Linux Audio

Check our new training course

Loading...
v5.4
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the TCP module.
   8 *
   9 * Version:	@(#)tcp.h	1.0.5	05/23/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/cryptohash.h>
  27#include <linux/kref.h>
  28#include <linux/ktime.h>
 
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/inet_ecn.h>
  41#include <net/dst.h>
 
  42
  43#include <linux/seq_file.h>
  44#include <linux/memcontrol.h>
  45#include <linux/bpf-cgroup.h>
  46#include <linux/siphash.h>
  47
  48extern struct inet_hashinfo tcp_hashinfo;
  49
  50extern struct percpu_counter tcp_orphan_count;
 
 
  51void tcp_time_wait(struct sock *sk, int state, int timeo);
  52
  53#define MAX_TCP_HEADER	(128 + MAX_HEADER)
  54#define MAX_TCP_OPTION_SPACE 40
  55#define TCP_MIN_SND_MSS		48
  56#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  57
  58/*
  59 * Never offer a window over 32767 without using window scaling. Some
  60 * poor stacks do signed 16bit maths!
  61 */
  62#define MAX_TCP_WINDOW		32767U
  63
  64/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  65#define TCP_MIN_MSS		88U
  66
  67/* The initial MTU to use for probing */
  68#define TCP_BASE_MSS		1024
  69
  70/* probing interval, default to 10 minutes as per RFC4821 */
  71#define TCP_PROBE_INTERVAL	600
  72
  73/* Specify interval when tcp mtu probing will stop */
  74#define TCP_PROBE_THRESHOLD	8
  75
  76/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  77#define TCP_FASTRETRANS_THRESH 3
  78
  79/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  80#define TCP_MAX_QUICKACKS	16U
  81
  82/* Maximal number of window scale according to RFC1323 */
  83#define TCP_MAX_WSCALE		14U
  84
  85/* urg_data states */
  86#define TCP_URG_VALID	0x0100
  87#define TCP_URG_NOTYET	0x0200
  88#define TCP_URG_READ	0x0400
  89
  90#define TCP_RETR1	3	/*
  91				 * This is how many retries it does before it
  92				 * tries to figure out if the gateway is
  93				 * down. Minimal RFC value is 3; it corresponds
  94				 * to ~3sec-8min depending on RTO.
  95				 */
  96
  97#define TCP_RETR2	15	/*
  98				 * This should take at least
  99				 * 90 minutes to time out.
 100				 * RFC1122 says that the limit is 100 sec.
 101				 * 15 is ~13-30min depending on RTO.
 102				 */
 103
 104#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 105				 * when active opening a connection.
 106				 * RFC1122 says the minimum retry MUST
 107				 * be at least 180secs.  Nevertheless
 108				 * this value is corresponding to
 109				 * 63secs of retransmission with the
 110				 * current initial RTO.
 111				 */
 112
 113#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 114				 * when passive opening a connection.
 115				 * This is corresponding to 31secs of
 116				 * retransmission with the current
 117				 * initial RTO.
 118				 */
 119
 120#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 121				  * state, about 60 seconds	*/
 122#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 123                                 /* BSD style FIN_WAIT2 deadlock breaker.
 124				  * It used to be 3min, new value is 60sec,
 125				  * to combine FIN-WAIT-2 timeout with
 126				  * TIME-WAIT timer.
 127				  */
 
 128
 129#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 130#if HZ >= 100
 131#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 132#define TCP_ATO_MIN	((unsigned)(HZ/25))
 133#else
 134#define TCP_DELACK_MIN	4U
 135#define TCP_ATO_MIN	4U
 136#endif
 137#define TCP_RTO_MAX	((unsigned)(120*HZ))
 138#define TCP_RTO_MIN	((unsigned)(HZ/5))
 139#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
 140#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 141#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 142						 * used as a fallback RTO for the
 143						 * initial data transmission if no
 144						 * valid RTT sample has been acquired,
 145						 * most likely due to retrans in 3WHS.
 146						 */
 147
 148#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 149					                 * for local resources.
 150					                 */
 151#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 152#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 153#define TCP_KEEPALIVE_INTVL	(75*HZ)
 154
 155#define MAX_TCP_KEEPIDLE	32767
 156#define MAX_TCP_KEEPINTVL	32767
 157#define MAX_TCP_KEEPCNT		127
 158#define MAX_TCP_SYNCNT		127
 159
 160#define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
 161
 162#define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
 163#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 164					 * after this time. It should be equal
 165					 * (or greater than) TCP_TIMEWAIT_LEN
 166					 * to provide reliability equal to one
 167					 * provided by timewait state.
 168					 */
 169#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 170					 * timestamps. It must be less than
 171					 * minimal timewait lifetime.
 172					 */
 173/*
 174 *	TCP option
 175 */
 176
 177#define TCPOPT_NOP		1	/* Padding */
 178#define TCPOPT_EOL		0	/* End of options */
 179#define TCPOPT_MSS		2	/* Segment size negotiating */
 180#define TCPOPT_WINDOW		3	/* Window scaling */
 181#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 182#define TCPOPT_SACK             5       /* SACK Block */
 183#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 184#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 
 185#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 186#define TCPOPT_EXP		254	/* Experimental */
 187/* Magic number to be after the option value for sharing TCP
 188 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 189 */
 190#define TCPOPT_FASTOPEN_MAGIC	0xF989
 191#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
 192
 193/*
 194 *     TCP option lengths
 195 */
 196
 197#define TCPOLEN_MSS            4
 198#define TCPOLEN_WINDOW         3
 199#define TCPOLEN_SACK_PERM      2
 200#define TCPOLEN_TIMESTAMP      10
 201#define TCPOLEN_MD5SIG         18
 202#define TCPOLEN_FASTOPEN_BASE  2
 203#define TCPOLEN_EXP_FASTOPEN_BASE  4
 204#define TCPOLEN_EXP_SMC_BASE   6
 205
 206/* But this is what stacks really send out. */
 207#define TCPOLEN_TSTAMP_ALIGNED		12
 208#define TCPOLEN_WSCALE_ALIGNED		4
 209#define TCPOLEN_SACKPERM_ALIGNED	4
 210#define TCPOLEN_SACK_BASE		2
 211#define TCPOLEN_SACK_BASE_ALIGNED	4
 212#define TCPOLEN_SACK_PERBLOCK		8
 213#define TCPOLEN_MD5SIG_ALIGNED		20
 214#define TCPOLEN_MSS_ALIGNED		4
 215#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
 216
 217/* Flags in tp->nonagle */
 218#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 219#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 220#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 221
 222/* TCP thin-stream limits */
 223#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 224
 225/* TCP initial congestion window as per rfc6928 */
 226#define TCP_INIT_CWND		10
 227
 228/* Bit Flags for sysctl_tcp_fastopen */
 229#define	TFO_CLIENT_ENABLE	1
 230#define	TFO_SERVER_ENABLE	2
 231#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 232
 233/* Accept SYN data w/o any cookie option */
 234#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 235
 236/* Force enable TFO on all listeners, i.e., not requiring the
 237 * TCP_FASTOPEN socket option.
 238 */
 239#define	TFO_SERVER_WO_SOCKOPT1	0x400
 240
 241
 242/* sysctl variables for tcp */
 243extern int sysctl_tcp_max_orphans;
 244extern long sysctl_tcp_mem[3];
 245
 246#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 247#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 248#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 249
 250extern atomic_long_t tcp_memory_allocated;
 
