Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15#include <linux/anon_inodes.h>
16#include <linux/slab.h>
17#include <linux/sched/autogroup.h>
18#include <linux/sched/mm.h>
19#include <linux/sched/coredump.h>
20#include <linux/sched/user.h>
21#include <linux/sched/numa_balancing.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/task.h>
24#include <linux/sched/task_stack.h>
25#include <linux/sched/cputime.h>
26#include <linux/seq_file.h>
27#include <linux/rtmutex.h>
28#include <linux/init.h>
29#include <linux/unistd.h>
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
37#include <linux/fdtable.h>
38#include <linux/iocontext.h>
39#include <linux/key.h>
40#include <linux/binfmts.h>
41#include <linux/mman.h>
42#include <linux/mmu_notifier.h>
43#include <linux/hmm.h>
44#include <linux/fs.h>
45#include <linux/mm.h>
46#include <linux/vmacache.h>
47#include <linux/nsproxy.h>
48#include <linux/capability.h>
49#include <linux/cpu.h>
50#include <linux/cgroup.h>
51#include <linux/security.h>
52#include <linux/hugetlb.h>
53#include <linux/seccomp.h>
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/jiffies.h>
57#include <linux/futex.h>
58#include <linux/compat.h>
59#include <linux/kthread.h>
60#include <linux/task_io_accounting_ops.h>
61#include <linux/rcupdate.h>
62#include <linux/ptrace.h>
63#include <linux/mount.h>
64#include <linux/audit.h>
65#include <linux/memcontrol.h>
66#include <linux/ftrace.h>
67#include <linux/proc_fs.h>
68#include <linux/profile.h>
69#include <linux/rmap.h>
70#include <linux/ksm.h>
71#include <linux/acct.h>
72#include <linux/userfaultfd_k.h>
73#include <linux/tsacct_kern.h>
74#include <linux/cn_proc.h>
75#include <linux/freezer.h>
76#include <linux/delayacct.h>
77#include <linux/taskstats_kern.h>
78#include <linux/random.h>
79#include <linux/tty.h>
80#include <linux/blkdev.h>
81#include <linux/fs_struct.h>
82#include <linux/magic.h>
83#include <linux/perf_event.h>
84#include <linux/posix-timers.h>
85#include <linux/user-return-notifier.h>
86#include <linux/oom.h>
87#include <linux/khugepaged.h>
88#include <linux/signalfd.h>
89#include <linux/uprobes.h>
90#include <linux/aio.h>
91#include <linux/compiler.h>
92#include <linux/sysctl.h>
93#include <linux/kcov.h>
94#include <linux/livepatch.h>
95#include <linux/thread_info.h>
96#include <linux/stackleak.h>
97
98#include <asm/pgtable.h>
99#include <asm/pgalloc.h>
100#include <linux/uaccess.h>
101#include <asm/mmu_context.h>
102#include <asm/cacheflush.h>
103#include <asm/tlbflush.h>
104
105#include <trace/events/sched.h>
106
107#define CREATE_TRACE_POINTS
108#include <trace/events/task.h>
109
110/*
111 * Minimum number of threads to boot the kernel
112 */
113#define MIN_THREADS 20
114
115/*
116 * Maximum number of threads
117 */
118#define MAX_THREADS FUTEX_TID_MASK
119
120/*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123unsigned long total_forks; /* Handle normal Linux uptimes. */
124int nr_threads; /* The idle threads do not count.. */
125
126static int max_threads; /* tunable limit on nr_threads */
127
128#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
129
130static const char * const resident_page_types[] = {
131 NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135};
136
137DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138
139__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
140
141#ifdef CONFIG_PROVE_RCU
142int lockdep_tasklist_lock_is_held(void)
143{
144 return lockdep_is_held(&tasklist_lock);
145}
146EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147#endif /* #ifdef CONFIG_PROVE_RCU */
148
149int nr_processes(void)
150{
151 int cpu;
152 int total = 0;
153
154 for_each_possible_cpu(cpu)
155 total += per_cpu(process_counts, cpu);
156
157 return total;
158}
159
160void __weak arch_release_task_struct(struct task_struct *tsk)
161{
162}
163
164#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165static struct kmem_cache *task_struct_cachep;
166
167static inline struct task_struct *alloc_task_struct_node(int node)
168{
169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170}
171
172static inline void free_task_struct(struct task_struct *tsk)
173{
174 kmem_cache_free(task_struct_cachep, tsk);
175}
176#endif
177
178#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179
180/*
181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182 * kmemcache based allocator.
183 */
184# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185
186#ifdef CONFIG_VMAP_STACK
187/*
188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189 * flush. Try to minimize the number of calls by caching stacks.
190 */
191#define NR_CACHED_STACKS 2
192static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193
194static int free_vm_stack_cache(unsigned int cpu)
195{
196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 int i;
198
199 for (i = 0; i < NR_CACHED_STACKS; i++) {
200 struct vm_struct *vm_stack = cached_vm_stacks[i];
201
202 if (!vm_stack)
203 continue;
204
205 vfree(vm_stack->addr);
206 cached_vm_stacks[i] = NULL;
207 }
208
209 return 0;
210}
211#endif
212
213static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214{
215#ifdef CONFIG_VMAP_STACK
216 void *stack;
217 int i;
218
219 for (i = 0; i < NR_CACHED_STACKS; i++) {
220 struct vm_struct *s;
221
222 s = this_cpu_xchg(cached_stacks[i], NULL);
223
224 if (!s)
225 continue;
226
227 /* Clear stale pointers from reused stack. */
228 memset(s->addr, 0, THREAD_SIZE);
229
230 tsk->stack_vm_area = s;
231 tsk->stack = s->addr;
232 return s->addr;
233 }
234
235 /*
236 * Allocated stacks are cached and later reused by new threads,
237 * so memcg accounting is performed manually on assigning/releasing
238 * stacks to tasks. Drop __GFP_ACCOUNT.
239 */
240 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
241 VMALLOC_START, VMALLOC_END,
242 THREADINFO_GFP & ~__GFP_ACCOUNT,
243 PAGE_KERNEL,
244 0, node, __builtin_return_address(0));
245
246 /*
247 * We can't call find_vm_area() in interrupt context, and
248 * free_thread_stack() can be called in interrupt context,
249 * so cache the vm_struct.
250 */
251 if (stack) {
252 tsk->stack_vm_area = find_vm_area(stack);
253 tsk->stack = stack;
254 }
255 return stack;
256#else
257 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
258 THREAD_SIZE_ORDER);
259
260 if (likely(page)) {
261 tsk->stack = page_address(page);
262 return tsk->stack;
263 }
264 return NULL;
265#endif
266}
267
268static inline void free_thread_stack(struct task_struct *tsk)
269{
270#ifdef CONFIG_VMAP_STACK
271 struct vm_struct *vm = task_stack_vm_area(tsk);
272
273 if (vm) {
274 int i;
275
276 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
277 mod_memcg_page_state(vm->pages[i],
278 MEMCG_KERNEL_STACK_KB,
279 -(int)(PAGE_SIZE / 1024));
280
281 memcg_kmem_uncharge(vm->pages[i], 0);
282 }
283
284 for (i = 0; i < NR_CACHED_STACKS; i++) {
285 if (this_cpu_cmpxchg(cached_stacks[i],
286 NULL, tsk->stack_vm_area) != NULL)
287 continue;
288
289 return;
290 }
291
292 vfree_atomic(tsk->stack);
293 return;
294 }
295#endif
296
297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298}
299# else
300static struct kmem_cache *thread_stack_cache;
301
302static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303 int node)
304{
305 unsigned long *stack;
306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 tsk->stack = stack;
308 return stack;
309}
310
311static void free_thread_stack(struct task_struct *tsk)
312{
313 kmem_cache_free(thread_stack_cache, tsk->stack);
314}
315
316void thread_stack_cache_init(void)
317{
318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 THREAD_SIZE, THREAD_SIZE, 0, 0,
320 THREAD_SIZE, NULL);
321 BUG_ON(thread_stack_cache == NULL);
322}
323# endif
324#endif
325
326/* SLAB cache for signal_struct structures (tsk->signal) */
327static struct kmem_cache *signal_cachep;
328
329/* SLAB cache for sighand_struct structures (tsk->sighand) */
330struct kmem_cache *sighand_cachep;
331
332/* SLAB cache for files_struct structures (tsk->files) */
333struct kmem_cache *files_cachep;
334
335/* SLAB cache for fs_struct structures (tsk->fs) */
336struct kmem_cache *fs_cachep;
337
338/* SLAB cache for vm_area_struct structures */
339static struct kmem_cache *vm_area_cachep;
340
341/* SLAB cache for mm_struct structures (tsk->mm) */
342static struct kmem_cache *mm_cachep;
343
344struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345{
346 struct vm_area_struct *vma;
347
348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 if (vma)
350 vma_init(vma, mm);
351 return vma;
352}
353
354struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355{
356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357
358 if (new) {
359 *new = *orig;
360 INIT_LIST_HEAD(&new->anon_vma_chain);
361 }
362 return new;
363}
364
365void vm_area_free(struct vm_area_struct *vma)
366{
367 kmem_cache_free(vm_area_cachep, vma);
368}
369
370static void account_kernel_stack(struct task_struct *tsk, int account)
371{
372 void *stack = task_stack_page(tsk);
373 struct vm_struct *vm = task_stack_vm_area(tsk);
374
375 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
376
377 if (vm) {
378 int i;
379
380 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
381
382 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
383 mod_zone_page_state(page_zone(vm->pages[i]),
384 NR_KERNEL_STACK_KB,
385 PAGE_SIZE / 1024 * account);
386 }
387 } else {
388 /*
389 * All stack pages are in the same zone and belong to the
390 * same memcg.
391 */
392 struct page *first_page = virt_to_page(stack);
393
394 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
395 THREAD_SIZE / 1024 * account);
396
397 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
398 account * (THREAD_SIZE / 1024));
399 }
400}
401
402static int memcg_charge_kernel_stack(struct task_struct *tsk)
403{
404#ifdef CONFIG_VMAP_STACK
405 struct vm_struct *vm = task_stack_vm_area(tsk);
406 int ret;
407
408 if (vm) {
409 int i;
410
411 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
412 /*
413 * If memcg_kmem_charge() fails, page->mem_cgroup
414 * pointer is NULL, and both memcg_kmem_uncharge()
415 * and mod_memcg_page_state() in free_thread_stack()
416 * will ignore this page. So it's safe.
417 */
418 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
419 if (ret)
420 return ret;
421
422 mod_memcg_page_state(vm->pages[i],
423 MEMCG_KERNEL_STACK_KB,
424 PAGE_SIZE / 1024);
425 }
426 }
427#endif
428 return 0;
429}
430
431static void release_task_stack(struct task_struct *tsk)
432{
433 if (WARN_ON(tsk->state != TASK_DEAD))
434 return; /* Better to leak the stack than to free prematurely */
435
436 account_kernel_stack(tsk, -1);
437 free_thread_stack(tsk);
438 tsk->stack = NULL;
439#ifdef CONFIG_VMAP_STACK
440 tsk->stack_vm_area = NULL;
441#endif
442}
443
444#ifdef CONFIG_THREAD_INFO_IN_TASK
445void put_task_stack(struct task_struct *tsk)
446{
447 if (refcount_dec_and_test(&tsk->stack_refcount))
448 release_task_stack(tsk);
449}
450#endif
451
452void free_task(struct task_struct *tsk)
453{
454#ifndef CONFIG_THREAD_INFO_IN_TASK
455 /*
456 * The task is finally done with both the stack and thread_info,
457 * so free both.
458 */
459 release_task_stack(tsk);
460#else
461 /*
462 * If the task had a separate stack allocation, it should be gone
463 * by now.
464 */
465 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
466#endif
467 rt_mutex_debug_task_free(tsk);
468 ftrace_graph_exit_task(tsk);
469 put_seccomp_filter(tsk);
470 arch_release_task_struct(tsk);
471 if (tsk->flags & PF_KTHREAD)
472 free_kthread_struct(tsk);
473 free_task_struct(tsk);
474}
475EXPORT_SYMBOL(free_task);
476
477#ifdef CONFIG_MMU
478static __latent_entropy int dup_mmap(struct mm_struct *mm,
479 struct mm_struct *oldmm)
480{
481 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
482 struct rb_node **rb_link, *rb_parent;
483 int retval;
484 unsigned long charge;
485 LIST_HEAD(uf);
486
487 uprobe_start_dup_mmap();
488 if (down_write_killable(&oldmm->mmap_sem)) {
489 retval = -EINTR;
490 goto fail_uprobe_end;
491 }
492 flush_cache_dup_mm(oldmm);
493 uprobe_dup_mmap(oldmm, mm);
494 /*
495 * Not linked in yet - no deadlock potential:
496 */
497 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
498
499 /* No ordering required: file already has been exposed. */
500 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
501
502 mm->total_vm = oldmm->total_vm;
503 mm->data_vm = oldmm->data_vm;
504 mm->exec_vm = oldmm->exec_vm;
505 mm->stack_vm = oldmm->stack_vm;
506
507 rb_link = &mm->mm_rb.rb_node;
508 rb_parent = NULL;
509 pprev = &mm->mmap;
510 retval = ksm_fork(mm, oldmm);
511 if (retval)
512 goto out;
513 retval = khugepaged_fork(mm, oldmm);
514 if (retval)
515 goto out;
516
517 prev = NULL;
518 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
519 struct file *file;
520
521 if (mpnt->vm_flags & VM_DONTCOPY) {
522 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
523 continue;
524 }
525 charge = 0;
526 /*
527 * Don't duplicate many vmas if we've been oom-killed (for
528 * example)
529 */
530 if (fatal_signal_pending(current)) {
531 retval = -EINTR;
532 goto out;
533 }
534 if (mpnt->vm_flags & VM_ACCOUNT) {
535 unsigned long len = vma_pages(mpnt);
536
537 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
538 goto fail_nomem;
539 charge = len;
540 }
541 tmp = vm_area_dup(mpnt);
542 if (!tmp)
543 goto fail_nomem;
544 retval = vma_dup_policy(mpnt, tmp);
545 if (retval)
546 goto fail_nomem_policy;
547 tmp->vm_mm = mm;
548 retval = dup_userfaultfd(tmp, &uf);
549 if (retval)
550 goto fail_nomem_anon_vma_fork;
551 if (tmp->vm_flags & VM_WIPEONFORK) {
552 /* VM_WIPEONFORK gets a clean slate in the child. */
553 tmp->anon_vma = NULL;
554 if (anon_vma_prepare(tmp))
555 goto fail_nomem_anon_vma_fork;
556 } else if (anon_vma_fork(tmp, mpnt))
557 goto fail_nomem_anon_vma_fork;
558 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
559 tmp->vm_next = tmp->vm_prev = NULL;
560 file = tmp->vm_file;
561 if (file) {
562 struct inode *inode = file_inode(file);
563 struct address_space *mapping = file->f_mapping;
564
565 get_file(file);
566 if (tmp->vm_flags & VM_DENYWRITE)
567 atomic_dec(&inode->i_writecount);
568 i_mmap_lock_write(mapping);
569 if (tmp->vm_flags & VM_SHARED)
570 atomic_inc(&mapping->i_mmap_writable);
571 flush_dcache_mmap_lock(mapping);
572 /* insert tmp into the share list, just after mpnt */
573 vma_interval_tree_insert_after(tmp, mpnt,
574 &mapping->i_mmap);
575 flush_dcache_mmap_unlock(mapping);
576 i_mmap_unlock_write(mapping);
577 }
578
579 /*
580 * Clear hugetlb-related page reserves for children. This only
581 * affects MAP_PRIVATE mappings. Faults generated by the child
582 * are not guaranteed to succeed, even if read-only
583 */
584 if (is_vm_hugetlb_page(tmp))
585 reset_vma_resv_huge_pages(tmp);
586
587 /*
588 * Link in the new vma and copy the page table entries.
589 */
590 *pprev = tmp;
591 pprev = &tmp->vm_next;
592 tmp->vm_prev = prev;
593 prev = tmp;
594
595 __vma_link_rb(mm, tmp, rb_link, rb_parent);
596 rb_link = &tmp->vm_rb.rb_right;
597 rb_parent = &tmp->vm_rb;
598
599 mm->map_count++;
600 if (!(tmp->vm_flags & VM_WIPEONFORK))
601 retval = copy_page_range(mm, oldmm, mpnt);
602
603 if (tmp->vm_ops && tmp->vm_ops->open)
604 tmp->vm_ops->open(tmp);
605
606 if (retval)
607 goto out;
608 }
609 /* a new mm has just been created */
610 retval = arch_dup_mmap(oldmm, mm);
611out:
612 up_write(&mm->mmap_sem);
613 flush_tlb_mm(oldmm);
614 up_write(&oldmm->mmap_sem);
615 dup_userfaultfd_complete(&uf);
616fail_uprobe_end:
617 uprobe_end_dup_mmap();
618 return retval;
619fail_nomem_anon_vma_fork:
620 mpol_put(vma_policy(tmp));
621fail_nomem_policy:
622 vm_area_free(tmp);
623fail_nomem:
624 retval = -ENOMEM;
625 vm_unacct_memory(charge);
626 goto out;
627}
628
629static inline int mm_alloc_pgd(struct mm_struct *mm)
630{
631 mm->pgd = pgd_alloc(mm);
632 if (unlikely(!mm->pgd))
633 return -ENOMEM;
634 return 0;
635}
636
637static inline void mm_free_pgd(struct mm_struct *mm)
638{
639 pgd_free(mm, mm->pgd);
640}
641#else
642static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
643{
644 down_write(&oldmm->mmap_sem);
645 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
646 up_write(&oldmm->mmap_sem);
647 return 0;
648}
649#define mm_alloc_pgd(mm) (0)
650#define mm_free_pgd(mm)
651#endif /* CONFIG_MMU */
652
653static void check_mm(struct mm_struct *mm)
654{
655 int i;
656
657 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
658 "Please make sure 'struct resident_page_types[]' is updated as well");
659
660 for (i = 0; i < NR_MM_COUNTERS; i++) {
661 long x = atomic_long_read(&mm->rss_stat.count[i]);
662
663 if (unlikely(x))
664 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
665 mm, resident_page_types[i], x);
666 }
667
668 if (mm_pgtables_bytes(mm))
669 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
670 mm_pgtables_bytes(mm));
671
672#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
673 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
674#endif
675}
676
677#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
678#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
679
680/*
681 * Called when the last reference to the mm
682 * is dropped: either by a lazy thread or by
683 * mmput. Free the page directory and the mm.
