Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
 
  43
  44	u32			idx;
  45
  46	bool			registered;
  47	bool			persistent;
  48	bool			polling_paused;
  49	bool			suspended;
 
  50
  51	const struct rfkill_ops	*ops;
  52	void			*data;
  53
  54#ifdef CONFIG_RFKILL_LEDS
  55	struct led_trigger	led_trigger;
  56	const char		*ledtrigname;
  57#endif
  58
  59	struct device		dev;
  60	struct list_head	node;
  61
  62	struct delayed_work	poll_work;
  63	struct work_struct	uevent_work;
  64	struct work_struct	sync_work;
  65	char			name[];
  66};
  67#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  68
  69struct rfkill_int_event {
  70	struct list_head	list;
  71	struct rfkill_event	ev;
  72};
  73
  74struct rfkill_data {
  75	struct list_head	list;
  76	struct list_head	events;
  77	struct mutex		mtx;
  78	wait_queue_head_t	read_wait;
  79	bool			input_handler;
 
  80};
  81
  82
  83MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  84MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  85MODULE_DESCRIPTION("RF switch support");
  86MODULE_LICENSE("GPL");
  87
  88
  89/*
  90 * The locking here should be made much smarter, we currently have
  91 * a bit of a stupid situation because drivers might want to register
  92 * the rfkill struct under their own lock, and take this lock during
  93 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  94 *
  95 * To fix that, we need to rework this code here to be mostly lock-free
  96 * and only use the mutex for list manipulations, not to protect the
  97 * various other global variables. Then we can avoid holding the mutex
  98 * around driver operations, and all is happy.
  99 */
 100static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 101static DEFINE_MUTEX(rfkill_global_mutex);
 102static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 103
 104static unsigned int rfkill_default_state = 1;
 105module_param_named(default_state, rfkill_default_state, uint, 0444);
 106MODULE_PARM_DESC(default_state,
 107		 "Default initial state for all radio types, 0 = radio off");
 108
 109static struct {
 110	bool cur, sav;
 111} rfkill_global_states[NUM_RFKILL_TYPES];
 112
 113static bool rfkill_epo_lock_active;
 114
 115
 116#ifdef CONFIG_RFKILL_LEDS
 117static void rfkill_led_trigger_event(struct rfkill *rfkill)
 118{
 119	struct led_trigger *trigger;
 120
 121	if (!rfkill->registered)
 122		return;
 123
 124	trigger = &rfkill->led_trigger;
 125
 126	if (rfkill->state & RFKILL_BLOCK_ANY)
 127		led_trigger_event(trigger, LED_OFF);
 128	else
 129		led_trigger_event(trigger, LED_FULL);
 130}
 131
 132static int rfkill_led_trigger_activate(struct led_classdev *led)
 133{
 134	struct rfkill *rfkill;
 135
 136	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 137
 138	rfkill_led_trigger_event(rfkill);
 139
 140	return 0;
 141}
 142
 143const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 144{
 145	return rfkill->led_trigger.name;
 146}
 147EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 148
 149void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 150{
 151	BUG_ON(!rfkill);
 152
 153	rfkill->ledtrigname = name;
 154}
 155EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 156
 157static int rfkill_led_trigger_register(struct rfkill *rfkill)
 158{
 159	rfkill->led_trigger.name = rfkill->ledtrigname
 160					? : dev_name(&rfkill->dev);
 161	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 162	return led_trigger_register(&rfkill->led_trigger);
 163}
 164
 165static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 166{
 167	led_trigger_unregister(&rfkill->led_trigger);
 168}
 169
 170static struct led_trigger rfkill_any_led_trigger;
 171static struct led_trigger rfkill_none_led_trigger;
 172static struct work_struct rfkill_global_led_trigger_work;
 173
 174static void rfkill_global_led_trigger_worker(struct work_struct *work)
 175{
 176	enum led_brightness brightness = LED_OFF;
 177	struct rfkill *rfkill;
 178
 179	mutex_lock(&rfkill_global_mutex);
 180	list_for_each_entry(rfkill, &rfkill_list, node) {
 181		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 182			brightness = LED_FULL;
 183			break;
 184		}
 185	}
 186	mutex_unlock(&rfkill_global_mutex);
 187
 188	led_trigger_event(&rfkill_any_led_trigger, brightness);
 189	led_trigger_event(&rfkill_none_led_trigger,
 190			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 191}
 192
 193static void rfkill_global_led_trigger_event(void)
 194{
 195	schedule_work(&rfkill_global_led_trigger_work);
 196}
 197
 198static int rfkill_global_led_trigger_register(void)
 199{
 200	int ret;
 201
 202	INIT_WORK(&rfkill_global_led_trigger_work,
 203			rfkill_global_led_trigger_worker);
 204
 205	rfkill_any_led_trigger.name = "rfkill-any";
 206	ret = led_trigger_register(&rfkill_any_led_trigger);
 207	if (ret)
 208		return ret;
 209
 210	rfkill_none_led_trigger.name = "rfkill-none";
 211	ret = led_trigger_register(&rfkill_none_led_trigger);
 212	if (ret)
 213		led_trigger_unregister(&rfkill_any_led_trigger);
 214	else
 215		/* Delay activation until all global triggers are registered */
 216		rfkill_global_led_trigger_event();
 217
 218	return ret;
 219}
 220
 221static void rfkill_global_led_trigger_unregister(void)
 222{
 223	led_trigger_unregister(&rfkill_none_led_trigger);
 224	led_trigger_unregister(&rfkill_any_led_trigger);
 225	cancel_work_sync(&rfkill_global_led_trigger_work);
 226}
 227#else
 228static void rfkill_led_trigger_event(struct rfkill *rfkill)
 229{
 230}
 231
 232static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 233{
 234	return 0;
 235}
 236
 237static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 238{
 239}
 240
 241static void rfkill_global_led_trigger_event(void)
 242{
 243}
 244
 245static int rfkill_global_led_trigger_register(void)
 246{
 247	return 0;
 248}
 249
 250static void rfkill_global_led_trigger_unregister(void)
 251{
 252}
 253#endif /* CONFIG_RFKILL_LEDS */
 254
 255static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
 
 256			      enum rfkill_operation op)
 257{
 258	unsigned long flags;
 259
 260	ev->idx = rfkill->idx;
 261	ev->type = rfkill->type;
 262	ev->op = op;
 263
 264	spin_lock_irqsave(&rfkill->lock, flags);
 265	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 266	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 267					RFKILL_BLOCK_SW_PREV));
 
 268	spin_unlock_irqrestore(&rfkill->lock, flags);
 269}
 270
 271static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 272{
 273	struct rfkill_data *data;
 274	struct rfkill_int_event *ev;
 275
 276	list_for_each_entry(data, &rfkill_fds, list) {
 277		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 278		if (!ev)
 279			continue;
 280		rfkill_fill_event(&ev->ev, rfkill, op);
 281		mutex_lock(&data->mtx);
 282		list_add_tail(&ev->list, &data->events);
 283		mutex_unlock(&data->mtx);
 284		wake_up_interruptible(&data->read_wait);
 285	}
 286}
 287
 288static void rfkill_event(struct rfkill *rfkill)
 289{
 290	if (!rfkill->registered)
 291		return;
 292
 293	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 294
 295	/* also send event to /dev/rfkill */
 296	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 297}
 298
 299/**
 300 * rfkill_set_block - wrapper for set_block method
 301 *
 302 * @rfkill: the rfkill struct to use
 303 * @blocked: the new software state
 304 *
 305 * Calls the set_block method (when applicable) and handles notifications
 306 * etc. as well.
 307 */
 308static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 309{
 310	unsigned long flags;
 311	bool prev, curr;
 312	int err;
 313
 314	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 315		return;
 316
 317	/*
 318	 * Some platforms (...!) generate input events which affect the
 319	 * _hard_ kill state -- whenever something tries to change the
 320	 * current software state query the hardware state too.
 321	 */
 322	if (rfkill->ops->query)
 323		rfkill->ops->query(rfkill, rfkill->data);
 324
 325	spin_lock_irqsave(&rfkill->lock, flags);
 326	prev = rfkill->state & RFKILL_BLOCK_SW;
 327
 328	if (prev)
 329		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 330	else
 331		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 332
 333	if (blocked)
 334		rfkill->state |= RFKILL_BLOCK_SW;
 335	else
 336		rfkill->state &= ~RFKILL_BLOCK_SW;
 337
 338	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 339	spin_unlock_irqrestore(&rfkill->lock, flags);
 340
 341	err = rfkill->ops->set_block(rfkill->data, blocked);
 342
 343	spin_lock_irqsave(&rfkill->lock, flags);
 344	if (err) {
 345		/*
 346		 * Failed -- reset status to _PREV, which may be different
 347		 * from what we have set _PREV to earlier in this function
 348		 * if rfkill_set_sw_state was invoked.
 349		 */
 350		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 351			rfkill->state |= RFKILL_BLOCK_SW;
 352		else
 353			rfkill->state &= ~RFKILL_BLOCK_SW;
 354	}
 355	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 356	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 357	curr = rfkill->state & RFKILL_BLOCK_SW;
 358	spin_unlock_irqrestore(&rfkill->lock, flags);
 359
 360	rfkill_led_trigger_event(rfkill);
 361	rfkill_global_led_trigger_event();
 362
 363	if (prev != curr)
 364		rfkill_event(rfkill);
 365}
 366
 
 
 
 
 
 
 
 
 
 
 