 
 251extern struct percpu_counter tcp_sockets_allocated;
 252extern unsigned long tcp_memory_pressure;
 253
 254/* optimized version of sk_under_memory_pressure() for TCP sockets */
 255static inline bool tcp_under_memory_pressure(const struct sock *sk)
 256{
 257	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 258	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 259		return true;
 260
 261	return READ_ONCE(tcp_memory_pressure);
 262}
 263/*
 264 * The next routines deal with comparing 32 bit unsigned ints
 265 * and worry about wraparound (automatic with unsigned arithmetic).
 266 */
 267
 268static inline bool before(__u32 seq1, __u32 seq2)
 269{
 270        return (__s32)(seq1-seq2) < 0;
 271}
 272#define after(seq2, seq1) 	before(seq1, seq2)
 273
 274/* is s2<=s1<=s3 ? */
 275static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 276{
 277	return seq3 - seq2 >= seq1 - seq2;
 278}
 279
 280static inline bool tcp_out_of_memory(struct sock *sk)
 281{
 282	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 283	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 284		return true;
 285	return false;
 286}
 287
 288void sk_forced_mem_schedule(struct sock *sk, int size);
 289
 290static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 291{
 292	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 293	int orphans = percpu_counter_read_positive(ocp);
 294
 295	if (orphans << shift > sysctl_tcp_max_orphans) {
 296		orphans = percpu_counter_sum_positive(ocp);
 297		if (orphans << shift > sysctl_tcp_max_orphans)
 298			return true;
 299	}
 300	return false;
 301}
 302
 
 
 303bool tcp_check_oom(struct sock *sk, int shift);
 304
 305
 306extern struct proto tcp_prot;
 307
 308#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 309#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 310#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 311#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 312
 313void tcp_tasklet_init(void);
 314
 315int tcp_v4_err(struct sk_buff *skb, u32);
 316
 317void tcp_shutdown(struct sock *sk, int how);
 318
 319int tcp_v4_early_demux(struct sk_buff *skb);
 320int tcp_v4_rcv(struct sk_buff *skb);
 321
 
 322int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 323int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 324int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 
 
 325int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 326		 int flags);
 327int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 328			size_t size, int flags);
 329ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 330		 size_t size, int flags);
 
 
 
 331void tcp_release_cb(struct sock *sk);
 332void tcp_wfree(struct sk_buff *skb);
 333void tcp_write_timer_handler(struct sock *sk);
 334void tcp_delack_timer_handler(struct sock *sk);
 335int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 336int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 337void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 338void tcp_rcv_space_adjust(struct sock *sk);
 339int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 340void tcp_twsk_destructor(struct sock *sk);
 
 341ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 342			struct pipe_inode_info *pipe, size_t len,
 343			unsigned int flags);
 
 
 344
 345void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
 346static inline void tcp_dec_quickack_mode(struct sock *sk,
 347					 const unsigned int pkts)
 348{
 349	struct inet_connection_sock *icsk = inet_csk(sk);
 350
 351	if (icsk->icsk_ack.quick) {
 352		if (pkts >= icsk->icsk_ack.quick) {
 353			icsk->icsk_ack.quick = 0;
 354			/* Leaving quickack mode we deflate ATO. */
 355			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 356		} else
 357			icsk->icsk_ack.quick -= pkts;
 358	}
 359}
 360
 361#define	TCP_ECN_OK		1
 362#define	TCP_ECN_QUEUE_CWR	2
 363#define	TCP_ECN_DEMAND_CWR	4
 364#define	TCP_ECN_SEEN		8
 365
 366enum tcp_tw_status {
 367	TCP_TW_SUCCESS = 0,
 368	TCP_TW_RST = 1,
 369	TCP_TW_ACK = 2,
 370	TCP_TW_SYN = 3
 371};
 372
 373
 374enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 375					      struct sk_buff *skb,
 376					      const struct tcphdr *th);
 377struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 378			   struct request_sock *req, bool fastopen,
 379			   bool *lost_race);
 380int tcp_child_process(struct sock *parent, struct sock *child,
 381		      struct sk_buff *skb);
 382void tcp_enter_loss(struct sock *sk);
 383void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
 384void tcp_clear_retrans(struct tcp_sock *tp);
 385void tcp_update_metrics(struct sock *sk);
 386void tcp_init_metrics(struct sock *sk);
 387void tcp_metrics_init(void);
 388bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 
 389void tcp_close(struct sock *sk, long timeout);
 390void tcp_init_sock(struct sock *sk);
 391void tcp_init_transfer(struct sock *sk, int bpf_op);
 392__poll_t tcp_poll(struct file *file, struct socket *sock,
 393		      struct poll_table_struct *wait);
 
 
 394int tcp_getsockopt(struct sock *sk, int level, int optname,
 395		   char __user *optval, int __user *optlen);
 396int tcp_setsockopt(struct sock *sk, int level, int optname,
 397		   char __user *optval, unsigned int optlen);
 398int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
 399			  char __user *optval, int __user *optlen);
 400int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
 401			  char __user *optval, unsigned int optlen);
 402void tcp_set_keepalive(struct sock *sk, int val);
 403void tcp_syn_ack_timeout(const struct request_sock *req);
 404int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 405		int flags, int *addr_len);
 406int tcp_set_rcvlowat(struct sock *sk, int val);
 
 
 
 
 
 407void tcp_data_ready(struct sock *sk);
 408#ifdef CONFIG_MMU
 409int tcp_mmap(struct file *file, struct socket *sock,
 410	     struct vm_area_struct *vma);
 411#endif
 412void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 413		       struct tcp_options_received *opt_rx,
 414		       int estab, struct tcp_fastopen_cookie *foc);
 415const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 416
 417/*
 418 *	BPF SKB-less helpers
 419 */
 420u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 421			 struct tcphdr *th, u32 *cookie);
 422u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 423			 struct tcphdr *th, u32 *cookie);
 