684 */
685void __mmdrop(struct mm_struct *mm)
686{
687 BUG_ON(mm == &init_mm);
688 WARN_ON_ONCE(mm == current->mm);
689 WARN_ON_ONCE(mm == current->active_mm);
690 mm_free_pgd(mm);
691 destroy_context(mm);
692 mmu_notifier_mm_destroy(mm);
693 check_mm(mm);
694 put_user_ns(mm->user_ns);
695 free_mm(mm);
696}
697EXPORT_SYMBOL_GPL(__mmdrop);
698
699static void mmdrop_async_fn(struct work_struct *work)
700{
701 struct mm_struct *mm;
702
703 mm = container_of(work, struct mm_struct, async_put_work);
704 __mmdrop(mm);
705}
706
707static void mmdrop_async(struct mm_struct *mm)
708{
709 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
710 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
711 schedule_work(&mm->async_put_work);
712 }
713}
714
715static inline void free_signal_struct(struct signal_struct *sig)
716{
717 taskstats_tgid_free(sig);
718 sched_autogroup_exit(sig);
719 /*
720 * __mmdrop is not safe to call from softirq context on x86 due to
721 * pgd_dtor so postpone it to the async context
722 */
723 if (sig->oom_mm)
724 mmdrop_async(sig->oom_mm);
725 kmem_cache_free(signal_cachep, sig);
726}
727
728static inline void put_signal_struct(struct signal_struct *sig)
729{
730 if (refcount_dec_and_test(&sig->sigcnt))
731 free_signal_struct(sig);
732}
733
734void __put_task_struct(struct task_struct *tsk)
735{
736 WARN_ON(!tsk->exit_state);
737 WARN_ON(refcount_read(&tsk->usage));
738 WARN_ON(tsk == current);
739
740 cgroup_free(tsk);
741 task_numa_free(tsk, true);
742 security_task_free(tsk);
743 exit_creds(tsk);
744 delayacct_tsk_free(tsk);
745 put_signal_struct(tsk->signal);
746
747 if (!profile_handoff_task(tsk))
748 free_task(tsk);
749}
750EXPORT_SYMBOL_GPL(__put_task_struct);
751
752void __init __weak arch_task_cache_init(void) { }
753
754/*
755 * set_max_threads
756 */
757static void set_max_threads(unsigned int max_threads_suggested)
758{
759 u64 threads;
760 unsigned long nr_pages = totalram_pages();
761
762 /*
763 * The number of threads shall be limited such that the thread
764 * structures may only consume a small part of the available memory.
765 */
766 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
767 threads = MAX_THREADS;
768 else
769 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
770 (u64) THREAD_SIZE * 8UL);
771
772 if (threads > max_threads_suggested)
773 threads = max_threads_suggested;
774
775 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
776}
777
778#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
779/* Initialized by the architecture: */
780int arch_task_struct_size __read_mostly;
781#endif
782
783#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
784static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
785{
786 /* Fetch thread_struct whitelist for the architecture. */
787 arch_thread_struct_whitelist(offset, size);
788
789 /*
790 * Handle zero-sized whitelist or empty thread_struct, otherwise
791 * adjust offset to position of thread_struct in task_struct.
792 */
793 if (unlikely(*size == 0))
794 *offset = 0;
795 else
796 *offset += offsetof(struct task_struct, thread);
797}
798#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
799
800void __init fork_init(void)
801{
802 int i;
803#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
804#ifndef ARCH_MIN_TASKALIGN
805#define ARCH_MIN_TASKALIGN 0
806#endif
807 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
808 unsigned long useroffset, usersize;
809
810 /* create a slab on which task_structs can be allocated */
811 task_struct_whitelist(&useroffset, &usersize);
812 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
813 arch_task_struct_size, align,
814 SLAB_PANIC|SLAB_ACCOUNT,
815 useroffset, usersize, NULL);
816#endif
817
818 /* do the arch specific task caches init */
819 arch_task_cache_init();
820
821 set_max_threads(MAX_THREADS);
822
823 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
824 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
825 init_task.signal->rlim[RLIMIT_SIGPENDING] =
826 init_task.signal->rlim[RLIMIT_NPROC];
827
828 for (i = 0; i < UCOUNT_COUNTS; i++) {
829 init_user_ns.ucount_max[i] = max_threads/2;
830 }
831
832#ifdef CONFIG_VMAP_STACK
833 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
834 NULL, free_vm_stack_cache);
835#endif
836
837 lockdep_init_task(&init_task);
838 uprobes_init();
839}
840
841int __weak arch_dup_task_struct(struct task_struct *dst,
842 struct task_struct *src)
843{
844 *dst = *src;
845 return 0;
846}
847
848void set_task_stack_end_magic(struct task_struct *tsk)
849{
850 unsigned long *stackend;
851
852 stackend = end_of_stack(tsk);
853 *stackend = STACK_END_MAGIC; /* for overflow detection */
854}
855
856static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
857{
858 struct task_struct *tsk;
859 unsigned long *stack;
860 struct vm_struct *stack_vm_area __maybe_unused;
861 int err;
862
863 if (node == NUMA_NO_NODE)
864 node = tsk_fork_get_node(orig);
865 tsk = alloc_task_struct_node(node);
866 if (!tsk)
867 return NULL;
868
869 stack = alloc_thread_stack_node(tsk, node);
870 if (!stack)
871 goto free_tsk;
872
873 if (memcg_charge_kernel_stack(tsk))
874 goto free_stack;
875
876 stack_vm_area = task_stack_vm_area(tsk);
877
878 err = arch_dup_task_struct(tsk, orig);
879
880 /*
881 * arch_dup_task_struct() clobbers the stack-related fields. Make
882 * sure they're properly initialized before using any stack-related
883 * functions again.
884 */
885 tsk->stack = stack;
886#ifdef CONFIG_VMAP_STACK
887 tsk->stack_vm_area = stack_vm_area;
888#endif
889#ifdef CONFIG_THREAD_INFO_IN_TASK
890 refcount_set(&tsk->stack_refcount, 1);
891#endif
892
893 if (err)
894 goto free_stack;
895
896#ifdef CONFIG_SECCOMP
897 /*
898 * We must handle setting up seccomp filters once we're under
899 * the sighand lock in case orig has changed between now and
900 * then. Until then, filter must be NULL to avoid messing up
901 * the usage counts on the error path calling free_task.
902 */
903 tsk->seccomp.filter = NULL;
904#endif
905
906 setup_thread_stack(tsk, orig);
907 clear_user_return_notifier(tsk);
908 clear_tsk_need_resched(tsk);
909 set_task_stack_end_magic(tsk);
910
911#ifdef CONFIG_STACKPROTECTOR
912 tsk->stack_canary = get_random_canary();
913#endif
914 if (orig->cpus_ptr == &orig->cpus_mask)
915 tsk->cpus_ptr = &tsk->cpus_mask;
916
917 /*
918 * One for the user space visible state that goes away when reaped.
919 * One for the scheduler.
920 */
921 refcount_set(&tsk->rcu_users, 2);
922 /* One for the rcu users */
923 refcount_set(&tsk->usage, 1);
924#ifdef CONFIG_BLK_DEV_IO_TRACE
925 tsk->btrace_seq = 0;
926#endif
927 tsk->splice_pipe = NULL;
928 tsk->task_frag.page = NULL;
929 tsk->wake_q.next = NULL;
930
931 account_kernel_stack(tsk, 1);
932
933 kcov_task_init(tsk);
934
935#ifdef CONFIG_FAULT_INJECTION
936 tsk->fail_nth = 0;
937#endif
938
939#ifdef CONFIG_BLK_CGROUP
940 tsk->throttle_queue = NULL;
941 tsk->use_memdelay = 0;
942#endif
943
944#ifdef CONFIG_MEMCG
945 tsk->active_memcg = NULL;
946#endif
947 return tsk;
948
949free_stack:
950 free_thread_stack(tsk);
951free_tsk:
952 free_task_struct(tsk);
953 return NULL;
954}
955
956__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
957
958static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
959
960static int __init coredump_filter_setup(char *s)
961{
962 default_dump_filter =
963 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
964 MMF_DUMP_FILTER_MASK;
965 return 1;
966}
967
968__setup("coredump_filter=", coredump_filter_setup);
969
970#include <linux/init_task.h>
971
972static void mm_init_aio(struct mm_struct *mm)
973{
974#ifdef CONFIG_AIO
975 spin_lock_init(&mm->ioctx_lock);
976 mm->ioctx_table = NULL;
977#endif
978}
979
980static __always_inline void mm_clear_owner(struct mm_struct *mm,
981 struct task_struct *p)
982{
983#ifdef CONFIG_MEMCG
984 if (mm->owner == p)
985 WRITE_ONCE(mm->owner, NULL);
986#endif
987}
988
989static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
990{
991#ifdef CONFIG_MEMCG
992 mm->owner = p;
993#endif
994}
995
996static void mm_init_uprobes_state(struct mm_struct *mm)
997{
998#ifdef CONFIG_UPROBES
999 mm->uprobes_state.xol_area = NULL;
1000#endif
1001}
1002
1003static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1004 struct user_namespace *user_ns)
1005{
1006 mm->mmap = NULL;
1007 mm->mm_rb = RB_ROOT;
1008 mm->vmacache_seqnum = 0;
1009 atomic_set(&mm->mm_users, 1);
1010 atomic_set(&mm->mm_count, 1);
1011 init_rwsem(&mm->mmap_sem);
1012 INIT_LIST_HEAD(&mm->mmlist);
1013 mm->core_state = NULL;
1014 mm_pgtables_bytes_init(mm);
1015 mm->map_count = 0;
1016 mm->locked_vm = 0;
1017 atomic64_set(&mm->pinned_vm, 0);
1018 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1019 spin_lock_init(&mm->page_table_lock);
1020 spin_lock_init(&mm->arg_lock);
1021 mm_init_cpumask(mm);
1022 mm_init_aio(mm);
1023 mm_init_owner(mm, p);
1024 RCU_INIT_POINTER(mm->exe_file, NULL);
1025 mmu_notifier_mm_init(mm);
1026 init_tlb_flush_pending(mm);
1027#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1028 mm->pmd_huge_pte = NULL;
1029#endif
1030 mm_init_uprobes_state(mm);
1031
1032 if (current->mm) {
1033 mm->flags = current->mm->flags & MMF_INIT_MASK;
1034 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1035 } else {
1036 mm->flags = default_dump_filter;
1037 mm->def_flags = 0;
1038 }
1039
1040 if (mm_alloc_pgd(mm))
1041 goto fail_nopgd;
1042
1043 if (init_new_context(p, mm))
1044 goto fail_nocontext;
1045
1046 mm->user_ns = get_user_ns(user_ns);
1047 return mm;
1048
1049fail_nocontext:
1050 mm_free_pgd(mm);
1051fail_nopgd:
1052 free_mm(mm);
1053 return NULL;
1054}
1055
1056/*
1057 * Allocate and initialize an mm_struct.
1058 */
1059struct mm_struct *mm_alloc(void)
1060{
1061 struct mm_struct *mm;
1062
1063 mm = allocate_mm();
1064 if (!mm)
1065 return NULL;
1066
1067 memset(mm, 0, sizeof(*mm));
1068 return mm_init(mm, current, current_user_ns());
1069}
1070
1071static inline void __mmput(struct mm_struct *mm)
1072{
1073 VM_BUG_ON(atomic_read(&mm->mm_users));
1074
1075 uprobe_clear_state(mm);
1076 exit_aio(mm);
1077 ksm_exit(mm);
1078 khugepaged_exit(mm); /* must run before exit_mmap */
1079 exit_mmap(mm);
1080 mm_put_huge_zero_page(mm);
1081 set_mm_exe_file(mm, NULL);
1082 if (!list_empty(&mm->mmlist)) {
1083 spin_lock(&mmlist_lock);
1084 list_del(&mm->mmlist);
1085 spin_unlock(&mmlist_lock);
1086 }
1087 if (mm->binfmt)
1088 module_put(mm->binfmt->module);
1089 mmdrop(mm);
1090}
1091
1092/*
1093 * Decrement the use count and release all resources for an mm.
1094 */
1095void mmput(struct mm_struct *mm)
1096{
1097 might_sleep();
1098
1099 if (atomic_dec_and_test(&mm->mm_users))
1100 __mmput(mm);
1101}
1102EXPORT_SYMBOL_GPL(mmput);
1103
1104#ifdef CONFIG_MMU
1105static void mmput_async_fn(struct work_struct *work)
1106{
1107 struct mm_struct *mm = container_of(work, struct mm_struct,
1108 async_put_work);
1109
1110 __mmput(mm);
1111}
1112
1113void mmput_async(struct mm_struct *mm)
1114{
1115 if (atomic_dec_and_test(&mm->mm_users)) {
1116 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1117 schedule_work(&mm->async_put_work);
1118 }
1119}
1120#endif
1121
1122/**
1123 * set_mm_exe_file - change a reference to the mm's executable file
1124 *
1125 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1126 *
1127 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1128 * invocations: in mmput() nobody alive left, in execve task is single
1129 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1130 * mm->exe_file, but does so without using set_mm_exe_file() in order
1131 * to do avoid the need for any locks.
1132 */
1133void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1134{
1135 struct file *old_exe_file;
1136
1137 /*
1138 * It is safe to dereference the exe_file without RCU as
1139 * this function is only called if nobody else can access
1140 * this mm -- see comment above for justification.
1141 */
1142 old_exe_file = rcu_dereference_raw(mm->exe_file);
1143
1144 if (new_exe_file)
1145 get_file(new_exe_file);
1146 rcu_assign_pointer(mm->exe_file, new_exe_file);
1147 if (old_exe_file)
1148 fput(old_exe_file);
1149}
1150
1151/**
1152 * get_mm_exe_file - acquire a reference to the mm's executable file
1153 *
1154 * Returns %NULL if mm has no associated executable file.
1155 * User must release file via fput().
1156 */
1157struct file *get_mm_exe_file(struct mm_struct *mm)
1158{
1159 struct file *exe_file;
1160
1161 rcu_read_lock();
1162 exe_file = rcu_dereference(mm->exe_file);
1163 if (exe_file && !get_file_rcu(exe_file))
1164 exe_file = NULL;
1165 rcu_read_unlock();
1166 return exe_file;
1167}
1168EXPORT_SYMBOL(get_mm_exe_file);
1169
1170/**
1171 * get_task_exe_file - acquire a reference to the task's executable file
1172 *
1173 * Returns %NULL if task's mm (if any) has no associated executable file or
1174 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1175 * User must release file via fput().
1176 */
1177struct file *get_task_exe_file(struct task_struct *task)
1178{
1179 struct file *exe_file = NULL;
1180 struct mm_struct *mm;
1181
1182 task_lock(task);
1183 mm = task->mm;
1184 if (mm) {
1185 if (!(task->flags & PF_KTHREAD))
1186 exe_file = get_mm_exe_file(mm);
1187 }
1188 task_unlock(task);
1189 return exe_file;
1190}
1191EXPORT_SYMBOL(get_task_exe_file);
1192
1193/**
1194 * get_task_mm - acquire a reference to the task's mm
1195 *
1196 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1197 * this kernel workthread has transiently adopted a user mm with use_mm,
1198 * to do its AIO) is not set and if so returns a reference to it, after
1199 * bumping up the use count. User must release the mm via mmput()
1200 * after use. Typically used by /proc and ptrace.
1201 */
1202struct mm_struct *get_task_mm(struct task_struct *task)
1203{
1204 struct mm_struct *mm;
1205
1206 task_lock(task);
1207 mm = task->mm;
1208 if (mm) {
1209 if (task->flags & PF_KTHREAD)
1210 mm = NULL;
1211 else
1212 mmget(mm);
1213 }
1214 task_unlock(task);
1215 return mm;
1216}
1217EXPORT_SYMBOL_GPL(get_task_mm);
1218
1219struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1220{
1221 struct mm_struct *mm;
1222 int err;
1223
1224 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1225 if (err)
1226 return ERR_PTR(err);
1227
1228 mm = get_task_mm(task);
1229 if (mm && mm != current->mm &&
1230 !ptrace_may_access(task, mode)) {
1231 mmput(mm);
1232 mm = ERR_PTR(-EACCES);
1233 }
1234 mutex_unlock(&task->signal->cred_guard_mutex);
1235
1236 return mm;
1237}
1238
1239static void complete_vfork_done(struct task_struct *tsk)
1240{
1241 struct completion *vfork;
1242
1243 task_lock(tsk);
1244 vfork = tsk->vfork_done;
1245 if (likely(vfork)) {
1246 tsk->vfork_done = NULL;
1247 complete(vfork);
1248 }
1249 task_unlock(tsk);
1250}
1251
1252static int wait_for_vfork_done(struct task_struct *child,
1253 struct completion *vfork)
1254{
1255 int killed;
1256
1257 freezer_do_not_count();
1258 cgroup_enter_frozen();
1259 killed = wait_for_completion_killable(vfork);
1260 cgroup_leave_frozen(false);
1261 freezer_count();
1262
1263 if (killed) {
1264 task_lock(child);
1265 child->vfork_done = NULL;
1266 task_unlock(child);
1267 }
1268
1269 put_task_struct(child);
1270 return killed;
1271}
1272
1273/* Please note the differences between mmput and mm_release.
1274 * mmput is called whenever we stop holding onto a mm_struct,
1275 * error success whatever.
1276 *
1277 * mm_release is called after a mm_struct has been removed
1278 * from the current process.
1279 *
1280 * This difference is important for error handling, when we
1281 * only half set up a mm_struct for a new process and need to restore
1282 * the old one. Because we mmput the new mm_struct before
1283 * restoring the old one. . .