 367static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 368{
 369	int i;
 370
 371	if (type != RFKILL_TYPE_ALL) {
 372		rfkill_global_states[type].cur = blocked;
 373		return;
 374	}
 375
 376	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 377		rfkill_global_states[i].cur = blocked;
 378}
 379
 380#ifdef CONFIG_RFKILL_INPUT
 381static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 382
 383/**
 384 * __rfkill_switch_all - Toggle state of all switches of given type
 385 * @type: type of interfaces to be affected
 386 * @blocked: the new state
 387 *
 388 * This function sets the state of all switches of given type,
 389 * unless a specific switch is suspended.
 390 *
 391 * Caller must have acquired rfkill_global_mutex.
 392 */
 393static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 394{
 395	struct rfkill *rfkill;
 396
 397	rfkill_update_global_state(type, blocked);
 398	list_for_each_entry(rfkill, &rfkill_list, node) {
 399		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 400			continue;
 401
 402		rfkill_set_block(rfkill, blocked);
 403	}
 404}
 405
 406/**
 407 * rfkill_switch_all - Toggle state of all switches of given type
 408 * @type: type of interfaces to be affected
 409 * @blocked: the new state
 410 *
 411 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 412 * Please refer to __rfkill_switch_all() for details.
 413 *
 414 * Does nothing if the EPO lock is active.
 415 */
 416void rfkill_switch_all(enum rfkill_type type, bool blocked)
 417{
 418	if (atomic_read(&rfkill_input_disabled))
 419		return;
 420
 421	mutex_lock(&rfkill_global_mutex);
 422
 423	if (!rfkill_epo_lock_active)
 424		__rfkill_switch_all(type, blocked);
 425
 426	mutex_unlock(&rfkill_global_mutex);
 427}
 428
 429/**
 430 * rfkill_epo - emergency power off all transmitters
 431 *
 432 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 433 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 434 *
 435 * The global state before the EPO is saved and can be restored later
 436 * using rfkill_restore_states().
 437 */
 438void rfkill_epo(void)
 439{
 440	struct rfkill *rfkill;
 441	int i;
 442
 443	if (atomic_read(&rfkill_input_disabled))
 444		return;
 445
 446	mutex_lock(&rfkill_global_mutex);
 447
 448	rfkill_epo_lock_active = true;
 449	list_for_each_entry(rfkill, &rfkill_list, node)
 450		rfkill_set_block(rfkill, true);
 451
 452	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 453		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 454		rfkill_global_states[i].cur = true;
 455	}
 456
 457	mutex_unlock(&rfkill_global_mutex);
 458}
 459
 460/**
 461 * rfkill_restore_states - restore global states
 462 *
 463 * Restore (and sync switches to) the global state from the
 464 * states in rfkill_default_states.  This can undo the effects of
 465 * a call to rfkill_epo().
 466 */
 467void rfkill_restore_states(void)
 468{
 469	int i;
 470
 471	if (atomic_read(&rfkill_input_disabled))
 472		return;
 473
 474	mutex_lock(&rfkill_global_mutex);
 475
 476	rfkill_epo_lock_active = false;
 477	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 478		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 479	mutex_unlock(&rfkill_global_mutex);
 480}
 481
 482/**
 483 * rfkill_remove_epo_lock - unlock state changes
 484 *
 485 * Used by rfkill-input manually unlock state changes, when
 486 * the EPO switch is deactivated.
 487 */
 488void rfkill_remove_epo_lock(void)
 489{
 490	if (atomic_read(&rfkill_input_disabled))
 491		return;
 492
 493	mutex_lock(&rfkill_global_mutex);
 494	rfkill_epo_lock_active = false;
 495	mutex_unlock(&rfkill_global_mutex);
 496}
 497
 498/**
 499 * rfkill_is_epo_lock_active - returns true EPO is active
 500 *
 501 * Returns 0 (false) if there is NOT an active EPO condition,
 502 * and 1 (true) if there is an active EPO condition, which
 503 * locks all radios in one of the BLOCKED states.
 504 *
 505 * Can be called in atomic context.
 506 */
 507bool rfkill_is_epo_lock_active(void)
 508{
 509	return rfkill_epo_lock_active;
 510}
 511
 512/**
 513 * rfkill_get_global_sw_state - returns global state for a type
 514 * @type: the type to get the global state of
 515 *
 516 * Returns the current global state for a given wireless
 517 * device type.
 518 */
 519bool rfkill_get_global_sw_state(const enum rfkill_type type)
 520{
 521	return rfkill_global_states[type].cur;
 522}
 523#endif
 524
 525bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
 
 
 526{
 527	unsigned long flags;
 528	bool ret, prev;
 529
 530	BUG_ON(!rfkill);
 531
 532	spin_lock_irqsave(&rfkill->lock, flags);
 533	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
 534	if (blocked)
 535		rfkill->state |= RFKILL_BLOCK_HW;
 536	else
 537		rfkill->state &= ~RFKILL_BLOCK_HW;
 
 
 
 
 538	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 539	spin_unlock_irqrestore(&rfkill->lock, flags);
 540
 541	rfkill_led_trigger_event(rfkill);
 542	rfkill_global_led_trigger_event();
 543
 544	if (rfkill->registered && prev != blocked)
 545		schedule_work(&rfkill->uevent_work);
 546
 547	return ret;
 548}
 549EXPORT_SYMBOL(rfkill_set_hw_state);
 550
 551static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 552{
 553	u32 bit = RFKILL_BLOCK_SW;
 554
 555	/* if in a ops->set_block right now, use other bit */
 556	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 557		bit = RFKILL_BLOCK_SW_PREV;
 558
 559	if (blocked)
 560		rfkill->state |= bit;
 561	else
 562		rfkill->state &= ~bit;
 563}
 564
 565bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 566{
 567	unsigned long flags;
 568	bool prev, hwblock;
 569
 570	BUG_ON(!rfkill);
 571
 572	spin_lock_irqsave(&rfkill->lock, flags);
 573	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 574	__rfkill_set_sw_state(rfkill, blocked);
 575	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 576	blocked = blocked || hwblock;
 577	spin_unlock_irqrestore(&rfkill->lock, flags);
 578
 579	if (!rfkill->registered)
 580		return blocked;
 581
 582	if (prev != blocked && !hwblock)
 583		schedule_work(&rfkill->uevent_work);
 584
 585	rfkill_led_trigger_event(rfkill);
 586	rfkill_global_led_trigger_event();
 587
 588	return blocked;
 589}
 590EXPORT_SYMBOL(rfkill_set_sw_state);
 591
 592void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 593{
 594	unsigned long flags;
 595
 596	BUG_ON(!rfkill);
 597	BUG_ON(rfkill->registered);
 598
 599	spin_lock_irqsave(&rfkill->lock, flags);
 600	__rfkill_set_sw_state(rfkill, blocked);
 601	rfkill->persistent = true;
 602	spin_unlock_irqrestore(&rfkill->lock, flags);
 603}
 604EXPORT_SYMBOL(rfkill_init_sw_state);
 605
 606void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 607{
 608	unsigned long flags;
 609	bool swprev, hwprev;
 610
 611	BUG_ON(!rfkill);
 612
 613	spin_lock_irqsave(&rfkill->lock, flags);
 614
 615	/*
 616	 * No need to care about prev/setblock ... this is for uevent only
 617	 * and that will get triggered by rfkill_set_block anyway.
 618	 */
 619	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 620	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 621	__rfkill_set_sw_state(rfkill, sw);
 622	if (hw)
 623		rfkill->state |= RFKILL_BLOCK_HW;
 624	else
 625		rfkill->state &= ~RFKILL_BLOCK_HW;
 626
 627	spin_unlock_irqrestore(&rfkill->lock, flags);
 628
 629	if (!rfkill->registered) {
 630		rfkill->persistent = true;
 631	} else {
 632		if (swprev != sw || hwprev != hw)
 633			schedule_work(&rfkill->uevent_work);
 634
 635		rfkill_led_trigger_event(rfkill);
 636		rfkill_global_led_trigger_event();
 637	}
 638}
 639EXPORT_SYMBOL(rfkill_set_states);
 640
 641static const char * const rfkill_types[] = {
 642	NULL, /* RFKILL_TYPE_ALL */
 643	"wlan",
 644	"bluetooth",
 645	"ultrawideband",
 646	"wimax",
 647	"wwan",
 648	"gps",
 649	"fm",
 650	"nfc",
 651};
 652
 653enum rfkill_type rfkill_find_type(const char *name)
 654{
 655	int i;
 656
 657	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 658
 659	if (!name)
 660		return RFKILL_TYPE_ALL;
 661
 662	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 663		if (!strcmp(name, rfkill_types[i]))
 664			return i;
 665	return RFKILL_TYPE_ALL;
 666}
 667EXPORT_SYMBOL(rfkill_find_type);
 668
 669static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 670			 char *buf)
 671{
 672	struct rfkill *rfkill = to_rfkill(dev);
 673
 674	return sprintf(buf, "%s\n", rfkill->name);
 675}
 676static DEVICE_ATTR_RO(name);
 677
 678static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 679			 char *buf)
 680{
 681	struct rfkill *rfkill = to_rfkill(dev);
 682
 683	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
 684}
 685static DEVICE_ATTR_RO(type);
 686
 687static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 688			  char *buf)
 689{
 690	struct rfkill *rfkill = to_rfkill(dev);
 691
 692	return sprintf(buf, "%d\n", rfkill->idx);
 693}
 694static DEVICE_ATTR_RO(index);
 695
 696static ssize_t persistent_show(struct device *dev,
 697			       struct device_attribute *attr, char *buf)
 698{
 699	struct rfkill *rfkill = to_rfkill(dev);
 700
 701	return sprintf(buf, "%d\n", rfkill->persistent);
 702}
 703static DEVICE_ATTR_RO(persistent);
 704
 705static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 706			 char *buf)
 707{
 708	struct rfkill *rfkill = to_rfkill(dev);
 709
 710	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 711}
 712static DEVICE_ATTR_RO(hard);
 713
 714static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 715			 char *buf)
 716{
 717	struct rfkill *rfkill = to_rfkill(dev);
 718
 719	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 
 
 
 
 720}
 721
 722static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 723			  const char *buf, size_t count)
 724{
 725	struct rfkill *rfkill = to_rfkill(dev);
 726	unsigned long state;
 727	int err;
 728
 729	if (!capable(CAP_NET_ADMIN))
 730		return -EPERM;
 731
 732	err = kstrtoul(buf, 0, &state);
 733	if (err)
 734		return err;
 735
 736	if (state > 1 )
 737		return -EINVAL;
 738
 739	mutex_lock(&rfkill_global_mutex);
 
 740	rfkill_set_block(rfkill, state);
 741	mutex_unlock(&rfkill_global_mutex);
 742
 743	return count;
 744}
 745static DEVICE_ATTR_RW(soft);
 746
 
 
 
 
 
 
 
 
 
 
 747static u8 user_state_from_blocked(unsigned long state)
 748{
 749	if (state & RFKILL_BLOCK_HW)
 750		return RFKILL_USER_STATE_HARD_BLOCKED;
 751	if (state & RFKILL_BLOCK_SW)
 752		return RFKILL_USER_STATE_SOFT_BLOCKED;
 753
 754	return RFKILL_USER_STATE_UNBLOCKED;
 755}
 756
 757static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 758			  char *buf)
 759{
 760	struct rfkill *rfkill = to_rfkill(dev);
 761
 762	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 
 
