Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Slab allocator functions that are independent of the allocator strategy
   4 *
   5 * (C) 2012 Christoph Lameter <cl@linux.com>
   6 */
   7#include <linux/slab.h>
   8
   9#include <linux/mm.h>
  10#include <linux/poison.h>
  11#include <linux/interrupt.h>
  12#include <linux/memory.h>
  13#include <linux/cache.h>
  14#include <linux/compiler.h>
 
  15#include <linux/module.h>
  16#include <linux/cpu.h>
  17#include <linux/uaccess.h>
  18#include <linux/seq_file.h>
  19#include <linux/proc_fs.h>
  20#include <linux/debugfs.h>
 
  21#include <asm/cacheflush.h>
  22#include <asm/tlbflush.h>
  23#include <asm/page.h>
  24#include <linux/memcontrol.h>
  25
  26#define CREATE_TRACE_POINTS
  27#include <trace/events/kmem.h>
  28
 
 
  29#include "slab.h"
  30
  31enum slab_state slab_state;
  32LIST_HEAD(slab_caches);
  33DEFINE_MUTEX(slab_mutex);
  34struct kmem_cache *kmem_cache;
  35
  36#ifdef CONFIG_HARDENED_USERCOPY
  37bool usercopy_fallback __ro_after_init =
  38		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
  39module_param(usercopy_fallback, bool, 0400);
  40MODULE_PARM_DESC(usercopy_fallback,
  41		"WARN instead of reject usercopy whitelist violations");
  42#endif
  43
  44static LIST_HEAD(slab_caches_to_rcu_destroy);
  45static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
  46static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  47		    slab_caches_to_rcu_destroy_workfn);
  48
  49/*
  50 * Set of flags that will prevent slab merging
  51 */
  52#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  53		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
  54		SLAB_FAILSLAB | SLAB_KASAN)
  55
  56#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  57			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
  58
  59/*
  60 * Merge control. If this is set then no merging of slab caches will occur.
  61 */
  62static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
  63
  64static int __init setup_slab_nomerge(char *str)
  65{
  66	slab_nomerge = true;
  67	return 1;
  68}
  69
 
 
 
 
 
 
  70#ifdef CONFIG_SLUB
  71__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
 
  72#endif
  73
  74__setup("slab_nomerge", setup_slab_nomerge);
 
  75
  76/*
  77 * Determine the size of a slab object
  78 */
  79unsigned int kmem_cache_size(struct kmem_cache *s)
  80{
  81	return s->object_size;
  82}
  83EXPORT_SYMBOL(kmem_cache_size);
  84
  85#ifdef CONFIG_DEBUG_VM
  86static int kmem_cache_sanity_check(const char *name, unsigned int size)
  87{
  88	if (!name || in_interrupt() || size < sizeof(void *) ||
  89		size > KMALLOC_MAX_SIZE) {
  90		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
  91		return -EINVAL;
  92	}
  93
  94	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
  95	return 0;
  96}
  97#else
  98static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
  99{
 100	return 0;
 101}
 102#endif
 103
 104void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
 105{
 106	size_t i;
 107
 108	for (i = 0; i < nr; i++) {
 109		if (s)
 110			kmem_cache_free(s, p[i]);
 111		else
 112			kfree(p[i]);
 113	}
 114}
 115
 116int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
 117								void **p)
 118{
 119	size_t i;
 120
 121	for (i = 0; i < nr; i++) {
 122		void *x = p[i] = kmem_cache_alloc(s, flags);
 123		if (!x) {
 124			__kmem_cache_free_bulk(s, i, p);
 125			return 0;
 126		}
 127	}
 128	return i;
 129}
 130
 131#ifdef CONFIG_MEMCG_KMEM
 132
 133LIST_HEAD(slab_root_caches);
 134static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
 135
 136static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
 137
 138void slab_init_memcg_params(struct kmem_cache *s)
 139{
 140	s->memcg_params.root_cache = NULL;
 141	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
 142	INIT_LIST_HEAD(&s->memcg_params.children);
 143	s->memcg_params.dying = false;
 144}
 145
 146static int init_memcg_params(struct kmem_cache *s,
 147			     struct kmem_cache *root_cache)
 148{
 149	struct memcg_cache_array *arr;
 150
 151	if (root_cache) {
 152		int ret = percpu_ref_init(&s->memcg_params.refcnt,
 153					  kmemcg_cache_shutdown,
 154					  0, GFP_KERNEL);
 155		if (ret)
 156			return ret;
 157
 158		s->memcg_params.root_cache = root_cache;
 159		INIT_LIST_HEAD(&s->memcg_params.children_node);
 160		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
 161		return 0;
 162	}
 163
 164	slab_init_memcg_params(s);
 165
 166	if (!memcg_nr_cache_ids)
 167		return 0;
 168
 169	arr = kvzalloc(sizeof(struct memcg_cache_array) +
 170		       memcg_nr_cache_ids * sizeof(void *),
 171		       GFP_KERNEL);
 172	if (!arr)
 173		return -ENOMEM;
 174
 175	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
 176	return 0;
 177}
 178
 179static void destroy_memcg_params(struct kmem_cache *s)
 180{
 181	if (is_root_cache(s)) {
 182		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
 183	} else {
 184		mem_cgroup_put(s->memcg_params.memcg);
 185		WRITE_ONCE(s->memcg_params.memcg, NULL);
 186		percpu_ref_exit(&s->memcg_params.refcnt);
 187	}
 188}
 189
 190static void free_memcg_params(struct rcu_head *rcu)
 191{
 192	struct memcg_cache_array *old;
 193
 194	old = container_of(rcu, struct memcg_cache_array, rcu);
 195	kvfree(old);
 196}
 197
 198static int update_memcg_params(struct kmem_cache *s, int new_array_size)
 199{
 200	struct memcg_cache_array *old, *new;
 201
 202	new = kvzalloc(sizeof(struct memcg_cache_array) +
 203		       new_array_size * sizeof(void *), GFP_KERNEL);
 204	if (!new)
 205		return -ENOMEM;
 206
 207	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
 208					lockdep_is_held(&slab_mutex));
 209	if (old)
 210		memcpy(new->entries, old->entries,
 211		       memcg_nr_cache_ids * sizeof(void *));
 212
 213	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
 214	if (old)
 215		call_rcu(&old->rcu, free_memcg_params);
 216	return 0;
 217}
 218
 219int memcg_update_all_caches(int num_memcgs)
 220{
 221	struct kmem_cache *s;
 222	int ret = 0;
 223
 224	mutex_lock(&slab_mutex);
 225	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
 226		ret = update_memcg_params(s, num_memcgs);
 227		/*
 228		 * Instead of freeing the memory, we'll just leave the caches
 229		 * up to this point in an updated state.
 230		 */
 231		if (ret)
 232			break;
 233	}
 234	mutex_unlock(&slab_mutex);
 235	return ret;
 236}
 237
 238void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
 239{
 240	if (is_root_cache(s)) {
 241		list_add(&s->root_caches_node, &slab_root_caches);
 242	} else {
 243		css_get(&memcg->css);
 244		s->memcg_params.memcg = memcg;
 245		list_add(&s->memcg_params.children_node,
 246			 &s->memcg_params.root_cache->memcg_params.children);
 247		list_add(&s->memcg_params.kmem_caches_node,
 248			 &s->memcg_params.memcg->kmem_caches);
 249	}
 250}
 251
 252static void memcg_unlink_cache(struct kmem_cache *s)
 253{
 254	if (is_root_cache(s)) {
 255		list_del(&s->root_caches_node);
 256	} else {
 257		list_del(&s->memcg_params.children_node);
 258		list_del(&s->memcg_params.kmem_caches_node);
 259	}
 260}
 261#else
 262static inline int init_memcg_params(struct kmem_cache *s,
 263				    struct kmem_cache *root_cache)
 264{
 265	return 0;
 266}
 267
 268static inline void destroy_memcg_params(struct kmem_cache *s)
 269{
 270}
 271
 272static inline void memcg_unlink_cache(struct kmem_cache *s)
 273{
 274}
 275#endif /* CONFIG_MEMCG_KMEM */
 276
 277/*
 278 * Figure out what the alignment of the objects will be given a set of
 279 * flags, a user specified alignment and the size of the objects.
 280 */
 281static unsigned int calculate_alignment(slab_flags_t flags,
 282		unsigned int align, unsigned int size)
 283{
 284	/*
 285	 * If the user wants hardware cache aligned objects then follow that
 286	 * suggestion if the object is sufficiently large.
 287	 *
 288	 * The hardware cache alignment cannot override the specified
 289	 * alignment though. If that is greater then use it.
 290	 */
 291	if (flags & SLAB_HWCACHE_ALIGN) {
 292		unsigned int ralign;
 293
 294		ralign = cache_line_size();
 295		while (size <= ralign / 2)
 296			ralign /= 2;
 297		align = max(align, ralign);
 298	}
 299
 300	if (align < ARCH_SLAB_MINALIGN)
 301		align = ARCH_SLAB_MINALIGN;
 302
 303	return ALIGN(align, sizeof(void *));
 304}
 305
 306/*
 307 * Find a mergeable slab cache
 308 */
 309int slab_unmergeable(struct kmem_cache *s)
 310{
 311	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 312		return 1;
 313
 314	if (!is_root_cache(s))
 315		return 1;
 316
 317	if (s->ctor)
 318		return 1;
 319
 320	if (s->usersize)
 321		return 1;
 322
 323	/*
 324	 * We may have set a slab to be unmergeable during bootstrap.
 325	 */
 326	if (s->refcount < 0)
 327		return 1;
 328
 329	return 0;
 330}
 331
 332struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 333		slab_flags_t flags, const char *name, void (*ctor)(void *))
 334{
 335	struct kmem_cache *s;
 336
 337	if (slab_nomerge)
 338		return NULL;
 339
 340	if (ctor)
 341		return NULL;
 342
 343	size = ALIGN(size, sizeof(void *));
 344	align = calculate_alignment(flags, align, size);
 345	size = ALIGN(size, align);
 346	flags = kmem_cache_flags(size, flags, name, NULL);
 347
 348	if (flags & SLAB_NEVER_MERGE)
 349		return NULL;
 350
 351	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
 352		if (slab_unmergeable(s))
 353			continue;
 354
 355		if (size > s->size)
 356			continue;
 357
 358		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 359			continue;
 360		/*
 361		 * Check if alignment is compatible.
 362		 * Courtesy of Adrian Drzewiecki
 363		 */
 364		if ((s->size & ~(align - 1)) != s->size)
 365			continue;
 366
 367		if (s->size - size >= sizeof(void *))
 368			continue;
 369
 370		if (IS_ENABLED(CONFIG_SLAB) && align &&
 371			(align > s->align || s->align % align))
 372			continue;
 373
 374		return s;
 375	}
 376	return NULL;
 377}
 378
 379static struct kmem_cache *create_cache(const char *name,
 380		unsigned int object_size, unsigned int align,
 381		slab_flags_t flags, unsigned int useroffset,
 382		unsigned int usersize, void (*ctor)(void *),
 383		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 384{
 385	struct kmem_cache *s;
 386	int err;
 387
 388	if (WARN_ON(useroffset + usersize > object_size))
 389		useroffset = usersize = 0;
 390
 391	err = -ENOMEM;
 392	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 393	if (!s)
 394		goto out;
 395
 396	s->name = name;
 397	s->size = s->object_size = object_size;
 398	s->align = align;
 399	s->ctor = ctor;
 400	s->useroffset = useroffset;
 401	s->usersize = usersize;
 402
 403	err = init_memcg_params(s, root_cache);
 404	if (err)
 405		goto out_free_cache;
 406
 407	err = __kmem_cache_create(s, flags);
 408	if (err)
 409		goto out_free_cache;
 410
 411	s->refcount = 1;
 412	list_add(&s->list, &slab_caches);
 413	memcg_link_cache(s, memcg);
 414out:
 415	if (err)
 416		return ERR_PTR(err);
 417	return s;
 418
 419out_free_cache:
 420	destroy_memcg_params(s);
 421	kmem_cache_free(kmem_cache, s);
 422	goto out;
 423}
 424
 425/**
 426 * kmem_cache_create_usercopy - Create a cache with a region suitable
 427 * for copying to userspace
 428 * @name: A string which is used in /proc/slabinfo to identify this cache.
 429 * @size: The size of objects to be created in this cache.
 430 * @align: The required alignment for the objects.
 431 * @flags: SLAB flags
 432 * @useroffset: Usercopy region offset
 433 * @usersize: Usercopy region size
 434 * @ctor: A constructor for the objects.
 435 *
 436 * Cannot be called within a interrupt, but can be interrupted.
 437 * The @ctor is run when new pages are allocated by the cache.
 438 *
 439 * The flags are
 440 *
 441 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 442 * to catch references to uninitialised memory.
 443 *
 444 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 445 * for buffer overruns.
 446 *
 447 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 448 * cacheline.  This can be beneficial if you're counting cycles as closely
 449 * as davem.
 450 *
 451 * Return: a pointer to the cache on success, NULL on failure.
 452 */
 453struct kmem_cache *
 454kmem_cache_create_usercopy(const char *name,
 455		  unsigned int size, unsigned int align,
 456		  slab_flags_t flags,
 457		  unsigned int useroffset, unsigned int usersize,
 458		  void (*ctor)(void *))
 459{
 460	struct kmem_cache *s = NULL;
 461	const char *cache_name;
 462	int err;
 463
 464	get_online_cpus();
 465	get_online_mems();
 466	memcg_get_cache_ids();
 
