Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
 
  40#include <linux/binfmts.h>
  41#include <linux/mman.h>
  42#include <linux/mmu_notifier.h>
  43#include <linux/hmm.h>
  44#include <linux/fs.h>
  45#include <linux/mm.h>
  46#include <linux/vmacache.h>
  47#include <linux/nsproxy.h>
  48#include <linux/capability.h>
  49#include <linux/cpu.h>
  50#include <linux/cgroup.h>
  51#include <linux/security.h>
  52#include <linux/hugetlb.h>
  53#include <linux/seccomp.h>
  54#include <linux/swap.h>
  55#include <linux/syscalls.h>
  56#include <linux/jiffies.h>
  57#include <linux/futex.h>
  58#include <linux/compat.h>
  59#include <linux/kthread.h>
  60#include <linux/task_io_accounting_ops.h>
  61#include <linux/rcupdate.h>
  62#include <linux/ptrace.h>
  63#include <linux/mount.h>
  64#include <linux/audit.h>
  65#include <linux/memcontrol.h>
  66#include <linux/ftrace.h>
  67#include <linux/proc_fs.h>
  68#include <linux/profile.h>
  69#include <linux/rmap.h>
  70#include <linux/ksm.h>
  71#include <linux/acct.h>
  72#include <linux/userfaultfd_k.h>
  73#include <linux/tsacct_kern.h>
  74#include <linux/cn_proc.h>
  75#include <linux/freezer.h>
  76#include <linux/delayacct.h>
  77#include <linux/taskstats_kern.h>
  78#include <linux/random.h>
  79#include <linux/tty.h>
  80#include <linux/blkdev.h>
  81#include <linux/fs_struct.h>
  82#include <linux/magic.h>
  83#include <linux/perf_event.h>
  84#include <linux/posix-timers.h>
  85#include <linux/user-return-notifier.h>
  86#include <linux/oom.h>
  87#include <linux/khugepaged.h>
  88#include <linux/signalfd.h>
  89#include <linux/uprobes.h>
  90#include <linux/aio.h>
  91#include <linux/compiler.h>
  92#include <linux/sysctl.h>
  93#include <linux/kcov.h>
  94#include <linux/livepatch.h>
  95#include <linux/thread_info.h>
  96#include <linux/stackleak.h>
 
 
 
 
 
  97
  98#include <asm/pgtable.h>
  99#include <asm/pgalloc.h>
 100#include <linux/uaccess.h>
 101#include <asm/mmu_context.h>
 102#include <asm/cacheflush.h>
 103#include <asm/tlbflush.h>
 104
 105#include <trace/events/sched.h>
 106
 107#define CREATE_TRACE_POINTS
 108#include <trace/events/task.h>
 109
 110/*
 111 * Minimum number of threads to boot the kernel
 112 */
 113#define MIN_THREADS 20
 114
 115/*
 116 * Maximum number of threads
 117 */
 118#define MAX_THREADS FUTEX_TID_MASK
 119
 120/*
 121 * Protected counters by write_lock_irq(&tasklist_lock)
 122 */
 123unsigned long total_forks;	/* Handle normal Linux uptimes. */
 124int nr_threads;			/* The idle threads do not count.. */
 125
 126static int max_threads;		/* tunable limit on nr_threads */
 127
 128#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 129
 130static const char * const resident_page_types[] = {
 131	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 132	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 133	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 134	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 135};
 136
 137DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 138
 139__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 140
 141#ifdef CONFIG_PROVE_RCU
 142int lockdep_tasklist_lock_is_held(void)
 143{
 144	return lockdep_is_held(&tasklist_lock);
 145}
 146EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 147#endif /* #ifdef CONFIG_PROVE_RCU */
 148
 149int nr_processes(void)
 150{
 151	int cpu;
 152	int total = 0;
 153
 154	for_each_possible_cpu(cpu)
 155		total += per_cpu(process_counts, cpu);
 156
 157	return total;
 158}
 159
 160void __weak arch_release_task_struct(struct task_struct *tsk)
 161{
 162}
 163
 164#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 165static struct kmem_cache *task_struct_cachep;
 166
 167static inline struct task_struct *alloc_task_struct_node(int node)
 168{
 169	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 170}
 171
 172static inline void free_task_struct(struct task_struct *tsk)
 173{
 174	kmem_cache_free(task_struct_cachep, tsk);
 175}
 176#endif
 177
 178#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 179
 180/*
 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 182 * kmemcache based allocator.
 183 */
 184# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 185
 186#ifdef CONFIG_VMAP_STACK
 187/*
 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 189 * flush.  Try to minimize the number of calls by caching stacks.
 190 */
 191#define NR_CACHED_STACKS 2
 192static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 194static int free_vm_stack_cache(unsigned int cpu)
 195{
 196	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 197	int i;
 198
 199	for (i = 0; i < NR_CACHED_STACKS; i++) {
 200		struct vm_struct *vm_stack = cached_vm_stacks[i];
 201
 202		if (!vm_stack)
 203			continue;
 204
 205		vfree(vm_stack->addr);
 206		cached_vm_stacks[i] = NULL;
 207	}
 208
 209	return 0;
 210}
 211#endif
 212
 213static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 214{
 215#ifdef CONFIG_VMAP_STACK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216	void *stack;
 217	int i;
 218
 219	for (i = 0; i < NR_CACHED_STACKS; i++) {
 220		struct vm_struct *s;
 221
 222		s = this_cpu_xchg(cached_stacks[i], NULL);
 223
 224		if (!s)
 225			continue;
 226
 
 
 
 
 
 227		/* Clear stale pointers from reused stack. */
 228		memset(s->addr, 0, THREAD_SIZE);
 
 
 
 
 
 229
 230		tsk->stack_vm_area = s;
 231		tsk->stack = s->addr;
 232		return s->addr;
 233	}
 234
 235	/*
 236	 * Allocated stacks are cached and later reused by new threads,
 237	 * so memcg accounting is performed manually on assigning/releasing
 238	 * stacks to tasks. Drop __GFP_ACCOUNT.
 239	 */
 240	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 241				     VMALLOC_START, VMALLOC_END,
 242				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 243				     PAGE_KERNEL,
 244				     0, node, __builtin_return_address(0));
 
 
 245
 
 
 
 
 
 246	/*
 247	 * We can't call find_vm_area() in interrupt context, and
 248	 * free_thread_stack() can be called in interrupt context,
 249	 * so cache the vm_struct.
 250	 */
 251	if (stack) {
 252		tsk->stack_vm_area = find_vm_area(stack);
 253		tsk->stack = stack;
 254	}
 255	return stack;
 256#else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 258					     THREAD_SIZE_ORDER);
 259
 260	if (likely(page)) {
 261		tsk->stack = page_address(page);
 262		return tsk->stack;
 263	}
 264	return NULL;
 265#endif
 266}
 267
 268static inline void free_thread_stack(struct task_struct *tsk)
 269{
 270#ifdef CONFIG_VMAP_STACK
 271	struct vm_struct *vm = task_stack_vm_area(tsk);
 272
 273	if (vm) {
 274		int i;
 275
 276		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 277			mod_memcg_page_state(vm->pages[i],
 278					     MEMCG_KERNEL_STACK_KB,
 279					     -(int)(PAGE_SIZE / 1024));
 280
 281			memcg_kmem_uncharge(vm->pages[i], 0);
 282		}
 283
 284		for (i = 0; i < NR_CACHED_STACKS; i++) {
 285			if (this_cpu_cmpxchg(cached_stacks[i],
 286					NULL, tsk->stack_vm_area) != NULL)
 287				continue;
 288
 289			return;
 290		}
 
 
 291
 292		vfree_atomic(tsk->stack);
 293		return;
 294	}
 295#endif
 296
 297	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 298}
 299# else
 300static struct kmem_cache *thread_stack_cache;
 301
 302static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 303						  int node)
 304{
 305	unsigned long *stack;
 306	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 
 307	tsk->stack = stack;
 308	return stack;
 309}
 310
 311static void free_thread_stack(struct task_struct *tsk)
 312{
 313	kmem_cache_free(thread_stack_cache, tsk->stack);
 
 314}
 315
 316void thread_stack_cache_init(void)
 317{
 318	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 319					THREAD_SIZE, THREAD_SIZE, 0, 0,
 320					THREAD_SIZE, NULL);
 321	BUG_ON(thread_stack_cache == NULL);
 322}
 323# endif
 324#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325
 326/* SLAB cache for signal_struct structures (tsk->signal) */
 327static struct kmem_cache *signal_cachep;
 328
 329/* SLAB cache for sighand_struct structures (tsk->sighand) */
 330struct kmem_cache *sighand_cachep;
 331
 332/* SLAB cache for files_struct structures (tsk->files) */
 333struct kmem_cache *files_cachep;
 334
 335/* SLAB cache for fs_struct structures (tsk->fs) */
 336struct kmem_cache *fs_cachep;
 337
 338/* SLAB cache for vm_area_struct structures */
 339static struct kmem_cache *vm_area_cachep;
 340
 341/* SLAB cache for mm_struct structures (tsk->mm) */
 342static struct kmem_cache *mm_cachep;
 343
 344struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 345{
 346	struct vm_area_struct *vma;
 347
 348	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 349	if (vma)
 350		vma_init(vma, mm);
 351	return vma;
 352}
 353
 354struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 355{
 356	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 357
 358	if (new) {
 359		*new = *orig;
 
 
 
 
 
 
 360		INIT_LIST_HEAD(&new->anon_vma_chain);
 
 361	}
 362	return new;
 363}
 364
 365void vm_area_free(struct vm_area_struct *vma)
 366{
 
 367	kmem_cache_free(vm_area_cachep, vma);
 368}
 369
 370static void account_kernel_stack(struct task_struct *tsk, int account)
 371{
 372	void *stack = task_stack_page(tsk);
 373	struct vm_struct *vm = task_stack_vm_area(tsk);
 374
 375	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 376
 377	if (vm) {
 378		int i;
 379
 380		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 381
 382		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 383			mod_zone_page_state(page_zone(vm->pages[i]),
 384					    NR_KERNEL_STACK_KB,
 385					    PAGE_SIZE / 1024 * account);
 386		}
 387	} else {
 388		/*
 389		 * All stack pages are in the same zone and belong to the
 390		 * same memcg.
 391		 */
 392		struct page *first_page = virt_to_page(stack);
 393
 394		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
 395				    THREAD_SIZE / 1024 * account);
 396
 397		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
 398				     account * (THREAD_SIZE / 1024));
 399	}
 400}
 401
 402static int memcg_charge_kernel_stack(struct task_struct *tsk)
 403{
 404#ifdef CONFIG_VMAP_STACK
 405	struct vm_struct *vm = task_stack_vm_area(tsk);
 406	int ret;
 407
 408	if (vm) {
 
 409		int i;
 410
 411		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 412			/*
 413			 * If memcg_kmem_charge() fails, page->mem_cgroup
 414			 * pointer is NULL, and both memcg_kmem_uncharge()
 415			 * and mod_memcg_page_state() in free_thread_stack()
 416			 * will ignore this page. So it's safe.
 417			 */
 418			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
 419			if (ret)
 420				return ret;
 421
 422			mod_memcg_page_state(vm->pages[i],
 423					     MEMCG_KERNEL_STACK_KB,
 424					     PAGE_SIZE / 1024);
 425		}
 426	}
 427#endif
 428	return 0;
 429}
 430
 431static void release_task_stack(struct task_struct *tsk)
 432{
 433	if (WARN_ON(tsk->state != TASK_DEAD))
 434		return;  /* Better to leak the stack than to free prematurely */
 435
 436	account_kernel_stack(tsk, -1);
 437	free_thread_stack(tsk);
 438	tsk->stack = NULL;
 439#ifdef CONFIG_VMAP_STACK
 440	tsk->stack_vm_area = NULL;
 441#endif
 442}
 443
 444#ifdef CONFIG_THREAD_INFO_IN_TASK
 445void put_task_stack(struct task_struct *tsk)
 446{
 447	if (refcount_dec_and_test(&tsk->stack_refcount))
 448		release_task_stack(tsk);
 449}
 450#endif
 451
 452void free_task(struct task_struct *tsk)
 453{
 
 
 
 
 
 
 454#ifndef CONFIG_THREAD_INFO_IN_TASK
 455	/*
 456	 * The task is finally done with both the stack and thread_info,
 457	 * so free both.
 458	 */
 459	release_task_stack(tsk);
 460#else
 461	/*
 462	 * If the task had a separate stack allocation, it should be gone
 463	 * by now.
 464	 */
 465	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 466#endif
 467	rt_mutex_debug_task_free(tsk);
 468	ftrace_graph_exit_task(tsk);
 469	put_seccomp_filter(tsk);
 470	arch_release_task_struct(tsk);
 471	if (tsk->flags & PF_KTHREAD)
 472		free_kthread_struct(tsk);
 473	free_task_struct(tsk);
 474}
 475EXPORT_SYMBOL(free_task);
 476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477#ifdef CONFIG_MMU
 478static __latent_entropy int dup_mmap(struct mm_struct *mm,
 479					struct mm_struct *oldmm)
 480{
 481	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 482	struct rb_node **rb_link, *rb_parent;
 483	int retval;
 484	unsigned long charge;
 485	LIST_HEAD(uf);
 
 
 486
 487	uprobe_start_dup_mmap();
 488	if (down_write_killable(&oldmm->mmap_sem)) {
 489		retval = -EINTR;
 490		goto fail_uprobe_end;
 491	}
 492	flush_cache_dup_mm(oldmm);
 493	uprobe_dup_mmap(oldmm, mm);
 494	/*
 495	 * Not linked in yet - no deadlock potential:
 496	 */
 497	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 498
 499	/* No ordering required: file already has been exposed. */
 500	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 501
 502	mm->total_vm = oldmm->total_vm;
 503	mm->data_vm = oldmm->data_vm;
 504	mm->exec_vm = oldmm->exec_vm;
 505	mm->stack_vm = oldmm->stack_vm;
 506
 507	rb_link = &mm->mm_rb.rb_node;
 508	rb_parent = NULL;
 509	pprev = &mm->mmap;
 510	retval = ksm_fork(mm, oldmm);
 511	if (retval)
 512		goto out;
 513	retval = khugepaged_fork(mm, oldmm);
 
 
 514	if (retval)
 515		goto out;
 516
 517	prev = NULL;
 518	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 519		struct file *file;
 520
 521		if (mpnt->vm_flags & VM_DONTCOPY) {
 522			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 523			continue;
 524		}
 525		charge = 0;
 526		/*
 527		 * Don't duplicate many vmas if we've been oom-killed (for
 528		 * example)
 529		 */
 530		if (fatal_signal_pending(current)) {
 531			retval = -EINTR;
 532			goto out;
 533		}
 534		if (mpnt->vm_flags & VM_ACCOUNT) {
 535			unsigned long len = vma_pages(mpnt);
 536
 537			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 538				goto fail_nomem;
 539			charge = len;
 540		}
 541		tmp = vm_area_dup(mpnt);
 542		if (!tmp)
 543			goto fail_nomem;
 544		retval = vma_dup_policy(mpnt, tmp);
 545		if (retval)
 546			goto fail_nomem_policy;
 547		tmp->vm_mm = mm;
 548		retval = dup_userfaultfd(tmp, &uf);
 549		if (retval)
 550			goto fail_nomem_anon_vma_fork;
 551		if (tmp->vm_flags & VM_WIPEONFORK) {
 552			/* VM_WIPEONFORK gets a clean slate in the child. */
 
 
 
 
 553			tmp->anon_vma = NULL;
 554			if (anon_vma_prepare(tmp))
 555				goto fail_nomem_anon_vma_fork;
 556		} else if (anon_vma_fork(tmp, mpnt))
 557			goto fail_nomem_anon_vma_fork;
 558		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 559		tmp->vm_next = tmp->vm_prev = NULL;
 560		file = tmp->vm_file;
 561		if (file) {
 562			struct inode *inode = file_inode(file);
 563			struct address_space *mapping = file->f_mapping;
 564
 565			get_file(file);
 566			if (tmp->vm_flags & VM_DENYWRITE)
 567				atomic_dec(&inode->i_writecount);
 568			i_mmap_lock_write(mapping);
 569			if (tmp->vm_flags & VM_SHARED)
 570				atomic_inc(&mapping->i_mmap_writable);
 571			flush_dcache_mmap_lock(mapping);
 572			/* insert tmp into the share list, just after mpnt */
 573			vma_interval_tree_insert_after(tmp, mpnt,
 574					&mapping->i_mmap);
 575			flush_dcache_mmap_unlock(mapping);
 576			i_mmap_unlock_write(mapping);
 577		}
 578
 579		/*
 580		 * Clear hugetlb-related page reserves for children. This only
 581		 * affects MAP_PRIVATE mappings. Faults generated by the child
 582		 * are not guaranteed to succeed, even if read-only
 583		 */
 584		if (is_vm_hugetlb_page(tmp))
 585			reset_vma_resv_huge_pages(tmp);
 586
 587		/*
 588		 * Link in the new vma and copy the page table entries.
 589		 */
 590		*pprev = tmp;
 591		pprev = &tmp->vm_next;
 592		tmp->vm_prev = prev;
 593		prev = tmp;
 594
 595		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 596		rb_link = &tmp->vm_rb.rb_right;
 597		rb_parent = &tmp->vm_rb;
 598
 599		mm->map_count++;
 600		if (!(tmp->vm_flags & VM_WIPEONFORK))
 601			retval = copy_page_range(mm, oldmm, mpnt);
 602
 603		if (tmp->vm_ops && tmp->vm_ops->open)
 604			tmp->vm_ops->open(tmp);
 605
 606		if (retval)
 607			goto out;
 608	}
 609	/* a new mm has just been created */
 610	retval = arch_dup_mmap(oldmm, mm);
 
 
 611out:
 612	up_write(&mm->mmap_sem);
 613	flush_tlb_mm(oldmm);
 614	up_write(&oldmm->mmap_sem);
 615	dup_userfaultfd_complete(&uf);
 616fail_uprobe_end:
 617	uprobe_end_dup_mmap();
 618	return retval;
 
 
 
 619fail_nomem_anon_vma_fork:
 620	mpol_put(vma_policy(tmp));
 621fail_nomem_policy:
 622	vm_area_free(tmp);
 623fail_nomem:
 624	retval = -ENOMEM;
 625	vm_unacct_memory(charge);
 626	goto out;
 627}
 628
 629static inline int mm_alloc_pgd(struct mm_struct *mm)
 630{
 631	mm->pgd = pgd_alloc(mm);
 632	if (unlikely(!mm->pgd))
 633		return -ENOMEM;
 634	return 0;
 635}
 636
 637static inline void mm_free_pgd(struct mm_struct *mm)
 638{
 639	pgd_free(mm, mm->pgd);
 640}
 641#else
 642static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 643{
 644	down_write(&oldmm->mmap_sem);
 645	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 646	up_write(&oldmm->mmap_sem);
 647	return 0;
 648}
 649#define mm_alloc_pgd(mm)	(0)
 650#define mm_free_pgd(mm)
 651#endif /* CONFIG_MMU */
 652
 653static void check_mm(struct mm_struct *mm)
 654{
 655	int i;
 656
 657	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 658			 "Please make sure 'struct resident_page_types[]' is updated as well");
 659
 660	for (i = 0; i < NR_MM_COUNTERS; i++) {
 661		long x = atomic_long_read(&mm->rss_stat.count[i]);
 
 
 
 662
 
 
 663		if (unlikely(x))
 664			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 665				 mm, resident_page_types[i], x);
 666	}
 667
 668	if (mm_pgtables_bytes(mm))
 669		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 670				mm_pgtables_bytes(mm));
 671
 672#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 673	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 674#endif
 675}
 676
 677#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 678#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 679
 680/*
 681 * Called when the last reference to the mm
 682 * is dropped: either by a lazy thread or by
 683 * mmput. Free the page directory and the mm.
 684 */
 685void __mmdrop(struct mm_struct *mm)
 686{
 
 
 687	BUG_ON(mm == &init_mm);
 688	WARN_ON_ONCE(mm == current->mm);
 689	WARN_ON_ONCE(mm == current->active_mm);
 690	mm_free_pgd(mm);
 691	destroy_context(mm);
 692	mmu_notifier_mm_destroy(mm);
 693	check_mm(mm);
 694	put_user_ns(mm->user_ns);
 
 
 
 
 695	free_mm(mm);
 696}
 697EXPORT_SYMBOL_GPL(__mmdrop);
 698
 699static void mmdrop_async_fn(struct work_struct *work)
 700{
 701	struct mm_struct *mm;
 702
 703	mm = container_of(work, struct mm_struct, async_put_work);
 704	__mmdrop(mm);
 705}
 706
 707static void mmdrop_async(struct mm_struct *mm)
 708{
 709	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 710		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 711		schedule_work(&mm->async_put_work);
 712	}
 713}
 714
 715static inline void free_signal_struct(struct signal_struct *sig)
 716{
 717	taskstats_tgid_free(sig);
 718	sched_autogroup_exit(sig);
 719	/*
 720	 * __mmdrop is not safe to call from softirq context on x86 due to
 721	 * pgd_dtor so postpone it to the async context
 722	 */
 723	if (sig->oom_mm)
 724		mmdrop_async(sig->oom_mm);
 725	kmem_cache_free(signal_cachep, sig);
 726}
 727
 728static inline void put_signal_struct(struct signal_struct *sig)
 729{
 730	if (refcount_dec_and_test(&sig->sigcnt))
 731		free_signal_struct(sig);
 732}
 733
 734void __put_task_struct(struct task_struct *tsk)
 735{
 736	WARN_ON(!tsk->exit_state);
 737	WARN_ON(refcount_read(&tsk->usage));
 738	WARN_ON(tsk == current);
 739
 
 740	cgroup_free(tsk);
 741	task_numa_free(tsk, true);
 742	security_task_free(tsk);
 
 743	exit_creds(tsk);
 744	delayacct_tsk_free(tsk);
 745	put_signal_struct(tsk->signal);
 746
 747	if (!profile_handoff_task(tsk))
 748		free_task(tsk);
 749}
 750EXPORT_SYMBOL_GPL(__put_task_struct);
 751
 752void __init __weak arch_task_cache_init(void) { }
 753
 754/*
 755 * set_max_threads
 756 */
 757static void set_max_threads(unsigned int max_threads_suggested)
 758{
 759	u64 threads;
 760	unsigned long nr_pages = totalram_pages();
 761
 762	/*
 763	 * The number of threads shall be limited such that the thread
 764	 * structures may only consume a small part of the available memory.
 765	 */
 766	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 767		threads = MAX_THREADS;
 768	else
 769		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 770				    (u64) THREAD_SIZE * 8UL);
 771
 772	if (threads > max_threads_suggested)
 773		threads = max_threads_suggested;
 774
 775	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 776}
 777
 778#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 779/* Initialized by the architecture: */
 780int arch_task_struct_size __read_mostly;
 781#endif
 782
 783#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 784static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 785{
 786	/* Fetch thread_struct whitelist for the architecture. */
 787	arch_thread_struct_whitelist(offset, size);
 788
 789	/*
 790	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 791	 * adjust offset to position of thread_struct in task_struct.
 792	 */
 793	if (unlikely(*size == 0))
 794		*offset = 0;
 795	else
 796		*offset += offsetof(struct task_struct, thread);
 797}
 798#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
 799
 800void __init fork_init(void)
 801{
 802	int i;
 803#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 804#ifndef ARCH_MIN_TASKALIGN
 805#define ARCH_MIN_TASKALIGN	0
 806#endif
 807	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 808	unsigned long useroffset, usersize;
 809
 810	/* create a slab on which task_structs can be allocated */
 811	task_struct_whitelist(&useroffset, &usersize);
 812	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 813			arch_task_struct_size, align,
 814			SLAB_PANIC|SLAB_ACCOUNT,
 815			useroffset, usersize, NULL);
 816#endif
 817
 818	/* do the arch specific task caches init */
 819	arch_task_cache_init();
 820
 821	set_max_threads(MAX_THREADS);
 822
 823	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 824	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 825	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 826		init_task.signal->rlim[RLIMIT_NPROC];
 827
 828	for (i = 0; i < UCOUNT_COUNTS; i++) {
 829		init_user_ns.ucount_max[i] = max_threads/2;
 830	}
 
