Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Slab allocator functions that are independent of the allocator strategy
   4 *
   5 * (C) 2012 Christoph Lameter <cl@linux.com>
   6 */
   7#include <linux/slab.h>
   8
   9#include <linux/mm.h>
  10#include <linux/poison.h>
  11#include <linux/interrupt.h>
  12#include <linux/memory.h>
  13#include <linux/cache.h>
  14#include <linux/compiler.h>
 
  15#include <linux/module.h>
  16#include <linux/cpu.h>
  17#include <linux/uaccess.h>
  18#include <linux/seq_file.h>
  19#include <linux/proc_fs.h>
  20#include <linux/debugfs.h>
 
  21#include <asm/cacheflush.h>
  22#include <asm/tlbflush.h>
  23#include <asm/page.h>
  24#include <linux/memcontrol.h>
 
 
 
 
  25
  26#define CREATE_TRACE_POINTS
  27#include <trace/events/kmem.h>
  28
  29#include "slab.h"
  30
  31enum slab_state slab_state;
  32LIST_HEAD(slab_caches);
  33DEFINE_MUTEX(slab_mutex);
  34struct kmem_cache *kmem_cache;
  35
  36#ifdef CONFIG_HARDENED_USERCOPY
  37bool usercopy_fallback __ro_after_init =
  38		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
  39module_param(usercopy_fallback, bool, 0400);
  40MODULE_PARM_DESC(usercopy_fallback,
  41		"WARN instead of reject usercopy whitelist violations");
  42#endif
  43
  44static LIST_HEAD(slab_caches_to_rcu_destroy);
  45static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
  46static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  47		    slab_caches_to_rcu_destroy_workfn);
  48
  49/*
  50 * Set of flags that will prevent slab merging
  51 */
  52#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  53		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
  54		SLAB_FAILSLAB | SLAB_KASAN)
  55
  56#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  57			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
  58
  59/*
  60 * Merge control. If this is set then no merging of slab caches will occur.
  61 */
  62static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
  63
  64static int __init setup_slab_nomerge(char *str)
  65{
  66	slab_nomerge = true;
  67	return 1;
  68}
  69
 
 
 
 
 
 
  70#ifdef CONFIG_SLUB
  71__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
 
  72#endif
  73
  74__setup("slab_nomerge", setup_slab_nomerge);
 
  75
  76/*
  77 * Determine the size of a slab object
  78 */
  79unsigned int kmem_cache_size(struct kmem_cache *s)
  80{
  81	return s->object_size;
  82}
  83EXPORT_SYMBOL(kmem_cache_size);
  84
  85#ifdef CONFIG_DEBUG_VM
  86static int kmem_cache_sanity_check(const char *name, unsigned int size)
  87{
  88	if (!name || in_interrupt() || size < sizeof(void *) ||
  89		size > KMALLOC_MAX_SIZE) {
  90		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
  91		return -EINVAL;
  92	}
  93
  94	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
  95	return 0;
  96}
  97#else
  98static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
  99{
 100	return 0;
 101}
 102#endif
 103
 104void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
 105{
 106	size_t i;
 107
 108	for (i = 0; i < nr; i++) {
 109		if (s)
 110			kmem_cache_free(s, p[i]);
 111		else
 112			kfree(p[i]);
 113	}
 114}
 115
 116int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
 117								void **p)
 118{
 119	size_t i;
 120
 121	for (i = 0; i < nr; i++) {
 122		void *x = p[i] = kmem_cache_alloc(s, flags);
 123		if (!x) {
 124			__kmem_cache_free_bulk(s, i, p);
 125			return 0;
 126		}
 127	}
 128	return i;
 129}
 130
 131#ifdef CONFIG_MEMCG_KMEM
 132
 133LIST_HEAD(slab_root_caches);
 134static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
 135
 136static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
 137
 138void slab_init_memcg_params(struct kmem_cache *s)
 139{
 140	s->memcg_params.root_cache = NULL;
 141	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
 142	INIT_LIST_HEAD(&s->memcg_params.children);
 143	s->memcg_params.dying = false;
 144}
 145
 146static int init_memcg_params(struct kmem_cache *s,
 147			     struct kmem_cache *root_cache)
 148{
 149	struct memcg_cache_array *arr;
 150
 151	if (root_cache) {
 152		int ret = percpu_ref_init(&s->memcg_params.refcnt,
 153					  kmemcg_cache_shutdown,
 154					  0, GFP_KERNEL);
 155		if (ret)
 156			return ret;
 157
 158		s->memcg_params.root_cache = root_cache;
 159		INIT_LIST_HEAD(&s->memcg_params.children_node);
 160		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
 161		return 0;
 162	}
 163
 164	slab_init_memcg_params(s);
 165
 166	if (!memcg_nr_cache_ids)
 167		return 0;
 168
 169	arr = kvzalloc(sizeof(struct memcg_cache_array) +
 170		       memcg_nr_cache_ids * sizeof(void *),
 171		       GFP_KERNEL);
 172	if (!arr)
 173		return -ENOMEM;
 174
 175	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
 176	return 0;
 177}
 178
 179static void destroy_memcg_params(struct kmem_cache *s)
 180{
 181	if (is_root_cache(s)) {
 182		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
 183	} else {
 184		mem_cgroup_put(s->memcg_params.memcg);
 185		WRITE_ONCE(s->memcg_params.memcg, NULL);
 186		percpu_ref_exit(&s->memcg_params.refcnt);
 187	}
 188}
 189
 190static void free_memcg_params(struct rcu_head *rcu)
 191{
 192	struct memcg_cache_array *old;
 193
 194	old = container_of(rcu, struct memcg_cache_array, rcu);
 195	kvfree(old);
 196}
 197
 198static int update_memcg_params(struct kmem_cache *s, int new_array_size)
 199{
 200	struct memcg_cache_array *old, *new;
 201
 202	new = kvzalloc(sizeof(struct memcg_cache_array) +
 203		       new_array_size * sizeof(void *), GFP_KERNEL);
 204	if (!new)
 205		return -ENOMEM;
 206
 207	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
 208					lockdep_is_held(&slab_mutex));
 209	if (old)
 210		memcpy(new->entries, old->entries,
 211		       memcg_nr_cache_ids * sizeof(void *));
 212
 213	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
 214	if (old)
 215		call_rcu(&old->rcu, free_memcg_params);
 216	return 0;
 217}
 218
 219int memcg_update_all_caches(int num_memcgs)
 220{
 221	struct kmem_cache *s;
 222	int ret = 0;
 223
 224	mutex_lock(&slab_mutex);
 225	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
 226		ret = update_memcg_params(s, num_memcgs);
 227		/*
 228		 * Instead of freeing the memory, we'll just leave the caches
 229		 * up to this point in an updated state.
 230		 */
 231		if (ret)
 232			break;
 233	}
 234	mutex_unlock(&slab_mutex);
 235	return ret;
 236}
 237
 238void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
 239{
 240	if (is_root_cache(s)) {
 241		list_add(&s->root_caches_node, &slab_root_caches);
 242	} else {
 243		css_get(&memcg->css);
 244		s->memcg_params.memcg = memcg;
 245		list_add(&s->memcg_params.children_node,
 246			 &s->memcg_params.root_cache->memcg_params.children);
 247		list_add(&s->memcg_params.kmem_caches_node,
 248			 &s->memcg_params.memcg->kmem_caches);
 249	}
 250}
 251
 252static void memcg_unlink_cache(struct kmem_cache *s)
 253{
 254	if (is_root_cache(s)) {
 255		list_del(&s->root_caches_node);
 256	} else {
 257		list_del(&s->memcg_params.children_node);
 258		list_del(&s->memcg_params.kmem_caches_node);
 259	}
 260}
 261#else
 262static inline int init_memcg_params(struct kmem_cache *s,
 263				    struct kmem_cache *root_cache)
 264{
 265	return 0;
 266}
 267
 268static inline void destroy_memcg_params(struct kmem_cache *s)
 269{
 270}
 271
 272static inline void memcg_unlink_cache(struct kmem_cache *s)
 273{
 274}
 275#endif /* CONFIG_MEMCG_KMEM */
 276
 277/*
 278 * Figure out what the alignment of the objects will be given a set of
 279 * flags, a user specified alignment and the size of the objects.
 280 */
 281static unsigned int calculate_alignment(slab_flags_t flags,
 282		unsigned int align, unsigned int size)
 283{
 284	/*
 285	 * If the user wants hardware cache aligned objects then follow that
 286	 * suggestion if the object is sufficiently large.
 287	 *
 288	 * The hardware cache alignment cannot override the specified
 289	 * alignment though. If that is greater then use it.
 290	 */
 291	if (flags & SLAB_HWCACHE_ALIGN) {
 292		unsigned int ralign;
 293
 294		ralign = cache_line_size();
 295		while (size <= ralign / 2)
 296			ralign /= 2;
 297		align = max(align, ralign);
 298	}
 299
 300	if (align < ARCH_SLAB_MINALIGN)
 301		align = ARCH_SLAB_MINALIGN;
 302
 303	return ALIGN(align, sizeof(void *));
 304}
 305
 306/*
 307 * Find a mergeable slab cache
 308 */
 309int slab_unmergeable(struct kmem_cache *s)
 310{
 311	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 312		return 1;
 313
 314	if (!is_root_cache(s))
 315		return 1;
 316
 317	if (s->ctor)
 318		return 1;
 319
 
 320	if (s->usersize)
 321		return 1;
 
 322
 323	/*
 324	 * We may have set a slab to be unmergeable during bootstrap.
 325	 */
 326	if (s->refcount < 0)
 327		return 1;
 328
 329	return 0;
 330}
 331
 332struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 333		slab_flags_t flags, const char *name, void (*ctor)(void *))
 334{
 335	struct kmem_cache *s;
 336
 337	if (slab_nomerge)
 338		return NULL;
 339
 340	if (ctor)
 341		return NULL;
 342
 343	size = ALIGN(size, sizeof(void *));
 344	align = calculate_alignment(flags, align, size);
 345	size = ALIGN(size, align);
 346	flags = kmem_cache_flags(size, flags, name, NULL);
 347
 348	if (flags & SLAB_NEVER_MERGE)
 349		return NULL;
 350
 351	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
 352		if (slab_unmergeable(s))
 353			continue;
 354
 355		if (size > s->size)
 356			continue;
 357
 358		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 359			continue;
 360		/*
 361		 * Check if alignment is compatible.
 362		 * Courtesy of Adrian Drzewiecki
 363		 */
 364		if ((s->size & ~(align - 1)) != s->size)
 365			continue;
 366
 367		if (s->size - size >= sizeof(void *))
 368			continue;
 369
 370		if (IS_ENABLED(CONFIG_SLAB) && align &&
 371			(align > s->align || s->align % align))
 372			continue;
 373
 374		return s;
 375	}
 376	return NULL;
 377}
 378
 379static struct kmem_cache *create_cache(const char *name,
 380		unsigned int object_size, unsigned int align,
 381		slab_flags_t flags, unsigned int useroffset,
 382		unsigned int usersize, void (*ctor)(void *),
 383		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 384{
 385	struct kmem_cache *s;
 386	int err;
 387
 388	if (WARN_ON(useroffset + usersize > object_size))
 389		useroffset = usersize = 0;
 390
 391	err = -ENOMEM;
 392	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 393	if (!s)
 394		goto out;
 395
 396	s->name = name;
 397	s->size = s->object_size = object_size;
 398	s->align = align;
 399	s->ctor = ctor;
 
