
 894#define RFKILL_PM_OPS NULL
 895#endif
 896
 897static struct class rfkill_class = {
 898	.name		= "rfkill",
 899	.dev_release	= rfkill_release,
 900	.dev_groups	= rfkill_dev_groups,
 901	.dev_uevent	= rfkill_dev_uevent,
 902	.pm		= RFKILL_PM_OPS,
 903};
 904
 905bool rfkill_blocked(struct rfkill *rfkill)
 906{
 907	unsigned long flags;
 908	u32 state;
 909
 910	spin_lock_irqsave(&rfkill->lock, flags);
 911	state = rfkill->state;
 912	spin_unlock_irqrestore(&rfkill->lock, flags);
 913
 914	return !!(state & RFKILL_BLOCK_ANY);
 915}
 916EXPORT_SYMBOL(rfkill_blocked);
 917
 
 
 
 
 
 
 
 
 
 
 
 
 918
 919struct rfkill * __must_check rfkill_alloc(const char *name,
 920					  struct device *parent,
 921					  const enum rfkill_type type,
 922					  const struct rfkill_ops *ops,
 923					  void *ops_data)
 924{
 925	struct rfkill *rfkill;
 926	struct device *dev;
 927
 928	if (WARN_ON(!ops))
 929		return NULL;
 930
 931	if (WARN_ON(!ops->set_block))
 932		return NULL;
 933
 934	if (WARN_ON(!name))
 935		return NULL;
 936
 937	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 938		return NULL;
 939
 940	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
 941	if (!rfkill)
 942		return NULL;
 943
 944	spin_lock_init(&rfkill->lock);
 945	INIT_LIST_HEAD(&rfkill->node);
 946	rfkill->type = type;
 947	strcpy(rfkill->name, name);
 948	rfkill->ops = ops;
 949	rfkill->data = ops_data;
 950
 951	dev = &rfkill->dev;
 952	dev->class = &rfkill_class;
 953	dev->parent = parent;
 954	device_initialize(dev);
 955
 956	return rfkill;
 957}
 958EXPORT_SYMBOL(rfkill_alloc);
 959
 960static void rfkill_poll(struct work_struct *work)
 961{
 962	struct rfkill *rfkill;
 963
 964	rfkill = container_of(work, struct rfkill, poll_work.work);
 965
 966	/*
 967	 * Poll hardware state -- driver will use one of the
 968	 * rfkill_set{,_hw,_sw}_state functions and use its
 969	 * return value to update the current status.
 970	 */
 971	rfkill->ops->poll(rfkill, rfkill->data);
 972
 973	queue_delayed_work(system_power_efficient_wq,
 974		&rfkill->poll_work,
 975		round_jiffies_relative(POLL_INTERVAL));
 976}
 977
 978static void rfkill_uevent_work(struct work_struct *work)
 979{
 980	struct rfkill *rfkill;
 981
 982	rfkill = container_of(work, struct rfkill, uevent_work);
 983
 984	mutex_lock(&rfkill_global_mutex);
 985	rfkill_event(rfkill);
 986	mutex_unlock(&rfkill_global_mutex);
 987}
 988
 989static void rfkill_sync_work(struct work_struct *work)
 990{
 991	struct rfkill *rfkill;
 992	bool cur;
 993
 994	rfkill = container_of(work, struct rfkill, sync_work);
 995
 996	mutex_lock(&rfkill_global_mutex);
 997	cur = rfkill_global_states[rfkill->type].cur;
 998	rfkill_set_block(rfkill, cur);
 999	mutex_unlock(&rfkill_global_mutex);
1000}
1001
1002int __must_check rfkill_register(struct rfkill *rfkill)
1003{
1004	static unsigned long rfkill_no;
1005	struct device *dev = &rfkill->dev;
1006	int error;
1007
1008	BUG_ON(!rfkill);
 
 
 
1009
1010	mutex_lock(&rfkill_global_mutex);
1011
1012	if (rfkill->registered) {
1013		error = -EALREADY;
1014		goto unlock;
1015	}
1016
1017	rfkill->idx = rfkill_no;
1018	dev_set_name(dev, "rfkill%lu", rfkill_no);
1019	rfkill_no++;
1020
1021	list_add_tail(&rfkill->node, &rfkill_list);
1022
1023	error = device_add(dev);
1024	if (error)
1025		goto remove;
1026
1027	error = rfkill_led_trigger_register(rfkill);
1028	if (error)
1029		goto devdel;
1030
1031	rfkill->registered = true;
1032
1033	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1034	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1035	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1036
1037	if (rfkill->ops->poll)
1038		queue_delayed_work(system_power_efficient_wq,
1039			&rfkill->poll_work,
1040			round_jiffies_relative(POLL_INTERVAL));
1041
1042	if (!rfkill->persistent || rfkill_epo_lock_active) {
1043		schedule_work(&rfkill->sync_work);
1044	} else {
1045#ifdef CONFIG_RFKILL_INPUT
1046		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1047
1048		if (!atomic_read(&rfkill_input_disabled))
1049			__rfkill_switch_all(rfkill->type, soft_blocked);
1050#endif
1051	}
1052
1053	rfkill_global_led_trigger_event();
1054	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1055
1056	mutex_unlock(&rfkill_global_mutex);
1057	return 0;
1058
1059 devdel:
1060	device_del(&rfkill->dev);
1061 remove:
1062	list_del_init(&rfkill->node);
1063 unlock:
1064	mutex_unlock(&rfkill_global_mutex);
1065	return error;
1066}
1067EXPORT_SYMBOL(rfkill_register);
1068
1069void rfkill_unregister(struct rfkill *rfkill)
1070{
1071	BUG_ON(!rfkill);
1072
1073	if (rfkill->ops->poll)
1074		cancel_delayed_work_sync(&rfkill->poll_work);
1075
1076	cancel_work_sync(&rfkill->uevent_work);
1077	cancel_work_sync(&rfkill->sync_work);
1078
1079	rfkill->registered = false;
1080
1081	device_del(&rfkill->dev);
1082
1083	mutex_lock(&rfkill_global_mutex);
1084	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1085	list_del_init(&rfkill->node);
1086	rfkill_global_led_trigger_event();
1087	mutex_unlock(&rfkill_global_mutex);
1088
1089	rfkill_led_trigger_unregister(rfkill);
1090}
1091EXPORT_SYMBOL(rfkill_unregister);
1092
1093void rfkill_destroy(struct rfkill *rfkill)
1094{
1095	if (rfkill)
1096		put_device(&rfkill->dev);
1097}
1098EXPORT_SYMBOL(rfkill_destroy);
1099
1100static int rfkill_fop_open(struct inode *inode, struct file *file)
1101{
1102	struct rfkill_data *data;
1103	struct rfkill *rfkill;
1104	struct rfkill_int_event *ev, *tmp;
1105
1106	data = kzalloc(sizeof(*data), GFP_KERNEL);
1107	if (!data)
1108		return -ENOMEM;
1109
 