 424u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 425			  const struct tcp_request_sock_ops *af_ops,
 426			  struct sock *sk, struct tcphdr *th);
 427/*
 428 *	TCP v4 functions exported for the inet6 API
 429 */
 430
 431void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 432void tcp_v4_mtu_reduced(struct sock *sk);
 433void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 
 434int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 435struct sock *tcp_create_openreq_child(const struct sock *sk,
 436				      struct request_sock *req,
 437				      struct sk_buff *skb);
 438void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 439struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 440				  struct request_sock *req,
 441				  struct dst_entry *dst,
 442				  struct request_sock *req_unhash,
 443				  bool *own_req);
 444int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 445int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 446int tcp_connect(struct sock *sk);
 447enum tcp_synack_type {
 448	TCP_SYNACK_NORMAL,
 449	TCP_SYNACK_FASTOPEN,
 450	TCP_SYNACK_COOKIE,
 451};
 452struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 453				struct request_sock *req,
 454				struct tcp_fastopen_cookie *foc,
 455				enum tcp_synack_type synack_type);
 
 456int tcp_disconnect(struct sock *sk, int flags);
 457
 458void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 459int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 460void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 461
 462/* From syncookies.c */
 463struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 464				 struct request_sock *req,
 465				 struct dst_entry *dst, u32 tsoff);
 466int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 467		      u32 cookie);
 468struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 
 
 
 469#ifdef CONFIG_SYN_COOKIES
 470
 471/* Syncookies use a monotonic timer which increments every 60 seconds.
 472 * This counter is used both as a hash input and partially encoded into
 473 * the cookie value.  A cookie is only validated further if the delta
 474 * between the current counter value and the encoded one is less than this,
 475 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 476 * the counter advances immediately after a cookie is generated).
 477 */
 478#define MAX_SYNCOOKIE_AGE	2
 479#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 480#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 481
 482/* syncookies: remember time of last synqueue overflow
 483 * But do not dirty this field too often (once per second is enough)
 484 * It is racy as we do not hold a lock, but race is very minor.
 485 */
 486static inline void tcp_synq_overflow(const struct sock *sk)
 487{
 488	unsigned int last_overflow;
 489	unsigned int now = jiffies;
 490
 491	if (sk->sk_reuseport) {
 492		struct sock_reuseport *reuse;
 493
 494		reuse = rcu_dereference(sk->sk_reuseport_cb);
 495		if (likely(reuse)) {
 496			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 497			if (time_after32(now, last_overflow + HZ))
 
 498				WRITE_ONCE(reuse->synq_overflow_ts, now);
 499			return;
 500		}
 501	}
 502
 503	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 504	if (time_after32(now, last_overflow + HZ))
 505		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
 506}
 507
 508/* syncookies: no recent synqueue overflow on this listening socket? */
 509static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 510{
 511	unsigned int last_overflow;
 512	unsigned int now = jiffies;
 513
 514	if (sk->sk_reuseport) {
 515		struct sock_reuseport *reuse;
 516
 517		reuse = rcu_dereference(sk->sk_reuseport_cb);
 518		if (likely(reuse)) {
 519			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 520			return time_after32(now, last_overflow +
 521					    TCP_SYNCOOKIE_VALID);
 
 522		}
 523	}
 524
 525	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 526	return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID);
 
 
 
 
 
 
 
 
 
 527}
 528
 529static inline u32 tcp_cookie_time(void)
 530{
 531	u64 val = get_jiffies_64();
 532
 533	do_div(val, TCP_SYNCOOKIE_PERIOD);
 534	return val;
 535}
 536
 537u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 538			      u16 *mssp);
 539__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 540u64 cookie_init_timestamp(struct request_sock *req);
 541bool cookie_timestamp_decode(const struct net *net,
 542			     struct tcp_options_received *opt);
 543bool cookie_ecn_ok(const struct tcp_options_received *opt,
 544		   const struct net *net, const struct dst_entry *dst);
 545
 546/* From net/ipv6/syncookies.c */
 547int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 548		      u32 cookie);
 549struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 550
 551u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 552			      const struct tcphdr *th, u16 *mssp);
 553__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 554#endif
 555/* tcp_output.c */
 556
 
 
 557void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 558			       int nonagle);
 559int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 560int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 561void tcp_retransmit_timer(struct sock *sk);
 562void tcp_xmit_retransmit_queue(struct sock *);
 563void tcp_simple_retransmit(struct sock *);
 564void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 565int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 566enum tcp_queue {
 567	TCP_FRAG_IN_WRITE_QUEUE,
 568	TCP_FRAG_IN_RTX_QUEUE,
 569};
 570int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 571		 struct sk_buff *skb, u32 len,
 572		 unsigned int mss_now, gfp_t gfp);
 573
 574void tcp_send_probe0(struct sock *);
 575void tcp_send_partial(struct sock *);
 576int tcp_write_wakeup(struct sock *, int mib);
 577void tcp_send_fin(struct sock *sk);
 578void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 579int tcp_send_synack(struct sock *);
 580void tcp_push_one(struct sock *, unsigned int mss_now);
 581void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 582void tcp_send_ack(struct sock *sk);
 583void tcp_send_delayed_ack(struct sock *sk);
 584void tcp_send_loss_probe(struct sock *sk);
 585bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 586void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 587			     const struct sk_buff *next_skb);
 588
 589/* tcp_input.c */
 590void tcp_rearm_rto(struct sock *sk);
 591void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 592void tcp_reset(struct sock *sk);
 593void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 594void tcp_fin(struct sock *sk);
 
 595
 596/* tcp_timer.c */
 597void tcp_init_xmit_timers(struct sock *);
 598static inline void tcp_clear_xmit_timers(struct sock *sk)
 599{
 600	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 601		__sock_put(sk);
 602
 603	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 604		__sock_put(sk);
 605
 606	inet_csk_clear_xmit_timers(sk);
 607}
 608
 609unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 610unsigned int tcp_current_mss(struct sock *sk);
 
 611
 612/* Bound MSS / TSO packet size with the half of the window */
 613static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 614{
 615	int cutoff;
 616
 617	/* When peer uses tiny windows, there is no use in packetizing
 618	 * to sub-MSS pieces for the sake of SWS or making sure there
 619	 * are enough packets in the pipe for fast recovery.
 620	 *
 621	 * On the other hand, for extremely large MSS devices, handling
 622	 * smaller than MSS windows in this way does make sense.
 623	 */
 624	if (tp->max_window > TCP_MSS_DEFAULT)
 625		cutoff = (tp->max_window >> 1);
 626	else
 627		cutoff = tp->max_window;
 628
 629	if (cutoff && pktsize > cutoff)
 630		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 631	else
 632		return pktsize;
 633}
 634
 635/* tcp.c */
 636void tcp_get_info(struct sock *, struct tcp_info *);
 637
 638/* Read 'sendfile()'-style from a TCP socket */
 639int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 640		  sk_read_actor_t recv_actor);
 