 400	s->useroffset = useroffset;
 401	s->usersize = usersize;
 402
 403	err = init_memcg_params(s, root_cache);
 404	if (err)
 405		goto out_free_cache;
 406
 407	err = __kmem_cache_create(s, flags);
 408	if (err)
 409		goto out_free_cache;
 410
 411	s->refcount = 1;
 412	list_add(&s->list, &slab_caches);
 413	memcg_link_cache(s, memcg);
 414out:
 415	if (err)
 416		return ERR_PTR(err);
 417	return s;
 418
 419out_free_cache:
 420	destroy_memcg_params(s);
 421	kmem_cache_free(kmem_cache, s);
 422	goto out;
 423}
 424
 425/**
 426 * kmem_cache_create_usercopy - Create a cache with a region suitable
 427 * for copying to userspace
 428 * @name: A string which is used in /proc/slabinfo to identify this cache.
 429 * @size: The size of objects to be created in this cache.
 430 * @align: The required alignment for the objects.
 431 * @flags: SLAB flags
 432 * @useroffset: Usercopy region offset
 433 * @usersize: Usercopy region size
 434 * @ctor: A constructor for the objects.
 435 *
 436 * Cannot be called within a interrupt, but can be interrupted.
 437 * The @ctor is run when new pages are allocated by the cache.
 438 *
 439 * The flags are
 440 *
 441 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 442 * to catch references to uninitialised memory.
 443 *
 444 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 445 * for buffer overruns.
 446 *
 447 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 448 * cacheline.  This can be beneficial if you're counting cycles as closely
 449 * as davem.
 450 *
 451 * Return: a pointer to the cache on success, NULL on failure.
 452 */
 453struct kmem_cache *
 454kmem_cache_create_usercopy(const char *name,
 455		  unsigned int size, unsigned int align,
 456		  slab_flags_t flags,
 457		  unsigned int useroffset, unsigned int usersize,
 458		  void (*ctor)(void *))
 459{
 460	struct kmem_cache *s = NULL;
 461	const char *cache_name;
 462	int err;
 463
 464	get_online_cpus();
 465	get_online_mems();
 466	memcg_get_cache_ids();
 
 
 
 
 
 
 
 
 
 
 467
 468	mutex_lock(&slab_mutex);
 469
 470	err = kmem_cache_sanity_check(name, size);
 471	if (err) {
 472		goto out_unlock;
 473	}
 474
 475	/* Refuse requests with allocator specific flags */
 476	if (flags & ~SLAB_FLAGS_PERMITTED) {
 477		err = -EINVAL;
 478		goto out_unlock;
 479	}
 480
 481	/*
 482	 * Some allocators will constraint the set of valid flags to a subset
 483	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 484	 * case, and we'll just provide them with a sanitized version of the
 485	 * passed flags.
 486	 */
 487	flags &= CACHE_CREATE_MASK;
 488
 489	/* Fail closed on bad usersize of useroffset values. */
 490	if (WARN_ON(!usersize && useroffset) ||
 
 491	    WARN_ON(size < usersize || size - usersize < useroffset))
 492		usersize = useroffset = 0;
 493
 494	if (!usersize)
 495		s = __kmem_cache_alias(name, size, align, flags, ctor);
 496	if (s)
 497		goto out_unlock;
 498
 499	cache_name = kstrdup_const(name, GFP_KERNEL);
 500	if (!cache_name) {
 501		err = -ENOMEM;
 502		goto out_unlock;
 503	}
 504
 505	s = create_cache(cache_name, size,
 506			 calculate_alignment(flags, align, size),
 507			 flags, useroffset, usersize, ctor, NULL, NULL);
 508	if (IS_ERR(s)) {
 509		err = PTR_ERR(s);
 510		kfree_const(cache_name);
 511	}
 512
 513out_unlock:
 514	mutex_unlock(&slab_mutex);
 515
 516	memcg_put_cache_ids();
 517	put_online_mems();
 518	put_online_cpus();
 519
 520	if (err) {
 521		if (flags & SLAB_PANIC)
 522			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
 523				name, err);
 524		else {
 525			pr_warn("kmem_cache_create(%s) failed with error %d\n",
 526				name, err);
 527			dump_stack();
 528		}
 529		return NULL;
 530	}
 531	return s;
 532}
 533EXPORT_SYMBOL(kmem_cache_create_usercopy);
 534
 535/**
 536 * kmem_cache_create - Create a cache.
 537 * @name: A string which is used in /proc/slabinfo to identify this cache.
 538 * @size: The size of objects to be created in this cache.
 539 * @align: The required alignment for the objects.
 540 * @flags: SLAB flags
 541 * @ctor: A constructor for the objects.
 542 *
 543 * Cannot be called within a interrupt, but can be interrupted.
 544 * The @ctor is run when new pages are allocated by the cache.
 545 *
 546 * The flags are
 547 *
 548 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 549 * to catch references to uninitialised memory.
 550 *
 551 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 552 * for buffer overruns.
 553 *
 554 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 555 * cacheline.  This can be beneficial if you're counting cycles as closely
 556 * as davem.
 557 *
 558 * Return: a pointer to the cache on success, NULL on failure.
 559 */
 560struct kmem_cache *
 561kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 562		slab_flags_t flags, void (*ctor)(void *))
 563{
 564	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 565					  ctor);
 566}
 567EXPORT_SYMBOL(kmem_cache_create);
 568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 570{
 571	LIST_HEAD(to_destroy);
 572	struct kmem_cache *s, *s2;
 573
 574	/*
 575	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 576	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 577	 * through RCU and and the associated kmem_cache are dereferenced
 578	 * while freeing the pages, so the kmem_caches should be freed only
 579	 * after the pending RCU operations are finished.  As rcu_barrier()
 580	 * is a pretty slow operation, we batch all pending destructions
 581	 * asynchronously.
 582	 */
 583	mutex_lock(&slab_mutex);
 584	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 585	mutex_unlock(&slab_mutex);
 586
 587	if (list_empty(&to_destroy))
 588		return;
 589
 590	rcu_barrier();
 591
 592	list_for_each_entry_safe(s, s2, &to_destroy, list) {
 593#ifdef SLAB_SUPPORTS_SYSFS
 594		sysfs_slab_release(s);
 595#else
 596		slab_kmem_cache_release(s);
 597#endif
 598	}
 599}
 600
 601static int shutdown_cache(struct kmem_cache *s)
 602{
 603	/* free asan quarantined objects */
 604	kasan_cache_shutdown(s);
 605
 606	if (__kmem_cache_shutdown(s) != 0)
 607		return -EBUSY;
 608
 609	memcg_unlink_cache(s);
 610	list_del(&s->list);
 611
 612	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 613#ifdef SLAB_SUPPORTS_SYSFS
 614		sysfs_slab_unlink(s);
 615#endif
 616		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 617		schedule_work(&slab_caches_to_rcu_destroy_work);
 618	} else {
 619#ifdef SLAB_SUPPORTS_SYSFS
 620		sysfs_slab_unlink(s);
 621		sysfs_slab_release(s);
 622#else
 623		slab_kmem_cache_release(s);
 624#endif
 625	}
 626
 627	return 0;
 628}
 629
 630#ifdef CONFIG_MEMCG_KMEM
 631/*
 632 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
 633 * @memcg: The memory cgroup the new cache is for.
 634 * @root_cache: The parent of the new cache.
 635 *
 636 * This function attempts to create a kmem cache that will serve allocation
 637 * requests going from @memcg to @root_cache. The new cache inherits properties
 638 * from its parent.
 639 */
 640void memcg_create_kmem_cache(struct mem_cgroup *memcg,
 641			     struct kmem_cache *root_cache)
 642{
 643	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
 644	struct cgroup_subsys_state *css = &memcg->css;
 645	struct memcg_cache_array *arr;
 646	struct kmem_cache *s = NULL;
 647	char *cache_name;
 648	int idx;
 649
 650	get_online_cpus();
 651	get_online_mems();
 652
 653	mutex_lock(&slab_mutex);
 654
 655	/*
 656	 * The memory cgroup could have been offlined while the cache
 657	 * creation work was pending.
 658	 */
 659	if (memcg->kmem_state != KMEM_ONLINE)
 660		goto out_unlock;
 661
 662	idx = memcg_cache_id(memcg);
 663	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
 664					lockdep_is_held(&slab_mutex));
 665
 666	/*
 667	 * Since per-memcg caches are created asynchronously on first
 668	 * allocation (see memcg_kmem_get_cache()), several threads can try to
 669	 * create the same cache, but only one of them may succeed.
 670	 */
 671	if (arr->entries[idx])
 672		goto out_unlock;
 673
 674	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
 675	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
 676			       css->serial_nr, memcg_name_buf);
 677	if (!cache_name)
 678		goto out_unlock;
 679
 680	s = create_cache(cache_name, root_cache->object_size,
 681			 root_cache->align,
 682			 root_cache->flags & CACHE_CREATE_MASK,
 683			 root_cache->useroffset, root_cache->usersize,
 684			 root_cache->ctor, memcg, root_cache);
 685	/*
 686	 * If we could not create a memcg cache, do not complain, because
 687	 * that's not critical at all as we can always proceed with the root
 688	 * cache.
 689	 */
 690	if (IS_ERR(s)) {
 691		kfree(cache_name);
 692		goto out_unlock;
 693	}
 694
 695	/*
 696	 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
 697	 * barrier here to ensure nobody will see the kmem_cache partially
 698	 * initialized.
 699	 */
 700	smp_wmb();
 701	arr->entries[idx] = s;
 702
 703out_unlock:
 704	mutex_unlock(&slab_mutex);
 705
 706	put_online_mems();
 707	put_online_cpus();
 708}
 709
 710static void kmemcg_workfn(struct work_struct *work)
 711{
 712	struct kmem_cache *s = container_of(work, struct kmem_cache,
 713					    memcg_params.work);
 714
 715	get_online_cpus();
 716	get_online_mems();
 717
 718	mutex_lock(&slab_mutex);
 719	s->memcg_params.work_fn(s);
 720	mutex_unlock(&slab_mutex);
 721
 722	put_online_mems();
 723	put_online_cpus();
 724}
 725
 726static void kmemcg_rcufn(struct rcu_head *head)
 727{
 728	struct kmem_cache *s = container_of(head, struct kmem_cache,
 729					    memcg_params.rcu_head);
 730
 731	/*
 732	 * We need to grab blocking locks.  Bounce to ->work.  The
 733	 * work item shares the space with the RCU head and can't be
 734	 * initialized eariler.
 735	 */
 736	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
 737	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
 738}
 739
 740static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
 741{
 742	WARN_ON(shutdown_cache(s));
 743}
 744
 745static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
 746{
 747	struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
 748					    memcg_params.refcnt);
 749	unsigned long flags;
 750
 751	spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
 752	if (s->memcg_params.root_cache->memcg_params.dying)
 753		goto unlock;
 754
 755	s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
 756	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
 757	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
 758
 759unlock:
 760	spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
 761}
 762
 763static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
 764{
 765	__kmemcg_cache_deactivate_after_rcu(s);
 766	percpu_ref_kill(&s->memcg_params.refcnt);
 767}
 768
 769static void kmemcg_cache_deactivate(struct kmem_cache *s)
 770{
 771	if (WARN_ON_ONCE(is_root_cache(s)))
 772		return;
 773
 774	__kmemcg_cache_deactivate(s);
 775	s->flags |= SLAB_DEACTIVATED;
 776
 777	/*
 778	 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
 779	 * flag and make sure that no new kmem_cache deactivation tasks
 780	 * are queued (see flush_memcg_workqueue() ).
 781	 */
 782	spin_lock_irq(&memcg_kmem_wq_lock);
 783	if (s->memcg_params.root_cache->memcg_params.dying)
 784		goto unlock;
 785
 786	s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
 787	call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
 788unlock:
 789	spin_unlock_irq(&memcg_kmem_wq_lock);
 790}
 791
 792void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
 793				  struct mem_cgroup *parent)
 794{
 795	int idx;
 796	struct memcg_cache_array *arr;
 797	struct kmem_cache *s, *c;
 798	unsigned int nr_reparented;
 799
 800	idx = memcg_cache_id(memcg);
 801
 802	get_online_cpus();
 803	get_online_mems();
 804
 805	mutex_lock(&slab_mutex);
 806	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
 807		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 808						lockdep_is_held(&slab_mutex));
 809		c = arr->entries[idx];
 810		if (!c)
 811			continue;
 812
 813		kmemcg_cache_deactivate(c);
 814		arr->entries[idx] = NULL;
 815	}
 816	nr_reparented = 0;
 817	list_for_each_entry(s, &memcg->kmem_caches,
 818			    memcg_params.kmem_caches_node) {
 819		WRITE_ONCE(s->memcg_params.memcg, parent);
 820		css_put(&memcg->css);
 821		nr_reparented++;
 822	}
 823	if (nr_reparented) {
 824		list_splice_init(&memcg->kmem_caches,
 825				 &parent->kmem_caches);
 826		css_get_many(&parent->css, nr_reparented);
 827	}
 828	mutex_unlock(&slab_mutex);
 829
 830	put_online_mems();
 831	put_online_cpus();
 832}
 833
 834static int shutdown_memcg_caches(struct kmem_cache *s)
 835{
 836	struct memcg_cache_array *arr;
 837	struct kmem_cache *c, *c2;
 838	LIST_HEAD(busy);
 839	int i;
 840
 841	BUG_ON(!is_root_cache(s));
 842
 843	/*
 844	 * First, shutdown active caches, i.e. caches that belong to online
 845	 * memory cgroups.
 846	 */
 847	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 848					lockdep_is_held(&slab_mutex));
 849	for_each_memcg_cache_index(i) {
 850		c = arr->entries[i];
 851		if (!c)
 852			continue;
 853		if (shutdown_cache(c))
 854			/*
 855			 * The cache still has objects. Move it to a temporary
 856			 * list so as not to try to destroy it for a second
 857			 * time while iterating over inactive caches below.
 858			 */
 859			list_move(&c->memcg_params.children_node, &busy);
 860		else
 861			/*
 862			 * The cache is empty and will be destroyed soon. Clear
 863			 * the pointer to it in the memcg_caches array so that
 864			 * it will never be accessed even if the root cache
 865			 * stays alive.
 866			 */
 867			arr->entries[i] = NULL;
 868	}
 869
 870	/*
 871	 * Second, shutdown all caches left from memory cgroups that are now
 872	 * offline.
 873	 */
 874	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
 875				 memcg_params.children_node)
 876		shutdown_cache(c);
 877
 878	list_splice(&busy, &s->memcg_params.children);
 879
 880	/*
 881	 * A cache being destroyed must be empty. In particular, this means
 882	 * that all per memcg caches attached to it must be empty too.
 883	 */
 884	if (!list_empty(&s->memcg_params.children))
 885		return -EBUSY;
 886	return 0;
 887}
 888
 889static void flush_memcg_workqueue(struct kmem_cache *s)
 890{
 891	spin_lock_irq(&memcg_kmem_wq_lock);
 892	s->memcg_params.dying = true;
 893	spin_unlock_irq(&memcg_kmem_wq_lock);
 894
 895	/*
 896	 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
 897	 * sure all registered rcu callbacks have been invoked.
 898	 */
 899	rcu_barrier();
 900
 901	/*
 902	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
 903	 * deactivates the memcg kmem_caches through workqueue. Make sure all
 904	 * previous workitems on workqueue are processed.
 905	 */
 906	flush_workqueue(memcg_kmem_cache_wq);
 907}
 908#else
 909static inline int shutdown_memcg_caches(struct kmem_cache *s)
 910{
 911	return 0;
 912}
 913
 914static inline void flush_memcg_workqueue(struct kmem_cache *s)
 915{
 916}
 917#endif /* CONFIG_MEMCG_KMEM */
 918
 919void slab_kmem_cache_release(struct kmem_cache *s)
 920{
 921	__kmem_cache_release(s);
 922	destroy_memcg_params(s);
 923	kfree_const(s->name);
 924	kmem_cache_free(kmem_cache, s);
 925}
 926
 927void kmem_cache_destroy(struct kmem_cache *s)
 928{
 929	int err;
 