 
 
 763}
 764
 765static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 766			   const char *buf, size_t count)
 767{
 768	struct rfkill *rfkill = to_rfkill(dev);
 769	unsigned long state;
 770	int err;
 771
 772	if (!capable(CAP_NET_ADMIN))
 773		return -EPERM;
 774
 775	err = kstrtoul(buf, 0, &state);
 776	if (err)
 777		return err;
 778
 779	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 780	    state != RFKILL_USER_STATE_UNBLOCKED)
 781		return -EINVAL;
 782
 783	mutex_lock(&rfkill_global_mutex);
 
 784	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 785	mutex_unlock(&rfkill_global_mutex);
 786
 787	return count;
 788}
 789static DEVICE_ATTR_RW(state);
 790
 791static struct attribute *rfkill_dev_attrs[] = {
 792	&dev_attr_name.attr,
 793	&dev_attr_type.attr,
 794	&dev_attr_index.attr,
 795	&dev_attr_persistent.attr,
 796	&dev_attr_state.attr,
 797	&dev_attr_soft.attr,
 798	&dev_attr_hard.attr,
 
 799	NULL,
 800};
 801ATTRIBUTE_GROUPS(rfkill_dev);
 802
 803static void rfkill_release(struct device *dev)
 804{
 805	struct rfkill *rfkill = to_rfkill(dev);
 806
 807	kfree(rfkill);
 808}
 809
 810static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 811{
 812	struct rfkill *rfkill = to_rfkill(dev);
 813	unsigned long flags;
 
 814	u32 state;
 815	int error;
 816
 817	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 818	if (error)
 819		return error;
 820	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 821			       rfkill_types[rfkill->type]);
 822	if (error)
 823		return error;
 824	spin_lock_irqsave(&rfkill->lock, flags);
 825	state = rfkill->state;
 
 826	spin_unlock_irqrestore(&rfkill->lock, flags);
 827	error = add_uevent_var(env, "RFKILL_STATE=%d",
 828			       user_state_from_blocked(state));
 829	return error;
 
 
 830}
 831
 832void rfkill_pause_polling(struct rfkill *rfkill)
 833{
 834	BUG_ON(!rfkill);
 835
 836	if (!rfkill->ops->poll)
 837		return;
 838
 839	rfkill->polling_paused = true;
 840	cancel_delayed_work_sync(&rfkill->poll_work);
 841}
 842EXPORT_SYMBOL(rfkill_pause_polling);
 843
 844void rfkill_resume_polling(struct rfkill *rfkill)
 845{
 846	BUG_ON(!rfkill);
 847
 848	if (!rfkill->ops->poll)
 849		return;
 850
 851	rfkill->polling_paused = false;
 852
 853	if (rfkill->suspended)
 854		return;
 855
 856	queue_delayed_work(system_power_efficient_wq,
 857			   &rfkill->poll_work, 0);
 858}
 859EXPORT_SYMBOL(rfkill_resume_polling);
 860
 861#ifdef CONFIG_PM_SLEEP
 862static int rfkill_suspend(struct device *dev)
 863{
 864	struct rfkill *rfkill = to_rfkill(dev);
 865
 866	rfkill->suspended = true;
 867	cancel_delayed_work_sync(&rfkill->poll_work);
 868
 869	return 0;
 870}
 871
 872static int rfkill_resume(struct device *dev)
 873{
 874	struct rfkill *rfkill = to_rfkill(dev);
 875	bool cur;
 876
 877	rfkill->suspended = false;
 878
 
 
 
 879	if (!rfkill->persistent) {
 880		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 881		rfkill_set_block(rfkill, cur);
 882	}
 883
 884	if (rfkill->ops->poll && !rfkill->polling_paused)
 885		queue_delayed_work(system_power_efficient_wq,
 886				   &rfkill->poll_work, 0);
 887
 888	return 0;
 889}
 890
 891static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 892#define RFKILL_PM_OPS (&rfkill_pm_ops)
 893#else
 894#define RFKILL_PM_OPS NULL
 895#endif
 896
 897static struct class rfkill_class = {
 898	.name		= "rfkill",
 899	.dev_release	= rfkill_release,
 900	.dev_groups	= rfkill_dev_groups,
 901	.dev_uevent	= rfkill_dev_uevent,
 902	.pm		= RFKILL_PM_OPS,
 903};
 904
 905bool rfkill_blocked(struct rfkill *rfkill)
 906{
 907	unsigned long flags;
 908	u32 state;
 909
 910	spin_lock_irqsave(&rfkill->lock, flags);
 911	state = rfkill->state;
 912	spin_unlock_irqrestore(&rfkill->lock, flags);
 913
 914	return !!(state & RFKILL_BLOCK_ANY);
 915}
 916EXPORT_SYMBOL(rfkill_blocked);
 917
 
 
 
 
 
 
 
 
 
 
 
 
 918
 919struct rfkill * __must_check rfkill_alloc(const char *name,
 920					  struct device *parent,
 921					  const enum rfkill_type type,
 922					  const struct rfkill_ops *ops,
 923					  void *ops_data)
 924{
 925	struct rfkill *rfkill;
 926	struct device *dev;
 927
 928	if (WARN_ON(!ops))
 929		return NULL;
 930
 931	if (WARN_ON(!ops->set_block))
 932		return NULL;
 933
 934	if (WARN_ON(!name))
 935		return NULL;
 936
 937	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 938		return NULL;
 939
 940	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
 941	if (!rfkill)
 942		return NULL;
 943
 944	spin_lock_init(&rfkill->lock);
 945	INIT_LIST_HEAD(&rfkill->node);
 946	rfkill->type = type;
 947	strcpy(rfkill->name, name);
 948	rfkill->ops = ops;
 949	rfkill->data = ops_data;
 950
 951	dev = &rfkill->dev;
 952	dev->class = &rfkill_class;
 953	dev->parent = parent;
 954	device_initialize(dev);
 955
 956	return rfkill;
 957}
 958EXPORT_SYMBOL(rfkill_alloc);
 959
 960static void rfkill_poll(struct work_struct *work)
 961{
 962	struct rfkill *rfkill;
 963
 964	rfkill = container_of(work, struct rfkill, poll_work.work);
 965
 966	/*
 967	 * Poll hardware state -- driver will use one of the
 968	 * rfkill_set{,_hw,_sw}_state functions and use its
 969	 * return value to update the current status.
 970	 */
 971	rfkill->ops->poll(rfkill, rfkill->data);
 972
 973	queue_delayed_work(system_power_efficient_wq,
 974		&rfkill->poll_work,
 975		round_jiffies_relative(POLL_INTERVAL));
 976}
 977
 978static void rfkill_uevent_work(struct work_struct *work)
 979{
 980	struct rfkill *rfkill;
 981
 982	rfkill = container_of(work, struct rfkill, uevent_work);
 983
 984	mutex_lock(&rfkill_global_mutex);
 985	rfkill_event(rfkill);
 986	mutex_unlock(&rfkill_global_mutex);
 987}
 988
 989static void rfkill_sync_work(struct work_struct *work)
 990{
 991	struct rfkill *rfkill;
 992	bool cur;
 993
 994	rfkill = container_of(work, struct rfkill, sync_work);
 995
 996	mutex_lock(&rfkill_global_mutex);
 997	cur = rfkill_global_states[rfkill->type].cur;
 998	rfkill_set_block(rfkill, cur);
 999	mutex_unlock(&rfkill_global_mutex);
1000}
1001
1002int __must_check rfkill_register(struct rfkill *rfkill)
1003{
1004	static unsigned long rfkill_no;
1005	struct device *dev = &rfkill->dev;
1006	int error;
1007
1008	BUG_ON(!rfkill);
 
 
 
1009
1010	mutex_lock(&rfkill_global_mutex);
1011
1012	if (rfkill->registered) {
1013		error = -EALREADY;
1014		goto unlock;
1015	}
1016
1017	rfkill->idx = rfkill_no;
1018	dev_set_name(dev, "rfkill%lu", rfkill_no);
1019	rfkill_no++;
1020
1021	list_add_tail(&rfkill->node, &rfkill_list);
1022
1023	error = device_add(dev);
1024	if (error)
1025		goto remove;
1026
1027	error = rfkill_led_trigger_register(rfkill);
1028	if (error)
1029		goto devdel;
1030
1031	rfkill->registered = true;
1032
1033	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1034	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1035	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1036
1037	if (rfkill->ops->poll)
1038		queue_delayed_work(system_power_efficient_wq,
1039			&rfkill->poll_work,
1040			round_jiffies_relative(POLL_INTERVAL));
1041
1042	if (!rfkill->persistent || rfkill_epo_lock_active) {
 
1043		schedule_work(&rfkill->sync_work);
1044	} else {
1045#ifdef CONFIG_RFKILL_INPUT
1046		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1047
1048		if (!atomic_read(&rfkill_input_disabled))
1049			__rfkill_switch_all(rfkill->type, soft_blocked);
1050#endif
1051	}
1052
1053	rfkill_global_led_trigger_event();
1054	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1055
1056	mutex_unlock(&rfkill_global_mutex);
1057	return 0;
1058
1059 devdel:
1060	device_del(&rfkill->dev);
1061 remove:
1062	list_del_init(&rfkill->node);
1063 unlock:
1064	mutex_unlock(&rfkill_global_mutex);
1065	return error;
1066}
1067EXPORT_SYMBOL(rfkill_register);
1068
1069void rfkill_unregister(struct rfkill *rfkill)
1070{
1071	BUG_ON(!rfkill);
1072
1073	if (rfkill->ops->poll)
1074		cancel_delayed_work_sync(&rfkill->poll_work);
1075
1076	cancel_work_sync(&rfkill->uevent_work);
1077	cancel_work_sync(&rfkill->sync_work);
1078
1079	rfkill->registered = false;
1080
1081	device_del(&rfkill->dev);
1082
1083	mutex_lock(&rfkill_global_mutex);
1084	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1085	list_del_init(&rfkill->node);
1086	rfkill_global_led_trigger_event();
1087	mutex_unlock(&rfkill_global_mutex);
1088
1089	rfkill_led_trigger_unregister(rfkill);
1090}
1091EXPORT_SYMBOL(rfkill_unregister);
1092
1093void rfkill_destroy(struct rfkill *rfkill)
1094{
1095	if (rfkill)
1096		put_device(&rfkill->dev);
1097}
1098EXPORT_SYMBOL(rfkill_destroy);
1099
1100static int rfkill_fop_open(struct inode *inode, struct file *file)
1101{
1102	struct rfkill_data *data;
1103	struct rfkill *rfkill;
1104	struct rfkill_int_event *ev, *tmp;
1105
1106	data = kzalloc(sizeof(*data), GFP_KERNEL);
1107	if (!data)
1108		return -ENOMEM;
1109
 
