Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL (5 * HZ)
28
29#define RFKILL_BLOCK_HW BIT(0)
30#define RFKILL_BLOCK_SW BIT(1)
31#define RFKILL_BLOCK_SW_PREV BIT(2)
32#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43
44 u32 idx;
45
46 bool registered;
47 bool persistent;
48 bool polling_paused;
49 bool suspended;
50
51 const struct rfkill_ops *ops;
52 void *data;
53
54#ifdef CONFIG_RFKILL_LEDS
55 struct led_trigger led_trigger;
56 const char *ledtrigname;
57#endif
58
59 struct device dev;
60 struct list_head node;
61
62 struct delayed_work poll_work;
63 struct work_struct uevent_work;
64 struct work_struct sync_work;
65 char name[];
66};
67#define to_rfkill(d) container_of(d, struct rfkill, dev)
68
69struct rfkill_int_event {
70 struct list_head list;
71 struct rfkill_event ev;
72};
73
74struct rfkill_data {
75 struct list_head list;
76 struct list_head events;
77 struct mutex mtx;
78 wait_queue_head_t read_wait;
79 bool input_handler;
80};
81
82
83MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
84MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
85MODULE_DESCRIPTION("RF switch support");
86MODULE_LICENSE("GPL");
87
88
89/*
90 * The locking here should be made much smarter, we currently have
91 * a bit of a stupid situation because drivers might want to register
92 * the rfkill struct under their own lock, and take this lock during
93 * rfkill method calls -- which will cause an AB-BA deadlock situation.
94 *
95 * To fix that, we need to rework this code here to be mostly lock-free
96 * and only use the mutex for list manipulations, not to protect the
97 * various other global variables. Then we can avoid holding the mutex
98 * around driver operations, and all is happy.
99 */
100static LIST_HEAD(rfkill_list); /* list of registered rf switches */
101static DEFINE_MUTEX(rfkill_global_mutex);
102static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
103
104static unsigned int rfkill_default_state = 1;
105module_param_named(default_state, rfkill_default_state, uint, 0444);
106MODULE_PARM_DESC(default_state,
107 "Default initial state for all radio types, 0 = radio off");
108
109static struct {
110 bool cur, sav;
111} rfkill_global_states[NUM_RFKILL_TYPES];
112
113static bool rfkill_epo_lock_active;
114
115
116#ifdef CONFIG_RFKILL_LEDS
117static void rfkill_led_trigger_event(struct rfkill *rfkill)
118{
119 struct led_trigger *trigger;
120
121 if (!rfkill->registered)
122 return;
123
124 trigger = &rfkill->led_trigger;
125
126 if (rfkill->state & RFKILL_BLOCK_ANY)
127 led_trigger_event(trigger, LED_OFF);
128 else
129 led_trigger_event(trigger, LED_FULL);
130}
131
132static int rfkill_led_trigger_activate(struct led_classdev *led)
133{
134 struct rfkill *rfkill;
135
136 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
137
138 rfkill_led_trigger_event(rfkill);
139
140 return 0;
141}
142
143const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
144{
145 return rfkill->led_trigger.name;
146}
147EXPORT_SYMBOL(rfkill_get_led_trigger_name);
148
149void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
150{
151 BUG_ON(!rfkill);
152
153 rfkill->ledtrigname = name;
154}
155EXPORT_SYMBOL(rfkill_set_led_trigger_name);
156
157static int rfkill_led_trigger_register(struct rfkill *rfkill)
158{
159 rfkill->led_trigger.name = rfkill->ledtrigname
160 ? : dev_name(&rfkill->dev);
161 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
162 return led_trigger_register(&rfkill->led_trigger);
163}
164
165static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
166{
167 led_trigger_unregister(&rfkill->led_trigger);
168}
169
170static struct led_trigger rfkill_any_led_trigger;
171static struct led_trigger rfkill_none_led_trigger;
172static struct work_struct rfkill_global_led_trigger_work;
173
174static void rfkill_global_led_trigger_worker(struct work_struct *work)
175{
176 enum led_brightness brightness = LED_OFF;
177 struct rfkill *rfkill;
178
179 mutex_lock(&rfkill_global_mutex);
180 list_for_each_entry(rfkill, &rfkill_list, node) {
181 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
182 brightness = LED_FULL;
183 break;
184 }
185 }
186 mutex_unlock(&rfkill_global_mutex);
187
188 led_trigger_event(&rfkill_any_led_trigger, brightness);
189 led_trigger_event(&rfkill_none_led_trigger,
190 brightness == LED_OFF ? LED_FULL : LED_OFF);
191}
192
193static void rfkill_global_led_trigger_event(void)
194{
195 schedule_work(&rfkill_global_led_trigger_work);
196}
197
198static int rfkill_global_led_trigger_register(void)
199{
200 int ret;
201
202 INIT_WORK(&rfkill_global_led_trigger_work,
203 rfkill_global_led_trigger_worker);
204
205 rfkill_any_led_trigger.name = "rfkill-any";
206 ret = led_trigger_register(&rfkill_any_led_trigger);
207 if (ret)
208 return ret;
209
210 rfkill_none_led_trigger.name = "rfkill-none";
211 ret = led_trigger_register(&rfkill_none_led_trigger);
212 if (ret)
213 led_trigger_unregister(&rfkill_any_led_trigger);
214 else
215 /* Delay activation until all global triggers are registered */
216 rfkill_global_led_trigger_event();
217
218 return ret;
219}
220
221static void rfkill_global_led_trigger_unregister(void)
222{
223 led_trigger_unregister(&rfkill_none_led_trigger);
224 led_trigger_unregister(&rfkill_any_led_trigger);
225 cancel_work_sync(&rfkill_global_led_trigger_work);
226}
227#else
228static void rfkill_led_trigger_event(struct rfkill *rfkill)
229{
230}
231
232static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
233{
234 return 0;
235}
236
237static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
238{
239}
240
241static void rfkill_global_led_trigger_event(void)
242{
243}
244
245static int rfkill_global_led_trigger_register(void)
246{
247 return 0;
248}
249
250static void rfkill_global_led_trigger_unregister(void)
251{
252}
253#endif /* CONFIG_RFKILL_LEDS */
254
255static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
256 enum rfkill_operation op)
257{
258 unsigned long flags;
259
260 ev->idx = rfkill->idx;
261 ev->type = rfkill->type;
262 ev->op = op;
263
264 spin_lock_irqsave(&rfkill->lock, flags);
265 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
266 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
267 RFKILL_BLOCK_SW_PREV));
268 spin_unlock_irqrestore(&rfkill->lock, flags);
269}
270
271static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
272{
273 struct rfkill_data *data;
274 struct rfkill_int_event *ev;
275
276 list_for_each_entry(data, &rfkill_fds, list) {
277 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
278 if (!ev)
279 continue;
280 rfkill_fill_event(&ev->ev, rfkill, op);
281 mutex_lock(&data->mtx);
282 list_add_tail(&ev->list, &data->events);
283 mutex_unlock(&data->mtx);
284 wake_up_interruptible(&data->read_wait);
285 }
286}
287
288static void rfkill_event(struct rfkill *rfkill)
289{
290 if (!rfkill->registered)
291 return;
292
293 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
294
295 /* also send event to /dev/rfkill */
296 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
297}
298
299/**
300 * rfkill_set_block - wrapper for set_block method
301 *
302 * @rfkill: the rfkill struct to use
303 * @blocked: the new software state
304 *
305 * Calls the set_block method (when applicable) and handles notifications
306 * etc. as well.
307 */
308static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
309{
310 unsigned long flags;
311 bool prev, curr;
312 int err;
313
314 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
315 return;
316
317 /*
318 * Some platforms (...!) generate input events which affect the
319 * _hard_ kill state -- whenever something tries to change the
320 * current software state query the hardware state too.
321 */
322 if (rfkill->ops->query)
323 rfkill->ops->query(rfkill, rfkill->data);
324
325 spin_lock_irqsave(&rfkill->lock, flags);
326 prev = rfkill->state & RFKILL_BLOCK_SW;
327
328 if (prev)
329 rfkill->state |= RFKILL_BLOCK_SW_PREV;
330 else
331 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
332
333 if (blocked)
334 rfkill->state |= RFKILL_BLOCK_SW;
335 else
336 rfkill->state &= ~RFKILL_BLOCK_SW;
337
338 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
339 spin_unlock_irqrestore(&rfkill->lock, flags);
340
341 err = rfkill->ops->set_block(rfkill->data, blocked);
342
343 spin_lock_irqsave(&rfkill->lock, flags);
344 if (err) {
345 /*
346 * Failed -- reset status to _PREV, which may be different
347 * from what we have set _PREV to earlier in this function
348 * if rfkill_set_sw_state was invoked.
349 */
350 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
351 rfkill->state |= RFKILL_BLOCK_SW;
352 else
353 rfkill->state &= ~RFKILL_BLOCK_SW;
354 }
355 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
356 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
357 curr = rfkill->state & RFKILL_BLOCK_SW;
358 spin_unlock_irqrestore(&rfkill->lock, flags);
359
360 rfkill_led_trigger_event(rfkill);
361 rfkill_global_led_trigger_event();
362
363 if (prev != curr)
364 rfkill_event(rfkill);
365}
366
367static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
368{
369 int i;
370
371 if (type != RFKILL_TYPE_ALL) {
372 rfkill_global_states[type].cur = blocked;
373 return;
374 }
375
376 for (i = 0; i < NUM_RFKILL_TYPES; i++)
377 rfkill_global_states[i].cur = blocked;
378}
379
380#ifdef CONFIG_RFKILL_INPUT
381static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
382
383/**
384 * __rfkill_switch_all - Toggle state of all switches of given type
385 * @type: type of interfaces to be affected
386 * @blocked: the new state
387 *
388 * This function sets the state of all switches of given type,
389 * unless a specific switch is suspended.
390 *
391 * Caller must have acquired rfkill_global_mutex.