 
 
 641
 642void tcp_initialize_rcv_mss(struct sock *sk);
 643
 644int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 645int tcp_mss_to_mtu(struct sock *sk, int mss);
 646void tcp_mtup_init(struct sock *sk);
 647void tcp_init_buffer_space(struct sock *sk);
 648
 649static inline void tcp_bound_rto(const struct sock *sk)
 650{
 651	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 652		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 653}
 654
 655static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 656{
 657	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 658}
 659
 660static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 661{
 
 
 
 
 662	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 663			       ntohl(TCP_FLAG_ACK) |
 664			       snd_wnd);
 665}
 666
 667static inline void tcp_fast_path_on(struct tcp_sock *tp)
 668{
 669	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 670}
 671
 672static inline void tcp_fast_path_check(struct sock *sk)
 673{
 674	struct tcp_sock *tp = tcp_sk(sk);
 675
 676	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 677	    tp->rcv_wnd &&
 678	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 679	    !tp->urg_data)
 680		tcp_fast_path_on(tp);
 681}
 682
 683/* Compute the actual rto_min value */
 684static inline u32 tcp_rto_min(struct sock *sk)
 685{
 686	const struct dst_entry *dst = __sk_dst_get(sk);
 687	u32 rto_min = TCP_RTO_MIN;
 688
 689	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 690		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 691	return rto_min;
 692}
 693
 694static inline u32 tcp_rto_min_us(struct sock *sk)
 695{
 696	return jiffies_to_usecs(tcp_rto_min(sk));
 697}
 698
 699static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 700{
 701	return dst_metric_locked(dst, RTAX_CC_ALGO);
 702}
 703
 704/* Minimum RTT in usec. ~0 means not available. */
 705static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 706{
 707	return minmax_get(&tp->rtt_min);
 708}
 709
 710/* Compute the actual receive window we are currently advertising.
 711 * Rcv_nxt can be after the window if our peer push more data
 712 * than the offered window.
 713 */
 714static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 715{
 716	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 717
 718	if (win < 0)
 719		win = 0;
 720	return (u32) win;
 721}
 722
 723/* Choose a new window, without checks for shrinking, and without
 724 * scaling applied to the result.  The caller does these things
 725 * if necessary.  This is a "raw" window selection.
 726 */
 727u32 __tcp_select_window(struct sock *sk);
 728
 729void tcp_send_window_probe(struct sock *sk);
 730
 731/* TCP uses 32bit jiffies to save some space.
 732 * Note that this is different from tcp_time_stamp, which
 733 * historically has been the same until linux-4.13.
 734 */
 735#define tcp_jiffies32 ((u32)jiffies)
 736
 737/*
 738 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 739 * It is no longer tied to jiffies, but to 1 ms clock.
 740 * Note: double check if you want to use tcp_jiffies32 instead of this.
 741 */
 742#define TCP_TS_HZ	1000
 743
 744static inline u64 tcp_clock_ns(void)
 745{
 746	return ktime_get_ns();
 747}
 748
 749static inline u64 tcp_clock_us(void)
 750{
 751	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 752}
 753
 754/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 755static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 756{
 757	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 758}
 759
 
 
 
 
 
 
 760/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 761static inline u32 tcp_time_stamp_raw(void)
 762{
 763	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
 764}
 765
 766void tcp_mstamp_refresh(struct tcp_sock *tp);
 767
 768static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 769{
 770	return max_t(s64, t1 - t0, 0);
 771}
 772
 773static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 774{
 775	return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
 776}
 777
 778/* provide the departure time in us unit */
 779static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 780{
 781	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 782}
 783
 784
 785#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 786
 787#define TCPHDR_FIN 0x01
 788#define TCPHDR_SYN 0x02
 789#define TCPHDR_RST 0x04
 790#define TCPHDR_PSH 0x08
 791#define TCPHDR_ACK 0x10
 792#define TCPHDR_URG 0x20
 793#define TCPHDR_ECE 0x40
 794#define TCPHDR_CWR 0x80
 795
 796#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 797
 798/* This is what the send packet queuing engine uses to pass
 799 * TCP per-packet control information to the transmission code.
 800 * We also store the host-order sequence numbers in here too.
 801 * This is 44 bytes if IPV6 is enabled.
 802 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 803 */
 804struct tcp_skb_cb {
 805	__u32		seq;		/* Starting sequence number	*/
 806	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 807	union {
 808		/* Note : tcp_tw_isn is used in input path only
 809		 *	  (isn chosen by tcp_timewait_state_process())
 810		 *
 811		 * 	  tcp_gso_segs/size are used in write queue only,
 812		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 813		 */
 814		__u32		tcp_tw_isn;
 815		struct {
 816			u16	tcp_gso_segs;
 817			u16	tcp_gso_size;
 818		};
 819	};
 820	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 821
 822	__u8		sacked;		/* State flags for SACK.	*/
 823#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
 824#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
 825#define TCPCB_LOST		0x04	/* SKB is lost			*/
 826#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
 827#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
 828#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
 829#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 830				TCPCB_REPAIRED)
 831
 832	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 833	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 834			eor:1,		/* Is skb MSG_EOR marked? */
 835			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
 836			unused:5;
 837	__u32		ack_seq;	/* Sequence number ACK'd	*/
 838	union {
 839		struct {
 