 
 
 
 831
 832#ifdef CONFIG_VMAP_STACK
 833	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 834			  NULL, free_vm_stack_cache);
 835#endif
 836
 
 
 837	lockdep_init_task(&init_task);
 838	uprobes_init();
 839}
 840
 841int __weak arch_dup_task_struct(struct task_struct *dst,
 842					       struct task_struct *src)
 843{
 844	*dst = *src;
 845	return 0;
 846}
 847
 848void set_task_stack_end_magic(struct task_struct *tsk)
 849{
 850	unsigned long *stackend;
 851
 852	stackend = end_of_stack(tsk);
 853	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 854}
 855
 856static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 857{
 858	struct task_struct *tsk;
 859	unsigned long *stack;
 860	struct vm_struct *stack_vm_area __maybe_unused;
 861	int err;
 862
 863	if (node == NUMA_NO_NODE)
 864		node = tsk_fork_get_node(orig);
 865	tsk = alloc_task_struct_node(node);
 866	if (!tsk)
 867		return NULL;
 868
 869	stack = alloc_thread_stack_node(tsk, node);
 870	if (!stack)
 871		goto free_tsk;
 872
 873	if (memcg_charge_kernel_stack(tsk))
 874		goto free_stack;
 875
 876	stack_vm_area = task_stack_vm_area(tsk);
 877
 878	err = arch_dup_task_struct(tsk, orig);
 879
 880	/*
 881	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
 882	 * sure they're properly initialized before using any stack-related
 883	 * functions again.
 884	 */
 885	tsk->stack = stack;
 886#ifdef CONFIG_VMAP_STACK
 887	tsk->stack_vm_area = stack_vm_area;
 888#endif
 889#ifdef CONFIG_THREAD_INFO_IN_TASK
 890	refcount_set(&tsk->stack_refcount, 1);
 891#endif
 
 892
 
 893	if (err)
 894		goto free_stack;
 895
 896#ifdef CONFIG_SECCOMP
 897	/*
 898	 * We must handle setting up seccomp filters once we're under
 899	 * the sighand lock in case orig has changed between now and
 900	 * then. Until then, filter must be NULL to avoid messing up
 901	 * the usage counts on the error path calling free_task.
 902	 */
 903	tsk->seccomp.filter = NULL;
 904#endif
 905
 906	setup_thread_stack(tsk, orig);
 907	clear_user_return_notifier(tsk);
 908	clear_tsk_need_resched(tsk);
 909	set_task_stack_end_magic(tsk);
 
 910
 911#ifdef CONFIG_STACKPROTECTOR
 912	tsk->stack_canary = get_random_canary();
 913#endif
 914	if (orig->cpus_ptr == &orig->cpus_mask)
 915		tsk->cpus_ptr = &tsk->cpus_mask;
 
 916
 917	/*
 918	 * One for the user space visible state that goes away when reaped.
 919	 * One for the scheduler.
 920	 */
 921	refcount_set(&tsk->rcu_users, 2);
 922	/* One for the rcu users */
 923	refcount_set(&tsk->usage, 1);
 924#ifdef CONFIG_BLK_DEV_IO_TRACE
 925	tsk->btrace_seq = 0;
 926#endif
 927	tsk->splice_pipe = NULL;
 928	tsk->task_frag.page = NULL;
 929	tsk->wake_q.next = NULL;
 930
 931	account_kernel_stack(tsk, 1);
 932
 933	kcov_task_init(tsk);
 
 
 934
 935#ifdef CONFIG_FAULT_INJECTION
 936	tsk->fail_nth = 0;
 937#endif
 938
 939#ifdef CONFIG_BLK_CGROUP
 940	tsk->throttle_queue = NULL;
 941	tsk->use_memdelay = 0;
 942#endif
 943
 
 
 
 
 944#ifdef CONFIG_MEMCG
 945	tsk->active_memcg = NULL;
 946#endif
 
 
 
 
 
 947	return tsk;
 948
 949free_stack:
 
 950	free_thread_stack(tsk);
 951free_tsk:
 952	free_task_struct(tsk);
 953	return NULL;
 954}
 955
 956__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 957
 958static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 959
 960static int __init coredump_filter_setup(char *s)
 961{
 962	default_dump_filter =
 963		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 964		MMF_DUMP_FILTER_MASK;
 965	return 1;
 966}
 967
 968__setup("coredump_filter=", coredump_filter_setup);
 969
 970#include <linux/init_task.h>
 971
 972static void mm_init_aio(struct mm_struct *mm)
 973{
 974#ifdef CONFIG_AIO
 975	spin_lock_init(&mm->ioctx_lock);
 976	mm->ioctx_table = NULL;
 977#endif
 978}
 979
 980static __always_inline void mm_clear_owner(struct mm_struct *mm,
 981					   struct task_struct *p)
 982{
 983#ifdef CONFIG_MEMCG
 984	if (mm->owner == p)
 985		WRITE_ONCE(mm->owner, NULL);
 986#endif
 987}
 988
 989static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 990{
 991#ifdef CONFIG_MEMCG
 992	mm->owner = p;
 993#endif
 994}
 995
 996static void mm_init_uprobes_state(struct mm_struct *mm)
 997{
 998#ifdef CONFIG_UPROBES
 999	mm->uprobes_state.xol_area = NULL;
1000#endif
1001}
1002
1003static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1004	struct user_namespace *user_ns)
1005{
1006	mm->mmap = NULL;
1007	mm->mm_rb = RB_ROOT;
1008	mm->vmacache_seqnum = 0;
 
1009	atomic_set(&mm->mm_users, 1);
1010	atomic_set(&mm->mm_count, 1);
1011	init_rwsem(&mm->mmap_sem);
 
1012	INIT_LIST_HEAD(&mm->mmlist);
1013	mm->core_state = NULL;
1014	mm_pgtables_bytes_init(mm);
1015	mm->map_count = 0;
1016	mm->locked_vm = 0;
1017	atomic64_set(&mm->pinned_vm, 0);
1018	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1019	spin_lock_init(&mm->page_table_lock);
1020	spin_lock_init(&mm->arg_lock);
1021	mm_init_cpumask(mm);
1022	mm_init_aio(mm);
1023	mm_init_owner(mm, p);
 
1024	RCU_INIT_POINTER(mm->exe_file, NULL);
1025	mmu_notifier_mm_init(mm);
1026	init_tlb_flush_pending(mm);
1027#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1028	mm->pmd_huge_pte = NULL;
1029#endif
1030	mm_init_uprobes_state(mm);
 
1031
1032	if (current->mm) {
1033		mm->flags = current->mm->flags & MMF_INIT_MASK;
1034		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1035	} else {
1036		mm->flags = default_dump_filter;
1037		mm->def_flags = 0;
1038	}
1039
1040	if (mm_alloc_pgd(mm))
1041		goto fail_nopgd;
1042
1043	if (init_new_context(p, mm))
1044		goto fail_nocontext;
1045
 
 
 
 
1046	mm->user_ns = get_user_ns(user_ns);
 
1047	return mm;
1048
 
 
 
1049fail_nocontext:
1050	mm_free_pgd(mm);
1051fail_nopgd:
1052	free_mm(mm);
1053	return NULL;
1054}
1055
1056/*
1057 * Allocate and initialize an mm_struct.
1058 */
1059struct mm_struct *mm_alloc(void)
1060{
1061	struct mm_struct *mm;
1062
1063	mm = allocate_mm();
1064	if (!mm)
1065		return NULL;
1066
1067	memset(mm, 0, sizeof(*mm));
1068	return mm_init(mm, current, current_user_ns());
1069}
1070
1071static inline void __mmput(struct mm_struct *mm)
1072{
1073	VM_BUG_ON(atomic_read(&mm->mm_users));
1074
1075	uprobe_clear_state(mm);
1076	exit_aio(mm);
1077	ksm_exit(mm);
1078	khugepaged_exit(mm); /* must run before exit_mmap */
1079	exit_mmap(mm);
1080	mm_put_huge_zero_page(mm);
1081	set_mm_exe_file(mm, NULL);
1082	if (!list_empty(&mm->mmlist)) {
1083		spin_lock(&mmlist_lock);
1084		list_del(&mm->mmlist);
1085		spin_unlock(&mmlist_lock);
1086	}
1087	if (mm->binfmt)
1088		module_put(mm->binfmt->module);
 
1089	mmdrop(mm);
1090}
1091
1092/*
1093 * Decrement the use count and release all resources for an mm.
1094 */
1095void mmput(struct mm_struct *mm)
1096{
1097	might_sleep();
1098
1099	if (atomic_dec_and_test(&mm->mm_users))
1100		__mmput(mm);
1101}
1102EXPORT_SYMBOL_GPL(mmput);
1103
1104#ifdef CONFIG_MMU
1105static void mmput_async_fn(struct work_struct *work)
1106{
1107	struct mm_struct *mm = container_of(work, struct mm_struct,
1108					    async_put_work);
1109
1110	__mmput(mm);
1111}
1112
1113void mmput_async(struct mm_struct *mm)
1114{
1115	if (atomic_dec_and_test(&mm->mm_users)) {
1116		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1117		schedule_work(&mm->async_put_work);
1118	}
1119}
 
1120#endif
1121
1122/**
1123 * set_mm_exe_file - change a reference to the mm's executable file
1124 *
1125 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1126 *
1127 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1128 * invocations: in mmput() nobody alive left, in execve task is single
1129 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1130 * mm->exe_file, but does so without using set_mm_exe_file() in order
1131 * to do avoid the need for any locks.
1132 */
1133void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1134{
1135	struct file *old_exe_file;
1136
1137	/*
1138	 * It is safe to dereference the exe_file without RCU as
1139	 * this function is only called if nobody else can access
1140	 * this mm -- see comment above for justification.
1141	 */
1142	old_exe_file = rcu_dereference_raw(mm->exe_file);
1143
1144	if (new_exe_file)
 
 
 
 
 
 
1145		get_file(new_exe_file);
 
1146	rcu_assign_pointer(mm->exe_file, new_exe_file);
1147	if (old_exe_file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148		fput(old_exe_file);
 
 
 
1149}
1150
1151/**
1152 * get_mm_exe_file - acquire a reference to the mm's executable file
1153 *
1154 * Returns %NULL if mm has no associated executable file.
1155 * User must release file via fput().
1156 */
1157struct file *get_mm_exe_file(struct mm_struct *mm)
1158{
1159	struct file *exe_file;
1160
1161	rcu_read_lock();
1162	exe_file = rcu_dereference(mm->exe_file);
1163	if (exe_file && !get_file_rcu(exe_file))
1164		exe_file = NULL;
1165	rcu_read_unlock();
1166	return exe_file;
1167}
1168EXPORT_SYMBOL(get_mm_exe_file);
1169
1170/**
1171 * get_task_exe_file - acquire a reference to the task's executable file
1172 *
1173 * Returns %NULL if task's mm (if any) has no associated executable file or
1174 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1175 * User must release file via fput().
1176 */
1177struct file *get_task_exe_file(struct task_struct *task)
1178{
1179	struct file *exe_file = NULL;
1180	struct mm_struct *mm;
1181
1182	task_lock(task);
1183	mm = task->mm;
1184	if (mm) {
1185		if (!(task->flags & PF_KTHREAD))
1186			exe_file = get_mm_exe_file(mm);
1187	}
1188	task_unlock(task);
1189	return exe_file;
1190}
1191EXPORT_SYMBOL(get_task_exe_file);
1192
1193/**
1194 * get_task_mm - acquire a reference to the task's mm
1195 *
1196 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1197 * this kernel workthread has transiently adopted a user mm with use_mm,
1198 * to do its AIO) is not set and if so returns a reference to it, after
1199 * bumping up the use count.  User must release the mm via mmput()
1200 * after use.  Typically used by /proc and ptrace.
1201 */
1202struct mm_struct *get_task_mm(struct task_struct *task)
1203{
1204	struct mm_struct *mm;
1205
1206	task_lock(task);
1207	mm = task->mm;
1208	if (mm) {
1209		if (task->flags & PF_KTHREAD)
1210			mm = NULL;
1211		else
1212			mmget(mm);
1213	}
1214	task_unlock(task);
1215	return mm;
1216}
1217EXPORT_SYMBOL_GPL(get_task_mm);
1218
1219struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1220{
1221	struct mm_struct *mm;
1222	int err;
1223
1224	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1225	if (err)
1226		return ERR_PTR(err);
1227
1228	mm = get_task_mm(task);
1229	if (mm && mm != current->mm &&
1230			!ptrace_may_access(task, mode)) {
1231		mmput(mm);
1232		mm = ERR_PTR(-EACCES);
1233	}
1234	mutex_unlock(&task->signal->cred_guard_mutex);
1235
1236	return mm;
1237}
1238
1239static void complete_vfork_done(struct task_struct *tsk)
1240{
1241	struct completion *vfork;
1242
1243	task_lock(tsk);
1244	vfork = tsk->vfork_done;
1245	if (likely(vfork)) {
1246		tsk->vfork_done = NULL;
1247		complete(vfork);
1248	}
1249	task_unlock(tsk);
1250}
1251
1252static int wait_for_vfork_done(struct task_struct *child,
1253				struct completion *vfork)
1254{
 
1255	int killed;
1256
1257	freezer_do_not_count();
1258	cgroup_enter_frozen();
1259	killed = wait_for_completion_killable(vfork);
1260	cgroup_leave_frozen(false);
1261	freezer_count();
1262
1263	if (killed) {
1264		task_lock(child);
1265		child->vfork_done = NULL;
1266		task_unlock(child);
1267	}
1268
1269	put_task_struct(child);
1270	return killed;
1271}
1272
1273/* Please note the differences between mmput and mm_release.
1274 * mmput is called whenever we stop holding onto a mm_struct,
1275 * error success whatever.
1276 *
1277 * mm_release is called after a mm_struct has been removed
1278 * from the current process.
1279 *
1280 * This difference is important for error handling, when we
1281 * only half set up a mm_struct for a new process and need to restore
1282 * the old one.  Because we mmput the new mm_struct before
1283 * restoring the old one. . .
1284 * Eric Biederman 10 January 1998
1285 */
1286void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1287{
1288	/* Get rid of any futexes when releasing the mm */
1289#ifdef CONFIG_FUTEX
1290	if (unlikely(tsk->robust_list)) {
1291		exit_robust_list(tsk);
1292		tsk->robust_list = NULL;
1293	}
1294#ifdef CONFIG_COMPAT
1295	if (unlikely(tsk->compat_robust_list)) {
1296		compat_exit_robust_list(tsk);
1297		tsk->compat_robust_list = NULL;
1298	}
1299#endif
1300	if (unlikely(!list_empty(&tsk->pi_state_list)))
1301		exit_pi_state_list(tsk);
1302#endif
1303
1304	uprobe_free_utask(tsk);
1305
1306	/* Get rid of any cached register state */
1307	deactivate_mm(tsk, mm);
1308
1309	/*
1310	 * Signal userspace if we're not exiting with a core dump
1311	 * because we want to leave the value intact for debugging
1312	 * purposes.
1313	 */
1314	if (tsk->clear_child_tid) {
1315		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1316		    atomic_read(&mm->mm_users) > 1) {
1317			/*
1318			 * We don't check the error code - if userspace has
1319			 * not set up a proper pointer then tough luck.
1320			 */
1321			put_user(0, tsk->clear_child_tid);
1322			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1323					1, NULL, NULL, 0, 0);
1324		}
1325		tsk->clear_child_tid = NULL;
1326	}
1327
1328	/*
1329	 * All done, finally we can wake up parent and return this mm to him.
1330	 * Also kthread_stop() uses this completion for synchronization.
1331	 */
1332	if (tsk->vfork_done)
1333		complete_vfork_done(tsk);
1334}
1335
 
 
 
 
 
 
 
 
 
 
 
 
1336/**
1337 * dup_mm() - duplicates an existing mm structure
1338 * @tsk: the task_struct with which the new mm will be associated.
1339 * @oldmm: the mm to duplicate.
1340 *
1341 * Allocates a new mm structure and duplicates the provided @oldmm structure
1342 * content into it.
1343 *
1344 * Return: the duplicated mm or NULL on failure.
1345 */
1346static struct mm_struct *dup_mm(struct task_struct *tsk,
1347				struct mm_struct *oldmm)
1348{
1349	struct mm_struct *mm;
1350	int err;
1351
1352	mm = allocate_mm();
1353	if (!mm)
1354		goto fail_nomem;
1355
1356	memcpy(mm, oldmm, sizeof(*mm));
1357
1358	if (!mm_init(mm, tsk, mm->user_ns))
1359		goto fail_nomem;
1360
1361	err = dup_mmap(mm, oldmm);
1362	if (err)
1363		goto free_pt;
1364
1365	mm->hiwater_rss = get_mm_rss(mm);
1366	mm->hiwater_vm = mm->total_vm;
1367
1368	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1369		goto free_pt;
1370
1371	return mm;
1372
1373free_pt:
1374	/* don't put binfmt in mmput, we haven't got module yet */
1375	mm->binfmt = NULL;
1376	mm_init_owner(mm, NULL);
1377	mmput(mm);
1378
1379fail_nomem:
1380	return NULL;
1381}
1382
1383static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1384{
1385	struct mm_struct *mm, *oldmm;
1386	int retval;
1387
1388	tsk->min_flt = tsk->maj_flt = 0;
1389	tsk->nvcsw = tsk->nivcsw = 0;
1390#ifdef CONFIG_DETECT_HUNG_TASK
1391	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1392	tsk->last_switch_time = 0;
1393#endif
1394
1395	tsk->mm = NULL;
1396	tsk->active_mm = NULL;
1397
1398	/*
1399	 * Are we cloning a kernel thread?
1400	 *
1401	 * We need to steal a active VM for that..
1402	 */
1403	oldmm = current->mm;
1404	if (!oldmm)
1405		return 0;
1406
1407	/* initialize the new vmacache entries */
1408	vmacache_flush(tsk);
1409
1410	if (clone_flags & CLONE_VM) {
1411		mmget(oldmm);
1412		mm = oldmm;
1413		goto good_mm;
 
 
 
1414	}
1415
1416	retval = -ENOMEM;
1417	mm = dup_mm(tsk, current->mm);
1418	if (!mm)
1419		goto fail_nomem;
1420
1421good_mm:
1422	tsk->mm = mm;
1423	tsk->active_mm = mm;
1424	return 0;
1425
1426fail_nomem:
1427	return retval;
1428}
1429
1430static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1431{
1432	struct fs_struct *fs = current->fs;
1433	if (clone_flags & CLONE_FS) {
1434		/* tsk->fs is already what we want */
1435		spin_lock(&fs->lock);
1436		if (fs->in_exec) {
1437			spin_unlock(&fs->lock);
1438			return -EAGAIN;
1439		}
1440		fs->users++;
1441		spin_unlock(&fs->lock);
1442		return 0;
1443	}
1444	tsk->fs = copy_fs_struct(fs);
1445	if (!tsk->fs)
1446		return -ENOMEM;
1447	return 0;
1448}
1449
1450static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1451{
1452	struct files_struct *oldf, *newf;
1453	int error = 0;
1454
1455	/*
1456	 * A background process may not have any files ...
1457	 */
1458	oldf = current->files;
1459	if (!oldf)
1460		goto out;
1461
1462	if (clone_flags & CLONE_FILES) {
1463		atomic_inc(&oldf->count);
1464		goto out;
1465	}
1466
1467	newf = dup_fd(oldf, &error);
1468	if (!newf)
1469		goto out;
1470
1471	tsk->files = newf;
1472	error = 0;
1473out:
1474	return error;
1475}
1476
1477static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1478{
1479#ifdef CONFIG_BLOCK
1480	struct io_context *ioc = current->io_context;
1481	struct io_context *new_ioc;
1482
1483	if (!ioc)
1484		return 0;
1485	/*
1486	 * Share io context with parent, if CLONE_IO is set
1487	 */
1488	if (clone_flags & CLONE_IO) {
1489		ioc_task_link(ioc);
1490		tsk->io_context = ioc;
1491	} else if (ioprio_valid(ioc->ioprio)) {
1492		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1493		if (unlikely(!new_ioc))
1494			return -ENOMEM;
1495
1496		new_ioc->ioprio = ioc->ioprio;
1497		put_io_context(new_ioc);
1498	}
1499#endif
1500	return 0;
1501}
1502
1503static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1504{
1505	struct sighand_struct *sig;
1506
1507	if (clone_flags & CLONE_SIGHAND) {
1508		refcount_inc(&current->sighand->count);
1509		return 0;
1510	}
1511	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1512	rcu_assign_pointer(tsk->sighand, sig);
1513	if (!sig)
1514		return -ENOMEM;
1515
1516	refcount_set(&sig->count, 1);
1517	spin_lock_irq(&current->sighand->siglock);
1518	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1519	spin_unlock_irq(&current->sighand->siglock);
 
 
 
 
 
1520	return 0;
1521}
1522
1523void __cleanup_sighand(struct sighand_struct *sighand)
1524{
1525	if (refcount_dec_and_test(&sighand->count)) {
1526		signalfd_cleanup(sighand);
1527		/*
1528		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1529		 * without an RCU grace period, see __lock_task_sighand().
1530		 */
1531		kmem_cache_free(sighand_cachep, sighand);
1532	}
1533}
1534
1535/*
1536 * Initialize POSIX timer handling for a thread group.
1537 */
1538static void posix_cpu_timers_init_group(struct signal_struct *sig)
1539{
1540	struct posix_cputimers *pct = &sig->posix_cputimers;
1541	unsigned long cpu_limit;
1542
1543	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1544	posix_cputimers_group_init(pct, cpu_limit);
1545}
1546
1547static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1548{
1549	struct signal_struct *sig;
1550
1551	if (clone_flags & CLONE_THREAD)
1552		return 0;
1553
1554	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1555	tsk->signal = sig;
1556	if (!sig)
1557		return -ENOMEM;
1558
1559	sig->nr_threads = 1;
 
1560	atomic_set(&sig->live, 1);
1561	refcount_set(&sig->sigcnt, 1);
1562
1563	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1564	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1565	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1566
1567	init_waitqueue_head(&sig->wait_chldexit);
1568	sig->curr_target = tsk;
1569	init_sigpending(&sig->shared_pending);
1570	INIT_HLIST_HEAD(&sig->multiprocess);
1571	seqlock_init(&sig->stats_lock);
1572	prev_cputime_init(&sig->prev_cputime);
1573
1574#ifdef CONFIG_POSIX_TIMERS
1575	INIT_LIST_HEAD(&sig->posix_timers);
1576	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1577	sig->real_timer.function = it_real_fn;
1578#endif
1579
1580	task_lock(current->group_leader);
1581	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1582	task_unlock(current->group_leader);
1583
1584	posix_cpu_timers_init_group(sig);
1585
1586	tty_audit_fork(sig);
1587	sched_autogroup_fork(sig);
1588
1589	sig->oom_score_adj = current->signal->oom_score_adj;
1590	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1591
1592	mutex_init(&sig->cred_guard_mutex);
 