 
1110	INIT_LIST_HEAD(&data->events);
1111	mutex_init(&data->mtx);
1112	init_waitqueue_head(&data->read_wait);
1113
1114	mutex_lock(&rfkill_global_mutex);
1115	mutex_lock(&data->mtx);
1116	/*
1117	 * start getting events from elsewhere but hold mtx to get
1118	 * startup events added first
1119	 */
1120
1121	list_for_each_entry(rfkill, &rfkill_list, node) {
1122		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1123		if (!ev)
1124			goto free;
1125		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1126		list_add_tail(&ev->list, &data->events);
1127	}
1128	list_add(&data->list, &rfkill_fds);
1129	mutex_unlock(&data->mtx);
1130	mutex_unlock(&rfkill_global_mutex);
1131
1132	file->private_data = data;
1133
1134	return stream_open(inode, file);
1135
1136 free:
1137	mutex_unlock(&data->mtx);
1138	mutex_unlock(&rfkill_global_mutex);
1139	mutex_destroy(&data->mtx);
1140	list_for_each_entry_safe(ev, tmp, &data->events, list)
1141		kfree(ev);
1142	kfree(data);
1143	return -ENOMEM;
1144}
1145
1146static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1147{
1148	struct rfkill_data *data = file->private_data;
1149	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1150
1151	poll_wait(file, &data->read_wait, wait);
1152
1153	mutex_lock(&data->mtx);
1154	if (!list_empty(&data->events))
1155		res = EPOLLIN | EPOLLRDNORM;
1156	mutex_unlock(&data->mtx);
1157
1158	return res;
1159}
1160
1161static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1162			       size_t count, loff_t *pos)
1163{
1164	struct rfkill_data *data = file->private_data;
1165	struct rfkill_int_event *ev;
1166	unsigned long sz;
1167	int ret;
1168
1169	mutex_lock(&data->mtx);
1170
1171	while (list_empty(&data->events)) {
1172		if (file->f_flags & O_NONBLOCK) {
1173			ret = -EAGAIN;
1174			goto out;
1175		}
1176		mutex_unlock(&data->mtx);
1177		/* since we re-check and it just compares pointers,
1178		 * using !list_empty() without locking isn't a problem
1179		 */
1180		ret = wait_event_interruptible(data->read_wait,
1181					       !list_empty(&data->events));
1182		mutex_lock(&data->mtx);
1183
1184		if (ret)
1185			goto out;
1186	}
1187
1188	ev = list_first_entry(&data->events, struct rfkill_int_event,
1189				list);
1190
1191	sz = min_t(unsigned long, sizeof(ev->ev), count);
 
1192	ret = sz;
1193	if (copy_to_user(buf, &ev->ev, sz))
1194		ret = -EFAULT;
1195
1196	list_del(&ev->list);
1197	kfree(ev);
1198 out:
1199	mutex_unlock(&data->mtx);
1200	return ret;
1201}
1202
1203static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1204				size_t count, loff_t *pos)
1205{
 
1206	struct rfkill *rfkill;
1207	struct rfkill_event ev;
1208	int ret;
1209
1210	/* we don't need the 'hard' variable but accept it */
1211	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1212		return -EINVAL;
1213
1214	/*
1215	 * Copy as much data as we can accept into our 'ev' buffer,
1216	 * but tell userspace how much we've copied so it can determine
1217	 * our API version even in a write() call, if it cares.
1218	 */
1219	count = min(count, sizeof(ev));
 
1220	if (copy_from_user(&ev, buf, count))
1221		return -EFAULT;
1222
1223	if (ev.type >= NUM_RFKILL_TYPES)
1224		return -EINVAL;
1225
1226	mutex_lock(&rfkill_global_mutex);
1227
1228	switch (ev.op) {
1229	case RFKILL_OP_CHANGE_ALL:
1230		rfkill_update_global_state(ev.type, ev.soft);
1231		list_for_each_entry(rfkill, &rfkill_list, node)
1232			if (rfkill->type == ev.type ||
1233			    ev.type == RFKILL_TYPE_ALL)
1234				rfkill_set_block(rfkill, ev.soft);
1235		ret = 0;
1236		break;
1237	case RFKILL_OP_CHANGE:
1238		list_for_each_entry(rfkill, &rfkill_list, node)
1239			if (rfkill->idx == ev.idx &&
1240			    (rfkill->type == ev.type ||
1241			     ev.type == RFKILL_TYPE_ALL))
1242				rfkill_set_block(rfkill, ev.soft);
1243		ret = 0;
1244		break;
1245	default:
1246		ret = -EINVAL;
1247		break;
1248	}
1249
1250	mutex_unlock(&rfkill_global_mutex);
1251
1252	return ret ?: count;
1253}
1254
1255static int rfkill_fop_release(struct inode *inode, struct file *file)
1256{
1257	struct rfkill_data *data = file->private_data;
1258	struct rfkill_int_event *ev, *tmp;
1259
1260	mutex_lock(&rfkill_global_mutex);
1261	list_del(&data->list);
1262	mutex_unlock(&rfkill_global_mutex);
1263
1264	mutex_destroy(&data->mtx);
1265	list_for_each_entry_safe(ev, tmp, &data->events, list)
1266		kfree(ev);
1267
1268#ifdef CONFIG_RFKILL_INPUT
1269	if (data->input_handler)
1270		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1271			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1272#endif
1273
1274	kfree(data);
1275
1276	return 0;
1277}
1278
1279#ifdef CONFIG_RFKILL_INPUT
1280static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1281			     unsigned long arg)
1282{
1283	struct rfkill_data *data = file->private_data;
 
 
1284
1285	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1286		return -ENOSYS;
1287
1288	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1289		return -ENOSYS;
1290
1291	mutex_lock(&data->mtx);
1292
1293	if (!data->input_handler) {
1294		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1295			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1296		data->input_handler = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297	}
1298
1299	mutex_unlock(&data->mtx);
1300
1301	return 0;
1302}
1303#endif
1304
1305static const struct file_operations rfkill_fops = {
1306	.owner		= THIS_MODULE,
1307	.open		= rfkill_fop_open,
1308	.read		= rfkill_fop_read,
1309	.write		= rfkill_fop_write,
1310	.poll		= rfkill_fop_poll,
1311	.release	= rfkill_fop_release,
1312#ifdef CONFIG_RFKILL_INPUT
1313	.unlocked_ioctl	= rfkill_fop_ioctl,
1314	.compat_ioctl	= rfkill_fop_ioctl,
1315#endif
1316	.llseek		= no_llseek,
1317};
1318
 
 
1319static struct miscdevice rfkill_miscdev = {
1320	.name	= "rfkill",
1321	.fops	= &rfkill_fops,
1322	.minor	= MISC_DYNAMIC_MINOR,
 