 840			/* There is space for up to 24 bytes */
 841			__u32 in_flight:30,/* Bytes in flight at transmit */
 842			      is_app_limited:1, /* cwnd not fully used? */
 843			      unused:1;
 844			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 845			__u32 delivered;
 846			/* start of send pipeline phase */
 847			u64 first_tx_mstamp;
 848			/* when we reached the "delivered" count */
 849			u64 delivered_mstamp;
 850		} tx;   /* only used for outgoing skbs */
 851		union {
 852			struct inet_skb_parm	h4;
 853#if IS_ENABLED(CONFIG_IPV6)
 854			struct inet6_skb_parm	h6;
 855#endif
 856		} header;	/* For incoming skbs */
 857		struct {
 858			__u32 flags;
 859			struct sock *sk_redir;
 860			void *data_end;
 861		} bpf;
 862	};
 863};
 864
 865#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
 866
 867static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
 868{
 869	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
 870}
 871
 872static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
 873{
 874	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
 875}
 876
 877static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
 878{
 879	return TCP_SKB_CB(skb)->bpf.sk_redir;
 880}
 881
 882static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
 883{
 884	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
 885}
 886
 887#if IS_ENABLED(CONFIG_IPV6)
 888/* This is the variant of inet6_iif() that must be used by TCP,
 889 * as TCP moves IP6CB into a different location in skb->cb[]
 890 */
 891static inline int tcp_v6_iif(const struct sk_buff *skb)
 892{
 893	return TCP_SKB_CB(skb)->header.h6.iif;
 894}
 895
 896static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 897{
 898	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 899
 900	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 901}
 902
 903/* TCP_SKB_CB reference means this can not be used from early demux */
 904static inline int tcp_v6_sdif(const struct sk_buff *skb)
 905{
 906#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 907	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 908		return TCP_SKB_CB(skb)->header.h6.iif;
 909#endif
 910	return 0;
 911}
 912#endif
 913
 914static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
 915{
 916#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 917	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
 918	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
 919		return true;
 920#endif
 921	return false;
 922}
 923
 924/* TCP_SKB_CB reference means this can not be used from early demux */
 925static inline int tcp_v4_sdif(struct sk_buff *skb)
 926{
 927#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 928	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 929		return TCP_SKB_CB(skb)->header.h4.iif;
 930#endif
 931	return 0;
 932}
 933
 934/* Due to TSO, an SKB can be composed of multiple actual
 935 * packets.  To keep these tracked properly, we use this.
 936 */
 937static inline int tcp_skb_pcount(const struct sk_buff *skb)
 938{
 939	return TCP_SKB_CB(skb)->tcp_gso_segs;
 940}
 941
 942static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 943{
 944	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 945}
 946
 947static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 948{
 949	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 950}
 951
 952/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 953static inline int tcp_skb_mss(const struct sk_buff *skb)
 954{
 955	return TCP_SKB_CB(skb)->tcp_gso_size;
 956}
 957
 958static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 959{
 960	return likely(!TCP_SKB_CB(skb)->eor);
 961}
 962
 
 
 
 
 
 
 
 
 963/* Events passed to congestion control interface */
 964enum tcp_ca_event {
 965	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
 966	CA_EVENT_CWND_RESTART,	/* congestion window restart */
 967	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
 968	CA_EVENT_LOSS,		/* loss timeout */
 969	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
 970	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
 971};
 972
 973/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
 974enum tcp_ca_ack_event_flags {
 975	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
 976	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
 977	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
 978};
 979
 980/*
 981 * Interface for adding new TCP congestion control handlers
 982 */
 983#define TCP_CA_NAME_MAX	16
 984#define TCP_CA_MAX	128
 985#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
 986
 987#define TCP_CA_UNSPEC	0
 988
 989/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
 990#define TCP_CONG_NON_RESTRICTED 0x1
 991/* Requires ECN/ECT set on all packets */
 992#define TCP_CONG_NEEDS_ECN	0x2
 
 993
 994union tcp_cc_info;
 995
 996struct ack_sample {
 997	u32 pkts_acked;
 998	s32 rtt_us;
 999	u32 in_flight;
1000};
1001
1002/* A rate sample measures the number of (original/retransmitted) data
1003 * packets delivered "delivered" over an interval of time "interval_us".
1004 * The tcp_rate.c code fills in the rate sample, and congestion
1005 * control modules that define a cong_control function to run at the end
1006 * of ACK processing can optionally chose to consult this sample when
1007 * setting cwnd and pacing rate.
1008 * A sample is invalid if "delivered" or "interval_us" is negative.
1009 */
1010struct rate_sample {
1011	u64  prior_mstamp; /* starting timestamp for interval */
1012	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
 
1013	s32  delivered;		/* number of packets delivered over interval */
 
1014	long interval_us;	/* time for tp->delivered to incr "delivered" */
1015	u32 snd_interval_us;	/* snd interval for delivered packets */
1016	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1017	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1018	int  losses;		/* number of packets marked lost upon ACK */
1019	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1020	u32  prior_in_flight;	/* in flight before this ACK */
 
1021	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1022	bool is_retrans;	/* is sample from retransmission? */
1023	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1024};
1025
1026struct tcp_congestion_ops {
1027	struct list_head	list;
1028	u32 key;
1029	u32 flags;
1030
1031	/* initialize private data (optional) */
1032	void (*init)(struct sock *sk);
1033	/* cleanup private data  (optional) */
1034	void (*release)(struct sock *sk);
1035
1036	/* return slow start threshold (required) */
1037	u32 (*ssthresh)(struct sock *sk);
 
1038	/* do new cwnd calculation (required) */
1039	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
 
1040	/* call before changing ca_state (optional) */
1041	void (*set_state)(struct sock *sk, u8 new_state);
 
1042	/* call when cwnd event occurs (optional) */
1043	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
 
1044	/* call when ack arrives (optional) */
1045	void (*in_ack_event)(struct sock *sk, u32 flags);
1046	/* new value of cwnd after loss (required) */
1047	u32  (*undo_cwnd)(struct sock *sk);
1048	/* hook for packet ack accounting (optional) */
1049	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
 
1050	/* override sysctl_tcp_min_tso_segs */
1051	u32 (*min_tso_segs)(struct sock *sk);
1052	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1053	u32 (*sndbuf_expand)(struct sock *sk);
1054	/* call when packets are delivered to update cwnd and pacing rate,
1055	 * after all the ca_state processing. (optional)
1056	 */
1057	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
 
 
 
 
 
 
 
 
1058	/* get info for inet_diag (optional) */
1059	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1060			   union tcp_cc_info *info);
1061
1062	char 		name[TCP_CA_NAME_MAX];
1063	struct module 	*owner;
1064};
 
 
 
 
 
 
 
 
1065
1066int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1067void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1068
1069void tcp_assign_congestion_control(struct sock *sk);
1070void tcp_init_congestion_control(struct sock *sk);
1071void tcp_cleanup_congestion_control(struct sock *sk);
1072int tcp_set_default_congestion_control(struct net *net, const char *name);
1073void tcp_get_default_congestion_control(struct net *net, char *name);
1074void tcp_get_available_congestion_control(char *buf, size_t len);
1075void tcp_get_allowed_congestion_control(char *buf, size_t len);
1076int tcp_set_allowed_congestion_control(char *allowed);
1077int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1078			       bool reinit, bool cap_net_admin);
1079u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1080void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1081
1082u32 tcp_reno_ssthresh(struct sock *sk);
1083u32 tcp_reno_undo_cwnd(struct sock *sk);
1084void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1085extern struct tcp_congestion_ops tcp_reno;
1086
 