1284 * Eric Biederman 10 January 1998
1285 */
1286void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1287{
1288 /* Get rid of any futexes when releasing the mm */
1289#ifdef CONFIG_FUTEX
1290 if (unlikely(tsk->robust_list)) {
1291 exit_robust_list(tsk);
1292 tsk->robust_list = NULL;
1293 }
1294#ifdef CONFIG_COMPAT
1295 if (unlikely(tsk->compat_robust_list)) {
1296 compat_exit_robust_list(tsk);
1297 tsk->compat_robust_list = NULL;
1298 }
1299#endif
1300 if (unlikely(!list_empty(&tsk->pi_state_list)))
1301 exit_pi_state_list(tsk);
1302#endif
1303
1304 uprobe_free_utask(tsk);
1305
1306 /* Get rid of any cached register state */
1307 deactivate_mm(tsk, mm);
1308
1309 /*
1310 * Signal userspace if we're not exiting with a core dump
1311 * because we want to leave the value intact for debugging
1312 * purposes.
1313 */
1314 if (tsk->clear_child_tid) {
1315 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1316 atomic_read(&mm->mm_users) > 1) {
1317 /*
1318 * We don't check the error code - if userspace has
1319 * not set up a proper pointer then tough luck.
1320 */
1321 put_user(0, tsk->clear_child_tid);
1322 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1323 1, NULL, NULL, 0, 0);
1324 }
1325 tsk->clear_child_tid = NULL;
1326 }
1327
1328 /*
1329 * All done, finally we can wake up parent and return this mm to him.
1330 * Also kthread_stop() uses this completion for synchronization.
1331 */
1332 if (tsk->vfork_done)
1333 complete_vfork_done(tsk);
1334}
1335
1336/**
1337 * dup_mm() - duplicates an existing mm structure
1338 * @tsk: the task_struct with which the new mm will be associated.
1339 * @oldmm: the mm to duplicate.
1340 *
1341 * Allocates a new mm structure and duplicates the provided @oldmm structure
1342 * content into it.
1343 *
1344 * Return: the duplicated mm or NULL on failure.
1345 */
1346static struct mm_struct *dup_mm(struct task_struct *tsk,
1347 struct mm_struct *oldmm)
1348{
1349 struct mm_struct *mm;
1350 int err;
1351
1352 mm = allocate_mm();
1353 if (!mm)
1354 goto fail_nomem;
1355
1356 memcpy(mm, oldmm, sizeof(*mm));
1357
1358 if (!mm_init(mm, tsk, mm->user_ns))
1359 goto fail_nomem;
1360
1361 err = dup_mmap(mm, oldmm);
1362 if (err)
1363 goto free_pt;
1364
1365 mm->hiwater_rss = get_mm_rss(mm);
1366 mm->hiwater_vm = mm->total_vm;
1367
1368 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1369 goto free_pt;
1370
1371 return mm;
1372
1373free_pt:
1374 /* don't put binfmt in mmput, we haven't got module yet */
1375 mm->binfmt = NULL;
1376 mm_init_owner(mm, NULL);
1377 mmput(mm);
1378
1379fail_nomem:
1380 return NULL;
1381}
1382
1383static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1384{
1385 struct mm_struct *mm, *oldmm;
1386 int retval;
1387
1388 tsk->min_flt = tsk->maj_flt = 0;
1389 tsk->nvcsw = tsk->nivcsw = 0;
1390#ifdef CONFIG_DETECT_HUNG_TASK
1391 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1392 tsk->last_switch_time = 0;
1393#endif
1394
1395 tsk->mm = NULL;
1396 tsk->active_mm = NULL;
1397
1398 /*
1399 * Are we cloning a kernel thread?
1400 *
1401 * We need to steal a active VM for that..
1402 */
1403 oldmm = current->mm;
1404 if (!oldmm)
1405 return 0;
1406
1407 /* initialize the new vmacache entries */
1408 vmacache_flush(tsk);
1409
1410 if (clone_flags & CLONE_VM) {
1411 mmget(oldmm);
1412 mm = oldmm;
1413 goto good_mm;
1414 }
1415
1416 retval = -ENOMEM;
1417 mm = dup_mm(tsk, current->mm);
1418 if (!mm)
1419 goto fail_nomem;
1420
1421good_mm:
1422 tsk->mm = mm;
1423 tsk->active_mm = mm;
1424 return 0;
1425
1426fail_nomem:
1427 return retval;
1428}
1429
1430static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1431{
1432 struct fs_struct *fs = current->fs;
1433 if (clone_flags & CLONE_FS) {
1434 /* tsk->fs is already what we want */
1435 spin_lock(&fs->lock);
1436 if (fs->in_exec) {
1437 spin_unlock(&fs->lock);
1438 return -EAGAIN;
1439 }
1440 fs->users++;
1441 spin_unlock(&fs->lock);
1442 return 0;
1443 }
1444 tsk->fs = copy_fs_struct(fs);
1445 if (!tsk->fs)
1446 return -ENOMEM;
1447 return 0;
1448}
1449
1450static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1451{
1452 struct files_struct *oldf, *newf;
1453 int error = 0;
1454
1455 /*
1456 * A background process may not have any files ...
1457 */
1458 oldf = current->files;
1459 if (!oldf)
1460 goto out;
1461
1462 if (clone_flags & CLONE_FILES) {
1463 atomic_inc(&oldf->count);
1464 goto out;
1465 }
1466
1467 newf = dup_fd(oldf, &error);
1468 if (!newf)
1469 goto out;
1470
1471 tsk->files = newf;
1472 error = 0;
1473out:
1474 return error;
1475}
1476
1477static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1478{
1479#ifdef CONFIG_BLOCK
1480 struct io_context *ioc = current->io_context;
1481 struct io_context *new_ioc;
1482
1483 if (!ioc)
1484 return 0;
1485 /*
1486 * Share io context with parent, if CLONE_IO is set
1487 */
1488 if (clone_flags & CLONE_IO) {
1489 ioc_task_link(ioc);
1490 tsk->io_context = ioc;
1491 } else if (ioprio_valid(ioc->ioprio)) {
1492 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1493 if (unlikely(!new_ioc))
1494 return -ENOMEM;
1495
1496 new_ioc->ioprio = ioc->ioprio;
1497 put_io_context(new_ioc);
1498 }
1499#endif
1500 return 0;
1501}
1502
1503static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1504{
1505 struct sighand_struct *sig;
1506
1507 if (clone_flags & CLONE_SIGHAND) {
1508 refcount_inc(¤t->sighand->count);
1509 return 0;
1510 }
1511 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1512 rcu_assign_pointer(tsk->sighand, sig);
1513 if (!sig)
1514 return -ENOMEM;
1515
1516 refcount_set(&sig->count, 1);
1517 spin_lock_irq(¤t->sighand->siglock);
1518 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1519 spin_unlock_irq(¤t->sighand->siglock);
1520 return 0;
1521}
1522
1523void __cleanup_sighand(struct sighand_struct *sighand)
1524{
1525 if (refcount_dec_and_test(&sighand->count)) {
1526 signalfd_cleanup(sighand);
1527 /*
1528 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1529 * without an RCU grace period, see __lock_task_sighand().
1530 */
1531 kmem_cache_free(sighand_cachep, sighand);
1532 }
1533}
1534
1535/*
1536 * Initialize POSIX timer handling for a thread group.
1537 */
1538static void posix_cpu_timers_init_group(struct signal_struct *sig)
1539{
1540 struct posix_cputimers *pct = &sig->posix_cputimers;
1541 unsigned long cpu_limit;
1542
1543 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1544 posix_cputimers_group_init(pct, cpu_limit);
1545}
1546
1547static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1548{
1549 struct signal_struct *sig;
1550
1551 if (clone_flags & CLONE_THREAD)
1552 return 0;
1553
1554 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1555 tsk->signal = sig;
1556 if (!sig)
1557 return -ENOMEM;
1558
1559 sig->nr_threads = 1;
1560 atomic_set(&sig->live, 1);
1561 refcount_set(&sig->sigcnt, 1);
1562
1563 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1564 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1565 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1566
1567 init_waitqueue_head(&sig->wait_chldexit);
1568 sig->curr_target = tsk;
1569 init_sigpending(&sig->shared_pending);
1570 INIT_HLIST_HEAD(&sig->multiprocess);
1571 seqlock_init(&sig->stats_lock);
1572 prev_cputime_init(&sig->prev_cputime);
1573
1574#ifdef CONFIG_POSIX_TIMERS
1575 INIT_LIST_HEAD(&sig->posix_timers);
1576 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1577 sig->real_timer.function = it_real_fn;
1578#endif
1579
1580 task_lock(current->group_leader);
1581 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1582 task_unlock(current->group_leader);
1583
1584 posix_cpu_timers_init_group(sig);
1585
1586 tty_audit_fork(sig);
1587 sched_autogroup_fork(sig);
1588
1589 sig->oom_score_adj = current->signal->oom_score_adj;
1590 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1591
1592 mutex_init(&sig->cred_guard_mutex);
1593
1594 return 0;
1595}
1596
1597static void copy_seccomp(struct task_struct *p)
1598{
1599#ifdef CONFIG_SECCOMP
1600 /*
1601 * Must be called with sighand->lock held, which is common to
1602 * all threads in the group. Holding cred_guard_mutex is not
1603 * needed because this new task is not yet running and cannot
1604 * be racing exec.
1605 */
1606 assert_spin_locked(¤t->sighand->siglock);
1607
1608 /* Ref-count the new filter user, and assign it. */
1609 get_seccomp_filter(current);
1610 p->seccomp = current->seccomp;
1611
1612 /*
1613 * Explicitly enable no_new_privs here in case it got set
1614 * between the task_struct being duplicated and holding the
1615 * sighand lock. The seccomp state and nnp must be in sync.
1616 */
1617 if (task_no_new_privs(current))
1618 task_set_no_new_privs(p);
1619
1620 /*
1621 * If the parent gained a seccomp mode after copying thread
1622 * flags and between before we held the sighand lock, we have
1623 * to manually enable the seccomp thread flag here.
1624 */
1625 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1626 set_tsk_thread_flag(p, TIF_SECCOMP);
1627#endif
1628}
1629
1630SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1631{
1632 current->clear_child_tid = tidptr;
1633
1634 return task_pid_vnr(current);
1635}
1636
1637static void rt_mutex_init_task(struct task_struct *p)
1638{
1639 raw_spin_lock_init(&p->pi_lock);
1640#ifdef CONFIG_RT_MUTEXES
1641 p->pi_waiters = RB_ROOT_CACHED;
1642 p->pi_top_task = NULL;
1643 p->pi_blocked_on = NULL;
1644#endif
1645}
1646
1647static inline void init_task_pid_links(struct task_struct *task)
1648{
1649 enum pid_type type;
1650
1651 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1652 INIT_HLIST_NODE(&task->pid_links[type]);
1653 }
1654}
1655
1656static inline void
1657init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1658{
1659 if (type == PIDTYPE_PID)
1660 task->thread_pid = pid;
1661 else
1662 task->signal->pids[type] = pid;
1663}
1664
1665static inline void rcu_copy_process(struct task_struct *p)
1666{
1667#ifdef CONFIG_PREEMPT_RCU
1668 p->rcu_read_lock_nesting = 0;
1669 p->rcu_read_unlock_special.s = 0;
1670 p->rcu_blocked_node = NULL;
1671 INIT_LIST_HEAD(&p->rcu_node_entry);
1672#endif /* #ifdef CONFIG_PREEMPT_RCU */
1673#ifdef CONFIG_TASKS_RCU
1674 p->rcu_tasks_holdout = false;
1675 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1676 p->rcu_tasks_idle_cpu = -1;
1677#endif /* #ifdef CONFIG_TASKS_RCU */
1678}
1679
1680struct pid *pidfd_pid(const struct file *file)
1681{
1682 if (file->f_op == &pidfd_fops)
1683 return file->private_data;
1684
1685 return ERR_PTR(-EBADF);
1686}
1687
1688static int pidfd_release(struct inode *inode, struct file *file)
1689{
1690 struct pid *pid = file->private_data;
1691
1692 file->private_data = NULL;
1693 put_pid(pid);
1694 return 0;
1695}
1696
1697#ifdef CONFIG_PROC_FS
1698static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1699{
1700 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1701 struct pid *pid = f->private_data;
1702
1703 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1704 seq_putc(m, '\n');
1705}
1706#endif
1707
1708/*
1709 * Poll support for process exit notification.
1710 */
1711static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1712{
1713 struct task_struct *task;
1714 struct pid *pid = file->private_data;
1715 __poll_t poll_flags = 0;
1716
1717 poll_wait(file, &pid->wait_pidfd, pts);
1718
1719 rcu_read_lock();
1720 task = pid_task(pid, PIDTYPE_PID);
1721 /*
1722 * Inform pollers only when the whole thread group exits.
1723 * If the thread group leader exits before all other threads in the
1724 * group, then poll(2) should block, similar to the wait(2) family.
1725 */
1726 if (!task || (task->exit_state && thread_group_empty(task)))
1727 poll_flags = EPOLLIN | EPOLLRDNORM;
1728 rcu_read_unlock();
1729
1730 return poll_flags;
1731}
1732
1733const struct file_operations pidfd_fops = {
1734 .release = pidfd_release,
1735 .poll = pidfd_poll,
1736#ifdef CONFIG_PROC_FS
1737 .show_fdinfo = pidfd_show_fdinfo,
1738#endif
1739};
1740
1741static void __delayed_free_task(struct rcu_head *rhp)
1742{
1743 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1744
1745 free_task(tsk);
1746}
1747
1748static __always_inline void delayed_free_task(struct task_struct *tsk)
1749{
1750 if (IS_ENABLED(CONFIG_MEMCG))
1751 call_rcu(&tsk->rcu, __delayed_free_task);
1752 else
1753 free_task(tsk);
1754}
1755
1756/*
1757 * This creates a new process as a copy of the old one,
1758 * but does not actually start it yet.
1759 *
1760 * It copies the registers, and all the appropriate
1761 * parts of the process environment (as per the clone
1762 * flags). The actual kick-off is left to the caller.
1763 */
1764static __latent_entropy struct task_struct *copy_process(
1765 struct pid *pid,
1766 int trace,
1767 int node,
1768 struct kernel_clone_args *args)
1769{
1770 int pidfd = -1, retval;
1771 struct task_struct *p;
1772 struct multiprocess_signals delayed;
1773 struct file *pidfile = NULL;
1774 u64 clone_flags = args->flags;
1775
1776 /*
1777 * Don't allow sharing the root directory with processes in a different
1778 * namespace
1779 */
1780 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1781 return ERR_PTR(-EINVAL);
1782
1783 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1784 return ERR_PTR(-EINVAL);
1785
1786 /*
1787 * Thread groups must share signals as well, and detached threads
1788 * can only be started up within the thread group.
1789 */
1790 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1791 return ERR_PTR(-EINVAL);
1792
1793 /*
1794 * Shared signal handlers imply shared VM. By way of the above,
1795 * thread groups also imply shared VM. Blocking this case allows
1796 * for various simplifications in other code.
1797 */
1798 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1799 return ERR_PTR(-EINVAL);
1800
1801 /*
1802 * Siblings of global init remain as zombies on exit since they are
1803 * not reaped by their parent (swapper). To solve this and to avoid
1804 * multi-rooted process trees, prevent global and container-inits
1805 * from creating siblings.
1806 */
1807 if ((clone_flags & CLONE_PARENT) &&
1808 current->signal->flags & SIGNAL_UNKILLABLE)
1809 return ERR_PTR(-EINVAL);
1810
1811 /*
1812 * If the new process will be in a different pid or user namespace
1813 * do not allow it to share a thread group with the forking task.
1814 */
1815 if (clone_flags & CLONE_THREAD) {
1816 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1817 (task_active_pid_ns(current) !=
1818 current->nsproxy->pid_ns_for_children))
1819 return ERR_PTR(-EINVAL);
1820 }
1821
1822 if (clone_flags & CLONE_PIDFD) {
1823 /*
1824 * - CLONE_DETACHED is blocked so that we can potentially
1825 * reuse it later for CLONE_PIDFD.
1826 * - CLONE_THREAD is blocked until someone really needs it.
1827 */
1828 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1829 return ERR_PTR(-EINVAL);
1830 }
1831
1832 /*
1833 * Force any signals received before this point to be delivered
1834 * before the fork happens. Collect up signals sent to multiple
1835 * processes that happen during the fork and delay them so that
1836 * they appear to happen after the fork.
1837 */
1838 sigemptyset(&delayed.signal);
1839 INIT_HLIST_NODE(&delayed.node);
1840
1841 spin_lock_irq(¤t->sighand->siglock);
1842 if (!(clone_flags & CLONE_THREAD))
1843 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1844 recalc_sigpending();
1845 spin_unlock_irq(¤t->sighand->siglock);
1846 retval = -ERESTARTNOINTR;
1847 if (signal_pending(current))
1848 goto fork_out;
1849
1850 retval = -ENOMEM;
1851 p = dup_task_struct(current, node);
1852 if (!p)
1853 goto fork_out;
1854
1855 /*
1856 * This _must_ happen before we call free_task(), i.e. before we jump
1857 * to any of the bad_fork_* labels. This is to avoid freeing
1858 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1859 * kernel threads (PF_KTHREAD).
1860 */
1861 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1862 /*
1863 * Clear TID on mm_release()?
1864 */
1865 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1866
1867 ftrace_graph_init_task(p);
1868
1869 rt_mutex_init_task(p);
1870
1871#ifdef CONFIG_PROVE_LOCKING
1872 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1873 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1874#endif
1875 retval = -EAGAIN;
1876 if (atomic_read(&p->real_cred->user->processes) >=
1877 task_rlimit(p, RLIMIT_NPROC)) {
1878 if (p->real_cred->user != INIT_USER &&
1879 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1880 goto bad_fork_free;
1881 }
1882 current->flags &= ~PF_NPROC_EXCEEDED;
1883
1884 retval = copy_creds(p, clone_flags);
1885 if (retval < 0)
1886 goto bad_fork_free;
1887
1888 /*
1889 * If multiple threads are within copy_process(), then this check
1890 * triggers too late. This doesn't hurt, the check is only there
1891 * to stop root fork bombs.