 
1110	INIT_LIST_HEAD(&data->events);
1111	mutex_init(&data->mtx);
1112	init_waitqueue_head(&data->read_wait);
1113
1114	mutex_lock(&rfkill_global_mutex);
1115	mutex_lock(&data->mtx);
1116	/*
1117	 * start getting events from elsewhere but hold mtx to get
1118	 * startup events added first
1119	 */
1120
1121	list_for_each_entry(rfkill, &rfkill_list, node) {
1122		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1123		if (!ev)
1124			goto free;
 
1125		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
 
1126		list_add_tail(&ev->list, &data->events);
 
1127	}
1128	list_add(&data->list, &rfkill_fds);
1129	mutex_unlock(&data->mtx);
1130	mutex_unlock(&rfkill_global_mutex);
1131
1132	file->private_data = data;
1133
1134	return stream_open(inode, file);
1135
1136 free:
1137	mutex_unlock(&data->mtx);
1138	mutex_unlock(&rfkill_global_mutex);
1139	mutex_destroy(&data->mtx);
1140	list_for_each_entry_safe(ev, tmp, &data->events, list)
1141		kfree(ev);
1142	kfree(data);
1143	return -ENOMEM;
1144}
1145
1146static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1147{
1148	struct rfkill_data *data = file->private_data;
1149	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1150
1151	poll_wait(file, &data->read_wait, wait);
1152
1153	mutex_lock(&data->mtx);
1154	if (!list_empty(&data->events))
1155		res = EPOLLIN | EPOLLRDNORM;
1156	mutex_unlock(&data->mtx);
1157
1158	return res;
1159}
1160
1161static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1162			       size_t count, loff_t *pos)
1163{
1164	struct rfkill_data *data = file->private_data;
1165	struct rfkill_int_event *ev;
1166	unsigned long sz;
1167	int ret;
1168
1169	mutex_lock(&data->mtx);
1170
1171	while (list_empty(&data->events)) {
1172		if (file->f_flags & O_NONBLOCK) {
1173			ret = -EAGAIN;
1174			goto out;
1175		}
1176		mutex_unlock(&data->mtx);
1177		/* since we re-check and it just compares pointers,
1178		 * using !list_empty() without locking isn't a problem
1179		 */
1180		ret = wait_event_interruptible(data->read_wait,
1181					       !list_empty(&data->events));
1182		mutex_lock(&data->mtx);
1183
1184		if (ret)
1185			goto out;
1186	}
1187
1188	ev = list_first_entry(&data->events, struct rfkill_int_event,
1189				list);
1190
1191	sz = min_t(unsigned long, sizeof(ev->ev), count);
 
1192	ret = sz;
1193	if (copy_to_user(buf, &ev->ev, sz))
1194		ret = -EFAULT;
1195
1196	list_del(&ev->list);
1197	kfree(ev);
1198 out:
1199	mutex_unlock(&data->mtx);
1200	return ret;
1201}
1202
1203static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1204				size_t count, loff_t *pos)
1205{
 
1206	struct rfkill *rfkill;
1207	struct rfkill_event ev;
1208	int ret;
1209
1210	/* we don't need the 'hard' variable but accept it */
1211	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1212		return -EINVAL;
1213
1214	/*
1215	 * Copy as much data as we can accept into our 'ev' buffer,
1216	 * but tell userspace how much we've copied so it can determine
1217	 * our API version even in a write() call, if it cares.
1218	 */
1219	count = min(count, sizeof(ev));
 
1220	if (copy_from_user(&ev, buf, count))
1221		return -EFAULT;
1222
1223	if (ev.type >= NUM_RFKILL_TYPES)
1224		return -EINVAL;
1225
1226	mutex_lock(&rfkill_global_mutex);
1227
1228	switch (ev.op) {
1229	case RFKILL_OP_CHANGE_ALL:
1230		rfkill_update_global_state(ev.type, ev.soft);
1231		list_for_each_entry(rfkill, &rfkill_list, node)
1232			if (rfkill->type == ev.type ||
1233			    ev.type == RFKILL_TYPE_ALL)
1234				rfkill_set_block(rfkill, ev.soft);
1235		ret = 0;
1236		break;
1237	case RFKILL_OP_CHANGE:
1238		list_for_each_entry(rfkill, &rfkill_list, node)
1239			if (rfkill->idx == ev.idx &&
1240			    (rfkill->type == ev.type ||
1241			     ev.type == RFKILL_TYPE_ALL))
1242				rfkill_set_block(rfkill, ev.soft);
1243		ret = 0;
1244		break;
1245	default:
1246		ret = -EINVAL;
1247		break;
1248	}
1249
1250	mutex_unlock(&rfkill_global_mutex);
1251
1252	return ret ?: count;
1253}
1254
1255static int rfkill_fop_release(struct inode *inode, struct file *file)
1256{
1257	struct rfkill_data *data = file->private_data;
1258	struct rfkill_int_event *ev, *tmp;
1259
1260	mutex_lock(&rfkill_global_mutex);
1261	list_del(&data->list);
1262	mutex_unlock(&rfkill_global_mutex);
1263
1264	mutex_destroy(&data->mtx);
1265	list_for_each_entry_safe(ev, tmp, &data->events, list)
1266		kfree(ev);
1267
1268#ifdef CONFIG_RFKILL_INPUT
1269	if (data->input_handler)
1270		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1271			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1272#endif
1273
1274	kfree(data);
1275
1276	return 0;
1277}
1278
1279#ifdef CONFIG_RFKILL_INPUT
1280static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1281			     unsigned long arg)
1282{
1283	struct rfkill_data *data = file->private_data;
 
 
1284
1285	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1286		return -ENOSYS;
1287
1288	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1289		return -ENOSYS;
1290
1291	mutex_lock(&data->mtx);
1292
1293	if (!data->input_handler) {
1294		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1295			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1296		data->input_handler = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297	}
1298
1299	mutex_unlock(&data->mtx);
1300
1301	return 0;
1302}
1303#endif
1304
1305static const struct file_operations rfkill_fops = {
1306	.owner		= THIS_MODULE,
1307	.open		= rfkill_fop_open,
1308	.read		= rfkill_fop_read,
1309	.write		= rfkill_fop_write,
1310	.poll		= rfkill_fop_poll,
1311	.release	= rfkill_fop_release,
1312#ifdef CONFIG_RFKILL_INPUT
1313	.unlocked_ioctl	= rfkill_fop_ioctl,
1314	.compat_ioctl	= rfkill_fop_ioctl,
1315#endif
1316	.llseek		= no_llseek,
1317};
1318
 
 
1319static struct miscdevice rfkill_miscdev = {
1320	.name	= "rfkill",
1321	.fops	= &rfkill_fops,
1322	.minor	= MISC_DYNAMIC_MINOR,
 