1087struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1088u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1089#ifdef CONFIG_INET
1090char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1091#else
1092static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1093{
1094	return NULL;
1095}
1096#endif
1097
1098static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1099{
1100	const struct inet_connection_sock *icsk = inet_csk(sk);
1101
1102	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1103}
1104
1105static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1106{
1107	struct inet_connection_sock *icsk = inet_csk(sk);
1108
1109	if (icsk->icsk_ca_ops->set_state)
1110		icsk->icsk_ca_ops->set_state(sk, ca_state);
1111	icsk->icsk_ca_state = ca_state;
1112}
1113
1114static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1115{
1116	const struct inet_connection_sock *icsk = inet_csk(sk);
1117
1118	if (icsk->icsk_ca_ops->cwnd_event)
1119		icsk->icsk_ca_ops->cwnd_event(sk, event);
1120}
1121
 
 
 
1122/* From tcp_rate.c */
1123void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1124void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1125			    struct rate_sample *rs);
1126void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1127		  bool is_sack_reneg, struct rate_sample *rs);
1128void tcp_rate_check_app_limited(struct sock *sk);
1129
 
 
 
 
 
1130/* These functions determine how the current flow behaves in respect of SACK
1131 * handling. SACK is negotiated with the peer, and therefore it can vary
1132 * between different flows.
1133 *
1134 * tcp_is_sack - SACK enabled
1135 * tcp_is_reno - No SACK
1136 */
1137static inline int tcp_is_sack(const struct tcp_sock *tp)
1138{
1139	return likely(tp->rx_opt.sack_ok);
1140}
1141
1142static inline bool tcp_is_reno(const struct tcp_sock *tp)
1143{
1144	return !tcp_is_sack(tp);
1145}
1146
1147static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1148{
1149	return tp->sacked_out + tp->lost_out;
1150}
1151
1152/* This determines how many packets are "in the network" to the best
1153 * of our knowledge.  In many cases it is conservative, but where
1154 * detailed information is available from the receiver (via SACK
1155 * blocks etc.) we can make more aggressive calculations.
1156 *
1157 * Use this for decisions involving congestion control, use just
1158 * tp->packets_out to determine if the send queue is empty or not.
1159 *
1160 * Read this equation as:
1161 *
1162 *	"Packets sent once on transmission queue" MINUS
1163 *	"Packets left network, but not honestly ACKed yet" PLUS
1164 *	"Packets fast retransmitted"
1165 */
1166static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1167{
1168	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1169}
1170
1171#define TCP_INFINITE_SSTHRESH	0x7fffffff
1172
 
 
 
 
 
 
 
 
 
 
 
1173static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1174{
1175	return tp->snd_cwnd < tp->snd_ssthresh;
1176}
1177
1178static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1179{
1180	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1181}
1182
1183static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1184{
1185	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1186	       (1 << inet_csk(sk)->icsk_ca_state);
1187}
1188
1189/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1190 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1191 * ssthresh.
1192 */
1193static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1194{
1195	const struct tcp_sock *tp = tcp_sk(sk);
1196
1197	if (tcp_in_cwnd_reduction(sk))
1198		return tp->snd_ssthresh;
1199	else
1200		return max(tp->snd_ssthresh,
1201			   ((tp->snd_cwnd >> 1) +
1202			    (tp->snd_cwnd >> 2)));
1203}
1204
1205/* Use define here intentionally to get WARN_ON location shown at the caller */
1206#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1207
1208void tcp_enter_cwr(struct sock *sk);
1209__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1210
1211/* The maximum number of MSS of available cwnd for which TSO defers
1212 * sending if not using sysctl_tcp_tso_win_divisor.
1213 */
1214static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1215{
1216	return 3;
1217}
1218
1219/* Returns end sequence number of the receiver's advertised window */
1220static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1221{
1222	return tp->snd_una + tp->snd_wnd;
1223}
1224
1225/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1226 * flexible approach. The RFC suggests cwnd should not be raised unless
1227 * it was fully used previously. And that's exactly what we do in
1228 * congestion avoidance mode. But in slow start we allow cwnd to grow
1229 * as long as the application has used half the cwnd.
1230 * Example :
1231 *    cwnd is 10 (IW10), but application sends 9 frames.
1232 *    We allow cwnd to reach 18 when all frames are ACKed.
1233 * This check is safe because it's as aggressive as slow start which already
1234 * risks 100% overshoot. The advantage is that we discourage application to
1235 * either send more filler packets or data to artificially blow up the cwnd
1236 * usage, and allow application-limited process to probe bw more aggressively.
1237 */
1238static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1239{
1240	const struct tcp_sock *tp = tcp_sk(sk);
1241
 
 
 
1242	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1243	if (tcp_in_slow_start(tp))
1244		return tp->snd_cwnd < 2 * tp->max_packets_out;
1245
1246	return tp->is_cwnd_limited;
1247}
1248
1249/* BBR congestion control needs pacing.
1250 * Same remark for SO_MAX_PACING_RATE.
1251 * sch_fq packet scheduler is efficiently handling pacing,
1252 * but is not always installed/used.
1253 * Return true if TCP stack should pace packets itself.
1254 */
1255static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1256{
1257	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1258}
1259
1260/* Return in jiffies the delay before one skb is sent.
1261 * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1262 */
1263static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1264					     const struct sk_buff *skb)
1265{
1266	s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1267
1268	pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1269
1270	return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1271}
1272
1273static inline void tcp_reset_xmit_timer(struct sock *sk,
1274					const int what,
1275					unsigned long when,
1276					const unsigned long max_when,
1277					const struct sk_buff *skb)
1278{
1279	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1280				  max_when);
1281}
1282
1283/* Something is really bad, we could not queue an additional packet,
1284 * because qdisc is full or receiver sent a 0 window, or we are paced.
1285 * We do not want to add fuel to the fire, or abort too early,
1286 * so make sure the timer we arm now is at least 200ms in the future,
1287 * regardless of current icsk_rto value (as it could be ~2ms)
1288 */
1289static inline unsigned long tcp_probe0_base(const struct sock *sk)
1290{
1291	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1292}
1293
1294/* Variant of inet_csk_rto_backoff() used for zero window probes */
1295static inline unsigned long tcp_probe0_when(const struct sock *sk,
1296					    unsigned long max_when)
1297{
1298	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
 