1593
1594	return 0;
1595}
1596
1597static void copy_seccomp(struct task_struct *p)
1598{
1599#ifdef CONFIG_SECCOMP
1600	/*
1601	 * Must be called with sighand->lock held, which is common to
1602	 * all threads in the group. Holding cred_guard_mutex is not
1603	 * needed because this new task is not yet running and cannot
1604	 * be racing exec.
1605	 */
1606	assert_spin_locked(&current->sighand->siglock);
1607
1608	/* Ref-count the new filter user, and assign it. */
1609	get_seccomp_filter(current);
1610	p->seccomp = current->seccomp;
1611
1612	/*
1613	 * Explicitly enable no_new_privs here in case it got set
1614	 * between the task_struct being duplicated and holding the
1615	 * sighand lock. The seccomp state and nnp must be in sync.
1616	 */
1617	if (task_no_new_privs(current))
1618		task_set_no_new_privs(p);
1619
1620	/*
1621	 * If the parent gained a seccomp mode after copying thread
1622	 * flags and between before we held the sighand lock, we have
1623	 * to manually enable the seccomp thread flag here.
1624	 */
1625	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1626		set_tsk_thread_flag(p, TIF_SECCOMP);
1627#endif
1628}
1629
1630SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1631{
1632	current->clear_child_tid = tidptr;
1633
1634	return task_pid_vnr(current);
1635}
1636
1637static void rt_mutex_init_task(struct task_struct *p)
1638{
1639	raw_spin_lock_init(&p->pi_lock);
1640#ifdef CONFIG_RT_MUTEXES
1641	p->pi_waiters = RB_ROOT_CACHED;
1642	p->pi_top_task = NULL;
1643	p->pi_blocked_on = NULL;
1644#endif
1645}
1646
1647static inline void init_task_pid_links(struct task_struct *task)
1648{
1649	enum pid_type type;
1650
1651	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1652		INIT_HLIST_NODE(&task->pid_links[type]);
1653	}
1654}
1655
1656static inline void
1657init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1658{
1659	if (type == PIDTYPE_PID)
1660		task->thread_pid = pid;
1661	else
1662		task->signal->pids[type] = pid;
1663}
1664
1665static inline void rcu_copy_process(struct task_struct *p)
1666{
1667#ifdef CONFIG_PREEMPT_RCU
1668	p->rcu_read_lock_nesting = 0;
1669	p->rcu_read_unlock_special.s = 0;
1670	p->rcu_blocked_node = NULL;
1671	INIT_LIST_HEAD(&p->rcu_node_entry);
1672#endif /* #ifdef CONFIG_PREEMPT_RCU */
1673#ifdef CONFIG_TASKS_RCU
1674	p->rcu_tasks_holdout = false;
1675	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1676	p->rcu_tasks_idle_cpu = -1;
1677#endif /* #ifdef CONFIG_TASKS_RCU */
 
 
 
 
 
 
1678}
1679
1680struct pid *pidfd_pid(const struct file *file)
1681{
1682	if (file->f_op == &pidfd_fops)
1683		return file->private_data;
1684
1685	return ERR_PTR(-EBADF);
1686}
1687
1688static int pidfd_release(struct inode *inode, struct file *file)
1689{
1690	struct pid *pid = file->private_data;
1691
1692	file->private_data = NULL;
1693	put_pid(pid);
1694	return 0;
1695}
1696
1697#ifdef CONFIG_PROC_FS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1698static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1699{
1700	struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1701	struct pid *pid = f->private_data;
 
 
 
 
 
 
 
1702
1703	seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704	seq_putc(m, '\n');
1705}
1706#endif
1707
1708/*
1709 * Poll support for process exit notification.
1710 */
1711static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1712{
1713	struct task_struct *task;
1714	struct pid *pid = file->private_data;
1715	__poll_t poll_flags = 0;
1716
1717	poll_wait(file, &pid->wait_pidfd, pts);
1718
1719	rcu_read_lock();
1720	task = pid_task(pid, PIDTYPE_PID);
1721	/*
1722	 * Inform pollers only when the whole thread group exits.
1723	 * If the thread group leader exits before all other threads in the
1724	 * group, then poll(2) should block, similar to the wait(2) family.
1725	 */
1726	if (!task || (task->exit_state && thread_group_empty(task)))
1727		poll_flags = EPOLLIN | EPOLLRDNORM;
1728	rcu_read_unlock();
1729
1730	return poll_flags;
1731}
1732
1733const struct file_operations pidfd_fops = {
1734	.release = pidfd_release,
1735	.poll = pidfd_poll,
1736#ifdef CONFIG_PROC_FS
1737	.show_fdinfo = pidfd_show_fdinfo,
1738#endif
1739};
1740
1741static void __delayed_free_task(struct rcu_head *rhp)
1742{
1743	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1744
1745	free_task(tsk);
1746}
1747
1748static __always_inline void delayed_free_task(struct task_struct *tsk)
1749{
1750	if (IS_ENABLED(CONFIG_MEMCG))
1751		call_rcu(&tsk->rcu, __delayed_free_task);
1752	else
1753		free_task(tsk);
1754}
1755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756/*
1757 * This creates a new process as a copy of the old one,
1758 * but does not actually start it yet.
1759 *
1760 * It copies the registers, and all the appropriate
1761 * parts of the process environment (as per the clone
1762 * flags). The actual kick-off is left to the caller.
1763 */
1764static __latent_entropy struct task_struct *copy_process(
1765					struct pid *pid,
1766					int trace,
1767					int node,
1768					struct kernel_clone_args *args)
1769{
1770	int pidfd = -1, retval;
1771	struct task_struct *p;
1772	struct multiprocess_signals delayed;
1773	struct file *pidfile = NULL;
1774	u64 clone_flags = args->flags;
 
1775
1776	/*
1777	 * Don't allow sharing the root directory with processes in a different
1778	 * namespace
1779	 */
1780	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1781		return ERR_PTR(-EINVAL);
1782
1783	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1784		return ERR_PTR(-EINVAL);
1785
1786	/*
1787	 * Thread groups must share signals as well, and detached threads
1788	 * can only be started up within the thread group.
1789	 */
1790	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1791		return ERR_PTR(-EINVAL);
1792
1793	/*
1794	 * Shared signal handlers imply shared VM. By way of the above,
1795	 * thread groups also imply shared VM. Blocking this case allows
1796	 * for various simplifications in other code.
1797	 */
1798	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1799		return ERR_PTR(-EINVAL);
1800
1801	/*
1802	 * Siblings of global init remain as zombies on exit since they are
1803	 * not reaped by their parent (swapper). To solve this and to avoid
1804	 * multi-rooted process trees, prevent global and container-inits
1805	 * from creating siblings.
1806	 */
1807	if ((clone_flags & CLONE_PARENT) &&
1808				current->signal->flags & SIGNAL_UNKILLABLE)
1809		return ERR_PTR(-EINVAL);
1810
1811	/*
1812	 * If the new process will be in a different pid or user namespace
1813	 * do not allow it to share a thread group with the forking task.
1814	 */
1815	if (clone_flags & CLONE_THREAD) {
1816		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1817		    (task_active_pid_ns(current) !=
1818				current->nsproxy->pid_ns_for_children))
1819			return ERR_PTR(-EINVAL);
1820	}
1821
1822	if (clone_flags & CLONE_PIDFD) {
1823		/*
1824		 * - CLONE_DETACHED is blocked so that we can potentially
1825		 *   reuse it later for CLONE_PIDFD.
1826		 * - CLONE_THREAD is blocked until someone really needs it.
1827		 */
1828		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1829			return ERR_PTR(-EINVAL);
1830	}
1831
1832	/*
1833	 * Force any signals received before this point to be delivered
1834	 * before the fork happens.  Collect up signals sent to multiple
1835	 * processes that happen during the fork and delay them so that
1836	 * they appear to happen after the fork.
1837	 */
1838	sigemptyset(&delayed.signal);
1839	INIT_HLIST_NODE(&delayed.node);
1840
1841	spin_lock_irq(&current->sighand->siglock);
1842	if (!(clone_flags & CLONE_THREAD))
1843		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1844	recalc_sigpending();
1845	spin_unlock_irq(&current->sighand->siglock);
1846	retval = -ERESTARTNOINTR;
1847	if (signal_pending(current))
1848		goto fork_out;
1849
1850	retval = -ENOMEM;
1851	p = dup_task_struct(current, node);
1852	if (!p)
1853		goto fork_out;
 
 
 
 
 
 
 
 
 
 
 
1854
1855	/*
1856	 * This _must_ happen before we call free_task(), i.e. before we jump
1857	 * to any of the bad_fork_* labels. This is to avoid freeing
1858	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1859	 * kernel threads (PF_KTHREAD).
1860	 */
1861	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1862	/*
1863	 * Clear TID on mm_release()?
1864	 */
1865	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1866
1867	ftrace_graph_init_task(p);
1868
1869	rt_mutex_init_task(p);
1870
 
1871#ifdef CONFIG_PROVE_LOCKING
1872	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1873	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1874#endif
 
 
 
 
1875	retval = -EAGAIN;
1876	if (atomic_read(&p->real_cred->user->processes) >=
1877			task_rlimit(p, RLIMIT_NPROC)) {
1878		if (p->real_cred->user != INIT_USER &&
1879		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1880			goto bad_fork_free;
1881	}
1882	current->flags &= ~PF_NPROC_EXCEEDED;
1883
1884	retval = copy_creds(p, clone_flags);
1885	if (retval < 0)
1886		goto bad_fork_free;
1887
1888	/*
1889	 * If multiple threads are within copy_process(), then this check
1890	 * triggers too late. This doesn't hurt, the check is only there
1891	 * to stop root fork bombs.
1892	 */
1893	retval = -EAGAIN;
1894	if (nr_threads >= max_threads)
1895		goto bad_fork_cleanup_count;
1896
1897	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1898	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1899	p->flags |= PF_FORKNOEXEC;
1900	INIT_LIST_HEAD(&p->children);
1901	INIT_LIST_HEAD(&p->sibling);
1902	rcu_copy_process(p);
1903	p->vfork_done = NULL;
1904	spin_lock_init(&p->alloc_lock);
1905
1906	init_sigpending(&p->pending);
1907
1908	p->utime = p->stime = p->gtime = 0;
1909#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1910	p->utimescaled = p->stimescaled = 0;
1911#endif
1912	prev_cputime_init(&p->prev_cputime);
1913
1914#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1915	seqcount_init(&p->vtime.seqcount);
1916	p->vtime.starttime = 0;
1917	p->vtime.state = VTIME_INACTIVE;
1918#endif
1919
 
 
 
 
1920#if defined(SPLIT_RSS_COUNTING)
1921	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1922#endif
1923
1924	p->default_timer_slack_ns = current->timer_slack_ns;
1925
1926#ifdef CONFIG_PSI
1927	p->psi_flags = 0;
1928#endif
1929
1930	task_io_accounting_init(&p->ioac);
1931	acct_clear_integrals(p);
1932
1933	posix_cputimers_init(&p->posix_cputimers);
1934
1935	p->io_context = NULL;
1936	audit_set_context(p, NULL);
1937	cgroup_fork(p);
 
 
 
 
1938#ifdef CONFIG_NUMA
1939	p->mempolicy = mpol_dup(p->mempolicy);
1940	if (IS_ERR(p->mempolicy)) {
1941		retval = PTR_ERR(p->mempolicy);
1942		p->mempolicy = NULL;
1943		goto bad_fork_cleanup_threadgroup_lock;
1944	}
1945#endif
1946#ifdef CONFIG_CPUSETS
1947	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1948	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1949	seqcount_init(&p->mems_allowed_seq);
1950#endif
1951#ifdef CONFIG_TRACE_IRQFLAGS
1952	p->irq_events = 0;
1953	p->hardirqs_enabled = 0;
1954	p->hardirq_enable_ip = 0;
1955	p->hardirq_enable_event = 0;
1956	p->hardirq_disable_ip = _THIS_IP_;
1957	p->hardirq_disable_event = 0;
1958	p->softirqs_enabled = 1;
1959	p->softirq_enable_ip = _THIS_IP_;
1960	p->softirq_enable_event = 0;
1961	p->softirq_disable_ip = 0;
1962	p->softirq_disable_event = 0;
1963	p->hardirq_context = 0;
1964	p->softirq_context = 0;
1965#endif
1966
1967	p->pagefault_disabled = 0;
1968
1969#ifdef CONFIG_LOCKDEP
1970	lockdep_init_task(p);
1971#endif
1972
1973#ifdef CONFIG_DEBUG_MUTEXES
1974	p->blocked_on = NULL; /* not blocked yet */
1975#endif
1976#ifdef CONFIG_BCACHE
1977	p->sequential_io	= 0;
1978	p->sequential_io_avg	= 0;
1979#endif
 
 
 
 
1980
1981	/* Perform scheduler related setup. Assign this task to a CPU. */
1982	retval = sched_fork(clone_flags, p);
1983	if (retval)
1984		goto bad_fork_cleanup_policy;
1985
1986	retval = perf_event_init_task(p);
1987	if (retval)
1988		goto bad_fork_cleanup_policy;
1989	retval = audit_alloc(p);
1990	if (retval)
1991		goto bad_fork_cleanup_perf;
1992	/* copy all the process information */
1993	shm_init_task(p);
1994	retval = security_task_alloc(p, clone_flags);
1995	if (retval)
1996		goto bad_fork_cleanup_audit;
1997	retval = copy_semundo(clone_flags, p);
1998	if (retval)
1999		goto bad_fork_cleanup_security;
2000	retval = copy_files(clone_flags, p);
2001	if (retval)
2002		goto bad_fork_cleanup_semundo;
2003	retval = copy_fs(clone_flags, p);
2004	if (retval)
2005		goto bad_fork_cleanup_files;
2006	retval = copy_sighand(clone_flags, p);
2007	if (retval)
2008		goto bad_fork_cleanup_fs;
2009	retval = copy_signal(clone_flags, p);
2010	if (retval)
2011		goto bad_fork_cleanup_sighand;
2012	retval = copy_mm(clone_flags, p);
2013	if (retval)
2014		goto bad_fork_cleanup_signal;
2015	retval = copy_namespaces(clone_flags, p);
2016	if (retval)
2017		goto bad_fork_cleanup_mm;
2018	retval = copy_io(clone_flags, p);
2019	if (retval)
2020		goto bad_fork_cleanup_namespaces;
2021	retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2022				 args->tls);
2023	if (retval)
2024		goto bad_fork_cleanup_io;
2025
2026	stackleak_task_init(p);
2027
2028	if (pid != &init_struct_pid) {
2029		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
 
2030		if (IS_ERR(pid)) {
2031			retval = PTR_ERR(pid);
2032			goto bad_fork_cleanup_thread;
2033		}
2034	}
2035
2036	/*
2037	 * This has to happen after we've potentially unshared the file
2038	 * descriptor table (so that the pidfd doesn't leak into the child
2039	 * if the fd table isn't shared).
2040	 */
2041	if (clone_flags & CLONE_PIDFD) {
2042		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2043		if (retval < 0)
2044			goto bad_fork_free_pid;
2045
2046		pidfd = retval;
2047
2048		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2049					      O_RDWR | O_CLOEXEC);
2050		if (IS_ERR(pidfile)) {
2051			put_unused_fd(pidfd);
2052			retval = PTR_ERR(pidfile);
2053			goto bad_fork_free_pid;
2054		}
2055		get_pid(pid);	/* held by pidfile now */
2056
2057		retval = put_user(pidfd, args->pidfd);
2058		if (retval)
2059			goto bad_fork_put_pidfd;
2060	}
2061
2062#ifdef CONFIG_BLOCK
2063	p->plug = NULL;
2064#endif
2065#ifdef CONFIG_FUTEX
2066	p->robust_list = NULL;
2067#ifdef CONFIG_COMPAT
2068	p->compat_robust_list = NULL;
2069#endif
2070	INIT_LIST_HEAD(&p->pi_state_list);
2071	p->pi_state_cache = NULL;
2072#endif
2073	/*
2074	 * sigaltstack should be cleared when sharing the same VM
2075	 */
2076	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2077		sas_ss_reset(p);
2078
2079	/*
2080	 * Syscall tracing and stepping should be turned off in the
2081	 * child regardless of CLONE_PTRACE.
2082	 */
2083	user_disable_single_step(p);
2084	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2085#ifdef TIF_SYSCALL_EMU
2086	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2087#endif
2088	clear_tsk_latency_tracing(p);
2089
2090	/* ok, now we should be set up.. */
2091	p->pid = pid_nr(pid);
2092	if (clone_flags & CLONE_THREAD) {
2093		p->exit_signal = -1;
2094		p->group_leader = current->group_leader;
2095		p->tgid = current->tgid;
2096	} else {
2097		if (clone_flags & CLONE_PARENT)
2098			p->exit_signal = current->group_leader->exit_signal;
2099		else
2100			p->exit_signal = args->exit_signal;
2101		p->group_leader = p;
2102		p->tgid = p->pid;
2103	}
2104
2105	p->nr_dirtied = 0;
2106	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2107	p->dirty_paused_when = 0;
2108
2109	p->pdeath_signal = 0;
2110	INIT_LIST_HEAD(&p->thread_group);
2111	p->task_works = NULL;
 
 
 
 
 
 
 
 
2112
2113	cgroup_threadgroup_change_begin(current);
2114	/*
2115	 * Ensure that the cgroup subsystem policies allow the new process to be
2116	 * forked. It should be noted the the new process's css_set can be changed
2117	 * between here and cgroup_post_fork() if an organisation operation is in
2118	 * progress.
2119	 */
2120	retval = cgroup_can_fork(p);
2121	if (retval)
2122		goto bad_fork_cgroup_threadgroup_change_end;
 
 
 
 
 
 
 
 
 
 
 
2123
2124	/*
2125	 * From this point on we must avoid any synchronous user-space
2126	 * communication until we take the tasklist-lock. In particular, we do
2127	 * not want user-space to be able to predict the process start-time by
2128	 * stalling fork(2) after we recorded the start_time but before it is
2129	 * visible to the system.
2130	 */
2131
2132	p->start_time = ktime_get_ns();
2133	p->real_start_time = ktime_get_boottime_ns();
2134
2135	/*
2136	 * Make it visible to the rest of the system, but dont wake it up yet.
2137	 * Need tasklist lock for parent etc handling!
2138	 */
2139	write_lock_irq(&tasklist_lock);
2140
2141	/* CLONE_PARENT re-uses the old parent */
2142	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2143		p->real_parent = current->real_parent;
2144		p->parent_exec_id = current->parent_exec_id;
 
 
 
 
2145	} else {
2146		p->real_parent = current;
2147		p->parent_exec_id = current->self_exec_id;
 
2148	}
2149
2150	klp_copy_process(p);
2151
 
 
2152	spin_lock(&current->sighand->siglock);
2153
2154	/*
2155	 * Copy seccomp details explicitly here, in case they were changed
2156	 * before holding sighand lock.
2157	 */
2158	copy_seccomp(p);
2159
2160	rseq_fork(p, clone_flags);
2161
2162	/* Don't start children in a dying pid namespace */
2163	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2164		retval = -ENOMEM;
2165		goto bad_fork_cancel_cgroup;
2166	}
2167
2168	/* Let kill terminate clone/fork in the middle */
2169	if (fatal_signal_pending(current)) {
2170		retval = -EINTR;
2171		goto bad_fork_cancel_cgroup;
2172	}
2173
2174	/* past the last point of failure */
2175	if (pidfile)
2176		fd_install(pidfd, pidfile);
 
 
 
 
2177
2178	init_task_pid_links(p);
2179	if (likely(p->pid)) {
2180		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2181
2182		init_task_pid(p, PIDTYPE_PID, pid);
2183		if (thread_group_leader(p)) {
2184			init_task_pid(p, PIDTYPE_TGID, pid);
2185			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2186			init_task_pid(p, PIDTYPE_SID, task_session(current));
2187
2188			if (is_child_reaper(pid)) {
2189				ns_of_pid(pid)->child_reaper = p;
2190				p->signal->flags |= SIGNAL_UNKILLABLE;
2191			}
2192			p->signal->shared_pending.signal = delayed.signal;
2193			p->signal->tty = tty_kref_get(current->signal->tty);
2194			/*
2195			 * Inherit has_child_subreaper flag under the same
2196			 * tasklist_lock with adding child to the process tree
2197			 * for propagate_has_child_subreaper optimization.
2198			 */
2199			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2200							 p->real_parent->signal->is_child_subreaper;
2201			list_add_tail(&p->sibling, &p->real_parent->children);
2202			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2203			attach_pid(p, PIDTYPE_TGID);
2204			attach_pid(p, PIDTYPE_PGID);
2205			attach_pid(p, PIDTYPE_SID);
2206			__this_cpu_inc(process_counts);
2207		} else {
2208			current->signal->nr_threads++;
 
2209			atomic_inc(&current->signal->live);
2210			refcount_inc(&current->signal->sigcnt);
2211			task_join_group_stop(p);
2212			list_add_tail_rcu(&p->thread_group,
2213					  &p->group_leader->thread_group);
2214			list_add_tail_rcu(&p->thread_node,
2215					  &p->signal->thread_head);
2216		}
2217		attach_pid(p, PIDTYPE_PID);
2218		nr_threads++;
2219	}
2220	total_forks++;
2221	hlist_del_init(&delayed.node);
2222	spin_unlock(&current->sighand->siglock);
2223	syscall_tracepoint_update(p);
2224	write_unlock_irq(&tasklist_lock);
2225
 
 
 
2226	proc_fork_connector(p);
2227	cgroup_post_fork(p);
2228	cgroup_threadgroup_change_end(current);
2229	perf_event_fork(p);
2230
2231	trace_task_newtask(p, clone_flags);
2232	uprobe_copy_process(p, clone_flags);
2233
 
 
2234	return p;
2235
2236bad_fork_cancel_cgroup:
 
2237	spin_unlock(&current->sighand->siglock);
2238	write_unlock_irq(&tasklist_lock);
2239	cgroup_cancel_fork(p);
2240bad_fork_cgroup_threadgroup_change_end:
2241	cgroup_threadgroup_change_end(current);
2242bad_fork_put_pidfd:
2243	if (clone_flags & CLONE_PIDFD) {
2244		fput(pidfile);
2245		put_unused_fd(pidfd);
2246	}
2247bad_fork_free_pid:
2248	if (pid != &init_struct_pid)
2249		free_pid(pid);
2250bad_fork_cleanup_thread:
2251	exit_thread(p);
2252bad_fork_cleanup_io:
2253	if (p->io_context)
2254		exit_io_context(p);
2255bad_fork_cleanup_namespaces:
2256	exit_task_namespaces(p);
2257bad_fork_cleanup_mm:
2258	if (p->mm) {
2259		mm_clear_owner(p->mm, p);
2260		mmput(p->mm);
2261	}
2262bad_fork_cleanup_signal:
2263	if (!(clone_flags & CLONE_THREAD))
2264		free_signal_struct(p->signal);
2265bad_fork_cleanup_sighand:
2266	__cleanup_sighand(p->sighand);
2267bad_fork_cleanup_fs:
2268	exit_fs(p); /* blocking */
2269bad_fork_cleanup_files:
2270	exit_files(p); /* blocking */
2271bad_fork_cleanup_semundo:
2272	exit_sem(p);
2273bad_fork_cleanup_security:
2274	security_task_free(p);
2275bad_fork_cleanup_audit:
2276	audit_free(p);
2277bad_fork_cleanup_perf:
2278	perf_event_free_task(p);
2279bad_fork_cleanup_policy:
2280	lockdep_free_task(p);
2281#ifdef CONFIG_NUMA
2282	mpol_put(p->mempolicy);
2283bad_fork_cleanup_threadgroup_lock:
2284#endif
 
2285	delayacct_tsk_free(p);
2286bad_fork_cleanup_count:
2287	atomic_dec(&p->cred->user->processes);
2288	exit_creds(p);
2289bad_fork_free:
2290	p->state = TASK_DEAD;
 
2291	put_task_stack(p);
2292	delayed_free_task(p);
2293fork_out:
2294	spin_lock_irq(&current->sighand->siglock);
2295	hlist_del_init(&delayed.node);
2296	spin_unlock_irq(&current->sighand->siglock);
2297	return ERR_PTR(retval);
2298}
2299
2300static inline void init_idle_pids(struct task_struct *idle)
2301{
2302	enum pid_type type;
2303
2304	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2305		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2306		init_task_pid(idle, type, &init_struct_pid);
2307	}
2308}
2309
2310struct task_struct *fork_idle(int cpu)
 