392 */
393static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
394{
395 struct rfkill *rfkill;
396
397 rfkill_update_global_state(type, blocked);
398 list_for_each_entry(rfkill, &rfkill_list, node) {
399 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
400 continue;
401
402 rfkill_set_block(rfkill, blocked);
403 }
404}
405
406/**
407 * rfkill_switch_all - Toggle state of all switches of given type
408 * @type: type of interfaces to be affected
409 * @blocked: the new state
410 *
411 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
412 * Please refer to __rfkill_switch_all() for details.
413 *
414 * Does nothing if the EPO lock is active.
415 */
416void rfkill_switch_all(enum rfkill_type type, bool blocked)
417{
418 if (atomic_read(&rfkill_input_disabled))
419 return;
420
421 mutex_lock(&rfkill_global_mutex);
422
423 if (!rfkill_epo_lock_active)
424 __rfkill_switch_all(type, blocked);
425
426 mutex_unlock(&rfkill_global_mutex);
427}
428
429/**
430 * rfkill_epo - emergency power off all transmitters
431 *
432 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
433 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
434 *
435 * The global state before the EPO is saved and can be restored later
436 * using rfkill_restore_states().
437 */
438void rfkill_epo(void)
439{
440 struct rfkill *rfkill;
441 int i;
442
443 if (atomic_read(&rfkill_input_disabled))
444 return;
445
446 mutex_lock(&rfkill_global_mutex);
447
448 rfkill_epo_lock_active = true;
449 list_for_each_entry(rfkill, &rfkill_list, node)
450 rfkill_set_block(rfkill, true);
451
452 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
453 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
454 rfkill_global_states[i].cur = true;
455 }
456
457 mutex_unlock(&rfkill_global_mutex);
458}
459
460/**
461 * rfkill_restore_states - restore global states
462 *
463 * Restore (and sync switches to) the global state from the
464 * states in rfkill_default_states. This can undo the effects of
465 * a call to rfkill_epo().
466 */
467void rfkill_restore_states(void)
468{
469 int i;
470
471 if (atomic_read(&rfkill_input_disabled))
472 return;
473
474 mutex_lock(&rfkill_global_mutex);
475
476 rfkill_epo_lock_active = false;
477 for (i = 0; i < NUM_RFKILL_TYPES; i++)
478 __rfkill_switch_all(i, rfkill_global_states[i].sav);
479 mutex_unlock(&rfkill_global_mutex);
480}
481
482/**
483 * rfkill_remove_epo_lock - unlock state changes
484 *
485 * Used by rfkill-input manually unlock state changes, when
486 * the EPO switch is deactivated.
487 */
488void rfkill_remove_epo_lock(void)
489{
490 if (atomic_read(&rfkill_input_disabled))
491 return;
492
493 mutex_lock(&rfkill_global_mutex);
494 rfkill_epo_lock_active = false;
495 mutex_unlock(&rfkill_global_mutex);
496}
497
498/**
499 * rfkill_is_epo_lock_active - returns true EPO is active
500 *
501 * Returns 0 (false) if there is NOT an active EPO condition,
502 * and 1 (true) if there is an active EPO condition, which
503 * locks all radios in one of the BLOCKED states.
504 *
505 * Can be called in atomic context.
506 */
507bool rfkill_is_epo_lock_active(void)
508{
509 return rfkill_epo_lock_active;
510}
511
512/**
513 * rfkill_get_global_sw_state - returns global state for a type
514 * @type: the type to get the global state of
515 *
516 * Returns the current global state for a given wireless
517 * device type.
518 */
519bool rfkill_get_global_sw_state(const enum rfkill_type type)
520{
521 return rfkill_global_states[type].cur;
522}
523#endif
524
525bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
526{
527 unsigned long flags;
528 bool ret, prev;
529
530 BUG_ON(!rfkill);
531
532 spin_lock_irqsave(&rfkill->lock, flags);
533 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
534 if (blocked)
535 rfkill->state |= RFKILL_BLOCK_HW;
536 else
537 rfkill->state &= ~RFKILL_BLOCK_HW;
538 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
539 spin_unlock_irqrestore(&rfkill->lock, flags);
540
541 rfkill_led_trigger_event(rfkill);
542 rfkill_global_led_trigger_event();
543
544 if (rfkill->registered && prev != blocked)
545 schedule_work(&rfkill->uevent_work);
546
547 return ret;
548}
549EXPORT_SYMBOL(rfkill_set_hw_state);
550
551static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
552{
553 u32 bit = RFKILL_BLOCK_SW;
554
555 /* if in a ops->set_block right now, use other bit */
556 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
557 bit = RFKILL_BLOCK_SW_PREV;
558
559 if (blocked)
560 rfkill->state |= bit;
561 else
562 rfkill->state &= ~bit;
563}
564
565bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566{
567 unsigned long flags;
568 bool prev, hwblock;
569
570 BUG_ON(!rfkill);
571
572 spin_lock_irqsave(&rfkill->lock, flags);
573 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
574 __rfkill_set_sw_state(rfkill, blocked);
575 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
576 blocked = blocked || hwblock;
577 spin_unlock_irqrestore(&rfkill->lock, flags);
578
579 if (!rfkill->registered)
580 return blocked;
581
582 if (prev != blocked && !hwblock)
583 schedule_work(&rfkill->uevent_work);
584
585 rfkill_led_trigger_event(rfkill);
586 rfkill_global_led_trigger_event();
587
588 return blocked;
589}
590EXPORT_SYMBOL(rfkill_set_sw_state);
591
592void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
593{
594 unsigned long flags;
595
596 BUG_ON(!rfkill);
597 BUG_ON(rfkill->registered);
598
599 spin_lock_irqsave(&rfkill->lock, flags);
600 __rfkill_set_sw_state(rfkill, blocked);
601 rfkill->persistent = true;
602 spin_unlock_irqrestore(&rfkill->lock, flags);
603}
604EXPORT_SYMBOL(rfkill_init_sw_state);
605
606void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
607{
608 unsigned long flags;
609 bool swprev, hwprev;
610
611 BUG_ON(!rfkill);
612
613 spin_lock_irqsave(&rfkill->lock, flags);
614
615 /*
616 * No need to care about prev/setblock ... this is for uevent only
617 * and that will get triggered by rfkill_set_block anyway.
618 */
619 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
620 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
621 __rfkill_set_sw_state(rfkill, sw);
622 if (hw)
623 rfkill->state |= RFKILL_BLOCK_HW;
624 else
625 rfkill->state &= ~RFKILL_BLOCK_HW;
626
627 spin_unlock_irqrestore(&rfkill->lock, flags);
628
629 if (!rfkill->registered) {
630 rfkill->persistent = true;
631 } else {
632 if (swprev != sw || hwprev != hw)
633 schedule_work(&rfkill->uevent_work);
634
635 rfkill_led_trigger_event(rfkill);
636 rfkill_global_led_trigger_event();
637 }
638}
639EXPORT_SYMBOL(rfkill_set_states);
640
641static const char * const rfkill_types[] = {
642 NULL, /* RFKILL_TYPE_ALL */
643 "wlan",
644 "bluetooth",
645 "ultrawideband",
646 "wimax",
647 "wwan",
648 "gps",
649 "fm",
650 "nfc",
651};
652
653enum rfkill_type rfkill_find_type(const char *name)
654{
655 int i;
656
657 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
658
659 if (!name)
660 return RFKILL_TYPE_ALL;
661
662 for (i = 1; i < NUM_RFKILL_TYPES; i++)
663 if (!strcmp(name, rfkill_types[i]))
664 return i;
665 return RFKILL_TYPE_ALL;
666}
667EXPORT_SYMBOL(rfkill_find_type);
668
669static ssize_t name_show(struct device *dev, struct device_attribute *attr,
670 char *buf)
671{
672 struct rfkill *rfkill = to_rfkill(dev);
673
674 return sprintf(buf, "%s\n", rfkill->name);
675}
676static DEVICE_ATTR_RO(name);
677
678static ssize_t type_show(struct device *dev, struct device_attribute *attr,
679 char *buf)
680{
681 struct rfkill *rfkill = to_rfkill(dev);
682
683 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
684}
685static DEVICE_ATTR_RO(type);
686
687static ssize_t index_show(struct device *dev, struct device_attribute *attr,
688 char *buf)
689{
690 struct rfkill *rfkill = to_rfkill(dev);
691
692 return sprintf(buf, "%d\n", rfkill->idx);
693}
694static DEVICE_ATTR_RO(index);
695
696static ssize_t persistent_show(struct device *dev,
697 struct device_attribute *attr, char *buf)
698{
699 struct rfkill *rfkill = to_rfkill(dev);
700
701 return sprintf(buf, "%d\n", rfkill->persistent);
702}
703static DEVICE_ATTR_RO(persistent);
704
705static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
706 char *buf)
707{
708 struct rfkill *rfkill = to_rfkill(dev);
709
710 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
711}
712static DEVICE_ATTR_RO(hard);
713
714static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
715 char *buf)
716{
717 struct rfkill *rfkill = to_rfkill(dev);
718
719 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
720}
721
722static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
723 const char *buf, size_t count)
724{
725 struct rfkill *rfkill = to_rfkill(dev);
726 unsigned long state;
727 int err;
728
729 if (!capable(CAP_NET_ADMIN))
730 return -EPERM;
731