 930
 931	if (unlikely(!s))
 932		return;
 933
 934	flush_memcg_workqueue(s);
 935
 936	get_online_cpus();
 937	get_online_mems();
 938
 939	mutex_lock(&slab_mutex);
 940
 941	s->refcount--;
 942	if (s->refcount)
 943		goto out_unlock;
 944
 945	err = shutdown_memcg_caches(s);
 946	if (!err)
 947		err = shutdown_cache(s);
 948
 949	if (err) {
 950		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
 951		       s->name);
 952		dump_stack();
 953	}
 954out_unlock:
 955	mutex_unlock(&slab_mutex);
 956
 957	put_online_mems();
 958	put_online_cpus();
 959}
 960EXPORT_SYMBOL(kmem_cache_destroy);
 961
 962/**
 963 * kmem_cache_shrink - Shrink a cache.
 964 * @cachep: The cache to shrink.
 965 *
 966 * Releases as many slabs as possible for a cache.
 967 * To help debugging, a zero exit status indicates all slabs were released.
 968 *
 969 * Return: %0 if all slabs were released, non-zero otherwise
 970 */
 971int kmem_cache_shrink(struct kmem_cache *cachep)
 972{
 973	int ret;
 974
 975	get_online_cpus();
 976	get_online_mems();
 977	kasan_cache_shrink(cachep);
 978	ret = __kmem_cache_shrink(cachep);
 979	put_online_mems();
 980	put_online_cpus();
 981	return ret;
 982}
 983EXPORT_SYMBOL(kmem_cache_shrink);
 984
 
 
 
 
 
 
 985/**
 986 * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
 987 * @s: The cache pointer
 
 
 
 
 988 */
 989void kmem_cache_shrink_all(struct kmem_cache *s)
 990{
 991	struct kmem_cache *c;
 
 
 
 
 
 
 
 
 992
 993	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
 994		kmem_cache_shrink(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995		return;
 996	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 997
 998	get_online_cpus();
 999	get_online_mems();
1000	kasan_cache_shrink(s);
1001	__kmem_cache_shrink(s);
1002
1003	/*
1004	 * We have to take the slab_mutex to protect from the memcg list
1005	 * modification.
1006	 */
1007	mutex_lock(&slab_mutex);
1008	for_each_memcg_cache(c, s) {
1009		/*
1010		 * Don't need to shrink deactivated memcg caches.
1011		 */
1012		if (s->flags & SLAB_DEACTIVATED)
1013			continue;
1014		kasan_cache_shrink(c);
1015		__kmem_cache_shrink(c);
1016	}
1017	mutex_unlock(&slab_mutex);
1018	put_online_mems();
1019	put_online_cpus();
1020}
1021
1022bool slab_is_available(void)
1023{
1024	return slab_state >= UP;
1025}
 
 
1026
1027#ifndef CONFIG_SLOB
1028/* Create a cache during boot when no slab services are available yet */
1029void __init create_boot_cache(struct kmem_cache *s, const char *name,
1030		unsigned int size, slab_flags_t flags,
1031		unsigned int useroffset, unsigned int usersize)
1032{
1033	int err;
1034	unsigned int align = ARCH_KMALLOC_MINALIGN;
1035
1036	s->name = name;
1037	s->size = s->object_size = size;
1038
1039	/*
1040	 * For power of two sizes, guarantee natural alignment for kmalloc
1041	 * caches, regardless of SL*B debugging options.
1042	 */
1043	if (is_power_of_2(size))
1044		align = max(align, size);
1045	s->align = calculate_alignment(flags, align, size);
1046
 
1047	s->useroffset = useroffset;
1048	s->usersize = usersize;
1049
1050	slab_init_memcg_params(s);
1051
1052	err = __kmem_cache_create(s, flags);
1053
1054	if (err)
1055		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
1056					name, size, err);
1057
1058	s->refcount = -1;	/* Exempt from merging for now */
1059}
1060
1061struct kmem_cache *__init create_kmalloc_cache(const char *name,
1062		unsigned int size, slab_flags_t flags,
1063		unsigned int useroffset, unsigned int usersize)
1064{
1065	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1066
1067	if (!s)
1068		panic("Out of memory when creating slab %s\n", name);
1069
1070	create_boot_cache(s, name, size, flags, useroffset, usersize);
 
 
1071	list_add(&s->list, &slab_caches);
1072	memcg_link_cache(s, NULL);
1073	s->refcount = 1;
1074	return s;
1075}
1076
1077struct kmem_cache *
1078kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
1079{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
1080EXPORT_SYMBOL(kmalloc_caches);
1081
1082/*
1083 * Conversion table for small slabs sizes / 8 to the index in the
1084 * kmalloc array. This is necessary for slabs < 192 since we have non power
1085 * of two cache sizes there. The size of larger slabs can be determined using
1086 * fls.
1087 */
1088static u8 size_index[24] __ro_after_init = {
1089	3,	/* 8 */
1090	4,	/* 16 */
1091	5,	/* 24 */
1092	5,	/* 32 */
1093	6,	/* 40 */
1094	6,	/* 48 */
1095	6,	/* 56 */
1096	6,	/* 64 */
1097	1,	/* 72 */
1098	1,	/* 80 */
1099	1,	/* 88 */
1100	1,	/* 96 */
1101	7,	/* 104 */
1102	7,	/* 112 */
1103	7,	/* 120 */
1104	7,	/* 128 */
1105	2,	/* 136 */
1106	2,	/* 144 */
1107	2,	/* 152 */
1108	2,	/* 160 */
1109	2,	/* 168 */
1110	2,	/* 176 */
1111	2,	/* 184 */
1112	2	/* 192 */
1113};
1114
1115static inline unsigned int size_index_elem(unsigned int bytes)
1116{
1117	return (bytes - 1) / 8;
1118}
1119
1120/*
1121 * Find the kmem_cache structure that serves a given size of
1122 * allocation
1123 */
1124struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1125{
1126	unsigned int index;
1127
1128	if (size <= 192) {
1129		if (!size)
1130			return ZERO_SIZE_PTR;
1131
1132		index = size_index[size_index_elem(size)];
1133	} else {
1134		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1135			return NULL;
1136		index = fls(size - 1);
1137	}
1138
1139	return kmalloc_caches[kmalloc_type(flags)][index];
1140}
1141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1142/*
1143 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1144 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1145 * kmalloc-67108864.
1146 */
1147const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1148	{NULL,                      0},		{"kmalloc-96",             96},
1149	{"kmalloc-192",           192},		{"kmalloc-8",               8},
1150	{"kmalloc-16",             16},		{"kmalloc-32",             32},
1151	{"kmalloc-64",             64},		{"kmalloc-128",           128},
1152	{"kmalloc-256",           256},		{"kmalloc-512",           512},
1153	{"kmalloc-1k",           1024},		{"kmalloc-2k",           2048},
1154	{"kmalloc-4k",           4096},		{"kmalloc-8k",           8192},
1155	{"kmalloc-16k",         16384},		{"kmalloc-32k",         32768},
1156	{"kmalloc-64k",         65536},		{"kmalloc-128k",       131072},
1157	{"kmalloc-256k",       262144},		{"kmalloc-512k",       524288},
1158	{"kmalloc-1M",        1048576},		{"kmalloc-2M",        2097152},
1159	{"kmalloc-4M",        4194304},		{"kmalloc-8M",        8388608},
1160	{"kmalloc-16M",      16777216},		{"kmalloc-32M",      33554432},
1161	{"kmalloc-64M",      67108864}
 
 
 
 
 
 
 
 
1162};
1163
1164/*
1165 * Patch up the size_index table if we have strange large alignment
1166 * requirements for the kmalloc array. This is only the case for
1167 * MIPS it seems. The standard arches will not generate any code here.
1168 *
1169 * Largest permitted alignment is 256 bytes due to the way we
1170 * handle the index determination for the smaller caches.
1171 *
1172 * Make sure that nothing crazy happens if someone starts tinkering
1173 * around with ARCH_KMALLOC_MINALIGN
1174 */
1175void __init setup_kmalloc_cache_index_table(void)
1176{
1177	unsigned int i;
1178
1179	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1180		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1181
1182	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1183		unsigned int elem = size_index_elem(i);
1184
1185		if (elem >= ARRAY_SIZE(size_index))
1186			break;
1187		size_index[elem] = KMALLOC_SHIFT_LOW;
1188	}
1189
1190	if (KMALLOC_MIN_SIZE >= 64) {
1191		/*
1192		 * The 96 byte size cache is not used if the alignment
1193		 * is 64 byte.
1194		 */
1195		for (i = 64 + 8; i <= 96; i += 8)
1196			size_index[size_index_elem(i)] = 7;
1197
1198	}
1199
1200	if (KMALLOC_MIN_SIZE >= 128) {
1201		/*
1202		 * The 192 byte sized cache is not used if the alignment
1203		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1204		 * instead.
1205		 */
1206		for (i = 128 + 8; i <= 192; i += 8)
1207			size_index[size_index_elem(i)] = 8;
1208	}
1209}
1210
1211static const char *
1212kmalloc_cache_name(const char *prefix, unsigned int size)
1213{
1214
1215	static const char units[3] = "\0kM";
1216	int idx = 0;
1217
1218	while (size >= 1024 && (size % 1024 == 0)) {
1219		size /= 1024;
1220		idx++;
1221	}
1222
1223	return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
1224}
1225
1226static void __init
1227new_kmalloc_cache(int idx, int type, slab_flags_t flags)
1228{
1229	const char *name;
1230
1231	if (type == KMALLOC_RECLAIM) {
1232		flags |= SLAB_RECLAIM_ACCOUNT;
1233		name = kmalloc_cache_name("kmalloc-rcl",
1234						kmalloc_info[idx].size);
1235		BUG_ON(!name);
1236	} else {
1237		name = kmalloc_info[idx].name;
 