1323};
1324
1325static int __init rfkill_init(void)
1326{
1327	int error;
1328
1329	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1330
1331	error = class_register(&rfkill_class);
1332	if (error)
1333		goto error_class;
1334
1335	error = misc_register(&rfkill_miscdev);
1336	if (error)
1337		goto error_misc;
1338
1339	error = rfkill_global_led_trigger_register();
1340	if (error)
1341		goto error_led_trigger;
1342
1343#ifdef CONFIG_RFKILL_INPUT
1344	error = rfkill_handler_init();
1345	if (error)
1346		goto error_input;
1347#endif
1348
1349	return 0;
1350
1351#ifdef CONFIG_RFKILL_INPUT
1352error_input:
1353	rfkill_global_led_trigger_unregister();
1354#endif
1355error_led_trigger:
1356	misc_deregister(&rfkill_miscdev);
1357error_misc:
1358	class_unregister(&rfkill_class);
1359error_class:
1360	return error;
1361}
1362subsys_initcall(rfkill_init);
1363
1364static void __exit rfkill_exit(void)
1365{
1366#ifdef CONFIG_RFKILL_INPUT
1367	rfkill_handler_exit();
1368#endif
1369	rfkill_global_led_trigger_unregister();
1370	misc_deregister(&rfkill_miscdev);
1371	class_unregister(&rfkill_class);
1372}
1373module_exit(rfkill_exit);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
  43	unsigned long		hard_block_reasons;
  44
  45	u32			idx;
  46
  47	bool			registered;
  48	bool			persistent;
  49	bool			polling_paused;
  50	bool			suspended;
  51
  52	const struct rfkill_ops	*ops;
  53	void			*data;
  54
  55#ifdef CONFIG_RFKILL_LEDS
  56	struct led_trigger	led_trigger;
  57	const char		*ledtrigname;
  58#endif
  59
  60	struct device		dev;
  61	struct list_head	node;
  62
  63	struct delayed_work	poll_work;
  64	struct work_struct	uevent_work;
  65	struct work_struct	sync_work;
  66	char			name[];
  67};
  68#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  69
  70struct rfkill_int_event {
  71	struct list_head	list;
  72	struct rfkill_event_ext	ev;
  73};
  74
  75struct rfkill_data {
  76	struct list_head	list;
  77	struct list_head	events;
  78	struct mutex		mtx;
  79	wait_queue_head_t	read_wait;
  80	bool			input_handler;
  81	u8			max_size;
  82};
  83
  84
  85MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  86MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  87MODULE_DESCRIPTION("RF switch support");
  88MODULE_LICENSE("GPL");
  89
  90
  91/*
  92 * The locking here should be made much smarter, we currently have
  93 * a bit of a stupid situation because drivers might want to register
  94 * the rfkill struct under their own lock, and take this lock during
  95 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  96 *
  97 * To fix that, we need to rework this code here to be mostly lock-free
  98 * and only use the mutex for list manipulations, not to protect the
  99 * various other global variables. Then we can avoid holding the mutex
 100 * around driver operations, and all is happy.
 101 */
 102static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 103static DEFINE_MUTEX(rfkill_global_mutex);
 104static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 105
 106static unsigned int rfkill_default_state = 1;
 107module_param_named(default_state, rfkill_default_state, uint, 0444);
 108MODULE_PARM_DESC(default_state,
 109		 "Default initial state for all radio types, 0 = radio off");
 110
 111static struct {
 112	bool cur, sav;
 113} rfkill_global_states[NUM_RFKILL_TYPES];
 114
 115static bool rfkill_epo_lock_active;
 116
 117
 118#ifdef CONFIG_RFKILL_LEDS
 119static void rfkill_led_trigger_event(struct rfkill *rfkill)
 120{
 121	struct led_trigger *trigger;
 122
 123	if (!rfkill->registered)
 124		return;
 125
 126	trigger = &rfkill->led_trigger;
 127
 128	if (rfkill->state & RFKILL_BLOCK_ANY)
 129		led_trigger_event(trigger, LED_OFF);
 130	else
 131		led_trigger_event(trigger, LED_FULL);
 132}
 133
 134static int rfkill_led_trigger_activate(struct led_classdev *led)
 135{
 136	struct rfkill *rfkill;
 137
 138	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 139
 140	rfkill_led_trigger_event(rfkill);
 141
 142	return 0;
 143}
 144
 145const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 146{
 147	return rfkill->led_trigger.name;
 148}
 149EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 150
 151void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 152{
 153	BUG_ON(!rfkill);
 154
 155	rfkill->ledtrigname = name;
 156}
 157EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 158
 159static int rfkill_led_trigger_register(struct rfkill *rfkill)
 160{
 161	rfkill->led_trigger.name = rfkill->ledtrigname
 162					? : dev_name(&rfkill->dev);
 163	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 164	return led_trigger_register(&rfkill->led_trigger);
 165}
 166
 167static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 168{
 169	led_trigger_unregister(&rfkill->led_trigger);
 170}
 171
 172static struct led_trigger rfkill_any_led_trigger;
 173static struct led_trigger rfkill_none_led_trigger;
 174static struct work_struct rfkill_global_led_trigger_work;
 175
 176static void rfkill_global_led_trigger_worker(struct work_struct *work)
 177{
 178	enum led_brightness brightness = LED_OFF;
 179	struct rfkill *rfkill;
 180
 181	mutex_lock(&rfkill_global_mutex);
 182	list_for_each_entry(rfkill, &rfkill_list, node) {
 183		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 184			brightness = LED_FULL;
 185			break;
 186		}
 187	}
 188	mutex_unlock(&rfkill_global_mutex);
 189
 190	led_trigger_event(&rfkill_any_led_trigger, brightness);
 191	led_trigger_event(&rfkill_none_led_trigger,
 192			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 193}
 194
 195static void rfkill_global_led_trigger_event(void)
 196{
 197	schedule_work(&rfkill_global_led_trigger_work);
 198}
 199
 200static int rfkill_global_led_trigger_register(void)
 201{
 202	int ret;
 203
 204	INIT_WORK(&rfkill_global_led_trigger_work,
 205			rfkill_global_led_trigger_worker);
 206
 207	rfkill_any_led_trigger.name = "rfkill-any";
 208	ret = led_trigger_register(&rfkill_any_led_trigger);
 209	if (ret)
 210		return ret;
 211
 212	rfkill_none_led_trigger.name = "rfkill-none";
 213	ret = led_trigger_register(&rfkill_none_led_trigger);
 214	if (ret)
 215		led_trigger_unregister(&rfkill_any_led_trigger);
 216	else
 217		/* Delay activation until all global triggers are registered */
 218		rfkill_global_led_trigger_event();
 219
 220	return ret;
 221}
 222
 223static void rfkill_global_led_trigger_unregister(void)
 224{
 225	led_trigger_unregister(&rfkill_none_led_trigger);
 226	led_trigger_unregister(&rfkill_any_led_trigger);
 227	cancel_work_sync(&rfkill_global_led_trigger_work);
 228}
 229#else
 230static void rfkill_led_trigger_event(struct rfkill *rfkill)
 231{
 232}
 233
 234static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 235{
 236	return 0;
 237}
 238
 239static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 240{
 241}
 242
 243static void rfkill_global_led_trigger_event(void)
 244{
 245}
 246
 247static int rfkill_global_led_trigger_register(void)
 248{
 249	return 0;
 250}
 251
 252static void rfkill_global_led_trigger_unregister(void)
 253{
 254}
 255#endif /* CONFIG_RFKILL_LEDS */
 256
 257static void rfkill_fill_event(struct rfkill_event_ext *ev,