1323};
1324
1325static int __init rfkill_init(void)
1326{
1327	int error;
1328
1329	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1330
1331	error = class_register(&rfkill_class);
1332	if (error)
1333		goto error_class;
1334
1335	error = misc_register(&rfkill_miscdev);
1336	if (error)
1337		goto error_misc;
1338
1339	error = rfkill_global_led_trigger_register();
1340	if (error)
1341		goto error_led_trigger;
1342
1343#ifdef CONFIG_RFKILL_INPUT
1344	error = rfkill_handler_init();
1345	if (error)
1346		goto error_input;
1347#endif
1348
1349	return 0;
1350
1351#ifdef CONFIG_RFKILL_INPUT
1352error_input:
1353	rfkill_global_led_trigger_unregister();
1354#endif
1355error_led_trigger:
1356	misc_deregister(&rfkill_miscdev);
1357error_misc:
1358	class_unregister(&rfkill_class);
1359error_class:
1360	return error;
1361}
1362subsys_initcall(rfkill_init);
1363
1364static void __exit rfkill_exit(void)
1365{
1366#ifdef CONFIG_RFKILL_INPUT
1367	rfkill_handler_exit();
1368#endif
1369	rfkill_global_led_trigger_unregister();
1370	misc_deregister(&rfkill_miscdev);
1371	class_unregister(&rfkill_class);
1372}
1373module_exit(rfkill_exit);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
  43	unsigned long		hard_block_reasons;
  44
  45	u32			idx;
  46
  47	bool			registered;
  48	bool			persistent;
  49	bool			polling_paused;
  50	bool			suspended;
  51	bool			need_sync;
  52
  53	const struct rfkill_ops	*ops;
  54	void			*data;
  55
  56#ifdef CONFIG_RFKILL_LEDS
  57	struct led_trigger	led_trigger;
  58	const char		*ledtrigname;
  59#endif
  60
  61	struct device		dev;
  62	struct list_head	node;
  63
  64	struct delayed_work	poll_work;
  65	struct work_struct	uevent_work;
  66	struct work_struct	sync_work;
  67	char			name[];
  68};
  69#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  70
  71struct rfkill_int_event {
  72	struct list_head	list;
  73	struct rfkill_event_ext	ev;
  74};
  75
  76struct rfkill_data {
  77	struct list_head	list;
  78	struct list_head	events;
  79	struct mutex		mtx;
  80	wait_queue_head_t	read_wait;
  81	bool			input_handler;
  82	u8			max_size;
  83};
  84
  85
  86MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  87MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  88MODULE_DESCRIPTION("RF switch support");
  89MODULE_LICENSE("GPL");
  90
  91
  92/*
  93 * The locking here should be made much smarter, we currently have
  94 * a bit of a stupid situation because drivers might want to register
  95 * the rfkill struct under their own lock, and take this lock during
  96 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  97 *
  98 * To fix that, we need to rework this code here to be mostly lock-free
  99 * and only use the mutex for list manipulations, not to protect the
 100 * various other global variables. Then we can avoid holding the mutex
 101 * around driver operations, and all is happy.
 102 */
 103static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 104static DEFINE_MUTEX(rfkill_global_mutex);
 105static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 106
 107static unsigned int rfkill_default_state = 1;
 108module_param_named(default_state, rfkill_default_state, uint, 0444);
 109MODULE_PARM_DESC(default_state,
 110		 "Default initial state for all radio types, 0 = radio off");
 111
 112static struct {
 113	bool cur, sav;
 114} rfkill_global_states[NUM_RFKILL_TYPES];
 115
 116static bool rfkill_epo_lock_active;
 117
 118
 119#ifdef CONFIG_RFKILL_LEDS
 120static void rfkill_led_trigger_event(struct rfkill *rfkill)
 121{
 122	struct led_trigger *trigger;
 123
 124	if (!rfkill->registered)
 125		return;
 126
 127	trigger = &rfkill->led_trigger;
 128
 129	if (rfkill->state & RFKILL_BLOCK_ANY)
 130		led_trigger_event(trigger, LED_OFF);
 131	else
 132		led_trigger_event(trigger, LED_FULL);
 133}
 134
 135static int rfkill_led_trigger_activate(struct led_classdev *led)
 136{
 137	struct rfkill *rfkill;
 138
 139	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 140
 141	rfkill_led_trigger_event(rfkill);
 142
 143	return 0;
 144}
 145
 146const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 147{
 148	return rfkill->led_trigger.name;
 149}
 150EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 151
 152void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 153{
 154	BUG_ON(!rfkill);
 155
 156	rfkill->ledtrigname = name;
 157}
 158EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 159
 160static int rfkill_led_trigger_register(struct rfkill *rfkill)
 161{
 162	rfkill->led_trigger.name = rfkill->ledtrigname
 163					? : dev_name(&rfkill->dev);
 164	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 165	return led_trigger_register(&rfkill->led_trigger);
 166}
 167
 168static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 169{
 170	led_trigger_unregister(&rfkill->led_trigger);
 171}
 172
 173static struct led_trigger rfkill_any_led_trigger;
 174static struct led_trigger rfkill_none_led_trigger;
 175static struct work_struct rfkill_global_led_trigger_work;
 176
 177static void rfkill_global_led_trigger_worker(struct work_struct *work)
 178{
 179	enum led_brightness brightness = LED_OFF;
 180	struct rfkill *rfkill;
 181
 182	mutex_lock(&rfkill_global_mutex);
 183	list_for_each_entry(rfkill, &rfkill_list, node) {
 184		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 185			brightness = LED_FULL;
 186			break;
 187		}
 188	}
 189	mutex_unlock(&rfkill_global_mutex);
 190
 191	led_trigger_event(&rfkill_any_led_trigger, brightness);
 192	led_trigger_event(&rfkill_none_led_trigger,
 193			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 194}
 195
 196static void rfkill_global_led_trigger_event(void)
 197{
 198	schedule_work(&rfkill_global_led_trigger_work);
 199}
 200
 201static int rfkill_global_led_trigger_register(void)
 202{
 203	int ret;
 204
 205	INIT_WORK(&rfkill_global_led_trigger_work,
 206			rfkill_global_led_trigger_worker);
 207
 208	rfkill_any_led_trigger.name = "rfkill-any";
 209	ret = led_trigger_register(&rfkill_any_led_trigger);
 210	if (ret)
 211		return ret;
 212
 213	rfkill_none_led_trigger.name = "rfkill-none";
 214	ret = led_trigger_register(&rfkill_none_led_trigger);
 215	if (ret)
 216		led_trigger_unregister(&rfkill_any_led_trigger);
 217	else
 218		/* Delay activation until all global triggers are registered */
 219		rfkill_global_led_trigger_event();
 220
 221	return ret;
 222}
 223
 224static void rfkill_global_led_trigger_unregister(void)
 225{
 226	led_trigger_unregister(&rfkill_none_led_trigger);
 227	led_trigger_unregister(&rfkill_any_led_trigger);
 228	cancel_work_sync(&rfkill_global_led_trigger_work);
 229}
 230#else
 231static void rfkill_led_trigger_event(struct rfkill *rfkill)
 232{
 233}
 234
 235static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 236{
 237	return 0;
 238}
 239
 240static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 241{
 242}
 243
 244static void rfkill_global_led_trigger_event(void)
 245{
 246}
 247
 248static int rfkill_global_led_trigger_register(void)
 249{
 250	return 0;
 251}
 252
 253static void rfkill_global_led_trigger_unregister(void)
 254{
 255}
 256#endif /* CONFIG_RFKILL_LEDS */
 257
 258static void rfkill_fill_event(struct rfkill_event_ext *ev,
 259			      struct rfkill *rfkill,
 260			      enum rfkill_operation op)
 261{
 262	unsigned long flags;
 263
 264	ev->idx = rfkill->idx;
 265	ev->type = rfkill->type;
 266	ev->op = op;
 267
 268	spin_lock_irqsave(&rfkill->lock, flags);
 269	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 270	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 271					RFKILL_BLOCK_SW_PREV));
 272	ev->hard_block_reasons = rfkill->hard_block_reasons;
 273	spin_unlock_irqrestore(&rfkill->lock, flags);
 274}
 275
 276static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 277{
 278	struct rfkill_data *data;
 279	struct rfkill_int_event *ev;
 280
 281	list_for_each_entry(data, &rfkill_fds, list) {
 282		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 283		if (!ev)
 284			continue;
 285		rfkill_fill_event(&ev->ev, rfkill, op);
 286		mutex_lock(&data->mtx);
 287		list_add_tail(&ev->list, &data->events);
 288		mutex_unlock(&data->mtx);
 289		wake_up_interruptible(&data->read_wait);
 290	}
 291}
 292
 293static void rfkill_event(struct rfkill *rfkill)
 294{
 295	if (!rfkill->registered)
 296		return;
 297
 298	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 299
 300	/* also send event to /dev/rfkill */
 301	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 302}
 303
 304/**
 305 * rfkill_set_block - wrapper for set_block method
 306 *
 307 * @rfkill: the rfkill struct to use
 308 * @blocked: the new software state
 309 *
 310 * Calls the set_block method (when applicable) and handles notifications
 311 * etc. as well.
 312 */
 313static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 314{
 315	unsigned long flags;
 316	bool prev, curr;
 317	int err;
 318
 319	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 320		return;
 321
 322	/*
 323	 * Some platforms (...!) generate input events which affect the
 324	 * _hard_ kill state -- whenever something tries to change the
 325	 * current software state query the hardware state too.
 326	 */
 327	if (rfkill->ops->query)
 328		rfkill->ops->query(rfkill, rfkill->data);
 329
 330	spin_lock_irqsave(&rfkill->lock, flags);
 331	prev = rfkill->state & RFKILL_BLOCK_SW;
 332
 333	if (prev)
 334		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 335	else
 336		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 337
 338	if (blocked)
 339		rfkill->state |= RFKILL_BLOCK_SW;
 340	else
 341		rfkill->state &= ~RFKILL_BLOCK_SW;
 342
 343	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 344	spin_unlock_irqrestore(&rfkill->lock, flags);
 345
 346	err = rfkill->ops->set_block(rfkill->data, blocked);
 347
 348	spin_lock_irqsave(&rfkill->lock, flags);
 349	if (err) {
 350		/*
 351		 * Failed -- reset status to _PREV, which may be different
 352		 * from what we have set _PREV to earlier in this function
 353		 * if rfkill_set_sw_state was invoked.
 354		 */
 355		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 356			rfkill->state |= RFKILL_BLOCK_SW;
 357		else
 358			rfkill->state &= ~RFKILL_BLOCK_SW;
 359	}
 360	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 361	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 362	curr = rfkill->state & RFKILL_BLOCK_SW;
 363	spin_unlock_irqrestore(&rfkill->lock, flags);
 364
 365	rfkill_led_trigger_event(rfkill);
 366	rfkill_global_led_trigger_event();
 367
 368	if (prev != curr)
 369		rfkill_event(rfkill);
 370}
 371
 372static void rfkill_sync(struct rfkill *rfkill)
 373{
 374	lockdep_assert_held(&rfkill_global_mutex);
 375
 376	if (!rfkill->need_sync)
 377		return;
 378
 379	rfkill_set_block(rfkill, rfkill_global_states[rfkill->type].cur);
 380	rfkill->need_sync = false;
 381}
 382
 383static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 384{
 385	int i;
 386
 387	if (type != RFKILL_TYPE_ALL) {
 388		rfkill_global_states[type].cur = blocked;
 389		return;
 390	}
 391
 392	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 393		rfkill_global_states[i].cur = blocked;
 394}
 395
 396#ifdef CONFIG_RFKILL_INPUT
 397static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 398
 399/**
 400 * __rfkill_switch_all - Toggle state of all switches of given type
 401 * @type: type of interfaces to be affected
 402 * @blocked: the new state
 403 *
 404 * This function sets the state of all switches of given type,
 405 * unless a specific switch is suspended.
 406 *
 407 * Caller must have acquired rfkill_global_mutex.
 408 */
 409static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 410{
 411	struct rfkill *rfkill;
 412
 413	rfkill_update_global_state(type, blocked);
 414	list_for_each_entry(rfkill, &rfkill_list, node) {
 415		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 416			continue;
 417
 418		rfkill_set_block(rfkill, blocked);
 419	}
 420}
 421
 422/**
 423 * rfkill_switch_all - Toggle state of all switches of given type
 424 * @type: type of interfaces to be affected
 425 * @blocked: the new state
 426 *
 427 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 428 * Please refer to __rfkill_switch_all() for details.
 429 *
 430 * Does nothing if the EPO lock is active.
 431 */
 432void rfkill_switch_all(enum rfkill_type type, bool blocked)
 433{
 434	if (atomic_read(&rfkill_input_disabled))
 435		return;
 436
 437	mutex_lock(&rfkill_global_mutex);
 438
 439	if (!rfkill_epo_lock_active)
 440		__rfkill_switch_all(type, blocked);
 441
 442	mutex_unlock(&rfkill_global_mutex);
 443}
 444
 445/**
 446 * rfkill_epo - emergency power off all transmitters
 447 *
 448 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 449 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 450 *
 451 * The global state before the EPO is saved and can be restored later
 452 * using rfkill_restore_states().
 453 */
 454void rfkill_epo(void)
 455{
 456	struct rfkill *rfkill;
 457	int i;
 458
 459	if (atomic_read(&rfkill_input_disabled))
 460		return;
 461
 462	mutex_lock(&rfkill_global_mutex);
 463
 464	rfkill_epo_lock_active = true;
 465	list_for_each_entry(rfkill, &rfkill_list, node)
 466		rfkill_set_block(rfkill, true);
 467
 468	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 469		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 470		rfkill_global_states[i].cur = true;
 471	}
 472
 473	mutex_unlock(&rfkill_global_mutex);
 474}
 475
 476/**
 477 * rfkill_restore_states - restore global states
 478 *
 479 * Restore (and sync switches to) the global state from the
 480 * states in rfkill_default_states.  This can undo the effects of
 481 * a call to rfkill_epo().
 482 */
 483void rfkill_restore_states(void)
 484{
 485	int i;
 486
 487	if (atomic_read(&rfkill_input_disabled))
 488		return;
 489
 490	mutex_lock(&rfkill_global_mutex);
 491
 492	rfkill_epo_lock_active = false;
 493	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 494		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 495	mutex_unlock(&rfkill_global_mutex);
 496}
 497
 498/**
 499 * rfkill_remove_epo_lock - unlock state changes
 500 *
 501 * Used by rfkill-input manually unlock state changes, when
 502 * the EPO switch is deactivated.
 503 */
 504void rfkill_remove_epo_lock(void)
 505{
 506	if (atomic_read(&rfkill_input_disabled))