1892 */
1893 retval = -EAGAIN;
1894 if (nr_threads >= max_threads)
1895 goto bad_fork_cleanup_count;
1896
1897 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1898 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1899 p->flags |= PF_FORKNOEXEC;
1900 INIT_LIST_HEAD(&p->children);
1901 INIT_LIST_HEAD(&p->sibling);
1902 rcu_copy_process(p);
1903 p->vfork_done = NULL;
1904 spin_lock_init(&p->alloc_lock);
1905
1906 init_sigpending(&p->pending);
1907
1908 p->utime = p->stime = p->gtime = 0;
1909#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1910 p->utimescaled = p->stimescaled = 0;
1911#endif
1912 prev_cputime_init(&p->prev_cputime);
1913
1914#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1915 seqcount_init(&p->vtime.seqcount);
1916 p->vtime.starttime = 0;
1917 p->vtime.state = VTIME_INACTIVE;
1918#endif
1919
1920#if defined(SPLIT_RSS_COUNTING)
1921 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1922#endif
1923
1924 p->default_timer_slack_ns = current->timer_slack_ns;
1925
1926#ifdef CONFIG_PSI
1927 p->psi_flags = 0;
1928#endif
1929
1930 task_io_accounting_init(&p->ioac);
1931 acct_clear_integrals(p);
1932
1933 posix_cputimers_init(&p->posix_cputimers);
1934
1935 p->io_context = NULL;
1936 audit_set_context(p, NULL);
1937 cgroup_fork(p);
1938#ifdef CONFIG_NUMA
1939 p->mempolicy = mpol_dup(p->mempolicy);
1940 if (IS_ERR(p->mempolicy)) {
1941 retval = PTR_ERR(p->mempolicy);
1942 p->mempolicy = NULL;
1943 goto bad_fork_cleanup_threadgroup_lock;
1944 }
1945#endif
1946#ifdef CONFIG_CPUSETS
1947 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1948 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1949 seqcount_init(&p->mems_allowed_seq);
1950#endif
1951#ifdef CONFIG_TRACE_IRQFLAGS
1952 p->irq_events = 0;
1953 p->hardirqs_enabled = 0;
1954 p->hardirq_enable_ip = 0;
1955 p->hardirq_enable_event = 0;
1956 p->hardirq_disable_ip = _THIS_IP_;
1957 p->hardirq_disable_event = 0;
1958 p->softirqs_enabled = 1;
1959 p->softirq_enable_ip = _THIS_IP_;
1960 p->softirq_enable_event = 0;
1961 p->softirq_disable_ip = 0;
1962 p->softirq_disable_event = 0;
1963 p->hardirq_context = 0;
1964 p->softirq_context = 0;
1965#endif
1966
1967 p->pagefault_disabled = 0;
1968
1969#ifdef CONFIG_LOCKDEP
1970 lockdep_init_task(p);
1971#endif
1972
1973#ifdef CONFIG_DEBUG_MUTEXES
1974 p->blocked_on = NULL; /* not blocked yet */
1975#endif
1976#ifdef CONFIG_BCACHE
1977 p->sequential_io = 0;
1978 p->sequential_io_avg = 0;
1979#endif
1980
1981 /* Perform scheduler related setup. Assign this task to a CPU. */
1982 retval = sched_fork(clone_flags, p);
1983 if (retval)
1984 goto bad_fork_cleanup_policy;
1985
1986 retval = perf_event_init_task(p);
1987 if (retval)
1988 goto bad_fork_cleanup_policy;
1989 retval = audit_alloc(p);
1990 if (retval)
1991 goto bad_fork_cleanup_perf;
1992 /* copy all the process information */
1993 shm_init_task(p);
1994 retval = security_task_alloc(p, clone_flags);
1995 if (retval)
1996 goto bad_fork_cleanup_audit;
1997 retval = copy_semundo(clone_flags, p);
1998 if (retval)
1999 goto bad_fork_cleanup_security;
2000 retval = copy_files(clone_flags, p);
2001 if (retval)
2002 goto bad_fork_cleanup_semundo;
2003 retval = copy_fs(clone_flags, p);
2004 if (retval)
2005 goto bad_fork_cleanup_files;
2006 retval = copy_sighand(clone_flags, p);
2007 if (retval)
2008 goto bad_fork_cleanup_fs;
2009 retval = copy_signal(clone_flags, p);
2010 if (retval)
2011 goto bad_fork_cleanup_sighand;
2012 retval = copy_mm(clone_flags, p);
2013 if (retval)
2014 goto bad_fork_cleanup_signal;
2015 retval = copy_namespaces(clone_flags, p);
2016 if (retval)
2017 goto bad_fork_cleanup_mm;
2018 retval = copy_io(clone_flags, p);
2019 if (retval)
2020 goto bad_fork_cleanup_namespaces;
2021 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2022 args->tls);
2023 if (retval)
2024 goto bad_fork_cleanup_io;
2025
2026 stackleak_task_init(p);
2027
2028 if (pid != &init_struct_pid) {
2029 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2030 if (IS_ERR(pid)) {
2031 retval = PTR_ERR(pid);
2032 goto bad_fork_cleanup_thread;
2033 }
2034 }
2035
2036 /*
2037 * This has to happen after we've potentially unshared the file
2038 * descriptor table (so that the pidfd doesn't leak into the child
2039 * if the fd table isn't shared).
2040 */
2041 if (clone_flags & CLONE_PIDFD) {
2042 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2043 if (retval < 0)
2044 goto bad_fork_free_pid;
2045
2046 pidfd = retval;
2047
2048 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2049 O_RDWR | O_CLOEXEC);
2050 if (IS_ERR(pidfile)) {
2051 put_unused_fd(pidfd);
2052 retval = PTR_ERR(pidfile);
2053 goto bad_fork_free_pid;
2054 }
2055 get_pid(pid); /* held by pidfile now */
2056
2057 retval = put_user(pidfd, args->pidfd);
2058 if (retval)
2059 goto bad_fork_put_pidfd;
2060 }
2061
2062#ifdef CONFIG_BLOCK
2063 p->plug = NULL;
2064#endif
2065#ifdef CONFIG_FUTEX
2066 p->robust_list = NULL;
2067#ifdef CONFIG_COMPAT
2068 p->compat_robust_list = NULL;
2069#endif
2070 INIT_LIST_HEAD(&p->pi_state_list);
2071 p->pi_state_cache = NULL;
2072#endif
2073 /*
2074 * sigaltstack should be cleared when sharing the same VM
2075 */
2076 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2077 sas_ss_reset(p);
2078
2079 /*
2080 * Syscall tracing and stepping should be turned off in the
2081 * child regardless of CLONE_PTRACE.
2082 */
2083 user_disable_single_step(p);
2084 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2085#ifdef TIF_SYSCALL_EMU
2086 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2087#endif
2088 clear_tsk_latency_tracing(p);
2089
2090 /* ok, now we should be set up.. */
2091 p->pid = pid_nr(pid);
2092 if (clone_flags & CLONE_THREAD) {
2093 p->exit_signal = -1;
2094 p->group_leader = current->group_leader;
2095 p->tgid = current->tgid;
2096 } else {
2097 if (clone_flags & CLONE_PARENT)
2098 p->exit_signal = current->group_leader->exit_signal;
2099 else
2100 p->exit_signal = args->exit_signal;
2101 p->group_leader = p;
2102 p->tgid = p->pid;
2103 }
2104
2105 p->nr_dirtied = 0;
2106 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2107 p->dirty_paused_when = 0;
2108
2109 p->pdeath_signal = 0;
2110 INIT_LIST_HEAD(&p->thread_group);
2111 p->task_works = NULL;
2112
2113 cgroup_threadgroup_change_begin(current);
2114 /*
2115 * Ensure that the cgroup subsystem policies allow the new process to be
2116 * forked. It should be noted the the new process's css_set can be changed
2117 * between here and cgroup_post_fork() if an organisation operation is in
2118 * progress.
2119 */
2120 retval = cgroup_can_fork(p);
2121 if (retval)
2122 goto bad_fork_cgroup_threadgroup_change_end;
2123
2124 /*
2125 * From this point on we must avoid any synchronous user-space
2126 * communication until we take the tasklist-lock. In particular, we do
2127 * not want user-space to be able to predict the process start-time by
2128 * stalling fork(2) after we recorded the start_time but before it is
2129 * visible to the system.
2130 */
2131
2132 p->start_time = ktime_get_ns();
2133 p->real_start_time = ktime_get_boottime_ns();
2134
2135 /*
2136 * Make it visible to the rest of the system, but dont wake it up yet.
2137 * Need tasklist lock for parent etc handling!
2138 */
2139 write_lock_irq(&tasklist_lock);
2140
2141 /* CLONE_PARENT re-uses the old parent */
2142 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2143 p->real_parent = current->real_parent;
2144 p->parent_exec_id = current->parent_exec_id;
2145 } else {
2146 p->real_parent = current;
2147 p->parent_exec_id = current->self_exec_id;
2148 }
2149
2150 klp_copy_process(p);
2151
2152 spin_lock(¤t->sighand->siglock);
2153
2154 /*
2155 * Copy seccomp details explicitly here, in case they were changed
2156 * before holding sighand lock.
2157 */
2158 copy_seccomp(p);
2159
2160 rseq_fork(p, clone_flags);
2161
2162 /* Don't start children in a dying pid namespace */
2163 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2164 retval = -ENOMEM;
2165 goto bad_fork_cancel_cgroup;
2166 }
2167
2168 /* Let kill terminate clone/fork in the middle */
2169 if (fatal_signal_pending(current)) {
2170 retval = -EINTR;
2171 goto bad_fork_cancel_cgroup;
2172 }
2173
2174 /* past the last point of failure */
2175 if (pidfile)
2176 fd_install(pidfd, pidfile);
2177
2178 init_task_pid_links(p);
2179 if (likely(p->pid)) {
2180 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2181
2182 init_task_pid(p, PIDTYPE_PID, pid);
2183 if (thread_group_leader(p)) {
2184 init_task_pid(p, PIDTYPE_TGID, pid);
2185 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2186 init_task_pid(p, PIDTYPE_SID, task_session(current));
2187
2188 if (is_child_reaper(pid)) {
2189 ns_of_pid(pid)->child_reaper = p;
2190 p->signal->flags |= SIGNAL_UNKILLABLE;
2191 }
2192 p->signal->shared_pending.signal = delayed.signal;
2193 p->signal->tty = tty_kref_get(current->signal->tty);
2194 /*
2195 * Inherit has_child_subreaper flag under the same
2196 * tasklist_lock with adding child to the process tree
2197 * for propagate_has_child_subreaper optimization.
2198 */
2199 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2200 p->real_parent->signal->is_child_subreaper;
2201 list_add_tail(&p->sibling, &p->real_parent->children);
2202 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2203 attach_pid(p, PIDTYPE_TGID);
2204 attach_pid(p, PIDTYPE_PGID);
2205 attach_pid(p, PIDTYPE_SID);
2206 __this_cpu_inc(process_counts);
2207 } else {
2208 current->signal->nr_threads++;
2209 atomic_inc(¤t->signal->live);
2210 refcount_inc(¤t->signal->sigcnt);
2211 task_join_group_stop(p);
2212 list_add_tail_rcu(&p->thread_group,
2213 &p->group_leader->thread_group);
2214 list_add_tail_rcu(&p->thread_node,
2215 &p->signal->thread_head);
2216 }
2217 attach_pid(p, PIDTYPE_PID);
2218 nr_threads++;
2219 }
2220 total_forks++;
2221 hlist_del_init(&delayed.node);
2222 spin_unlock(¤t->sighand->siglock);
2223 syscall_tracepoint_update(p);
2224 write_unlock_irq(&tasklist_lock);
2225
2226 proc_fork_connector(p);
2227 cgroup_post_fork(p);
2228 cgroup_threadgroup_change_end(current);
2229 perf_event_fork(p);
2230
2231 trace_task_newtask(p, clone_flags);
2232 uprobe_copy_process(p, clone_flags);
2233
2234 return p;
2235
2236bad_fork_cancel_cgroup:
2237 spin_unlock(¤t->sighand->siglock);
2238 write_unlock_irq(&tasklist_lock);
2239 cgroup_cancel_fork(p);
2240bad_fork_cgroup_threadgroup_change_end:
2241 cgroup_threadgroup_change_end(current);
2242bad_fork_put_pidfd:
2243 if (clone_flags & CLONE_PIDFD) {
2244 fput(pidfile);
2245 put_unused_fd(pidfd);
2246 }
2247bad_fork_free_pid:
2248 if (pid != &init_struct_pid)
2249 free_pid(pid);
2250bad_fork_cleanup_thread:
2251 exit_thread(p);
2252bad_fork_cleanup_io:
2253 if (p->io_context)
2254 exit_io_context(p);
2255bad_fork_cleanup_namespaces:
2256 exit_task_namespaces(p);
2257bad_fork_cleanup_mm:
2258 if (p->mm) {
2259 mm_clear_owner(p->mm, p);
2260 mmput(p->mm);
2261 }
2262bad_fork_cleanup_signal:
2263 if (!(clone_flags & CLONE_THREAD))
2264 free_signal_struct(p->signal);
2265bad_fork_cleanup_sighand:
2266 __cleanup_sighand(p->sighand);
2267bad_fork_cleanup_fs:
2268 exit_fs(p); /* blocking */
2269bad_fork_cleanup_files:
2270 exit_files(p); /* blocking */
2271bad_fork_cleanup_semundo:
2272 exit_sem(p);
2273bad_fork_cleanup_security:
2274 security_task_free(p);
2275bad_fork_cleanup_audit:
2276 audit_free(p);
2277bad_fork_cleanup_perf:
2278 perf_event_free_task(p);
2279bad_fork_cleanup_policy:
2280 lockdep_free_task(p);
2281#ifdef CONFIG_NUMA
2282 mpol_put(p->mempolicy);
2283bad_fork_cleanup_threadgroup_lock:
2284#endif
2285 delayacct_tsk_free(p);
2286bad_fork_cleanup_count:
2287 atomic_dec(&p->cred->user->processes);
2288 exit_creds(p);
2289bad_fork_free:
2290 p->state = TASK_DEAD;
2291 put_task_stack(p);
2292 delayed_free_task(p);
2293fork_out:
2294 spin_lock_irq(¤t->sighand->siglock);
2295 hlist_del_init(&delayed.node);
2296 spin_unlock_irq(¤t->sighand->siglock);
2297 return ERR_PTR(retval);
2298}
2299
2300static inline void init_idle_pids(struct task_struct *idle)
2301{
2302 enum pid_type type;
2303
2304 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2305 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2306 init_task_pid(idle, type, &init_struct_pid);
2307 }
2308}
2309
2310struct task_struct *fork_idle(int cpu)
2311{
2312 struct task_struct *task;
2313 struct kernel_clone_args args = {
2314 .flags = CLONE_VM,
2315 };
2316
2317 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2318 if (!IS_ERR(task)) {
2319 init_idle_pids(task);
2320 init_idle(task, cpu);
2321 }
2322
2323 return task;
2324}
2325
2326struct mm_struct *copy_init_mm(void)
2327{
2328 return dup_mm(NULL, &init_mm);
2329}
2330
2331/*
2332 * Ok, this is the main fork-routine.
2333 *
2334 * It copies the process, and if successful kick-starts
2335 * it and waits for it to finish using the VM if required.
2336 *
2337 * args->exit_signal is expected to be checked for sanity by the caller.
2338 */
2339long _do_fork(struct kernel_clone_args *args)
2340{
2341 u64 clone_flags = args->flags;
2342 struct completion vfork;
2343 struct pid *pid;
2344 struct task_struct *p;
2345 int trace = 0;
2346 long nr;
2347
2348 /*
2349 * Determine whether and which event to report to ptracer. When
2350 * called from kernel_thread or CLONE_UNTRACED is explicitly
2351 * requested, no event is reported; otherwise, report if the event
2352 * for the type of forking is enabled.
2353 */
2354 if (!(clone_flags & CLONE_UNTRACED)) {
2355 if (clone_flags & CLONE_VFORK)
2356 trace = PTRACE_EVENT_VFORK;
2357 else if (args->exit_signal != SIGCHLD)
2358 trace = PTRACE_EVENT_CLONE;
2359 else
2360 trace = PTRACE_EVENT_FORK;
2361
2362 if (likely(!ptrace_event_enabled(current, trace)))
2363 trace = 0;
2364 }
2365
2366 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2367 add_latent_entropy();
2368
2369 if (IS_ERR(p))
2370 return PTR_ERR(p);
2371
2372 /*
2373 * Do this prior waking up the new thread - the thread pointer
2374 * might get invalid after that point, if the thread exits quickly.
2375 */
2376 trace_sched_process_fork(current, p);
2377
2378 pid = get_task_pid(p, PIDTYPE_PID);
2379 nr = pid_vnr(pid);
2380
2381 if (clone_flags & CLONE_PARENT_SETTID)
2382 put_user(nr, args->parent_tid);
2383
2384 if (clone_flags & CLONE_VFORK) {
2385 p->vfork_done = &vfork;
2386 init_completion(&vfork);
2387 get_task_struct(p);
2388 }
2389
2390 wake_up_new_task(p);
2391
2392 /* forking complete and child started to run, tell ptracer */
2393 if (unlikely(trace))
2394 ptrace_event_pid(trace, pid);
2395
2396 if (clone_flags & CLONE_VFORK) {
2397 if (!wait_for_vfork_done(p, &vfork))
2398 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2399 }
2400
2401 put_pid(pid);
2402 return nr;
2403}
2404
2405bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2406{
2407 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2408 if ((kargs->flags & CLONE_PIDFD) &&
2409 (kargs->flags & CLONE_PARENT_SETTID))
2410 return false;
2411
2412 return true;
2413}
2414
2415#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2416/* For compatibility with architectures that call do_fork directly rather than
2417 * using the syscall entry points below. */
2418long do_fork(unsigned long clone_flags,
2419 unsigned long stack_start,
2420 unsigned long stack_size,
2421 int __user *parent_tidptr,
2422 int __user *child_tidptr)
2423{
2424 struct kernel_clone_args args = {
2425 .flags = (clone_flags & ~CSIGNAL),
2426 .pidfd = parent_tidptr,
2427 .child_tid = child_tidptr,
2428 .parent_tid = parent_tidptr,
2429 .exit_signal = (clone_flags & CSIGNAL),
2430 .stack = stack_start,
2431 .stack_size = stack_size,
2432 };
2433
2434 if (!legacy_clone_args_valid(&args))
2435 return -EINVAL;
2436
2437 return _do_fork(&args);
2438}
2439#endif
2440
2441/*
2442 * Create a kernel thread.