 
 
1238	}
1239
1240	kmalloc_caches[type][idx] = create_kmalloc_cache(name,
 
1241					kmalloc_info[idx].size, flags, 0,
1242					kmalloc_info[idx].size);
 
 
 
 
 
 
 
1243}
1244
1245/*
1246 * Create the kmalloc array. Some of the regular kmalloc arrays
1247 * may already have been created because they were needed to
1248 * enable allocations for slab creation.
1249 */
1250void __init create_kmalloc_caches(slab_flags_t flags)
1251{
1252	int i, type;
 
1253
1254	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
 
 
 
1255		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1256			if (!kmalloc_caches[type][i])
1257				new_kmalloc_cache(i, type, flags);
1258
1259			/*
1260			 * Caches that are not of the two-to-the-power-of size.
1261			 * These have to be created immediately after the
1262			 * earlier power of two caches
1263			 */
1264			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1265					!kmalloc_caches[type][1])
1266				new_kmalloc_cache(1, type, flags);
1267			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1268					!kmalloc_caches[type][2])
1269				new_kmalloc_cache(2, type, flags);
1270		}
1271	}
1272
1273	/* Kmalloc array is now usable */
1274	slab_state = UP;
 
1275
1276#ifdef CONFIG_ZONE_DMA
1277	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1278		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1279
1280		if (s) {
1281			unsigned int size = kmalloc_size(i);
1282			const char *n = kmalloc_cache_name("dma-kmalloc", size);
1283
1284			BUG_ON(!n);
1285			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1286				n, size, SLAB_CACHE_DMA | flags, 0, 0);
1287		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289#endif
 
 
1290}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1291#endif /* !CONFIG_SLOB */
1292
 
 
 
 
 
 
 
 
 
 
 
 
1293/*
1294 * To avoid unnecessary overhead, we pass through large allocation requests
1295 * directly to the page allocator. We use __GFP_COMP, because we will need to
1296 * know the allocation order to free the pages properly in kfree.
1297 */
1298void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
 
1299{
1300	void *ret = NULL;
1301	struct page *page;
 
 
 
 
 
1302
1303	flags |= __GFP_COMP;
1304	page = alloc_pages(flags, order);
1305	if (likely(page)) {
1306		ret = page_address(page);
1307		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
1308				    1 << order);
1309	}
1310	ret = kasan_kmalloc_large(ret, size, flags);
1311	/* As ret might get tagged, call kmemleak hook after KASAN. */
1312	kmemleak_alloc(ret, size, 1, flags);
 
 
 
 
 
 
 
 
 
 
 
 
1313	return ret;
1314}
1315EXPORT_SYMBOL(kmalloc_order);
1316
1317#ifdef CONFIG_TRACING
1318void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1319{
1320	void *ret = kmalloc_order(size, flags, order);
1321	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
 
 
1322	return ret;
1323}
1324EXPORT_SYMBOL(kmalloc_order_trace);
1325#endif
1326
1327#ifdef CONFIG_SLAB_FREELIST_RANDOM
1328/* Randomize a generic freelist */
1329static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1330			       unsigned int count)
1331{
1332	unsigned int rand;
1333	unsigned int i;
1334
1335	for (i = 0; i < count; i++)
1336		list[i] = i;
1337
1338	/* Fisher-Yates shuffle */
1339	for (i = count - 1; i > 0; i--) {
1340		rand = prandom_u32_state(state);
1341		rand %= (i + 1);
1342		swap(list[i], list[rand]);
1343	}
1344}
1345
1346/* Create a random sequence per cache */
1347int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1348				    gfp_t gfp)
1349{
1350	struct rnd_state state;
1351
1352	if (count < 2 || cachep->random_seq)
1353		return 0;
1354
1355	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1356	if (!cachep->random_seq)
1357		return -ENOMEM;
1358
1359	/* Get best entropy at this stage of boot */
1360	prandom_seed_state(&state, get_random_long());
1361
1362	freelist_randomize(&state, cachep->random_seq, count);
1363	return 0;
1364}
1365
1366/* Destroy the per-cache random freelist sequence */
1367void cache_random_seq_destroy(struct kmem_cache *cachep)
1368{
1369	kfree(cachep->random_seq);
1370	cachep->random_seq = NULL;
1371}
1372#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1373
1374#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1375#ifdef CONFIG_SLAB
1376#define SLABINFO_RIGHTS (0600)
1377#else
1378#define SLABINFO_RIGHTS (0400)
1379#endif
1380
1381static void print_slabinfo_header(struct seq_file *m)
1382{
1383	/*
1384	 * Output format version, so at least we can change it
1385	 * without _too_ many complaints.
1386	 */
1387#ifdef CONFIG_DEBUG_SLAB
1388	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1389#else
1390	seq_puts(m, "slabinfo - version: 2.1\n");
1391#endif
1392	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1393	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1394	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1395#ifdef CONFIG_DEBUG_SLAB
1396	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1397	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1398#endif
1399	seq_putc(m, '\n');
1400}
1401
1402void *slab_start(struct seq_file *m, loff_t *pos)
1403{
1404	mutex_lock(&slab_mutex);
1405	return seq_list_start(&slab_root_caches, *pos);
1406}
1407
1408void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1409{
1410	return seq_list_next(p, &slab_root_caches, pos);
1411}
1412
1413void slab_stop(struct seq_file *m, void *p)
1414{
1415	mutex_unlock(&slab_mutex);
1416}
1417
1418static void
1419memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1420{
1421	struct kmem_cache *c;
1422	struct slabinfo sinfo;
1423
1424	if (!is_root_cache(s))
1425		return;
1426
1427	for_each_memcg_cache(c, s) {
1428		memset(&sinfo, 0, sizeof(sinfo));
1429		get_slabinfo(c, &sinfo);
1430
1431		info->active_slabs += sinfo.active_slabs;
1432		info->num_slabs += sinfo.num_slabs;
1433		info->shared_avail += sinfo.shared_avail;
1434		info->active_objs += sinfo.active_objs;
1435		info->num_objs += sinfo.num_objs;
1436	}
1437}
1438
1439static void cache_show(struct kmem_cache *s, struct seq_file *m)
1440{
1441	struct slabinfo sinfo;
1442
1443	memset(&sinfo, 0, sizeof(sinfo));
1444	get_slabinfo(s, &sinfo);
1445
1446	memcg_accumulate_slabinfo(s, &sinfo);
1447
1448	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1449		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1450		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1451
1452	seq_printf(m, " : tunables %4u %4u %4u",
1453		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1454	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1455		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1456	slabinfo_show_stats(m, s);
1457	seq_putc(m, '\n');
1458}
1459
1460static int slab_show(struct seq_file *m, void *p)
1461{
1462	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1463
1464	if (p == slab_root_caches.next)
1465		print_slabinfo_header(m);
1466	cache_show(s, m);
1467	return 0;
1468}
1469
1470void dump_unreclaimable_slab(void)
1471{
1472	struct kmem_cache *s, *s2;
1473	struct slabinfo sinfo;
1474
1475	/*
1476	 * Here acquiring slab_mutex is risky since we don't prefer to get
1477	 * sleep in oom path. But, without mutex hold, it may introduce a
1478	 * risk of crash.
1479	 * Use mutex_trylock to protect the list traverse, dump nothing
1480	 * without acquiring the mutex.
1481	 */
1482	if (!mutex_trylock(&slab_mutex)) {
1483		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1484		return;
1485	}
1486
1487	pr_info("Unreclaimable slab info:\n");
1488	pr_info("Name                      Used          Total\n");
1489
1490	list_for_each_entry_safe(s, s2, &slab_caches, list) {
1491		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1492			continue;
1493
1494		get_slabinfo(s, &sinfo);
1495
1496		if (sinfo.num_objs > 0)
1497			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1498				(sinfo.active_objs * s->size) / 1024,
1499				(sinfo.num_objs * s->size) / 1024);
1500	}
1501	mutex_unlock(&slab_mutex);
1502}
1503
1504#if defined(CONFIG_MEMCG)
1505void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1506{
1507	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1508
1509	mutex_lock(&slab_mutex);
1510	return seq_list_start(&memcg->kmem_caches, *pos);
1511}
1512
1513void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1514{
1515	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1516
1517	return seq_list_next(p, &memcg->kmem_caches, pos);
1518}
1519
1520void memcg_slab_stop(struct seq_file *m, void *p)
1521{
1522	mutex_unlock(&slab_mutex);
1523}
1524
1525int memcg_slab_show(struct seq_file *m, void *p)
1526{
1527	struct kmem_cache *s = list_entry(p, struct kmem_cache,
1528					  memcg_params.kmem_caches_node);
1529	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1530
1531	if (p == memcg->kmem_caches.next)
1532		print_slabinfo_header(m);
1533	cache_show(s, m);
1534	return 0;
1535}
1536#endif
1537
1538/*
1539 * slabinfo_op - iterator that generates /proc/slabinfo
1540 *
1541 * Output layout:
1542 * cache-name
1543 * num-active-objs
1544 * total-objs
1545 * object size
1546 * num-active-slabs
1547 * total-slabs
1548 * num-pages-per-slab
1549 * + further values on SMP and with statistics enabled
1550 */
1551static const struct seq_operations slabinfo_op = {
1552	.start = slab_start,
1553	.next = slab_next,
1554	.stop = slab_stop,
1555	.show = slab_show,
1556};
1557
1558static int slabinfo_open(struct inode *inode, struct file *file)
1559{
1560	return seq_open(file, &slabinfo_op);
1561}
1562
1563static const struct file_operations proc_slabinfo_operations = {
1564	.open		= slabinfo_open,
1565	.read		= seq_read,
1566	.write          = slabinfo_write,
1567	.llseek		= seq_lseek,
1568	.release	= seq_release,
 
1569};
1570
1571static int __init slab_proc_init(void)
1572{
1573	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1574						&proc_slabinfo_operations);
1575	return 0;
1576}
1577module_init(slab_proc_init);
1578
1579#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
1580/*
1581 * Display information about kmem caches that have child memcg caches.
1582 */
1583static int memcg_slabinfo_show(struct seq_file *m, void *unused)
1584{
1585	struct kmem_cache *s, *c;
1586	struct slabinfo sinfo;
1587
1588	mutex_lock(&slab_mutex);
1589	seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
1590	seq_puts(m, " <active_slabs> <num_slabs>\n");
1591	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
1592		/*
1593		 * Skip kmem caches that don't have any memcg children.
1594		 */
1595		if (list_empty(&s->memcg_params.children))
1596			continue;
1597
1598		memset(&sinfo, 0, sizeof(sinfo));
1599		get_slabinfo(s, &sinfo);
1600		seq_printf(m, "%-17s root       %6lu %6lu %6lu %6lu\n",
1601			   cache_name(s), sinfo.active_objs, sinfo.num_objs,
1602			   sinfo.active_slabs, sinfo.num_slabs);
1603
1604		for_each_memcg_cache(c, s) {
1605			struct cgroup_subsys_state *css;
1606			char *status = "";
1607
1608			css = &c->memcg_params.memcg->css;
1609			if (!(css->flags & CSS_ONLINE))
1610				status = ":dead";
1611			else if (c->flags & SLAB_DEACTIVATED)
1612				status = ":deact";
1613
1614			memset(&sinfo, 0, sizeof(sinfo));
1615			get_slabinfo(c, &sinfo);
1616			seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
1617				   cache_name(c), css->id, status,
1618				   sinfo.active_objs, sinfo.num_objs,
1619				   sinfo.active_slabs, sinfo.num_slabs);
1620		}
1621	}
1622	mutex_unlock(&slab_mutex);
1623	return 0;
1624}
1625DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);
1626
1627static int __init memcg_slabinfo_init(void)
1628{
1629	debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
1630			    NULL, NULL, &memcg_slabinfo_fops);
1631	return 0;
1632}
1633
1634late_initcall(memcg_slabinfo_init);
1635#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
1636#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1637
1638static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1639					   gfp_t flags)
1640{
1641	void *ret;
1642	size_t ks = 0;
1643
1644	if (p)
 
 
 
1645		ks = ksize(p);
 
 
1646
 
1647	if (ks >= new_size) {
1648		p = kasan_krealloc((void *)p, new_size, flags);
1649		return (void *)p;
1650	}
1651
1652	ret = kmalloc_track_caller(new_size, flags);
1653	if (ret && p)
1654		memcpy(ret, p, ks);
 
 
 