 
 
 
 
 
 467
 468	mutex_lock(&slab_mutex);
 469
 470	err = kmem_cache_sanity_check(name, size);
 471	if (err) {
 472		goto out_unlock;
 473	}
 474
 475	/* Refuse requests with allocator specific flags */
 476	if (flags & ~SLAB_FLAGS_PERMITTED) {
 477		err = -EINVAL;
 478		goto out_unlock;
 479	}
 480
 481	/*
 482	 * Some allocators will constraint the set of valid flags to a subset
 483	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 484	 * case, and we'll just provide them with a sanitized version of the
 485	 * passed flags.
 486	 */
 487	flags &= CACHE_CREATE_MASK;
 488
 489	/* Fail closed on bad usersize of useroffset values. */
 490	if (WARN_ON(!usersize && useroffset) ||
 491	    WARN_ON(size < usersize || size - usersize < useroffset))
 492		usersize = useroffset = 0;
 493
 494	if (!usersize)
 495		s = __kmem_cache_alias(name, size, align, flags, ctor);
 496	if (s)
 497		goto out_unlock;
 498
 499	cache_name = kstrdup_const(name, GFP_KERNEL);
 500	if (!cache_name) {
 501		err = -ENOMEM;
 502		goto out_unlock;
 503	}
 504
 505	s = create_cache(cache_name, size,
 506			 calculate_alignment(flags, align, size),
 507			 flags, useroffset, usersize, ctor, NULL, NULL);
 508	if (IS_ERR(s)) {
 509		err = PTR_ERR(s);
 510		kfree_const(cache_name);
 511	}
 512
 513out_unlock:
 514	mutex_unlock(&slab_mutex);
 515
 516	memcg_put_cache_ids();
 517	put_online_mems();
 518	put_online_cpus();
 519
 520	if (err) {
 521		if (flags & SLAB_PANIC)
 522			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
 523				name, err);
 524		else {
 525			pr_warn("kmem_cache_create(%s) failed with error %d\n",
 526				name, err);
 527			dump_stack();
 528		}
 529		return NULL;
 530	}
 531	return s;
 532}
 533EXPORT_SYMBOL(kmem_cache_create_usercopy);
 534
 535/**
 536 * kmem_cache_create - Create a cache.
 537 * @name: A string which is used in /proc/slabinfo to identify this cache.
 538 * @size: The size of objects to be created in this cache.
 539 * @align: The required alignment for the objects.
 540 * @flags: SLAB flags
 541 * @ctor: A constructor for the objects.
 542 *
 543 * Cannot be called within a interrupt, but can be interrupted.
 544 * The @ctor is run when new pages are allocated by the cache.
 545 *
 546 * The flags are
 547 *
 548 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 549 * to catch references to uninitialised memory.
 550 *
 551 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 552 * for buffer overruns.
 553 *
 554 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 555 * cacheline.  This can be beneficial if you're counting cycles as closely
 556 * as davem.
 557 *
 558 * Return: a pointer to the cache on success, NULL on failure.
 559 */
 560struct kmem_cache *
 561kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 562		slab_flags_t flags, void (*ctor)(void *))
 563{
 564	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 565					  ctor);
 566}
 567EXPORT_SYMBOL(kmem_cache_create);
 568
 569static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 570{
 571	LIST_HEAD(to_destroy);
 572	struct kmem_cache *s, *s2;
 573
 574	/*
 575	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 576	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 577	 * through RCU and and the associated kmem_cache are dereferenced
 578	 * while freeing the pages, so the kmem_caches should be freed only
 579	 * after the pending RCU operations are finished.  As rcu_barrier()
 580	 * is a pretty slow operation, we batch all pending destructions
 581	 * asynchronously.
 582	 */
 583	mutex_lock(&slab_mutex);
 584	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 585	mutex_unlock(&slab_mutex);
 586
 587	if (list_empty(&to_destroy))
 588		return;
 589
 590	rcu_barrier();
 591
 592	list_for_each_entry_safe(s, s2, &to_destroy, list) {
 
 
 593#ifdef SLAB_SUPPORTS_SYSFS
 594		sysfs_slab_release(s);
 595#else
 596		slab_kmem_cache_release(s);
 597#endif
 598	}
 599}
 600
 601static int shutdown_cache(struct kmem_cache *s)
 602{
 603	/* free asan quarantined objects */
 604	kasan_cache_shutdown(s);
 605
 606	if (__kmem_cache_shutdown(s) != 0)
 607		return -EBUSY;
 608
 609	memcg_unlink_cache(s);
 610	list_del(&s->list);
 611
 612	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 613#ifdef SLAB_SUPPORTS_SYSFS
 614		sysfs_slab_unlink(s);
 615#endif
 616		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 617		schedule_work(&slab_caches_to_rcu_destroy_work);
 618	} else {
 
 
 619#ifdef SLAB_SUPPORTS_SYSFS
 620		sysfs_slab_unlink(s);
 621		sysfs_slab_release(s);
 622#else
 623		slab_kmem_cache_release(s);
 624#endif
 625	}
 626
 627	return 0;
 628}
 629
 630#ifdef CONFIG_MEMCG_KMEM
 631/*
 632 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
 633 * @memcg: The memory cgroup the new cache is for.
 634 * @root_cache: The parent of the new cache.
 635 *
 636 * This function attempts to create a kmem cache that will serve allocation
 637 * requests going from @memcg to @root_cache. The new cache inherits properties
 638 * from its parent.
 639 */
 640void memcg_create_kmem_cache(struct mem_cgroup *memcg,
 641			     struct kmem_cache *root_cache)
 642{
 643	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
 644	struct cgroup_subsys_state *css = &memcg->css;
 645	struct memcg_cache_array *arr;
 646	struct kmem_cache *s = NULL;
 647	char *cache_name;
 648	int idx;
 649
 650	get_online_cpus();
 651	get_online_mems();
 652
 653	mutex_lock(&slab_mutex);
 654
 655	/*
 656	 * The memory cgroup could have been offlined while the cache
 657	 * creation work was pending.
 658	 */
 659	if (memcg->kmem_state != KMEM_ONLINE)
 660		goto out_unlock;
 661
 662	idx = memcg_cache_id(memcg);
 663	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
 664					lockdep_is_held(&slab_mutex));
 665
 666	/*
 667	 * Since per-memcg caches are created asynchronously on first
 668	 * allocation (see memcg_kmem_get_cache()), several threads can try to
 669	 * create the same cache, but only one of them may succeed.
 670	 */
 671	if (arr->entries[idx])
 672		goto out_unlock;
 673
 674	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
 675	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
 676			       css->serial_nr, memcg_name_buf);
 677	if (!cache_name)
 678		goto out_unlock;
 679
 680	s = create_cache(cache_name, root_cache->object_size,
 681			 root_cache->align,
 682			 root_cache->flags & CACHE_CREATE_MASK,
 683			 root_cache->useroffset, root_cache->usersize,
 684			 root_cache->ctor, memcg, root_cache);
 685	/*
 686	 * If we could not create a memcg cache, do not complain, because
 687	 * that's not critical at all as we can always proceed with the root
 688	 * cache.
 689	 */
 690	if (IS_ERR(s)) {
 691		kfree(cache_name);
 692		goto out_unlock;
 693	}
 694
 695	/*
 696	 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
 697	 * barrier here to ensure nobody will see the kmem_cache partially
 698	 * initialized.
 699	 */
 700	smp_wmb();
 701	arr->entries[idx] = s;
 702
 703out_unlock:
 704	mutex_unlock(&slab_mutex);
 705
 706	put_online_mems();
 707	put_online_cpus();
 708}
 709
 710static void kmemcg_workfn(struct work_struct *work)
 711{
 712	struct kmem_cache *s = container_of(work, struct kmem_cache,
 713					    memcg_params.work);
 714
 715	get_online_cpus();
 716	get_online_mems();
 717
 718	mutex_lock(&slab_mutex);
 719	s->memcg_params.work_fn(s);
 720	mutex_unlock(&slab_mutex);
 721
 722	put_online_mems();
 723	put_online_cpus();
 724}
 725
 726static void kmemcg_rcufn(struct rcu_head *head)
 727{
 728	struct kmem_cache *s = container_of(head, struct kmem_cache,
 729					    memcg_params.rcu_head);
 730
 731	/*
 732	 * We need to grab blocking locks.  Bounce to ->work.  The
 733	 * work item shares the space with the RCU head and can't be
 734	 * initialized eariler.
 735	 */
 736	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
 737	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
 738}
 739
 740static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
 741{
 742	WARN_ON(shutdown_cache(s));
 743}
 744
 745static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
 746{
 747	struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
 748					    memcg_params.refcnt);
 749	unsigned long flags;
 750
 751	spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
 752	if (s->memcg_params.root_cache->memcg_params.dying)
 753		goto unlock;
 754
 755	s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
 756	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
 757	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
 758
 759unlock:
 760	spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
 761}
 762
 763static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
 764{
 765	__kmemcg_cache_deactivate_after_rcu(s);
 766	percpu_ref_kill(&s->memcg_params.refcnt);
 767}
 768
 769static void kmemcg_cache_deactivate(struct kmem_cache *s)
 770{
 771	if (WARN_ON_ONCE(is_root_cache(s)))
 772		return;
 773
 774	__kmemcg_cache_deactivate(s);
 775	s->flags |= SLAB_DEACTIVATED;
 776
 777	/*
 778	 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
 779	 * flag and make sure that no new kmem_cache deactivation tasks
 780	 * are queued (see flush_memcg_workqueue() ).
 781	 */
 782	spin_lock_irq(&memcg_kmem_wq_lock);
 783	if (s->memcg_params.root_cache->memcg_params.dying)
 784		goto unlock;
 785
 786	s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
 787	call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
 788unlock:
 789	spin_unlock_irq(&memcg_kmem_wq_lock);
 790}
 791
 792void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
 793				  struct mem_cgroup *parent)
 794{
 795	int idx;
 796	struct memcg_cache_array *arr;
 797	struct kmem_cache *s, *c;
 798	unsigned int nr_reparented;
 799
 800	idx = memcg_cache_id(memcg);
 801
 802	get_online_cpus();
 803	get_online_mems();
 804
 805	mutex_lock(&slab_mutex);
 806	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
 807		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 808						lockdep_is_held(&slab_mutex));
 809		c = arr->entries[idx];
 810		if (!c)
 811			continue;
 812
 813		kmemcg_cache_deactivate(c);
 814		arr->entries[idx] = NULL;
 815	}
 816	nr_reparented = 0;
 817	list_for_each_entry(s, &memcg->kmem_caches,
 818			    memcg_params.kmem_caches_node) {
 819		WRITE_ONCE(s->memcg_params.memcg, parent);
 820		css_put(&memcg->css);
 821		nr_reparented++;
 822	}
 823	if (nr_reparented) {
 824		list_splice_init(&memcg->kmem_caches,
 825				 &parent->kmem_caches);
 826		css_get_many(&parent->css, nr_reparented);
 827	}
 828	mutex_unlock(&slab_mutex);
 829
 830	put_online_mems();
 831	put_online_cpus();
 832}
 833
 834static int shutdown_memcg_caches(struct kmem_cache *s)
 835{
 836	struct memcg_cache_array *arr;
 837	struct kmem_cache *c, *c2;
 838	LIST_HEAD(busy);
 839	int i;
 840
 841	BUG_ON(!is_root_cache(s));
 842
 843	/*
 844	 * First, shutdown active caches, i.e. caches that belong to online
 845	 * memory cgroups.
 846	 */
 847	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 848					lockdep_is_held(&slab_mutex));
 849	for_each_memcg_cache_index(i) {
 850		c = arr->entries[i];
 851		if (!c)
 852			continue;
 853		if (shutdown_cache(c))
 854			/*
 855			 * The cache still has objects. Move it to a temporary
 856			 * list so as not to try to destroy it for a second
 857			 * time while iterating over inactive caches below.
 858			 */
 859			list_move(&c->memcg_params.children_node, &busy);
 860		else
 861			/*
 862			 * The cache is empty and will be destroyed soon. Clear
 863			 * the pointer to it in the memcg_caches array so that
 864			 * it will never be accessed even if the root cache
 865			 * stays alive.
 866			 */
 867			arr->entries[i] = NULL;
 868	}
 869
 870	/*
 871	 * Second, shutdown all caches left from memory cgroups that are now
 872	 * offline.
 873	 */
 874	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
 875				 memcg_params.children_node)
 876		shutdown_cache(c);
 877
 878	list_splice(&busy, &s->memcg_params.children);
 879
 880	/*
 881	 * A cache being destroyed must be empty. In particular, this means
 882	 * that all per memcg caches attached to it must be empty too.
 883	 */
 884	if (!list_empty(&s->memcg_params.children))
 885		return -EBUSY;
 886	return 0;
 887}
 888
 889static void flush_memcg_workqueue(struct kmem_cache *s)
 890{
 891	spin_lock_irq(&memcg_kmem_wq_lock);
 892	s->memcg_params.dying = true;
 893	spin_unlock_irq(&memcg_kmem_wq_lock);
 894
 895	/*
 896	 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
 897	 * sure all registered rcu callbacks have been invoked.
 898	 */
 899	rcu_barrier();
 900
 901	/*
 902	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
 903	 * deactivates the memcg kmem_caches through workqueue. Make sure all
 904	 * previous workitems on workqueue are processed.
 905	 */
 906	flush_workqueue(memcg_kmem_cache_wq);
 907}
 908#else
 909static inline int shutdown_memcg_caches(struct kmem_cache *s)
 910{
 911	return 0;
 912}
 913
 914static inline void flush_memcg_workqueue(struct kmem_cache *s)
 915{
 916}
 917#endif /* CONFIG_MEMCG_KMEM */
 918
 919void slab_kmem_cache_release(struct kmem_cache *s)
 920{
 921	__kmem_cache_release(s);
 922	destroy_memcg_params(s);
 923	kfree_const(s->name);
 924	kmem_cache_free(kmem_cache, s);
 925}
 926
 927void kmem_cache_destroy(struct kmem_cache *s)
 928{
 929	int err;
 930
 931	if (unlikely(!s))
 932		return;
 933
 934	flush_memcg_workqueue(s);
 935
 936	get_online_cpus();
 937	get_online_mems();
 938
 939	mutex_lock(&slab_mutex);
 940
 941	s->refcount--;
 942	if (s->refcount)
 943		goto out_unlock;
 944
 945	err = shutdown_memcg_caches(s);
 946	if (!err)
 947		err = shutdown_cache(s);
 948
 949	if (err) {
 950		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
 951		       s->name);
 952		dump_stack();
 953	}
 954out_unlock:
 955	mutex_unlock(&slab_mutex);
 956
 957	put_online_mems();
 958	put_online_cpus();
 959}
 960EXPORT_SYMBOL(kmem_cache_destroy);
 961
 962/**
 963 * kmem_cache_shrink - Shrink a cache.
 964 * @cachep: The cache to shrink.
 965 *
 966 * Releases as many slabs as possible for a cache.
 967 * To help debugging, a zero exit status indicates all slabs were released.
 968 *
 969 * Return: %0 if all slabs were released, non-zero otherwise
 970 */
 971int kmem_cache_shrink(struct kmem_cache *cachep)
 972{
 973	int ret;
 974
 975	get_online_cpus();
 976	get_online_mems();
 977	kasan_cache_shrink(cachep);
 978	ret = __kmem_cache_shrink(cachep);
 979	put_online_mems();
 980	put_online_cpus();
 981	return ret;
 982}
 983EXPORT_SYMBOL(kmem_cache_shrink);
 984
 