732 err = kstrtoul(buf, 0, &state);
733 if (err)
734 return err;
735
736 if (state > 1 )
737 return -EINVAL;
738
739 mutex_lock(&rfkill_global_mutex);
740 rfkill_set_block(rfkill, state);
741 mutex_unlock(&rfkill_global_mutex);
742
743 return count;
744}
745static DEVICE_ATTR_RW(soft);
746
747static u8 user_state_from_blocked(unsigned long state)
748{
749 if (state & RFKILL_BLOCK_HW)
750 return RFKILL_USER_STATE_HARD_BLOCKED;
751 if (state & RFKILL_BLOCK_SW)
752 return RFKILL_USER_STATE_SOFT_BLOCKED;
753
754 return RFKILL_USER_STATE_UNBLOCKED;
755}
756
757static ssize_t state_show(struct device *dev, struct device_attribute *attr,
758 char *buf)
759{
760 struct rfkill *rfkill = to_rfkill(dev);
761
762 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
763}
764
765static ssize_t state_store(struct device *dev, struct device_attribute *attr,
766 const char *buf, size_t count)
767{
768 struct rfkill *rfkill = to_rfkill(dev);
769 unsigned long state;
770 int err;
771
772 if (!capable(CAP_NET_ADMIN))
773 return -EPERM;
774
775 err = kstrtoul(buf, 0, &state);
776 if (err)
777 return err;
778
779 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
780 state != RFKILL_USER_STATE_UNBLOCKED)
781 return -EINVAL;
782
783 mutex_lock(&rfkill_global_mutex);
784 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
785 mutex_unlock(&rfkill_global_mutex);
786
787 return count;
788}
789static DEVICE_ATTR_RW(state);
790
791static struct attribute *rfkill_dev_attrs[] = {
792 &dev_attr_name.attr,
793 &dev_attr_type.attr,
794 &dev_attr_index.attr,
795 &dev_attr_persistent.attr,
796 &dev_attr_state.attr,
797 &dev_attr_soft.attr,
798 &dev_attr_hard.attr,
799 NULL,
800};
801ATTRIBUTE_GROUPS(rfkill_dev);
802
803static void rfkill_release(struct device *dev)
804{
805 struct rfkill *rfkill = to_rfkill(dev);
806
807 kfree(rfkill);
808}
809
810static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
811{
812 struct rfkill *rfkill = to_rfkill(dev);
813 unsigned long flags;
814 u32 state;
815 int error;
816
817 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
818 if (error)
819 return error;
820 error = add_uevent_var(env, "RFKILL_TYPE=%s",
821 rfkill_types[rfkill->type]);
822 if (error)
823 return error;
824 spin_lock_irqsave(&rfkill->lock, flags);
825 state = rfkill->state;
826 spin_unlock_irqrestore(&rfkill->lock, flags);
827 error = add_uevent_var(env, "RFKILL_STATE=%d",
828 user_state_from_blocked(state));
829 return error;
830}
831
832void rfkill_pause_polling(struct rfkill *rfkill)
833{
834 BUG_ON(!rfkill);
835
836 if (!rfkill->ops->poll)
837 return;
838
839 rfkill->polling_paused = true;
840 cancel_delayed_work_sync(&rfkill->poll_work);
841}
842EXPORT_SYMBOL(rfkill_pause_polling);
843
844void rfkill_resume_polling(struct rfkill *rfkill)
845{
846 BUG_ON(!rfkill);
847
848 if (!rfkill->ops->poll)
849 return;
850
851 rfkill->polling_paused = false;
852
853 if (rfkill->suspended)
854 return;
855
856 queue_delayed_work(system_power_efficient_wq,
857 &rfkill->poll_work, 0);
858}
859EXPORT_SYMBOL(rfkill_resume_polling);
860
861#ifdef CONFIG_PM_SLEEP
862static int rfkill_suspend(struct device *dev)
863{
864 struct rfkill *rfkill = to_rfkill(dev);
865
866 rfkill->suspended = true;
867 cancel_delayed_work_sync(&rfkill->poll_work);
868
869 return 0;
870}
871
872static int rfkill_resume(struct device *dev)
873{
874 struct rfkill *rfkill = to_rfkill(dev);
875 bool cur;
876
877 rfkill->suspended = false;
878
879 if (!rfkill->persistent) {
880 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
881 rfkill_set_block(rfkill, cur);
882 }
883
884 if (rfkill->ops->poll && !rfkill->polling_paused)
885 queue_delayed_work(system_power_efficient_wq,
886 &rfkill->poll_work, 0);
887
888 return 0;
889}
890
891static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
892#define RFKILL_PM_OPS (&rfkill_pm_ops)
893#else
894#define RFKILL_PM_OPS NULL
895#endif
896
897static struct class rfkill_class = {
898 .name = "rfkill",
899 .dev_release = rfkill_release,
900 .dev_groups = rfkill_dev_groups,
901 .dev_uevent = rfkill_dev_uevent,
902 .pm = RFKILL_PM_OPS,
903};
904
905bool rfkill_blocked(struct rfkill *rfkill)
906{
907 unsigned long flags;
908 u32 state;
909
910 spin_lock_irqsave(&rfkill->lock, flags);
911 state = rfkill->state;
912 spin_unlock_irqrestore(&rfkill->lock, flags);
913
914 return !!(state & RFKILL_BLOCK_ANY);
915}
916EXPORT_SYMBOL(rfkill_blocked);
917
918
919struct rfkill * __must_check rfkill_alloc(const char *name,
920 struct device *parent,
921 const enum rfkill_type type,
922 const struct rfkill_ops *ops,
923 void *ops_data)
924{
925 struct rfkill *rfkill;
926 struct device *dev;
927
928 if (WARN_ON(!ops))
929 return NULL;
930
931 if (WARN_ON(!ops->set_block))
932 return NULL;
933
934 if (WARN_ON(!name))
935 return NULL;
936
937 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
938 return NULL;
939
940 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
941 if (!rfkill)
942 return NULL;
943
944 spin_lock_init(&rfkill->lock);
945 INIT_LIST_HEAD(&rfkill->node);
946 rfkill->type = type;
947 strcpy(rfkill->name, name);
948 rfkill->ops = ops;
949 rfkill->data = ops_data;
950
951 dev = &rfkill->dev;
952 dev->class = &rfkill_class;
953 dev->parent = parent;
954 device_initialize(dev);
955
956 return rfkill;
957}
958EXPORT_SYMBOL(rfkill_alloc);
959
960static void rfkill_poll(struct work_struct *work)
961{
962 struct rfkill *rfkill;
963
964 rfkill = container_of(work, struct rfkill, poll_work.work);
965
966 /*
967 * Poll hardware state -- driver will use one of the
968 * rfkill_set{,_hw,_sw}_state functions and use its
969 * return value to update the current status.
970 */
971 rfkill->ops->poll(rfkill, rfkill->data);
972
973 queue_delayed_work(system_power_efficient_wq,
974 &rfkill->poll_work,
975 round_jiffies_relative(POLL_INTERVAL));
976}
977
978static void rfkill_uevent_work(struct work_struct *work)
979{
980 struct rfkill *rfkill;
981
982 rfkill = container_of(work, struct rfkill, uevent_work);
983
984 mutex_lock(&rfkill_global_mutex);
985 rfkill_event(rfkill);
986 mutex_unlock(&rfkill_global_mutex);
987}
988
989static void rfkill_sync_work(struct work_struct *work)
990{
991 struct rfkill *rfkill;
992 bool cur;
993
994 rfkill = container_of(work, struct rfkill, sync_work);
995
996 mutex_lock(&rfkill_global_mutex);
997 cur = rfkill_global_states[rfkill->type].cur;
998 rfkill_set_block(rfkill, cur);
999 mutex_unlock(&rfkill_global_mutex);
1000}
1001
1002int __must_check rfkill_register(struct rfkill *rfkill)
1003{
1004 static unsigned long rfkill_no;
1005 struct device *dev = &rfkill->dev;
1006 int error;
1007
1008 BUG_ON(!rfkill);
1009
1010 mutex_lock(&rfkill_global_mutex);
1011
1012 if (rfkill->registered) {
1013 error = -EALREADY;
1014 goto unlock;
1015 }
1016
1017 rfkill->idx = rfkill_no;
1018 dev_set_name(dev, "rfkill%lu", rfkill_no);
1019 rfkill_no++;
1020
1021 list_add_tail(&rfkill->node, &rfkill_list);
1022
1023 error = device_add(dev);
1024 if (error)
1025 goto remove;
1026
1027 error = rfkill_led_trigger_register(rfkill);
1028 if (error)
1029 goto devdel;
1030
1031 rfkill->registered = true;
1032
1033 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1034 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1035 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1036
1037 if (rfkill->ops->poll)
1038 queue_delayed_work(system_power_efficient_wq,
1039 &rfkill->poll_work,
1040 round_jiffies_relative(POLL_INTERVAL));
1041
1042 if (!rfkill->persistent || rfkill_epo_lock_active) {
1043 schedule_work(&rfkill->sync_work);
1044 } else {
1045#ifdef CONFIG_RFKILL_INPUT
1046 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1047
1048 if (!atomic_read(&rfkill_input_disabled))
1049 __rfkill_switch_all(rfkill->type, soft_blocked);
1050#endif
1051 }
1052
1053 rfkill_global_led_trigger_event();
1054 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1055
1056 mutex_unlock(&rfkill_global_mutex);
1057 return 0;
1058
1059 devdel:
1060 device_del(&rfkill->dev);
1061 remove:
1062 list_del_init(&rfkill->node);
1063 unlock:
1064 mutex_unlock(&rfkill_global_mutex);
1065 return error;
1066}
1067EXPORT_SYMBOL(rfkill_register);
1068
1069void rfkill_unregister(struct rfkill *rfkill)
1070{
1071 BUG_ON(!rfkill);
1072
1073 if (rfkill->ops->poll)
1074 cancel_delayed_work_sync(&rfkill->poll_work);
1075
1076 cancel_work_sync(&rfkill->uevent_work);
1077 cancel_work_sync(&rfkill->sync_work);
1078
1079 rfkill->registered = false;
1080
1081 device_del(&rfkill->dev);
1082
1083 mutex_lock(&rfkill_global_mutex);
1084 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1085 list_del_init(&rfkill->node);
1086 rfkill_global_led_trigger_event();
1087 mutex_unlock(&rfkill_global_mutex);
1088
1089 rfkill_led_trigger_unregister(rfkill);
1090}