 
1655
1656	return ret;
1657}
1658
1659/**
1660 * __krealloc - like krealloc() but don't free @p.
1661 * @p: object to reallocate memory for.
1662 * @new_size: how many bytes of memory are required.
1663 * @flags: the type of memory to allocate.
1664 *
1665 * This function is like krealloc() except it never frees the originally
1666 * allocated buffer. Use this if you don't want to free the buffer immediately
1667 * like, for example, with RCU.
1668 *
1669 * Return: pointer to the allocated memory or %NULL in case of error
1670 */
1671void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1672{
1673	if (unlikely(!new_size))
1674		return ZERO_SIZE_PTR;
1675
1676	return __do_krealloc(p, new_size, flags);
1677
1678}
1679EXPORT_SYMBOL(__krealloc);
1680
1681/**
1682 * krealloc - reallocate memory. The contents will remain unchanged.
1683 * @p: object to reallocate memory for.
1684 * @new_size: how many bytes of memory are required.
1685 * @flags: the type of memory to allocate.
1686 *
1687 * The contents of the object pointed to are preserved up to the
1688 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1689 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1690 * %NULL pointer, the object pointed to is freed.
1691 *
1692 * Return: pointer to the allocated memory or %NULL in case of error
1693 */
1694void *krealloc(const void *p, size_t new_size, gfp_t flags)
1695{
1696	void *ret;
1697
1698	if (unlikely(!new_size)) {
1699		kfree(p);
1700		return ZERO_SIZE_PTR;
1701	}
1702
1703	ret = __do_krealloc(p, new_size, flags);
1704	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1705		kfree(p);
1706
1707	return ret;
1708}
1709EXPORT_SYMBOL(krealloc);
1710
1711/**
1712 * kzfree - like kfree but zero memory
1713 * @p: object to free memory of
1714 *
1715 * The memory of the object @p points to is zeroed before freed.
1716 * If @p is %NULL, kzfree() does nothing.
1717 *
1718 * Note: this function zeroes the whole allocated buffer which can be a good
1719 * deal bigger than the requested buffer size passed to kmalloc(). So be
1720 * careful when using this function in performance sensitive code.
1721 */
1722void kzfree(const void *p)
1723{
1724	size_t ks;
1725	void *mem = (void *)p;
1726
1727	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1728		return;
1729	ks = ksize(mem);
1730	memset(mem, 0, ks);
 
 
 
1731	kfree(mem);
1732}
1733EXPORT_SYMBOL(kzfree);
1734
1735/**
1736 * ksize - get the actual amount of memory allocated for a given object
1737 * @objp: Pointer to the object
1738 *
1739 * kmalloc may internally round up allocations and return more memory
1740 * than requested. ksize() can be used to determine the actual amount of
1741 * memory allocated. The caller may use this additional memory, even though
1742 * a smaller amount of memory was initially specified with the kmalloc call.
1743 * The caller must guarantee that objp points to a valid object previously
1744 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1745 * must not be freed during the duration of the call.
1746 *
1747 * Return: size of the actual memory used by @objp in bytes
1748 */
1749size_t ksize(const void *objp)
1750{
1751	size_t size;
1752
1753	if (WARN_ON_ONCE(!objp))
1754		return 0;
1755	/*
1756	 * We need to check that the pointed to object is valid, and only then
1757	 * unpoison the shadow memory below. We use __kasan_check_read(), to
1758	 * generate a more useful report at the time ksize() is called (rather
1759	 * than later where behaviour is undefined due to potential
1760	 * use-after-free or double-free).
1761	 *
1762	 * If the pointed to memory is invalid we return 0, to avoid users of
 
 
 
1763	 * ksize() writing to and potentially corrupting the memory region.
1764	 *
1765	 * We want to perform the check before __ksize(), to avoid potentially
1766	 * crashing in __ksize() due to accessing invalid metadata.
1767	 */
1768	if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
1769		return 0;
1770
1771	size = __ksize(objp);
1772	/*
1773	 * We assume that ksize callers could use whole allocated area,
1774	 * so we need to unpoison this area.
1775	 */
1776	kasan_unpoison_shadow(objp, size);
1777	return size;
1778}
1779EXPORT_SYMBOL(ksize);
1780
1781/* Tracepoints definitions. */
1782EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1783EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1784EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1785EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1786EXPORT_TRACEPOINT_SYMBOL(kfree);
1787EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1788
1789int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1790{
1791	if (__should_failslab(s, gfpflags))
1792		return -ENOMEM;
1793	return 0;
1794}
1795ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Slab allocator functions that are independent of the allocator strategy
   4 *
   5 * (C) 2012 Christoph Lameter <cl@linux.com>
   6 */
   7#include <linux/slab.h>
   8
   9#include <linux/mm.h>
  10#include <linux/poison.h>
  11#include <linux/interrupt.h>
  12#include <linux/memory.h>
  13#include <linux/cache.h>
  14#include <linux/compiler.h>
  15#include <linux/kfence.h>
  16#include <linux/module.h>
  17#include <linux/cpu.h>
  18#include <linux/uaccess.h>
  19#include <linux/seq_file.h>
  20#include <linux/proc_fs.h>
  21#include <linux/debugfs.h>
  22#include <linux/kasan.h>
  23#include <asm/cacheflush.h>
  24#include <asm/tlbflush.h>
  25#include <asm/page.h>
  26#include <linux/memcontrol.h>
  27#include <linux/stackdepot.h>
  28
  29#include "internal.h"
  30#include "slab.h"
  31
  32#define CREATE_TRACE_POINTS
  33#include <trace/events/kmem.h>
  34
 
 
  35enum slab_state slab_state;
  36LIST_HEAD(slab_caches);
  37DEFINE_MUTEX(slab_mutex);
  38struct kmem_cache *kmem_cache;
  39
 
 
 
 
 
 
 
 
  40static LIST_HEAD(slab_caches_to_rcu_destroy);
  41static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
  42static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  43		    slab_caches_to_rcu_destroy_workfn);
  44
  45/*
  46 * Set of flags that will prevent slab merging
  47 */
  48#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  49		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
  50		SLAB_FAILSLAB | kasan_never_merge())
  51
  52#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  53			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
  54
  55/*
  56 * Merge control. If this is set then no merging of slab caches will occur.
  57 */
  58static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
  59
  60static int __init setup_slab_nomerge(char *str)
  61{
  62	slab_nomerge = true;
  63	return 1;
  64}
  65
  66static int __init setup_slab_merge(char *str)
  67{
  68	slab_nomerge = false;
  69	return 1;
  70}
  71
  72#ifdef CONFIG_SLUB
  73__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
  74__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
  75#endif
  76
  77__setup("slab_nomerge", setup_slab_nomerge);
  78__setup("slab_merge", setup_slab_merge);
  79
  80/*
  81 * Determine the size of a slab object
  82 */
  83unsigned int kmem_cache_size(struct kmem_cache *s)
  84{
  85	return s->object_size;
  86}
  87EXPORT_SYMBOL(kmem_cache_size);
  88
  89#ifdef CONFIG_DEBUG_VM
  90static int kmem_cache_sanity_check(const char *name, unsigned int size)
  91{
  92	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
 
  93		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
  94		return -EINVAL;
  95	}
  96
  97	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
  98	return 0;
  99}
 100#else
 101static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
 102{
 103	return 0;
 104}
 105#endif
 106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107/*
 108 * Figure out what the alignment of the objects will be given a set of
 109 * flags, a user specified alignment and the size of the objects.
 110 */
 111static unsigned int calculate_alignment(slab_flags_t flags,
 112		unsigned int align, unsigned int size)
 113{
 114	/*
 115	 * If the user wants hardware cache aligned objects then follow that
 116	 * suggestion if the object is sufficiently large.
 117	 *
 118	 * The hardware cache alignment cannot override the specified
 119	 * alignment though. If that is greater then use it.
 120	 */
 121	if (flags & SLAB_HWCACHE_ALIGN) {
 122		unsigned int ralign;
 123
 124		ralign = cache_line_size();
 125		while (size <= ralign / 2)
 126			ralign /= 2;
 127		align = max(align, ralign);
 128	}
 129
 130	align = max(align, arch_slab_minalign());
 
 131
 132	return ALIGN(align, sizeof(void *));
 133}
 134
 135/*
 136 * Find a mergeable slab cache
 137 */
 138int slab_unmergeable(struct kmem_cache *s)
 139{
 140	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 141		return 1;
 142
 
 
 
 143	if (s->ctor)
 144		return 1;
 145
 146#ifdef CONFIG_HARDENED_USERCOPY
 147	if (s->usersize)
 148		return 1;
 149#endif
 150
 151	/*
 152	 * We may have set a slab to be unmergeable during bootstrap.
 153	 */
 154	if (s->refcount < 0)
 155		return 1;
 156
 157	return 0;
 158}
 159
 160struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 161		slab_flags_t flags, const char *name, void (*ctor)(void *))
 162{
 163	struct kmem_cache *s;
 164
 165	if (slab_nomerge)
 166		return NULL;
 167
 168	if (ctor)
 169		return NULL;
 170
 171	size = ALIGN(size, sizeof(void *));
 172	align = calculate_alignment(flags, align, size);
 173	size = ALIGN(size, align);
 174	flags = kmem_cache_flags(size, flags, name);
 175
 176	if (flags & SLAB_NEVER_MERGE)
 177		return NULL;
 178
 179	list_for_each_entry_reverse(s, &slab_caches, list) {
 180		if (slab_unmergeable(s))
 181			continue;
 182
 183		if (size > s->size)
 184			continue;
 185
 186		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 187			continue;
 188		/*
 189		 * Check if alignment is compatible.
 190		 * Courtesy of Adrian Drzewiecki
 191		 */
 192		if ((s->size & ~(align - 1)) != s->size)
 193			continue;
 194
 195		if (s->size - size >= sizeof(void *))
 196			continue;
 197
 198		if (IS_ENABLED(CONFIG_SLAB) && align &&
 199			(align > s->align || s->align % align))
 200			continue;
 201
 202		return s;
 203	}
 204	return NULL;
 205}
 206
 207static struct kmem_cache *create_cache(const char *name,
 208		unsigned int object_size, unsigned int align,
 209		slab_flags_t flags, unsigned int useroffset,
 210		unsigned int usersize, void (*ctor)(void *),
 211		struct kmem_cache *root_cache)
 212{
 213	struct kmem_cache *s;
 214	int err;
 215
 216	if (WARN_ON(useroffset + usersize > object_size))
 217		useroffset = usersize = 0;
 218
 219	err = -ENOMEM;
 220	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 221	if (!s)
 222		goto out;
 223
 224	s->name = name;
 225	s->size = s->object_size = object_size;
 226	s->align = align;
 227	s->ctor = ctor;
 228#ifdef CONFIG_HARDENED_USERCOPY
 229	s->useroffset = useroffset;
 230	s->usersize = usersize;
 231#endif
 
 
 
 232
 233	err = __kmem_cache_create(s, flags);
 234	if (err)
 235		goto out_free_cache;
 236
 237	s->refcount = 1;
 238	list_add(&s->list, &slab_caches);
 
 239out:
 240	if (err)
 241		return ERR_PTR(err);
 242	return s;
 243
 244out_free_cache:
 