 
 
 
 
 
 985/**
 986 * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
 987 * @s: The cache pointer
 
 
 
 
 988 */
 989void kmem_cache_shrink_all(struct kmem_cache *s)
 990{
 991	struct kmem_cache *c;
 
 
 
 
 
 
 
 
 992
 993	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
 994		kmem_cache_shrink(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995		return;
 996	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 997
 998	get_online_cpus();
 999	get_online_mems();
1000	kasan_cache_shrink(s);
1001	__kmem_cache_shrink(s);
1002
1003	/*
1004	 * We have to take the slab_mutex to protect from the memcg list
1005	 * modification.
1006	 */
1007	mutex_lock(&slab_mutex);
1008	for_each_memcg_cache(c, s) {
1009		/*
1010		 * Don't need to shrink deactivated memcg caches.
1011		 */
1012		if (s->flags & SLAB_DEACTIVATED)
1013			continue;
1014		kasan_cache_shrink(c);
1015		__kmem_cache_shrink(c);
1016	}
1017	mutex_unlock(&slab_mutex);
1018	put_online_mems();
1019	put_online_cpus();
1020}
1021
1022bool slab_is_available(void)
1023{
1024	return slab_state >= UP;
1025}
 
 
1026
1027#ifndef CONFIG_SLOB
1028/* Create a cache during boot when no slab services are available yet */
1029void __init create_boot_cache(struct kmem_cache *s, const char *name,
1030		unsigned int size, slab_flags_t flags,
1031		unsigned int useroffset, unsigned int usersize)
1032{
1033	int err;
1034	unsigned int align = ARCH_KMALLOC_MINALIGN;
1035
1036	s->name = name;
1037	s->size = s->object_size = size;
1038
1039	/*
1040	 * For power of two sizes, guarantee natural alignment for kmalloc
1041	 * caches, regardless of SL*B debugging options.
1042	 */
1043	if (is_power_of_2(size))
1044		align = max(align, size);
1045	s->align = calculate_alignment(flags, align, size);
1046
1047	s->useroffset = useroffset;
1048	s->usersize = usersize;
1049
1050	slab_init_memcg_params(s);
1051
1052	err = __kmem_cache_create(s, flags);
1053
1054	if (err)
1055		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
1056					name, size, err);
1057
1058	s->refcount = -1;	/* Exempt from merging for now */
1059}
1060
1061struct kmem_cache *__init create_kmalloc_cache(const char *name,
1062		unsigned int size, slab_flags_t flags,
1063		unsigned int useroffset, unsigned int usersize)
1064{
1065	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1066
1067	if (!s)
1068		panic("Out of memory when creating slab %s\n", name);
1069
1070	create_boot_cache(s, name, size, flags, useroffset, usersize);
 
1071	list_add(&s->list, &slab_caches);
1072	memcg_link_cache(s, NULL);
1073	s->refcount = 1;
1074	return s;
1075}
1076
1077struct kmem_cache *
1078kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
1079{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
1080EXPORT_SYMBOL(kmalloc_caches);
1081
1082/*
1083 * Conversion table for small slabs sizes / 8 to the index in the
1084 * kmalloc array. This is necessary for slabs < 192 since we have non power
1085 * of two cache sizes there. The size of larger slabs can be determined using
1086 * fls.
1087 */
1088static u8 size_index[24] __ro_after_init = {
1089	3,	/* 8 */
1090	4,	/* 16 */
1091	5,	/* 24 */
1092	5,	/* 32 */
1093	6,	/* 40 */
1094	6,	/* 48 */
1095	6,	/* 56 */
1096	6,	/* 64 */
1097	1,	/* 72 */
1098	1,	/* 80 */
1099	1,	/* 88 */
1100	1,	/* 96 */
1101	7,	/* 104 */
1102	7,	/* 112 */
1103	7,	/* 120 */
1104	7,	/* 128 */
1105	2,	/* 136 */
1106	2,	/* 144 */
1107	2,	/* 152 */
1108	2,	/* 160 */
1109	2,	/* 168 */
1110	2,	/* 176 */
1111	2,	/* 184 */
1112	2	/* 192 */
1113};
1114
1115static inline unsigned int size_index_elem(unsigned int bytes)
1116{
1117	return (bytes - 1) / 8;
1118}
1119
1120/*
1121 * Find the kmem_cache structure that serves a given size of
1122 * allocation
1123 */
1124struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1125{
1126	unsigned int index;
1127
1128	if (size <= 192) {
1129		if (!size)
1130			return ZERO_SIZE_PTR;
1131
1132		index = size_index[size_index_elem(size)];
1133	} else {
1134		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1135			return NULL;
1136		index = fls(size - 1);
1137	}
1138
1139	return kmalloc_caches[kmalloc_type(flags)][index];
1140}
1141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1142/*
1143 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1144 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1145 * kmalloc-67108864.
1146 */
1147const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1148	{NULL,                      0},		{"kmalloc-96",             96},
1149	{"kmalloc-192",           192},		{"kmalloc-8",               8},
1150	{"kmalloc-16",             16},		{"kmalloc-32",             32},
1151	{"kmalloc-64",             64},		{"kmalloc-128",           128},
1152	{"kmalloc-256",           256},		{"kmalloc-512",           512},
1153	{"kmalloc-1k",           1024},		{"kmalloc-2k",           2048},
1154	{"kmalloc-4k",           4096},		{"kmalloc-8k",           8192},
1155	{"kmalloc-16k",         16384},		{"kmalloc-32k",         32768},
1156	{"kmalloc-64k",         65536},		{"kmalloc-128k",       131072},
1157	{"kmalloc-256k",       262144},		{"kmalloc-512k",       524288},
1158	{"kmalloc-1M",        1048576},		{"kmalloc-2M",        2097152},
1159	{"kmalloc-4M",        4194304},		{"kmalloc-8M",        8388608},
1160	{"kmalloc-16M",      16777216},		{"kmalloc-32M",      33554432},
1161	{"kmalloc-64M",      67108864}
 
 
 
 
 
 
 
 
 
 
 