1091EXPORT_SYMBOL(rfkill_unregister);
1092
1093void rfkill_destroy(struct rfkill *rfkill)
1094{
1095 if (rfkill)
1096 put_device(&rfkill->dev);
1097}
1098EXPORT_SYMBOL(rfkill_destroy);
1099
1100static int rfkill_fop_open(struct inode *inode, struct file *file)
1101{
1102 struct rfkill_data *data;
1103 struct rfkill *rfkill;
1104 struct rfkill_int_event *ev, *tmp;
1105
1106 data = kzalloc(sizeof(*data), GFP_KERNEL);
1107 if (!data)
1108 return -ENOMEM;
1109
1110 INIT_LIST_HEAD(&data->events);
1111 mutex_init(&data->mtx);
1112 init_waitqueue_head(&data->read_wait);
1113
1114 mutex_lock(&rfkill_global_mutex);
1115 mutex_lock(&data->mtx);
1116 /*
1117 * start getting events from elsewhere but hold mtx to get
1118 * startup events added first
1119 */
1120
1121 list_for_each_entry(rfkill, &rfkill_list, node) {
1122 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1123 if (!ev)
1124 goto free;
1125 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1126 list_add_tail(&ev->list, &data->events);
1127 }
1128 list_add(&data->list, &rfkill_fds);
1129 mutex_unlock(&data->mtx);
1130 mutex_unlock(&rfkill_global_mutex);
1131
1132 file->private_data = data;
1133
1134 return stream_open(inode, file);
1135
1136 free:
1137 mutex_unlock(&data->mtx);
1138 mutex_unlock(&rfkill_global_mutex);
1139 mutex_destroy(&data->mtx);
1140 list_for_each_entry_safe(ev, tmp, &data->events, list)
1141 kfree(ev);
1142 kfree(data);
1143 return -ENOMEM;
1144}
1145
1146static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1147{
1148 struct rfkill_data *data = file->private_data;
1149 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1150
1151 poll_wait(file, &data->read_wait, wait);
1152
1153 mutex_lock(&data->mtx);
1154 if (!list_empty(&data->events))
1155 res = EPOLLIN | EPOLLRDNORM;
1156 mutex_unlock(&data->mtx);
1157
1158 return res;
1159}
1160
1161static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1162 size_t count, loff_t *pos)
1163{
1164 struct rfkill_data *data = file->private_data;
1165 struct rfkill_int_event *ev;
1166 unsigned long sz;
1167 int ret;
1168
1169 mutex_lock(&data->mtx);
1170
1171 while (list_empty(&data->events)) {
1172 if (file->f_flags & O_NONBLOCK) {
1173 ret = -EAGAIN;
1174 goto out;
1175 }
1176 mutex_unlock(&data->mtx);
1177 /* since we re-check and it just compares pointers,
1178 * using !list_empty() without locking isn't a problem
1179 */
1180 ret = wait_event_interruptible(data->read_wait,
1181 !list_empty(&data->events));
1182 mutex_lock(&data->mtx);
1183
1184 if (ret)
1185 goto out;
1186 }
1187
1188 ev = list_first_entry(&data->events, struct rfkill_int_event,
1189 list);
1190
1191 sz = min_t(unsigned long, sizeof(ev->ev), count);
1192 ret = sz;
1193 if (copy_to_user(buf, &ev->ev, sz))
1194 ret = -EFAULT;
1195
1196 list_del(&ev->list);
1197 kfree(ev);
1198 out:
1199 mutex_unlock(&data->mtx);
1200 return ret;
1201}
1202
1203static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1204 size_t count, loff_t *pos)
1205{
1206 struct rfkill *rfkill;
1207 struct rfkill_event ev;
1208 int ret;
1209
1210 /* we don't need the 'hard' variable but accept it */
1211 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1212 return -EINVAL;
1213
1214 /*
1215 * Copy as much data as we can accept into our 'ev' buffer,
1216 * but tell userspace how much we've copied so it can determine
1217 * our API version even in a write() call, if it cares.
1218 */
1219 count = min(count, sizeof(ev));
1220 if (copy_from_user(&ev, buf, count))
1221 return -EFAULT;
1222
1223 if (ev.type >= NUM_RFKILL_TYPES)
1224 return -EINVAL;
1225
1226 mutex_lock(&rfkill_global_mutex);
1227
1228 switch (ev.op) {
1229 case RFKILL_OP_CHANGE_ALL:
1230 rfkill_update_global_state(ev.type, ev.soft);
1231 list_for_each_entry(rfkill, &rfkill_list, node)
1232 if (rfkill->type == ev.type ||
1233 ev.type == RFKILL_TYPE_ALL)
1234 rfkill_set_block(rfkill, ev.soft);
1235 ret = 0;
1236 break;
1237 case RFKILL_OP_CHANGE:
1238 list_for_each_entry(rfkill, &rfkill_list, node)
1239 if (rfkill->idx == ev.idx &&
1240 (rfkill->type == ev.type ||
1241 ev.type == RFKILL_TYPE_ALL))
1242 rfkill_set_block(rfkill, ev.soft);
1243 ret = 0;
1244 break;
1245 default:
1246 ret = -EINVAL;
1247 break;
1248 }
1249
1250 mutex_unlock(&rfkill_global_mutex);
1251
1252 return ret ?: count;
1253}
1254
1255static int rfkill_fop_release(struct inode *inode, struct file *file)
1256{
1257 struct rfkill_data *data = file->private_data;
1258 struct rfkill_int_event *ev, *tmp;
1259
1260 mutex_lock(&rfkill_global_mutex);
1261 list_del(&data->list);
1262 mutex_unlock(&rfkill_global_mutex);
1263
1264 mutex_destroy(&data->mtx);
1265 list_for_each_entry_safe(ev, tmp, &data->events, list)
1266 kfree(ev);
1267
1268#ifdef CONFIG_RFKILL_INPUT
1269 if (data->input_handler)
1270 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1271 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1272#endif
1273
1274 kfree(data);
1275
1276 return 0;
1277}
1278
1279#ifdef CONFIG_RFKILL_INPUT
1280static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1281 unsigned long arg)
1282{
1283 struct rfkill_data *data = file->private_data;
1284
1285 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1286 return -ENOSYS;
1287
1288 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1289 return -ENOSYS;
1290
1291 mutex_lock(&data->mtx);
1292
1293 if (!data->input_handler) {
1294 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1295 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1296 data->input_handler = true;
1297 }
1298
1299 mutex_unlock(&data->mtx);
1300
1301 return 0;
1302}
1303#endif
1304
1305static const struct file_operations rfkill_fops = {
1306 .owner = THIS_MODULE,
1307 .open = rfkill_fop_open,
1308 .read = rfkill_fop_read,
1309 .write = rfkill_fop_write,
1310 .poll = rfkill_fop_poll,
1311 .release = rfkill_fop_release,
1312#ifdef CONFIG_RFKILL_INPUT
1313 .unlocked_ioctl = rfkill_fop_ioctl,
1314 .compat_ioctl = rfkill_fop_ioctl,
1315#endif
1316 .llseek = no_llseek,
1317};
1318
1319static struct miscdevice rfkill_miscdev = {
1320 .name = "rfkill",
1321 .fops = &rfkill_fops,
1322 .minor = MISC_DYNAMIC_MINOR,
1323};
1324
1325static int __init rfkill_init(void)
1326{
1327 int error;
1328
1329 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1330
1331 error = class_register(&rfkill_class);
1332 if (error)
1333 goto error_class;
1334
1335 error = misc_register(&rfkill_miscdev);
1336 if (error)
1337 goto error_misc;
1338
1339 error = rfkill_global_led_trigger_register();
1340 if (error)
1341 goto error_led_trigger;
1342
1343#ifdef CONFIG_RFKILL_INPUT
1344 error = rfkill_handler_init();
1345 if (error)
1346 goto error_input;
1347#endif
1348
1349 return 0;
1350
1351#ifdef CONFIG_RFKILL_INPUT
1352error_input:
1353 rfkill_global_led_trigger_unregister();
1354#endif
1355error_led_trigger:
1356 misc_deregister(&rfkill_miscdev);
1357error_misc:
1358 class_unregister(&rfkill_class);
1359error_class:
1360 return error;
1361}
1362subsys_initcall(rfkill_init);
1363
1364static void __exit rfkill_exit(void)
1365{
1366#ifdef CONFIG_RFKILL_INPUT
1367 rfkill_handler_exit();
1368#endif
1369 rfkill_global_led_trigger_unregister();
1370 misc_deregister(&rfkill_miscdev);
1371 class_unregister(&rfkill_class);
1372}
1373module_exit(rfkill_exit);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL (5 * HZ)
28
29#define RFKILL_BLOCK_HW BIT(0)
30#define RFKILL_BLOCK_SW BIT(1)
31#define RFKILL_BLOCK_SW_PREV BIT(2)
32#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43 unsigned long hard_block_reasons;
44
45 u32 idx;
46
47 bool registered;
48 bool persistent;
49 bool polling_paused;
50 bool suspended;
51
52 const struct rfkill_ops *ops;
53 void *data;
54
55#ifdef CONFIG_RFKILL_LEDS
56 struct led_trigger led_trigger;
57 const char *ledtrigname;
58#endif
59
60 struct device dev;
61 struct list_head node;
62
63 struct delayed_work poll_work;
64 struct work_struct uevent_work;
65 struct work_struct sync_work;
66 char name[];
67};
68#define to_rfkill(d) container_of(d, struct rfkill, dev)
69
70struct rfkill_int_event {
71 struct list_head list;
72 struct rfkill_event_ext ev;
73};
74
75struct rfkill_data {
76 struct list_head list;
77 struct list_head events;
78 struct mutex mtx;
79 wait_queue_head_t read_wait;
80 bool input_handler;
81 u8 max_size;
82};
83
84
85MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
86MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
87MODULE_DESCRIPTION("RF switch support");
88MODULE_LICENSE("GPL");
89
90
91/*
92 * The locking here should be made much smarter, we currently have
93 * a bit of a stupid situation because drivers might want to register
94 * the rfkill struct under their own lock, and take this lock during
95 * rfkill method calls -- which will cause an AB-BA deadlock situation.