 507		return;
 508
 509	mutex_lock(&rfkill_global_mutex);
 510	rfkill_epo_lock_active = false;
 511	mutex_unlock(&rfkill_global_mutex);
 512}
 513
 514/**
 515 * rfkill_is_epo_lock_active - returns true EPO is active
 516 *
 517 * Returns 0 (false) if there is NOT an active EPO condition,
 518 * and 1 (true) if there is an active EPO condition, which
 519 * locks all radios in one of the BLOCKED states.
 520 *
 521 * Can be called in atomic context.
 522 */
 523bool rfkill_is_epo_lock_active(void)
 524{
 525	return rfkill_epo_lock_active;
 526}
 527
 528/**
 529 * rfkill_get_global_sw_state - returns global state for a type
 530 * @type: the type to get the global state of
 531 *
 532 * Returns the current global state for a given wireless
 533 * device type.
 534 */
 535bool rfkill_get_global_sw_state(const enum rfkill_type type)
 536{
 537	return rfkill_global_states[type].cur;
 538}
 539#endif
 540
 541bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
 542				bool blocked,
 543				enum rfkill_hard_block_reasons reason)
 544{
 545	unsigned long flags;
 546	bool ret, prev;
 547
 548	BUG_ON(!rfkill);
 549
 550	spin_lock_irqsave(&rfkill->lock, flags);
 551	prev = !!(rfkill->hard_block_reasons & reason);
 552	if (blocked) {
 553		rfkill->state |= RFKILL_BLOCK_HW;
 554		rfkill->hard_block_reasons |= reason;
 555	} else {
 556		rfkill->hard_block_reasons &= ~reason;
 557		if (!rfkill->hard_block_reasons)
 558			rfkill->state &= ~RFKILL_BLOCK_HW;
 559	}
 560	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 561	spin_unlock_irqrestore(&rfkill->lock, flags);
 562
 563	rfkill_led_trigger_event(rfkill);
 564	rfkill_global_led_trigger_event();
 565
 566	if (rfkill->registered && prev != blocked)
 567		schedule_work(&rfkill->uevent_work);
 568
 569	return ret;
 570}
 571EXPORT_SYMBOL(rfkill_set_hw_state_reason);
 572
 573static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 574{
 575	u32 bit = RFKILL_BLOCK_SW;
 576
 577	/* if in a ops->set_block right now, use other bit */
 578	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 579		bit = RFKILL_BLOCK_SW_PREV;
 580
 581	if (blocked)
 582		rfkill->state |= bit;
 583	else
 584		rfkill->state &= ~bit;
 585}
 586
 587bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 588{
 589	unsigned long flags;
 590	bool prev, hwblock;
 591
 592	BUG_ON(!rfkill);
 593
 594	spin_lock_irqsave(&rfkill->lock, flags);
 595	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 596	__rfkill_set_sw_state(rfkill, blocked);
 597	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 598	blocked = blocked || hwblock;
 599	spin_unlock_irqrestore(&rfkill->lock, flags);
 600
 601	if (!rfkill->registered)
 602		return blocked;
 603
 604	if (prev != blocked && !hwblock)
 605		schedule_work(&rfkill->uevent_work);
 606
 607	rfkill_led_trigger_event(rfkill);
 608	rfkill_global_led_trigger_event();
 609
 610	return blocked;
 611}
 612EXPORT_SYMBOL(rfkill_set_sw_state);
 613
 614void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 615{
 616	unsigned long flags;
 617
 618	BUG_ON(!rfkill);
 619	BUG_ON(rfkill->registered);
 620
 621	spin_lock_irqsave(&rfkill->lock, flags);
 622	__rfkill_set_sw_state(rfkill, blocked);
 623	rfkill->persistent = true;
 624	spin_unlock_irqrestore(&rfkill->lock, flags);
 625}
 626EXPORT_SYMBOL(rfkill_init_sw_state);
 627
 628void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 629{
 630	unsigned long flags;
 631	bool swprev, hwprev;
 632
 633	BUG_ON(!rfkill);
 634
 635	spin_lock_irqsave(&rfkill->lock, flags);
 636
 637	/*
 638	 * No need to care about prev/setblock ... this is for uevent only
 639	 * and that will get triggered by rfkill_set_block anyway.
 640	 */
 641	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 642	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 643	__rfkill_set_sw_state(rfkill, sw);
 644	if (hw)
 645		rfkill->state |= RFKILL_BLOCK_HW;
 646	else
 647		rfkill->state &= ~RFKILL_BLOCK_HW;
 648
 649	spin_unlock_irqrestore(&rfkill->lock, flags);
 650
 651	if (!rfkill->registered) {
 652		rfkill->persistent = true;
 653	} else {
 654		if (swprev != sw || hwprev != hw)
 655			schedule_work(&rfkill->uevent_work);
 656
 657		rfkill_led_trigger_event(rfkill);
 658		rfkill_global_led_trigger_event();
 659	}
 660}
 661EXPORT_SYMBOL(rfkill_set_states);
 662
 663static const char * const rfkill_types[] = {
 664	NULL, /* RFKILL_TYPE_ALL */
 665	"wlan",
 666	"bluetooth",
 667	"ultrawideband",
 668	"wimax",
 669	"wwan",
 670	"gps",
 671	"fm",
 672	"nfc",
 673};
 674
 675enum rfkill_type rfkill_find_type(const char *name)
 676{
 677	int i;
 678
 679	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 680
 681	if (!name)
 682		return RFKILL_TYPE_ALL;
 683
 684	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 685		if (!strcmp(name, rfkill_types[i]))
 686			return i;
 687	return RFKILL_TYPE_ALL;
 688}
 689EXPORT_SYMBOL(rfkill_find_type);
 690
 691static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 692			 char *buf)
 693{
 694	struct rfkill *rfkill = to_rfkill(dev);
 695
 696	return sysfs_emit(buf, "%s\n", rfkill->name);
 697}
 698static DEVICE_ATTR_RO(name);
 699
 700static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 701			 char *buf)
 702{
 703	struct rfkill *rfkill = to_rfkill(dev);
 704
 705	return sysfs_emit(buf, "%s\n", rfkill_types[rfkill->type]);
 706}
 707static DEVICE_ATTR_RO(type);
 708
 709static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 710			  char *buf)
 711{
 712	struct rfkill *rfkill = to_rfkill(dev);
 713
 714	return sysfs_emit(buf, "%d\n", rfkill->idx);
 715}
 716static DEVICE_ATTR_RO(index);
 717
 718static ssize_t persistent_show(struct device *dev,
 719			       struct device_attribute *attr, char *buf)
 720{
 721	struct rfkill *rfkill = to_rfkill(dev);
 722
 723	return sysfs_emit(buf, "%d\n", rfkill->persistent);
 724}
 725static DEVICE_ATTR_RO(persistent);
 726
 727static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 728			 char *buf)
 729{
 730	struct rfkill *rfkill = to_rfkill(dev);
 731
 732	return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0);
 733}
 734static DEVICE_ATTR_RO(hard);
 735
 736static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 737			 char *buf)
 738{
 739	struct rfkill *rfkill = to_rfkill(dev);
 740
 741	mutex_lock(&rfkill_global_mutex);
 742	rfkill_sync(rfkill);
 743	mutex_unlock(&rfkill_global_mutex);
 744
 745	return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0);
 746}
 747
 748static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 749			  const char *buf, size_t count)
 750{
 751	struct rfkill *rfkill = to_rfkill(dev);
 752	unsigned long state;
 753	int err;
 754
 755	if (!capable(CAP_NET_ADMIN))
 756		return -EPERM;
 757
 758	err = kstrtoul(buf, 0, &state);
 759	if (err)
 760		return err;
 761
 762	if (state > 1 )
 763		return -EINVAL;
 764
 765	mutex_lock(&rfkill_global_mutex);
 766	rfkill_sync(rfkill);
 767	rfkill_set_block(rfkill, state);
 768	mutex_unlock(&rfkill_global_mutex);
 769
 770	return count;
 771}
 772static DEVICE_ATTR_RW(soft);
 773
 774static ssize_t hard_block_reasons_show(struct device *dev,
 775				       struct device_attribute *attr,
 776				       char *buf)
 777{
 778	struct rfkill *rfkill = to_rfkill(dev);
 779
 780	return sysfs_emit(buf, "0x%lx\n", rfkill->hard_block_reasons);
 781}
 782static DEVICE_ATTR_RO(hard_block_reasons);
 783
 784static u8 user_state_from_blocked(unsigned long state)
 785{
 786	if (state & RFKILL_BLOCK_HW)
 787		return RFKILL_USER_STATE_HARD_BLOCKED;
 788	if (state & RFKILL_BLOCK_SW)
 789		return RFKILL_USER_STATE_SOFT_BLOCKED;
 790
 791	return RFKILL_USER_STATE_UNBLOCKED;
 792}
 793
 794static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 795			  char *buf)
 796{
 797	struct rfkill *rfkill = to_rfkill(dev);
 798
 799	mutex_lock(&rfkill_global_mutex);
 800	rfkill_sync(rfkill);
 801	mutex_unlock(&rfkill_global_mutex);
 802
 803	return sysfs_emit(buf, "%d\n", user_state_from_blocked(rfkill->state));
 804}
 805
 806static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 807			   const char *buf, size_t count)
 808{
 809	struct rfkill *rfkill = to_rfkill(dev);
 810	unsigned long state;
 811	int err;
 812
 813	if (!capable(CAP_NET_ADMIN))
 814		return -EPERM;
 815
 816	err = kstrtoul(buf, 0, &state);
 817	if (err)
 818		return err;
 819
 820	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 821	    state != RFKILL_USER_STATE_UNBLOCKED)
 822		return -EINVAL;
 823
 824	mutex_lock(&rfkill_global_mutex);
 825	rfkill_sync(rfkill);
 826	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 827	mutex_unlock(&rfkill_global_mutex);
 828
 829	return count;
 830}
 831static DEVICE_ATTR_RW(state);
 832
 833static struct attribute *rfkill_dev_attrs[] = {
 834	&dev_attr_name.attr,
 835	&dev_attr_type.attr,
 836	&dev_attr_index.attr,
 837	&dev_attr_persistent.attr,
 838	&dev_attr_state.attr,
 839	&dev_attr_soft.attr,
 840	&dev_attr_hard.attr,
 841	&dev_attr_hard_block_reasons.attr,
 842	NULL,
 843};
 844ATTRIBUTE_GROUPS(rfkill_dev);
 845
 846static void rfkill_release(struct device *dev)
 847{
 848	struct rfkill *rfkill = to_rfkill(dev);
 849
 850	kfree(rfkill);
 851}
 852
 853static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
 854{
 855	struct rfkill *rfkill = to_rfkill(dev);
 856	unsigned long flags;
 857	unsigned long reasons;
 858	u32 state;
 859	int error;
 860
 861	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 862	if (error)
 863		return error;
 864	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 865			       rfkill_types[rfkill->type]);
 866	if (error)
 867		return error;
 868	spin_lock_irqsave(&rfkill->lock, flags);
 869	state = rfkill->state;
 870	reasons = rfkill->hard_block_reasons;
 871	spin_unlock_irqrestore(&rfkill->lock, flags);
 872	error = add_uevent_var(env, "RFKILL_STATE=%d",
 873			       user_state_from_blocked(state));
 874	if (error)
 875		return error;
 876	return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
 877}
 878
 879void rfkill_pause_polling(struct rfkill *rfkill)
 880{
 881	BUG_ON(!rfkill);
 882
 883	if (!rfkill->ops->poll)
 884		return;
 885
 886	rfkill->polling_paused = true;
 887	cancel_delayed_work_sync(&rfkill->poll_work);
 888}
 889EXPORT_SYMBOL(rfkill_pause_polling);
 890
 891void rfkill_resume_polling(struct rfkill *rfkill)
 892{
 893	BUG_ON(!rfkill);
 894
 895	if (!rfkill->ops->poll)
 896		return;
 897
 898	rfkill->polling_paused = false;
 899
 900	if (rfkill->suspended)
 901		return;
 902
 903	queue_delayed_work(system_power_efficient_wq,
 904			   &rfkill->poll_work, 0);
 905}
 906EXPORT_SYMBOL(rfkill_resume_polling);
 907
 908#ifdef CONFIG_PM_SLEEP
 909static int rfkill_suspend(struct device *dev)
 910{
 911	struct rfkill *rfkill = to_rfkill(dev);
 912
 913	rfkill->suspended = true;
 914	cancel_delayed_work_sync(&rfkill->poll_work);
 915
 916	return 0;
 917}
 918
 919static int rfkill_resume(struct device *dev)
 920{
 921	struct rfkill *rfkill = to_rfkill(dev);
 922	bool cur;
 923
 924	rfkill->suspended = false;
 925
 926	if (!rfkill->registered)
 927		return 0;
 928
 929	if (!rfkill->persistent) {
 930		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 931		rfkill_set_block(rfkill, cur);
 932	}
 933
 934	if (rfkill->ops->poll && !rfkill->polling_paused)
 935		queue_delayed_work(system_power_efficient_wq,
 936				   &rfkill->poll_work, 0);
 937
 938	return 0;
 939}
 940
 941static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 942#define RFKILL_PM_OPS (&rfkill_pm_ops)
 943#else
 944#define RFKILL_PM_OPS NULL
 945#endif
 946
 947static struct class rfkill_class = {
 948	.name		= "rfkill",
 949	.dev_release	= rfkill_release,
 950	.dev_groups	= rfkill_dev_groups,
 951	.dev_uevent	= rfkill_dev_uevent,
 952	.pm		= RFKILL_PM_OPS,
 953};
 954
 955bool rfkill_blocked(struct rfkill *rfkill)
 956{
 957	unsigned long flags;
 958	u32 state;
 959
 960	spin_lock_irqsave(&rfkill->lock, flags);
 961	state = rfkill->state;
 962	spin_unlock_irqrestore(&rfkill->lock, flags);
 963
 964	return !!(state & RFKILL_BLOCK_ANY);
 965}
 966EXPORT_SYMBOL(rfkill_blocked);
 967
 968bool rfkill_soft_blocked(struct rfkill *rfkill)
 969{
 970	unsigned long flags;
 971	u32 state;
 972
 973	spin_lock_irqsave(&rfkill->lock, flags);
 974	state = rfkill->state;
 975	spin_unlock_irqrestore(&rfkill->lock, flags);
 976
 977	return !!(state & RFKILL_BLOCK_SW);
 978}
 979EXPORT_SYMBOL(rfkill_soft_blocked);
 980
 981struct rfkill * __must_check rfkill_alloc(const char *name,
 982					  struct device *parent,
 983					  const enum rfkill_type type,
 984					  const struct rfkill_ops *ops,
 985					  void *ops_data)
 986{
 987	struct rfkill *rfkill;
 988	struct device *dev;
 989
 990	if (WARN_ON(!ops))
 991		return NULL;
 992
 993	if (WARN_ON(!ops->set_block))
 994		return NULL;
 995
 996	if (WARN_ON(!name))
 997		return NULL;
 998
 999	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
1000		return NULL;
1001
1002	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
1003	if (!rfkill)
1004		return NULL;
1005
1006	spin_lock_init(&rfkill->lock);
1007	INIT_LIST_HEAD(&rfkill->node);
1008	rfkill->type = type;
1009	strcpy(rfkill->name, name);
1010	rfkill->ops = ops;
1011	rfkill->data = ops_data;
1012
1013	dev = &rfkill->dev;
1014	dev->class = &rfkill_class;
1015	dev->parent = parent;
1016	device_initialize(dev);
1017
1018	return rfkill;
1019}
1020EXPORT_SYMBOL(rfkill_alloc);
1021
1022static void rfkill_poll(struct work_struct *work)
1023{
1024	struct rfkill *rfkill;
1025
1026	rfkill = container_of(work, struct rfkill, poll_work.work);
1027
1028	/*
1029	 * Poll hardware state -- driver will use one of the
1030	 * rfkill_set{,_hw,_sw}_state functions and use its
1031	 * return value to update the current status.
1032	 */
1033	rfkill->ops->poll(rfkill, rfkill->data);
1034
1035	queue_delayed_work(system_power_efficient_wq,
1036		&rfkill->poll_work,
1037		round_jiffies_relative(POLL_INTERVAL));
1038}
1039
1040static void rfkill_uevent_work(struct work_struct *work)
1041{
1042	struct rfkill *rfkill;
1043
1044	rfkill = container_of(work, struct rfkill, uevent_work);
1045
1046	mutex_lock(&rfkill_global_mutex);
1047	rfkill_event(rfkill);
1048	mutex_unlock(&rfkill_global_mutex);
1049}
1050
1051static void rfkill_sync_work(struct work_struct *work)
1052{
1053	struct rfkill *rfkill = container_of(work, struct rfkill, sync_work);
 