 
1162};
1163
1164/*
1165 * Patch up the size_index table if we have strange large alignment
1166 * requirements for the kmalloc array. This is only the case for
1167 * MIPS it seems. The standard arches will not generate any code here.
1168 *
1169 * Largest permitted alignment is 256 bytes due to the way we
1170 * handle the index determination for the smaller caches.
1171 *
1172 * Make sure that nothing crazy happens if someone starts tinkering
1173 * around with ARCH_KMALLOC_MINALIGN
1174 */
1175void __init setup_kmalloc_cache_index_table(void)
1176{
1177	unsigned int i;
1178
1179	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1180		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1181
1182	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1183		unsigned int elem = size_index_elem(i);
1184
1185		if (elem >= ARRAY_SIZE(size_index))
1186			break;
1187		size_index[elem] = KMALLOC_SHIFT_LOW;
1188	}
1189
1190	if (KMALLOC_MIN_SIZE >= 64) {
1191		/*
1192		 * The 96 byte size cache is not used if the alignment
1193		 * is 64 byte.
1194		 */
1195		for (i = 64 + 8; i <= 96; i += 8)
1196			size_index[size_index_elem(i)] = 7;
1197
1198	}
1199
1200	if (KMALLOC_MIN_SIZE >= 128) {
1201		/*
1202		 * The 192 byte sized cache is not used if the alignment
1203		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1204		 * instead.
1205		 */
1206		for (i = 128 + 8; i <= 192; i += 8)
1207			size_index[size_index_elem(i)] = 8;
1208	}
1209}
1210
1211static const char *
1212kmalloc_cache_name(const char *prefix, unsigned int size)
1213{
1214
1215	static const char units[3] = "\0kM";
1216	int idx = 0;
1217
1218	while (size >= 1024 && (size % 1024 == 0)) {
1219		size /= 1024;
1220		idx++;
1221	}
1222
1223	return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
1224}
1225
1226static void __init
1227new_kmalloc_cache(int idx, int type, slab_flags_t flags)
1228{
1229	const char *name;
1230
1231	if (type == KMALLOC_RECLAIM) {
1232		flags |= SLAB_RECLAIM_ACCOUNT;
1233		name = kmalloc_cache_name("kmalloc-rcl",
1234						kmalloc_info[idx].size);
1235		BUG_ON(!name);
1236	} else {
1237		name = kmalloc_info[idx].name;
 
1238	}
1239
1240	kmalloc_caches[type][idx] = create_kmalloc_cache(name,
 
1241					kmalloc_info[idx].size, flags, 0,
1242					kmalloc_info[idx].size);
 
 
 
 
 
 
 
1243}
1244
1245/*
1246 * Create the kmalloc array. Some of the regular kmalloc arrays
1247 * may already have been created because they were needed to
1248 * enable allocations for slab creation.
1249 */
1250void __init create_kmalloc_caches(slab_flags_t flags)
1251{
1252	int i, type;
 
1253
 
 
 
1254	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
1255		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1256			if (!kmalloc_caches[type][i])
1257				new_kmalloc_cache(i, type, flags);
1258
1259			/*
1260			 * Caches that are not of the two-to-the-power-of size.
1261			 * These have to be created immediately after the
1262			 * earlier power of two caches
1263			 */
1264			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1265					!kmalloc_caches[type][1])
1266				new_kmalloc_cache(1, type, flags);
1267			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1268					!kmalloc_caches[type][2])
1269				new_kmalloc_cache(2, type, flags);
1270		}
1271	}
1272
1273	/* Kmalloc array is now usable */
1274	slab_state = UP;
1275
1276#ifdef CONFIG_ZONE_DMA
1277	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1278		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1279
1280		if (s) {
1281			unsigned int size = kmalloc_size(i);
1282			const char *n = kmalloc_cache_name("dma-kmalloc", size);
1283
1284			BUG_ON(!n);
1285			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1286				n, size, SLAB_CACHE_DMA | flags, 0, 0);
 
 
 
1287		}
1288	}
1289#endif
1290}
1291#endif /* !CONFIG_SLOB */
1292
 
 
 
 
 
 
 
 
 
 
 
 
1293/*
1294 * To avoid unnecessary overhead, we pass through large allocation requests
1295 * directly to the page allocator. We use __GFP_COMP, because we will need to
1296 * know the allocation order to free the pages properly in kfree.
1297 */
1298void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1299{
1300	void *ret = NULL;
1301	struct page *page;
1302
 
 
 
1303	flags |= __GFP_COMP;
1304	page = alloc_pages(flags, order);
1305	if (likely(page)) {
1306		ret = page_address(page);
1307		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
1308				    1 << order);
1309	}
1310	ret = kasan_kmalloc_large(ret, size, flags);
1311	/* As ret might get tagged, call kmemleak hook after KASAN. */
1312	kmemleak_alloc(ret, size, 1, flags);
1313	return ret;
1314}
1315EXPORT_SYMBOL(kmalloc_order);
1316
1317#ifdef CONFIG_TRACING
1318void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1319{
1320	void *ret = kmalloc_order(size, flags, order);
1321	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1322	return ret;
1323}
1324EXPORT_SYMBOL(kmalloc_order_trace);
1325#endif
1326
1327#ifdef CONFIG_SLAB_FREELIST_RANDOM
1328/* Randomize a generic freelist */
1329static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1330			       unsigned int count)
1331{
1332	unsigned int rand;
1333	unsigned int i;
1334
1335	for (i = 0; i < count; i++)
1336		list[i] = i;
1337
1338	/* Fisher-Yates shuffle */
1339	for (i = count - 1; i > 0; i--) {
1340		rand = prandom_u32_state(state);
1341		rand %= (i + 1);
1342		swap(list[i], list[rand]);
1343	}
1344}
1345
1346/* Create a random sequence per cache */
1347int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1348				    gfp_t gfp)
1349{
1350	struct rnd_state state;
1351
1352	if (count < 2 || cachep->random_seq)
1353		return 0;
1354
1355	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1356	if (!cachep->random_seq)
1357		return -ENOMEM;
1358
1359	/* Get best entropy at this stage of boot */
1360	prandom_seed_state(&state, get_random_long());
1361
1362	freelist_randomize(&state, cachep->random_seq, count);
1363	return 0;
1364}
1365
1366/* Destroy the per-cache random freelist sequence */
1367void cache_random_seq_destroy(struct kmem_cache *cachep)
1368{
1369	kfree(cachep->random_seq);
1370	cachep->random_seq = NULL;
1371}
1372#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1373
1374#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1375#ifdef CONFIG_SLAB
1376#define SLABINFO_RIGHTS (0600)
1377#else
1378#define SLABINFO_RIGHTS (0400)
1379#endif
1380
1381static void print_slabinfo_header(struct seq_file *m)
1382{
1383	/*
1384	 * Output format version, so at least we can change it
1385	 * without _too_ many complaints.
1386	 */
1387#ifdef CONFIG_DEBUG_SLAB
1388	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1389#else
1390	seq_puts(m, "slabinfo - version: 2.1\n");
1391#endif
1392	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1393	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1394	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1395#ifdef CONFIG_DEBUG_SLAB
1396	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1397	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1398#endif
1399	seq_putc(m, '\n');
1400}
1401
1402void *slab_start(struct seq_file *m, loff_t *pos)
1403{
1404	mutex_lock(&slab_mutex);
1405	return seq_list_start(&slab_root_caches, *pos);
1406}
1407
1408void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1409{
1410	return seq_list_next(p, &slab_root_caches, pos);
1411}
1412
1413void slab_stop(struct seq_file *m, void *p)
1414{
1415	mutex_unlock(&slab_mutex);
1416}
1417
1418static void
1419memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1420{
1421	struct kmem_cache *c;
1422	struct slabinfo sinfo;
1423
1424	if (!is_root_cache(s))
1425		return;
1426
1427	for_each_memcg_cache(c, s) {
1428		memset(&sinfo, 0, sizeof(sinfo));
1429		get_slabinfo(c, &sinfo);
1430
1431		info->active_slabs += sinfo.active_slabs;
1432		info->num_slabs += sinfo.num_slabs;
1433		info->shared_avail += sinfo.shared_avail;
1434		info->active_objs += sinfo.active_objs;
1435		info->num_objs += sinfo.num_objs;
1436	}
1437}
1438
1439static void cache_show(struct kmem_cache *s, struct seq_file *m)
1440{
1441	struct slabinfo sinfo;
1442
1443	memset(&sinfo, 0, sizeof(sinfo));
1444	get_slabinfo(s, &sinfo);
1445
1446	memcg_accumulate_slabinfo(s, &sinfo);
1447
1448	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1449		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1450		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1451
1452	seq_printf(m, " : tunables %4u %4u %4u",
1453		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1454	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1455		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1456	slabinfo_show_stats(m, s);
1457	seq_putc(m, '\n');
1458}
1459
1460static int slab_show(struct seq_file *m, void *p)
1461{
1462	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1463
1464	if (p == slab_root_caches.next)
1465		print_slabinfo_header(m);
1466	cache_show(s, m);
1467	return 0;
1468}
1469
1470void dump_unreclaimable_slab(void)
1471{
1472	struct kmem_cache *s, *s2;
1473	struct slabinfo sinfo;
1474
1475	/*
1476	 * Here acquiring slab_mutex is risky since we don't prefer to get
1477	 * sleep in oom path. But, without mutex hold, it may introduce a
1478	 * risk of crash.
1479	 * Use mutex_trylock to protect the list traverse, dump nothing
1480	 * without acquiring the mutex.
1481	 */
1482	if (!mutex_trylock(&slab_mutex)) {
1483		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1484		return;
1485	}
1486
1487	pr_info("Unreclaimable slab info:\n");
1488	pr_info("Name                      Used          Total\n");
1489
1490	list_for_each_entry_safe(s, s2, &slab_caches, list) {
1491		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1492			continue;
1493
1494		get_slabinfo(s, &sinfo);
1495
1496		if (sinfo.num_objs > 0)
1497			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1498				(sinfo.active_objs * s->size) / 1024,
1499				(sinfo.num_objs * s->size) / 1024);
1500	}
1501	mutex_unlock(&slab_mutex);
1502}
1503
1504#if defined(CONFIG_MEMCG)
1505void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1506{
1507	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1508
1509	mutex_lock(&slab_mutex);
1510	return seq_list_start(&memcg->kmem_caches, *pos);
1511}
1512
1513void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1514{
1515	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1516
1517	return seq_list_next(p, &memcg->kmem_caches, pos);
1518}
1519
1520void memcg_slab_stop(struct seq_file *m, void *p)
1521{
1522	mutex_unlock(&slab_mutex);
1523}
1524
1525int memcg_slab_show(struct seq_file *m, void *p)
1526{
1527	struct kmem_cache *s = list_entry(p, struct kmem_cache,
1528					  memcg_params.kmem_caches_node);
1529	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1530
1531	if (p == memcg->kmem_caches.next)
1532		print_slabinfo_header(m);
1533	cache_show(s, m);
1534	return 0;
1535}
1536#endif
1537
1538/*
1539 * slabinfo_op - iterator that generates /proc/slabinfo
1540 *
1541 * Output layout:
1542 * cache-name
1543 * num-active-objs
1544 * total-objs
1545 * object size
1546 * num-active-slabs
1547 * total-slabs
1548 * num-pages-per-slab
1549 * + further values on SMP and with statistics enabled
1550 */
1551static const struct seq_operations slabinfo_op = {
1552	.start = slab_start,
1553	.next = slab_next,
1554	.stop = slab_stop,
1555	.show = slab_show,
1556};
1557
1558static int slabinfo_open(struct inode *inode, struct file *file)
1559{
1560	return seq_open(file, &slabinfo_op);
1561}
1562
1563static const struct file_operations proc_slabinfo_operations = {
1564	.open		= slabinfo_open,
1565	.read		= seq_read,
1566	.write          = slabinfo_write,
1567	.llseek		= seq_lseek,
1568	.release	= seq_release,
 