 245	kmem_cache_free(kmem_cache, s);
 246	goto out;
 247}
 248
 249/**
 250 * kmem_cache_create_usercopy - Create a cache with a region suitable
 251 * for copying to userspace
 252 * @name: A string which is used in /proc/slabinfo to identify this cache.
 253 * @size: The size of objects to be created in this cache.
 254 * @align: The required alignment for the objects.
 255 * @flags: SLAB flags
 256 * @useroffset: Usercopy region offset
 257 * @usersize: Usercopy region size
 258 * @ctor: A constructor for the objects.
 259 *
 260 * Cannot be called within a interrupt, but can be interrupted.
 261 * The @ctor is run when new pages are allocated by the cache.
 262 *
 263 * The flags are
 264 *
 265 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 266 * to catch references to uninitialised memory.
 267 *
 268 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 269 * for buffer overruns.
 270 *
 271 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 272 * cacheline.  This can be beneficial if you're counting cycles as closely
 273 * as davem.
 274 *
 275 * Return: a pointer to the cache on success, NULL on failure.
 276 */
 277struct kmem_cache *
 278kmem_cache_create_usercopy(const char *name,
 279		  unsigned int size, unsigned int align,
 280		  slab_flags_t flags,
 281		  unsigned int useroffset, unsigned int usersize,
 282		  void (*ctor)(void *))
 283{
 284	struct kmem_cache *s = NULL;
 285	const char *cache_name;
 286	int err;
 287
 288#ifdef CONFIG_SLUB_DEBUG
 289	/*
 290	 * If no slub_debug was enabled globally, the static key is not yet
 291	 * enabled by setup_slub_debug(). Enable it if the cache is being
 292	 * created with any of the debugging flags passed explicitly.
 293	 * It's also possible that this is the first cache created with
 294	 * SLAB_STORE_USER and we should init stack_depot for it.
 295	 */
 296	if (flags & SLAB_DEBUG_FLAGS)
 297		static_branch_enable(&slub_debug_enabled);
 298	if (flags & SLAB_STORE_USER)
 299		stack_depot_init();
 300#endif
 301
 302	mutex_lock(&slab_mutex);
 303
 304	err = kmem_cache_sanity_check(name, size);
 305	if (err) {
 306		goto out_unlock;
 307	}
 308
 309	/* Refuse requests with allocator specific flags */
 310	if (flags & ~SLAB_FLAGS_PERMITTED) {
 311		err = -EINVAL;
 312		goto out_unlock;
 313	}
 314
 315	/*
 316	 * Some allocators will constraint the set of valid flags to a subset
 317	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 318	 * case, and we'll just provide them with a sanitized version of the
 319	 * passed flags.
 320	 */
 321	flags &= CACHE_CREATE_MASK;
 322
 323	/* Fail closed on bad usersize of useroffset values. */
 324	if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
 325	    WARN_ON(!usersize && useroffset) ||
 326	    WARN_ON(size < usersize || size - usersize < useroffset))
 327		usersize = useroffset = 0;
 328
 329	if (!usersize)
 330		s = __kmem_cache_alias(name, size, align, flags, ctor);
 331	if (s)
 332		goto out_unlock;
 333
 334	cache_name = kstrdup_const(name, GFP_KERNEL);
 335	if (!cache_name) {
 336		err = -ENOMEM;
 337		goto out_unlock;
 338	}
 339
 340	s = create_cache(cache_name, size,
 341			 calculate_alignment(flags, align, size),
 342			 flags, useroffset, usersize, ctor, NULL);
 343	if (IS_ERR(s)) {
 344		err = PTR_ERR(s);
 345		kfree_const(cache_name);
 346	}
 347
 348out_unlock:
 349	mutex_unlock(&slab_mutex);
 350
 
 
 
 
 351	if (err) {
 352		if (flags & SLAB_PANIC)
 353			panic("%s: Failed to create slab '%s'. Error %d\n",
 354				__func__, name, err);
 355		else {
 356			pr_warn("%s(%s) failed with error %d\n",
 357				__func__, name, err);
 358			dump_stack();
 359		}
 360		return NULL;
 361	}
 362	return s;
 363}
 364EXPORT_SYMBOL(kmem_cache_create_usercopy);
 365
 366/**
 367 * kmem_cache_create - Create a cache.
 368 * @name: A string which is used in /proc/slabinfo to identify this cache.
 369 * @size: The size of objects to be created in this cache.
 370 * @align: The required alignment for the objects.
 371 * @flags: SLAB flags
 372 * @ctor: A constructor for the objects.
 373 *
 374 * Cannot be called within a interrupt, but can be interrupted.
 375 * The @ctor is run when new pages are allocated by the cache.
 376 *
 377 * The flags are
 378 *
 379 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 380 * to catch references to uninitialised memory.
 381 *
 382 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 383 * for buffer overruns.
 384 *
 385 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 386 * cacheline.  This can be beneficial if you're counting cycles as closely
 387 * as davem.
 388 *
 389 * Return: a pointer to the cache on success, NULL on failure.
 390 */
 391struct kmem_cache *
 392kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 393		slab_flags_t flags, void (*ctor)(void *))
 394{
 395	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 396					  ctor);
 397}
 398EXPORT_SYMBOL(kmem_cache_create);
 399
 400#ifdef SLAB_SUPPORTS_SYSFS
 401/*
 402 * For a given kmem_cache, kmem_cache_destroy() should only be called
 403 * once or there will be a use-after-free problem. The actual deletion
 404 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
 405 * protection. So they are now done without holding those locks.
 406 *
 407 * Note that there will be a slight delay in the deletion of sysfs files
 408 * if kmem_cache_release() is called indrectly from a work function.
 409 */
 410static void kmem_cache_release(struct kmem_cache *s)
 411{
 412	sysfs_slab_unlink(s);
 413	sysfs_slab_release(s);
 414}
 415#else
 416static void kmem_cache_release(struct kmem_cache *s)
 417{
 418	slab_kmem_cache_release(s);
 419}
 420#endif
 421
 422static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 423{
 424	LIST_HEAD(to_destroy);
 425	struct kmem_cache *s, *s2;
 426
 427	/*
 428	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 429	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 430	 * through RCU and the associated kmem_cache are dereferenced
 431	 * while freeing the pages, so the kmem_caches should be freed only
 432	 * after the pending RCU operations are finished.  As rcu_barrier()
 433	 * is a pretty slow operation, we batch all pending destructions
 434	 * asynchronously.
 435	 */
 436	mutex_lock(&slab_mutex);
 437	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 438	mutex_unlock(&slab_mutex);
 439
 440	if (list_empty(&to_destroy))
 441		return;
 442
 443	rcu_barrier();
 444
 445	list_for_each_entry_safe(s, s2, &to_destroy, list) {
 446		debugfs_slab_release(s);
 447		kfence_shutdown_cache(s);
 448		kmem_cache_release(s);
 
 
 449	}
 450}
 451
 452static int shutdown_cache(struct kmem_cache *s)
 453{
 454	/* free asan quarantined objects */
 455	kasan_cache_shutdown(s);
 456
 457	if (__kmem_cache_shutdown(s) != 0)
 458		return -EBUSY;
 459
 
 460	list_del(&s->list);
 461
 462	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 
 
 
 463		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 464		schedule_work(&slab_caches_to_rcu_destroy_work);
 465	} else {
 466		kfence_shutdown_cache(s);
 467		debugfs_slab_release(s);
 
 
 
 
 468	}
 469
 470	return 0;
 471}
 472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473void slab_kmem_cache_release(struct kmem_cache *s)
 474{
 475	__kmem_cache_release(s);
 
 476	kfree_const(s->name);
 477	kmem_cache_free(kmem_cache, s);
 478}
 479
 480void kmem_cache_destroy(struct kmem_cache *s)
 481{
 482	int refcnt;
 483	bool rcu_set;
 484
 485	if (unlikely(!s) || !kasan_check_byte(s))
 486		return;
 487
 488	cpus_read_lock();
 
 
 
 
 489	mutex_lock(&slab_mutex);
 490
 491	rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
 
 
 492
 493	refcnt = --s->refcount;
 494	if (refcnt)
 495		goto out_unlock;
 496
 497	WARN(shutdown_cache(s),
 498	     "%s %s: Slab cache still has objects when called from %pS",
 499	     __func__, s->name, (void *)_RET_IP_);
 
 
 500out_unlock:
 501	mutex_unlock(&slab_mutex);
 502	cpus_read_unlock();
 503	if (!refcnt && !rcu_set)
 504		kmem_cache_release(s);
 505}
 506EXPORT_SYMBOL(kmem_cache_destroy);
 507
 508/**
 509 * kmem_cache_shrink - Shrink a cache.
 510 * @cachep: The cache to shrink.
 511 *
 512 * Releases as many slabs as possible for a cache.
 513 * To help debugging, a zero exit status indicates all slabs were released.
 514 *
 515 * Return: %0 if all slabs were released, non-zero otherwise
 516 */
 517int kmem_cache_shrink(struct kmem_cache *cachep)
 518{
 
 
 
 
 519	kasan_cache_shrink(cachep);
 520
 521	return __kmem_cache_shrink(cachep);
 
 
 522}
 523EXPORT_SYMBOL(kmem_cache_shrink);
 524
 525bool slab_is_available(void)
 526{
 527	return slab_state >= UP;
 528}
 529
 530#ifdef CONFIG_PRINTK
 531/**
 532 * kmem_valid_obj - does the pointer reference a valid slab object?
 533 * @object: pointer to query.
 534 *
 535 * Return: %true if the pointer is to a not-yet-freed object from
 536 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
 537 * is to an already-freed object, and %false otherwise.
 538 */
 539bool kmem_valid_obj(void *object)
 540{
 541	struct folio *folio;
 542
 543	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
 544	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
 545		return false;
 546	folio = virt_to_folio(object);
 547	return folio_test_slab(folio);
 548}
 549EXPORT_SYMBOL_GPL(kmem_valid_obj);
 550
 551static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
 552{
 553	if (__kfence_obj_info(kpp, object, slab))
 554		return;
 555	__kmem_obj_info(kpp, object, slab);
 556}
 557
 558/**
 559 * kmem_dump_obj - Print available slab provenance information
 560 * @object: slab object for which to find provenance information.
 561 *
 562 * This function uses pr_cont(), so that the caller is expected to have
 563 * printed out whatever preamble is appropriate.  The provenance information
 564 * depends on the type of object and on how much debugging is enabled.
 565 * For a slab-cache object, the fact that it is a slab object is printed,
 566 * and, if available, the slab name, return address, and stack trace from
 567 * the allocation and last free path of that object.
 568 *
 569 * This function will splat if passed a pointer to a non-slab object.
 570 * If you are not sure what type of object you have, you should instead
 571 * use mem_dump_obj().
 572 */
 573void kmem_dump_obj(void *object)
 574{
 575	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
 576	int i;
 577	struct slab *slab;
 578	unsigned long ptroffset;
 579	struct kmem_obj_info kp = { };
 580
 581	if (WARN_ON_ONCE(!virt_addr_valid(object)))
 582		return;
 583	slab = virt_to_slab(object);
 584	if (WARN_ON_ONCE(!slab)) {
 585		pr_cont(" non-slab memory.\n");
 586		return;
 587	}
 588	kmem_obj_info(&kp, object, slab);
 589	if (kp.kp_slab_cache)
 590		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
 591	else
 592		pr_cont(" slab%s", cp);
 593	if (is_kfence_address(object))
 594		pr_cont(" (kfence)");
 595	if (kp.kp_objp)
 596		pr_cont(" start %px", kp.kp_objp);
 597	if (kp.kp_data_offset)
 598		pr_cont(" data offset %lu", kp.kp_data_offset);
 599	if (kp.kp_objp) {
 600		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
 601		pr_cont(" pointer offset %lu", ptroffset);
 602	}
 603	if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
 604		pr_cont(" size %u", kp.kp_slab_cache->object_size);
 605	if (kp.kp_ret)
 606		pr_cont(" allocated at %pS\n", kp.kp_ret);
 607	else
 608		pr_cont("\n");
 609	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
 610		if (!kp.kp_stack[i])
 611			break;
 612		pr_info("    %pS\n", kp.kp_stack[i]);
 613	}
 614
 615	if (kp.kp_free_stack[0])
 616		pr_cont(" Free path:\n");
 
 
 617
 618	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
 619		if (!kp.kp_free_stack[i])
 620			break;
 621		pr_info("    %pS\n", kp.kp_free_stack[i]);
 
 
 
 
 
 
 
 
 
 622	}
 
 
 
 
 623
 
 
 
 624}
 625EXPORT_SYMBOL_GPL(kmem_dump_obj);
 626#endif
 627
 628#ifndef CONFIG_SLOB
 629/* Create a cache during boot when no slab services are available yet */
 630void __init create_boot_cache(struct kmem_cache *s, const char *name,
 631		unsigned int size, slab_flags_t flags,
 632		unsigned int useroffset, unsigned int usersize)
 633{
 634	int err;
 635	unsigned int align = ARCH_KMALLOC_MINALIGN;
 636
 637	s->name = name;
 638	s->size = s->object_size = size;
 639
 640	/*
 641	 * For power of two sizes, guarantee natural alignment for kmalloc
 642	 * caches, regardless of SL*B debugging options.
 643	 */
 644	if (is_power_of_2(size))
 645		align = max(align, size);
 646	s->align = calculate_alignment(flags, align, size);
 647
 648#ifdef CONFIG_HARDENED_USERCOPY
 649	s->useroffset = useroffset;
 650	s->usersize = usersize;
 651#endif
 