 
 
1054
1055	mutex_lock(&rfkill_global_mutex);
1056	rfkill_sync(rfkill);
 
1057	mutex_unlock(&rfkill_global_mutex);
1058}
1059
1060int __must_check rfkill_register(struct rfkill *rfkill)
1061{
1062	static unsigned long rfkill_no;
1063	struct device *dev;
1064	int error;
1065
1066	if (!rfkill)
1067		return -EINVAL;
1068
1069	dev = &rfkill->dev;
1070
1071	mutex_lock(&rfkill_global_mutex);
1072
1073	if (rfkill->registered) {
1074		error = -EALREADY;
1075		goto unlock;
1076	}
1077
1078	rfkill->idx = rfkill_no;
1079	dev_set_name(dev, "rfkill%lu", rfkill_no);
1080	rfkill_no++;
1081
1082	list_add_tail(&rfkill->node, &rfkill_list);
1083
1084	error = device_add(dev);
1085	if (error)
1086		goto remove;
1087
1088	error = rfkill_led_trigger_register(rfkill);
1089	if (error)
1090		goto devdel;
1091
1092	rfkill->registered = true;
1093
1094	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1095	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1096	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1097
1098	if (rfkill->ops->poll)
1099		queue_delayed_work(system_power_efficient_wq,
1100			&rfkill->poll_work,
1101			round_jiffies_relative(POLL_INTERVAL));
1102
1103	if (!rfkill->persistent || rfkill_epo_lock_active) {
1104		rfkill->need_sync = true;
1105		schedule_work(&rfkill->sync_work);
1106	} else {
1107#ifdef CONFIG_RFKILL_INPUT
1108		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1109
1110		if (!atomic_read(&rfkill_input_disabled))
1111			__rfkill_switch_all(rfkill->type, soft_blocked);
1112#endif
1113	}
1114
1115	rfkill_global_led_trigger_event();
1116	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1117
1118	mutex_unlock(&rfkill_global_mutex);
1119	return 0;
1120
1121 devdel:
1122	device_del(&rfkill->dev);
1123 remove:
1124	list_del_init(&rfkill->node);
1125 unlock:
1126	mutex_unlock(&rfkill_global_mutex);
1127	return error;
1128}
1129EXPORT_SYMBOL(rfkill_register);
1130
1131void rfkill_unregister(struct rfkill *rfkill)
1132{
1133	BUG_ON(!rfkill);
1134
1135	if (rfkill->ops->poll)
1136		cancel_delayed_work_sync(&rfkill->poll_work);
1137
1138	cancel_work_sync(&rfkill->uevent_work);
1139	cancel_work_sync(&rfkill->sync_work);
1140
1141	rfkill->registered = false;
1142
1143	device_del(&rfkill->dev);
1144
1145	mutex_lock(&rfkill_global_mutex);
1146	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1147	list_del_init(&rfkill->node);
1148	rfkill_global_led_trigger_event();
1149	mutex_unlock(&rfkill_global_mutex);
1150
1151	rfkill_led_trigger_unregister(rfkill);
1152}
1153EXPORT_SYMBOL(rfkill_unregister);
1154
1155void rfkill_destroy(struct rfkill *rfkill)
1156{
1157	if (rfkill)
1158		put_device(&rfkill->dev);
1159}
1160EXPORT_SYMBOL(rfkill_destroy);
1161
1162static int rfkill_fop_open(struct inode *inode, struct file *file)
1163{
1164	struct rfkill_data *data;
1165	struct rfkill *rfkill;
1166	struct rfkill_int_event *ev, *tmp;
1167
1168	data = kzalloc(sizeof(*data), GFP_KERNEL);
1169	if (!data)
1170		return -ENOMEM;
1171
1172	data->max_size = RFKILL_EVENT_SIZE_V1;
1173
1174	INIT_LIST_HEAD(&data->events);
1175	mutex_init(&data->mtx);
1176	init_waitqueue_head(&data->read_wait);
1177
1178	mutex_lock(&rfkill_global_mutex);
 