1569};
1570
1571static int __init slab_proc_init(void)
1572{
1573	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1574						&proc_slabinfo_operations);
1575	return 0;
1576}
1577module_init(slab_proc_init);
1578
1579#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
1580/*
1581 * Display information about kmem caches that have child memcg caches.
1582 */
1583static int memcg_slabinfo_show(struct seq_file *m, void *unused)
1584{
1585	struct kmem_cache *s, *c;
1586	struct slabinfo sinfo;
1587
1588	mutex_lock(&slab_mutex);
1589	seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
1590	seq_puts(m, " <active_slabs> <num_slabs>\n");
1591	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
1592		/*
1593		 * Skip kmem caches that don't have any memcg children.
1594		 */
1595		if (list_empty(&s->memcg_params.children))
1596			continue;
1597
1598		memset(&sinfo, 0, sizeof(sinfo));
1599		get_slabinfo(s, &sinfo);
1600		seq_printf(m, "%-17s root       %6lu %6lu %6lu %6lu\n",
1601			   cache_name(s), sinfo.active_objs, sinfo.num_objs,
1602			   sinfo.active_slabs, sinfo.num_slabs);
1603
1604		for_each_memcg_cache(c, s) {
1605			struct cgroup_subsys_state *css;
1606			char *status = "";
1607
1608			css = &c->memcg_params.memcg->css;
1609			if (!(css->flags & CSS_ONLINE))
1610				status = ":dead";
1611			else if (c->flags & SLAB_DEACTIVATED)
1612				status = ":deact";
1613
1614			memset(&sinfo, 0, sizeof(sinfo));
1615			get_slabinfo(c, &sinfo);
1616			seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
1617				   cache_name(c), css->id, status,
1618				   sinfo.active_objs, sinfo.num_objs,
1619				   sinfo.active_slabs, sinfo.num_slabs);
1620		}
1621	}
1622	mutex_unlock(&slab_mutex);
1623	return 0;
1624}
1625DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);
1626
1627static int __init memcg_slabinfo_init(void)
1628{
1629	debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
1630			    NULL, NULL, &memcg_slabinfo_fops);
1631	return 0;
1632}
1633
1634late_initcall(memcg_slabinfo_init);
1635#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
1636#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1637
1638static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1639					   gfp_t flags)
1640{
1641	void *ret;
1642	size_t ks = 0;
1643
1644	if (p)
1645		ks = ksize(p);
 
 
 
 
 
1646
 
1647	if (ks >= new_size) {
1648		p = kasan_krealloc((void *)p, new_size, flags);
1649		return (void *)p;
1650	}
1651
1652	ret = kmalloc_track_caller(new_size, flags);
1653	if (ret && p)
1654		memcpy(ret, p, ks);
 
 
 
 
1655
1656	return ret;
1657}
1658
1659/**
1660 * __krealloc - like krealloc() but don't free @p.
1661 * @p: object to reallocate memory for.
1662 * @new_size: how many bytes of memory are required.
1663 * @flags: the type of memory to allocate.
1664 *
1665 * This function is like krealloc() except it never frees the originally
1666 * allocated buffer. Use this if you don't want to free the buffer immediately
1667 * like, for example, with RCU.
1668 *
1669 * Return: pointer to the allocated memory or %NULL in case of error
1670 */
1671void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1672{
1673	if (unlikely(!new_size))
1674		return ZERO_SIZE_PTR;
1675
1676	return __do_krealloc(p, new_size, flags);
1677
1678}
1679EXPORT_SYMBOL(__krealloc);
1680
1681/**
1682 * krealloc - reallocate memory. The contents will remain unchanged.
1683 * @p: object to reallocate memory for.
1684 * @new_size: how many bytes of memory are required.
1685 * @flags: the type of memory to allocate.
1686 *
1687 * The contents of the object pointed to are preserved up to the
1688 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1689 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1690 * %NULL pointer, the object pointed to is freed.
1691 *
1692 * Return: pointer to the allocated memory or %NULL in case of error
1693 */
1694void *krealloc(const void *p, size_t new_size, gfp_t flags)
1695{
1696	void *ret;
1697
1698	if (unlikely(!new_size)) {
1699		kfree(p);
1700		return ZERO_SIZE_PTR;
1701	}
1702
1703	ret = __do_krealloc(p, new_size, flags);
1704	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1705		kfree(p);
1706
1707	return ret;
1708}
1709EXPORT_SYMBOL(krealloc);
1710
1711/**
1712 * kzfree - like kfree but zero memory
1713 * @p: object to free memory of
1714 *
1715 * The memory of the object @p points to is zeroed before freed.
1716 * If @p is %NULL, kzfree() does nothing.
1717 *
1718 * Note: this function zeroes the whole allocated buffer which can be a good
1719 * deal bigger than the requested buffer size passed to kmalloc(). So be
1720 * careful when using this function in performance sensitive code.
1721 */
1722void kzfree(const void *p)
1723{
1724	size_t ks;
1725	void *mem = (void *)p;
1726
1727	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1728		return;
1729	ks = ksize(mem);
1730	memset(mem, 0, ks);
 
1731	kfree(mem);
1732}
1733EXPORT_SYMBOL(kzfree);
1734
1735/**
1736 * ksize - get the actual amount of memory allocated for a given object
1737 * @objp: Pointer to the object
1738 *
1739 * kmalloc may internally round up allocations and return more memory
1740 * than requested. ksize() can be used to determine the actual amount of
1741 * memory allocated. The caller may use this additional memory, even though
1742 * a smaller amount of memory was initially specified with the kmalloc call.
1743 * The caller must guarantee that objp points to a valid object previously
1744 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1745 * must not be freed during the duration of the call.
1746 *
1747 * Return: size of the actual memory used by @objp in bytes
1748 */
1749size_t ksize(const void *objp)
1750{
1751	size_t size;
1752
1753	if (WARN_ON_ONCE(!objp))
1754		return 0;
1755	/*
1756	 * We need to check that the pointed to object is valid, and only then
1757	 * unpoison the shadow memory below. We use __kasan_check_read(), to
1758	 * generate a more useful report at the time ksize() is called (rather
1759	 * than later where behaviour is undefined due to potential
1760	 * use-after-free or double-free).
 
 
1761	 *
1762	 * If the pointed to memory is invalid we return 0, to avoid users of
1763	 * ksize() writing to and potentially corrupting the memory region.
1764	 *
1765	 * We want to perform the check before __ksize(), to avoid potentially
1766	 * crashing in __ksize() due to accessing invalid metadata.
1767	 */
1768	if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
1769		return 0;
1770
1771	size = __ksize(objp);
1772	/*
1773	 * We assume that ksize callers could use whole allocated area,
1774	 * so we need to unpoison this area.
1775	 */
1776	kasan_unpoison_shadow(objp, size);
1777	return size;
1778}
1779EXPORT_SYMBOL(ksize);
1780
1781/* Tracepoints definitions. */
1782EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1783EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1784EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1785EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1786EXPORT_TRACEPOINT_SYMBOL(kfree);
1787EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1788
1789int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1790{
1791	if (__should_failslab(s, gfpflags))
1792		return -ENOMEM;
1793	return 0;
1794}
1795ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Slab allocator functions that are independent of the allocator strategy
   4 *
   5 * (C) 2012 Christoph Lameter <cl@linux.com>
   6 */
   7#include <linux/slab.h>
   8
   9#include <linux/mm.h>
  10#include <linux/poison.h>
  11#include <linux/interrupt.h>
  12#include <linux/memory.h>
  13#include <linux/cache.h>
  14#include <linux/compiler.h>
  15#include <linux/kfence.h>
  16#include <linux/module.h>
  17#include <linux/cpu.h>
  18#include <linux/uaccess.h>
  19#include <linux/seq_file.h>
  20#include <linux/proc_fs.h>
  21#include <linux/debugfs.h>
  22#include <linux/kasan.h>
  23#include <asm/cacheflush.h>
  24#include <asm/tlbflush.h>
  25#include <asm/page.h>
  26#include <linux/memcontrol.h>
  27
  28#define CREATE_TRACE_POINTS
  29#include <trace/events/kmem.h>
  30
  31#include "internal.h"
  32
  33#include "slab.h"
  34
  35enum slab_state slab_state;
  36LIST_HEAD(slab_caches);
  37DEFINE_MUTEX(slab_mutex);
  38struct kmem_cache *kmem_cache;
  39
  40#ifdef CONFIG_HARDENED_USERCOPY
  41bool usercopy_fallback __ro_after_init =
  42		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
  43module_param(usercopy_fallback, bool, 0400);
  44MODULE_PARM_DESC(usercopy_fallback,
  45		"WARN instead of reject usercopy whitelist violations");
  46#endif
  47
  48static LIST_HEAD(slab_caches_to_rcu_destroy);
  49static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
  50static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  51		    slab_caches_to_rcu_destroy_workfn);
  52
  53/*
  54 * Set of flags that will prevent slab merging
  55 */
  56#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  57		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
  58		SLAB_FAILSLAB | kasan_never_merge())
  59
  60#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  61			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
  62
  63/*
  64 * Merge control. If this is set then no merging of slab caches will occur.
  65 */
  66static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
  67
  68static int __init setup_slab_nomerge(char *str)
  69{
  70	slab_nomerge = true;
  71	return 1;
  72}
  73
  74static int __init setup_slab_merge(char *str)
  75{
  76	slab_nomerge = false;
  77	return 1;
  78}
  79
  80#ifdef CONFIG_SLUB
  81__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
  82__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
  83#endif
  84
  85__setup("slab_nomerge", setup_slab_nomerge);
  86__setup("slab_merge", setup_slab_merge);
  87
  88/*
  89 * Determine the size of a slab object
  90 */
  91unsigned int kmem_cache_size(struct kmem_cache *s)
  92{
  93	return s->object_size;
  94}
  95EXPORT_SYMBOL(kmem_cache_size);
  96
  97#ifdef CONFIG_DEBUG_VM
  98static int kmem_cache_sanity_check(const char *name, unsigned int size)
  99{
 100	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
 
 101		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
 102		return -EINVAL;
 103	}
 104
 105	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
 106	return 0;
 107}
 108#else
 109static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
 110{
 111	return 0;
 112}
 113#endif
 114
 115void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
 116{
 117	size_t i;
 118
 119	for (i = 0; i < nr; i++) {
 120		if (s)
 121			kmem_cache_free(s, p[i]);
 122		else
 123			kfree(p[i]);
 124	}
 125}
 126
 127int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
 128								void **p)
 129{
 130	size_t i;
 131
 132	for (i = 0; i < nr; i++) {
 133		void *x = p[i] = kmem_cache_alloc(s, flags);
 134		if (!x) {
 135			__kmem_cache_free_bulk(s, i, p);
 136			return 0;
 137		}
 138	}
 139	return i;
 140}
 141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142/*
 143 * Figure out what the alignment of the objects will be given a set of
 144 * flags, a user specified alignment and the size of the objects.
 145 */
 146static unsigned int calculate_alignment(slab_flags_t flags,
 147		unsigned int align, unsigned int size)
 148{
 149	/*
 150	 * If the user wants hardware cache aligned objects then follow that
 151	 * suggestion if the object is sufficiently large.
 152	 *
 153	 * The hardware cache alignment cannot override the specified
 154	 * alignment though. If that is greater then use it.
 155	 */
 156	if (flags & SLAB_HWCACHE_ALIGN) {
 157		unsigned int ralign;
 158
 159		ralign = cache_line_size();
 160		while (size <= ralign / 2)
 161			ralign /= 2;
 162		align = max(align, ralign);
 163	}
 164
 165	if (align < ARCH_SLAB_MINALIGN)
 166		align = ARCH_SLAB_MINALIGN;
 167
 168	return ALIGN(align, sizeof(void *));
 169}
 170
 171/*
 172 * Find a mergeable slab cache
 173 */
 174int slab_unmergeable(struct kmem_cache *s)
 175{
 176	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 177		return 1;
 178
 
 
 