96 *
97 * To fix that, we need to rework this code here to be mostly lock-free
98 * and only use the mutex for list manipulations, not to protect the
99 * various other global variables. Then we can avoid holding the mutex
100 * around driver operations, and all is happy.
101 */
102static LIST_HEAD(rfkill_list); /* list of registered rf switches */
103static DEFINE_MUTEX(rfkill_global_mutex);
104static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
105
106static unsigned int rfkill_default_state = 1;
107module_param_named(default_state, rfkill_default_state, uint, 0444);
108MODULE_PARM_DESC(default_state,
109 "Default initial state for all radio types, 0 = radio off");
110
111static struct {
112 bool cur, sav;
113} rfkill_global_states[NUM_RFKILL_TYPES];
114
115static bool rfkill_epo_lock_active;
116
117
118#ifdef CONFIG_RFKILL_LEDS
119static void rfkill_led_trigger_event(struct rfkill *rfkill)
120{
121 struct led_trigger *trigger;
122
123 if (!rfkill->registered)
124 return;
125
126 trigger = &rfkill->led_trigger;
127
128 if (rfkill->state & RFKILL_BLOCK_ANY)
129 led_trigger_event(trigger, LED_OFF);
130 else
131 led_trigger_event(trigger, LED_FULL);
132}
133
134static int rfkill_led_trigger_activate(struct led_classdev *led)
135{
136 struct rfkill *rfkill;
137
138 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
139
140 rfkill_led_trigger_event(rfkill);
141
142 return 0;
143}
144
145const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
146{
147 return rfkill->led_trigger.name;
148}
149EXPORT_SYMBOL(rfkill_get_led_trigger_name);
150
151void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
152{
153 BUG_ON(!rfkill);
154
155 rfkill->ledtrigname = name;
156}
157EXPORT_SYMBOL(rfkill_set_led_trigger_name);
158
159static int rfkill_led_trigger_register(struct rfkill *rfkill)
160{
161 rfkill->led_trigger.name = rfkill->ledtrigname
162 ? : dev_name(&rfkill->dev);
163 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
164 return led_trigger_register(&rfkill->led_trigger);
165}
166
167static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
168{
169 led_trigger_unregister(&rfkill->led_trigger);
170}
171
172static struct led_trigger rfkill_any_led_trigger;
173static struct led_trigger rfkill_none_led_trigger;
174static struct work_struct rfkill_global_led_trigger_work;
175
176static void rfkill_global_led_trigger_worker(struct work_struct *work)
177{
178 enum led_brightness brightness = LED_OFF;
179 struct rfkill *rfkill;
180
181 mutex_lock(&rfkill_global_mutex);
182 list_for_each_entry(rfkill, &rfkill_list, node) {
183 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
184 brightness = LED_FULL;
185 break;
186 }
187 }
188 mutex_unlock(&rfkill_global_mutex);
189
190 led_trigger_event(&rfkill_any_led_trigger, brightness);
191 led_trigger_event(&rfkill_none_led_trigger,
192 brightness == LED_OFF ? LED_FULL : LED_OFF);
193}
194
195static void rfkill_global_led_trigger_event(void)
196{
197 schedule_work(&rfkill_global_led_trigger_work);
198}
199
200static int rfkill_global_led_trigger_register(void)
201{
202 int ret;
203
204 INIT_WORK(&rfkill_global_led_trigger_work,
205 rfkill_global_led_trigger_worker);
206
207 rfkill_any_led_trigger.name = "rfkill-any";
208 ret = led_trigger_register(&rfkill_any_led_trigger);
209 if (ret)
210 return ret;
211
212 rfkill_none_led_trigger.name = "rfkill-none";
213 ret = led_trigger_register(&rfkill_none_led_trigger);
214 if (ret)
215 led_trigger_unregister(&rfkill_any_led_trigger);
216 else
217 /* Delay activation until all global triggers are registered */
218 rfkill_global_led_trigger_event();
219
220 return ret;
221}
222
223static void rfkill_global_led_trigger_unregister(void)
224{
225 led_trigger_unregister(&rfkill_none_led_trigger);
226 led_trigger_unregister(&rfkill_any_led_trigger);
227 cancel_work_sync(&rfkill_global_led_trigger_work);
228}
229#else
230static void rfkill_led_trigger_event(struct rfkill *rfkill)
231{
232}
233
234static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
235{
236 return 0;
237}
238
239static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
240{
241}
242
243static void rfkill_global_led_trigger_event(void)
244{
245}
246
247static int rfkill_global_led_trigger_register(void)
248{
249 return 0;
250}
251
252static void rfkill_global_led_trigger_unregister(void)
253{
254}
255#endif /* CONFIG_RFKILL_LEDS */
256
257static void rfkill_fill_event(struct rfkill_event_ext *ev,
258 struct rfkill *rfkill,
259 enum rfkill_operation op)
260{
261 unsigned long flags;
262
263 ev->idx = rfkill->idx;
264 ev->type = rfkill->type;
265 ev->op = op;
266
267 spin_lock_irqsave(&rfkill->lock, flags);
268 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
269 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
270 RFKILL_BLOCK_SW_PREV));
271 ev->hard_block_reasons = rfkill->hard_block_reasons;
272 spin_unlock_irqrestore(&rfkill->lock, flags);
273}
274
275static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
276{
277 struct rfkill_data *data;
278 struct rfkill_int_event *ev;
279
280 list_for_each_entry(data, &rfkill_fds, list) {
281 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
282 if (!ev)
283 continue;
284 rfkill_fill_event(&ev->ev, rfkill, op);
285 mutex_lock(&data->mtx);
286 list_add_tail(&ev->list, &data->events);
287 mutex_unlock(&data->mtx);
288 wake_up_interruptible(&data->read_wait);
289 }
290}
291
292static void rfkill_event(struct rfkill *rfkill)
293{
294 if (!rfkill->registered)
295 return;
296
297 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
298
299 /* also send event to /dev/rfkill */
300 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
301}
302
303/**
304 * rfkill_set_block - wrapper for set_block method
305 *
306 * @rfkill: the rfkill struct to use
307 * @blocked: the new software state
308 *
309 * Calls the set_block method (when applicable) and handles notifications
310 * etc. as well.
311 */
312static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
313{
314 unsigned long flags;
315 bool prev, curr;
316 int err;
317
318 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
319 return;
320
321 /*
322 * Some platforms (...!) generate input events which affect the
323 * _hard_ kill state -- whenever something tries to change the
324 * current software state query the hardware state too.
325 */
326 if (rfkill->ops->query)
327 rfkill->ops->query(rfkill, rfkill->data);
328
329 spin_lock_irqsave(&rfkill->lock, flags);
330 prev = rfkill->state & RFKILL_BLOCK_SW;
331
332 if (prev)
333 rfkill->state |= RFKILL_BLOCK_SW_PREV;
334 else
335 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
336
337 if (blocked)
338 rfkill->state |= RFKILL_BLOCK_SW;
339 else
340 rfkill->state &= ~RFKILL_BLOCK_SW;
341
342 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
343 spin_unlock_irqrestore(&rfkill->lock, flags);
344
345 err = rfkill->ops->set_block(rfkill->data, blocked);
346
347 spin_lock_irqsave(&rfkill->lock, flags);
348 if (err) {
349 /*
350 * Failed -- reset status to _PREV, which may be different
351 * from what we have set _PREV to earlier in this function
352 * if rfkill_set_sw_state was invoked.
353 */
354 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
355 rfkill->state |= RFKILL_BLOCK_SW;
356 else
357 rfkill->state &= ~RFKILL_BLOCK_SW;
358 }
359 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
360 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
361 curr = rfkill->state & RFKILL_BLOCK_SW;
362 spin_unlock_irqrestore(&rfkill->lock, flags);
363
364 rfkill_led_trigger_event(rfkill);
365 rfkill_global_led_trigger_event();
366
367 if (prev != curr)
368 rfkill_event(rfkill);
369}
370
371static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
372{
373 int i;
374
375 if (type != RFKILL_TYPE_ALL) {
376 rfkill_global_states[type].cur = blocked;
377 return;
378 }
379
380 for (i = 0; i < NUM_RFKILL_TYPES; i++)
381 rfkill_global_states[i].cur = blocked;
382}
383
384#ifdef CONFIG_RFKILL_INPUT
385static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
386
387/**
388 * __rfkill_switch_all - Toggle state of all switches of given type
389 * @type: type of interfaces to be affected
390 * @blocked: the new state
391 *
392 * This function sets the state of all switches of given type,
393 * unless a specific switch is suspended.
394 *
395 * Caller must have acquired rfkill_global_mutex.
396 */
397static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
398{
399 struct rfkill *rfkill;
400
401 rfkill_update_global_state(type, blocked);
402 list_for_each_entry(rfkill, &rfkill_list, node) {
403 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
404 continue;
405
406 rfkill_set_block(rfkill, blocked);
407 }
408}
409
410/**
411 * rfkill_switch_all - Toggle state of all switches of given type
412 * @type: type of interfaces to be affected
413 * @blocked: the new state
414 *
415 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
416 * Please refer to __rfkill_switch_all() for details.
417 *
418 * Does nothing if the EPO lock is active.
419 */
420void rfkill_switch_all(enum rfkill_type type, bool blocked)
421{
422 if (atomic_read(&rfkill_input_disabled))
423 return;
424
425 mutex_lock(&rfkill_global_mutex);
426
427 if (!rfkill_epo_lock_active)
428 __rfkill_switch_all(type, blocked);
429
430 mutex_unlock(&rfkill_global_mutex);
431}
432
433/**
434 * rfkill_epo - emergency power off all transmitters
435 *
436 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
437 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
438 *
439 * The global state before the EPO is saved and can be restored later
440 * using rfkill_restore_states().