 
1299
1300	return (unsigned long)min_t(u64, when, max_when);
1301}
1302
1303static inline void tcp_check_probe_timer(struct sock *sk)
1304{
1305	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1306		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1307				     tcp_probe0_base(sk), TCP_RTO_MAX,
1308				     NULL);
1309}
1310
1311static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1312{
1313	tp->snd_wl1 = seq;
1314}
1315
1316static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1317{
1318	tp->snd_wl1 = seq;
1319}
1320
1321/*
1322 * Calculate(/check) TCP checksum
1323 */
1324static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1325				   __be32 daddr, __wsum base)
1326{
1327	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1328}
1329
1330static inline bool tcp_checksum_complete(struct sk_buff *skb)
1331{
1332	return !skb_csum_unnecessary(skb) &&
1333		__skb_checksum_complete(skb);
1334}
1335
1336bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
 
 
 
1337int tcp_filter(struct sock *sk, struct sk_buff *skb);
1338void tcp_set_state(struct sock *sk, int state);
1339void tcp_done(struct sock *sk);
1340int tcp_abort(struct sock *sk, int err);
1341
1342static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1343{
1344	rx_opt->dsack = 0;
1345	rx_opt->num_sacks = 0;
1346}
1347
1348u32 tcp_default_init_rwnd(u32 mss);
1349void tcp_cwnd_restart(struct sock *sk, s32 delta);
1350
1351static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1352{
1353	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1354	struct tcp_sock *tp = tcp_sk(sk);
1355	s32 delta;
1356
1357	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1358	    ca_ops->cong_control)
1359		return;
1360	delta = tcp_jiffies32 - tp->lsndtime;
1361	if (delta > inet_csk(sk)->icsk_rto)
1362		tcp_cwnd_restart(sk, delta);
1363}
1364
1365/* Determine a window scaling and initial window to offer. */
1366void tcp_select_initial_window(const struct sock *sk, int __space,
1367			       __u32 mss, __u32 *rcv_wnd,
1368			       __u32 *window_clamp, int wscale_ok,
1369			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1370
1371static inline int tcp_win_from_space(const struct sock *sk, int space)
1372{
1373	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1374
1375	return tcp_adv_win_scale <= 0 ?
1376		(space>>(-tcp_adv_win_scale)) :
1377		space - (space>>tcp_adv_win_scale);
1378}
1379
1380/* Note: caller must be prepared to deal with negative returns */
1381static inline int tcp_space(const struct sock *sk)
1382{
1383	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1384				  READ_ONCE(sk->sk_backlog.len) -
1385				  atomic_read(&sk->sk_rmem_alloc));
1386}
1387
1388static inline int tcp_full_space(const struct sock *sk)
1389{
1390	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1391}
1392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1393extern void tcp_openreq_init_rwin(struct request_sock *req,
1394				  const struct sock *sk_listener,
1395				  const struct dst_entry *dst);
1396
1397void tcp_enter_memory_pressure(struct sock *sk);
1398void tcp_leave_memory_pressure(struct sock *sk);
1399
1400static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1401{
1402	struct net *net = sock_net((struct sock *)tp);
1403
1404	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
 
1405}
1406
1407static inline int keepalive_time_when(const struct tcp_sock *tp)
1408{
1409	struct net *net = sock_net((struct sock *)tp);
1410
1411	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
 
1412}
1413
1414static inline int keepalive_probes(const struct tcp_sock *tp)
1415{
1416	struct net *net = sock_net((struct sock *)tp);
1417
1418	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
 
1419}
1420
1421static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1422{
1423	const struct inet_connection_sock *icsk = &tp->inet_conn;
1424
1425	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1426			  tcp_jiffies32 - tp->rcv_tstamp);
1427}
1428
1429static inline int tcp_fin_time(const struct sock *sk)
1430{
1431	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
 
1432	const int rto = inet_csk(sk)->icsk_rto;
1433
1434	if (fin_timeout < (rto << 2) - (rto >> 1))
1435		fin_timeout = (rto << 2) - (rto >> 1);
1436
1437	return fin_timeout;
1438}
1439
1440static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1441				  int paws_win)
1442{
1443	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1444		return true;
1445	if (unlikely(!time_before32(ktime_get_seconds(),
1446				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1447		return true;
1448	/*
1449	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1450	 * then following tcp messages have valid values. Ignore 0 value,
1451	 * or else 'negative' tsval might forbid us to accept their packets.
1452	 */
1453	if (!rx_opt->ts_recent)
1454		return true;
1455	return false;
1456}
1457
1458static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1459				   int rst)
1460{
1461	if (tcp_paws_check(rx_opt, 0))
1462		return false;
1463
1464	/* RST segments are not recommended to carry timestamp,
1465	   and, if they do, it is recommended to ignore PAWS because
1466	   "their cleanup function should take precedence over timestamps."
1467	   Certainly, it is mistake. It is necessary to understand the reasons
1468	   of this constraint to relax it: if peer reboots, clock may go
1469	   out-of-sync and half-open connections will not be reset.
1470	   Actually, the problem would be not existing if all
1471	   the implementations followed draft about maintaining clock
1472	   via reboots. Linux-2.2 DOES NOT!
1473
1474	   However, we can relax time bounds for RST segments to MSL.
1475	 */
1476	if (rst && !time_before32(ktime_get_seconds(),
1477				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1478		return false;
1479	return true;
1480}
1481
1482bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1483			  int mib_idx, u32 *last_oow_ack_time);
1484
1485static inline void tcp_mib_init(struct net *net)
1486{
1487	/* See RFC 2012 */
1488	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1489	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1490	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1491	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1492}
1493
1494/* from STCP */
1495static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1496{
1497	tp->lost_skb_hint = NULL;
1498}
1499
1500static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1501{
1502	tcp_clear_retrans_hints_partial(tp);
1503	tp->retransmit_skb_hint = NULL;
1504}
1505
1506union tcp_md5_addr {
1507	struct in_addr  a4;
1508#if IS_ENABLED(CONFIG_IPV6)
1509	struct in6_addr	a6;
1510#endif
1511};
1512
1513/* - key database */
1514struct tcp_md5sig_key {
1515	struct hlist_node	node;
1516	u8			keylen;
1517	u8			family; /* AF_INET or AF_INET6 */
1518	union tcp_md5_addr	addr;
1519	u8			prefixlen;
 
 
 
1520	u8			key[TCP_MD5SIG_MAXKEYLEN];
1521	struct rcu_head		rcu;
1522};
1523
1524/* - sock block */
1525struct tcp_md5sig_info {
1526	struct hlist_head	head;
1527	struct rcu_head		rcu;
1528};
1529
1530/* - pseudo header */
1531struct tcp4_pseudohdr {
1532	__be32		saddr;
1533	__be32		daddr;
1534	__u8		pad;
1535	__u8		protocol;
1536	__be16		len;
1537};
1538
1539struct tcp6_pseudohdr {
1540	struct in6_addr	saddr;
1541	struct in6_addr daddr;
1542	__be32		len;
1543	__be32		protocol;	/* including padding */
1544};
1545
1546union tcp_md5sum_block {
1547	struct tcp4_pseudohdr ip4;
1548#if IS_ENABLED(CONFIG_IPV6)
1549	struct tcp6_pseudohdr ip6;
1550#endif
1551};
1552
1553/* - pool: digest algorithm, hash description and scratch buffer */
1554struct tcp_md5sig_pool {
1555	struct ahash_request	*md5_req;
1556	void			*scratch;
1557};
1558
1559/* - functions */
1560int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1561			const struct sock *sk, const struct sk_buff *skb);
1562int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1563		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1564		   gfp_t gfp);
 