 179	if (s->ctor)
 180		return 1;
 181
 182	if (s->usersize)
 183		return 1;
 184
 185	/*
 186	 * We may have set a slab to be unmergeable during bootstrap.
 187	 */
 188	if (s->refcount < 0)
 189		return 1;
 190
 191	return 0;
 192}
 193
 194struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 195		slab_flags_t flags, const char *name, void (*ctor)(void *))
 196{
 197	struct kmem_cache *s;
 198
 199	if (slab_nomerge)
 200		return NULL;
 201
 202	if (ctor)
 203		return NULL;
 204
 205	size = ALIGN(size, sizeof(void *));
 206	align = calculate_alignment(flags, align, size);
 207	size = ALIGN(size, align);
 208	flags = kmem_cache_flags(size, flags, name);
 209
 210	if (flags & SLAB_NEVER_MERGE)
 211		return NULL;
 212
 213	list_for_each_entry_reverse(s, &slab_caches, list) {
 214		if (slab_unmergeable(s))
 215			continue;
 216
 217		if (size > s->size)
 218			continue;
 219
 220		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 221			continue;
 222		/*
 223		 * Check if alignment is compatible.
 224		 * Courtesy of Adrian Drzewiecki
 225		 */
 226		if ((s->size & ~(align - 1)) != s->size)
 227			continue;
 228
 229		if (s->size - size >= sizeof(void *))
 230			continue;
 231
 232		if (IS_ENABLED(CONFIG_SLAB) && align &&
 233			(align > s->align || s->align % align))
 234			continue;
 235
 236		return s;
 237	}
 238	return NULL;
 239}
 240
 241static struct kmem_cache *create_cache(const char *name,
 242		unsigned int object_size, unsigned int align,
 243		slab_flags_t flags, unsigned int useroffset,
 244		unsigned int usersize, void (*ctor)(void *),
 245		struct kmem_cache *root_cache)
 246{
 247	struct kmem_cache *s;
 248	int err;
 249
 250	if (WARN_ON(useroffset + usersize > object_size))
 251		useroffset = usersize = 0;
 252
 253	err = -ENOMEM;
 254	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 255	if (!s)
 256		goto out;
 257
 258	s->name = name;
 259	s->size = s->object_size = object_size;
 260	s->align = align;
 261	s->ctor = ctor;
 262	s->useroffset = useroffset;
 263	s->usersize = usersize;
 264
 
 
 
 
 265	err = __kmem_cache_create(s, flags);
 266	if (err)
 267		goto out_free_cache;
 268
 269	s->refcount = 1;
 270	list_add(&s->list, &slab_caches);
 
 271out:
 272	if (err)
 273		return ERR_PTR(err);
 274	return s;
 275
 276out_free_cache:
 
 277	kmem_cache_free(kmem_cache, s);
 278	goto out;
 279}
 280
 281/**
 282 * kmem_cache_create_usercopy - Create a cache with a region suitable
 283 * for copying to userspace
 284 * @name: A string which is used in /proc/slabinfo to identify this cache.
 285 * @size: The size of objects to be created in this cache.
 286 * @align: The required alignment for the objects.
 287 * @flags: SLAB flags
 288 * @useroffset: Usercopy region offset
 289 * @usersize: Usercopy region size
 290 * @ctor: A constructor for the objects.
 291 *
 292 * Cannot be called within a interrupt, but can be interrupted.
 293 * The @ctor is run when new pages are allocated by the cache.
 294 *
 295 * The flags are
 296 *
 297 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 298 * to catch references to uninitialised memory.
 299 *
 300 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 301 * for buffer overruns.
 302 *
 303 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 304 * cacheline.  This can be beneficial if you're counting cycles as closely
 305 * as davem.
 306 *
 307 * Return: a pointer to the cache on success, NULL on failure.
 308 */
 309struct kmem_cache *
 310kmem_cache_create_usercopy(const char *name,
 311		  unsigned int size, unsigned int align,
 312		  slab_flags_t flags,
 313		  unsigned int useroffset, unsigned int usersize,
 314		  void (*ctor)(void *))
 315{
 316	struct kmem_cache *s = NULL;
 317	const char *cache_name;
 318	int err;
 319
 320#ifdef CONFIG_SLUB_DEBUG
 321	/*
 322	 * If no slub_debug was enabled globally, the static key is not yet
 323	 * enabled by setup_slub_debug(). Enable it if the cache is being
 324	 * created with any of the debugging flags passed explicitly.
 325	 */
 326	if (flags & SLAB_DEBUG_FLAGS)
 327		static_branch_enable(&slub_debug_enabled);
 328#endif
 329
 330	mutex_lock(&slab_mutex);
 331
 332	err = kmem_cache_sanity_check(name, size);
 333	if (err) {
 334		goto out_unlock;
 335	}
 336
 337	/* Refuse requests with allocator specific flags */
 338	if (flags & ~SLAB_FLAGS_PERMITTED) {
 339		err = -EINVAL;
 340		goto out_unlock;
 341	}
 342
 343	/*
 344	 * Some allocators will constraint the set of valid flags to a subset
 345	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 346	 * case, and we'll just provide them with a sanitized version of the
 347	 * passed flags.
 348	 */
 349	flags &= CACHE_CREATE_MASK;
 350
 351	/* Fail closed on bad usersize of useroffset values. */
 352	if (WARN_ON(!usersize && useroffset) ||
 353	    WARN_ON(size < usersize || size - usersize < useroffset))
 354		usersize = useroffset = 0;
 355
 356	if (!usersize)
 357		s = __kmem_cache_alias(name, size, align, flags, ctor);
 358	if (s)
 359		goto out_unlock;
 360
 361	cache_name = kstrdup_const(name, GFP_KERNEL);
 362	if (!cache_name) {
 363		err = -ENOMEM;
 364		goto out_unlock;
 365	}
 366
 367	s = create_cache(cache_name, size,
 368			 calculate_alignment(flags, align, size),
 369			 flags, useroffset, usersize, ctor, NULL);
 370	if (IS_ERR(s)) {
 371		err = PTR_ERR(s);
 372		kfree_const(cache_name);
 373	}
 374
 375out_unlock:
 376	mutex_unlock(&slab_mutex);
 377
 
 
 
 
 378	if (err) {
 379		if (flags & SLAB_PANIC)
 380			panic("%s: Failed to create slab '%s'. Error %d\n",
 381				__func__, name, err);
 382		else {
 383			pr_warn("%s(%s) failed with error %d\n",
 384				__func__, name, err);
 385			dump_stack();
 386		}
 387		return NULL;
 388	}
 389	return s;
 390}
 391EXPORT_SYMBOL(kmem_cache_create_usercopy);
 392
 393/**
 394 * kmem_cache_create - Create a cache.
 395 * @name: A string which is used in /proc/slabinfo to identify this cache.
 396 * @size: The size of objects to be created in this cache.
 397 * @align: The required alignment for the objects.
 398 * @flags: SLAB flags
 399 * @ctor: A constructor for the objects.
 400 *
 401 * Cannot be called within a interrupt, but can be interrupted.
 402 * The @ctor is run when new pages are allocated by the cache.
 403 *
 404 * The flags are
 405 *
 406 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 407 * to catch references to uninitialised memory.
 408 *
 409 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 410 * for buffer overruns.
 411 *
 412 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 413 * cacheline.  This can be beneficial if you're counting cycles as closely
 414 * as davem.
 415 *
 416 * Return: a pointer to the cache on success, NULL on failure.
 417 */
 418struct kmem_cache *
 419kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 420		slab_flags_t flags, void (*ctor)(void *))
 421{
 422	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 423					  ctor);
 424}
 425EXPORT_SYMBOL(kmem_cache_create);
 426
 427static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 428{
 429	LIST_HEAD(to_destroy);
 430	struct kmem_cache *s, *s2;
 431
 432	/*
 433	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 434	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 435	 * through RCU and the associated kmem_cache are dereferenced
 436	 * while freeing the pages, so the kmem_caches should be freed only
 437	 * after the pending RCU operations are finished.  As rcu_barrier()
 438	 * is a pretty slow operation, we batch all pending destructions
 439	 * asynchronously.
 440	 */
 441	mutex_lock(&slab_mutex);
 442	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 443	mutex_unlock(&slab_mutex);
 444
 445	if (list_empty(&to_destroy))
 446		return;
 447
 448	rcu_barrier();
 449
 450	list_for_each_entry_safe(s, s2, &to_destroy, list) {
 451		debugfs_slab_release(s);
 452		kfence_shutdown_cache(s);
 453#ifdef SLAB_SUPPORTS_SYSFS
 454		sysfs_slab_release(s);
 455#else
 456		slab_kmem_cache_release(s);
 457#endif
 458	}
 459}
 460
 461static int shutdown_cache(struct kmem_cache *s)
 462{
 463	/* free asan quarantined objects */
 464	kasan_cache_shutdown(s);
 465
 466	if (__kmem_cache_shutdown(s) != 0)
 467		return -EBUSY;
 468
 
 469	list_del(&s->list);
 470
 471	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 472#ifdef SLAB_SUPPORTS_SYSFS
 473		sysfs_slab_unlink(s);
 474#endif
 475		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 476		schedule_work(&slab_caches_to_rcu_destroy_work);
 477	} else {
 478		kfence_shutdown_cache(s);
 479		debugfs_slab_release(s);
 480#ifdef SLAB_SUPPORTS_SYSFS
 481		sysfs_slab_unlink(s);
 482		sysfs_slab_release(s);
 483#else
 484		slab_kmem_cache_release(s);
 485#endif
 486	}
 487
 488	return 0;
 489}
 490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 491void slab_kmem_cache_release(struct kmem_cache *s)
 492{
 493	__kmem_cache_release(s);
 
 494	kfree_const(s->name);
 495	kmem_cache_free(kmem_cache, s);
 496}
 497
 498void kmem_cache_destroy(struct kmem_cache *s)
 499{
 500	int err;
 501
 502	if (unlikely(!s))
 503		return;
 504
 
 
 
 
 
 505	mutex_lock(&slab_mutex);
 506
 507	s->refcount--;
 508	if (s->refcount)
 509		goto out_unlock;
 510
 511	err = shutdown_cache(s);
 
 
 
 512	if (err) {
 513		pr_err("%s %s: Slab cache still has objects\n",
 514		       __func__, s->name);
 515		dump_stack();
 516	}
 517out_unlock:
 518	mutex_unlock(&slab_mutex);
 
 
 
 519}
 520EXPORT_SYMBOL(kmem_cache_destroy);
 521
 522/**
 523 * kmem_cache_shrink - Shrink a cache.
 524 * @cachep: The cache to shrink.
 525 *
 526 * Releases as many slabs as possible for a cache.
 527 * To help debugging, a zero exit status indicates all slabs were released.
 528 *
 529 * Return: %0 if all slabs were released, non-zero otherwise
 530 */
 531int kmem_cache_shrink(struct kmem_cache *cachep)
 532{
 533	int ret;
 534
 535
 