2443 */
2444pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2445{
2446 struct kernel_clone_args args = {
2447 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2448 .exit_signal = (flags & CSIGNAL),
2449 .stack = (unsigned long)fn,
2450 .stack_size = (unsigned long)arg,
2451 };
2452
2453 return _do_fork(&args);
2454}
2455
2456#ifdef __ARCH_WANT_SYS_FORK
2457SYSCALL_DEFINE0(fork)
2458{
2459#ifdef CONFIG_MMU
2460 struct kernel_clone_args args = {
2461 .exit_signal = SIGCHLD,
2462 };
2463
2464 return _do_fork(&args);
2465#else
2466 /* can not support in nommu mode */
2467 return -EINVAL;
2468#endif
2469}
2470#endif
2471
2472#ifdef __ARCH_WANT_SYS_VFORK
2473SYSCALL_DEFINE0(vfork)
2474{
2475 struct kernel_clone_args args = {
2476 .flags = CLONE_VFORK | CLONE_VM,
2477 .exit_signal = SIGCHLD,
2478 };
2479
2480 return _do_fork(&args);
2481}
2482#endif
2483
2484#ifdef __ARCH_WANT_SYS_CLONE
2485#ifdef CONFIG_CLONE_BACKWARDS
2486SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2487 int __user *, parent_tidptr,
2488 unsigned long, tls,
2489 int __user *, child_tidptr)
2490#elif defined(CONFIG_CLONE_BACKWARDS2)
2491SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2492 int __user *, parent_tidptr,
2493 int __user *, child_tidptr,
2494 unsigned long, tls)
2495#elif defined(CONFIG_CLONE_BACKWARDS3)
2496SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2497 int, stack_size,
2498 int __user *, parent_tidptr,
2499 int __user *, child_tidptr,
2500 unsigned long, tls)
2501#else
2502SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2503 int __user *, parent_tidptr,
2504 int __user *, child_tidptr,
2505 unsigned long, tls)
2506#endif
2507{
2508 struct kernel_clone_args args = {
2509 .flags = (clone_flags & ~CSIGNAL),
2510 .pidfd = parent_tidptr,
2511 .child_tid = child_tidptr,
2512 .parent_tid = parent_tidptr,
2513 .exit_signal = (clone_flags & CSIGNAL),
2514 .stack = newsp,
2515 .tls = tls,
2516 };
2517
2518 if (!legacy_clone_args_valid(&args))
2519 return -EINVAL;
2520
2521 return _do_fork(&args);
2522}
2523#endif
2524
2525#ifdef __ARCH_WANT_SYS_CLONE3
2526noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2527 struct clone_args __user *uargs,
2528 size_t usize)
2529{
2530 int err;
2531 struct clone_args args;
2532
2533 if (unlikely(usize > PAGE_SIZE))
2534 return -E2BIG;
2535 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2536 return -EINVAL;
2537
2538 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2539 if (err)
2540 return err;
2541
2542 /*
2543 * Verify that higher 32bits of exit_signal are unset and that
2544 * it is a valid signal
2545 */
2546 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2547 !valid_signal(args.exit_signal)))
2548 return -EINVAL;
2549
2550 *kargs = (struct kernel_clone_args){
2551 .flags = args.flags,
2552 .pidfd = u64_to_user_ptr(args.pidfd),
2553 .child_tid = u64_to_user_ptr(args.child_tid),
2554 .parent_tid = u64_to_user_ptr(args.parent_tid),
2555 .exit_signal = args.exit_signal,
2556 .stack = args.stack,
2557 .stack_size = args.stack_size,
2558 .tls = args.tls,
2559 };
2560
2561 return 0;
2562}
2563
2564/**
2565 * clone3_stack_valid - check and prepare stack
2566 * @kargs: kernel clone args
2567 *
2568 * Verify that the stack arguments userspace gave us are sane.
2569 * In addition, set the stack direction for userspace since it's easy for us to
2570 * determine.
2571 */
2572static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2573{
2574 if (kargs->stack == 0) {
2575 if (kargs->stack_size > 0)
2576 return false;
2577 } else {
2578 if (kargs->stack_size == 0)
2579 return false;
2580
2581 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2582 return false;
2583
2584#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2585 kargs->stack += kargs->stack_size;
2586#endif
2587 }
2588
2589 return true;
2590}
2591
2592static bool clone3_args_valid(struct kernel_clone_args *kargs)
2593{
2594 /*
2595 * All lower bits of the flag word are taken.
2596 * Verify that no other unknown flags are passed along.
2597 */
2598 if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2599 return false;
2600
2601 /*
2602 * - make the CLONE_DETACHED bit reuseable for clone3
2603 * - make the CSIGNAL bits reuseable for clone3
2604 */
2605 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2606 return false;
2607
2608 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2609 kargs->exit_signal)
2610 return false;
2611
2612 if (!clone3_stack_valid(kargs))
2613 return false;
2614
2615 return true;
2616}
2617
2618/**
2619 * clone3 - create a new process with specific properties
2620 * @uargs: argument structure
2621 * @size: size of @uargs
2622 *
2623 * clone3() is the extensible successor to clone()/clone2().
2624 * It takes a struct as argument that is versioned by its size.
2625 *
2626 * Return: On success, a positive PID for the child process.
2627 * On error, a negative errno number.
2628 */
2629SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2630{
2631 int err;
2632
2633 struct kernel_clone_args kargs;
2634
2635 err = copy_clone_args_from_user(&kargs, uargs, size);
2636 if (err)
2637 return err;
2638
2639 if (!clone3_args_valid(&kargs))
2640 return -EINVAL;
2641
2642 return _do_fork(&kargs);
2643}
2644#endif
2645
2646void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2647{
2648 struct task_struct *leader, *parent, *child;
2649 int res;
2650
2651 read_lock(&tasklist_lock);
2652 leader = top = top->group_leader;
2653down:
2654 for_each_thread(leader, parent) {
2655 list_for_each_entry(child, &parent->children, sibling) {
2656 res = visitor(child, data);
2657 if (res) {
2658 if (res < 0)
2659 goto out;
2660 leader = child;
2661 goto down;
2662 }
2663up:
2664 ;
2665 }
2666 }
2667
2668 if (leader != top) {
2669 child = leader;
2670 parent = child->real_parent;
2671 leader = parent->group_leader;
2672 goto up;
2673 }
2674out:
2675 read_unlock(&tasklist_lock);
2676}
2677
2678#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2679#define ARCH_MIN_MMSTRUCT_ALIGN 0
2680#endif
2681
2682static void sighand_ctor(void *data)
2683{
2684 struct sighand_struct *sighand = data;
2685
2686 spin_lock_init(&sighand->siglock);
2687 init_waitqueue_head(&sighand->signalfd_wqh);
2688}
2689
2690void __init proc_caches_init(void)
2691{
2692 unsigned int mm_size;
2693
2694 sighand_cachep = kmem_cache_create("sighand_cache",
2695 sizeof(struct sighand_struct), 0,
2696 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2697 SLAB_ACCOUNT, sighand_ctor);
2698 signal_cachep = kmem_cache_create("signal_cache",
2699 sizeof(struct signal_struct), 0,
2700 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2701 NULL);
2702 files_cachep = kmem_cache_create("files_cache",
2703 sizeof(struct files_struct), 0,
2704 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2705 NULL);
2706 fs_cachep = kmem_cache_create("fs_cache",
2707 sizeof(struct fs_struct), 0,
2708 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2709 NULL);
2710
2711 /*
2712 * The mm_cpumask is located at the end of mm_struct, and is
2713 * dynamically sized based on the maximum CPU number this system
2714 * can have, taking hotplug into account (nr_cpu_ids).
2715 */
2716 mm_size = sizeof(struct mm_struct) + cpumask_size();
2717
2718 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2719 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2720 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2721 offsetof(struct mm_struct, saved_auxv),
2722 sizeof_field(struct mm_struct, saved_auxv),
2723 NULL);
2724 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2725 mmap_init();
2726 nsproxy_cache_init();
2727}
2728
2729/*
2730 * Check constraints on flags passed to the unshare system call.
2731 */
2732static int check_unshare_flags(unsigned long unshare_flags)
2733{
2734 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2735 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2736 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2737 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2738 return -EINVAL;
2739 /*
2740 * Not implemented, but pretend it works if there is nothing
2741 * to unshare. Note that unsharing the address space or the
2742 * signal handlers also need to unshare the signal queues (aka
2743 * CLONE_THREAD).
2744 */
2745 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2746 if (!thread_group_empty(current))
2747 return -EINVAL;
2748 }
2749 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2750 if (refcount_read(¤t->sighand->count) > 1)
2751 return -EINVAL;
2752 }
2753 if (unshare_flags & CLONE_VM) {
2754 if (!current_is_single_threaded())
2755 return -EINVAL;
2756 }
2757
2758 return 0;
2759}
2760
2761/*
2762 * Unshare the filesystem structure if it is being shared
2763 */
2764static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2765{
2766 struct fs_struct *fs = current->fs;
2767
2768 if (!(unshare_flags & CLONE_FS) || !fs)
2769 return 0;
2770
2771 /* don't need lock here; in the worst case we'll do useless copy */
2772 if (fs->users == 1)
2773 return 0;
2774
2775 *new_fsp = copy_fs_struct(fs);
2776 if (!*new_fsp)
2777 return -ENOMEM;
2778
2779 return 0;
2780}
2781
2782/*
2783 * Unshare file descriptor table if it is being shared
2784 */
2785static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2786{
2787 struct files_struct *fd = current->files;
2788 int error = 0;
2789
2790 if ((unshare_flags & CLONE_FILES) &&
2791 (fd && atomic_read(&fd->count) > 1)) {
2792 *new_fdp = dup_fd(fd, &error);
2793 if (!*new_fdp)
2794 return error;
2795 }
2796
2797 return 0;
2798}
2799
2800/*
2801 * unshare allows a process to 'unshare' part of the process
2802 * context which was originally shared using clone. copy_*
2803 * functions used by do_fork() cannot be used here directly
2804 * because they modify an inactive task_struct that is being
2805 * constructed. Here we are modifying the current, active,
2806 * task_struct.
2807 */
2808int ksys_unshare(unsigned long unshare_flags)
2809{
2810 struct fs_struct *fs, *new_fs = NULL;
2811 struct files_struct *fd, *new_fd = NULL;
2812 struct cred *new_cred = NULL;
2813 struct nsproxy *new_nsproxy = NULL;
2814 int do_sysvsem = 0;
2815 int err;
2816
2817 /*
2818 * If unsharing a user namespace must also unshare the thread group
2819 * and unshare the filesystem root and working directories.
2820 */
2821 if (unshare_flags & CLONE_NEWUSER)
2822 unshare_flags |= CLONE_THREAD | CLONE_FS;
2823 /*
2824 * If unsharing vm, must also unshare signal handlers.
2825 */
2826 if (unshare_flags & CLONE_VM)
2827 unshare_flags |= CLONE_SIGHAND;
2828 /*
2829 * If unsharing a signal handlers, must also unshare the signal queues.
2830 */
2831 if (unshare_flags & CLONE_SIGHAND)
2832 unshare_flags |= CLONE_THREAD;
2833 /*
2834 * If unsharing namespace, must also unshare filesystem information.
2835 */
2836 if (unshare_flags & CLONE_NEWNS)
2837 unshare_flags |= CLONE_FS;
2838
2839 err = check_unshare_flags(unshare_flags);
2840 if (err)
2841 goto bad_unshare_out;
2842 /*
2843 * CLONE_NEWIPC must also detach from the undolist: after switching
2844 * to a new ipc namespace, the semaphore arrays from the old
2845 * namespace are unreachable.
2846 */
2847 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2848 do_sysvsem = 1;
2849 err = unshare_fs(unshare_flags, &new_fs);
2850 if (err)
2851 goto bad_unshare_out;
2852 err = unshare_fd(unshare_flags, &new_fd);
2853 if (err)
2854 goto bad_unshare_cleanup_fs;
2855 err = unshare_userns(unshare_flags, &new_cred);
2856 if (err)
2857 goto bad_unshare_cleanup_fd;
2858 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2859 new_cred, new_fs);
2860 if (err)
2861 goto bad_unshare_cleanup_cred;
2862
2863 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2864 if (do_sysvsem) {
2865 /*
2866 * CLONE_SYSVSEM is equivalent to sys_exit().
2867 */
2868 exit_sem(current);
2869 }
2870 if (unshare_flags & CLONE_NEWIPC) {
2871 /* Orphan segments in old ns (see sem above). */
2872 exit_shm(current);
2873 shm_init_task(current);
2874 }
2875
2876 if (new_nsproxy)
2877 switch_task_namespaces(current, new_nsproxy);
2878
2879 task_lock(current);
2880
2881 if (new_fs) {
2882 fs = current->fs;
2883 spin_lock(&fs->lock);
2884 current->fs = new_fs;
2885 if (--fs->users)
2886 new_fs = NULL;
2887 else
2888 new_fs = fs;
2889 spin_unlock(&fs->lock);
2890 }
2891
2892 if (new_fd) {
2893 fd = current->files;
2894 current->files = new_fd;
2895 new_fd = fd;
2896 }
2897
2898 task_unlock(current);
2899
2900 if (new_cred) {
2901 /* Install the new user namespace */
2902 commit_creds(new_cred);
2903 new_cred = NULL;
2904 }
2905 }
2906
2907 perf_event_namespaces(current);
2908
2909bad_unshare_cleanup_cred:
2910 if (new_cred)
2911 put_cred(new_cred);
2912bad_unshare_cleanup_fd:
2913 if (new_fd)
2914 put_files_struct(new_fd);
2915
2916bad_unshare_cleanup_fs:
2917 if (new_fs)
2918 free_fs_struct(new_fs);
2919
2920bad_unshare_out:
2921 return err;
2922}
2923
2924SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2925{
2926 return ksys_unshare(unshare_flags);
2927}
2928
2929/*
2930 * Helper to unshare the files of the current task.
2931 * We don't want to expose copy_files internals to
2932 * the exec layer of the kernel.
2933 */
2934
2935int unshare_files(struct files_struct **displaced)
2936{
2937 struct task_struct *task = current;
2938 struct files_struct *copy = NULL;
2939 int error;
2940
2941 error = unshare_fd(CLONE_FILES, ©);
2942 if (error || !copy) {
2943 *displaced = NULL;
2944 return error;
2945 }
2946 *displaced = task->files;
2947 task_lock(task);
2948 task->files = copy;
2949 task_unlock(task);
2950 return 0;
2951}
2952
2953int sysctl_max_threads(struct ctl_table *table, int write,
2954 void __user *buffer, size_t *lenp, loff_t *ppos)
2955{
2956 struct ctl_table t;
2957 int ret;
2958 int threads = max_threads;
2959 int min = 1;
2960 int max = MAX_THREADS;
2961
2962 t = *table;
2963 t.data = &threads;
2964 t.extra1 = &min;
2965 t.extra2 = &max;
2966
2967 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2968 if (ret || !write)
2969 return ret;
2970
2971 max_threads = threads;
2972
2973 return 0;
2974}
1/*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/unistd.h>
17#include <linux/module.h>
18#include <linux/vmalloc.h>
19#include <linux/completion.h>
20#include <linux/personality.h>
21#include <linux/mempolicy.h>
22#include <linux/sem.h>
23#include <linux/file.h>
24#include <linux/fdtable.h>
25#include <linux/iocontext.h>
26#include <linux/key.h>
27#include <linux/binfmts.h>
28#include <linux/mman.h>
29#include <linux/mmu_notifier.h>
30#include <linux/fs.h>
31#include <linux/mm.h>
32#include <linux/vmacache.h>
33#include <linux/nsproxy.h>
34#include <linux/capability.h>
35#include <linux/cpu.h>
36#include <linux/cgroup.h>
37#include <linux/security.h>
38#include <linux/hugetlb.h>
39#include <linux/seccomp.h>
40#include <linux/swap.h>
41#include <linux/syscalls.h>
42#include <linux/jiffies.h>
43#include <linux/futex.h>
44#include <linux/compat.h>
45#include <linux/kthread.h>
46#include <linux/task_io_accounting_ops.h>
47#include <linux/rcupdate.h>
48#include <linux/ptrace.h>
49#include <linux/mount.h>
50#include <linux/audit.h>
51#include <linux/memcontrol.h>
52#include <linux/ftrace.h>
53#include <linux/proc_fs.h>
54#include <linux/profile.h>
55#include <linux/rmap.h>
56#include <linux/ksm.h>
57#include <linux/acct.h>
58#include <linux/tsacct_kern.h>
59#include <linux/cn_proc.h>
60#include <linux/freezer.h>
61#include <linux/delayacct.h>
62#include <linux/taskstats_kern.h>
63#include <linux/random.h>
64#include <linux/tty.h>
65#include <linux/blkdev.h>
66#include <linux/fs_struct.h>
67#include <linux/magic.h>
68#include <linux/perf_event.h>
69#include <linux/posix-timers.h>
70#include <linux/user-return-notifier.h>
71#include <linux/oom.h>
72#include <linux/khugepaged.h>
73#include <linux/signalfd.h>
74#include <linux/uprobes.h>
75#include <linux/aio.h>
76#include <linux/compiler.h>
77
78#include <asm/pgtable.h>
79#include <asm/pgalloc.h>
80#include <asm/uaccess.h>
81#include <asm/mmu_context.h>
82#include <asm/cacheflush.h>
83#include <asm/tlbflush.h>
84
85#include <trace/events/sched.h>
86
87#define CREATE_TRACE_POINTS
88#include <trace/events/task.h>
89
90/*
91 * Protected counters by write_lock_irq(&tasklist_lock)
92 */
93unsigned long total_forks; /* Handle normal Linux uptimes. */
94int nr_threads; /* The idle threads do not count.. */
95
96int max_threads; /* tunable limit on nr_threads */
97
98DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99
100__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
101
102#ifdef CONFIG_PROVE_RCU
103int lockdep_tasklist_lock_is_held(void)
104{
105 return lockdep_is_held(&tasklist_lock);
106}
107EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
108#endif /* #ifdef CONFIG_PROVE_RCU */
109
110int nr_processes(void)
111{
112 int cpu;
113 int total = 0;
114
115 for_each_possible_cpu(cpu)
116 total += per_cpu(process_counts, cpu);
117
118 return total;
119}
120
121void __weak arch_release_task_struct(struct task_struct *tsk)
122{
123}
124
125#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126static struct kmem_cache *task_struct_cachep;
127
128static inline struct task_struct *alloc_task_struct_node(int node)
129{
130 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
131}
132
133static inline void free_task_struct(struct task_struct *tsk)
134{
135 kmem_cache_free(task_struct_cachep, tsk);
136}
137#endif
138
139void __weak arch_release_thread_info(struct thread_info *ti)
140{
141}
142
143#ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
144
145/*
146 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147 * kmemcache based allocator.