 652
 653	err = __kmem_cache_create(s, flags);
 654
 655	if (err)
 656		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 657					name, size, err);
 658
 659	s->refcount = -1;	/* Exempt from merging for now */
 660}
 661
 662struct kmem_cache *__init create_kmalloc_cache(const char *name,
 663		unsigned int size, slab_flags_t flags,
 664		unsigned int useroffset, unsigned int usersize)
 665{
 666	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 667
 668	if (!s)
 669		panic("Out of memory when creating slab %s\n", name);
 670
 671	create_boot_cache(s, name, size, flags | SLAB_KMALLOC, useroffset,
 672								usersize);
 673	kasan_cache_create_kmalloc(s);
 674	list_add(&s->list, &slab_caches);
 
 675	s->refcount = 1;
 676	return s;
 677}
 678
 679struct kmem_cache *
 680kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
 681{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
 682EXPORT_SYMBOL(kmalloc_caches);
 683
 684/*
 685 * Conversion table for small slabs sizes / 8 to the index in the
 686 * kmalloc array. This is necessary for slabs < 192 since we have non power
 687 * of two cache sizes there. The size of larger slabs can be determined using
 688 * fls.
 689 */
 690static u8 size_index[24] __ro_after_init = {
 691	3,	/* 8 */
 692	4,	/* 16 */
 693	5,	/* 24 */
 694	5,	/* 32 */
 695	6,	/* 40 */
 696	6,	/* 48 */
 697	6,	/* 56 */
 698	6,	/* 64 */
 699	1,	/* 72 */
 700	1,	/* 80 */
 701	1,	/* 88 */
 702	1,	/* 96 */
 703	7,	/* 104 */
 704	7,	/* 112 */
 705	7,	/* 120 */
 706	7,	/* 128 */
 707	2,	/* 136 */
 708	2,	/* 144 */
 709	2,	/* 152 */
 710	2,	/* 160 */
 711	2,	/* 168 */
 712	2,	/* 176 */
 713	2,	/* 184 */
 714	2	/* 192 */
 715};
 716
 717static inline unsigned int size_index_elem(unsigned int bytes)
 718{
 719	return (bytes - 1) / 8;
 720}
 721
 722/*
 723 * Find the kmem_cache structure that serves a given size of
 724 * allocation
 725 */
 726struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 727{
 728	unsigned int index;
 729
 730	if (size <= 192) {
 731		if (!size)
 732			return ZERO_SIZE_PTR;
 733
 734		index = size_index[size_index_elem(size)];
 735	} else {
 736		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
 737			return NULL;
 738		index = fls(size - 1);
 739	}
 740
 741	return kmalloc_caches[kmalloc_type(flags)][index];
 742}
 743
 744size_t kmalloc_size_roundup(size_t size)
 745{
 746	struct kmem_cache *c;
 747
 748	/* Short-circuit the 0 size case. */
 749	if (unlikely(size == 0))
 750		return 0;
 751	/* Short-circuit saturated "too-large" case. */
 752	if (unlikely(size == SIZE_MAX))
 753		return SIZE_MAX;
 754	/* Above the smaller buckets, size is a multiple of page size. */
 755	if (size > KMALLOC_MAX_CACHE_SIZE)
 756		return PAGE_SIZE << get_order(size);
 757
 758	/* The flags don't matter since size_index is common to all. */
 759	c = kmalloc_slab(size, GFP_KERNEL);
 760	return c ? c->object_size : 0;
 761}
 762EXPORT_SYMBOL(kmalloc_size_roundup);
 763
 764#ifdef CONFIG_ZONE_DMA
 765#define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
 766#else
 767#define KMALLOC_DMA_NAME(sz)
 768#endif
 769
 770#ifdef CONFIG_MEMCG_KMEM
 771#define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
 772#else
 773#define KMALLOC_CGROUP_NAME(sz)
 774#endif
 775
 776#ifndef CONFIG_SLUB_TINY
 777#define KMALLOC_RCL_NAME(sz)	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
 778#else
 779#define KMALLOC_RCL_NAME(sz)
 780#endif
 781
 782#define INIT_KMALLOC_INFO(__size, __short_size)			\
 783{								\
 784	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
 785	KMALLOC_RCL_NAME(__short_size)				\
 786	KMALLOC_CGROUP_NAME(__short_size)			\
 787	KMALLOC_DMA_NAME(__short_size)				\
 788	.size = __size,						\
 789}
 790
 791/*
 792 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 793 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
 794 * kmalloc-2M.
 795 */
 796const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 797	INIT_KMALLOC_INFO(0, 0),
 798	INIT_KMALLOC_INFO(96, 96),
 799	INIT_KMALLOC_INFO(192, 192),
 800	INIT_KMALLOC_INFO(8, 8),
 801	INIT_KMALLOC_INFO(16, 16),
 802	INIT_KMALLOC_INFO(32, 32),
 803	INIT_KMALLOC_INFO(64, 64),
 804	INIT_KMALLOC_INFO(128, 128),
 805	INIT_KMALLOC_INFO(256, 256),
 806	INIT_KMALLOC_INFO(512, 512),
 807	INIT_KMALLOC_INFO(1024, 1k),
 808	INIT_KMALLOC_INFO(2048, 2k),
 809	INIT_KMALLOC_INFO(4096, 4k),
 810	INIT_KMALLOC_INFO(8192, 8k),
 811	INIT_KMALLOC_INFO(16384, 16k),
 812	INIT_KMALLOC_INFO(32768, 32k),
 813	INIT_KMALLOC_INFO(65536, 64k),
 814	INIT_KMALLOC_INFO(131072, 128k),
 815	INIT_KMALLOC_INFO(262144, 256k),
 816	INIT_KMALLOC_INFO(524288, 512k),
 817	INIT_KMALLOC_INFO(1048576, 1M),
 818	INIT_KMALLOC_INFO(2097152, 2M)
 819};
 820
 821/*
 822 * Patch up the size_index table if we have strange large alignment
 823 * requirements for the kmalloc array. This is only the case for
 824 * MIPS it seems. The standard arches will not generate any code here.
 825 *
 826 * Largest permitted alignment is 256 bytes due to the way we
 827 * handle the index determination for the smaller caches.
 828 *
 829 * Make sure that nothing crazy happens if someone starts tinkering
 830 * around with ARCH_KMALLOC_MINALIGN
 831 */
 832void __init setup_kmalloc_cache_index_table(void)
 833{
 834	unsigned int i;
 835
 836	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 837		!is_power_of_2(KMALLOC_MIN_SIZE));
 838
 839	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 840		unsigned int elem = size_index_elem(i);
 841
 842		if (elem >= ARRAY_SIZE(size_index))
 843			break;
 844		size_index[elem] = KMALLOC_SHIFT_LOW;
 845	}
 846
 847	if (KMALLOC_MIN_SIZE >= 64) {
 848		/*
 849		 * The 96 byte sized cache is not used if the alignment
 850		 * is 64 byte.
 851		 */
 852		for (i = 64 + 8; i <= 96; i += 8)
 853			size_index[size_index_elem(i)] = 7;
 854
 855	}
 856
 857	if (KMALLOC_MIN_SIZE >= 128) {
 858		/*
 859		 * The 192 byte sized cache is not used if the alignment
 860		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 861		 * instead.
 862		 */
 863		for (i = 128 + 8; i <= 192; i += 8)
 864			size_index[size_index_elem(i)] = 8;
 865	}
 866}
 867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868static void __init
 869new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
 870{
 871	if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
 
 
 872		flags |= SLAB_RECLAIM_ACCOUNT;
 873	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
 874		if (mem_cgroup_kmem_disabled()) {
 875			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
 876			return;
 877		}
 878		flags |= SLAB_ACCOUNT;
 879	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
 880		flags |= SLAB_CACHE_DMA;
 881	}
 882
 883	kmalloc_caches[type][idx] = create_kmalloc_cache(
 884					kmalloc_info[idx].name[type],
 885					kmalloc_info[idx].size, flags, 0,
 886					kmalloc_info[idx].size);
 887
 888	/*
 889	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
 890	 * KMALLOC_NORMAL caches.
 891	 */
 892	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
 893		kmalloc_caches[type][idx]->refcount = -1;
 894}
 895
 896/*
 897 * Create the kmalloc array. Some of the regular kmalloc arrays
 898 * may already have been created because they were needed to
 899 * enable allocations for slab creation.
 900 */
 901void __init create_kmalloc_caches(slab_flags_t flags)
 902{
 903	int i;
 904	enum kmalloc_cache_type type;
 905
 906	/*
 907	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
 908	 */
 909	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
 910		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 911			if (!kmalloc_caches[type][i])
 912				new_kmalloc_cache(i, type, flags);
 913
 914			/*
 915			 * Caches that are not of the two-to-the-power-of size.
 916			 * These have to be created immediately after the
 917			 * earlier power of two caches
 918			 */
 919			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
 920					!kmalloc_caches[type][1])
 921				new_kmalloc_cache(1, type, flags);
 922			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
 923					!kmalloc_caches[type][2])
 924				new_kmalloc_cache(2, type, flags);
 925		}
 926	}
 927
 928	/* Kmalloc array is now usable */
 929	slab_state = UP;
 930}
 931
 932void free_large_kmalloc(struct folio *folio, void *object)
 933{
 934	unsigned int order = folio_order(folio);
 935
 936	if (WARN_ON_ONCE(order == 0))
 937		pr_warn_once("object pointer: 0x%p\n", object);
 938
 939	kmemleak_free(object);
 940	kasan_kfree_large(object);
 941	kmsan_kfree_large(object);
 942
 943	mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
 944			      -(PAGE_SIZE << order));
 945	__free_pages(folio_page(folio, 0), order);
 946}
 947
 948static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
 949static __always_inline
 950void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
 951{
 952	struct kmem_cache *s;
 953	void *ret;
 954
 955	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
 956		ret = __kmalloc_large_node(size, flags, node);
 957		trace_kmalloc(caller, ret, size,
 958			      PAGE_SIZE << get_order(size), flags, node);
 959		return ret;
 960	}
 961
 962	s = kmalloc_slab(size, flags);
 963
 964	if (unlikely(ZERO_OR_NULL_PTR(s)))
 965		return s;
 966
 967	ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
 968	ret = kasan_kmalloc(s, ret, size, flags);
 969	trace_kmalloc(caller, ret, size, s->size, flags, node);
 970	return ret;
 971}
 972
 973void *__kmalloc_node(size_t size, gfp_t flags, int node)
 974{
 975	return __do_kmalloc_node(size, flags, node, _RET_IP_);
 976}
 977EXPORT_SYMBOL(__kmalloc_node);
 978
 979void *__kmalloc(size_t size, gfp_t flags)
 980{
 981	return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
 982}
 983EXPORT_SYMBOL(__kmalloc);
 984
 985void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
 986				  int node, unsigned long caller)
 987{
 988	return __do_kmalloc_node(size, flags, node, caller);
 989}
 990EXPORT_SYMBOL(__kmalloc_node_track_caller);
 991
 992/**
 993 * kfree - free previously allocated memory
 994 * @object: pointer returned by kmalloc.
 995 *
 996 * If @object is NULL, no operation is performed.
 997 *
 998 * Don't free memory not originally allocated by kmalloc()
 999 * or you will run into trouble.
1000 */
1001void kfree(const void *object)
1002{
1003	struct folio *folio;
1004	struct slab *slab;
1005	struct kmem_cache *s;
1006
1007	trace_kfree(_RET_IP_, object);
1008
1009	if (unlikely(ZERO_OR_NULL_PTR(object)))
1010		return;
1011
1012	folio = virt_to_folio(object);
1013	if (unlikely(!folio_test_slab(folio))) {
1014		free_large_kmalloc(folio, (void *)object);
1015		return;
1016	}
1017
1018	slab = folio_slab(folio);
1019	s = slab->slab_cache;
1020	__kmem_cache_free(s, (void *)object, _RET_IP_);
1021}
1022EXPORT_SYMBOL(kfree);
1023
1024/**
1025 * __ksize -- Report full size of underlying allocation
1026 * @object: pointer to the object
1027 *
1028 * This should only be used internally to query the true size of allocations.
1029 * It is not meant to be a way to discover the usable size of an allocation
1030 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
1031 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
1032 * and/or FORTIFY_SOURCE.
1033 *
1034 * Return: size of the actual memory used by @object in bytes
1035 */
1036size_t __ksize(const void *object)
1037{
1038	struct folio *folio;
1039
1040	if (unlikely(object == ZERO_SIZE_PTR))
1041		return 0;
1042
1043	folio = virt_to_folio(object);
1044
1045	if (unlikely(!folio_test_slab(folio))) {
1046		if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
1047			return 0;
1048		if (WARN_ON(object != folio_address(folio)))
1049			return 0;
1050		return folio_size(folio);
1051	}
1052
1053#ifdef CONFIG_SLUB_DEBUG
1054	skip_orig_size_check(folio_slab(folio)->slab_cache, object);
1055#endif
1056
1057	return slab_ksize(folio_slab(folio)->slab_cache);
1058}
1059
1060void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1061{
1062	void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
1063					    size, _RET_IP_);
1064
1065	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
1066
1067	ret = kasan_kmalloc(s, ret, size, gfpflags);
1068	return ret;
1069}
1070EXPORT_SYMBOL(kmalloc_trace);
1071
1072void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
1073			 int node, size_t size)
1074{
1075	void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
1076
1077	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
1078
1079	ret = kasan_kmalloc(s, ret, size, gfpflags);
1080	return ret;
1081}
1082EXPORT_SYMBOL(kmalloc_node_trace);
1083#endif /* !CONFIG_SLOB */
1084
1085gfp_t kmalloc_fix_flags(gfp_t flags)
1086{
1087	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1088
1089	flags &= ~GFP_SLAB_BUG_MASK;
1090	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1091			invalid_mask, &invalid_mask, flags, &flags);
1092	dump_stack();
1093
1094	return flags;
1095}
1096
1097/*
1098 * To avoid unnecessary overhead, we pass through large allocation requests
1099 * directly to the page allocator. We use __GFP_COMP, because we will need to
1100 * know the allocation order to free the pages properly in kfree.
1101 */
1102
1103static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
1104{
 