 258			      struct rfkill *rfkill,
 259			      enum rfkill_operation op)
 260{
 261	unsigned long flags;
 262
 263	ev->idx = rfkill->idx;
 264	ev->type = rfkill->type;
 265	ev->op = op;
 266
 267	spin_lock_irqsave(&rfkill->lock, flags);
 268	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 269	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 270					RFKILL_BLOCK_SW_PREV));
 271	ev->hard_block_reasons = rfkill->hard_block_reasons;
 272	spin_unlock_irqrestore(&rfkill->lock, flags);
 273}
 274
 275static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 276{
 277	struct rfkill_data *data;
 278	struct rfkill_int_event *ev;
 279
 280	list_for_each_entry(data, &rfkill_fds, list) {
 281		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 282		if (!ev)
 283			continue;
 284		rfkill_fill_event(&ev->ev, rfkill, op);
 285		mutex_lock(&data->mtx);
 286		list_add_tail(&ev->list, &data->events);
 287		mutex_unlock(&data->mtx);
 288		wake_up_interruptible(&data->read_wait);
 289	}
 290}
 291
 292static void rfkill_event(struct rfkill *rfkill)
 293{
 294	if (!rfkill->registered)
 295		return;
 296
 297	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 298
 299	/* also send event to /dev/rfkill */
 300	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 301}
 302
 303/**
 304 * rfkill_set_block - wrapper for set_block method
 305 *
 306 * @rfkill: the rfkill struct to use
 307 * @blocked: the new software state
 308 *
 309 * Calls the set_block method (when applicable) and handles notifications
 310 * etc. as well.
 311 */
 312static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 313{
 314	unsigned long flags;
 315	bool prev, curr;
 316	int err;
 317
 318	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 319		return;
 320
 321	/*
 322	 * Some platforms (...!) generate input events which affect the
 323	 * _hard_ kill state -- whenever something tries to change the
 324	 * current software state query the hardware state too.
 325	 */
 326	if (rfkill->ops->query)
 327		rfkill->ops->query(rfkill, rfkill->data);
 328
 329	spin_lock_irqsave(&rfkill->lock, flags);
 330	prev = rfkill->state & RFKILL_BLOCK_SW;
 331
 332	if (prev)
 333		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 334	else
 335		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 336
 337	if (blocked)
 338		rfkill->state |= RFKILL_BLOCK_SW;
 339	else
 340		rfkill->state &= ~RFKILL_BLOCK_SW;
 341
 342	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 343	spin_unlock_irqrestore(&rfkill->lock, flags);
 344
 345	err = rfkill->ops->set_block(rfkill->data, blocked);
 346
 347	spin_lock_irqsave(&rfkill->lock, flags);
 348	if (err) {
 349		/*
 350		 * Failed -- reset status to _PREV, which may be different
 351		 * from what we have set _PREV to earlier in this function
 352		 * if rfkill_set_sw_state was invoked.
 353		 */
 354		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 355			rfkill->state |= RFKILL_BLOCK_SW;
 356		else
 357			rfkill->state &= ~RFKILL_BLOCK_SW;
 358	}
 359	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 360	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 361	curr = rfkill->state & RFKILL_BLOCK_SW;
 362	spin_unlock_irqrestore(&rfkill->lock, flags);
 363
 364	rfkill_led_trigger_event(rfkill);
 365	rfkill_global_led_trigger_event();
 366
 367	if (prev != curr)
 368		rfkill_event(rfkill);
 369}
 370
 371static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 372{
 373	int i;
 374
 375	if (type != RFKILL_TYPE_ALL) {
 376		rfkill_global_states[type].cur = blocked;
 377		return;
 378	}
 379
 380	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 381		rfkill_global_states[i].cur = blocked;
 382}
 383
 384#ifdef CONFIG_RFKILL_INPUT
 385static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 386
 387/**
 388 * __rfkill_switch_all - Toggle state of all switches of given type
 389 * @type: type of interfaces to be affected
 390 * @blocked: the new state
 391 *
 392 * This function sets the state of all switches of given type,
 393 * unless a specific switch is suspended.
 394 *
 395 * Caller must have acquired rfkill_global_mutex.
 396 */
 397static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 398{
 399	struct rfkill *rfkill;
 400
 401	rfkill_update_global_state(type, blocked);
 402	list_for_each_entry(rfkill, &rfkill_list, node) {
 403		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 404			continue;
 405
 406		rfkill_set_block(rfkill, blocked);
 407	}
 408}
 409
 410/**
 411 * rfkill_switch_all - Toggle state of all switches of given type
 412 * @type: type of interfaces to be affected
 413 * @blocked: the new state
 414 *
 415 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 416 * Please refer to __rfkill_switch_all() for details.
 417 *
 418 * Does nothing if the EPO lock is active.
 419 */
 420void rfkill_switch_all(enum rfkill_type type, bool blocked)
 421{
 422	if (atomic_read(&rfkill_input_disabled))
 423		return;
 424
 425	mutex_lock(&rfkill_global_mutex);
 426
 427	if (!rfkill_epo_lock_active)
 428		__rfkill_switch_all(type, blocked);
 429
 430	mutex_unlock(&rfkill_global_mutex);
 431}
 432
 433/**
 434 * rfkill_epo - emergency power off all transmitters
 435 *
 436 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 437 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 438 *
 439 * The global state before the EPO is saved and can be restored later
 440 * using rfkill_restore_states().
 441 */
 442void rfkill_epo(void)
 443{
 444	struct rfkill *rfkill;
 445	int i;
 446
 447	if (atomic_read(&rfkill_input_disabled))
 448		return;
 449
 450	mutex_lock(&rfkill_global_mutex);
 451
 452	rfkill_epo_lock_active = true;
 453	list_for_each_entry(rfkill, &rfkill_list, node)
 454		rfkill_set_block(rfkill, true);
 455
 456	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 457		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 458		rfkill_global_states[i].cur = true;
 459	}
 460
 461	mutex_unlock(&rfkill_global_mutex);
 462}
 463
 464/**
 465 * rfkill_restore_states - restore global states
 466 *
 467 * Restore (and sync switches to) the global state from the
 468 * states in rfkill_default_states.  This can undo the effects of
 469 * a call to rfkill_epo().
 470 */
 471void rfkill_restore_states(void)
 472{
 473	int i;
 474
 475	if (atomic_read(&rfkill_input_disabled))
 476		return;
 477
 478	mutex_lock(&rfkill_global_mutex);
 479
 480	rfkill_epo_lock_active = false;
 481	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 482		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 483	mutex_unlock(&rfkill_global_mutex);
 484}
 485
 486/**
 487 * rfkill_remove_epo_lock - unlock state changes
 488 *
 489 * Used by rfkill-input manually unlock state changes, when
 490 * the EPO switch is deactivated.
 491 */
 492void rfkill_remove_epo_lock(void)
 493{
 494	if (atomic_read(&rfkill_input_disabled))
 495		return;
 496
 497	mutex_lock(&rfkill_global_mutex);
 498	rfkill_epo_lock_active = false;
 499	mutex_unlock(&rfkill_global_mutex);
 500}
 501
 502/**
 503 * rfkill_is_epo_lock_active - returns true EPO is active
 504 *
 505 * Returns 0 (false) if there is NOT an active EPO condition,
 506 * and 1 (true) if there is an active EPO condition, which