148 */
149# if THREAD_SIZE >= PAGE_SIZE
150static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
151 int node)
152{
153 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
154 THREAD_SIZE_ORDER);
155
156 return page ? page_address(page) : NULL;
157}
158
159static inline void free_thread_info(struct thread_info *ti)
160{
161 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162}
163# else
164static struct kmem_cache *thread_info_cache;
165
166static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
167 int node)
168{
169 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
170}
171
172static void free_thread_info(struct thread_info *ti)
173{
174 kmem_cache_free(thread_info_cache, ti);
175}
176
177void thread_info_cache_init(void)
178{
179 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
180 THREAD_SIZE, 0, NULL);
181 BUG_ON(thread_info_cache == NULL);
182}
183# endif
184#endif
185
186/* SLAB cache for signal_struct structures (tsk->signal) */
187static struct kmem_cache *signal_cachep;
188
189/* SLAB cache for sighand_struct structures (tsk->sighand) */
190struct kmem_cache *sighand_cachep;
191
192/* SLAB cache for files_struct structures (tsk->files) */
193struct kmem_cache *files_cachep;
194
195/* SLAB cache for fs_struct structures (tsk->fs) */
196struct kmem_cache *fs_cachep;
197
198/* SLAB cache for vm_area_struct structures */
199struct kmem_cache *vm_area_cachep;
200
201/* SLAB cache for mm_struct structures (tsk->mm) */
202static struct kmem_cache *mm_cachep;
203
204static void account_kernel_stack(struct thread_info *ti, int account)
205{
206 struct zone *zone = page_zone(virt_to_page(ti));
207
208 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209}
210
211void free_task(struct task_struct *tsk)
212{
213 account_kernel_stack(tsk->stack, -1);
214 arch_release_thread_info(tsk->stack);
215 free_thread_info(tsk->stack);
216 rt_mutex_debug_task_free(tsk);
217 ftrace_graph_exit_task(tsk);
218 put_seccomp_filter(tsk);
219 arch_release_task_struct(tsk);
220 free_task_struct(tsk);
221}
222EXPORT_SYMBOL(free_task);
223
224static inline void free_signal_struct(struct signal_struct *sig)
225{
226 taskstats_tgid_free(sig);
227 sched_autogroup_exit(sig);
228 kmem_cache_free(signal_cachep, sig);
229}
230
231static inline void put_signal_struct(struct signal_struct *sig)
232{
233 if (atomic_dec_and_test(&sig->sigcnt))
234 free_signal_struct(sig);
235}
236
237void __put_task_struct(struct task_struct *tsk)
238{
239 WARN_ON(!tsk->exit_state);
240 WARN_ON(atomic_read(&tsk->usage));
241 WARN_ON(tsk == current);
242
243 task_numa_free(tsk);
244 security_task_free(tsk);
245 exit_creds(tsk);
246 delayacct_tsk_free(tsk);
247 put_signal_struct(tsk->signal);
248
249 if (!profile_handoff_task(tsk))
250 free_task(tsk);
251}
252EXPORT_SYMBOL_GPL(__put_task_struct);
253
254void __init __weak arch_task_cache_init(void) { }
255
256void __init fork_init(unsigned long mempages)
257{
258#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259#ifndef ARCH_MIN_TASKALIGN
260#define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
261#endif
262 /* create a slab on which task_structs can be allocated */
263 task_struct_cachep =
264 kmem_cache_create("task_struct", sizeof(struct task_struct),
265 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
266#endif
267
268 /* do the arch specific task caches init */
269 arch_task_cache_init();
270
271 /*
272 * The default maximum number of threads is set to a safe
273 * value: the thread structures can take up at most half
274 * of memory.
275 */
276 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277
278 /*
279 * we need to allow at least 20 threads to boot a system
280 */
281 if (max_threads < 20)
282 max_threads = 20;
283
284 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
285 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
286 init_task.signal->rlim[RLIMIT_SIGPENDING] =
287 init_task.signal->rlim[RLIMIT_NPROC];
288}
289
290int __weak arch_dup_task_struct(struct task_struct *dst,
291 struct task_struct *src)
292{
293 *dst = *src;
294 return 0;
295}
296
297static struct task_struct *dup_task_struct(struct task_struct *orig)
298{
299 struct task_struct *tsk;
300 struct thread_info *ti;
301 unsigned long *stackend;
302 int node = tsk_fork_get_node(orig);
303 int err;
304
305 tsk = alloc_task_struct_node(node);
306 if (!tsk)
307 return NULL;
308
309 ti = alloc_thread_info_node(tsk, node);
310 if (!ti)
311 goto free_tsk;
312
313 err = arch_dup_task_struct(tsk, orig);
314 if (err)
315 goto free_ti;
316
317 tsk->stack = ti;
318
319 setup_thread_stack(tsk, orig);
320 clear_user_return_notifier(tsk);
321 clear_tsk_need_resched(tsk);
322 stackend = end_of_stack(tsk);
323 *stackend = STACK_END_MAGIC; /* for overflow detection */
324
325#ifdef CONFIG_CC_STACKPROTECTOR
326 tsk->stack_canary = get_random_int();
327#endif
328
329 /*
330 * One for us, one for whoever does the "release_task()" (usually
331 * parent)
332 */
333 atomic_set(&tsk->usage, 2);
334#ifdef CONFIG_BLK_DEV_IO_TRACE
335 tsk->btrace_seq = 0;
336#endif
337 tsk->splice_pipe = NULL;
338 tsk->task_frag.page = NULL;
339
340 account_kernel_stack(ti, 1);
341
342 return tsk;
343
344free_ti:
345 free_thread_info(ti);
346free_tsk:
347 free_task_struct(tsk);
348 return NULL;
349}
350
351#ifdef CONFIG_MMU
352static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
353{
354 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
355 struct rb_node **rb_link, *rb_parent;
356 int retval;
357 unsigned long charge;
358
359 uprobe_start_dup_mmap();
360 down_write(&oldmm->mmap_sem);
361 flush_cache_dup_mm(oldmm);
362 uprobe_dup_mmap(oldmm, mm);
363 /*
364 * Not linked in yet - no deadlock potential:
365 */
366 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
367
368 mm->locked_vm = 0;
369 mm->mmap = NULL;
370 mm->vmacache_seqnum = 0;
371 mm->map_count = 0;
372 cpumask_clear(mm_cpumask(mm));
373 mm->mm_rb = RB_ROOT;
374 rb_link = &mm->mm_rb.rb_node;
375 rb_parent = NULL;
376 pprev = &mm->mmap;
377 retval = ksm_fork(mm, oldmm);
378 if (retval)
379 goto out;
380 retval = khugepaged_fork(mm, oldmm);
381 if (retval)
382 goto out;
383
384 prev = NULL;
385 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
386 struct file *file;
387
388 if (mpnt->vm_flags & VM_DONTCOPY) {
389 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
390 -vma_pages(mpnt));
391 continue;
392 }
393 charge = 0;
394 if (mpnt->vm_flags & VM_ACCOUNT) {
395 unsigned long len = vma_pages(mpnt);
396
397 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
398 goto fail_nomem;
399 charge = len;
400 }
401 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
402 if (!tmp)
403 goto fail_nomem;
404 *tmp = *mpnt;
405 INIT_LIST_HEAD(&tmp->anon_vma_chain);
406 retval = vma_dup_policy(mpnt, tmp);
407 if (retval)
408 goto fail_nomem_policy;
409 tmp->vm_mm = mm;
410 if (anon_vma_fork(tmp, mpnt))
411 goto fail_nomem_anon_vma_fork;
412 tmp->vm_flags &= ~VM_LOCKED;
413 tmp->vm_next = tmp->vm_prev = NULL;
414 file = tmp->vm_file;
415 if (file) {
416 struct inode *inode = file_inode(file);
417 struct address_space *mapping = file->f_mapping;
418
419 get_file(file);
420 if (tmp->vm_flags & VM_DENYWRITE)
421 atomic_dec(&inode->i_writecount);
422 mutex_lock(&mapping->i_mmap_mutex);
423 if (tmp->vm_flags & VM_SHARED)
424 mapping->i_mmap_writable++;
425 flush_dcache_mmap_lock(mapping);
426 /* insert tmp into the share list, just after mpnt */
427 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
428 vma_nonlinear_insert(tmp,
429 &mapping->i_mmap_nonlinear);
430 else
431 vma_interval_tree_insert_after(tmp, mpnt,
432 &mapping->i_mmap);
433 flush_dcache_mmap_unlock(mapping);
434 mutex_unlock(&mapping->i_mmap_mutex);
435 }
436
437 /*
438 * Clear hugetlb-related page reserves for children. This only
439 * affects MAP_PRIVATE mappings. Faults generated by the child
440 * are not guaranteed to succeed, even if read-only
441 */
442 if (is_vm_hugetlb_page(tmp))
443 reset_vma_resv_huge_pages(tmp);
444
445 /*
446 * Link in the new vma and copy the page table entries.
447 */
448 *pprev = tmp;
449 pprev = &tmp->vm_next;
450 tmp->vm_prev = prev;
451 prev = tmp;
452
453 __vma_link_rb(mm, tmp, rb_link, rb_parent);
454 rb_link = &tmp->vm_rb.rb_right;
455 rb_parent = &tmp->vm_rb;
456
457 mm->map_count++;
458 retval = copy_page_range(mm, oldmm, mpnt);
459
460 if (tmp->vm_ops && tmp->vm_ops->open)
461 tmp->vm_ops->open(tmp);
462
463 if (retval)
464 goto out;
465 }
466 /* a new mm has just been created */
467 arch_dup_mmap(oldmm, mm);
468 retval = 0;
469out:
470 up_write(&mm->mmap_sem);
471 flush_tlb_mm(oldmm);
472 up_write(&oldmm->mmap_sem);
473 uprobe_end_dup_mmap();
474 return retval;
475fail_nomem_anon_vma_fork:
476 mpol_put(vma_policy(tmp));
477fail_nomem_policy:
478 kmem_cache_free(vm_area_cachep, tmp);
479fail_nomem:
480 retval = -ENOMEM;
481 vm_unacct_memory(charge);
482 goto out;
483}
484
485static inline int mm_alloc_pgd(struct mm_struct *mm)
486{
487 mm->pgd = pgd_alloc(mm);
488 if (unlikely(!mm->pgd))
489 return -ENOMEM;
490 return 0;
491}
492
493static inline void mm_free_pgd(struct mm_struct *mm)
494{
495 pgd_free(mm, mm->pgd);
496}
497#else
498#define dup_mmap(mm, oldmm) (0)
499#define mm_alloc_pgd(mm) (0)
500#define mm_free_pgd(mm)
501#endif /* CONFIG_MMU */
502
503__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
504
505#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
506#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
507
508static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
509
510static int __init coredump_filter_setup(char *s)
511{
512 default_dump_filter =
513 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
514 MMF_DUMP_FILTER_MASK;
515 return 1;
516}
517
518__setup("coredump_filter=", coredump_filter_setup);
519
520#include <linux/init_task.h>
521
522static void mm_init_aio(struct mm_struct *mm)
523{
524#ifdef CONFIG_AIO
525 spin_lock_init(&mm->ioctx_lock);
526 mm->ioctx_table = NULL;
527#endif
528}
529
530static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
531{
532 atomic_set(&mm->mm_users, 1);
533 atomic_set(&mm->mm_count, 1);
534 init_rwsem(&mm->mmap_sem);
535 INIT_LIST_HEAD(&mm->mmlist);
536 mm->core_state = NULL;
537 atomic_long_set(&mm->nr_ptes, 0);
538 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
539 spin_lock_init(&mm->page_table_lock);
540 mm_init_aio(mm);
541 mm_init_owner(mm, p);
542 clear_tlb_flush_pending(mm);
543
544 if (current->mm) {
545 mm->flags = current->mm->flags & MMF_INIT_MASK;
546 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
547 } else {
548 mm->flags = default_dump_filter;
549 mm->def_flags = 0;
550 }
551
552 if (likely(!mm_alloc_pgd(mm))) {
553 mmu_notifier_mm_init(mm);
554 return mm;
555 }
556
557 free_mm(mm);
558 return NULL;
559}
560
561static void check_mm(struct mm_struct *mm)
562{
563 int i;
564
565 for (i = 0; i < NR_MM_COUNTERS; i++) {
566 long x = atomic_long_read(&mm->rss_stat.count[i]);
567
568 if (unlikely(x))
569 printk(KERN_ALERT "BUG: Bad rss-counter state "
570 "mm:%p idx:%d val:%ld\n", mm, i, x);
571 }
572
573#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
574 VM_BUG_ON(mm->pmd_huge_pte);
575#endif
576}
577
578/*
579 * Allocate and initialize an mm_struct.
580 */
581struct mm_struct *mm_alloc(void)
582{
583 struct mm_struct *mm;
584
585 mm = allocate_mm();
586 if (!mm)
587 return NULL;
588
589 memset(mm, 0, sizeof(*mm));
590 mm_init_cpumask(mm);
591 return mm_init(mm, current);
592}
593
594/*
595 * Called when the last reference to the mm
596 * is dropped: either by a lazy thread or by
597 * mmput. Free the page directory and the mm.
598 */
599void __mmdrop(struct mm_struct *mm)
600{
601 BUG_ON(mm == &init_mm);
602 mm_free_pgd(mm);
603 destroy_context(mm);
604 mmu_notifier_mm_destroy(mm);
605 check_mm(mm);
606 free_mm(mm);
607}
608EXPORT_SYMBOL_GPL(__mmdrop);
609
610/*
611 * Decrement the use count and release all resources for an mm.
612 */
613void mmput(struct mm_struct *mm)
614{
615 might_sleep();
616
617 if (atomic_dec_and_test(&mm->mm_users)) {
618 uprobe_clear_state(mm);
619 exit_aio(mm);
620 ksm_exit(mm);
621 khugepaged_exit(mm); /* must run before exit_mmap */
622 exit_mmap(mm);
623 set_mm_exe_file(mm, NULL);
624 if (!list_empty(&mm->mmlist)) {
625 spin_lock(&mmlist_lock);
626 list_del(&mm->mmlist);
627 spin_unlock(&mmlist_lock);
628 }
629 if (mm->binfmt)
630 module_put(mm->binfmt->module);
631 mmdrop(mm);
632 }
633}
634EXPORT_SYMBOL_GPL(mmput);
635
636void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
637{
638 if (new_exe_file)
639 get_file(new_exe_file);
640 if (mm->exe_file)
641 fput(mm->exe_file);
642 mm->exe_file = new_exe_file;
643}
644
645struct file *get_mm_exe_file(struct mm_struct *mm)
646{
647 struct file *exe_file;
648
649 /* We need mmap_sem to protect against races with removal of exe_file */
650 down_read(&mm->mmap_sem);
651 exe_file = mm->exe_file;
652 if (exe_file)
653 get_file(exe_file);
654 up_read(&mm->mmap_sem);
655 return exe_file;
656}
657
658static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
659{
660 /* It's safe to write the exe_file pointer without exe_file_lock because
661 * this is called during fork when the task is not yet in /proc */
662 newmm->exe_file = get_mm_exe_file(oldmm);
663}
664
665/**
666 * get_task_mm - acquire a reference to the task's mm
667 *
668 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
669 * this kernel workthread has transiently adopted a user mm with use_mm,
670 * to do its AIO) is not set and if so returns a reference to it, after
671 * bumping up the use count. User must release the mm via mmput()
672 * after use. Typically used by /proc and ptrace.
673 */
674struct mm_struct *get_task_mm(struct task_struct *task)
675{
676 struct mm_struct *mm;
677
678 task_lock(task);
679 mm = task->mm;
680 if (mm) {
681 if (task->flags & PF_KTHREAD)
682 mm = NULL;
683 else
684 atomic_inc(&mm->mm_users);
685 }
686 task_unlock(task);
687 return mm;
688}
689EXPORT_SYMBOL_GPL(get_task_mm);
690
691struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
692{
693 struct mm_struct *mm;
694 int err;
695
696 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
697 if (err)
698 return ERR_PTR(err);
699
700 mm = get_task_mm(task);
701 if (mm && mm != current->mm &&
702 !ptrace_may_access(task, mode)) {
703 mmput(mm);
704 mm = ERR_PTR(-EACCES);
705 }
706 mutex_unlock(&task->signal->cred_guard_mutex);
707
708 return mm;
709}
710
711static void complete_vfork_done(struct task_struct *tsk)
712{
713 struct completion *vfork;
714
715 task_lock(tsk);
716 vfork = tsk->vfork_done;
717 if (likely(vfork)) {
718 tsk->vfork_done = NULL;
719 complete(vfork);
720 }
721 task_unlock(tsk);
722}
723
724static int wait_for_vfork_done(struct task_struct *child,
725 struct completion *vfork)
726{
727 int killed;
728
729 freezer_do_not_count();
730 killed = wait_for_completion_killable(vfork);
731 freezer_count();
732
733 if (killed) {
734 task_lock(child);
735 child->vfork_done = NULL;
736 task_unlock(child);
737 }
738
739 put_task_struct(child);
740 return killed;
741}
742
743/* Please note the differences between mmput and mm_release.
744 * mmput is called whenever we stop holding onto a mm_struct,
745 * error success whatever.