 
 
 
 
 
2311{
2312	struct task_struct *task;
2313	struct kernel_clone_args args = {
2314		.flags = CLONE_VM,
 
 
 
 
2315	};
2316
2317	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2318	if (!IS_ERR(task)) {
2319		init_idle_pids(task);
2320		init_idle(task, cpu);
2321	}
2322
2323	return task;
2324}
2325
2326struct mm_struct *copy_init_mm(void)
 
 
 
 
 
 
2327{
2328	return dup_mm(NULL, &init_mm);
 
 
 
 
 
 
 
 
 
 
 
2329}
2330
2331/*
2332 *  Ok, this is the main fork-routine.
2333 *
2334 * It copies the process, and if successful kick-starts
2335 * it and waits for it to finish using the VM if required.
2336 *
2337 * args->exit_signal is expected to be checked for sanity by the caller.
2338 */
2339long _do_fork(struct kernel_clone_args *args)
2340{
2341	u64 clone_flags = args->flags;
2342	struct completion vfork;
2343	struct pid *pid;
2344	struct task_struct *p;
2345	int trace = 0;
2346	long nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2347
2348	/*
2349	 * Determine whether and which event to report to ptracer.  When
2350	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2351	 * requested, no event is reported; otherwise, report if the event
2352	 * for the type of forking is enabled.
2353	 */
2354	if (!(clone_flags & CLONE_UNTRACED)) {
2355		if (clone_flags & CLONE_VFORK)
2356			trace = PTRACE_EVENT_VFORK;
2357		else if (args->exit_signal != SIGCHLD)
2358			trace = PTRACE_EVENT_CLONE;
2359		else
2360			trace = PTRACE_EVENT_FORK;
2361
2362		if (likely(!ptrace_event_enabled(current, trace)))
2363			trace = 0;
2364	}
2365
2366	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2367	add_latent_entropy();
2368
2369	if (IS_ERR(p))
2370		return PTR_ERR(p);
2371
2372	/*
2373	 * Do this prior waking up the new thread - the thread pointer
2374	 * might get invalid after that point, if the thread exits quickly.
2375	 */
2376	trace_sched_process_fork(current, p);
2377
2378	pid = get_task_pid(p, PIDTYPE_PID);
2379	nr = pid_vnr(pid);
2380
2381	if (clone_flags & CLONE_PARENT_SETTID)
2382		put_user(nr, args->parent_tid);
2383
2384	if (clone_flags & CLONE_VFORK) {
2385		p->vfork_done = &vfork;
2386		init_completion(&vfork);
2387		get_task_struct(p);
2388	}
2389
 
 
 
 
 
 
 
2390	wake_up_new_task(p);
2391
2392	/* forking complete and child started to run, tell ptracer */
2393	if (unlikely(trace))
2394		ptrace_event_pid(trace, pid);
2395
2396	if (clone_flags & CLONE_VFORK) {
2397		if (!wait_for_vfork_done(p, &vfork))
2398			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2399	}
2400
2401	put_pid(pid);
2402	return nr;
2403}
2404
2405bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2406{
2407	/* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2408	if ((kargs->flags & CLONE_PIDFD) &&
2409	    (kargs->flags & CLONE_PARENT_SETTID))
2410		return false;
2411
2412	return true;
2413}
2414
2415#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2416/* For compatibility with architectures that call do_fork directly rather than
2417 * using the syscall entry points below. */
2418long do_fork(unsigned long clone_flags,
2419	      unsigned long stack_start,
2420	      unsigned long stack_size,
2421	      int __user *parent_tidptr,
2422	      int __user *child_tidptr)
2423{
2424	struct kernel_clone_args args = {
2425		.flags		= (clone_flags & ~CSIGNAL),
2426		.pidfd		= parent_tidptr,
2427		.child_tid	= child_tidptr,
2428		.parent_tid	= parent_tidptr,
2429		.exit_signal	= (clone_flags & CSIGNAL),
2430		.stack		= stack_start,
2431		.stack_size	= stack_size,
2432	};
2433
2434	if (!legacy_clone_args_valid(&args))
2435		return -EINVAL;
2436
2437	return _do_fork(&args);
2438}
2439#endif
2440
2441/*
2442 * Create a kernel thread.
2443 */
2444pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2445{
2446	struct kernel_clone_args args = {
2447		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2448		.exit_signal	= (flags & CSIGNAL),
2449		.stack		= (unsigned long)fn,
2450		.stack_size	= (unsigned long)arg,
 
2451	};
2452
2453	return _do_fork(&args);
2454}
2455
2456#ifdef __ARCH_WANT_SYS_FORK
2457SYSCALL_DEFINE0(fork)
2458{
2459#ifdef CONFIG_MMU
2460	struct kernel_clone_args args = {
2461		.exit_signal = SIGCHLD,
2462	};
2463
2464	return _do_fork(&args);
2465#else
2466	/* can not support in nommu mode */
2467	return -EINVAL;
2468#endif
2469}
2470#endif
2471
2472#ifdef __ARCH_WANT_SYS_VFORK
2473SYSCALL_DEFINE0(vfork)
2474{
2475	struct kernel_clone_args args = {
2476		.flags		= CLONE_VFORK | CLONE_VM,
2477		.exit_signal	= SIGCHLD,
2478	};
2479
2480	return _do_fork(&args);
2481}
2482#endif
2483
2484#ifdef __ARCH_WANT_SYS_CLONE
2485#ifdef CONFIG_CLONE_BACKWARDS
2486SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2487		 int __user *, parent_tidptr,
2488		 unsigned long, tls,
2489		 int __user *, child_tidptr)
2490#elif defined(CONFIG_CLONE_BACKWARDS2)
2491SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2492		 int __user *, parent_tidptr,
2493		 int __user *, child_tidptr,
2494		 unsigned long, tls)
2495#elif defined(CONFIG_CLONE_BACKWARDS3)
2496SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2497		int, stack_size,
2498		int __user *, parent_tidptr,
2499		int __user *, child_tidptr,
2500		unsigned long, tls)
2501#else
2502SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2503		 int __user *, parent_tidptr,
2504		 int __user *, child_tidptr,
2505		 unsigned long, tls)
2506#endif
2507{
2508	struct kernel_clone_args args = {
2509		.flags		= (clone_flags & ~CSIGNAL),
2510		.pidfd		= parent_tidptr,
2511		.child_tid	= child_tidptr,
2512		.parent_tid	= parent_tidptr,
2513		.exit_signal	= (clone_flags & CSIGNAL),
2514		.stack		= newsp,
2515		.tls		= tls,
2516	};
2517
2518	if (!legacy_clone_args_valid(&args))
2519		return -EINVAL;
2520
2521	return _do_fork(&args);
2522}
2523#endif
2524
2525#ifdef __ARCH_WANT_SYS_CLONE3
 
2526noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2527					      struct clone_args __user *uargs,
2528					      size_t usize)
2529{
2530	int err;
2531	struct clone_args args;
 
 
 
 
 
 
 
 
 
2532
2533	if (unlikely(usize > PAGE_SIZE))
2534		return -E2BIG;
2535	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2536		return -EINVAL;
2537
2538	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2539	if (err)
2540		return err;
2541
 
 
 
 
 
 
 
 
 
2542	/*
2543	 * Verify that higher 32bits of exit_signal are unset and that
2544	 * it is a valid signal
2545	 */
2546	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2547		     !valid_signal(args.exit_signal)))
2548		return -EINVAL;
2549
 
 
 
 
2550	*kargs = (struct kernel_clone_args){
2551		.flags		= args.flags,
2552		.pidfd		= u64_to_user_ptr(args.pidfd),
2553		.child_tid	= u64_to_user_ptr(args.child_tid),
2554		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2555		.exit_signal	= args.exit_signal,
2556		.stack		= args.stack,
2557		.stack_size	= args.stack_size,
2558		.tls		= args.tls,
 
 
2559	};
2560
 
 
 
 
 
 
 
2561	return 0;
2562}
2563
2564/**
2565 * clone3_stack_valid - check and prepare stack
2566 * @kargs: kernel clone args
2567 *
2568 * Verify that the stack arguments userspace gave us are sane.
2569 * In addition, set the stack direction for userspace since it's easy for us to
2570 * determine.
2571 */
2572static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2573{
2574	if (kargs->stack == 0) {
2575		if (kargs->stack_size > 0)
2576			return false;
2577	} else {
2578		if (kargs->stack_size == 0)
2579			return false;
2580
2581		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2582			return false;
2583
2584#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2585		kargs->stack += kargs->stack_size;
2586#endif
2587	}
2588
2589	return true;
2590}
2591
2592static bool clone3_args_valid(struct kernel_clone_args *kargs)
2593{
2594	/*
2595	 * All lower bits of the flag word are taken.
2596	 * Verify that no other unknown flags are passed along.
2597	 */
2598	if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2599		return false;
2600
2601	/*
2602	 * - make the CLONE_DETACHED bit reuseable for clone3
2603	 * - make the CSIGNAL bits reuseable for clone3
2604	 */
2605	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2606		return false;
2607
 
 
 
 
2608	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2609	    kargs->exit_signal)
2610		return false;
2611
2612	if (!clone3_stack_valid(kargs))
2613		return false;
2614
2615	return true;
2616}
2617
2618/**
2619 * clone3 - create a new process with specific properties
2620 * @uargs: argument structure
2621 * @size:  size of @uargs
2622 *
2623 * clone3() is the extensible successor to clone()/clone2().
2624 * It takes a struct as argument that is versioned by its size.
2625 *
2626 * Return: On success, a positive PID for the child process.
2627 *         On error, a negative errno number.
2628 */
2629SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2630{
2631	int err;
2632
2633	struct kernel_clone_args kargs;
 
 
 
2634
2635	err = copy_clone_args_from_user(&kargs, uargs, size);
2636	if (err)
2637		return err;
2638
2639	if (!clone3_args_valid(&kargs))
2640		return -EINVAL;
2641
2642	return _do_fork(&kargs);
2643}
2644#endif
2645
2646void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2647{
2648	struct task_struct *leader, *parent, *child;
2649	int res;
2650
2651	read_lock(&tasklist_lock);
2652	leader = top = top->group_leader;
2653down:
2654	for_each_thread(leader, parent) {
2655		list_for_each_entry(child, &parent->children, sibling) {
2656			res = visitor(child, data);
2657			if (res) {
2658				if (res < 0)
2659					goto out;
2660				leader = child;
2661				goto down;
2662			}
2663up:
2664			;
2665		}
2666	}
2667
2668	if (leader != top) {
2669		child = leader;
2670		parent = child->real_parent;
2671		leader = parent->group_leader;
2672		goto up;
2673	}
2674out:
2675	read_unlock(&tasklist_lock);
2676}
2677
2678#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2679#define ARCH_MIN_MMSTRUCT_ALIGN 0
2680#endif
2681
2682static void sighand_ctor(void *data)
2683{
2684	struct sighand_struct *sighand = data;
2685
2686	spin_lock_init(&sighand->siglock);
2687	init_waitqueue_head(&sighand->signalfd_wqh);
2688}
2689
2690void __init proc_caches_init(void)
2691{
2692	unsigned int mm_size;
2693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2694	sighand_cachep = kmem_cache_create("sighand_cache",
2695			sizeof(struct sighand_struct), 0,
2696			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2697			SLAB_ACCOUNT, sighand_ctor);
2698	signal_cachep = kmem_cache_create("signal_cache",
2699			sizeof(struct signal_struct), 0,
2700			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2701			NULL);
2702	files_cachep = kmem_cache_create("files_cache",
2703			sizeof(struct files_struct), 0,
2704			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2705			NULL);
2706	fs_cachep = kmem_cache_create("fs_cache",
2707			sizeof(struct fs_struct), 0,
2708			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2709			NULL);
2710
2711	/*
2712	 * The mm_cpumask is located at the end of mm_struct, and is
2713	 * dynamically sized based on the maximum CPU number this system
2714	 * can have, taking hotplug into account (nr_cpu_ids).
2715	 */
2716	mm_size = sizeof(struct mm_struct) + cpumask_size();
2717
2718	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2719			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2720			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2721			offsetof(struct mm_struct, saved_auxv),
2722			sizeof_field(struct mm_struct, saved_auxv),
2723			NULL);
2724	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2725	mmap_init();
2726	nsproxy_cache_init();
2727}
2728
2729/*
2730 * Check constraints on flags passed to the unshare system call.
2731 */
2732static int check_unshare_flags(unsigned long unshare_flags)
2733{
2734	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2735				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2736				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2737				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
 
2738		return -EINVAL;
2739	/*
2740	 * Not implemented, but pretend it works if there is nothing
2741	 * to unshare.  Note that unsharing the address space or the
2742	 * signal handlers also need to unshare the signal queues (aka
2743	 * CLONE_THREAD).
2744	 */
2745	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2746		if (!thread_group_empty(current))
2747			return -EINVAL;
2748	}
2749	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2750		if (refcount_read(&current->sighand->count) > 1)
2751			return -EINVAL;
2752	}
2753	if (unshare_flags & CLONE_VM) {
2754		if (!current_is_single_threaded())
2755			return -EINVAL;
2756	}
2757
2758	return 0;
2759}
2760
2761/*
2762 * Unshare the filesystem structure if it is being shared
2763 */
2764static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2765{
2766	struct fs_struct *fs = current->fs;
2767
2768	if (!(unshare_flags & CLONE_FS) || !fs)
2769		return 0;
2770
2771	/* don't need lock here; in the worst case we'll do useless copy */
2772	if (fs->users == 1)
2773		return 0;
2774
2775	*new_fsp = copy_fs_struct(fs);
2776	if (!*new_fsp)
2777		return -ENOMEM;
2778
2779	return 0;
2780}
2781
2782/*
2783 * Unshare file descriptor table if it is being shared
2784 */
2785static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
 
2786{
2787	struct files_struct *fd = current->files;
2788	int error = 0;
2789
2790	if ((unshare_flags & CLONE_FILES) &&
2791	    (fd && atomic_read(&fd->count) > 1)) {
2792		*new_fdp = dup_fd(fd, &error);
2793		if (!*new_fdp)
2794			return error;
2795	}
2796
2797	return 0;
2798}
2799
2800/*
2801 * unshare allows a process to 'unshare' part of the process
2802 * context which was originally shared using clone.  copy_*
2803 * functions used by do_fork() cannot be used here directly
2804 * because they modify an inactive task_struct that is being
2805 * constructed. Here we are modifying the current, active,
2806 * task_struct.
2807 */
2808int ksys_unshare(unsigned long unshare_flags)
2809{
2810	struct fs_struct *fs, *new_fs = NULL;
2811	struct files_struct *fd, *new_fd = NULL;
2812	struct cred *new_cred = NULL;
2813	struct nsproxy *new_nsproxy = NULL;
2814	int do_sysvsem = 0;
2815	int err;
2816
2817	/*
2818	 * If unsharing a user namespace must also unshare the thread group
2819	 * and unshare the filesystem root and working directories.
2820	 */
2821	if (unshare_flags & CLONE_NEWUSER)
2822		unshare_flags |= CLONE_THREAD | CLONE_FS;
2823	/*
2824	 * If unsharing vm, must also unshare signal handlers.
2825	 */
2826	if (unshare_flags & CLONE_VM)
2827		unshare_flags |= CLONE_SIGHAND;
2828	/*
2829	 * If unsharing a signal handlers, must also unshare the signal queues.
2830	 */
2831	if (unshare_flags & CLONE_SIGHAND)
2832		unshare_flags |= CLONE_THREAD;
2833	/*
2834	 * If unsharing namespace, must also unshare filesystem information.
2835	 */
2836	if (unshare_flags & CLONE_NEWNS)
2837		unshare_flags |= CLONE_FS;
2838
2839	err = check_unshare_flags(unshare_flags);
2840	if (err)
2841		goto bad_unshare_out;
2842	/*
2843	 * CLONE_NEWIPC must also detach from the undolist: after switching
2844	 * to a new ipc namespace, the semaphore arrays from the old
2845	 * namespace are unreachable.
2846	 */
2847	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2848		do_sysvsem = 1;
2849	err = unshare_fs(unshare_flags, &new_fs);
2850	if (err)
2851		goto bad_unshare_out;
2852	err = unshare_fd(unshare_flags, &new_fd);
2853	if (err)
2854		goto bad_unshare_cleanup_fs;
2855	err = unshare_userns(unshare_flags, &new_cred);
2856	if (err)
2857		goto bad_unshare_cleanup_fd;
2858	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2859					 new_cred, new_fs);
2860	if (err)
2861		goto bad_unshare_cleanup_cred;
2862
 
 
 
 
 
 
2863	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2864		if (do_sysvsem) {
2865			/*
2866			 * CLONE_SYSVSEM is equivalent to sys_exit().
2867			 */
2868			exit_sem(current);
2869		}
2870		if (unshare_flags & CLONE_NEWIPC) {
2871			/* Orphan segments in old ns (see sem above). */
2872			exit_shm(current);
2873			shm_init_task(current);
2874		}
2875
2876		if (new_nsproxy)
2877			switch_task_namespaces(current, new_nsproxy);
2878
2879		task_lock(current);
2880
2881		if (new_fs) {
2882			fs = current->fs;
2883			spin_lock(&fs->lock);
2884			current->fs = new_fs;
2885			if (--fs->users)
2886				new_fs = NULL;
2887			else
2888				new_fs = fs;
2889			spin_unlock(&fs->lock);
2890		}
2891
2892		if (new_fd) {
2893			fd = current->files;
2894			current->files = new_fd;
2895			new_fd = fd;
2896		}
2897
2898		task_unlock(current);
2899
2900		if (new_cred) {
2901			/* Install the new user namespace */
2902			commit_creds(new_cred);
2903			new_cred = NULL;
2904		}
2905	}
2906
2907	perf_event_namespaces(current);
2908
2909bad_unshare_cleanup_cred:
2910	if (new_cred)
2911		put_cred(new_cred);
2912bad_unshare_cleanup_fd:
2913	if (new_fd)
2914		put_files_struct(new_fd);
2915
2916bad_unshare_cleanup_fs:
2917	if (new_fs)
2918		free_fs_struct(new_fs);
2919
2920bad_unshare_out:
2921	return err;
2922}
2923
2924SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2925{
2926	return ksys_unshare(unshare_flags);
2927}
2928
2929/*
2930 *	Helper to unshare the files of the current task.
2931 *	We don't want to expose copy_files internals to
2932 *	the exec layer of the kernel.
2933 */
2934
2935int unshare_files(struct files_struct **displaced)
2936{
2937	struct task_struct *task = current;
2938	struct files_struct *copy = NULL;
2939	int error;
2940
2941	error = unshare_fd(CLONE_FILES, &copy);
2942	if (error || !copy) {
2943		*displaced = NULL;
2944		return error;
2945	}
2946	*displaced = task->files;
2947	task_lock(task);
2948	task->files = copy;
2949	task_unlock(task);
 
2950	return 0;
2951}
2952
2953int sysctl_max_threads(struct ctl_table *table, int write,
2954		       void __user *buffer, size_t *lenp, loff_t *ppos)
2955{
2956	struct ctl_table t;
2957	int ret;
2958	int threads = max_threads;
2959	int min = 1;
2960	int max = MAX_THREADS;
2961
2962	t = *table;
2963	t.data = &threads;
2964	t.extra1 = &min;
2965	t.extra2 = &max;
2966
2967	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2968	if (ret || !write)
2969		return ret;
2970
2971	max_threads = threads;
2972
2973	return 0;
2974}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
  40#include <linux/kmsan.h>
  41#include <linux/binfmts.h>
  42#include <linux/mman.h>
  43#include <linux/mmu_notifier.h>
 
  44#include <linux/fs.h>
  45#include <linux/mm.h>
  46#include <linux/mm_inline.h>
  47#include <linux/nsproxy.h>
  48#include <linux/capability.h>
  49#include <linux/cpu.h>
  50#include <linux/cgroup.h>
  51#include <linux/security.h>
  52#include <linux/hugetlb.h>
  53#include <linux/seccomp.h>
  54#include <linux/swap.h>
  55#include <linux/syscalls.h>
  56#include <linux/jiffies.h>
  57#include <linux/futex.h>
  58#include <linux/compat.h>
  59#include <linux/kthread.h>
  60#include <linux/task_io_accounting_ops.h>
  61#include <linux/rcupdate.h>
  62#include <linux/ptrace.h>
  63#include <linux/mount.h>
  64#include <linux/audit.h>
  65#include <linux/memcontrol.h>
  66#include <linux/ftrace.h>
  67#include <linux/proc_fs.h>
  68#include <linux/profile.h>
  69#include <linux/rmap.h>
  70#include <linux/ksm.h>
  71#include <linux/acct.h>
  72#include <linux/userfaultfd_k.h>
  73#include <linux/tsacct_kern.h>
  74#include <linux/cn_proc.h>
  75#include <linux/freezer.h>
  76#include <linux/delayacct.h>
  77#include <linux/taskstats_kern.h>
 
  78#include <linux/tty.h>
 
  79#include <linux/fs_struct.h>
  80#include <linux/magic.h>
  81#include <linux/perf_event.h>
  82#include <linux/posix-timers.h>
  83#include <linux/user-return-notifier.h>
  84#include <linux/oom.h>
  85#include <linux/khugepaged.h>
  86#include <linux/signalfd.h>
  87#include <linux/uprobes.h>
  88#include <linux/aio.h>
  89#include <linux/compiler.h>
  90#include <linux/sysctl.h>
  91#include <linux/kcov.h>
  92#include <linux/livepatch.h>
  93#include <linux/thread_info.h>
  94#include <linux/stackleak.h>
  95#include <linux/kasan.h>
  96#include <linux/scs.h>
  97#include <linux/io_uring.h>
  98#include <linux/bpf.h>
  99#include <linux/stackprotector.h>
 100
 
 101#include <asm/pgalloc.h>
 102#include <linux/uaccess.h>
 103#include <asm/mmu_context.h>
 104#include <asm/cacheflush.h>
 105#include <asm/tlbflush.h>
 106
 107#include <trace/events/sched.h>
 108
 109#define CREATE_TRACE_POINTS
 110#include <trace/events/task.h>
 111
 112/*
 113 * Minimum number of threads to boot the kernel
 114 */
 115#define MIN_THREADS 20
 116
 117/*
 118 * Maximum number of threads
 119 */
 120#define MAX_THREADS FUTEX_TID_MASK
 121
 122/*
 123 * Protected counters by write_lock_irq(&tasklist_lock)
 124 */
 125unsigned long total_forks;	/* Handle normal Linux uptimes. */
 126int nr_threads;			/* The idle threads do not count.. */
 127
 128static int max_threads;		/* tunable limit on nr_threads */
 129
 130#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 131
 132static const char * const resident_page_types[] = {
 133	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 134	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 135	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 136	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 137};
 138
 139DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 140
 141__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 142
 143#ifdef CONFIG_PROVE_RCU
 144int lockdep_tasklist_lock_is_held(void)
 145{
 146	return lockdep_is_held(&tasklist_lock);
 147}
 148EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 149#endif /* #ifdef CONFIG_PROVE_RCU */
 150
 151int nr_processes(void)
 152{
 153	int cpu;
 154	int total = 0;
 155
 156	for_each_possible_cpu(cpu)
 157		total += per_cpu(process_counts, cpu);
 158
 159	return total;
 160}
 161
 162void __weak arch_release_task_struct(struct task_struct *tsk)
 163{
 164}
 165
 166#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 167static struct kmem_cache *task_struct_cachep;
 168
 169static inline struct task_struct *alloc_task_struct_node(int node)
 170{
 171	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 172}
 173
 174static inline void free_task_struct(struct task_struct *tsk)
 175{
 176	kmem_cache_free(task_struct_cachep, tsk);
 177}
 178#endif
 179
 180#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 181
 182/*
 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 184 * kmemcache based allocator.
 185 */
 186# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 187
 188#  ifdef CONFIG_VMAP_STACK
 189/*
 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 191 * flush.  Try to minimize the number of calls by caching stacks.
 192 */
 193#define NR_CACHED_STACKS 2
 194static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 195
 196struct vm_stack {
 197	struct rcu_head rcu;
 198	struct vm_struct *stack_vm_area;
 199};
 200
 201static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < NR_CACHED_STACKS; i++) {
 206		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
 207			continue;
 208		return true;
 209	}
 210	return false;
 211}
 212
 213static void thread_stack_free_rcu(struct rcu_head *rh)
 214{
 215	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
 216
 217	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
 218		return;
 219
 220	vfree(vm_stack);
 221}
 222
 223static void thread_stack_delayed_free(struct task_struct *tsk)
 224{
 225	struct vm_stack *vm_stack = tsk->stack;
 226
 227	vm_stack->stack_vm_area = tsk->stack_vm_area;
 228	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
 229}
 230
 231static int free_vm_stack_cache(unsigned int cpu)
 232{
 233	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 234	int i;
 235
 236	for (i = 0; i < NR_CACHED_STACKS; i++) {
 237		struct vm_struct *vm_stack = cached_vm_stacks[i];
 238
 239		if (!vm_stack)
 240			continue;
 241
 242		vfree(vm_stack->addr);
 243		cached_vm_stacks[i] = NULL;
 244	}
 245
 246	return 0;
 247}
 