 507 * locks all radios in one of the BLOCKED states.
 508 *
 509 * Can be called in atomic context.
 510 */
 511bool rfkill_is_epo_lock_active(void)
 512{
 513	return rfkill_epo_lock_active;
 514}
 515
 516/**
 517 * rfkill_get_global_sw_state - returns global state for a type
 518 * @type: the type to get the global state of
 519 *
 520 * Returns the current global state for a given wireless
 521 * device type.
 522 */
 523bool rfkill_get_global_sw_state(const enum rfkill_type type)
 524{
 525	return rfkill_global_states[type].cur;
 526}
 527#endif
 528
 529bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
 530				bool blocked, unsigned long reason)
 531{
 532	unsigned long flags;
 533	bool ret, prev;
 534
 535	BUG_ON(!rfkill);
 536
 537	if (WARN(reason &
 538	    ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
 539	    "hw_state reason not supported: 0x%lx", reason))
 540		return blocked;
 541
 542	spin_lock_irqsave(&rfkill->lock, flags);
 543	prev = !!(rfkill->hard_block_reasons & reason);
 544	if (blocked) {
 545		rfkill->state |= RFKILL_BLOCK_HW;
 546		rfkill->hard_block_reasons |= reason;
 547	} else {
 548		rfkill->hard_block_reasons &= ~reason;
 549		if (!rfkill->hard_block_reasons)
 550			rfkill->state &= ~RFKILL_BLOCK_HW;
 551	}
 552	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 553	spin_unlock_irqrestore(&rfkill->lock, flags);
 554
 555	rfkill_led_trigger_event(rfkill);
 556	rfkill_global_led_trigger_event();
 557
 558	if (rfkill->registered && prev != blocked)
 559		schedule_work(&rfkill->uevent_work);
 560
 561	return ret;
 562}
 563EXPORT_SYMBOL(rfkill_set_hw_state_reason);
 564
 565static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 566{
 567	u32 bit = RFKILL_BLOCK_SW;
 568
 569	/* if in a ops->set_block right now, use other bit */
 570	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 571		bit = RFKILL_BLOCK_SW_PREV;
 572
 573	if (blocked)
 574		rfkill->state |= bit;
 575	else
 576		rfkill->state &= ~bit;
 577}
 578
 579bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 580{
 581	unsigned long flags;
 582	bool prev, hwblock;
 583
 584	BUG_ON(!rfkill);
 585
 586	spin_lock_irqsave(&rfkill->lock, flags);
 587	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 588	__rfkill_set_sw_state(rfkill, blocked);
 589	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 590	blocked = blocked || hwblock;
 591	spin_unlock_irqrestore(&rfkill->lock, flags);
 592
 593	if (!rfkill->registered)
 594		return blocked;
 595
 596	if (prev != blocked && !hwblock)
 597		schedule_work(&rfkill->uevent_work);
 598
 599	rfkill_led_trigger_event(rfkill);
 600	rfkill_global_led_trigger_event();
 601
 602	return blocked;
 603}
 604EXPORT_SYMBOL(rfkill_set_sw_state);
 605
 606void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 607{
 608	unsigned long flags;
 609
 610	BUG_ON(!rfkill);
 611	BUG_ON(rfkill->registered);
 612
 613	spin_lock_irqsave(&rfkill->lock, flags);
 614	__rfkill_set_sw_state(rfkill, blocked);
 615	rfkill->persistent = true;
 616	spin_unlock_irqrestore(&rfkill->lock, flags);
 617}
 618EXPORT_SYMBOL(rfkill_init_sw_state);
 619
 620void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 621{
 622	unsigned long flags;
 623	bool swprev, hwprev;
 624
 625	BUG_ON(!rfkill);
 626
 627	spin_lock_irqsave(&rfkill->lock, flags);
 628
 629	/*
 630	 * No need to care about prev/setblock ... this is for uevent only
 631	 * and that will get triggered by rfkill_set_block anyway.
 632	 */
 633	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 634	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 635	__rfkill_set_sw_state(rfkill, sw);
 636	if (hw)
 637		rfkill->state |= RFKILL_BLOCK_HW;
 638	else
 639		rfkill->state &= ~RFKILL_BLOCK_HW;
 640
 641	spin_unlock_irqrestore(&rfkill->lock, flags);
 642
 643	if (!rfkill->registered) {
 644		rfkill->persistent = true;
 645	} else {
 646		if (swprev != sw || hwprev != hw)
 647			schedule_work(&rfkill->uevent_work);
 648
 649		rfkill_led_trigger_event(rfkill);
 650		rfkill_global_led_trigger_event();
 651	}
 652}
 653EXPORT_SYMBOL(rfkill_set_states);
 654
 655static const char * const rfkill_types[] = {
 656	NULL, /* RFKILL_TYPE_ALL */
 657	"wlan",
 658	"bluetooth",
 659	"ultrawideband",
 660	"wimax",
 661	"wwan",
 662	"gps",
 663	"fm",
 664	"nfc",
 665};
 666
 667enum rfkill_type rfkill_find_type(const char *name)
 668{
 669	int i;
 670
 671	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 672
 673	if (!name)
 674		return RFKILL_TYPE_ALL;
 675
 676	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 677		if (!strcmp(name, rfkill_types[i]))
 678			return i;
 679	return RFKILL_TYPE_ALL;
 680}
 681EXPORT_SYMBOL(rfkill_find_type);
 682
 683static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 684			 char *buf)
 685{
 686	struct rfkill *rfkill = to_rfkill(dev);
 687
 688	return sprintf(buf, "%s\n", rfkill->name);
 689}
 690static DEVICE_ATTR_RO(name);
 691
 692static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 693			 char *buf)
 694{
 695	struct rfkill *rfkill = to_rfkill(dev);
 696
 697	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
 698}
 699static DEVICE_ATTR_RO(type);
 700
 701static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 702			  char *buf)
 703{
 704	struct rfkill *rfkill = to_rfkill(dev);
 705
 706	return sprintf(buf, "%d\n", rfkill->idx);
 707}
 708static DEVICE_ATTR_RO(index);
 709
 710static ssize_t persistent_show(struct device *dev,
 711			       struct device_attribute *attr, char *buf)
 712{
 713	struct rfkill *rfkill = to_rfkill(dev);
 714
 715	return sprintf(buf, "%d\n", rfkill->persistent);
 716}
 717static DEVICE_ATTR_RO(persistent);
 718
 719static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 720			 char *buf)
 721{
 722	struct rfkill *rfkill = to_rfkill(dev);
 723
 724	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 725}
 726static DEVICE_ATTR_RO(hard);
 727
 728static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 729			 char *buf)
 730{
 731	struct rfkill *rfkill = to_rfkill(dev);
 732
 733	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 734}
 735
 736static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 737			  const char *buf, size_t count)
 738{
 739	struct rfkill *rfkill = to_rfkill(dev);
 740	unsigned long state;
 741	int err;
 742
 743	if (!capable(CAP_NET_ADMIN))
 744		return -EPERM;
 745
 746	err = kstrtoul(buf, 0, &state);
 747	if (err)
 748		return err;
 749
 750	if (state > 1 )
 751		return -EINVAL;
 752
 753	mutex_lock(&rfkill_global_mutex);
 754	rfkill_set_block(rfkill, state);
 755	mutex_unlock(&rfkill_global_mutex);
 756
 757	return count;
 758}
 759static DEVICE_ATTR_RW(soft);
 760
 761static ssize_t hard_block_reasons_show(struct device *dev,
 762				       struct device_attribute *attr,
 763				       char *buf)
 764{
 765	struct rfkill *rfkill = to_rfkill(dev);
 766
 767	return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
 768}
 769static DEVICE_ATTR_RO(hard_block_reasons);
 770
 771static u8 user_state_from_blocked(unsigned long state)
 772{
 773	if (state & RFKILL_BLOCK_HW)
 774		return RFKILL_USER_STATE_HARD_BLOCKED;
 775	if (state & RFKILL_BLOCK_SW)
 776		return RFKILL_USER_STATE_SOFT_BLOCKED;