441 */
442void rfkill_epo(void)
443{
444 struct rfkill *rfkill;
445 int i;
446
447 if (atomic_read(&rfkill_input_disabled))
448 return;
449
450 mutex_lock(&rfkill_global_mutex);
451
452 rfkill_epo_lock_active = true;
453 list_for_each_entry(rfkill, &rfkill_list, node)
454 rfkill_set_block(rfkill, true);
455
456 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
457 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
458 rfkill_global_states[i].cur = true;
459 }
460
461 mutex_unlock(&rfkill_global_mutex);
462}
463
464/**
465 * rfkill_restore_states - restore global states
466 *
467 * Restore (and sync switches to) the global state from the
468 * states in rfkill_default_states. This can undo the effects of
469 * a call to rfkill_epo().
470 */
471void rfkill_restore_states(void)
472{
473 int i;
474
475 if (atomic_read(&rfkill_input_disabled))
476 return;
477
478 mutex_lock(&rfkill_global_mutex);
479
480 rfkill_epo_lock_active = false;
481 for (i = 0; i < NUM_RFKILL_TYPES; i++)
482 __rfkill_switch_all(i, rfkill_global_states[i].sav);
483 mutex_unlock(&rfkill_global_mutex);
484}
485
486/**
487 * rfkill_remove_epo_lock - unlock state changes
488 *
489 * Used by rfkill-input manually unlock state changes, when
490 * the EPO switch is deactivated.
491 */
492void rfkill_remove_epo_lock(void)
493{
494 if (atomic_read(&rfkill_input_disabled))
495 return;
496
497 mutex_lock(&rfkill_global_mutex);
498 rfkill_epo_lock_active = false;
499 mutex_unlock(&rfkill_global_mutex);
500}
501
502/**
503 * rfkill_is_epo_lock_active - returns true EPO is active
504 *
505 * Returns 0 (false) if there is NOT an active EPO condition,
506 * and 1 (true) if there is an active EPO condition, which
507 * locks all radios in one of the BLOCKED states.
508 *
509 * Can be called in atomic context.
510 */
511bool rfkill_is_epo_lock_active(void)
512{
513 return rfkill_epo_lock_active;
514}
515
516/**
517 * rfkill_get_global_sw_state - returns global state for a type
518 * @type: the type to get the global state of
519 *
520 * Returns the current global state for a given wireless
521 * device type.
522 */
523bool rfkill_get_global_sw_state(const enum rfkill_type type)
524{
525 return rfkill_global_states[type].cur;
526}
527#endif
528
529bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
530 bool blocked, unsigned long reason)
531{
532 unsigned long flags;
533 bool ret, prev;
534
535 BUG_ON(!rfkill);
536
537 if (WARN(reason &
538 ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
539 "hw_state reason not supported: 0x%lx", reason))
540 return blocked;
541
542 spin_lock_irqsave(&rfkill->lock, flags);
543 prev = !!(rfkill->hard_block_reasons & reason);
544 if (blocked) {
545 rfkill->state |= RFKILL_BLOCK_HW;
546 rfkill->hard_block_reasons |= reason;
547 } else {
548 rfkill->hard_block_reasons &= ~reason;
549 if (!rfkill->hard_block_reasons)
550 rfkill->state &= ~RFKILL_BLOCK_HW;
551 }
552 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
553 spin_unlock_irqrestore(&rfkill->lock, flags);
554
555 rfkill_led_trigger_event(rfkill);
556 rfkill_global_led_trigger_event();
557
558 if (rfkill->registered && prev != blocked)
559 schedule_work(&rfkill->uevent_work);
560
561 return ret;
562}
563EXPORT_SYMBOL(rfkill_set_hw_state_reason);
564
565static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566{
567 u32 bit = RFKILL_BLOCK_SW;
568
569 /* if in a ops->set_block right now, use other bit */
570 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
571 bit = RFKILL_BLOCK_SW_PREV;
572
573 if (blocked)
574 rfkill->state |= bit;
575 else
576 rfkill->state &= ~bit;
577}
578
579bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
580{
581 unsigned long flags;
582 bool prev, hwblock;
583
584 BUG_ON(!rfkill);
585
586 spin_lock_irqsave(&rfkill->lock, flags);
587 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
588 __rfkill_set_sw_state(rfkill, blocked);
589 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
590 blocked = blocked || hwblock;
591 spin_unlock_irqrestore(&rfkill->lock, flags);
592
593 if (!rfkill->registered)
594 return blocked;
595
596 if (prev != blocked && !hwblock)
597 schedule_work(&rfkill->uevent_work);
598
599 rfkill_led_trigger_event(rfkill);
600 rfkill_global_led_trigger_event();
601
602 return blocked;
603}
604EXPORT_SYMBOL(rfkill_set_sw_state);
605
606void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
607{
608 unsigned long flags;
609
610 BUG_ON(!rfkill);
611 BUG_ON(rfkill->registered);
612
613 spin_lock_irqsave(&rfkill->lock, flags);
614 __rfkill_set_sw_state(rfkill, blocked);
615 rfkill->persistent = true;
616 spin_unlock_irqrestore(&rfkill->lock, flags);
617}
618EXPORT_SYMBOL(rfkill_init_sw_state);
619
620void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
621{
622 unsigned long flags;
623 bool swprev, hwprev;
624
625 BUG_ON(!rfkill);
626
627 spin_lock_irqsave(&rfkill->lock, flags);
628
629 /*
630 * No need to care about prev/setblock ... this is for uevent only
631 * and that will get triggered by rfkill_set_block anyway.
632 */
633 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
634 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
635 __rfkill_set_sw_state(rfkill, sw);
636 if (hw)
637 rfkill->state |= RFKILL_BLOCK_HW;
638 else
639 rfkill->state &= ~RFKILL_BLOCK_HW;
640
641 spin_unlock_irqrestore(&rfkill->lock, flags);
642
643 if (!rfkill->registered) {
644 rfkill->persistent = true;
645 } else {
646 if (swprev != sw || hwprev != hw)
647 schedule_work(&rfkill->uevent_work);
648
649 rfkill_led_trigger_event(rfkill);
650 rfkill_global_led_trigger_event();
651 }
652}
653EXPORT_SYMBOL(rfkill_set_states);
654
655static const char * const rfkill_types[] = {
656 NULL, /* RFKILL_TYPE_ALL */
657 "wlan",
658 "bluetooth",
659 "ultrawideband",
660 "wimax",
661 "wwan",
662 "gps",
663 "fm",
664 "nfc",
665};
666
667enum rfkill_type rfkill_find_type(const char *name)
668{
669 int i;
670
671 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
672
673 if (!name)
674 return RFKILL_TYPE_ALL;
675
676 for (i = 1; i < NUM_RFKILL_TYPES; i++)
677 if (!strcmp(name, rfkill_types[i]))
678 return i;
679 return RFKILL_TYPE_ALL;
680}
681EXPORT_SYMBOL(rfkill_find_type);
682
683static ssize_t name_show(struct device *dev, struct device_attribute *attr,
684 char *buf)
685{
686 struct rfkill *rfkill = to_rfkill(dev);
687
688 return sprintf(buf, "%s\n", rfkill->name);
689}
690static DEVICE_ATTR_RO(name);
691
692static ssize_t type_show(struct device *dev, struct device_attribute *attr,
693 char *buf)
694{
695 struct rfkill *rfkill = to_rfkill(dev);
696
697 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
698}
699static DEVICE_ATTR_RO(type);
700
701static ssize_t index_show(struct device *dev, struct device_attribute *attr,
702 char *buf)
703{
704 struct rfkill *rfkill = to_rfkill(dev);
705
706 return sprintf(buf, "%d\n", rfkill->idx);
707}
708static DEVICE_ATTR_RO(index);
709
710static ssize_t persistent_show(struct device *dev,
711 struct device_attribute *attr, char *buf)
712{
713 struct rfkill *rfkill = to_rfkill(dev);
714
715 return sprintf(buf, "%d\n", rfkill->persistent);
716}
717static DEVICE_ATTR_RO(persistent);
718
719static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
720 char *buf)
721{
722 struct rfkill *rfkill = to_rfkill(dev);
723
724 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
725}
726static DEVICE_ATTR_RO(hard);
727
728static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
729 char *buf)
730{
731 struct rfkill *rfkill = to_rfkill(dev);
732
733 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
734}
735
736static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
737 const char *buf, size_t count)
738{
739 struct rfkill *rfkill = to_rfkill(dev);
740 unsigned long state;
741 int err;
742
743 if (!capable(CAP_NET_ADMIN))
744 return -EPERM;
745
746 err = kstrtoul(buf, 0, &state);
747 if (err)
748 return err;
749
750 if (state > 1 )
751 return -EINVAL;
752
753 mutex_lock(&rfkill_global_mutex);
754 rfkill_set_block(rfkill, state);
755 mutex_unlock(&rfkill_global_mutex);
756
757 return count;
758}
759static DEVICE_ATTR_RW(soft);
760
761static ssize_t hard_block_reasons_show(struct device *dev,
762 struct device_attribute *attr,
763 char *buf)
764{
765 struct rfkill *rfkill = to_rfkill(dev);
766
767 return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
768}
769static DEVICE_ATTR_RO(hard_block_reasons);
770
771static u8 user_state_from_blocked(unsigned long state)
772{