 248
 249static int memcg_charge_kernel_stack(struct vm_struct *vm)
 250{
 251	int i;
 252	int ret;
 253
 254	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 255	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 256
 257	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 258		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
 259		if (ret)
 260			goto err;
 261	}
 262	return 0;
 263err:
 264	/*
 265	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
 266	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
 267	 * ignore this page.
 268	 */
 269	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 270		memcg_kmem_uncharge_page(vm->pages[i], 0);
 271	return ret;
 272}
 273
 274static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 275{
 276	struct vm_struct *vm;
 277	void *stack;
 278	int i;
 279
 280	for (i = 0; i < NR_CACHED_STACKS; i++) {
 281		struct vm_struct *s;
 282
 283		s = this_cpu_xchg(cached_stacks[i], NULL);
 284
 285		if (!s)
 286			continue;
 287
 288		/* Reset stack metadata. */
 289		kasan_unpoison_range(s->addr, THREAD_SIZE);
 290
 291		stack = kasan_reset_tag(s->addr);
 292
 293		/* Clear stale pointers from reused stack. */
 294		memset(stack, 0, THREAD_SIZE);
 295
 296		if (memcg_charge_kernel_stack(s)) {
 297			vfree(s->addr);
 298			return -ENOMEM;
 299		}
 300
 301		tsk->stack_vm_area = s;
 302		tsk->stack = stack;
 303		return 0;
 304	}
 305
 306	/*
 307	 * Allocated stacks are cached and later reused by new threads,
 308	 * so memcg accounting is performed manually on assigning/releasing
 309	 * stacks to tasks. Drop __GFP_ACCOUNT.
 310	 */
 311	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 312				     VMALLOC_START, VMALLOC_END,
 313				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 314				     PAGE_KERNEL,
 315				     0, node, __builtin_return_address(0));
 316	if (!stack)
 317		return -ENOMEM;
 318
 319	vm = find_vm_area(stack);
 320	if (memcg_charge_kernel_stack(vm)) {
 321		vfree(stack);
 322		return -ENOMEM;
 323	}
 324	/*
 325	 * We can't call find_vm_area() in interrupt context, and
 326	 * free_thread_stack() can be called in interrupt context,
 327	 * so cache the vm_struct.
 328	 */
 329	tsk->stack_vm_area = vm;
 330	stack = kasan_reset_tag(stack);
 331	tsk->stack = stack;
 332	return 0;
 333}
 334
 335static void free_thread_stack(struct task_struct *tsk)
 336{
 337	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
 338		thread_stack_delayed_free(tsk);
 339
 340	tsk->stack = NULL;
 341	tsk->stack_vm_area = NULL;
 342}
 343
 344#  else /* !CONFIG_VMAP_STACK */
 345
 346static void thread_stack_free_rcu(struct rcu_head *rh)
 347{
 348	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
 349}
 350
 351static void thread_stack_delayed_free(struct task_struct *tsk)
 352{
 353	struct rcu_head *rh = tsk->stack;
 354
 355	call_rcu(rh, thread_stack_free_rcu);
 356}
 357
 358static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 359{
 360	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 361					     THREAD_SIZE_ORDER);
 362
 363	if (likely(page)) {
 364		tsk->stack = kasan_reset_tag(page_address(page));
 365		return 0;
 366	}
 367	return -ENOMEM;
 
 368}
 369
 370static void free_thread_stack(struct task_struct *tsk)
 371{
 372	thread_stack_delayed_free(tsk);
 373	tsk->stack = NULL;
 374}
 
 
 375
 376#  endif /* CONFIG_VMAP_STACK */
 377# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
 
 
 378
 379static struct kmem_cache *thread_stack_cache;
 
 
 
 
 
 
 380
 381static void thread_stack_free_rcu(struct rcu_head *rh)
 382{
 383	kmem_cache_free(thread_stack_cache, rh);
 384}
 385
 386static void thread_stack_delayed_free(struct task_struct *tsk)
 387{
 388	struct rcu_head *rh = tsk->stack;
 
 389
 390	call_rcu(rh, thread_stack_free_rcu);
 391}
 
 
 392
 393static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 
 394{
 395	unsigned long *stack;
 396	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 397	stack = kasan_reset_tag(stack);
 398	tsk->stack = stack;
 399	return stack ? 0 : -ENOMEM;
 400}
 401
 402static void free_thread_stack(struct task_struct *tsk)
 403{
 404	thread_stack_delayed_free(tsk);
 405	tsk->stack = NULL;
 406}
 407
 408void thread_stack_cache_init(void)
 409{
 410	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 411					THREAD_SIZE, THREAD_SIZE, 0, 0,
 412					THREAD_SIZE, NULL);
 413	BUG_ON(thread_stack_cache == NULL);
 414}
 415
 416# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
 417#else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
 418
 419static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 420{
 421	unsigned long *stack;
 422
 423	stack = arch_alloc_thread_stack_node(tsk, node);
 424	tsk->stack = stack;
 425	return stack ? 0 : -ENOMEM;
 426}
 427
 428static void free_thread_stack(struct task_struct *tsk)
 429{
 430	arch_free_thread_stack(tsk);
 431	tsk->stack = NULL;
 432}
 433
 434#endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
 435
 436/* SLAB cache for signal_struct structures (tsk->signal) */
 437static struct kmem_cache *signal_cachep;
 438
 439/* SLAB cache for sighand_struct structures (tsk->sighand) */
 440struct kmem_cache *sighand_cachep;
 441
 442/* SLAB cache for files_struct structures (tsk->files) */
 443struct kmem_cache *files_cachep;
 444
 445/* SLAB cache for fs_struct structures (tsk->fs) */
 446struct kmem_cache *fs_cachep;
 447
 448/* SLAB cache for vm_area_struct structures */
 449static struct kmem_cache *vm_area_cachep;
 450
 451/* SLAB cache for mm_struct structures (tsk->mm) */
 452static struct kmem_cache *mm_cachep;
 453
 454struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 455{
 456	struct vm_area_struct *vma;
 457
 458	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 459	if (vma)
 460		vma_init(vma, mm);
 461	return vma;
 462}
 463
 464struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 465{
 466	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 467
 468	if (new) {
 469		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
 470		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
 471		/*
 472		 * orig->shared.rb may be modified concurrently, but the clone
 473		 * will be reinitialized.
 474		 */
 475		*new = data_race(*orig);
 476		INIT_LIST_HEAD(&new->anon_vma_chain);
 477		dup_anon_vma_name(orig, new);
 478	}
 479	return new;
 480}
 481
 482void vm_area_free(struct vm_area_struct *vma)
 483{
 484	free_anon_vma_name(vma);
 485	kmem_cache_free(vm_area_cachep, vma);
 486}
 487
 488static void account_kernel_stack(struct task_struct *tsk, int account)
 489{
 490	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 491		struct vm_struct *vm = task_stack_vm_area(tsk);
 
 
 
 
 492		int i;
 493
 494		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 495			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
 496					      account * (PAGE_SIZE / 1024));
 
 
 
 
 497	} else {
 498		void *stack = task_stack_page(tsk);
 
 
 
 
 499
 500		/* All stack pages are in the same node. */
 501		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
 502				      account * (THREAD_SIZE / 1024));
 
 
 503	}
 504}
 505
 506void exit_task_stack_account(struct task_struct *tsk)
 507{
 508	account_kernel_stack(tsk, -1);
 
 
 509
 510	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 511		struct vm_struct *vm;
 512		int i;
 513
 514		vm = task_stack_vm_area(tsk);
 515		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 516			memcg_kmem_uncharge_page(vm->pages[i], 0);
 
 
 
 
 
 
 
 
 
 
 
 
 517	}
 
 
 518}
 519
 520static void release_task_stack(struct task_struct *tsk)
 521{
 522	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
 523		return;  /* Better to leak the stack than to free prematurely */
 524
 
 525	free_thread_stack(tsk);
 
 
 
 
 526}
 527
 528#ifdef CONFIG_THREAD_INFO_IN_TASK
 529void put_task_stack(struct task_struct *tsk)
 530{
 531	if (refcount_dec_and_test(&tsk->stack_refcount))
 532		release_task_stack(tsk);
 533}
 534#endif
 535
 536void free_task(struct task_struct *tsk)
 537{
 538#ifdef CONFIG_SECCOMP
 539	WARN_ON_ONCE(tsk->seccomp.filter);
 540#endif
 541	release_user_cpus_ptr(tsk);
 542	scs_release(tsk);
 543
 544#ifndef CONFIG_THREAD_INFO_IN_TASK
 545	/*
 546	 * The task is finally done with both the stack and thread_info,
 547	 * so free both.
 548	 */
 549	release_task_stack(tsk);
 550#else
 551	/*
 552	 * If the task had a separate stack allocation, it should be gone
 553	 * by now.
 554	 */
 555	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 556#endif
 557	rt_mutex_debug_task_free(tsk);
 558	ftrace_graph_exit_task(tsk);
 
 559	arch_release_task_struct(tsk);
 560	if (tsk->flags & PF_KTHREAD)
 561		free_kthread_struct(tsk);
 562	free_task_struct(tsk);
 563}
 564EXPORT_SYMBOL(free_task);
 565
 566static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
 567{
 568	struct file *exe_file;
 569
 570	exe_file = get_mm_exe_file(oldmm);
 571	RCU_INIT_POINTER(mm->exe_file, exe_file);
 572	/*
 573	 * We depend on the oldmm having properly denied write access to the
 574	 * exe_file already.
 575	 */
 576	if (exe_file && deny_write_access(exe_file))
 577		pr_warn_once("deny_write_access() failed in %s\n", __func__);
 578}
 579
 580#ifdef CONFIG_MMU
 581static __latent_entropy int dup_mmap(struct mm_struct *mm,
 582					struct mm_struct *oldmm)
 583{
 584	struct vm_area_struct *mpnt, *tmp;
 
 585	int retval;
 586	unsigned long charge = 0;
 587	LIST_HEAD(uf);
 588	MA_STATE(old_mas, &oldmm->mm_mt, 0, 0);
 589	MA_STATE(mas, &mm->mm_mt, 0, 0);
 590
 591	uprobe_start_dup_mmap();
 592	if (mmap_write_lock_killable(oldmm)) {
 593		retval = -EINTR;
 594		goto fail_uprobe_end;
 595	}
 596	flush_cache_dup_mm(oldmm);
 597	uprobe_dup_mmap(oldmm, mm);
 598	/*
 599	 * Not linked in yet - no deadlock potential:
 600	 */
 601	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
 602
 603	/* No ordering required: file already has been exposed. */
 604	dup_mm_exe_file(mm, oldmm);
 605
 606	mm->total_vm = oldmm->total_vm;
 607	mm->data_vm = oldmm->data_vm;
 608	mm->exec_vm = oldmm->exec_vm;
 609	mm->stack_vm = oldmm->stack_vm;
 610
 
 
 
 611	retval = ksm_fork(mm, oldmm);
 612	if (retval)
 613		goto out;
 614	khugepaged_fork(mm, oldmm);
 615
 616	retval = mas_expected_entries(&mas, oldmm->map_count);
 617	if (retval)
 618		goto out;
 619
 620	mas_for_each(&old_mas, mpnt, ULONG_MAX) {
 
 621		struct file *file;
 622
 623		if (mpnt->vm_flags & VM_DONTCOPY) {
 624			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 625			continue;
 626		}
 627		charge = 0;
 628		/*
 629		 * Don't duplicate many vmas if we've been oom-killed (for
 630		 * example)
 631		 */
 632		if (fatal_signal_pending(current)) {
 633			retval = -EINTR;
 634			goto loop_out;
 635		}
 636		if (mpnt->vm_flags & VM_ACCOUNT) {
 637			unsigned long len = vma_pages(mpnt);
 638
 639			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 640				goto fail_nomem;
 641			charge = len;
 642		}
 643		tmp = vm_area_dup(mpnt);
 644		if (!tmp)
 645			goto fail_nomem;
 646		retval = vma_dup_policy(mpnt, tmp);
 647		if (retval)
 648			goto fail_nomem_policy;
 649		tmp->vm_mm = mm;
 650		retval = dup_userfaultfd(tmp, &uf);
 651		if (retval)
 652			goto fail_nomem_anon_vma_fork;
 653		if (tmp->vm_flags & VM_WIPEONFORK) {
 654			/*
 655			 * VM_WIPEONFORK gets a clean slate in the child.
 656			 * Don't prepare anon_vma until fault since we don't
 657			 * copy page for current vma.
 658			 */
 659			tmp->anon_vma = NULL;
 
 
 660		} else if (anon_vma_fork(tmp, mpnt))
 661			goto fail_nomem_anon_vma_fork;
 662		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 
 663		file = tmp->vm_file;
 664		if (file) {
 
 665			struct address_space *mapping = file->f_mapping;
 666
 667			get_file(file);
 
 
 668			i_mmap_lock_write(mapping);
 669			if (tmp->vm_flags & VM_SHARED)
 670				mapping_allow_writable(mapping);
 671			flush_dcache_mmap_lock(mapping);
 672			/* insert tmp into the share list, just after mpnt */
 673			vma_interval_tree_insert_after(tmp, mpnt,
 674					&mapping->i_mmap);
 675			flush_dcache_mmap_unlock(mapping);
 676			i_mmap_unlock_write(mapping);
 677		}
 678
 679		/*
 680		 * Copy/update hugetlb private vma information.
 
 
 681		 */
 682		if (is_vm_hugetlb_page(tmp))
 683			hugetlb_dup_vma_private(tmp);
 684
 685		/* Link the vma into the MT */
 686		mas.index = tmp->vm_start;
 687		mas.last = tmp->vm_end - 1;
 688		mas_store(&mas, tmp);
 689		if (mas_is_err(&mas))
 690			goto fail_nomem_mas_store;
 
 
 
 
 
 691
 692		mm->map_count++;
 693		if (!(tmp->vm_flags & VM_WIPEONFORK))
 694			retval = copy_page_range(tmp, mpnt);
 695
 696		if (tmp->vm_ops && tmp->vm_ops->open)
 697			tmp->vm_ops->open(tmp);
 698
 699		if (retval)
 700			goto loop_out;
 701	}
 702	/* a new mm has just been created */
 703	retval = arch_dup_mmap(oldmm, mm);
 704loop_out:
 705	mas_destroy(&mas);
 706out:
 707	mmap_write_unlock(mm);
 708	flush_tlb_mm(oldmm);
 709	mmap_write_unlock(oldmm);
 710	dup_userfaultfd_complete(&uf);
 711fail_uprobe_end:
 712	uprobe_end_dup_mmap();
 713	return retval;
 714
 715fail_nomem_mas_store:
 716	unlink_anon_vmas(tmp);
 717fail_nomem_anon_vma_fork:
 718	mpol_put(vma_policy(tmp));
 719fail_nomem_policy:
 720	vm_area_free(tmp);
 721fail_nomem:
 722	retval = -ENOMEM;
 723	vm_unacct_memory(charge);
 724	goto loop_out;
 725}
 726
 727static inline int mm_alloc_pgd(struct mm_struct *mm)
 728{
 729	mm->pgd = pgd_alloc(mm);
 730	if (unlikely(!mm->pgd))
 731		return -ENOMEM;
 732	return 0;
 733}
 734
 735static inline void mm_free_pgd(struct mm_struct *mm)
 736{
 737	pgd_free(mm, mm->pgd);
 738}
 739#else
 740static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 741{
 742	mmap_write_lock(oldmm);
 743	dup_mm_exe_file(mm, oldmm);
 744	mmap_write_unlock(oldmm);
 745	return 0;
 746}
 747#define mm_alloc_pgd(mm)	(0)
 748#define mm_free_pgd(mm)
 749#endif /* CONFIG_MMU */
 750
 751static void check_mm(struct mm_struct *mm)
 752{
 753	int i;
 754
 755	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 756			 "Please make sure 'struct resident_page_types[]' is updated as well");
 757
 758	for (i = 0; i < NR_MM_COUNTERS; i++) {
 759		long x = percpu_counter_sum(&mm->rss_stat[i]);
 760
 761		if (likely(!x))
 762			continue;
 763
 764		/* Making sure this is not due to race with CPU offlining. */
 765		x = percpu_counter_sum_all(&mm->rss_stat[i]);
 766		if (unlikely(x))
 767			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 768				 mm, resident_page_types[i], x);
 769	}
 770
 771	if (mm_pgtables_bytes(mm))
 772		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 773				mm_pgtables_bytes(mm));
 774
 775#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 776	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 777#endif
 778}
 779
 780#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 781#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 782
 783/*
 784 * Called when the last reference to the mm
 785 * is dropped: either by a lazy thread or by
 786 * mmput. Free the page directory and the mm.
 787 */
 788void __mmdrop(struct mm_struct *mm)
 789{
 790	int i;
 791
 792	BUG_ON(mm == &init_mm);
 793	WARN_ON_ONCE(mm == current->mm);
 794	WARN_ON_ONCE(mm == current->active_mm);
 795	mm_free_pgd(mm);
 796	destroy_context(mm);
 797	mmu_notifier_subscriptions_destroy(mm);
 798	check_mm(mm);
 799	put_user_ns(mm->user_ns);
 800	mm_pasid_drop(mm);
 801
 802	for (i = 0; i < NR_MM_COUNTERS; i++)
 803		percpu_counter_destroy(&mm->rss_stat[i]);
 804	free_mm(mm);
 805}
 806EXPORT_SYMBOL_GPL(__mmdrop);
 807
 808static void mmdrop_async_fn(struct work_struct *work)
 809{
 810	struct mm_struct *mm;
 811
 812	mm = container_of(work, struct mm_struct, async_put_work);
 813	__mmdrop(mm);
 814}
 815
 816static void mmdrop_async(struct mm_struct *mm)
 817{
 818	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 819		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 820		schedule_work(&mm->async_put_work);
 821	}
 822}
 823
 824static inline void free_signal_struct(struct signal_struct *sig)
 825{
 826	taskstats_tgid_free(sig);
 827	sched_autogroup_exit(sig);
 828	/*
 829	 * __mmdrop is not safe to call from softirq context on x86 due to
 830	 * pgd_dtor so postpone it to the async context
 831	 */
 832	if (sig->oom_mm)
 833		mmdrop_async(sig->oom_mm);
 834	kmem_cache_free(signal_cachep, sig);
 835}
 836
 837static inline void put_signal_struct(struct signal_struct *sig)
 838{
 839	if (refcount_dec_and_test(&sig->sigcnt))
 840		free_signal_struct(sig);
 841}
 842
 843void __put_task_struct(struct task_struct *tsk)
 844{
 845	WARN_ON(!tsk->exit_state);
 846	WARN_ON(refcount_read(&tsk->usage));
 847	WARN_ON(tsk == current);
 848
 849	io_uring_free(tsk);
 850	cgroup_free(tsk);
 851	task_numa_free(tsk, true);
 852	security_task_free(tsk);
 853	bpf_task_storage_free(tsk);
 854	exit_creds(tsk);
 855	delayacct_tsk_free(tsk);
 856	put_signal_struct(tsk->signal);
 857	sched_core_free(tsk);
 858	free_task(tsk);
 
 859}
 860EXPORT_SYMBOL_GPL(__put_task_struct);
 861
 862void __init __weak arch_task_cache_init(void) { }
 863
 864/*
 865 * set_max_threads
 866 */
 867static void set_max_threads(unsigned int max_threads_suggested)
 868{
 869	u64 threads;
 870	unsigned long nr_pages = totalram_pages();
 871
 872	/*
 873	 * The number of threads shall be limited such that the thread
 874	 * structures may only consume a small part of the available memory.
 875	 */
 876	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 877		threads = MAX_THREADS;
 878	else
 879		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 880				    (u64) THREAD_SIZE * 8UL);
 881
 882	if (threads > max_threads_suggested)
 883		threads = max_threads_suggested;
 884
 885	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 886}
 887
 888#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 889/* Initialized by the architecture: */
 890int arch_task_struct_size __read_mostly;
 891#endif
 892
 893#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 894static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 895{
 896	/* Fetch thread_struct whitelist for the architecture. */
 897	arch_thread_struct_whitelist(offset, size);
 898
 899	/*
 900	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 901	 * adjust offset to position of thread_struct in task_struct.
 902	 */
 903	if (unlikely(*size == 0))
 904		*offset = 0;
 905	else
 906		*offset += offsetof(struct task_struct, thread);
 907}
 908#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
 909
 910void __init fork_init(void)
 911{
 912	int i;
 913#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 914#ifndef ARCH_MIN_TASKALIGN
 915#define ARCH_MIN_TASKALIGN	0
 916#endif
 917	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 918	unsigned long useroffset, usersize;
 919
 920	/* create a slab on which task_structs can be allocated */
 921	task_struct_whitelist(&useroffset, &usersize);
 922	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 923			arch_task_struct_size, align,
 924			SLAB_PANIC|SLAB_ACCOUNT,
 925			useroffset, usersize, NULL);
 926#endif
 927
 928	/* do the arch specific task caches init */
 929	arch_task_cache_init();
 930
 931	set_max_threads(MAX_THREADS);
 932
 933	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 934	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 935	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 936		init_task.signal->rlim[RLIMIT_NPROC];
 937
 938	for (i = 0; i < UCOUNT_COUNTS; i++)
 939		init_user_ns.ucount_max[i] = max_threads/2;
 940
 941	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
 942	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
 943	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
 944	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
 945
 946#ifdef CONFIG_VMAP_STACK
 947	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 948			  NULL, free_vm_stack_cache);
 949#endif
 950
 951	scs_init();
 952
 953	lockdep_init_task(&init_task);
 954	uprobes_init();
 955}
 956
 957int __weak arch_dup_task_struct(struct task_struct *dst,
 958					       struct task_struct *src)
 959{
 960	*dst = *src;
 961	return 0;
 962}
 963
 964void set_task_stack_end_magic(struct task_struct *tsk)
 965{
 966	unsigned long *stackend;
 967
 968	stackend = end_of_stack(tsk);
 969	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 970}
 971
 972static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 973{
 974	struct task_struct *tsk;
 
 
 975	int err;
 976
 977	if (node == NUMA_NO_NODE)
 978		node = tsk_fork_get_node(orig);
 979	tsk = alloc_task_struct_node(node);
 980	if (!tsk)
 981		return NULL;
 982
 983	err = arch_dup_task_struct(tsk, orig);
 984	if (err)
 985		goto free_tsk;
 986
 987	err = alloc_thread_stack_node(tsk, node);
 988	if (err)
 989		goto free_tsk;
 
 
 