 777
 778	return RFKILL_USER_STATE_UNBLOCKED;
 779}
 780
 781static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 782			  char *buf)
 783{
 784	struct rfkill *rfkill = to_rfkill(dev);
 785
 786	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 787}
 788
 789static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 790			   const char *buf, size_t count)
 791{
 792	struct rfkill *rfkill = to_rfkill(dev);
 793	unsigned long state;
 794	int err;
 795
 796	if (!capable(CAP_NET_ADMIN))
 797		return -EPERM;
 798
 799	err = kstrtoul(buf, 0, &state);
 800	if (err)
 801		return err;
 802
 803	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 804	    state != RFKILL_USER_STATE_UNBLOCKED)
 805		return -EINVAL;
 806
 807	mutex_lock(&rfkill_global_mutex);
 808	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 809	mutex_unlock(&rfkill_global_mutex);
 810
 811	return count;
 812}
 813static DEVICE_ATTR_RW(state);
 814
 815static struct attribute *rfkill_dev_attrs[] = {
 816	&dev_attr_name.attr,
 817	&dev_attr_type.attr,
 818	&dev_attr_index.attr,
 819	&dev_attr_persistent.attr,
 820	&dev_attr_state.attr,
 821	&dev_attr_soft.attr,
 822	&dev_attr_hard.attr,
 823	&dev_attr_hard_block_reasons.attr,
 824	NULL,
 825};
 826ATTRIBUTE_GROUPS(rfkill_dev);
 827
 828static void rfkill_release(struct device *dev)
 829{
 830	struct rfkill *rfkill = to_rfkill(dev);
 831
 832	kfree(rfkill);
 833}
 834
 835static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
 836{
 837	struct rfkill *rfkill = to_rfkill(dev);
 838	unsigned long flags;
 839	unsigned long reasons;
 840	u32 state;
 841	int error;
 842
 843	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 844	if (error)
 845		return error;
 846	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 847			       rfkill_types[rfkill->type]);
 848	if (error)
 849		return error;
 850	spin_lock_irqsave(&rfkill->lock, flags);
 851	state = rfkill->state;
 852	reasons = rfkill->hard_block_reasons;
 853	spin_unlock_irqrestore(&rfkill->lock, flags);
 854	error = add_uevent_var(env, "RFKILL_STATE=%d",
 855			       user_state_from_blocked(state));
 856	if (error)
 857		return error;
 858	return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
 859}
 860
 861void rfkill_pause_polling(struct rfkill *rfkill)
 862{
 863	BUG_ON(!rfkill);
 864
 865	if (!rfkill->ops->poll)
 866		return;
 867
 868	rfkill->polling_paused = true;
 869	cancel_delayed_work_sync(&rfkill->poll_work);
 870}
 871EXPORT_SYMBOL(rfkill_pause_polling);
 872
 873void rfkill_resume_polling(struct rfkill *rfkill)
 874{
 875	BUG_ON(!rfkill);
 876
 877	if (!rfkill->ops->poll)
 878		return;
 879
 880	rfkill->polling_paused = false;
 881
 882	if (rfkill->suspended)
 883		return;
 884
 885	queue_delayed_work(system_power_efficient_wq,
 886			   &rfkill->poll_work, 0);
 887}
 888EXPORT_SYMBOL(rfkill_resume_polling);
 889
 890#ifdef CONFIG_PM_SLEEP
 891static int rfkill_suspend(struct device *dev)
 892{
 893	struct rfkill *rfkill = to_rfkill(dev);
 894
 895	rfkill->suspended = true;
 896	cancel_delayed_work_sync(&rfkill->poll_work);
 897
 898	return 0;
 899}
 900
 901static int rfkill_resume(struct device *dev)
 902{
 903	struct rfkill *rfkill = to_rfkill(dev);
 904	bool cur;
 905
 906	rfkill->suspended = false;
 907
 908	if (!rfkill->registered)
 909		return 0;
 910
 911	if (!rfkill->persistent) {
 912		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 913		rfkill_set_block(rfkill, cur);
 914	}
 915
 916	if (rfkill->ops->poll && !rfkill->polling_paused)
 917		queue_delayed_work(system_power_efficient_wq,
 918				   &rfkill->poll_work, 0);
 919
 920	return 0;
 921}
 922
 923static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 924#define RFKILL_PM_OPS (&rfkill_pm_ops)
 925#else
 926#define RFKILL_PM_OPS NULL
 927#endif
 928
 929static struct class rfkill_class = {
 930	.name		= "rfkill",
 931	.dev_release	= rfkill_release,
 932	.dev_groups	= rfkill_dev_groups,
 933	.dev_uevent	= rfkill_dev_uevent,
 934	.pm		= RFKILL_PM_OPS,
 935};
 936
 937bool rfkill_blocked(struct rfkill *rfkill)
 938{
 939	unsigned long flags;
 940	u32 state;
 941
 942	spin_lock_irqsave(&rfkill->lock, flags);
 943	state = rfkill->state;
 944	spin_unlock_irqrestore(&rfkill->lock, flags);
 945
 946	return !!(state & RFKILL_BLOCK_ANY);
 947}
 948EXPORT_SYMBOL(rfkill_blocked);
 949
 950bool rfkill_soft_blocked(struct rfkill *rfkill)
 951{
 952	unsigned long flags;
 953	u32 state;
 954
 955	spin_lock_irqsave(&rfkill->lock, flags);
 956	state = rfkill->state;
 957	spin_unlock_irqrestore(&rfkill->lock, flags);
 958
 959	return !!(state & RFKILL_BLOCK_SW);
 960}
 961EXPORT_SYMBOL(rfkill_soft_blocked);
 962
 963struct rfkill * __must_check rfkill_alloc(const char *name,
 964					  struct device *parent,
 965					  const enum rfkill_type type,
 966					  const struct rfkill_ops *ops,
 967					  void *ops_data)
 968{
 969	struct rfkill *rfkill;
 970	struct device *dev;
 971
 972	if (WARN_ON(!ops))
 973		return NULL;
 974
 975	if (WARN_ON(!ops->set_block))
 976		return NULL;
 977
 978	if (WARN_ON(!name))
 979		return NULL;
 980
 981	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 982		return NULL;
 983
 984	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
 985	if (!rfkill)
 986		return NULL;
 987
 988	spin_lock_init(&rfkill->lock);
 989	INIT_LIST_HEAD(&rfkill->node);
 990	rfkill->type = type;
 991	strcpy(rfkill->name, name);
 992	rfkill->ops = ops;
 993	rfkill->data = ops_data;
 994
 995	dev = &rfkill->dev;
 996	dev->class = &rfkill_class;
 997	dev->parent = parent;
 998	device_initialize(dev);
 999
1000	return rfkill;
1001}
1002EXPORT_SYMBOL(rfkill_alloc);
1003
1004static void rfkill_poll(struct work_struct *work)
1005{
1006	struct rfkill *rfkill;
1007
1008	rfkill = container_of(work, struct rfkill, poll_work.work);
1009
1010	/*
1011	 * Poll hardware state -- driver will use one of the
1012	 * rfkill_set{,_hw,_sw}_state functions and use its
1013	 * return value to update the current status.
1014	 */
1015	rfkill->ops->poll(rfkill, rfkill->data);
1016
1017	queue_delayed_work(system_power_efficient_wq,
1018		&rfkill->poll_work,
1019		round_jiffies_relative(POLL_INTERVAL));
1020}
1021
1022static void rfkill_uevent_work(struct work_struct *work)
1023{
1024	struct rfkill *rfkill;
1025
1026	rfkill = container_of(work, struct rfkill, uevent_work);
1027
1028	mutex_lock(&rfkill_global_mutex);
1029	rfkill_event(rfkill);
1030	mutex_unlock(&rfkill_global_mutex);
1031}
1032
1033static void rfkill_sync_work(struct work_struct *work)
1034{
1035	struct rfkill *rfkill;
1036	bool cur;
1037
1038	rfkill = container_of(work, struct rfkill, sync_work);
1039
1040	mutex_lock(&rfkill_global_mutex);
1041	cur = rfkill_global_states[rfkill->type].cur;
1042	rfkill_set_block(rfkill, cur);
1043	mutex_unlock(&rfkill_global_mutex);
1044}
1045
1046int __must_check rfkill_register(struct rfkill *rfkill)
1047{
1048	static unsigned long rfkill_no;
1049	struct device *dev;
1050	int error;
1051
1052	if (!rfkill)
1053		return -EINVAL;
1054
1055	dev = &rfkill->dev;
1056
1057	mutex_lock(&rfkill_global_mutex);
1058
1059	if (rfkill->registered) {
1060		error = -EALREADY;
1061		goto unlock;
1062	}
1063
1064	rfkill->idx = rfkill_no;