746 *
747 * mm_release is called after a mm_struct has been removed
748 * from the current process.
749 *
750 * This difference is important for error handling, when we
751 * only half set up a mm_struct for a new process and need to restore
752 * the old one. Because we mmput the new mm_struct before
753 * restoring the old one. . .
754 * Eric Biederman 10 January 1998
755 */
756void mm_release(struct task_struct *tsk, struct mm_struct *mm)
757{
758 /* Get rid of any futexes when releasing the mm */
759#ifdef CONFIG_FUTEX
760 if (unlikely(tsk->robust_list)) {
761 exit_robust_list(tsk);
762 tsk->robust_list = NULL;
763 }
764#ifdef CONFIG_COMPAT
765 if (unlikely(tsk->compat_robust_list)) {
766 compat_exit_robust_list(tsk);
767 tsk->compat_robust_list = NULL;
768 }
769#endif
770 if (unlikely(!list_empty(&tsk->pi_state_list)))
771 exit_pi_state_list(tsk);
772#endif
773
774 uprobe_free_utask(tsk);
775
776 /* Get rid of any cached register state */
777 deactivate_mm(tsk, mm);
778
779 /*
780 * If we're exiting normally, clear a user-space tid field if
781 * requested. We leave this alone when dying by signal, to leave
782 * the value intact in a core dump, and to save the unnecessary
783 * trouble, say, a killed vfork parent shouldn't touch this mm.
784 * Userland only wants this done for a sys_exit.
785 */
786 if (tsk->clear_child_tid) {
787 if (!(tsk->flags & PF_SIGNALED) &&
788 atomic_read(&mm->mm_users) > 1) {
789 /*
790 * We don't check the error code - if userspace has
791 * not set up a proper pointer then tough luck.
792 */
793 put_user(0, tsk->clear_child_tid);
794 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
795 1, NULL, NULL, 0);
796 }
797 tsk->clear_child_tid = NULL;
798 }
799
800 /*
801 * All done, finally we can wake up parent and return this mm to him.
802 * Also kthread_stop() uses this completion for synchronization.
803 */
804 if (tsk->vfork_done)
805 complete_vfork_done(tsk);
806}
807
808/*
809 * Allocate a new mm structure and copy contents from the
810 * mm structure of the passed in task structure.
811 */
812static struct mm_struct *dup_mm(struct task_struct *tsk)
813{
814 struct mm_struct *mm, *oldmm = current->mm;
815 int err;
816
817 mm = allocate_mm();
818 if (!mm)
819 goto fail_nomem;
820
821 memcpy(mm, oldmm, sizeof(*mm));
822 mm_init_cpumask(mm);
823
824#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
825 mm->pmd_huge_pte = NULL;
826#endif
827 if (!mm_init(mm, tsk))
828 goto fail_nomem;
829
830 if (init_new_context(tsk, mm))
831 goto fail_nocontext;
832
833 dup_mm_exe_file(oldmm, mm);
834
835 err = dup_mmap(mm, oldmm);
836 if (err)
837 goto free_pt;
838
839 mm->hiwater_rss = get_mm_rss(mm);
840 mm->hiwater_vm = mm->total_vm;
841
842 if (mm->binfmt && !try_module_get(mm->binfmt->module))
843 goto free_pt;
844
845 return mm;
846
847free_pt:
848 /* don't put binfmt in mmput, we haven't got module yet */
849 mm->binfmt = NULL;
850 mmput(mm);
851
852fail_nomem:
853 return NULL;
854
855fail_nocontext:
856 /*
857 * If init_new_context() failed, we cannot use mmput() to free the mm
858 * because it calls destroy_context()
859 */
860 mm_free_pgd(mm);
861 free_mm(mm);
862 return NULL;
863}
864
865static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
866{
867 struct mm_struct *mm, *oldmm;
868 int retval;
869
870 tsk->min_flt = tsk->maj_flt = 0;
871 tsk->nvcsw = tsk->nivcsw = 0;
872#ifdef CONFIG_DETECT_HUNG_TASK
873 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
874#endif
875
876 tsk->mm = NULL;
877 tsk->active_mm = NULL;
878
879 /*
880 * Are we cloning a kernel thread?
881 *
882 * We need to steal a active VM for that..
883 */
884 oldmm = current->mm;
885 if (!oldmm)
886 return 0;
887
888 /* initialize the new vmacache entries */
889 vmacache_flush(tsk);
890
891 if (clone_flags & CLONE_VM) {
892 atomic_inc(&oldmm->mm_users);
893 mm = oldmm;
894 goto good_mm;
895 }
896
897 retval = -ENOMEM;
898 mm = dup_mm(tsk);
899 if (!mm)
900 goto fail_nomem;
901
902good_mm:
903 tsk->mm = mm;
904 tsk->active_mm = mm;
905 return 0;
906
907fail_nomem:
908 return retval;
909}
910
911static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
912{
913 struct fs_struct *fs = current->fs;
914 if (clone_flags & CLONE_FS) {
915 /* tsk->fs is already what we want */
916 spin_lock(&fs->lock);
917 if (fs->in_exec) {
918 spin_unlock(&fs->lock);
919 return -EAGAIN;
920 }
921 fs->users++;
922 spin_unlock(&fs->lock);
923 return 0;
924 }
925 tsk->fs = copy_fs_struct(fs);
926 if (!tsk->fs)
927 return -ENOMEM;
928 return 0;
929}
930
931static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
932{
933 struct files_struct *oldf, *newf;
934 int error = 0;
935
936 /*
937 * A background process may not have any files ...
938 */
939 oldf = current->files;
940 if (!oldf)
941 goto out;
942
943 if (clone_flags & CLONE_FILES) {
944 atomic_inc(&oldf->count);
945 goto out;
946 }
947
948 newf = dup_fd(oldf, &error);
949 if (!newf)
950 goto out;
951
952 tsk->files = newf;
953 error = 0;
954out:
955 return error;
956}
957
958static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
959{
960#ifdef CONFIG_BLOCK
961 struct io_context *ioc = current->io_context;
962 struct io_context *new_ioc;
963
964 if (!ioc)
965 return 0;
966 /*
967 * Share io context with parent, if CLONE_IO is set
968 */
969 if (clone_flags & CLONE_IO) {
970 ioc_task_link(ioc);
971 tsk->io_context = ioc;
972 } else if (ioprio_valid(ioc->ioprio)) {
973 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
974 if (unlikely(!new_ioc))
975 return -ENOMEM;
976
977 new_ioc->ioprio = ioc->ioprio;
978 put_io_context(new_ioc);
979 }
980#endif
981 return 0;
982}
983
984static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
985{
986 struct sighand_struct *sig;
987
988 if (clone_flags & CLONE_SIGHAND) {
989 atomic_inc(¤t->sighand->count);
990 return 0;
991 }
992 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
993 rcu_assign_pointer(tsk->sighand, sig);
994 if (!sig)
995 return -ENOMEM;
996 atomic_set(&sig->count, 1);
997 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
998 return 0;
999}
1000
1001void __cleanup_sighand(struct sighand_struct *sighand)
1002{
1003 if (atomic_dec_and_test(&sighand->count)) {
1004 signalfd_cleanup(sighand);
1005 kmem_cache_free(sighand_cachep, sighand);
1006 }
1007}
1008
1009
1010/*
1011 * Initialize POSIX timer handling for a thread group.
1012 */
1013static void posix_cpu_timers_init_group(struct signal_struct *sig)
1014{
1015 unsigned long cpu_limit;
1016
1017 /* Thread group counters. */
1018 thread_group_cputime_init(sig);
1019
1020 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1021 if (cpu_limit != RLIM_INFINITY) {
1022 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1023 sig->cputimer.running = 1;
1024 }
1025
1026 /* The timer lists. */
1027 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1028 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1029 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1030}
1031
1032static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1033{
1034 struct signal_struct *sig;
1035
1036 if (clone_flags & CLONE_THREAD)
1037 return 0;
1038
1039 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1040 tsk->signal = sig;
1041 if (!sig)
1042 return -ENOMEM;
1043
1044 sig->nr_threads = 1;
1045 atomic_set(&sig->live, 1);
1046 atomic_set(&sig->sigcnt, 1);
1047
1048 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1049 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1050 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1051
1052 init_waitqueue_head(&sig->wait_chldexit);
1053 sig->curr_target = tsk;
1054 init_sigpending(&sig->shared_pending);
1055 INIT_LIST_HEAD(&sig->posix_timers);
1056
1057 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1058 sig->real_timer.function = it_real_fn;
1059
1060 task_lock(current->group_leader);
1061 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1062 task_unlock(current->group_leader);
1063
1064 posix_cpu_timers_init_group(sig);
1065
1066 tty_audit_fork(sig);
1067 sched_autogroup_fork(sig);
1068
1069#ifdef CONFIG_CGROUPS
1070 init_rwsem(&sig->group_rwsem);
1071#endif
1072
1073 sig->oom_score_adj = current->signal->oom_score_adj;
1074 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1075
1076 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1077 current->signal->is_child_subreaper;
1078
1079 mutex_init(&sig->cred_guard_mutex);
1080
1081 return 0;
1082}
1083
1084SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1085{
1086 current->clear_child_tid = tidptr;
1087
1088 return task_pid_vnr(current);
1089}
1090
1091static void rt_mutex_init_task(struct task_struct *p)
1092{
1093 raw_spin_lock_init(&p->pi_lock);
1094#ifdef CONFIG_RT_MUTEXES
1095 p->pi_waiters = RB_ROOT;
1096 p->pi_waiters_leftmost = NULL;
1097 p->pi_blocked_on = NULL;
1098 p->pi_top_task = NULL;
1099#endif
1100}
1101
1102#ifdef CONFIG_MM_OWNER
1103void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1104{
1105 mm->owner = p;
1106}
1107#endif /* CONFIG_MM_OWNER */
1108
1109/*
1110 * Initialize POSIX timer handling for a single task.
1111 */
1112static void posix_cpu_timers_init(struct task_struct *tsk)
1113{
1114 tsk->cputime_expires.prof_exp = 0;
1115 tsk->cputime_expires.virt_exp = 0;
1116 tsk->cputime_expires.sched_exp = 0;
1117 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1118 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1119 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1120}
1121
1122static inline void
1123init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1124{
1125 task->pids[type].pid = pid;
1126}
1127
1128/*
1129 * This creates a new process as a copy of the old one,
1130 * but does not actually start it yet.
1131 *
1132 * It copies the registers, and all the appropriate
1133 * parts of the process environment (as per the clone
1134 * flags). The actual kick-off is left to the caller.
1135 */
1136static struct task_struct *copy_process(unsigned long clone_flags,
1137 unsigned long stack_start,
1138 unsigned long stack_size,
1139 int __user *child_tidptr,
1140 struct pid *pid,
1141 int trace)
1142{
1143 int retval;
1144 struct task_struct *p;
1145
1146 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1147 return ERR_PTR(-EINVAL);
1148
1149 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1150 return ERR_PTR(-EINVAL);
1151
1152 /*
1153 * Thread groups must share signals as well, and detached threads
1154 * can only be started up within the thread group.
1155 */
1156 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1157 return ERR_PTR(-EINVAL);
1158
1159 /*
1160 * Shared signal handlers imply shared VM. By way of the above,
1161 * thread groups also imply shared VM. Blocking this case allows
1162 * for various simplifications in other code.
1163 */
1164 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1165 return ERR_PTR(-EINVAL);
1166
1167 /*
1168 * Siblings of global init remain as zombies on exit since they are
1169 * not reaped by their parent (swapper). To solve this and to avoid
1170 * multi-rooted process trees, prevent global and container-inits
1171 * from creating siblings.
1172 */
1173 if ((clone_flags & CLONE_PARENT) &&
1174 current->signal->flags & SIGNAL_UNKILLABLE)
1175 return ERR_PTR(-EINVAL);
1176
1177 /*
1178 * If the new process will be in a different pid or user namespace
1179 * do not allow it to share a thread group or signal handlers or
1180 * parent with the forking task.
1181 */
1182 if (clone_flags & CLONE_SIGHAND) {
1183 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1184 (task_active_pid_ns(current) !=
1185 current->nsproxy->pid_ns_for_children))
1186 return ERR_PTR(-EINVAL);
1187 }
1188
1189 retval = security_task_create(clone_flags);
1190 if (retval)
1191 goto fork_out;
1192
1193 retval = -ENOMEM;
1194 p = dup_task_struct(current);
1195 if (!p)
1196 goto fork_out;
1197
1198 ftrace_graph_init_task(p);
1199 get_seccomp_filter(p);
1200
1201 rt_mutex_init_task(p);
1202
1203#ifdef CONFIG_PROVE_LOCKING
1204 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1205 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1206#endif
1207 retval = -EAGAIN;
1208 if (atomic_read(&p->real_cred->user->processes) >=
1209 task_rlimit(p, RLIMIT_NPROC)) {
1210 if (p->real_cred->user != INIT_USER &&
1211 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1212 goto bad_fork_free;
1213 }
1214 current->flags &= ~PF_NPROC_EXCEEDED;
1215
1216 retval = copy_creds(p, clone_flags);
1217 if (retval < 0)
1218 goto bad_fork_free;
1219
1220 /*
1221 * If multiple threads are within copy_process(), then this check
1222 * triggers too late. This doesn't hurt, the check is only there
1223 * to stop root fork bombs.
1224 */
1225 retval = -EAGAIN;
1226 if (nr_threads >= max_threads)
1227 goto bad_fork_cleanup_count;
1228
1229 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1230 goto bad_fork_cleanup_count;
1231
1232 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1233 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1234 p->flags |= PF_FORKNOEXEC;
1235 INIT_LIST_HEAD(&p->children);
1236 INIT_LIST_HEAD(&p->sibling);
1237 rcu_copy_process(p);
1238 p->vfork_done = NULL;
1239 spin_lock_init(&p->alloc_lock);
1240
1241 init_sigpending(&p->pending);
1242
1243 p->utime = p->stime = p->gtime = 0;
1244 p->utimescaled = p->stimescaled = 0;
1245#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1246 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1247#endif
1248#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1249 seqlock_init(&p->vtime_seqlock);
1250 p->vtime_snap = 0;
1251 p->vtime_snap_whence = VTIME_SLEEPING;
1252#endif
1253
1254#if defined(SPLIT_RSS_COUNTING)
1255 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1256#endif
1257
1258 p->default_timer_slack_ns = current->timer_slack_ns;
1259
1260 task_io_accounting_init(&p->ioac);
1261 acct_clear_integrals(p);
1262
1263 posix_cpu_timers_init(p);
1264
1265 do_posix_clock_monotonic_gettime(&p->start_time);
1266 p->real_start_time = p->start_time;
1267 monotonic_to_bootbased(&p->real_start_time);
1268 p->io_context = NULL;
1269 p->audit_context = NULL;
1270 if (clone_flags & CLONE_THREAD)
1271 threadgroup_change_begin(current);
1272 cgroup_fork(p);
1273#ifdef CONFIG_NUMA
1274 p->mempolicy = mpol_dup(p->mempolicy);
1275 if (IS_ERR(p->mempolicy)) {
1276 retval = PTR_ERR(p->mempolicy);
1277 p->mempolicy = NULL;
1278 goto bad_fork_cleanup_threadgroup_lock;
1279 }
1280#endif
1281#ifdef CONFIG_CPUSETS
1282 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1283 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1284 seqcount_init(&p->mems_allowed_seq);
1285#endif
1286#ifdef CONFIG_TRACE_IRQFLAGS
1287 p->irq_events = 0;
1288 p->hardirqs_enabled = 0;
1289 p->hardirq_enable_ip = 0;
1290 p->hardirq_enable_event = 0;
1291 p->hardirq_disable_ip = _THIS_IP_;
1292 p->hardirq_disable_event = 0;
1293 p->softirqs_enabled = 1;
1294 p->softirq_enable_ip = _THIS_IP_;
1295 p->softirq_enable_event = 0;
1296 p->softirq_disable_ip = 0;
1297 p->softirq_disable_event = 0;
1298 p->hardirq_context = 0;
1299 p->softirq_context = 0;
1300#endif
1301#ifdef CONFIG_LOCKDEP
1302 p->lockdep_depth = 0; /* no locks held yet */
1303 p->curr_chain_key = 0;
1304 p->lockdep_recursion = 0;
1305#endif
1306
1307#ifdef CONFIG_DEBUG_MUTEXES
1308 p->blocked_on = NULL; /* not blocked yet */
1309#endif
1310#ifdef CONFIG_MEMCG
1311 p->memcg_batch.do_batch = 0;
1312 p->memcg_batch.memcg = NULL;
1313#endif
1314#ifdef CONFIG_BCACHE
1315 p->sequential_io = 0;
1316 p->sequential_io_avg = 0;
1317#endif
1318
1319 /* Perform scheduler related setup. Assign this task to a CPU. */
1320 retval = sched_fork(clone_flags, p);
1321 if (retval)
1322 goto bad_fork_cleanup_policy;
1323
1324 retval = perf_event_init_task(p);
1325 if (retval)
1326 goto bad_fork_cleanup_policy;
1327 retval = audit_alloc(p);
1328 if (retval)
1329 goto bad_fork_cleanup_policy;
1330 /* copy all the process information */
1331 retval = copy_semundo(clone_flags, p);
1332 if (retval)
1333 goto bad_fork_cleanup_audit;
1334 retval = copy_files(clone_flags, p);
1335 if (retval)
1336 goto bad_fork_cleanup_semundo;
1337 retval = copy_fs(clone_flags, p);
1338 if (retval)
1339 goto bad_fork_cleanup_files;
1340 retval = copy_sighand(clone_flags, p);
1341 if (retval)
1342 goto bad_fork_cleanup_fs;
1343 retval = copy_signal(clone_flags, p);
1344 if (retval)
1345 goto bad_fork_cleanup_sighand;
1346 retval = copy_mm(clone_flags, p);
1347 if (retval)
1348 goto bad_fork_cleanup_signal;
1349 retval = copy_namespaces(clone_flags, p);
1350 if (retval)
1351 goto bad_fork_cleanup_mm;
1352 retval = copy_io(clone_flags, p);
1353 if (retval)
1354 goto bad_fork_cleanup_namespaces;
1355 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1356 if (retval)
1357 goto bad_fork_cleanup_io;
1358
1359 if (pid != &init_struct_pid) {
1360 retval = -ENOMEM;
1361 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1362 if (!pid)
1363 goto bad_fork_cleanup_io;
1364 }
1365
1366 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1367 /*
1368 * Clear TID on mm_release()?