 536	kasan_cache_shrink(cachep);
 537	ret = __kmem_cache_shrink(cachep);
 538
 
 539	return ret;
 540}
 541EXPORT_SYMBOL(kmem_cache_shrink);
 542
 543bool slab_is_available(void)
 544{
 545	return slab_state >= UP;
 546}
 547
 548#ifdef CONFIG_PRINTK
 549/**
 550 * kmem_valid_obj - does the pointer reference a valid slab object?
 551 * @object: pointer to query.
 552 *
 553 * Return: %true if the pointer is to a not-yet-freed object from
 554 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
 555 * is to an already-freed object, and %false otherwise.
 556 */
 557bool kmem_valid_obj(void *object)
 558{
 559	struct page *page;
 560
 561	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
 562	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
 563		return false;
 564	page = virt_to_head_page(object);
 565	return PageSlab(page);
 566}
 567EXPORT_SYMBOL_GPL(kmem_valid_obj);
 568
 569/**
 570 * kmem_dump_obj - Print available slab provenance information
 571 * @object: slab object for which to find provenance information.
 572 *
 573 * This function uses pr_cont(), so that the caller is expected to have
 574 * printed out whatever preamble is appropriate.  The provenance information
 575 * depends on the type of object and on how much debugging is enabled.
 576 * For a slab-cache object, the fact that it is a slab object is printed,
 577 * and, if available, the slab name, return address, and stack trace from
 578 * the allocation and last free path of that object.
 579 *
 580 * This function will splat if passed a pointer to a non-slab object.
 581 * If you are not sure what type of object you have, you should instead
 582 * use mem_dump_obj().
 583 */
 584void kmem_dump_obj(void *object)
 585{
 586	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
 587	int i;
 588	struct page *page;
 589	unsigned long ptroffset;
 590	struct kmem_obj_info kp = { };
 591
 592	if (WARN_ON_ONCE(!virt_addr_valid(object)))
 593		return;
 594	page = virt_to_head_page(object);
 595	if (WARN_ON_ONCE(!PageSlab(page))) {
 596		pr_cont(" non-slab memory.\n");
 597		return;
 598	}
 599	kmem_obj_info(&kp, object, page);
 600	if (kp.kp_slab_cache)
 601		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
 602	else
 603		pr_cont(" slab%s", cp);
 604	if (kp.kp_objp)
 605		pr_cont(" start %px", kp.kp_objp);
 606	if (kp.kp_data_offset)
 607		pr_cont(" data offset %lu", kp.kp_data_offset);
 608	if (kp.kp_objp) {
 609		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
 610		pr_cont(" pointer offset %lu", ptroffset);
 611	}
 612	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
 613		pr_cont(" size %u", kp.kp_slab_cache->usersize);
 614	if (kp.kp_ret)
 615		pr_cont(" allocated at %pS\n", kp.kp_ret);
 616	else
 617		pr_cont("\n");
 618	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
 619		if (!kp.kp_stack[i])
 620			break;
 621		pr_info("    %pS\n", kp.kp_stack[i]);
 622	}
 623
 624	if (kp.kp_free_stack[0])
 625		pr_cont(" Free path:\n");
 
 
 626
 627	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
 628		if (!kp.kp_free_stack[i])
 629			break;
 630		pr_info("    %pS\n", kp.kp_free_stack[i]);
 
 
 
 
 
 
 
 
 
 631	}
 
 
 
 
 632
 
 
 
 633}
 634EXPORT_SYMBOL_GPL(kmem_dump_obj);
 635#endif
 636
 637#ifndef CONFIG_SLOB
 638/* Create a cache during boot when no slab services are available yet */
 639void __init create_boot_cache(struct kmem_cache *s, const char *name,
 640		unsigned int size, slab_flags_t flags,
 641		unsigned int useroffset, unsigned int usersize)
 642{
 643	int err;
 644	unsigned int align = ARCH_KMALLOC_MINALIGN;
 645
 646	s->name = name;
 647	s->size = s->object_size = size;
 648
 649	/*
 650	 * For power of two sizes, guarantee natural alignment for kmalloc
 651	 * caches, regardless of SL*B debugging options.
 652	 */
 653	if (is_power_of_2(size))
 654		align = max(align, size);
 655	s->align = calculate_alignment(flags, align, size);
 656
 657	s->useroffset = useroffset;
 658	s->usersize = usersize;
 659
 
 
 660	err = __kmem_cache_create(s, flags);
 661
 662	if (err)
 663		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 664					name, size, err);
 665
 666	s->refcount = -1;	/* Exempt from merging for now */
 667}
 668
 669struct kmem_cache *__init create_kmalloc_cache(const char *name,
 670		unsigned int size, slab_flags_t flags,
 671		unsigned int useroffset, unsigned int usersize)
 672{
 673	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 674
 675	if (!s)
 676		panic("Out of memory when creating slab %s\n", name);
 677
 678	create_boot_cache(s, name, size, flags, useroffset, usersize);
 679	kasan_cache_create_kmalloc(s);
 680	list_add(&s->list, &slab_caches);
 
 681	s->refcount = 1;
 682	return s;
 683}
 684
 685struct kmem_cache *
 686kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
 687{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
 688EXPORT_SYMBOL(kmalloc_caches);
 689
 690/*
 691 * Conversion table for small slabs sizes / 8 to the index in the
 692 * kmalloc array. This is necessary for slabs < 192 since we have non power
 693 * of two cache sizes there. The size of larger slabs can be determined using
 694 * fls.
 695 */
 696static u8 size_index[24] __ro_after_init = {
 697	3,	/* 8 */
 698	4,	/* 16 */
 699	5,	/* 24 */
 700	5,	/* 32 */
 701	6,	/* 40 */
 702	6,	/* 48 */
 703	6,	/* 56 */
 704	6,	/* 64 */
 705	1,	/* 72 */
 706	1,	/* 80 */
 707	1,	/* 88 */
 708	1,	/* 96 */
 709	7,	/* 104 */
 710	7,	/* 112 */
 711	7,	/* 120 */
 712	7,	/* 128 */
 713	2,	/* 136 */
 714	2,	/* 144 */
 715	2,	/* 152 */
 716	2,	/* 160 */
 717	2,	/* 168 */
 718	2,	/* 176 */
 719	2,	/* 184 */
 720	2	/* 192 */
 721};
 722
 723static inline unsigned int size_index_elem(unsigned int bytes)
 724{
 725	return (bytes - 1) / 8;
 726}
 727
 728/*
 729 * Find the kmem_cache structure that serves a given size of
 730 * allocation
 731 */
 732struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 733{
 734	unsigned int index;
 735
 736	if (size <= 192) {
 737		if (!size)
 738			return ZERO_SIZE_PTR;
 739
 740		index = size_index[size_index_elem(size)];
 741	} else {
 742		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
 743			return NULL;
 744		index = fls(size - 1);
 745	}
 746
 747	return kmalloc_caches[kmalloc_type(flags)][index];
 748}
 749
 750#ifdef CONFIG_ZONE_DMA
 751#define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
 752#else
 753#define KMALLOC_DMA_NAME(sz)
 754#endif
 755
 756#ifdef CONFIG_MEMCG_KMEM
 757#define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
 758#else
 759#define KMALLOC_CGROUP_NAME(sz)
 760#endif
 761
 762#define INIT_KMALLOC_INFO(__size, __short_size)			\
 763{								\
 764	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
 765	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
 766	KMALLOC_CGROUP_NAME(__short_size)			\
 767	KMALLOC_DMA_NAME(__short_size)				\
 768	.size = __size,						\
 769}
 770
 771/*
 772 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 773 * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
 774 * kmalloc-32M.
 775 */
 776const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 777	INIT_KMALLOC_INFO(0, 0),
 778	INIT_KMALLOC_INFO(96, 96),
 779	INIT_KMALLOC_INFO(192, 192),
 780	INIT_KMALLOC_INFO(8, 8),
 781	INIT_KMALLOC_INFO(16, 16),
 782	INIT_KMALLOC_INFO(32, 32),
 783	INIT_KMALLOC_INFO(64, 64),
 784	INIT_KMALLOC_INFO(128, 128),
 785	INIT_KMALLOC_INFO(256, 256),
 786	INIT_KMALLOC_INFO(512, 512),
 787	INIT_KMALLOC_INFO(1024, 1k),
 788	INIT_KMALLOC_INFO(2048, 2k),
 789	INIT_KMALLOC_INFO(4096, 4k),
 790	INIT_KMALLOC_INFO(8192, 8k),
 791	INIT_KMALLOC_INFO(16384, 16k),
 792	INIT_KMALLOC_INFO(32768, 32k),
 793	INIT_KMALLOC_INFO(65536, 64k),
 794	INIT_KMALLOC_INFO(131072, 128k),
 795	INIT_KMALLOC_INFO(262144, 256k),
 796	INIT_KMALLOC_INFO(524288, 512k),
 797	INIT_KMALLOC_INFO(1048576, 1M),
 798	INIT_KMALLOC_INFO(2097152, 2M),
 799	INIT_KMALLOC_INFO(4194304, 4M),
 800	INIT_KMALLOC_INFO(8388608, 8M),
 801	INIT_KMALLOC_INFO(16777216, 16M),
 802	INIT_KMALLOC_INFO(33554432, 32M)
 803};
 804
 805/*
 806 * Patch up the size_index table if we have strange large alignment
 807 * requirements for the kmalloc array. This is only the case for
 808 * MIPS it seems. The standard arches will not generate any code here.
 809 *
 810 * Largest permitted alignment is 256 bytes due to the way we
 811 * handle the index determination for the smaller caches.
 812 *
 813 * Make sure that nothing crazy happens if someone starts tinkering
 814 * around with ARCH_KMALLOC_MINALIGN
 815 */
 816void __init setup_kmalloc_cache_index_table(void)
 817{
 818	unsigned int i;
 819
 820	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 821		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
 822
 823	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 824		unsigned int elem = size_index_elem(i);
 825
 826		if (elem >= ARRAY_SIZE(size_index))
 827			break;
 828		size_index[elem] = KMALLOC_SHIFT_LOW;
 829	}
 830
 831	if (KMALLOC_MIN_SIZE >= 64) {
 832		/*
 833		 * The 96 byte size cache is not used if the alignment
 834		 * is 64 byte.
 835		 */
 836		for (i = 64 + 8; i <= 96; i += 8)
 837			size_index[size_index_elem(i)] = 7;
 838
 839	}
 840
 841	if (KMALLOC_MIN_SIZE >= 128) {
 842		/*
 843		 * The 192 byte sized cache is not used if the alignment
 844		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 845		 * instead.
 846		 */
 847		for (i = 128 + 8; i <= 192; i += 8)
 848			size_index[size_index_elem(i)] = 8;
 849	}
 850}
 851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852static void __init
 853new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
 854{
 
 
 855	if (type == KMALLOC_RECLAIM) {
 856		flags |= SLAB_RECLAIM_ACCOUNT;
 857	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
 858		if (cgroup_memory_nokmem) {
 859			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
 860			return;
 861		}
 862		flags |= SLAB_ACCOUNT;
 863	}
 864
 865	kmalloc_caches[type][idx] = create_kmalloc_cache(
 866					kmalloc_info[idx].name[type],
 867					kmalloc_info[idx].size, flags, 0,
 868					kmalloc_info[idx].size);
 869
 870	/*
 871	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
 872	 * KMALLOC_NORMAL caches.
 873	 */
 874	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
 875		kmalloc_caches[type][idx]->refcount = -1;
 876}
 877
 878/*
 879 * Create the kmalloc array. Some of the regular kmalloc arrays
 880 * may already have been created because they were needed to
 881 * enable allocations for slab creation.
 882 */
 883void __init create_kmalloc_caches(slab_flags_t flags)
 884{
 885	int i;
 886	enum kmalloc_cache_type type;
 887
 888	/*
 889	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
 890	 */
 891	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
 892		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 893			if (!kmalloc_caches[type][i])
 894				new_kmalloc_cache(i, type, flags);
 895
 896			/*
 897			 * Caches that are not of the two-to-the-power-of size.
 898			 * These have to be created immediately after the
 899			 * earlier power of two caches
 900			 */
 901			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
 902					!kmalloc_caches[type][1])
 903				new_kmalloc_cache(1, type, flags);
 904			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
 905					!kmalloc_caches[type][2])
 906				new_kmalloc_cache(2, type, flags);
 907		}
 908	}
 909
 910	/* Kmalloc array is now usable */
 911	slab_state = UP;
 912
 913#ifdef CONFIG_ZONE_DMA
 914	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
 915		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
 916
 917		if (s) {
 
 
 