1065	dev_set_name(dev, "rfkill%lu", rfkill_no);
1066	rfkill_no++;
1067
1068	list_add_tail(&rfkill->node, &rfkill_list);
1069
1070	error = device_add(dev);
1071	if (error)
1072		goto remove;
1073
1074	error = rfkill_led_trigger_register(rfkill);
1075	if (error)
1076		goto devdel;
1077
1078	rfkill->registered = true;
1079
1080	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1081	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1082	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1083
1084	if (rfkill->ops->poll)
1085		queue_delayed_work(system_power_efficient_wq,
1086			&rfkill->poll_work,
1087			round_jiffies_relative(POLL_INTERVAL));
1088
1089	if (!rfkill->persistent || rfkill_epo_lock_active) {
1090		schedule_work(&rfkill->sync_work);
1091	} else {
1092#ifdef CONFIG_RFKILL_INPUT
1093		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1094
1095		if (!atomic_read(&rfkill_input_disabled))
1096			__rfkill_switch_all(rfkill->type, soft_blocked);
1097#endif
1098	}
1099
1100	rfkill_global_led_trigger_event();
1101	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1102
1103	mutex_unlock(&rfkill_global_mutex);
1104	return 0;
1105
1106 devdel:
1107	device_del(&rfkill->dev);
1108 remove:
1109	list_del_init(&rfkill->node);
1110 unlock:
1111	mutex_unlock(&rfkill_global_mutex);
1112	return error;
1113}
1114EXPORT_SYMBOL(rfkill_register);
1115
1116void rfkill_unregister(struct rfkill *rfkill)
1117{
1118	BUG_ON(!rfkill);
1119
1120	if (rfkill->ops->poll)
1121		cancel_delayed_work_sync(&rfkill->poll_work);
1122
1123	cancel_work_sync(&rfkill->uevent_work);
1124	cancel_work_sync(&rfkill->sync_work);
1125
1126	rfkill->registered = false;
1127
1128	device_del(&rfkill->dev);
1129
1130	mutex_lock(&rfkill_global_mutex);
1131	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1132	list_del_init(&rfkill->node);
1133	rfkill_global_led_trigger_event();
1134	mutex_unlock(&rfkill_global_mutex);
1135
1136	rfkill_led_trigger_unregister(rfkill);
1137}
1138EXPORT_SYMBOL(rfkill_unregister);
1139
1140void rfkill_destroy(struct rfkill *rfkill)
1141{
1142	if (rfkill)
1143		put_device(&rfkill->dev);
1144}
1145EXPORT_SYMBOL(rfkill_destroy);
1146
1147static int rfkill_fop_open(struct inode *inode, struct file *file)
1148{
1149	struct rfkill_data *data;
1150	struct rfkill *rfkill;
1151	struct rfkill_int_event *ev, *tmp;
1152
1153	data = kzalloc(sizeof(*data), GFP_KERNEL);
1154	if (!data)
1155		return -ENOMEM;
1156
1157	data->max_size = RFKILL_EVENT_SIZE_V1;
1158
1159	INIT_LIST_HEAD(&data->events);
1160	mutex_init(&data->mtx);
1161	init_waitqueue_head(&data->read_wait);
1162
1163	mutex_lock(&rfkill_global_mutex);
1164	mutex_lock(&data->mtx);
1165	/*
1166	 * start getting events from elsewhere but hold mtx to get
1167	 * startup events added first
1168	 */
1169
1170	list_for_each_entry(rfkill, &rfkill_list, node) {
1171		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1172		if (!ev)
1173			goto free;
1174		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1175		list_add_tail(&ev->list, &data->events);
1176	}
1177	list_add(&data->list, &rfkill_fds);
1178	mutex_unlock(&data->mtx);
1179	mutex_unlock(&rfkill_global_mutex);
1180
1181	file->private_data = data;
1182
1183	return stream_open(inode, file);
1184
1185 free:
1186	mutex_unlock(&data->mtx);
1187	mutex_unlock(&rfkill_global_mutex);
1188	mutex_destroy(&data->mtx);
1189	list_for_each_entry_safe(ev, tmp, &data->events, list)
1190		kfree(ev);
1191	kfree(data);
1192	return -ENOMEM;
1193}
1194
1195static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1196{
1197	struct rfkill_data *data = file->private_data;
1198	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1199
1200	poll_wait(file, &data->read_wait, wait);
1201
1202	mutex_lock(&data->mtx);
1203	if (!list_empty(&data->events))
1204		res = EPOLLIN | EPOLLRDNORM;
1205	mutex_unlock(&data->mtx);
1206
1207	return res;
1208}
1209
1210static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1211			       size_t count, loff_t *pos)
1212{
1213	struct rfkill_data *data = file->private_data;
1214	struct rfkill_int_event *ev;
1215	unsigned long sz;
1216	int ret;
1217
1218	mutex_lock(&data->mtx);
1219
1220	while (list_empty(&data->events)) {
1221		if (file->f_flags & O_NONBLOCK) {
1222			ret = -EAGAIN;
1223			goto out;
1224		}
1225		mutex_unlock(&data->mtx);
1226		/* since we re-check and it just compares pointers,
1227		 * using !list_empty() without locking isn't a problem
1228		 */
1229		ret = wait_event_interruptible(data->read_wait,
1230					       !list_empty(&data->events));
1231		mutex_lock(&data->mtx);
1232
1233		if (ret)
1234			goto out;
1235	}
1236
1237	ev = list_first_entry(&data->events, struct rfkill_int_event,
1238				list);
1239
1240	sz = min_t(unsigned long, sizeof(ev->ev), count);
1241	sz = min_t(unsigned long, sz, data->max_size);
1242	ret = sz;
1243	if (copy_to_user(buf, &ev->ev, sz))
1244		ret = -EFAULT;
1245
1246	list_del(&ev->list);
1247	kfree(ev);
1248 out:
1249	mutex_unlock(&data->mtx);
1250	return ret;
1251}
1252
1253static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1254				size_t count, loff_t *pos)
1255{
1256	struct rfkill_data *data = file->private_data;
1257	struct rfkill *rfkill;
1258	struct rfkill_event_ext ev;
1259	int ret;
1260
1261	/* we don't need the 'hard' variable but accept it */
1262	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1263		return -EINVAL;
1264
1265	/*
1266	 * Copy as much data as we can accept into our 'ev' buffer,
1267	 * but tell userspace how much we've copied so it can determine
1268	 * our API version even in a write() call, if it cares.
1269	 */
1270	count = min(count, sizeof(ev));
1271	count = min_t(size_t, count, data->max_size);
1272	if (copy_from_user(&ev, buf, count))
1273		return -EFAULT;
1274
1275	if (ev.type >= NUM_RFKILL_TYPES)
1276		return -EINVAL;
1277
1278	mutex_lock(&rfkill_global_mutex);
1279
1280	switch (ev.op) {
1281	case RFKILL_OP_CHANGE_ALL:
1282		rfkill_update_global_state(ev.type, ev.soft);
1283		list_for_each_entry(rfkill, &rfkill_list, node)
1284			if (rfkill->type == ev.type ||
1285			    ev.type == RFKILL_TYPE_ALL)
1286				rfkill_set_block(rfkill, ev.soft);
1287		ret = 0;
1288		break;
1289	case RFKILL_OP_CHANGE:
1290		list_for_each_entry(rfkill, &rfkill_list, node)
1291			if (rfkill->idx == ev.idx &&
1292			    (rfkill->type == ev.type ||
1293			     ev.type == RFKILL_TYPE_ALL))
1294				rfkill_set_block(rfkill, ev.soft);
1295		ret = 0;
1296		break;
1297	default:
1298		ret = -EINVAL;
1299		break;
1300	}
1301
1302	mutex_unlock(&rfkill_global_mutex);
1303
1304	return ret ?: count;
1305}
1306
1307static int rfkill_fop_release(struct inode *inode, struct file *file)
1308{
1309	struct rfkill_data *data = file->private_data;
1310	struct rfkill_int_event *ev, *tmp;
1311
1312	mutex_lock(&rfkill_global_mutex);
1313	list_del(&data->list);
1314	mutex_unlock(&rfkill_global_mutex);
1315
1316	mutex_destroy(&data->mtx);
1317	list_for_each_entry_safe(ev, tmp, &data->events, list)
1318		kfree(ev);
1319
1320#ifdef CONFIG_RFKILL_INPUT
1321	if (data->input_handler)
1322		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1323			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1324#endif
1325
1326	kfree(data);
1327
1328	return 0;
1329}
1330
 