1105	struct page *page;
1106	void *ptr = NULL;
1107	unsigned int order = get_order(size);
1108
1109	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1110		flags = kmalloc_fix_flags(flags);
1111
1112	flags |= __GFP_COMP;
1113	page = alloc_pages_node(node, flags, order);
1114	if (page) {
1115		ptr = page_address(page);
1116		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
1117				      PAGE_SIZE << order);
1118	}
1119
1120	ptr = kasan_kmalloc_large(ptr, size, flags);
1121	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1122	kmemleak_alloc(ptr, size, 1, flags);
1123	kmsan_kmalloc_large(ptr, size, flags);
1124
1125	return ptr;
1126}
1127
1128void *kmalloc_large(size_t size, gfp_t flags)
1129{
1130	void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
1131
1132	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1133		      flags, NUMA_NO_NODE);
1134	return ret;
1135}
1136EXPORT_SYMBOL(kmalloc_large);
1137
1138void *kmalloc_large_node(size_t size, gfp_t flags, int node)
 
1139{
1140	void *ret = __kmalloc_large_node(size, flags, node);
1141
1142	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1143		      flags, node);
1144	return ret;
1145}
1146EXPORT_SYMBOL(kmalloc_large_node);
 
1147
1148#ifdef CONFIG_SLAB_FREELIST_RANDOM
1149/* Randomize a generic freelist */
1150static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1151			       unsigned int count)
1152{
1153	unsigned int rand;
1154	unsigned int i;
1155
1156	for (i = 0; i < count; i++)
1157		list[i] = i;
1158
1159	/* Fisher-Yates shuffle */
1160	for (i = count - 1; i > 0; i--) {
1161		rand = prandom_u32_state(state);
1162		rand %= (i + 1);
1163		swap(list[i], list[rand]);
1164	}
1165}
1166
1167/* Create a random sequence per cache */
1168int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1169				    gfp_t gfp)
1170{
1171	struct rnd_state state;
1172
1173	if (count < 2 || cachep->random_seq)
1174		return 0;
1175
1176	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1177	if (!cachep->random_seq)
1178		return -ENOMEM;
1179
1180	/* Get best entropy at this stage of boot */
1181	prandom_seed_state(&state, get_random_long());
1182
1183	freelist_randomize(&state, cachep->random_seq, count);
1184	return 0;
1185}
1186
1187/* Destroy the per-cache random freelist sequence */
1188void cache_random_seq_destroy(struct kmem_cache *cachep)
1189{
1190	kfree(cachep->random_seq);
1191	cachep->random_seq = NULL;
1192}
1193#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1194
1195#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1196#ifdef CONFIG_SLAB
1197#define SLABINFO_RIGHTS (0600)
1198#else
1199#define SLABINFO_RIGHTS (0400)
1200#endif
1201
1202static void print_slabinfo_header(struct seq_file *m)
1203{
1204	/*
1205	 * Output format version, so at least we can change it
1206	 * without _too_ many complaints.
1207	 */
1208#ifdef CONFIG_DEBUG_SLAB
1209	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1210#else
1211	seq_puts(m, "slabinfo - version: 2.1\n");
1212#endif
1213	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1214	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1215	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1216#ifdef CONFIG_DEBUG_SLAB
1217	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1218	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1219#endif
1220	seq_putc(m, '\n');
1221}
1222
1223static void *slab_start(struct seq_file *m, loff_t *pos)
1224{
1225	mutex_lock(&slab_mutex);
1226	return seq_list_start(&slab_caches, *pos);
1227}
1228
1229static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1230{
1231	return seq_list_next(p, &slab_caches, pos);
1232}
1233
1234static void slab_stop(struct seq_file *m, void *p)
1235{
1236	mutex_unlock(&slab_mutex);
1237}
1238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239static void cache_show(struct kmem_cache *s, struct seq_file *m)
1240{
1241	struct slabinfo sinfo;
1242
1243	memset(&sinfo, 0, sizeof(sinfo));
1244	get_slabinfo(s, &sinfo);
1245
 
 
1246	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1247		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1248		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1249
1250	seq_printf(m, " : tunables %4u %4u %4u",
1251		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1252	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1253		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1254	slabinfo_show_stats(m, s);
1255	seq_putc(m, '\n');
1256}
1257
1258static int slab_show(struct seq_file *m, void *p)
1259{
1260	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1261
1262	if (p == slab_caches.next)
1263		print_slabinfo_header(m);
1264	cache_show(s, m);
1265	return 0;
1266}
1267
1268void dump_unreclaimable_slab(void)
1269{
1270	struct kmem_cache *s;
1271	struct slabinfo sinfo;
1272
1273	/*
1274	 * Here acquiring slab_mutex is risky since we don't prefer to get
1275	 * sleep in oom path. But, without mutex hold, it may introduce a
1276	 * risk of crash.
1277	 * Use mutex_trylock to protect the list traverse, dump nothing
1278	 * without acquiring the mutex.
1279	 */
1280	if (!mutex_trylock(&slab_mutex)) {
1281		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1282		return;
1283	}
1284
1285	pr_info("Unreclaimable slab info:\n");
1286	pr_info("Name                      Used          Total\n");
1287
1288	list_for_each_entry(s, &slab_caches, list) {
1289		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1290			continue;
1291
1292		get_slabinfo(s, &sinfo);
1293
1294		if (sinfo.num_objs > 0)
1295			pr_info("%-17s %10luKB %10luKB\n", s->name,
1296				(sinfo.active_objs * s->size) / 1024,
1297				(sinfo.num_objs * s->size) / 1024);
1298	}
1299	mutex_unlock(&slab_mutex);
1300}
1301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1302/*
1303 * slabinfo_op - iterator that generates /proc/slabinfo
1304 *
1305 * Output layout:
1306 * cache-name
1307 * num-active-objs
1308 * total-objs
1309 * object size
1310 * num-active-slabs
1311 * total-slabs
1312 * num-pages-per-slab
1313 * + further values on SMP and with statistics enabled
1314 */
1315static const struct seq_operations slabinfo_op = {
1316	.start = slab_start,
1317	.next = slab_next,
1318	.stop = slab_stop,
1319	.show = slab_show,
1320};
1321
1322static int slabinfo_open(struct inode *inode, struct file *file)
1323{
1324	return seq_open(file, &slabinfo_op);
1325}
1326
1327static const struct proc_ops slabinfo_proc_ops = {
1328	.proc_flags	= PROC_ENTRY_PERMANENT,
1329	.proc_open	= slabinfo_open,
1330	.proc_read	= seq_read,
1331	.proc_write	= slabinfo_write,
1332	.proc_lseek	= seq_lseek,
1333	.proc_release	= seq_release,
1334};
1335
1336static int __init slab_proc_init(void)
1337{
1338	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
 
1339	return 0;
1340}
1341module_init(slab_proc_init);
1342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1343#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1344
1345static __always_inline __realloc_size(2) void *
1346__do_krealloc(const void *p, size_t new_size, gfp_t flags)
1347{
1348	void *ret;
1349	size_t ks;
1350
1351	/* Check for double-free before calling ksize. */
1352	if (likely(!ZERO_OR_NULL_PTR(p))) {
1353		if (!kasan_check_byte(p))
1354			return NULL;
1355		ks = ksize(p);
1356	} else
1357		ks = 0;
1358
1359	/* If the object still fits, repoison it precisely. */
1360	if (ks >= new_size) {
1361		p = kasan_krealloc((void *)p, new_size, flags);
1362		return (void *)p;
1363	}
1364
1365	ret = kmalloc_track_caller(new_size, flags);
1366	if (ret && p) {
1367		/* Disable KASAN checks as the object's redzone is accessed. */
1368		kasan_disable_current();
1369		memcpy(ret, kasan_reset_tag(p), ks);
1370		kasan_enable_current();
1371	}
1372
1373	return ret;
1374}
1375
1376/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377 * krealloc - reallocate memory. The contents will remain unchanged.
1378 * @p: object to reallocate memory for.
1379 * @new_size: how many bytes of memory are required.
1380 * @flags: the type of memory to allocate.
1381 *
1382 * The contents of the object pointed to are preserved up to the
1383 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1384 * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1385 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1386 *
1387 * Return: pointer to the allocated memory or %NULL in case of error
1388 */
1389void *krealloc(const void *p, size_t new_size, gfp_t flags)
1390{
1391	void *ret;
1392
1393	if (unlikely(!new_size)) {
1394		kfree(p);
1395		return ZERO_SIZE_PTR;
1396	}
1397
1398	ret = __do_krealloc(p, new_size, flags);
1399	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1400		kfree(p);
1401
1402	return ret;
1403}
1404EXPORT_SYMBOL(krealloc);
1405
1406/**
1407 * kfree_sensitive - Clear sensitive information in memory before freeing
1408 * @p: object to free memory of
1409 *
1410 * The memory of the object @p points to is zeroed before freed.
1411 * If @p is %NULL, kfree_sensitive() does nothing.
1412 *
1413 * Note: this function zeroes the whole allocated buffer which can be a good
1414 * deal bigger than the requested buffer size passed to kmalloc(). So be
1415 * careful when using this function in performance sensitive code.
1416 */
1417void kfree_sensitive(const void *p)
1418{
1419	size_t ks;
1420	void *mem = (void *)p;
1421
 
 
1422	ks = ksize(mem);
1423	if (ks) {
1424		kasan_unpoison_range(mem, ks);
1425		memzero_explicit(mem, ks);
1426	}
1427	kfree(mem);
1428}
1429EXPORT_SYMBOL(kfree_sensitive);
1430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431size_t ksize(const void *objp)
1432{
 
 
 
 
1433	/*
1434	 * We need to first check that the pointer to the object is valid.
1435	 * The KASAN report printed from ksize() is more useful, then when
1436	 * it's printed later when the behaviour could be undefined due to
1437	 * a potential use-after-free or double-free.
 
1438	 *
1439	 * We use kasan_check_byte(), which is supported for the hardware
1440	 * tag-based KASAN mode, unlike kasan_check_read/write().
1441	 *
1442	 * If the pointed to memory is invalid, we return 0 to avoid users of
1443	 * ksize() writing to and potentially corrupting the memory region.
1444	 *
1445	 * We want to perform the check before __ksize(), to avoid potentially
1446	 * crashing in __ksize() due to accessing invalid metadata.
1447	 */
1448	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1449		return 0;
1450
1451	return kfence_ksize(objp) ?: __ksize(objp);
 
 
 
 
 
 
1452}
1453EXPORT_SYMBOL(ksize);
1454
1455/* Tracepoints definitions. */
1456EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1457EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
 
 
1458EXPORT_TRACEPOINT_SYMBOL(kfree);
1459EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1460
1461int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1462{
1463	if (__should_failslab(s, gfpflags))
1464		return -ENOMEM;
1465	return 0;
1466}
1467ALLOW_ERROR_INJECTION(should_failslab, ERRNO);