773 if (state & RFKILL_BLOCK_HW)
774 return RFKILL_USER_STATE_HARD_BLOCKED;
775 if (state & RFKILL_BLOCK_SW)
776 return RFKILL_USER_STATE_SOFT_BLOCKED;
777
778 return RFKILL_USER_STATE_UNBLOCKED;
779}
780
781static ssize_t state_show(struct device *dev, struct device_attribute *attr,
782 char *buf)
783{
784 struct rfkill *rfkill = to_rfkill(dev);
785
786 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
787}
788
789static ssize_t state_store(struct device *dev, struct device_attribute *attr,
790 const char *buf, size_t count)
791{
792 struct rfkill *rfkill = to_rfkill(dev);
793 unsigned long state;
794 int err;
795
796 if (!capable(CAP_NET_ADMIN))
797 return -EPERM;
798
799 err = kstrtoul(buf, 0, &state);
800 if (err)
801 return err;
802
803 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
804 state != RFKILL_USER_STATE_UNBLOCKED)
805 return -EINVAL;
806
807 mutex_lock(&rfkill_global_mutex);
808 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
809 mutex_unlock(&rfkill_global_mutex);
810
811 return count;
812}
813static DEVICE_ATTR_RW(state);
814
815static struct attribute *rfkill_dev_attrs[] = {
816 &dev_attr_name.attr,
817 &dev_attr_type.attr,
818 &dev_attr_index.attr,
819 &dev_attr_persistent.attr,
820 &dev_attr_state.attr,
821 &dev_attr_soft.attr,
822 &dev_attr_hard.attr,
823 &dev_attr_hard_block_reasons.attr,
824 NULL,
825};
826ATTRIBUTE_GROUPS(rfkill_dev);
827
828static void rfkill_release(struct device *dev)
829{
830 struct rfkill *rfkill = to_rfkill(dev);
831
832 kfree(rfkill);
833}
834
835static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
836{
837 struct rfkill *rfkill = to_rfkill(dev);
838 unsigned long flags;
839 unsigned long reasons;
840 u32 state;
841 int error;
842
843 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
844 if (error)
845 return error;
846 error = add_uevent_var(env, "RFKILL_TYPE=%s",
847 rfkill_types[rfkill->type]);
848 if (error)
849 return error;
850 spin_lock_irqsave(&rfkill->lock, flags);
851 state = rfkill->state;
852 reasons = rfkill->hard_block_reasons;
853 spin_unlock_irqrestore(&rfkill->lock, flags);
854 error = add_uevent_var(env, "RFKILL_STATE=%d",
855 user_state_from_blocked(state));
856 if (error)
857 return error;
858 return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
859}
860
861void rfkill_pause_polling(struct rfkill *rfkill)
862{
863 BUG_ON(!rfkill);
864
865 if (!rfkill->ops->poll)
866 return;
867
868 rfkill->polling_paused = true;
869 cancel_delayed_work_sync(&rfkill->poll_work);
870}
871EXPORT_SYMBOL(rfkill_pause_polling);
872
873void rfkill_resume_polling(struct rfkill *rfkill)
874{
875 BUG_ON(!rfkill);
876
877 if (!rfkill->ops->poll)
878 return;
879
880 rfkill->polling_paused = false;
881
882 if (rfkill->suspended)
883 return;
884
885 queue_delayed_work(system_power_efficient_wq,
886 &rfkill->poll_work, 0);
887}
888EXPORT_SYMBOL(rfkill_resume_polling);
889
890#ifdef CONFIG_PM_SLEEP
891static int rfkill_suspend(struct device *dev)
892{
893 struct rfkill *rfkill = to_rfkill(dev);
894
895 rfkill->suspended = true;
896 cancel_delayed_work_sync(&rfkill->poll_work);
897
898 return 0;
899}
900
901static int rfkill_resume(struct device *dev)
902{
903 struct rfkill *rfkill = to_rfkill(dev);
904 bool cur;
905
906 rfkill->suspended = false;
907
908 if (!rfkill->registered)
909 return 0;
910
911 if (!rfkill->persistent) {
912 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
913 rfkill_set_block(rfkill, cur);
914 }
915
916 if (rfkill->ops->poll && !rfkill->polling_paused)
917 queue_delayed_work(system_power_efficient_wq,
918 &rfkill->poll_work, 0);
919
920 return 0;
921}
922
923static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
924#define RFKILL_PM_OPS (&rfkill_pm_ops)
925#else
926#define RFKILL_PM_OPS NULL
927#endif
928
929static struct class rfkill_class = {
930 .name = "rfkill",
931 .dev_release = rfkill_release,
932 .dev_groups = rfkill_dev_groups,
933 .dev_uevent = rfkill_dev_uevent,
934 .pm = RFKILL_PM_OPS,
935};
936
937bool rfkill_blocked(struct rfkill *rfkill)
938{
939 unsigned long flags;
940 u32 state;
941
942 spin_lock_irqsave(&rfkill->lock, flags);
943 state = rfkill->state;
944 spin_unlock_irqrestore(&rfkill->lock, flags);
945
946 return !!(state & RFKILL_BLOCK_ANY);
947}
948EXPORT_SYMBOL(rfkill_blocked);
949
950bool rfkill_soft_blocked(struct rfkill *rfkill)
951{
952 unsigned long flags;
953 u32 state;
954
955 spin_lock_irqsave(&rfkill->lock, flags);
956 state = rfkill->state;
957 spin_unlock_irqrestore(&rfkill->lock, flags);
958
959 return !!(state & RFKILL_BLOCK_SW);
960}
961EXPORT_SYMBOL(rfkill_soft_blocked);
962
963struct rfkill * __must_check rfkill_alloc(const char *name,
964 struct device *parent,
965 const enum rfkill_type type,
966 const struct rfkill_ops *ops,
967 void *ops_data)
968{
969 struct rfkill *rfkill;
970 struct device *dev;
971
972 if (WARN_ON(!ops))
973 return NULL;
974
975 if (WARN_ON(!ops->set_block))
976 return NULL;
977
978 if (WARN_ON(!name))
979 return NULL;
980
981 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
982 return NULL;
983
984 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
985 if (!rfkill)
986 return NULL;
987
988 spin_lock_init(&rfkill->lock);
989 INIT_LIST_HEAD(&rfkill->node);
990 rfkill->type = type;
991 strcpy(rfkill->name, name);
992 rfkill->ops = ops;
993 rfkill->data = ops_data;
994
995 dev = &rfkill->dev;
996 dev->class = &rfkill_class;
997 dev->parent = parent;
998 device_initialize(dev);
999
1000 return rfkill;
1001}
1002EXPORT_SYMBOL(rfkill_alloc);
1003
1004static void rfkill_poll(struct work_struct *work)
1005{
1006 struct rfkill *rfkill;
1007
1008 rfkill = container_of(work, struct rfkill, poll_work.work);
1009
1010 /*
1011 * Poll hardware state -- driver will use one of the
1012 * rfkill_set{,_hw,_sw}_state functions and use its
1013 * return value to update the current status.
1014 */
1015 rfkill->ops->poll(rfkill, rfkill->data);
1016
1017 queue_delayed_work(system_power_efficient_wq,
1018 &rfkill->poll_work,
1019 round_jiffies_relative(POLL_INTERVAL));
1020}
1021
1022static void rfkill_uevent_work(struct work_struct *work)
1023{
1024 struct rfkill *rfkill;
1025
1026 rfkill = container_of(work, struct rfkill, uevent_work);
1027
1028 mutex_lock(&rfkill_global_mutex);
1029 rfkill_event(rfkill);
1030 mutex_unlock(&rfkill_global_mutex);
1031}
1032
1033static void rfkill_sync_work(struct work_struct *work)
1034{
1035 struct rfkill *rfkill;
1036 bool cur;
1037
1038 rfkill = container_of(work, struct rfkill, sync_work);
1039
1040 mutex_lock(&rfkill_global_mutex);
1041 cur = rfkill_global_states[rfkill->type].cur;
1042 rfkill_set_block(rfkill, cur);
1043 mutex_unlock(&rfkill_global_mutex);
1044}
1045
1046int __must_check rfkill_register(struct rfkill *rfkill)
1047{
1048 static unsigned long rfkill_no;
1049 struct device *dev;
1050 int error;
1051
1052 if (!rfkill)
1053 return -EINVAL;
1054
1055 dev = &rfkill->dev;
1056
1057 mutex_lock(&rfkill_global_mutex);
1058
1059 if (rfkill->registered) {
1060 error = -EALREADY;
1061 goto unlock;
1062 }
1063
1064 rfkill->idx = rfkill_no;
1065 dev_set_name(dev, "rfkill%lu", rfkill_no);
1066 rfkill_no++;
1067
1068 list_add_tail(&rfkill->node, &rfkill_list);
1069
1070 error = device_add(dev);
1071 if (error)
1072 goto remove;
1073
1074 error = rfkill_led_trigger_register(rfkill);
1075 if (error)
1076 goto devdel;
1077
1078 rfkill->registered = true;
1079
1080 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1081 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1082 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1083
1084 if (rfkill->ops->poll)
1085 queue_delayed_work(system_power_efficient_wq,
1086 &rfkill->poll_work,
1087 round_jiffies_relative(POLL_INTERVAL));
1088
1089 if (!rfkill->persistent || rfkill_epo_lock_active) {
1090 schedule_work(&rfkill->sync_work);
1091 } else {
1092#ifdef CONFIG_RFKILL_INPUT
1093 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1094
1095 if (!atomic_read(&rfkill_input_disabled))
1096 __rfkill_switch_all(rfkill->type, soft_blocked);
1097#endif
1098 }
1099
1100 rfkill_global_led_trigger_event();
1101 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1102
1103 mutex_unlock(&rfkill_global_mutex);
1104 return 0;
1105
1106 devdel:
1107 device_del(&rfkill->dev);
1108 remove:
1109 list_del_init(&rfkill->node);
1110 unlock:
1111 mutex_unlock(&rfkill_global_mutex);
1112 return error;
1113}
1114EXPORT_SYMBOL(rfkill_register);
1115
1116void rfkill_unregister(struct rfkill *rfkill)