1331static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1332			     unsigned long arg)
1333{
1334	struct rfkill_data *data = file->private_data;
1335	int ret = -ENOSYS;
1336	u32 size;
1337
1338	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1339		return -ENOSYS;
1340
 
 
 
1341	mutex_lock(&data->mtx);
1342	switch (_IOC_NR(cmd)) {
1343#ifdef CONFIG_RFKILL_INPUT
1344	case RFKILL_IOC_NOINPUT:
1345		if (!data->input_handler) {
1346			if (atomic_inc_return(&rfkill_input_disabled) == 1)
1347				printk(KERN_DEBUG "rfkill: input handler disabled\n");
1348			data->input_handler = true;
1349		}
1350		ret = 0;
1351		break;
1352#endif
1353	case RFKILL_IOC_MAX_SIZE:
1354		if (get_user(size, (__u32 __user *)arg)) {
1355			ret = -EFAULT;
1356			break;
1357		}
1358		if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1359			ret = -EINVAL;
1360			break;
1361		}
1362		data->max_size = size;
1363		ret = 0;
1364		break;
1365	default:
1366		break;
1367	}
 
1368	mutex_unlock(&data->mtx);
1369
1370	return ret;
1371}
 
1372
1373static const struct file_operations rfkill_fops = {
1374	.owner		= THIS_MODULE,
1375	.open		= rfkill_fop_open,
1376	.read		= rfkill_fop_read,
1377	.write		= rfkill_fop_write,
1378	.poll		= rfkill_fop_poll,
1379	.release	= rfkill_fop_release,
 
1380	.unlocked_ioctl	= rfkill_fop_ioctl,
1381	.compat_ioctl	= compat_ptr_ioctl,
 
1382	.llseek		= no_llseek,
1383};
1384
1385#define RFKILL_NAME "rfkill"
1386
1387static struct miscdevice rfkill_miscdev = {
 
1388	.fops	= &rfkill_fops,
1389	.name	= RFKILL_NAME,
1390	.minor	= RFKILL_MINOR,
1391};
1392
1393static int __init rfkill_init(void)
1394{
1395	int error;
1396
1397	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1398
1399	error = class_register(&rfkill_class);
1400	if (error)
1401		goto error_class;
1402
1403	error = misc_register(&rfkill_miscdev);
1404	if (error)
1405		goto error_misc;
1406
1407	error = rfkill_global_led_trigger_register();
1408	if (error)
1409		goto error_led_trigger;
1410
1411#ifdef CONFIG_RFKILL_INPUT
1412	error = rfkill_handler_init();
1413	if (error)
1414		goto error_input;
1415#endif
1416
1417	return 0;
1418
1419#ifdef CONFIG_RFKILL_INPUT
1420error_input:
1421	rfkill_global_led_trigger_unregister();
1422#endif
1423error_led_trigger:
1424	misc_deregister(&rfkill_miscdev);
1425error_misc:
1426	class_unregister(&rfkill_class);
1427error_class:
1428	return error;
1429}
1430subsys_initcall(rfkill_init);
1431
1432static void __exit rfkill_exit(void)
1433{
1434#ifdef CONFIG_RFKILL_INPUT
1435	rfkill_handler_exit();
1436#endif
1437	rfkill_global_led_trigger_unregister();
1438	misc_deregister(&rfkill_miscdev);
1439	class_unregister(&rfkill_class);
1440}
1441module_exit(rfkill_exit);
1442
1443MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1444MODULE_ALIAS("devname:" RFKILL_NAME);