1179	/*
1180	 * start getting events from elsewhere but hold mtx to get
1181	 * startup events added first
1182	 */
1183
1184	list_for_each_entry(rfkill, &rfkill_list, node) {
1185		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1186		if (!ev)
1187			goto free;
1188		rfkill_sync(rfkill);
1189		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1190		mutex_lock(&data->mtx);
1191		list_add_tail(&ev->list, &data->events);
1192		mutex_unlock(&data->mtx);
1193	}
1194	list_add(&data->list, &rfkill_fds);
 
1195	mutex_unlock(&rfkill_global_mutex);
1196
1197	file->private_data = data;
1198
1199	return stream_open(inode, file);
1200
1201 free:
 
1202	mutex_unlock(&rfkill_global_mutex);
1203	mutex_destroy(&data->mtx);
1204	list_for_each_entry_safe(ev, tmp, &data->events, list)
1205		kfree(ev);
1206	kfree(data);
1207	return -ENOMEM;
1208}
1209
1210static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1211{
1212	struct rfkill_data *data = file->private_data;
1213	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1214
1215	poll_wait(file, &data->read_wait, wait);
1216
1217	mutex_lock(&data->mtx);
1218	if (!list_empty(&data->events))
1219		res = EPOLLIN | EPOLLRDNORM;
1220	mutex_unlock(&data->mtx);
1221
1222	return res;
1223}
1224
1225static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1226			       size_t count, loff_t *pos)
1227{
1228	struct rfkill_data *data = file->private_data;
1229	struct rfkill_int_event *ev;
1230	unsigned long sz;
1231	int ret;
1232
1233	mutex_lock(&data->mtx);
1234
1235	while (list_empty(&data->events)) {
1236		if (file->f_flags & O_NONBLOCK) {
1237			ret = -EAGAIN;
1238			goto out;
1239		}
1240		mutex_unlock(&data->mtx);
1241		/* since we re-check and it just compares pointers,
1242		 * using !list_empty() without locking isn't a problem
1243		 */
1244		ret = wait_event_interruptible(data->read_wait,
1245					       !list_empty(&data->events));
1246		mutex_lock(&data->mtx);
1247
1248		if (ret)
1249			goto out;
1250	}
1251
1252	ev = list_first_entry(&data->events, struct rfkill_int_event,
1253				list);
1254
1255	sz = min_t(unsigned long, sizeof(ev->ev), count);
1256	sz = min_t(unsigned long, sz, data->max_size);
1257	ret = sz;
1258	if (copy_to_user(buf, &ev->ev, sz))
1259		ret = -EFAULT;
1260
1261	list_del(&ev->list);
1262	kfree(ev);
1263 out:
1264	mutex_unlock(&data->mtx);
1265	return ret;
1266}
1267
1268static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1269				size_t count, loff_t *pos)
1270{
1271	struct rfkill_data *data = file->private_data;
1272	struct rfkill *rfkill;
1273	struct rfkill_event_ext ev;
1274	int ret;
1275
1276	/* we don't need the 'hard' variable but accept it */
1277	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1278		return -EINVAL;
1279
1280	/*
1281	 * Copy as much data as we can accept into our 'ev' buffer,
1282	 * but tell userspace how much we've copied so it can determine
1283	 * our API version even in a write() call, if it cares.
1284	 */
1285	count = min(count, sizeof(ev));
1286	count = min_t(size_t, count, data->max_size);
1287	if (copy_from_user(&ev, buf, count))
1288		return -EFAULT;
1289
1290	if (ev.type >= NUM_RFKILL_TYPES)
1291		return -EINVAL;
1292
1293	mutex_lock(&rfkill_global_mutex);
1294
1295	switch (ev.op) {
1296	case RFKILL_OP_CHANGE_ALL:
1297		rfkill_update_global_state(ev.type, ev.soft);
1298		list_for_each_entry(rfkill, &rfkill_list, node)
1299			if (rfkill->type == ev.type ||
1300			    ev.type == RFKILL_TYPE_ALL)
1301				rfkill_set_block(rfkill, ev.soft);
1302		ret = 0;
1303		break;
1304	case RFKILL_OP_CHANGE:
1305		list_for_each_entry(rfkill, &rfkill_list, node)
1306			if (rfkill->idx == ev.idx &&
1307			    (rfkill->type == ev.type ||
1308			     ev.type == RFKILL_TYPE_ALL))
1309				rfkill_set_block(rfkill, ev.soft);
1310		ret = 0;
1311		break;
1312	default:
1313		ret = -EINVAL;
1314		break;
1315	}
1316
1317	mutex_unlock(&rfkill_global_mutex);
1318
1319	return ret ?: count;
1320}
1321
1322static int rfkill_fop_release(struct inode *inode, struct file *file)
1323{
1324	struct rfkill_data *data = file->private_data;
1325	struct rfkill_int_event *ev, *tmp;
1326
1327	mutex_lock(&rfkill_global_mutex);
1328	list_del(&data->list);
1329	mutex_unlock(&rfkill_global_mutex);
1330
1331	mutex_destroy(&data->mtx);
1332	list_for_each_entry_safe(ev, tmp, &data->events, list)
1333		kfree(ev);
1334
1335#ifdef CONFIG_RFKILL_INPUT
1336	if (data->input_handler)
1337		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1338			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1339#endif
1340
1341	kfree(data);
1342
1343	return 0;
1344}
1345
 
1346static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1347			     unsigned long arg)
1348{
1349	struct rfkill_data *data = file->private_data;
1350	int ret = -ENOTTY;
1351	u32 size;
1352
1353	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1354		return -ENOTTY;
 
 
 
1355
1356	mutex_lock(&data->mtx);
1357	switch (_IOC_NR(cmd)) {
1358#ifdef CONFIG_RFKILL_INPUT
1359	case RFKILL_IOC_NOINPUT:
1360		if (!data->input_handler) {
1361			if (atomic_inc_return(&rfkill_input_disabled) == 1)
1362				printk(KERN_DEBUG "rfkill: input handler disabled\n");
1363			data->input_handler = true;
1364		}
1365		ret = 0;
1366		break;
1367#endif
1368	case RFKILL_IOC_MAX_SIZE:
1369		if (get_user(size, (__u32 __user *)arg)) {
1370			ret = -EFAULT;
1371			break;
1372		}
1373		if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1374			ret = -EINVAL;
1375			break;
1376		}
1377		data->max_size = size;
1378		ret = 0;
1379		break;
1380	default:
1381		break;
1382	}
 
1383	mutex_unlock(&data->mtx);
1384
1385	return ret;
1386}
 
1387
1388static const struct file_operations rfkill_fops = {
1389	.owner		= THIS_MODULE,
1390	.open		= rfkill_fop_open,
1391	.read		= rfkill_fop_read,
1392	.write		= rfkill_fop_write,
1393	.poll		= rfkill_fop_poll,
1394	.release	= rfkill_fop_release,
 
1395	.unlocked_ioctl	= rfkill_fop_ioctl,
1396	.compat_ioctl	= compat_ptr_ioctl,
 
 
1397};
1398
1399#define RFKILL_NAME "rfkill"
1400
1401static struct miscdevice rfkill_miscdev = {
 
1402	.fops	= &rfkill_fops,
1403	.name	= RFKILL_NAME,
1404	.minor	= RFKILL_MINOR,
1405};
1406
1407static int __init rfkill_init(void)
1408{
1409	int error;
1410
1411	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1412
1413	error = class_register(&rfkill_class);
1414	if (error)
1415		goto error_class;
1416
1417	error = misc_register(&rfkill_miscdev);
1418	if (error)
1419		goto error_misc;
1420
1421	error = rfkill_global_led_trigger_register();
1422	if (error)
1423		goto error_led_trigger;
1424
1425#ifdef CONFIG_RFKILL_INPUT
1426	error = rfkill_handler_init();
1427	if (error)
1428		goto error_input;
1429#endif
1430
1431	return 0;
1432
1433#ifdef CONFIG_RFKILL_INPUT
1434error_input:
1435	rfkill_global_led_trigger_unregister();
1436#endif
1437error_led_trigger:
1438	misc_deregister(&rfkill_miscdev);
1439error_misc:
1440	class_unregister(&rfkill_class);
1441error_class:
1442	return error;
1443}
1444subsys_initcall(rfkill_init);
1445
1446static void __exit rfkill_exit(void)
1447{
1448#ifdef CONFIG_RFKILL_INPUT
1449	rfkill_handler_exit();
1450#endif
1451	rfkill_global_led_trigger_unregister();
1452	misc_deregister(&rfkill_miscdev);
1453	class_unregister(&rfkill_class);
1454}
1455module_exit(rfkill_exit);
1456
1457MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1458MODULE_ALIAS("devname:" RFKILL_NAME);