1117{
1118 BUG_ON(!rfkill);
1119
1120 if (rfkill->ops->poll)
1121 cancel_delayed_work_sync(&rfkill->poll_work);
1122
1123 cancel_work_sync(&rfkill->uevent_work);
1124 cancel_work_sync(&rfkill->sync_work);
1125
1126 rfkill->registered = false;
1127
1128 device_del(&rfkill->dev);
1129
1130 mutex_lock(&rfkill_global_mutex);
1131 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1132 list_del_init(&rfkill->node);
1133 rfkill_global_led_trigger_event();
1134 mutex_unlock(&rfkill_global_mutex);
1135
1136 rfkill_led_trigger_unregister(rfkill);
1137}
1138EXPORT_SYMBOL(rfkill_unregister);
1139
1140void rfkill_destroy(struct rfkill *rfkill)
1141{
1142 if (rfkill)
1143 put_device(&rfkill->dev);
1144}
1145EXPORT_SYMBOL(rfkill_destroy);
1146
1147static int rfkill_fop_open(struct inode *inode, struct file *file)
1148{
1149 struct rfkill_data *data;
1150 struct rfkill *rfkill;
1151 struct rfkill_int_event *ev, *tmp;
1152
1153 data = kzalloc(sizeof(*data), GFP_KERNEL);
1154 if (!data)
1155 return -ENOMEM;
1156
1157 data->max_size = RFKILL_EVENT_SIZE_V1;
1158
1159 INIT_LIST_HEAD(&data->events);
1160 mutex_init(&data->mtx);
1161 init_waitqueue_head(&data->read_wait);
1162
1163 mutex_lock(&rfkill_global_mutex);
1164 mutex_lock(&data->mtx);
1165 /*
1166 * start getting events from elsewhere but hold mtx to get
1167 * startup events added first
1168 */
1169
1170 list_for_each_entry(rfkill, &rfkill_list, node) {
1171 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1172 if (!ev)
1173 goto free;
1174 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1175 list_add_tail(&ev->list, &data->events);
1176 }
1177 list_add(&data->list, &rfkill_fds);
1178 mutex_unlock(&data->mtx);
1179 mutex_unlock(&rfkill_global_mutex);
1180
1181 file->private_data = data;
1182
1183 return stream_open(inode, file);
1184
1185 free:
1186 mutex_unlock(&data->mtx);
1187 mutex_unlock(&rfkill_global_mutex);
1188 mutex_destroy(&data->mtx);
1189 list_for_each_entry_safe(ev, tmp, &data->events, list)
1190 kfree(ev);
1191 kfree(data);
1192 return -ENOMEM;
1193}
1194
1195static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1196{
1197 struct rfkill_data *data = file->private_data;
1198 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1199
1200 poll_wait(file, &data->read_wait, wait);
1201
1202 mutex_lock(&data->mtx);
1203 if (!list_empty(&data->events))
1204 res = EPOLLIN | EPOLLRDNORM;
1205 mutex_unlock(&data->mtx);
1206
1207 return res;
1208}
1209
1210static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1211 size_t count, loff_t *pos)
1212{
1213 struct rfkill_data *data = file->private_data;
1214 struct rfkill_int_event *ev;
1215 unsigned long sz;
1216 int ret;
1217
1218 mutex_lock(&data->mtx);
1219
1220 while (list_empty(&data->events)) {
1221 if (file->f_flags & O_NONBLOCK) {
1222 ret = -EAGAIN;
1223 goto out;
1224 }
1225 mutex_unlock(&data->mtx);
1226 /* since we re-check and it just compares pointers,
1227 * using !list_empty() without locking isn't a problem
1228 */
1229 ret = wait_event_interruptible(data->read_wait,
1230 !list_empty(&data->events));
1231 mutex_lock(&data->mtx);
1232
1233 if (ret)
1234 goto out;
1235 }
1236
1237 ev = list_first_entry(&data->events, struct rfkill_int_event,
1238 list);
1239
1240 sz = min_t(unsigned long, sizeof(ev->ev), count);
1241 sz = min_t(unsigned long, sz, data->max_size);
1242 ret = sz;
1243 if (copy_to_user(buf, &ev->ev, sz))
1244 ret = -EFAULT;
1245
1246 list_del(&ev->list);
1247 kfree(ev);
1248 out:
1249 mutex_unlock(&data->mtx);
1250 return ret;
1251}
1252
1253static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1254 size_t count, loff_t *pos)
1255{
1256 struct rfkill_data *data = file->private_data;
1257 struct rfkill *rfkill;
1258 struct rfkill_event_ext ev;
1259 int ret;
1260
1261 /* we don't need the 'hard' variable but accept it */
1262 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1263 return -EINVAL;
1264
1265 /*
1266 * Copy as much data as we can accept into our 'ev' buffer,
1267 * but tell userspace how much we've copied so it can determine
1268 * our API version even in a write() call, if it cares.
1269 */
1270 count = min(count, sizeof(ev));
1271 count = min_t(size_t, count, data->max_size);
1272 if (copy_from_user(&ev, buf, count))
1273 return -EFAULT;
1274
1275 if (ev.type >= NUM_RFKILL_TYPES)
1276 return -EINVAL;
1277
1278 mutex_lock(&rfkill_global_mutex);
1279
1280 switch (ev.op) {
1281 case RFKILL_OP_CHANGE_ALL:
1282 rfkill_update_global_state(ev.type, ev.soft);
1283 list_for_each_entry(rfkill, &rfkill_list, node)
1284 if (rfkill->type == ev.type ||
1285 ev.type == RFKILL_TYPE_ALL)
1286 rfkill_set_block(rfkill, ev.soft);
1287 ret = 0;
1288 break;
1289 case RFKILL_OP_CHANGE:
1290 list_for_each_entry(rfkill, &rfkill_list, node)
1291 if (rfkill->idx == ev.idx &&
1292 (rfkill->type == ev.type ||
1293 ev.type == RFKILL_TYPE_ALL))
1294 rfkill_set_block(rfkill, ev.soft);
1295 ret = 0;
1296 break;
1297 default:
1298 ret = -EINVAL;
1299 break;
1300 }
1301
1302 mutex_unlock(&rfkill_global_mutex);
1303
1304 return ret ?: count;
1305}
1306
1307static int rfkill_fop_release(struct inode *inode, struct file *file)
1308{
1309 struct rfkill_data *data = file->private_data;
1310 struct rfkill_int_event *ev, *tmp;
1311
1312 mutex_lock(&rfkill_global_mutex);
1313 list_del(&data->list);
1314 mutex_unlock(&rfkill_global_mutex);
1315
1316 mutex_destroy(&data->mtx);
1317 list_for_each_entry_safe(ev, tmp, &data->events, list)
1318 kfree(ev);
1319
1320#ifdef CONFIG_RFKILL_INPUT
1321 if (data->input_handler)
1322 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1323 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1324#endif
1325
1326 kfree(data);
1327
1328 return 0;
1329}
1330
1331static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1332 unsigned long arg)
1333{
1334 struct rfkill_data *data = file->private_data;
1335 int ret = -ENOSYS;
1336 u32 size;
1337
1338 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1339 return -ENOSYS;
1340
1341 mutex_lock(&data->mtx);
1342 switch (_IOC_NR(cmd)) {
1343#ifdef CONFIG_RFKILL_INPUT
1344 case RFKILL_IOC_NOINPUT:
1345 if (!data->input_handler) {
1346 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1347 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1348 data->input_handler = true;
1349 }
1350 ret = 0;
1351 break;
1352#endif
1353 case RFKILL_IOC_MAX_SIZE:
1354 if (get_user(size, (__u32 __user *)arg)) {
1355 ret = -EFAULT;
1356 break;
1357 }
1358 if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1359 ret = -EINVAL;
1360 break;
1361 }
1362 data->max_size = size;
1363 ret = 0;
1364 break;
1365 default:
1366 break;
1367 }
1368 mutex_unlock(&data->mtx);
1369
1370 return ret;
1371}
1372
1373static const struct file_operations rfkill_fops = {
1374 .owner = THIS_MODULE,
1375 .open = rfkill_fop_open,
1376 .read = rfkill_fop_read,
1377 .write = rfkill_fop_write,
1378 .poll = rfkill_fop_poll,
1379 .release = rfkill_fop_release,
1380 .unlocked_ioctl = rfkill_fop_ioctl,
1381 .compat_ioctl = compat_ptr_ioctl,
1382 .llseek = no_llseek,
1383};
1384
1385#define RFKILL_NAME "rfkill"
1386
1387static struct miscdevice rfkill_miscdev = {
1388 .fops = &rfkill_fops,
1389 .name = RFKILL_NAME,
1390 .minor = RFKILL_MINOR,
1391};
1392
1393static int __init rfkill_init(void)
1394{
1395 int error;
1396
1397 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1398
1399 error = class_register(&rfkill_class);
1400 if (error)
1401 goto error_class;
1402
1403 error = misc_register(&rfkill_miscdev);
1404 if (error)
1405 goto error_misc;
1406
1407 error = rfkill_global_led_trigger_register();
1408 if (error)
1409 goto error_led_trigger;
1410
1411#ifdef CONFIG_RFKILL_INPUT
1412 error = rfkill_handler_init();
1413 if (error)
1414 goto error_input;
1415#endif
1416
1417 return 0;
1418
1419#ifdef CONFIG_RFKILL_INPUT
1420error_input:
1421 rfkill_global_led_trigger_unregister();
1422#endif
1423error_led_trigger:
1424 misc_deregister(&rfkill_miscdev);
1425error_misc:
1426 class_unregister(&rfkill_class);
1427error_class:
1428 return error;
1429}
1430subsys_initcall(rfkill_init);
1431
1432static void __exit rfkill_exit(void)
1433{
1434#ifdef CONFIG_RFKILL_INPUT
1435 rfkill_handler_exit();
1436#endif
1437 rfkill_global_led_trigger_unregister();
1438 misc_deregister(&rfkill_miscdev);
1439 class_unregister(&rfkill_class);
1440}
1441module_exit(rfkill_exit);
1442
1443MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1444MODULE_ALIAS("devname:" RFKILL_NAME);