 990
 
 
 
 
 
 
 
 
 
 991#ifdef CONFIG_THREAD_INFO_IN_TASK
 992	refcount_set(&tsk->stack_refcount, 1);
 993#endif
 994	account_kernel_stack(tsk, 1);
 995
 996	err = scs_prepare(tsk, node);
 997	if (err)
 998		goto free_stack;
 999
1000#ifdef CONFIG_SECCOMP
1001	/*
1002	 * We must handle setting up seccomp filters once we're under
1003	 * the sighand lock in case orig has changed between now and
1004	 * then. Until then, filter must be NULL to avoid messing up
1005	 * the usage counts on the error path calling free_task.
1006	 */
1007	tsk->seccomp.filter = NULL;
1008#endif
1009
1010	setup_thread_stack(tsk, orig);
1011	clear_user_return_notifier(tsk);
1012	clear_tsk_need_resched(tsk);
1013	set_task_stack_end_magic(tsk);
1014	clear_syscall_work_syscall_user_dispatch(tsk);
1015
1016#ifdef CONFIG_STACKPROTECTOR
1017	tsk->stack_canary = get_random_canary();
1018#endif
1019	if (orig->cpus_ptr == &orig->cpus_mask)
1020		tsk->cpus_ptr = &tsk->cpus_mask;
1021	dup_user_cpus_ptr(tsk, orig, node);
1022
1023	/*
1024	 * One for the user space visible state that goes away when reaped.
1025	 * One for the scheduler.
1026	 */
1027	refcount_set(&tsk->rcu_users, 2);
1028	/* One for the rcu users */
1029	refcount_set(&tsk->usage, 1);
1030#ifdef CONFIG_BLK_DEV_IO_TRACE
1031	tsk->btrace_seq = 0;
1032#endif
1033	tsk->splice_pipe = NULL;
1034	tsk->task_frag.page = NULL;
1035	tsk->wake_q.next = NULL;
1036	tsk->worker_private = NULL;
 
1037
1038	kcov_task_init(tsk);
1039	kmsan_task_create(tsk);
1040	kmap_local_fork(tsk);
1041
1042#ifdef CONFIG_FAULT_INJECTION
1043	tsk->fail_nth = 0;
1044#endif
1045
1046#ifdef CONFIG_BLK_CGROUP
1047	tsk->throttle_queue = NULL;
1048	tsk->use_memdelay = 0;
1049#endif
1050
1051#ifdef CONFIG_IOMMU_SVA
1052	tsk->pasid_activated = 0;
1053#endif
1054
1055#ifdef CONFIG_MEMCG
1056	tsk->active_memcg = NULL;
1057#endif
1058
1059#ifdef CONFIG_CPU_SUP_INTEL
1060	tsk->reported_split_lock = 0;
1061#endif
1062
1063	return tsk;
1064
1065free_stack:
1066	exit_task_stack_account(tsk);
1067	free_thread_stack(tsk);
1068free_tsk:
1069	free_task_struct(tsk);
1070	return NULL;
1071}
1072
1073__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1074
1075static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1076
1077static int __init coredump_filter_setup(char *s)
1078{
1079	default_dump_filter =
1080		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1081		MMF_DUMP_FILTER_MASK;
1082	return 1;
1083}
1084
1085__setup("coredump_filter=", coredump_filter_setup);
1086
1087#include <linux/init_task.h>
1088
1089static void mm_init_aio(struct mm_struct *mm)
1090{
1091#ifdef CONFIG_AIO
1092	spin_lock_init(&mm->ioctx_lock);
1093	mm->ioctx_table = NULL;
1094#endif
1095}
1096
1097static __always_inline void mm_clear_owner(struct mm_struct *mm,
1098					   struct task_struct *p)
1099{
1100#ifdef CONFIG_MEMCG
1101	if (mm->owner == p)
1102		WRITE_ONCE(mm->owner, NULL);
1103#endif
1104}
1105
1106static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1107{
1108#ifdef CONFIG_MEMCG
1109	mm->owner = p;
1110#endif
1111}
1112
1113static void mm_init_uprobes_state(struct mm_struct *mm)
1114{
1115#ifdef CONFIG_UPROBES
1116	mm->uprobes_state.xol_area = NULL;
1117#endif
1118}
1119
1120static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1121	struct user_namespace *user_ns)
1122{
1123	int i;
1124
1125	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1126	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1127	atomic_set(&mm->mm_users, 1);
1128	atomic_set(&mm->mm_count, 1);
1129	seqcount_init(&mm->write_protect_seq);
1130	mmap_init_lock(mm);
1131	INIT_LIST_HEAD(&mm->mmlist);
 
1132	mm_pgtables_bytes_init(mm);
1133	mm->map_count = 0;
1134	mm->locked_vm = 0;
1135	atomic64_set(&mm->pinned_vm, 0);
1136	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1137	spin_lock_init(&mm->page_table_lock);
1138	spin_lock_init(&mm->arg_lock);
1139	mm_init_cpumask(mm);
1140	mm_init_aio(mm);
1141	mm_init_owner(mm, p);
1142	mm_pasid_init(mm);
1143	RCU_INIT_POINTER(mm->exe_file, NULL);
1144	mmu_notifier_subscriptions_init(mm);
1145	init_tlb_flush_pending(mm);
1146#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1147	mm->pmd_huge_pte = NULL;
1148#endif
1149	mm_init_uprobes_state(mm);
1150	hugetlb_count_init(mm);
1151
1152	if (current->mm) {
1153		mm->flags = current->mm->flags & MMF_INIT_MASK;
1154		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1155	} else {
1156		mm->flags = default_dump_filter;
1157		mm->def_flags = 0;
1158	}
1159
1160	if (mm_alloc_pgd(mm))
1161		goto fail_nopgd;
1162
1163	if (init_new_context(p, mm))
1164		goto fail_nocontext;
1165
1166	for (i = 0; i < NR_MM_COUNTERS; i++)
1167		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1168			goto fail_pcpu;
1169
1170	mm->user_ns = get_user_ns(user_ns);
1171	lru_gen_init_mm(mm);
1172	return mm;
1173
1174fail_pcpu:
1175	while (i > 0)
1176		percpu_counter_destroy(&mm->rss_stat[--i]);
1177fail_nocontext:
1178	mm_free_pgd(mm);
1179fail_nopgd:
1180	free_mm(mm);
1181	return NULL;
1182}
1183
1184/*
1185 * Allocate and initialize an mm_struct.
1186 */
1187struct mm_struct *mm_alloc(void)
1188{
1189	struct mm_struct *mm;
1190
1191	mm = allocate_mm();
1192	if (!mm)
1193		return NULL;
1194
1195	memset(mm, 0, sizeof(*mm));
1196	return mm_init(mm, current, current_user_ns());
1197}
1198
1199static inline void __mmput(struct mm_struct *mm)
1200{
1201	VM_BUG_ON(atomic_read(&mm->mm_users));
1202
1203	uprobe_clear_state(mm);
1204	exit_aio(mm);
1205	ksm_exit(mm);
1206	khugepaged_exit(mm); /* must run before exit_mmap */
1207	exit_mmap(mm);
1208	mm_put_huge_zero_page(mm);
1209	set_mm_exe_file(mm, NULL);
1210	if (!list_empty(&mm->mmlist)) {
1211		spin_lock(&mmlist_lock);
1212		list_del(&mm->mmlist);
1213		spin_unlock(&mmlist_lock);
1214	}
1215	if (mm->binfmt)
1216		module_put(mm->binfmt->module);
1217	lru_gen_del_mm(mm);
1218	mmdrop(mm);
1219}
1220
1221/*
1222 * Decrement the use count and release all resources for an mm.
1223 */
1224void mmput(struct mm_struct *mm)
1225{
1226	might_sleep();
1227
1228	if (atomic_dec_and_test(&mm->mm_users))
1229		__mmput(mm);
1230}
1231EXPORT_SYMBOL_GPL(mmput);
1232
1233#ifdef CONFIG_MMU
1234static void mmput_async_fn(struct work_struct *work)
1235{
1236	struct mm_struct *mm = container_of(work, struct mm_struct,
1237					    async_put_work);
1238
1239	__mmput(mm);
1240}
1241
1242void mmput_async(struct mm_struct *mm)
1243{
1244	if (atomic_dec_and_test(&mm->mm_users)) {
1245		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1246		schedule_work(&mm->async_put_work);
1247	}
1248}
1249EXPORT_SYMBOL_GPL(mmput_async);
1250#endif
1251
1252/**
1253 * set_mm_exe_file - change a reference to the mm's executable file
1254 *
1255 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1256 *
1257 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1258 * invocations: in mmput() nobody alive left, in execve task is single
1259 * threaded.
1260 *
1261 * Can only fail if new_exe_file != NULL.
1262 */
1263int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1264{
1265	struct file *old_exe_file;
1266
1267	/*
1268	 * It is safe to dereference the exe_file without RCU as
1269	 * this function is only called if nobody else can access
1270	 * this mm -- see comment above for justification.
1271	 */
1272	old_exe_file = rcu_dereference_raw(mm->exe_file);
1273
1274	if (new_exe_file) {
1275		/*
1276		 * We expect the caller (i.e., sys_execve) to already denied
1277		 * write access, so this is unlikely to fail.
1278		 */
1279		if (unlikely(deny_write_access(new_exe_file)))
1280			return -EACCES;
1281		get_file(new_exe_file);
1282	}
1283	rcu_assign_pointer(mm->exe_file, new_exe_file);
1284	if (old_exe_file) {
1285		allow_write_access(old_exe_file);
1286		fput(old_exe_file);
1287	}
1288	return 0;
1289}
1290
1291/**
1292 * replace_mm_exe_file - replace a reference to the mm's executable file
1293 *
1294 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1295 * dealing with concurrent invocation and without grabbing the mmap lock in
1296 * write mode.
1297 *
1298 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1299 */
1300int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1301{
1302	struct vm_area_struct *vma;
1303	struct file *old_exe_file;
1304	int ret = 0;
1305
1306	/* Forbid mm->exe_file change if old file still mapped. */
1307	old_exe_file = get_mm_exe_file(mm);
1308	if (old_exe_file) {
1309		VMA_ITERATOR(vmi, mm, 0);
1310		mmap_read_lock(mm);
1311		for_each_vma(vmi, vma) {
1312			if (!vma->vm_file)
1313				continue;
1314			if (path_equal(&vma->vm_file->f_path,
1315				       &old_exe_file->f_path)) {
1316				ret = -EBUSY;
1317				break;
1318			}
1319		}
1320		mmap_read_unlock(mm);
1321		fput(old_exe_file);
1322		if (ret)
1323			return ret;
1324	}
1325
1326	/* set the new file, lockless */
1327	ret = deny_write_access(new_exe_file);
1328	if (ret)
1329		return -EACCES;
1330	get_file(new_exe_file);
1331
1332	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1333	if (old_exe_file) {
1334		/*
1335		 * Don't race with dup_mmap() getting the file and disallowing
1336		 * write access while someone might open the file writable.
1337		 */
1338		mmap_read_lock(mm);
1339		allow_write_access(old_exe_file);
1340		fput(old_exe_file);
1341		mmap_read_unlock(mm);
1342	}
1343	return 0;
1344}
1345
1346/**
1347 * get_mm_exe_file - acquire a reference to the mm's executable file
1348 *
1349 * Returns %NULL if mm has no associated executable file.
1350 * User must release file via fput().
1351 */
1352struct file *get_mm_exe_file(struct mm_struct *mm)
1353{
1354	struct file *exe_file;
1355
1356	rcu_read_lock();
1357	exe_file = rcu_dereference(mm->exe_file);
1358	if (exe_file && !get_file_rcu(exe_file))
1359		exe_file = NULL;
1360	rcu_read_unlock();
1361	return exe_file;
1362}
 
1363
1364/**
1365 * get_task_exe_file - acquire a reference to the task's executable file
1366 *
1367 * Returns %NULL if task's mm (if any) has no associated executable file or
1368 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1369 * User must release file via fput().
1370 */
1371struct file *get_task_exe_file(struct task_struct *task)
1372{
1373	struct file *exe_file = NULL;
1374	struct mm_struct *mm;
1375
1376	task_lock(task);
1377	mm = task->mm;
1378	if (mm) {
1379		if (!(task->flags & PF_KTHREAD))
1380			exe_file = get_mm_exe_file(mm);
1381	}
1382	task_unlock(task);
1383	return exe_file;
1384}
 
1385
1386/**
1387 * get_task_mm - acquire a reference to the task's mm
1388 *
1389 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1390 * this kernel workthread has transiently adopted a user mm with use_mm,
1391 * to do its AIO) is not set and if so returns a reference to it, after
1392 * bumping up the use count.  User must release the mm via mmput()
1393 * after use.  Typically used by /proc and ptrace.
1394 */
1395struct mm_struct *get_task_mm(struct task_struct *task)
1396{
1397	struct mm_struct *mm;
1398
1399	task_lock(task);
1400	mm = task->mm;
1401	if (mm) {
1402		if (task->flags & PF_KTHREAD)
1403			mm = NULL;
1404		else
1405			mmget(mm);
1406	}
1407	task_unlock(task);
1408	return mm;
1409}
1410EXPORT_SYMBOL_GPL(get_task_mm);
1411
1412struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1413{
1414	struct mm_struct *mm;
1415	int err;
1416
1417	err =  down_read_killable(&task->signal->exec_update_lock);
1418	if (err)
1419		return ERR_PTR(err);
1420
1421	mm = get_task_mm(task);
1422	if (mm && mm != current->mm &&
1423			!ptrace_may_access(task, mode)) {
1424		mmput(mm);
1425		mm = ERR_PTR(-EACCES);
1426	}
1427	up_read(&task->signal->exec_update_lock);
1428
1429	return mm;
1430}
1431
1432static void complete_vfork_done(struct task_struct *tsk)
1433{
1434	struct completion *vfork;
1435
1436	task_lock(tsk);
1437	vfork = tsk->vfork_done;
1438	if (likely(vfork)) {
1439		tsk->vfork_done = NULL;
1440		complete(vfork);
1441	}
1442	task_unlock(tsk);
1443}
1444
1445static int wait_for_vfork_done(struct task_struct *child,
1446				struct completion *vfork)
1447{
1448	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1449	int killed;
1450
 
1451	cgroup_enter_frozen();
1452	killed = wait_for_completion_state(vfork, state);
1453	cgroup_leave_frozen(false);
 
1454
1455	if (killed) {
1456		task_lock(child);
1457		child->vfork_done = NULL;
1458		task_unlock(child);
1459	}
1460
1461	put_task_struct(child);
1462	return killed;
1463}
1464
1465/* Please note the differences between mmput and mm_release.
1466 * mmput is called whenever we stop holding onto a mm_struct,
1467 * error success whatever.
1468 *
1469 * mm_release is called after a mm_struct has been removed
1470 * from the current process.
1471 *
1472 * This difference is important for error handling, when we
1473 * only half set up a mm_struct for a new process and need to restore
1474 * the old one.  Because we mmput the new mm_struct before
1475 * restoring the old one. . .
1476 * Eric Biederman 10 January 1998
1477 */
1478static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1479{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480	uprobe_free_utask(tsk);
1481
1482	/* Get rid of any cached register state */
1483	deactivate_mm(tsk, mm);
1484
1485	/*
1486	 * Signal userspace if we're not exiting with a core dump
1487	 * because we want to leave the value intact for debugging
1488	 * purposes.
1489	 */
1490	if (tsk->clear_child_tid) {
1491		if (atomic_read(&mm->mm_users) > 1) {
 
1492			/*
1493			 * We don't check the error code - if userspace has
1494			 * not set up a proper pointer then tough luck.
1495			 */
1496			put_user(0, tsk->clear_child_tid);
1497			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1498					1, NULL, NULL, 0, 0);
1499		}
1500		tsk->clear_child_tid = NULL;
1501	}
1502
1503	/*
1504	 * All done, finally we can wake up parent and return this mm to him.
1505	 * Also kthread_stop() uses this completion for synchronization.
1506	 */
1507	if (tsk->vfork_done)
1508		complete_vfork_done(tsk);
1509}
1510
1511void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1512{
1513	futex_exit_release(tsk);
1514	mm_release(tsk, mm);
1515}
1516
1517void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1518{
1519	futex_exec_release(tsk);
1520	mm_release(tsk, mm);
1521}
1522
1523/**
1524 * dup_mm() - duplicates an existing mm structure
1525 * @tsk: the task_struct with which the new mm will be associated.
1526 * @oldmm: the mm to duplicate.
1527 *
1528 * Allocates a new mm structure and duplicates the provided @oldmm structure
1529 * content into it.
1530 *
1531 * Return: the duplicated mm or NULL on failure.
1532 */
1533static struct mm_struct *dup_mm(struct task_struct *tsk,
1534				struct mm_struct *oldmm)
1535{
1536	struct mm_struct *mm;
1537	int err;
1538
1539	mm = allocate_mm();
1540	if (!mm)
1541		goto fail_nomem;
1542
1543	memcpy(mm, oldmm, sizeof(*mm));
1544
1545	if (!mm_init(mm, tsk, mm->user_ns))
1546		goto fail_nomem;
1547
1548	err = dup_mmap(mm, oldmm);
1549	if (err)
1550		goto free_pt;
1551
1552	mm->hiwater_rss = get_mm_rss(mm);
1553	mm->hiwater_vm = mm->total_vm;
1554
1555	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1556		goto free_pt;
1557
1558	return mm;
1559
1560free_pt:
1561	/* don't put binfmt in mmput, we haven't got module yet */
1562	mm->binfmt = NULL;
1563	mm_init_owner(mm, NULL);
1564	mmput(mm);
1565
1566fail_nomem:
1567	return NULL;
1568}
1569
1570static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1571{
1572	struct mm_struct *mm, *oldmm;
 
1573
1574	tsk->min_flt = tsk->maj_flt = 0;
1575	tsk->nvcsw = tsk->nivcsw = 0;
1576#ifdef CONFIG_DETECT_HUNG_TASK
1577	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1578	tsk->last_switch_time = 0;
1579#endif
1580
1581	tsk->mm = NULL;
1582	tsk->active_mm = NULL;
1583
1584	/*
1585	 * Are we cloning a kernel thread?
1586	 *
1587	 * We need to steal a active VM for that..
1588	 */
1589	oldmm = current->mm;
1590	if (!oldmm)
1591		return 0;
1592
 
 
 
1593	if (clone_flags & CLONE_VM) {
1594		mmget(oldmm);
1595		mm = oldmm;
1596	} else {
1597		mm = dup_mm(tsk, current->mm);
1598		if (!mm)
1599			return -ENOMEM;
1600	}
1601
 
 
 
 
 
 
1602	tsk->mm = mm;
1603	tsk->active_mm = mm;
1604	return 0;
 
 
 
1605}
1606
1607static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1608{
1609	struct fs_struct *fs = current->fs;
1610	if (clone_flags & CLONE_FS) {
1611		/* tsk->fs is already what we want */
1612		spin_lock(&fs->lock);
1613		if (fs->in_exec) {
1614			spin_unlock(&fs->lock);
1615			return -EAGAIN;
1616		}
1617		fs->users++;
1618		spin_unlock(&fs->lock);
1619		return 0;
1620	}
1621	tsk->fs = copy_fs_struct(fs);
1622	if (!tsk->fs)
1623		return -ENOMEM;
1624	return 0;
1625}
1626
1627static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1628{
1629	struct files_struct *oldf, *newf;
1630	int error = 0;
1631
1632	/*
1633	 * A background process may not have any files ...
1634	 */
1635	oldf = current->files;
1636	if (!oldf)
1637		goto out;
1638
1639	if (clone_flags & CLONE_FILES) {
1640		atomic_inc(&oldf->count);
1641		goto out;
1642	}
1643
1644	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1645	if (!newf)
1646		goto out;
1647
1648	tsk->files = newf;
1649	error = 0;
1650out:
1651	return error;
1652}
1653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1655{
1656	struct sighand_struct *sig;
1657
1658	if (clone_flags & CLONE_SIGHAND) {
1659		refcount_inc(&current->sighand->count);
1660		return 0;
1661	}
1662	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1663	RCU_INIT_POINTER(tsk->sighand, sig);
1664	if (!sig)
1665		return -ENOMEM;
1666
1667	refcount_set(&sig->count, 1);
1668	spin_lock_irq(&current->sighand->siglock);
1669	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1670	spin_unlock_irq(&current->sighand->siglock);
1671
1672	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1673	if (clone_flags & CLONE_CLEAR_SIGHAND)
1674		flush_signal_handlers(tsk, 0);
1675
1676	return 0;
1677}
1678
1679void __cleanup_sighand(struct sighand_struct *sighand)
1680{
1681	if (refcount_dec_and_test(&sighand->count)) {
1682		signalfd_cleanup(sighand);
1683		/*
1684		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1685		 * without an RCU grace period, see __lock_task_sighand().
1686		 */
1687		kmem_cache_free(sighand_cachep, sighand);
1688	}
1689}
1690
1691/*
1692 * Initialize POSIX timer handling for a thread group.
1693 */
1694static void posix_cpu_timers_init_group(struct signal_struct *sig)
1695{
1696	struct posix_cputimers *pct = &sig->posix_cputimers;
1697	unsigned long cpu_limit;
1698
1699	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1700	posix_cputimers_group_init(pct, cpu_limit);
1701}
1702
1703static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1704{
1705	struct signal_struct *sig;
1706
1707	if (clone_flags & CLONE_THREAD)
1708		return 0;
1709
1710	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1711	tsk->signal = sig;
1712	if (!sig)
1713		return -ENOMEM;
1714
1715	sig->nr_threads = 1;
1716	sig->quick_threads = 1;
1717	atomic_set(&sig->live, 1);
1718	refcount_set(&sig->sigcnt, 1);
1719
1720	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1721	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1722	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1723
1724	init_waitqueue_head(&sig->wait_chldexit);
1725	sig->curr_target = tsk;
1726	init_sigpending(&sig->shared_pending);
1727	INIT_HLIST_HEAD(&sig->multiprocess);
1728	seqlock_init(&sig->stats_lock);
1729	prev_cputime_init(&sig->prev_cputime);
1730
1731#ifdef CONFIG_POSIX_TIMERS
1732	INIT_LIST_HEAD(&sig->posix_timers);
1733	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1734	sig->real_timer.function = it_real_fn;
1735#endif
1736
1737	task_lock(current->group_leader);
1738	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1739	task_unlock(current->group_leader);
1740
1741	posix_cpu_timers_init_group(sig);
1742
1743	tty_audit_fork(sig);
1744	sched_autogroup_fork(sig);
1745
1746	sig->oom_score_adj = current->signal->oom_score_adj;
1747	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1748
1749	mutex_init(&sig->cred_guard_mutex);
1750	init_rwsem(&sig->exec_update_lock);
1751
1752	return 0;
1753}
1754
1755static void copy_seccomp(struct task_struct *p)
1756{
1757#ifdef CONFIG_SECCOMP
1758	/*
1759	 * Must be called with sighand->lock held, which is common to
1760	 * all threads in the group. Holding cred_guard_mutex is not
1761	 * needed because this new task is not yet running and cannot
1762	 * be racing exec.
1763	 */
1764	assert_spin_locked(&current->sighand->siglock);
1765
1766	/* Ref-count the new filter user, and assign it. */
1767	get_seccomp_filter(current);
1768	p->seccomp = current->seccomp;
1769
1770	/*
1771	 * Explicitly enable no_new_privs here in case it got set
1772	 * between the task_struct being duplicated and holding the
1773	 * sighand lock. The seccomp state and nnp must be in sync.
1774	 */
1775	if (task_no_new_privs(current))
1776		task_set_no_new_privs(p);
1777
1778	/*
1779	 * If the parent gained a seccomp mode after copying thread
1780	 * flags and between before we held the sighand lock, we have
1781	 * to manually enable the seccomp thread flag here.
1782	 */
1783	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1784		set_task_syscall_work(p, SECCOMP);
1785#endif
1786}
1787
1788SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1789{
1790	current->clear_child_tid = tidptr;
1791
1792	return task_pid_vnr(current);
1793}
1794
1795static void rt_mutex_init_task(struct task_struct *p)
1796{
1797	raw_spin_lock_init(&p->pi_lock);
1798#ifdef CONFIG_RT_MUTEXES
1799	p->pi_waiters = RB_ROOT_CACHED;
1800	p->pi_top_task = NULL;
1801	p->pi_blocked_on = NULL;
1802#endif
1803}
1804
1805static inline void init_task_pid_links(struct task_struct *task)
1806{
1807	enum pid_type type;
1808
1809	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1810		INIT_HLIST_NODE(&task->pid_links[type]);
 