1369 */
1370 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1371#ifdef CONFIG_BLOCK
1372 p->plug = NULL;
1373#endif
1374#ifdef CONFIG_FUTEX
1375 p->robust_list = NULL;
1376#ifdef CONFIG_COMPAT
1377 p->compat_robust_list = NULL;
1378#endif
1379 INIT_LIST_HEAD(&p->pi_state_list);
1380 p->pi_state_cache = NULL;
1381#endif
1382 /*
1383 * sigaltstack should be cleared when sharing the same VM
1384 */
1385 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1386 p->sas_ss_sp = p->sas_ss_size = 0;
1387
1388 /*
1389 * Syscall tracing and stepping should be turned off in the
1390 * child regardless of CLONE_PTRACE.
1391 */
1392 user_disable_single_step(p);
1393 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1394#ifdef TIF_SYSCALL_EMU
1395 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1396#endif
1397 clear_all_latency_tracing(p);
1398
1399 /* ok, now we should be set up.. */
1400 p->pid = pid_nr(pid);
1401 if (clone_flags & CLONE_THREAD) {
1402 p->exit_signal = -1;
1403 p->group_leader = current->group_leader;
1404 p->tgid = current->tgid;
1405 } else {
1406 if (clone_flags & CLONE_PARENT)
1407 p->exit_signal = current->group_leader->exit_signal;
1408 else
1409 p->exit_signal = (clone_flags & CSIGNAL);
1410 p->group_leader = p;
1411 p->tgid = p->pid;
1412 }
1413
1414 p->nr_dirtied = 0;
1415 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1416 p->dirty_paused_when = 0;
1417
1418 p->pdeath_signal = 0;
1419 INIT_LIST_HEAD(&p->thread_group);
1420 p->task_works = NULL;
1421
1422 /*
1423 * Make it visible to the rest of the system, but dont wake it up yet.
1424 * Need tasklist lock for parent etc handling!
1425 */
1426 write_lock_irq(&tasklist_lock);
1427
1428 /* CLONE_PARENT re-uses the old parent */
1429 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1430 p->real_parent = current->real_parent;
1431 p->parent_exec_id = current->parent_exec_id;
1432 } else {
1433 p->real_parent = current;
1434 p->parent_exec_id = current->self_exec_id;
1435 }
1436
1437 spin_lock(¤t->sighand->siglock);
1438
1439 /*
1440 * Process group and session signals need to be delivered to just the
1441 * parent before the fork or both the parent and the child after the
1442 * fork. Restart if a signal comes in before we add the new process to
1443 * it's process group.
1444 * A fatal signal pending means that current will exit, so the new
1445 * thread can't slip out of an OOM kill (or normal SIGKILL).
1446 */
1447 recalc_sigpending();
1448 if (signal_pending(current)) {
1449 spin_unlock(¤t->sighand->siglock);
1450 write_unlock_irq(&tasklist_lock);
1451 retval = -ERESTARTNOINTR;
1452 goto bad_fork_free_pid;
1453 }
1454
1455 if (likely(p->pid)) {
1456 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1457
1458 init_task_pid(p, PIDTYPE_PID, pid);
1459 if (thread_group_leader(p)) {
1460 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1461 init_task_pid(p, PIDTYPE_SID, task_session(current));
1462
1463 if (is_child_reaper(pid)) {
1464 ns_of_pid(pid)->child_reaper = p;
1465 p->signal->flags |= SIGNAL_UNKILLABLE;
1466 }
1467
1468 p->signal->leader_pid = pid;
1469 p->signal->tty = tty_kref_get(current->signal->tty);
1470 list_add_tail(&p->sibling, &p->real_parent->children);
1471 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1472 attach_pid(p, PIDTYPE_PGID);
1473 attach_pid(p, PIDTYPE_SID);
1474 __this_cpu_inc(process_counts);
1475 } else {
1476 current->signal->nr_threads++;
1477 atomic_inc(¤t->signal->live);
1478 atomic_inc(¤t->signal->sigcnt);
1479 list_add_tail_rcu(&p->thread_group,
1480 &p->group_leader->thread_group);
1481 list_add_tail_rcu(&p->thread_node,
1482 &p->signal->thread_head);
1483 }
1484 attach_pid(p, PIDTYPE_PID);
1485 nr_threads++;
1486 }
1487
1488 total_forks++;
1489 spin_unlock(¤t->sighand->siglock);
1490 write_unlock_irq(&tasklist_lock);
1491 proc_fork_connector(p);
1492 cgroup_post_fork(p);
1493 if (clone_flags & CLONE_THREAD)
1494 threadgroup_change_end(current);
1495 perf_event_fork(p);
1496
1497 trace_task_newtask(p, clone_flags);
1498 uprobe_copy_process(p, clone_flags);
1499
1500 return p;
1501
1502bad_fork_free_pid:
1503 if (pid != &init_struct_pid)
1504 free_pid(pid);
1505bad_fork_cleanup_io:
1506 if (p->io_context)
1507 exit_io_context(p);
1508bad_fork_cleanup_namespaces:
1509 exit_task_namespaces(p);
1510bad_fork_cleanup_mm:
1511 if (p->mm)
1512 mmput(p->mm);
1513bad_fork_cleanup_signal:
1514 if (!(clone_flags & CLONE_THREAD))
1515 free_signal_struct(p->signal);
1516bad_fork_cleanup_sighand:
1517 __cleanup_sighand(p->sighand);
1518bad_fork_cleanup_fs:
1519 exit_fs(p); /* blocking */
1520bad_fork_cleanup_files:
1521 exit_files(p); /* blocking */
1522bad_fork_cleanup_semundo:
1523 exit_sem(p);
1524bad_fork_cleanup_audit:
1525 audit_free(p);
1526bad_fork_cleanup_policy:
1527 perf_event_free_task(p);
1528#ifdef CONFIG_NUMA
1529 mpol_put(p->mempolicy);
1530bad_fork_cleanup_threadgroup_lock:
1531#endif
1532 if (clone_flags & CLONE_THREAD)
1533 threadgroup_change_end(current);
1534 delayacct_tsk_free(p);
1535 module_put(task_thread_info(p)->exec_domain->module);
1536bad_fork_cleanup_count:
1537 atomic_dec(&p->cred->user->processes);
1538 exit_creds(p);
1539bad_fork_free:
1540 free_task(p);
1541fork_out:
1542 return ERR_PTR(retval);
1543}
1544
1545static inline void init_idle_pids(struct pid_link *links)
1546{
1547 enum pid_type type;
1548
1549 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1550 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1551 links[type].pid = &init_struct_pid;
1552 }
1553}
1554
1555struct task_struct *fork_idle(int cpu)
1556{
1557 struct task_struct *task;
1558 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1559 if (!IS_ERR(task)) {
1560 init_idle_pids(task->pids);
1561 init_idle(task, cpu);
1562 }
1563
1564 return task;
1565}
1566
1567/*
1568 * Ok, this is the main fork-routine.
1569 *
1570 * It copies the process, and if successful kick-starts
1571 * it and waits for it to finish using the VM if required.
1572 */
1573long do_fork(unsigned long clone_flags,
1574 unsigned long stack_start,
1575 unsigned long stack_size,
1576 int __user *parent_tidptr,
1577 int __user *child_tidptr)
1578{
1579 struct task_struct *p;
1580 int trace = 0;
1581 long nr;
1582
1583 /*
1584 * Determine whether and which event to report to ptracer. When
1585 * called from kernel_thread or CLONE_UNTRACED is explicitly
1586 * requested, no event is reported; otherwise, report if the event
1587 * for the type of forking is enabled.
1588 */
1589 if (!(clone_flags & CLONE_UNTRACED)) {
1590 if (clone_flags & CLONE_VFORK)
1591 trace = PTRACE_EVENT_VFORK;
1592 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1593 trace = PTRACE_EVENT_CLONE;
1594 else
1595 trace = PTRACE_EVENT_FORK;
1596
1597 if (likely(!ptrace_event_enabled(current, trace)))
1598 trace = 0;
1599 }
1600
1601 p = copy_process(clone_flags, stack_start, stack_size,
1602 child_tidptr, NULL, trace);
1603 /*
1604 * Do this prior waking up the new thread - the thread pointer
1605 * might get invalid after that point, if the thread exits quickly.
1606 */
1607 if (!IS_ERR(p)) {
1608 struct completion vfork;
1609
1610 trace_sched_process_fork(current, p);
1611
1612 nr = task_pid_vnr(p);
1613
1614 if (clone_flags & CLONE_PARENT_SETTID)
1615 put_user(nr, parent_tidptr);
1616
1617 if (clone_flags & CLONE_VFORK) {
1618 p->vfork_done = &vfork;
1619 init_completion(&vfork);
1620 get_task_struct(p);
1621 }
1622
1623 wake_up_new_task(p);
1624
1625 /* forking complete and child started to run, tell ptracer */
1626 if (unlikely(trace))
1627 ptrace_event(trace, nr);
1628
1629 if (clone_flags & CLONE_VFORK) {
1630 if (!wait_for_vfork_done(p, &vfork))
1631 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1632 }
1633 } else {
1634 nr = PTR_ERR(p);
1635 }
1636 return nr;
1637}
1638
1639/*
1640 * Create a kernel thread.
1641 */
1642pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1643{
1644 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1645 (unsigned long)arg, NULL, NULL);
1646}
1647
1648#ifdef __ARCH_WANT_SYS_FORK
1649SYSCALL_DEFINE0(fork)
1650{
1651#ifdef CONFIG_MMU
1652 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1653#else
1654 /* can not support in nommu mode */
1655 return -EINVAL;
1656#endif
1657}
1658#endif
1659
1660#ifdef __ARCH_WANT_SYS_VFORK
1661SYSCALL_DEFINE0(vfork)
1662{
1663 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1664 0, NULL, NULL);
1665}
1666#endif
1667
1668#ifdef __ARCH_WANT_SYS_CLONE
1669#ifdef CONFIG_CLONE_BACKWARDS
1670SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1671 int __user *, parent_tidptr,
1672 int, tls_val,
1673 int __user *, child_tidptr)
1674#elif defined(CONFIG_CLONE_BACKWARDS2)
1675SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1676 int __user *, parent_tidptr,
1677 int __user *, child_tidptr,
1678 int, tls_val)
1679#elif defined(CONFIG_CLONE_BACKWARDS3)
1680SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1681 int, stack_size,
1682 int __user *, parent_tidptr,
1683 int __user *, child_tidptr,
1684 int, tls_val)
1685#else
1686SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1687 int __user *, parent_tidptr,
1688 int __user *, child_tidptr,
1689 int, tls_val)
1690#endif
1691{
1692 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1693}
1694#endif
1695
1696#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1697#define ARCH_MIN_MMSTRUCT_ALIGN 0
1698#endif
1699
1700static void sighand_ctor(void *data)
1701{
1702 struct sighand_struct *sighand = data;
1703
1704 spin_lock_init(&sighand->siglock);
1705 init_waitqueue_head(&sighand->signalfd_wqh);
1706}
1707
1708void __init proc_caches_init(void)
1709{
1710 sighand_cachep = kmem_cache_create("sighand_cache",
1711 sizeof(struct sighand_struct), 0,
1712 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1713 SLAB_NOTRACK, sighand_ctor);
1714 signal_cachep = kmem_cache_create("signal_cache",
1715 sizeof(struct signal_struct), 0,
1716 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1717 files_cachep = kmem_cache_create("files_cache",
1718 sizeof(struct files_struct), 0,
1719 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1720 fs_cachep = kmem_cache_create("fs_cache",
1721 sizeof(struct fs_struct), 0,
1722 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1723 /*
1724 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1725 * whole struct cpumask for the OFFSTACK case. We could change
1726 * this to *only* allocate as much of it as required by the
1727 * maximum number of CPU's we can ever have. The cpumask_allocation
1728 * is at the end of the structure, exactly for that reason.
1729 */
1730 mm_cachep = kmem_cache_create("mm_struct",
1731 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1732 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1733 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1734 mmap_init();
1735 nsproxy_cache_init();
1736}
1737
1738/*
1739 * Check constraints on flags passed to the unshare system call.
1740 */
1741static int check_unshare_flags(unsigned long unshare_flags)
1742{
1743 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1744 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1745 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1746 CLONE_NEWUSER|CLONE_NEWPID))
1747 return -EINVAL;
1748 /*
1749 * Not implemented, but pretend it works if there is nothing to
1750 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1751 * needs to unshare vm.
1752 */
1753 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1754 /* FIXME: get_task_mm() increments ->mm_users */
1755 if (atomic_read(¤t->mm->mm_users) > 1)
1756 return -EINVAL;
1757 }
1758
1759 return 0;
1760}
1761
1762/*
1763 * Unshare the filesystem structure if it is being shared
1764 */
1765static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1766{
1767 struct fs_struct *fs = current->fs;
1768
1769 if (!(unshare_flags & CLONE_FS) || !fs)
1770 return 0;
1771
1772 /* don't need lock here; in the worst case we'll do useless copy */
1773 if (fs->users == 1)
1774 return 0;
1775
1776 *new_fsp = copy_fs_struct(fs);
1777 if (!*new_fsp)
1778 return -ENOMEM;
1779
1780 return 0;
1781}
1782
1783/*
1784 * Unshare file descriptor table if it is being shared
1785 */
1786static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1787{
1788 struct files_struct *fd = current->files;
1789 int error = 0;
1790
1791 if ((unshare_flags & CLONE_FILES) &&
1792 (fd && atomic_read(&fd->count) > 1)) {
1793 *new_fdp = dup_fd(fd, &error);
1794 if (!*new_fdp)
1795 return error;
1796 }
1797
1798 return 0;
1799}
1800
1801/*
1802 * unshare allows a process to 'unshare' part of the process
1803 * context which was originally shared using clone. copy_*
1804 * functions used by do_fork() cannot be used here directly
1805 * because they modify an inactive task_struct that is being
1806 * constructed. Here we are modifying the current, active,
1807 * task_struct.
1808 */
1809SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1810{
1811 struct fs_struct *fs, *new_fs = NULL;
1812 struct files_struct *fd, *new_fd = NULL;
1813 struct cred *new_cred = NULL;
1814 struct nsproxy *new_nsproxy = NULL;
1815 int do_sysvsem = 0;
1816 int err;
1817
1818 /*
1819 * If unsharing a user namespace must also unshare the thread.
1820 */
1821 if (unshare_flags & CLONE_NEWUSER)
1822 unshare_flags |= CLONE_THREAD | CLONE_FS;
1823 /*
1824 * If unsharing a thread from a thread group, must also unshare vm.
1825 */
1826 if (unshare_flags & CLONE_THREAD)
1827 unshare_flags |= CLONE_VM;
1828 /*
1829 * If unsharing vm, must also unshare signal handlers.
1830 */
1831 if (unshare_flags & CLONE_VM)
1832 unshare_flags |= CLONE_SIGHAND;
1833 /*
1834 * If unsharing namespace, must also unshare filesystem information.
1835 */
1836 if (unshare_flags & CLONE_NEWNS)
1837 unshare_flags |= CLONE_FS;
1838
1839 err = check_unshare_flags(unshare_flags);
1840 if (err)
1841 goto bad_unshare_out;
1842 /*
1843 * CLONE_NEWIPC must also detach from the undolist: after switching
1844 * to a new ipc namespace, the semaphore arrays from the old
1845 * namespace are unreachable.
1846 */
1847 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1848 do_sysvsem = 1;
1849 err = unshare_fs(unshare_flags, &new_fs);
1850 if (err)
1851 goto bad_unshare_out;
1852 err = unshare_fd(unshare_flags, &new_fd);
1853 if (err)
1854 goto bad_unshare_cleanup_fs;
1855 err = unshare_userns(unshare_flags, &new_cred);
1856 if (err)
1857 goto bad_unshare_cleanup_fd;
1858 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1859 new_cred, new_fs);
1860 if (err)
1861 goto bad_unshare_cleanup_cred;
1862
1863 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1864 if (do_sysvsem) {
1865 /*
1866 * CLONE_SYSVSEM is equivalent to sys_exit().
1867 */
1868 exit_sem(current);
1869 }
1870
1871 if (new_nsproxy)
1872 switch_task_namespaces(current, new_nsproxy);
1873
1874 task_lock(current);
1875
1876 if (new_fs) {
1877 fs = current->fs;
1878 spin_lock(&fs->lock);
1879 current->fs = new_fs;
1880 if (--fs->users)
1881 new_fs = NULL;
1882 else
1883 new_fs = fs;
1884 spin_unlock(&fs->lock);
1885 }
1886
1887 if (new_fd) {
1888 fd = current->files;
1889 current->files = new_fd;
1890 new_fd = fd;
1891 }
1892
1893 task_unlock(current);
1894
1895 if (new_cred) {
1896 /* Install the new user namespace */
1897 commit_creds(new_cred);
1898 new_cred = NULL;
1899 }
1900 }
1901
1902bad_unshare_cleanup_cred:
1903 if (new_cred)
1904 put_cred(new_cred);
1905bad_unshare_cleanup_fd:
1906 if (new_fd)
1907 put_files_struct(new_fd);
1908
1909bad_unshare_cleanup_fs:
1910 if (new_fs)
1911 free_fs_struct(new_fs);
1912
1913bad_unshare_out:
1914 return err;
1915}
1916
1917/*
1918 * Helper to unshare the files of the current task.
1919 * We don't want to expose copy_files internals to
1920 * the exec layer of the kernel.
1921 */
1922
1923int unshare_files(struct files_struct **displaced)
1924{
1925 struct task_struct *task = current;
1926 struct files_struct *copy = NULL;
1927 int error;
1928
1929 error = unshare_fd(CLONE_FILES, ©);
1930 if (error || !copy) {
1931 *displaced = NULL;
1932 return error;
1933 }
1934 *displaced = task->files;
1935 task_lock(task);
1936 task->files = copy;
1937 task_unlock(task);
1938 return 0;
1939}