 
 918			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
 919				kmalloc_info[i].name[KMALLOC_DMA],
 920				kmalloc_info[i].size,
 921				SLAB_CACHE_DMA | flags, 0,
 922				kmalloc_info[i].size);
 923		}
 924	}
 925#endif
 926}
 927#endif /* !CONFIG_SLOB */
 928
 929gfp_t kmalloc_fix_flags(gfp_t flags)
 930{
 931	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
 932
 933	flags &= ~GFP_SLAB_BUG_MASK;
 934	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
 935			invalid_mask, &invalid_mask, flags, &flags);
 936	dump_stack();
 937
 938	return flags;
 939}
 940
 941/*
 942 * To avoid unnecessary overhead, we pass through large allocation requests
 943 * directly to the page allocator. We use __GFP_COMP, because we will need to
 944 * know the allocation order to free the pages properly in kfree.
 945 */
 946void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
 947{
 948	void *ret = NULL;
 949	struct page *page;
 950
 951	if (unlikely(flags & GFP_SLAB_BUG_MASK))
 952		flags = kmalloc_fix_flags(flags);
 953
 954	flags |= __GFP_COMP;
 955	page = alloc_pages(flags, order);
 956	if (likely(page)) {
 957		ret = page_address(page);
 958		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
 959				      PAGE_SIZE << order);
 960	}
 961	ret = kasan_kmalloc_large(ret, size, flags);
 962	/* As ret might get tagged, call kmemleak hook after KASAN. */
 963	kmemleak_alloc(ret, size, 1, flags);
 964	return ret;
 965}
 966EXPORT_SYMBOL(kmalloc_order);
 967
 968#ifdef CONFIG_TRACING
 969void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 970{
 971	void *ret = kmalloc_order(size, flags, order);
 972	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
 973	return ret;
 974}
 975EXPORT_SYMBOL(kmalloc_order_trace);
 976#endif
 977
 978#ifdef CONFIG_SLAB_FREELIST_RANDOM
 979/* Randomize a generic freelist */
 980static void freelist_randomize(struct rnd_state *state, unsigned int *list,
 981			       unsigned int count)
 982{
 983	unsigned int rand;
 984	unsigned int i;
 985
 986	for (i = 0; i < count; i++)
 987		list[i] = i;
 988
 989	/* Fisher-Yates shuffle */
 990	for (i = count - 1; i > 0; i--) {
 991		rand = prandom_u32_state(state);
 992		rand %= (i + 1);
 993		swap(list[i], list[rand]);
 994	}
 995}
 996
 997/* Create a random sequence per cache */
 998int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
 999				    gfp_t gfp)
1000{
1001	struct rnd_state state;
1002
1003	if (count < 2 || cachep->random_seq)
1004		return 0;
1005
1006	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1007	if (!cachep->random_seq)
1008		return -ENOMEM;
1009
1010	/* Get best entropy at this stage of boot */
1011	prandom_seed_state(&state, get_random_long());
1012
1013	freelist_randomize(&state, cachep->random_seq, count);
1014	return 0;
1015}
1016
1017/* Destroy the per-cache random freelist sequence */
1018void cache_random_seq_destroy(struct kmem_cache *cachep)
1019{
1020	kfree(cachep->random_seq);
1021	cachep->random_seq = NULL;
1022}
1023#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1024
1025#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1026#ifdef CONFIG_SLAB
1027#define SLABINFO_RIGHTS (0600)
1028#else
1029#define SLABINFO_RIGHTS (0400)
1030#endif
1031
1032static void print_slabinfo_header(struct seq_file *m)
1033{
1034	/*
1035	 * Output format version, so at least we can change it
1036	 * without _too_ many complaints.
1037	 */
1038#ifdef CONFIG_DEBUG_SLAB
1039	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1040#else
1041	seq_puts(m, "slabinfo - version: 2.1\n");
1042#endif
1043	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1044	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1045	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1046#ifdef CONFIG_DEBUG_SLAB
1047	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1048	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1049#endif
1050	seq_putc(m, '\n');
1051}
1052
1053void *slab_start(struct seq_file *m, loff_t *pos)
1054{
1055	mutex_lock(&slab_mutex);
1056	return seq_list_start(&slab_caches, *pos);
1057}
1058
1059void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1060{
1061	return seq_list_next(p, &slab_caches, pos);
1062}
1063
1064void slab_stop(struct seq_file *m, void *p)
1065{
1066	mutex_unlock(&slab_mutex);
1067}
1068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069static void cache_show(struct kmem_cache *s, struct seq_file *m)
1070{
1071	struct slabinfo sinfo;
1072
1073	memset(&sinfo, 0, sizeof(sinfo));
1074	get_slabinfo(s, &sinfo);
1075
 
 
1076	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1077		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1078		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1079
1080	seq_printf(m, " : tunables %4u %4u %4u",
1081		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1082	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1083		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1084	slabinfo_show_stats(m, s);
1085	seq_putc(m, '\n');
1086}
1087
1088static int slab_show(struct seq_file *m, void *p)
1089{
1090	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1091
1092	if (p == slab_caches.next)
1093		print_slabinfo_header(m);
1094	cache_show(s, m);
1095	return 0;
1096}
1097
1098void dump_unreclaimable_slab(void)
1099{
1100	struct kmem_cache *s;
1101	struct slabinfo sinfo;
1102
1103	/*
1104	 * Here acquiring slab_mutex is risky since we don't prefer to get
1105	 * sleep in oom path. But, without mutex hold, it may introduce a
1106	 * risk of crash.
1107	 * Use mutex_trylock to protect the list traverse, dump nothing
1108	 * without acquiring the mutex.
1109	 */
1110	if (!mutex_trylock(&slab_mutex)) {
1111		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1112		return;
1113	}
1114
1115	pr_info("Unreclaimable slab info:\n");
1116	pr_info("Name                      Used          Total\n");
1117
1118	list_for_each_entry(s, &slab_caches, list) {
1119		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1120			continue;
1121
1122		get_slabinfo(s, &sinfo);
1123
1124		if (sinfo.num_objs > 0)
1125			pr_info("%-17s %10luKB %10luKB\n", s->name,
1126				(sinfo.active_objs * s->size) / 1024,
1127				(sinfo.num_objs * s->size) / 1024);
1128	}
1129	mutex_unlock(&slab_mutex);
1130}
1131
1132#if defined(CONFIG_MEMCG_KMEM)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133int memcg_slab_show(struct seq_file *m, void *p)
1134{
1135	/*
1136	 * Deprecated.
1137	 * Please, take a look at tools/cgroup/slabinfo.py .
1138	 */
 
 
 
1139	return 0;
1140}
1141#endif
1142
1143/*
1144 * slabinfo_op - iterator that generates /proc/slabinfo
1145 *
1146 * Output layout:
1147 * cache-name
1148 * num-active-objs
1149 * total-objs
1150 * object size
1151 * num-active-slabs
1152 * total-slabs
1153 * num-pages-per-slab
1154 * + further values on SMP and with statistics enabled
1155 */
1156static const struct seq_operations slabinfo_op = {
1157	.start = slab_start,
1158	.next = slab_next,
1159	.stop = slab_stop,
1160	.show = slab_show,
1161};
1162
1163static int slabinfo_open(struct inode *inode, struct file *file)
1164{
1165	return seq_open(file, &slabinfo_op);
1166}
1167
1168static const struct proc_ops slabinfo_proc_ops = {
1169	.proc_flags	= PROC_ENTRY_PERMANENT,
1170	.proc_open	= slabinfo_open,
1171	.proc_read	= seq_read,
1172	.proc_write	= slabinfo_write,
1173	.proc_lseek	= seq_lseek,
1174	.proc_release	= seq_release,
1175};
1176
1177static int __init slab_proc_init(void)
1178{
1179	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
 
1180	return 0;
1181}
1182module_init(slab_proc_init);
1183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1185
1186static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1187					   gfp_t flags)
1188{
1189	void *ret;
1190	size_t ks;
1191
1192	/* Don't use instrumented ksize to allow precise KASAN poisoning. */
1193	if (likely(!ZERO_OR_NULL_PTR(p))) {
1194		if (!kasan_check_byte(p))
1195			return NULL;
1196		ks = kfence_ksize(p) ?: __ksize(p);
1197	} else
1198		ks = 0;
1199
1200	/* If the object still fits, repoison it precisely. */
1201	if (ks >= new_size) {
1202		p = kasan_krealloc((void *)p, new_size, flags);
1203		return (void *)p;
1204	}
1205
1206	ret = kmalloc_track_caller(new_size, flags);
1207	if (ret && p) {
1208		/* Disable KASAN checks as the object's redzone is accessed. */
1209		kasan_disable_current();
1210		memcpy(ret, kasan_reset_tag(p), ks);
1211		kasan_enable_current();
1212	}
1213
1214	return ret;
1215}
1216
1217/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218 * krealloc - reallocate memory. The contents will remain unchanged.
1219 * @p: object to reallocate memory for.
1220 * @new_size: how many bytes of memory are required.
1221 * @flags: the type of memory to allocate.
1222 *
1223 * The contents of the object pointed to are preserved up to the
1224 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1225 * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1226 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1227 *
1228 * Return: pointer to the allocated memory or %NULL in case of error
1229 */
1230void *krealloc(const void *p, size_t new_size, gfp_t flags)
1231{
1232	void *ret;
1233
1234	if (unlikely(!new_size)) {
1235		kfree(p);
1236		return ZERO_SIZE_PTR;
1237	}
1238
1239	ret = __do_krealloc(p, new_size, flags);
1240	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1241		kfree(p);
1242
1243	return ret;
1244}
1245EXPORT_SYMBOL(krealloc);
1246
1247/**
1248 * kfree_sensitive - Clear sensitive information in memory before freeing
1249 * @p: object to free memory of
1250 *
1251 * The memory of the object @p points to is zeroed before freed.
1252 * If @p is %NULL, kfree_sensitive() does nothing.
1253 *
1254 * Note: this function zeroes the whole allocated buffer which can be a good
1255 * deal bigger than the requested buffer size passed to kmalloc(). So be
1256 * careful when using this function in performance sensitive code.
1257 */
1258void kfree_sensitive(const void *p)
1259{
1260	size_t ks;
1261	void *mem = (void *)p;
1262
 
 
1263	ks = ksize(mem);
1264	if (ks)
1265		memzero_explicit(mem, ks);
1266	kfree(mem);
1267}
1268EXPORT_SYMBOL(kfree_sensitive);
1269
1270/**
1271 * ksize - get the actual amount of memory allocated for a given object
1272 * @objp: Pointer to the object
1273 *
1274 * kmalloc may internally round up allocations and return more memory
1275 * than requested. ksize() can be used to determine the actual amount of
1276 * memory allocated. The caller may use this additional memory, even though
1277 * a smaller amount of memory was initially specified with the kmalloc call.
1278 * The caller must guarantee that objp points to a valid object previously
1279 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1280 * must not be freed during the duration of the call.
1281 *
1282 * Return: size of the actual memory used by @objp in bytes
1283 */
1284size_t ksize(const void *objp)
1285{
1286	size_t size;
1287
 
 
1288	/*
1289	 * We need to first check that the pointer to the object is valid, and
1290	 * only then unpoison the memory. The report printed from ksize() is
1291	 * more useful, then when it's printed later when the behaviour could
1292	 * be undefined due to a potential use-after-free or double-free.
1293	 *
1294	 * We use kasan_check_byte(), which is supported for the hardware
1295	 * tag-based KASAN mode, unlike kasan_check_read/write().
1296	 *
1297	 * If the pointed to memory is invalid, we return 0 to avoid users of
1298	 * ksize() writing to and potentially corrupting the memory region.
1299	 *
1300	 * We want to perform the check before __ksize(), to avoid potentially
1301	 * crashing in __ksize() due to accessing invalid metadata.
1302	 */
1303	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1304		return 0;
1305
1306	size = kfence_ksize(objp) ?: __ksize(objp);
1307	/*
1308	 * We assume that ksize callers could use whole allocated area,
1309	 * so we need to unpoison this area.
1310	 */
1311	kasan_unpoison_range(objp, size);
1312	return size;
1313}
1314EXPORT_SYMBOL(ksize);
1315
1316/* Tracepoints definitions. */
1317EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1318EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1319EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1320EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1321EXPORT_TRACEPOINT_SYMBOL(kfree);
1322EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1323
1324int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1325{
1326	if (__should_failslab(s, gfpflags))
1327		return -ENOMEM;
1328	return 0;
1329}
1330ALLOW_ERROR_INJECTION(should_failslab, ERRNO);