1811}
1812
1813static inline void
1814init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1815{
1816	if (type == PIDTYPE_PID)
1817		task->thread_pid = pid;
1818	else
1819		task->signal->pids[type] = pid;
1820}
1821
1822static inline void rcu_copy_process(struct task_struct *p)
1823{
1824#ifdef CONFIG_PREEMPT_RCU
1825	p->rcu_read_lock_nesting = 0;
1826	p->rcu_read_unlock_special.s = 0;
1827	p->rcu_blocked_node = NULL;
1828	INIT_LIST_HEAD(&p->rcu_node_entry);
1829#endif /* #ifdef CONFIG_PREEMPT_RCU */
1830#ifdef CONFIG_TASKS_RCU
1831	p->rcu_tasks_holdout = false;
1832	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1833	p->rcu_tasks_idle_cpu = -1;
1834#endif /* #ifdef CONFIG_TASKS_RCU */
1835#ifdef CONFIG_TASKS_TRACE_RCU
1836	p->trc_reader_nesting = 0;
1837	p->trc_reader_special.s = 0;
1838	INIT_LIST_HEAD(&p->trc_holdout_list);
1839	INIT_LIST_HEAD(&p->trc_blkd_node);
1840#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1841}
1842
1843struct pid *pidfd_pid(const struct file *file)
1844{
1845	if (file->f_op == &pidfd_fops)
1846		return file->private_data;
1847
1848	return ERR_PTR(-EBADF);
1849}
1850
1851static int pidfd_release(struct inode *inode, struct file *file)
1852{
1853	struct pid *pid = file->private_data;
1854
1855	file->private_data = NULL;
1856	put_pid(pid);
1857	return 0;
1858}
1859
1860#ifdef CONFIG_PROC_FS
1861/**
1862 * pidfd_show_fdinfo - print information about a pidfd
1863 * @m: proc fdinfo file
1864 * @f: file referencing a pidfd
1865 *
1866 * Pid:
1867 * This function will print the pid that a given pidfd refers to in the
1868 * pid namespace of the procfs instance.
1869 * If the pid namespace of the process is not a descendant of the pid
1870 * namespace of the procfs instance 0 will be shown as its pid. This is
1871 * similar to calling getppid() on a process whose parent is outside of
1872 * its pid namespace.
1873 *
1874 * NSpid:
1875 * If pid namespaces are supported then this function will also print
1876 * the pid of a given pidfd refers to for all descendant pid namespaces
1877 * starting from the current pid namespace of the instance, i.e. the
1878 * Pid field and the first entry in the NSpid field will be identical.
1879 * If the pid namespace of the process is not a descendant of the pid
1880 * namespace of the procfs instance 0 will be shown as its first NSpid
1881 * entry and no others will be shown.
1882 * Note that this differs from the Pid and NSpid fields in
1883 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1884 * the  pid namespace of the procfs instance. The difference becomes
1885 * obvious when sending around a pidfd between pid namespaces from a
1886 * different branch of the tree, i.e. where no ancestral relation is
1887 * present between the pid namespaces:
1888 * - create two new pid namespaces ns1 and ns2 in the initial pid
1889 *   namespace (also take care to create new mount namespaces in the
1890 *   new pid namespace and mount procfs)
1891 * - create a process with a pidfd in ns1
1892 * - send pidfd from ns1 to ns2
1893 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1894 *   have exactly one entry, which is 0
1895 */
1896static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1897{
 
1898	struct pid *pid = f->private_data;
1899	struct pid_namespace *ns;
1900	pid_t nr = -1;
1901
1902	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1903		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1904		nr = pid_nr_ns(pid, ns);
1905	}
1906
1907	seq_put_decimal_ll(m, "Pid:\t", nr);
1908
1909#ifdef CONFIG_PID_NS
1910	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1911	if (nr > 0) {
1912		int i;
1913
1914		/* If nr is non-zero it means that 'pid' is valid and that
1915		 * ns, i.e. the pid namespace associated with the procfs
1916		 * instance, is in the pid namespace hierarchy of pid.
1917		 * Start at one below the already printed level.
1918		 */
1919		for (i = ns->level + 1; i <= pid->level; i++)
1920			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1921	}
1922#endif
1923	seq_putc(m, '\n');
1924}
1925#endif
1926
1927/*
1928 * Poll support for process exit notification.
1929 */
1930static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1931{
 
1932	struct pid *pid = file->private_data;
1933	__poll_t poll_flags = 0;
1934
1935	poll_wait(file, &pid->wait_pidfd, pts);
1936
 
 
1937	/*
1938	 * Inform pollers only when the whole thread group exits.
1939	 * If the thread group leader exits before all other threads in the
1940	 * group, then poll(2) should block, similar to the wait(2) family.
1941	 */
1942	if (thread_group_exited(pid))
1943		poll_flags = EPOLLIN | EPOLLRDNORM;
 
1944
1945	return poll_flags;
1946}
1947
1948const struct file_operations pidfd_fops = {
1949	.release = pidfd_release,
1950	.poll = pidfd_poll,
1951#ifdef CONFIG_PROC_FS
1952	.show_fdinfo = pidfd_show_fdinfo,
1953#endif
1954};
1955
1956static void __delayed_free_task(struct rcu_head *rhp)
1957{
1958	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1959
1960	free_task(tsk);
1961}
1962
1963static __always_inline void delayed_free_task(struct task_struct *tsk)
1964{
1965	if (IS_ENABLED(CONFIG_MEMCG))
1966		call_rcu(&tsk->rcu, __delayed_free_task);
1967	else
1968		free_task(tsk);
1969}
1970
1971static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1972{
1973	/* Skip if kernel thread */
1974	if (!tsk->mm)
1975		return;
1976
1977	/* Skip if spawning a thread or using vfork */
1978	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1979		return;
1980
1981	/* We need to synchronize with __set_oom_adj */
1982	mutex_lock(&oom_adj_mutex);
1983	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1984	/* Update the values in case they were changed after copy_signal */
1985	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1986	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1987	mutex_unlock(&oom_adj_mutex);
1988}
1989
1990#ifdef CONFIG_RV
1991static void rv_task_fork(struct task_struct *p)
1992{
1993	int i;
1994
1995	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
1996		p->rv[i].da_mon.monitoring = false;
1997}
1998#else
1999#define rv_task_fork(p) do {} while (0)
2000#endif
2001
2002/*
2003 * This creates a new process as a copy of the old one,
2004 * but does not actually start it yet.
2005 *
2006 * It copies the registers, and all the appropriate
2007 * parts of the process environment (as per the clone
2008 * flags). The actual kick-off is left to the caller.
2009 */
2010static __latent_entropy struct task_struct *copy_process(
2011					struct pid *pid,
2012					int trace,
2013					int node,
2014					struct kernel_clone_args *args)
2015{
2016	int pidfd = -1, retval;
2017	struct task_struct *p;
2018	struct multiprocess_signals delayed;
2019	struct file *pidfile = NULL;
2020	const u64 clone_flags = args->flags;
2021	struct nsproxy *nsp = current->nsproxy;
2022
2023	/*
2024	 * Don't allow sharing the root directory with processes in a different
2025	 * namespace
2026	 */
2027	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2028		return ERR_PTR(-EINVAL);
2029
2030	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2031		return ERR_PTR(-EINVAL);
2032
2033	/*
2034	 * Thread groups must share signals as well, and detached threads
2035	 * can only be started up within the thread group.
2036	 */
2037	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2038		return ERR_PTR(-EINVAL);
2039
2040	/*
2041	 * Shared signal handlers imply shared VM. By way of the above,
2042	 * thread groups also imply shared VM. Blocking this case allows
2043	 * for various simplifications in other code.
2044	 */
2045	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2046		return ERR_PTR(-EINVAL);
2047
2048	/*
2049	 * Siblings of global init remain as zombies on exit since they are
2050	 * not reaped by their parent (swapper). To solve this and to avoid
2051	 * multi-rooted process trees, prevent global and container-inits
2052	 * from creating siblings.
2053	 */
2054	if ((clone_flags & CLONE_PARENT) &&
2055				current->signal->flags & SIGNAL_UNKILLABLE)
2056		return ERR_PTR(-EINVAL);
2057
2058	/*
2059	 * If the new process will be in a different pid or user namespace
2060	 * do not allow it to share a thread group with the forking task.
2061	 */
2062	if (clone_flags & CLONE_THREAD) {
2063		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2064		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
 
2065			return ERR_PTR(-EINVAL);
2066	}
2067
2068	if (clone_flags & CLONE_PIDFD) {
2069		/*
2070		 * - CLONE_DETACHED is blocked so that we can potentially
2071		 *   reuse it later for CLONE_PIDFD.
2072		 * - CLONE_THREAD is blocked until someone really needs it.
2073		 */
2074		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2075			return ERR_PTR(-EINVAL);
2076	}
2077
2078	/*
2079	 * Force any signals received before this point to be delivered
2080	 * before the fork happens.  Collect up signals sent to multiple
2081	 * processes that happen during the fork and delay them so that
2082	 * they appear to happen after the fork.
2083	 */
2084	sigemptyset(&delayed.signal);
2085	INIT_HLIST_NODE(&delayed.node);
2086
2087	spin_lock_irq(&current->sighand->siglock);
2088	if (!(clone_flags & CLONE_THREAD))
2089		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2090	recalc_sigpending();
2091	spin_unlock_irq(&current->sighand->siglock);
2092	retval = -ERESTARTNOINTR;
2093	if (task_sigpending(current))
2094		goto fork_out;
2095
2096	retval = -ENOMEM;
2097	p = dup_task_struct(current, node);
2098	if (!p)
2099		goto fork_out;
2100	p->flags &= ~PF_KTHREAD;
2101	if (args->kthread)
2102		p->flags |= PF_KTHREAD;
2103	if (args->io_thread) {
2104		/*
2105		 * Mark us an IO worker, and block any signal that isn't
2106		 * fatal or STOP
2107		 */
2108		p->flags |= PF_IO_WORKER;
2109		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2110	}
2111
 
 
 
 
 
 
2112	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2113	/*
2114	 * Clear TID on mm_release()?
2115	 */
2116	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2117
2118	ftrace_graph_init_task(p);
2119
2120	rt_mutex_init_task(p);
2121
2122	lockdep_assert_irqs_enabled();
2123#ifdef CONFIG_PROVE_LOCKING
 
2124	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2125#endif
2126	retval = copy_creds(p, clone_flags);
2127	if (retval < 0)
2128		goto bad_fork_free;
2129
2130	retval = -EAGAIN;
2131	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
 
2132		if (p->real_cred->user != INIT_USER &&
2133		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2134			goto bad_fork_cleanup_count;
2135	}
2136	current->flags &= ~PF_NPROC_EXCEEDED;
2137
 
 
 
 
2138	/*
2139	 * If multiple threads are within copy_process(), then this check
2140	 * triggers too late. This doesn't hurt, the check is only there
2141	 * to stop root fork bombs.
2142	 */
2143	retval = -EAGAIN;
2144	if (data_race(nr_threads >= max_threads))
2145		goto bad_fork_cleanup_count;
2146
2147	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2148	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2149	p->flags |= PF_FORKNOEXEC;
2150	INIT_LIST_HEAD(&p->children);
2151	INIT_LIST_HEAD(&p->sibling);
2152	rcu_copy_process(p);
2153	p->vfork_done = NULL;
2154	spin_lock_init(&p->alloc_lock);
2155
2156	init_sigpending(&p->pending);
2157
2158	p->utime = p->stime = p->gtime = 0;
2159#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2160	p->utimescaled = p->stimescaled = 0;
2161#endif
2162	prev_cputime_init(&p->prev_cputime);
2163
2164#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2165	seqcount_init(&p->vtime.seqcount);
2166	p->vtime.starttime = 0;
2167	p->vtime.state = VTIME_INACTIVE;
2168#endif
2169
2170#ifdef CONFIG_IO_URING
2171	p->io_uring = NULL;
2172#endif
2173
2174#if defined(SPLIT_RSS_COUNTING)
2175	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2176#endif
2177
2178	p->default_timer_slack_ns = current->timer_slack_ns;
2179
2180#ifdef CONFIG_PSI
2181	p->psi_flags = 0;
2182#endif
2183
2184	task_io_accounting_init(&p->ioac);
2185	acct_clear_integrals(p);
2186
2187	posix_cputimers_init(&p->posix_cputimers);
2188
2189	p->io_context = NULL;
2190	audit_set_context(p, NULL);
2191	cgroup_fork(p);
2192	if (args->kthread) {
2193		if (!set_kthread_struct(p))
2194			goto bad_fork_cleanup_delayacct;
2195	}
2196#ifdef CONFIG_NUMA
2197	p->mempolicy = mpol_dup(p->mempolicy);
2198	if (IS_ERR(p->mempolicy)) {
2199		retval = PTR_ERR(p->mempolicy);
2200		p->mempolicy = NULL;
2201		goto bad_fork_cleanup_delayacct;
2202	}
2203#endif
2204#ifdef CONFIG_CPUSETS
2205	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2206	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2207	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2208#endif
2209#ifdef CONFIG_TRACE_IRQFLAGS
2210	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2211	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2212	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2213	p->softirqs_enabled		= 1;
2214	p->softirq_context		= 0;
 
 
 
 
 
 
 
 
2215#endif
2216
2217	p->pagefault_disabled = 0;
2218
2219#ifdef CONFIG_LOCKDEP
2220	lockdep_init_task(p);
2221#endif
2222
2223#ifdef CONFIG_DEBUG_MUTEXES
2224	p->blocked_on = NULL; /* not blocked yet */
2225#endif
2226#ifdef CONFIG_BCACHE
2227	p->sequential_io	= 0;
2228	p->sequential_io_avg	= 0;
2229#endif
2230#ifdef CONFIG_BPF_SYSCALL
2231	RCU_INIT_POINTER(p->bpf_storage, NULL);
2232	p->bpf_ctx = NULL;
2233#endif
2234
2235	/* Perform scheduler related setup. Assign this task to a CPU. */
2236	retval = sched_fork(clone_flags, p);
2237	if (retval)
2238		goto bad_fork_cleanup_policy;
2239
2240	retval = perf_event_init_task(p, clone_flags);
2241	if (retval)
2242		goto bad_fork_cleanup_policy;
2243	retval = audit_alloc(p);
2244	if (retval)
2245		goto bad_fork_cleanup_perf;
2246	/* copy all the process information */
2247	shm_init_task(p);
2248	retval = security_task_alloc(p, clone_flags);
2249	if (retval)
2250		goto bad_fork_cleanup_audit;
2251	retval = copy_semundo(clone_flags, p);
2252	if (retval)
2253		goto bad_fork_cleanup_security;
2254	retval = copy_files(clone_flags, p);
2255	if (retval)
2256		goto bad_fork_cleanup_semundo;
2257	retval = copy_fs(clone_flags, p);
2258	if (retval)
2259		goto bad_fork_cleanup_files;
2260	retval = copy_sighand(clone_flags, p);
2261	if (retval)
2262		goto bad_fork_cleanup_fs;
2263	retval = copy_signal(clone_flags, p);
2264	if (retval)
2265		goto bad_fork_cleanup_sighand;
2266	retval = copy_mm(clone_flags, p);
2267	if (retval)
2268		goto bad_fork_cleanup_signal;
2269	retval = copy_namespaces(clone_flags, p);
2270	if (retval)
2271		goto bad_fork_cleanup_mm;
2272	retval = copy_io(clone_flags, p);
2273	if (retval)
2274		goto bad_fork_cleanup_namespaces;
2275	retval = copy_thread(p, args);
 
2276	if (retval)
2277		goto bad_fork_cleanup_io;
2278
2279	stackleak_task_init(p);
2280
2281	if (pid != &init_struct_pid) {
2282		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2283				args->set_tid_size);
2284		if (IS_ERR(pid)) {
2285			retval = PTR_ERR(pid);
2286			goto bad_fork_cleanup_thread;
2287		}
2288	}
2289
2290	/*
2291	 * This has to happen after we've potentially unshared the file
2292	 * descriptor table (so that the pidfd doesn't leak into the child
2293	 * if the fd table isn't shared).
2294	 */
2295	if (clone_flags & CLONE_PIDFD) {
2296		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2297		if (retval < 0)
2298			goto bad_fork_free_pid;
2299
2300		pidfd = retval;
2301
2302		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2303					      O_RDWR | O_CLOEXEC);
2304		if (IS_ERR(pidfile)) {
2305			put_unused_fd(pidfd);
2306			retval = PTR_ERR(pidfile);
2307			goto bad_fork_free_pid;
2308		}
2309		get_pid(pid);	/* held by pidfile now */
2310
2311		retval = put_user(pidfd, args->pidfd);
2312		if (retval)
2313			goto bad_fork_put_pidfd;
2314	}
2315
2316#ifdef CONFIG_BLOCK
2317	p->plug = NULL;
2318#endif
2319	futex_init_task(p);
2320
 
 
 
 
 
 
2321	/*
2322	 * sigaltstack should be cleared when sharing the same VM
2323	 */
2324	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2325		sas_ss_reset(p);
2326
2327	/*
2328	 * Syscall tracing and stepping should be turned off in the
2329	 * child regardless of CLONE_PTRACE.
2330	 */
2331	user_disable_single_step(p);
2332	clear_task_syscall_work(p, SYSCALL_TRACE);
2333#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2334	clear_task_syscall_work(p, SYSCALL_EMU);
2335#endif
2336	clear_tsk_latency_tracing(p);
2337
2338	/* ok, now we should be set up.. */
2339	p->pid = pid_nr(pid);
2340	if (clone_flags & CLONE_THREAD) {
 
2341		p->group_leader = current->group_leader;
2342		p->tgid = current->tgid;
2343	} else {
 
 
 
 
2344		p->group_leader = p;
2345		p->tgid = p->pid;
2346	}
2347
2348	p->nr_dirtied = 0;
2349	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2350	p->dirty_paused_when = 0;
2351
2352	p->pdeath_signal = 0;
2353	INIT_LIST_HEAD(&p->thread_group);
2354	p->task_works = NULL;
2355	clear_posix_cputimers_work(p);
2356
2357#ifdef CONFIG_KRETPROBES
2358	p->kretprobe_instances.first = NULL;
2359#endif
2360#ifdef CONFIG_RETHOOK
2361	p->rethooks.first = NULL;
2362#endif
2363
 
2364	/*
2365	 * Ensure that the cgroup subsystem policies allow the new process to be
2366	 * forked. It should be noted that the new process's css_set can be changed
2367	 * between here and cgroup_post_fork() if an organisation operation is in
2368	 * progress.
2369	 */
2370	retval = cgroup_can_fork(p, args);
2371	if (retval)
2372		goto bad_fork_put_pidfd;
2373
2374	/*
2375	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2376	 * the new task on the correct runqueue. All this *before* the task
2377	 * becomes visible.
2378	 *
2379	 * This isn't part of ->can_fork() because while the re-cloning is
2380	 * cgroup specific, it unconditionally needs to place the task on a
2381	 * runqueue.
2382	 */
2383	sched_cgroup_fork(p, args);
2384
2385	/*
2386	 * From this point on we must avoid any synchronous user-space
2387	 * communication until we take the tasklist-lock. In particular, we do
2388	 * not want user-space to be able to predict the process start-time by
2389	 * stalling fork(2) after we recorded the start_time but before it is
2390	 * visible to the system.
2391	 */
2392
2393	p->start_time = ktime_get_ns();
2394	p->start_boottime = ktime_get_boottime_ns();
2395
2396	/*
2397	 * Make it visible to the rest of the system, but dont wake it up yet.
2398	 * Need tasklist lock for parent etc handling!
2399	 */
2400	write_lock_irq(&tasklist_lock);
2401
2402	/* CLONE_PARENT re-uses the old parent */
2403	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2404		p->real_parent = current->real_parent;
2405		p->parent_exec_id = current->parent_exec_id;
2406		if (clone_flags & CLONE_THREAD)
2407			p->exit_signal = -1;
2408		else
2409			p->exit_signal = current->group_leader->exit_signal;
2410	} else {
2411		p->real_parent = current;
2412		p->parent_exec_id = current->self_exec_id;
2413		p->exit_signal = args->exit_signal;
2414	}
2415
2416	klp_copy_process(p);
2417
2418	sched_core_fork(p);
2419
2420	spin_lock(&current->sighand->siglock);
2421
2422	rv_task_fork(p);
 
 
 
 
2423
2424	rseq_fork(p, clone_flags);
2425
2426	/* Don't start children in a dying pid namespace */
2427	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2428		retval = -ENOMEM;
2429		goto bad_fork_cancel_cgroup;
2430	}
2431
2432	/* Let kill terminate clone/fork in the middle */
2433	if (fatal_signal_pending(current)) {
2434		retval = -EINTR;
2435		goto bad_fork_cancel_cgroup;
2436	}
2437
2438	/* No more failure paths after this point. */
2439
2440	/*
2441	 * Copy seccomp details explicitly here, in case they were changed
2442	 * before holding sighand lock.
2443	 */
2444	copy_seccomp(p);
2445
2446	init_task_pid_links(p);
2447	if (likely(p->pid)) {
2448		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2449
2450		init_task_pid(p, PIDTYPE_PID, pid);
2451		if (thread_group_leader(p)) {
2452			init_task_pid(p, PIDTYPE_TGID, pid);
2453			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2454			init_task_pid(p, PIDTYPE_SID, task_session(current));
2455
2456			if (is_child_reaper(pid)) {
2457				ns_of_pid(pid)->child_reaper = p;
2458				p->signal->flags |= SIGNAL_UNKILLABLE;
2459			}
2460			p->signal->shared_pending.signal = delayed.signal;
2461			p->signal->tty = tty_kref_get(current->signal->tty);
2462			/*
2463			 * Inherit has_child_subreaper flag under the same
2464			 * tasklist_lock with adding child to the process tree
2465			 * for propagate_has_child_subreaper optimization.
2466			 */
2467			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2468							 p->real_parent->signal->is_child_subreaper;
2469			list_add_tail(&p->sibling, &p->real_parent->children);
2470			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2471			attach_pid(p, PIDTYPE_TGID);
2472			attach_pid(p, PIDTYPE_PGID);
2473			attach_pid(p, PIDTYPE_SID);
2474			__this_cpu_inc(process_counts);
2475		} else {
2476			current->signal->nr_threads++;
2477			current->signal->quick_threads++;
2478			atomic_inc(&current->signal->live);
2479			refcount_inc(&current->signal->sigcnt);
2480			task_join_group_stop(p);
2481			list_add_tail_rcu(&p->thread_group,
2482					  &p->group_leader->thread_group);
2483			list_add_tail_rcu(&p->thread_node,
2484					  &p->signal->thread_head);
2485		}
2486		attach_pid(p, PIDTYPE_PID);
2487		nr_threads++;
2488	}
2489	total_forks++;
2490	hlist_del_init(&delayed.node);
2491	spin_unlock(&current->sighand->siglock);
2492	syscall_tracepoint_update(p);
2493	write_unlock_irq(&tasklist_lock);
2494
2495	if (pidfile)
2496		fd_install(pidfd, pidfile);
2497
2498	proc_fork_connector(p);
2499	sched_post_fork(p);
2500	cgroup_post_fork(p, args);
2501	perf_event_fork(p);
2502
2503	trace_task_newtask(p, clone_flags);
2504	uprobe_copy_process(p, clone_flags);
2505
2506	copy_oom_score_adj(clone_flags, p);
2507
2508	return p;
2509
2510bad_fork_cancel_cgroup:
2511	sched_core_free(p);
2512	spin_unlock(&current->sighand->siglock);
2513	write_unlock_irq(&tasklist_lock);
2514	cgroup_cancel_fork(p, args);
 
 
2515bad_fork_put_pidfd:
2516	if (clone_flags & CLONE_PIDFD) {
2517		fput(pidfile);
2518		put_unused_fd(pidfd);
2519	}
2520bad_fork_free_pid:
2521	if (pid != &init_struct_pid)
2522		free_pid(pid);
2523bad_fork_cleanup_thread:
2524	exit_thread(p);
2525bad_fork_cleanup_io:
2526	if (p->io_context)
2527		exit_io_context(p);
2528bad_fork_cleanup_namespaces:
2529	exit_task_namespaces(p);
2530bad_fork_cleanup_mm:
2531	if (p->mm) {
2532		mm_clear_owner(p->mm, p);
2533		mmput(p->mm);
2534	}
2535bad_fork_cleanup_signal:
2536	if (!(clone_flags & CLONE_THREAD))
2537		free_signal_struct(p->signal);
2538bad_fork_cleanup_sighand:
2539	__cleanup_sighand(p->sighand);
2540bad_fork_cleanup_fs:
2541	exit_fs(p); /* blocking */
2542bad_fork_cleanup_files:
2543	exit_files(p); /* blocking */
2544bad_fork_cleanup_semundo:
2545	exit_sem(p);
2546bad_fork_cleanup_security:
2547	security_task_free(p);
2548bad_fork_cleanup_audit:
2549	audit_free(p);
2550bad_fork_cleanup_perf:
2551	perf_event_free_task(p);
2552bad_fork_cleanup_policy:
2553	lockdep_free_task(p);
2554#ifdef CONFIG_NUMA
2555	mpol_put(p->mempolicy);
 
2556#endif
2557bad_fork_cleanup_delayacct:
2558	delayacct_tsk_free(p);
2559bad_fork_cleanup_count:
2560	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2561	exit_creds(p);
2562bad_fork_free:
2563	WRITE_ONCE(p->__state, TASK_DEAD);
2564	exit_task_stack_account(p);
2565	put_task_stack(p);
2566	delayed_free_task(p);
2567fork_out:
2568	spin_lock_irq(&current->sighand->siglock);
2569	hlist_del_init(&delayed.node);
2570	spin_unlock_irq(&current->sighand->siglock);
2571	return ERR_PTR(retval);
2572}
2573
2574static inline void init_idle_pids(struct task_struct *idle)
2575{
2576	enum pid_type type;
2577
2578	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2579		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2580		init_task_pid(idle, type, &init_struct_pid);
2581	}
2582}
2583
2584static int idle_dummy(void *dummy)
2585{
2586	/* This function is never called */
2587	return 0;
2588}
2589
2590struct task_struct * __init fork_idle(int cpu)
2591{
2592	struct task_struct *task;
2593	struct kernel_clone_args args = {
2594		.flags		= CLONE_VM,
2595		.fn		= &idle_dummy,
2596		.fn_arg		= NULL,
2597		.kthread	= 1,
2598		.idle		= 1,
2599	};
2600
2601	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2602	if (!IS_ERR(task)) {
2603		init_idle_pids(task);
2604		init_idle(task, cpu);
2605	}
2606
2607	return task;
2608}
2609
2610/*
2611 * This is like kernel_clone(), but shaved down and tailored to just
2612 * creating io_uring workers. It returns a created task, or an error pointer.
2613 * The returned task is inactive, and the caller must fire it up through
2614 * wake_up_new_task(p). All signals are blocked in the created task.
2615 */
2616struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2617{
2618	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2619				CLONE_IO;
2620	struct kernel_clone_args args = {
2621		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2622				    CLONE_UNTRACED) & ~CSIGNAL),
2623		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2624		.fn		= fn,
2625		.fn_arg		= arg,
2626		.io_thread	= 1,
2627	};
2628
2629	return copy_process(NULL, 0, node, &args);
2630}
2631
2632/*
2633 *  Ok, this is the main fork-routine.
2634 *
2635 * It copies the process, and if successful kick-starts
2636 * it and waits for it to finish using the VM if required.
2637 *
2638 * args->exit_signal is expected to be checked for sanity by the caller.
2639 */
2640pid_t kernel_clone(struct kernel_clone_args *args)
2641{
2642	u64 clone_flags = args->flags;
2643	struct completion vfork;
2644	struct pid *pid;
2645	struct task_struct *p;
2646	int trace = 0;
2647	pid_t nr;
2648
2649	/*
2650	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2651	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2652	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2653	 * field in struct clone_args and it still doesn't make sense to have
2654	 * them both point at the same memory location. Performing this check
2655	 * here has the advantage that we don't need to have a separate helper
2656	 * to check for legacy clone().
2657	 */
2658	if ((args->flags & CLONE_PIDFD) &&
2659	    (args->flags & CLONE_PARENT_SETTID) &&
2660	    (args->pidfd == args->parent_tid))
2661		return -EINVAL;
2662
2663	/*
2664	 * Determine whether and which event to report to ptracer.  When
2665	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2666	 * requested, no event is reported; otherwise, report if the event
2667	 * for the type of forking is enabled.
2668	 */
2669	if (!(clone_flags & CLONE_UNTRACED)) {
2670		if (clone_flags & CLONE_VFORK)
2671			trace = PTRACE_EVENT_VFORK;
2672		else if (args->exit_signal != SIGCHLD)
2673			trace = PTRACE_EVENT_CLONE;
2674		else
2675			trace = PTRACE_EVENT_FORK;
2676
2677		if (likely(!ptrace_event_enabled(current, trace)))
2678			trace = 0;
2679	}
2680
2681	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2682	add_latent_entropy();
2683
2684	if (IS_ERR(p))
2685		return PTR_ERR(p);
2686
2687	/*
2688	 * Do this prior waking up the new thread - the thread pointer
2689	 * might get invalid after that point, if the thread exits quickly.
2690	 */
2691	trace_sched_process_fork(current, p);
2692
2693	pid = get_task_pid(p, PIDTYPE_PID);
2694	nr = pid_vnr(pid);
2695
2696	if (clone_flags & CLONE_PARENT_SETTID)
2697		put_user(nr, args->parent_tid);
2698
2699	if (clone_flags & CLONE_VFORK) {
2700		p->vfork_done = &vfork;
2701		init_completion(&vfork);
2702		get_task_struct(p);
2703	}
2704
2705	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2706		/* lock the task to synchronize with memcg migration */
2707		task_lock(p);
2708		lru_gen_add_mm(p->mm);
2709		task_unlock(p);
2710	}
2711
2712	wake_up_new_task(p);
2713
2714	/* forking complete and child started to run, tell ptracer */
2715	if (unlikely(trace))
2716		ptrace_event_pid(trace, pid);
2717
2718	if (clone_flags & CLONE_VFORK) {
2719		if (!wait_for_vfork_done(p, &vfork))
2720			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2721	}
2722
2723	put_pid(pid);
2724	return nr;
2725}
2726
2727/*
2728 * Create a kernel thread.
2729 */
2730pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2731{
2732	struct kernel_clone_args args = {
2733		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2734				    CLONE_UNTRACED) & ~CSIGNAL),
2735		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2736		.fn		= fn,
2737		.fn_arg		= arg,
2738		.kthread	= 1,
 
2739	};
2740
2741	return kernel_clone(&args);
 
 
 
2742}
 
2743
2744/*
2745 * Create a user mode thread.
2746 */
2747pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2748{
2749	struct kernel_clone_args args = {
2750		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2751				    CLONE_UNTRACED) & ~CSIGNAL),
2752		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2753		.fn		= fn,
2754		.fn_arg		= arg,
2755	};
2756
2757	return kernel_clone(&args);
2758}
2759
2760#ifdef __ARCH_WANT_SYS_FORK
2761SYSCALL_DEFINE0(fork)
2762{
2763#ifdef CONFIG_MMU
2764	struct kernel_clone_args args = {
2765		.exit_signal = SIGCHLD,
2766	};
2767
2768	return kernel_clone(&args);
2769#else
2770	/* can not support in nommu mode */
2771	return -EINVAL;
2772#endif
2773}
2774#endif
2775
2776#ifdef __ARCH_WANT_SYS_VFORK
2777SYSCALL_DEFINE0(vfork)
2778{
2779	struct kernel_clone_args args = {
2780		.flags		= CLONE_VFORK | CLONE_VM,
2781		.exit_signal	= SIGCHLD,
2782	};
2783
2784	return kernel_clone(&args);
2785}
2786#endif
2787
2788#ifdef __ARCH_WANT_SYS_CLONE
2789#ifdef CONFIG_CLONE_BACKWARDS
2790SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2791		 int __user *, parent_tidptr,
2792		 unsigned long, tls,
2793		 int __user *, child_tidptr)
2794#elif defined(CONFIG_CLONE_BACKWARDS2)
2795SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2796		 int __user *, parent_tidptr,
2797		 int __user *, child_tidptr,
2798		 unsigned long, tls)
2799#elif defined(CONFIG_CLONE_BACKWARDS3)
2800SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2801		int, stack_size,
2802		int __user *, parent_tidptr,
2803		int __user *, child_tidptr,
2804		unsigned long, tls)
2805#else
2806SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2807		 int __user *, parent_tidptr,
2808		 int __user *, child_tidptr,
2809		 unsigned long, tls)
2810#endif
2811{
2812	struct kernel_clone_args args = {
2813		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2814		.pidfd		= parent_tidptr,
2815		.child_tid	= child_tidptr,
2816		.parent_tid	= parent_tidptr,
2817		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2818		.stack		= newsp,
2819		.tls		= tls,
2820	};
2821
2822	return kernel_clone(&args);
 
 
 
2823}
2824#endif
2825
2826#ifdef __ARCH_WANT_SYS_CLONE3
2827
2828noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2829					      struct clone_args __user *uargs,
2830					      size_t usize)
2831{
2832	int err;
2833	struct clone_args args;
2834	pid_t *kset_tid = kargs->set_tid;
2835
2836	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2837		     CLONE_ARGS_SIZE_VER0);
2838	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2839		     CLONE_ARGS_SIZE_VER1);
2840	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2841		     CLONE_ARGS_SIZE_VER2);
2842	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2843
2844	if (unlikely(usize > PAGE_SIZE))
2845		return -E2BIG;
2846	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2847		return -EINVAL;
2848
2849	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2850	if (err)
2851		return err;
2852
2853	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2854		return -EINVAL;
2855
2856	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2857		return -EINVAL;
2858
2859	if (unlikely(args.set_tid && args.set_tid_size == 0))
2860		return -EINVAL;
2861
2862	/*
2863	 * Verify that higher 32bits of exit_signal are unset and that
2864	 * it is a valid signal
2865	 */
2866	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2867		     !valid_signal(args.exit_signal)))
2868		return -EINVAL;
2869
2870	if ((args.flags & CLONE_INTO_CGROUP) &&
2871	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2872		return -EINVAL;
2873
2874	*kargs = (struct kernel_clone_args){
2875		.flags		= args.flags,
2876		.pidfd		= u64_to_user_ptr(args.pidfd),
2877		.child_tid	= u64_to_user_ptr(args.child_tid),
2878		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2879		.exit_signal	= args.exit_signal,
2880		.stack		= args.stack,
2881		.stack_size	= args.stack_size,
2882		.tls		= args.tls,
2883		.set_tid_size	= args.set_tid_size,
2884		.cgroup		= args.cgroup,
2885	};
2886
2887	if (args.set_tid &&
2888		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2889			(kargs->set_tid_size * sizeof(pid_t))))
2890		return -EFAULT;
2891
2892	kargs->set_tid = kset_tid;
2893
2894	return 0;
2895}
2896
2897/**
2898 * clone3_stack_valid - check and prepare stack
2899 * @kargs: kernel clone args
2900 *
2901 * Verify that the stack arguments userspace gave us are sane.
2902 * In addition, set the stack direction for userspace since it's easy for us to
2903 * determine.
2904 */
2905static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2906{
2907	if (kargs->stack == 0) {
2908		if (kargs->stack_size > 0)
2909			return false;
2910	} else {
2911		if (kargs->stack_size == 0)
2912			return false;
2913
2914		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2915			return false;
2916
2917#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2918		kargs->stack += kargs->stack_size;
2919#endif
2920	}
2921
2922	return true;
2923}
2924
2925static bool clone3_args_valid(struct kernel_clone_args *kargs)
2926{
2927	/* Verify that no unknown flags are passed along. */
2928	if (kargs->flags &
2929	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
 
 
2930		return false;
2931
2932	/*
2933	 * - make the CLONE_DETACHED bit reusable for clone3
2934	 * - make the CSIGNAL bits reusable for clone3
2935	 */
2936	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2937		return false;
2938
2939	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2940	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2941		return false;
2942
2943	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2944	    kargs->exit_signal)
2945		return false;
2946
2947	if (!clone3_stack_valid(kargs))
2948		return false;
2949
2950	return true;
2951}
2952
2953/**
2954 * clone3 - create a new process with specific properties
2955 * @uargs: argument structure
2956 * @size:  size of @uargs
2957 *
2958 * clone3() is the extensible successor to clone()/clone2().
2959 * It takes a struct as argument that is versioned by its size.
2960 *
2961 * Return: On success, a positive PID for the child process.
2962 *         On error, a negative errno number.
2963 */
2964SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2965{
2966	int err;
2967
2968	struct kernel_clone_args kargs;
2969	pid_t set_tid[MAX_PID_NS_LEVEL];
2970
2971	kargs.set_tid = set_tid;
2972
2973	err = copy_clone_args_from_user(&kargs, uargs, size);
2974	if (err)
2975		return err;
2976
2977	if (!clone3_args_valid(&kargs))
2978		return -EINVAL;
2979
2980	return kernel_clone(&kargs);
2981}
2982#endif
2983
2984void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2985{
2986	struct task_struct *leader, *parent, *child;
2987	int res;
2988
2989	read_lock(&tasklist_lock);
2990	leader = top = top->group_leader;
2991down:
2992	for_each_thread(leader, parent) {
2993		list_for_each_entry(child, &parent->children, sibling) {
2994			res = visitor(child, data);
2995			if (res) {
2996				if (res < 0)
2997					goto out;
2998				leader = child;
2999				goto down;
3000			}
3001up:
3002			;
3003		}
3004	}
3005
3006	if (leader != top) {
3007		child = leader;
3008		parent = child->real_parent;
3009		leader = parent->group_leader;
3010		goto up;
3011	}
3012out:
3013	read_unlock(&tasklist_lock);
3014}
3015
3016#ifndef ARCH_MIN_MMSTRUCT_ALIGN
3017#define ARCH_MIN_MMSTRUCT_ALIGN 0
3018#endif
3019
3020static void sighand_ctor(void *data)
3021{
3022	struct sighand_struct *sighand = data;
3023
3024	spin_lock_init(&sighand->siglock);
3025	init_waitqueue_head(&sighand->signalfd_wqh);
3026}
3027
3028void __init mm_cache_init(void)
3029{
3030	unsigned int mm_size;
3031
3032	/*
3033	 * The mm_cpumask is located at the end of mm_struct, and is
3034	 * dynamically sized based on the maximum CPU number this system
3035	 * can have, taking hotplug into account (nr_cpu_ids).
3036	 */
3037	mm_size = sizeof(struct mm_struct) + cpumask_size();
3038
3039	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3040			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3041			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3042			offsetof(struct mm_struct, saved_auxv),
3043			sizeof_field(struct mm_struct, saved_auxv),
3044			NULL);
3045}
3046
3047void __init proc_caches_init(void)
3048{
3049	sighand_cachep = kmem_cache_create("sighand_cache",
3050			sizeof(struct sighand_struct), 0,
3051			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3052			SLAB_ACCOUNT, sighand_ctor);
3053	signal_cachep = kmem_cache_create("signal_cache",
3054			sizeof(struct signal_struct), 0,
3055			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3056			NULL);
3057	files_cachep = kmem_cache_create("files_cache",
3058			sizeof(struct files_struct), 0,
3059			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3060			NULL);
3061	fs_cachep = kmem_cache_create("fs_cache",
3062			sizeof(struct fs_struct), 0,
3063			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3064			NULL);
3065
 
 
 
 
 
 
 
 
 
 
 
 
 
3066	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3067	mmap_init();
3068	nsproxy_cache_init();
3069}
3070
3071/*
3072 * Check constraints on flags passed to the unshare system call.
3073 */
3074static int check_unshare_flags(unsigned long unshare_flags)
3075{
3076	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3077				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3078				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3079				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3080				CLONE_NEWTIME))
3081		return -EINVAL;
3082	/*
3083	 * Not implemented, but pretend it works if there is nothing
3084	 * to unshare.  Note that unsharing the address space or the
3085	 * signal handlers also need to unshare the signal queues (aka
3086	 * CLONE_THREAD).
3087	 */
3088	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3089		if (!thread_group_empty(current))
3090			return -EINVAL;
3091	}
3092	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3093		if (refcount_read(&current->sighand->count) > 1)
3094			return -EINVAL;
3095	}
3096	if (unshare_flags & CLONE_VM) {
3097		if (!current_is_single_threaded())
3098			return -EINVAL;
3099	}
3100
3101	return 0;
3102}
3103
3104/*
3105 * Unshare the filesystem structure if it is being shared
3106 */
3107static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3108{
3109	struct fs_struct *fs = current->fs;
3110
3111	if (!(unshare_flags & CLONE_FS) || !fs)
3112		return 0;
3113
3114	/* don't need lock here; in the worst case we'll do useless copy */
3115	if (fs->users == 1)
3116		return 0;
3117
3118	*new_fsp = copy_fs_struct(fs);
3119	if (!*new_fsp)
3120		return -ENOMEM;
3121
3122	return 0;
3123}
3124
3125/*
3126 * Unshare file descriptor table if it is being shared
3127 */
3128int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3129	       struct files_struct **new_fdp)
3130{
3131	struct files_struct *fd = current->files;
3132	int error = 0;
3133
3134	if ((unshare_flags & CLONE_FILES) &&
3135	    (fd && atomic_read(&fd->count) > 1)) {
3136		*new_fdp = dup_fd(fd, max_fds, &error);
3137		if (!*new_fdp)
3138			return error;
3139	}
3140
3141	return 0;
3142}
3143
3144/*
3145 * unshare allows a process to 'unshare' part of the process
3146 * context which was originally shared using clone.  copy_*
3147 * functions used by kernel_clone() cannot be used here directly
3148 * because they modify an inactive task_struct that is being
3149 * constructed. Here we are modifying the current, active,
3150 * task_struct.
3151 */
3152int ksys_unshare(unsigned long unshare_flags)
3153{
3154	struct fs_struct *fs, *new_fs = NULL;
3155	struct files_struct *new_fd = NULL;
3156	struct cred *new_cred = NULL;
3157	struct nsproxy *new_nsproxy = NULL;
3158	int do_sysvsem = 0;
3159	int err;
3160
3161	/*
3162	 * If unsharing a user namespace must also unshare the thread group
3163	 * and unshare the filesystem root and working directories.
3164	 */
3165	if (unshare_flags & CLONE_NEWUSER)
3166		unshare_flags |= CLONE_THREAD | CLONE_FS;
3167	/*
3168	 * If unsharing vm, must also unshare signal handlers.
3169	 */
3170	if (unshare_flags & CLONE_VM)
3171		unshare_flags |= CLONE_SIGHAND;
3172	/*
3173	 * If unsharing a signal handlers, must also unshare the signal queues.
3174	 */
3175	if (unshare_flags & CLONE_SIGHAND)
3176		unshare_flags |= CLONE_THREAD;
3177	/*
3178	 * If unsharing namespace, must also unshare filesystem information.
3179	 */
3180	if (unshare_flags & CLONE_NEWNS)
3181		unshare_flags |= CLONE_FS;
3182
3183	err = check_unshare_flags(unshare_flags);
3184	if (err)
3185		goto bad_unshare_out;
3186	/*
3187	 * CLONE_NEWIPC must also detach from the undolist: after switching
3188	 * to a new ipc namespace, the semaphore arrays from the old
3189	 * namespace are unreachable.
3190	 */
3191	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3192		do_sysvsem = 1;
3193	err = unshare_fs(unshare_flags, &new_fs);
3194	if (err)
3195		goto bad_unshare_out;
3196	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3197	if (err)
3198		goto bad_unshare_cleanup_fs;
3199	err = unshare_userns(unshare_flags, &new_cred);
3200	if (err)
3201		goto bad_unshare_cleanup_fd;
3202	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3203					 new_cred, new_fs);
3204	if (err)
3205		goto bad_unshare_cleanup_cred;
3206
3207	if (new_cred) {
3208		err = set_cred_ucounts(new_cred);
3209		if (err)
3210			goto bad_unshare_cleanup_cred;
3211	}
3212
3213	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3214		if (do_sysvsem) {
3215			/*
3216			 * CLONE_SYSVSEM is equivalent to sys_exit().
3217			 */
3218			exit_sem(current);
3219		}
3220		if (unshare_flags & CLONE_NEWIPC) {
3221			/* Orphan segments in old ns (see sem above). */
3222			exit_shm(current);
3223			shm_init_task(current);
3224		}
3225
3226		if (new_nsproxy)
3227			switch_task_namespaces(current, new_nsproxy);
3228
3229		task_lock(current);
3230
3231		if (new_fs) {
3232			fs = current->fs;
3233			spin_lock(&fs->lock);
3234			current->fs = new_fs;
3235			if (--fs->users)
3236				new_fs = NULL;
3237			else
3238				new_fs = fs;
3239			spin_unlock(&fs->lock);
3240		}
3241
3242		if (new_fd)
3243			swap(current->files, new_fd);
 
 
 
3244
3245		task_unlock(current);
3246
3247		if (new_cred) {
3248			/* Install the new user namespace */
3249			commit_creds(new_cred);
3250			new_cred = NULL;
3251		}
3252	}
3253
3254	perf_event_namespaces(current);
3255
3256bad_unshare_cleanup_cred:
3257	if (new_cred)
3258		put_cred(new_cred);
3259bad_unshare_cleanup_fd:
3260	if (new_fd)
3261		put_files_struct(new_fd);
3262
3263bad_unshare_cleanup_fs:
3264	if (new_fs)
3265		free_fs_struct(new_fs);
3266
3267bad_unshare_out:
3268	return err;
3269}
3270
3271SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3272{
3273	return ksys_unshare(unshare_flags);
3274}
3275
3276/*
3277 *	Helper to unshare the files of the current task.
3278 *	We don't want to expose copy_files internals to
3279 *	the exec layer of the kernel.
3280 */
3281
3282int unshare_files(void)
3283{
3284	struct task_struct *task = current;
3285	struct files_struct *old, *copy = NULL;
3286	int error;
3287
3288	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3289	if (error || !copy)
 
3290		return error;
3291
3292	old = task->files;
3293	task_lock(task);
3294	task->files = copy;
3295	task_unlock(task);
3296	put_files_struct(old);
3297	return 0;
3298}
3299
3300int sysctl_max_threads(struct ctl_table *table, int write,
3301		       void *buffer, size_t *lenp, loff_t *ppos)
3302{
3303	struct ctl_table t;
3304	int ret;
3305	int threads = max_threads;
3306	int min = 1;
3307	int max = MAX_THREADS;
3308
3309	t = *table;
3310	t.data = &threads;
3311	t.extra1 = &min;
3312	t.extra2 = &max;
3313
3314	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3315	if (ret || !write)
3316		return ret;
3317
3318	max_threads = threads;
3319
3320	return 0;
3321}