 
 
 
1565int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1566		   int family, u8 prefixlen);
1567struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1568					 const struct sock *addr_sk);
1569
1570#ifdef CONFIG_TCP_MD5SIG
1571#include <linux/jump_label.h>
1572extern struct static_key_false tcp_md5_needed;
1573struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1574					   const union tcp_md5_addr *addr,
1575					   int family);
1576static inline struct tcp_md5sig_key *
1577tcp_md5_do_lookup(const struct sock *sk,
1578		  const union tcp_md5_addr *addr,
1579		  int family)
1580{
1581	if (!static_branch_unlikely(&tcp_md5_needed))
1582		return NULL;
1583	return __tcp_md5_do_lookup(sk, addr, family);
1584}
1585
 
 
 
 
 
 
1586#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1587#else
1588static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1589					 const union tcp_md5_addr *addr,
1590					 int family)
1591{
1592	return NULL;
1593}
 
 
 
 
 
 
 
 
1594#define tcp_twsk_md5_key(twsk)	NULL
1595#endif
1596
1597bool tcp_alloc_md5sig_pool(void);
1598
1599struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1600static inline void tcp_put_md5sig_pool(void)
1601{
1602	local_bh_enable();
1603}
1604
1605int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1606			  unsigned int header_len);
1607int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1608		     const struct tcp_md5sig_key *key);
1609
1610/* From tcp_fastopen.c */
1611void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1612			    struct tcp_fastopen_cookie *cookie);
1613void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1614			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1615			    u16 try_exp);
1616struct tcp_fastopen_request {
1617	/* Fast Open cookie. Size 0 means a cookie request */
1618	struct tcp_fastopen_cookie	cookie;
1619	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1620	size_t				size;
1621	int				copied;	/* queued in tcp_connect() */
1622	struct ubuf_info		*uarg;
1623};
1624void tcp_free_fastopen_req(struct tcp_sock *tp);
1625void tcp_fastopen_destroy_cipher(struct sock *sk);
1626void tcp_fastopen_ctx_destroy(struct net *net);
1627int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1628			      void *primary_key, void *backup_key);
 
 
1629void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1630struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1631			      struct request_sock *req,
1632			      struct tcp_fastopen_cookie *foc,
1633			      const struct dst_entry *dst);
1634void tcp_fastopen_init_key_once(struct net *net);
1635bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1636			     struct tcp_fastopen_cookie *cookie);
1637bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1638#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1639#define TCP_FASTOPEN_KEY_MAX 2
1640#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1641	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1642
1643/* Fastopen key context */
1644struct tcp_fastopen_context {
1645	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1646	int		num;
1647	struct rcu_head	rcu;
1648};
1649
1650extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1651void tcp_fastopen_active_disable(struct sock *sk);
1652bool tcp_fastopen_active_should_disable(struct sock *sk);
1653void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1654void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1655
1656/* Caller needs to wrap with rcu_read_(un)lock() */
1657static inline
1658struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1659{
1660	struct tcp_fastopen_context *ctx;
1661
1662	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1663	if (!ctx)
1664		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1665	return ctx;
1666}
1667
1668static inline
1669bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1670			       const struct tcp_fastopen_cookie *orig)
1671{
1672	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1673	    orig->len == foc->len &&
1674	    !memcmp(orig->val, foc->val, foc->len))
1675		return true;
1676	return false;
1677}
1678
1679static inline
1680int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1681{
1682	return ctx->num;
1683}
1684
1685/* Latencies incurred by various limits for a sender. They are
1686 * chronograph-like stats that are mutually exclusive.
1687 */
1688enum tcp_chrono {
1689	TCP_CHRONO_UNSPEC,
1690	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1691	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1692	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1693	__TCP_CHRONO_MAX,
1694};
1695
1696void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1697void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1698
1699/* This helper is needed, because skb->tcp_tsorted_anchor uses
1700 * the same memory storage than skb->destructor/_skb_refdst
1701 */
1702static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1703{
1704	skb->destructor = NULL;
1705	skb->_skb_refdst = 0UL;
1706}
1707
1708#define tcp_skb_tsorted_save(skb) {		\
1709	unsigned long _save = skb->_skb_refdst;	\
1710	skb->_skb_refdst = 0UL;
1711
1712#define tcp_skb_tsorted_restore(skb)		\
1713	skb->_skb_refdst = _save;		\
1714}
1715
1716void tcp_write_queue_purge(struct sock *sk);
1717
1718static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1719{
1720	return skb_rb_first(&sk->tcp_rtx_queue);
1721}
1722
1723static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1724{
1725	return skb_rb_last(&sk->tcp_rtx_queue);
1726}
1727
1728static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1729{
1730	return skb_peek(&sk->sk_write_queue);
1731}
1732
1733static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1734{
1735	return skb_peek_tail(&sk->sk_write_queue);
1736}
1737
1738#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1739	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1740
1741static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1742{
1743	return skb_peek(&sk->sk_write_queue);
1744}
1745
1746static inline bool tcp_skb_is_last(const struct sock *sk,
1747				   const struct sk_buff *skb)
1748{
1749	return skb_queue_is_last(&sk->sk_write_queue, skb);
1750}
1751
 
 
 
 
 
 
 
1752static inline bool tcp_write_queue_empty(const struct sock *sk)
1753{
1754	return skb_queue_empty(&sk->sk_write_queue);
 
 
1755}
1756
1757static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1758{
1759	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1760}
1761
1762static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1763{
1764	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1765}
1766
1767static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1768{
1769	__skb_queue_tail(&sk->sk_write_queue, skb);
1770
1771	/* Queue it, remembering where we must start sending. */
1772	if (sk->sk_write_queue.next == skb)
1773		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1774}
1775
1776/* Insert new before skb on the write queue of sk.  */
1777static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1778						  struct sk_buff *skb,
1779						  struct sock *sk)
1780{
1781	__skb_queue_before(&sk->sk_write_queue, skb, new);
1782}
1783
1784static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1785{
1786	tcp_skb_tsorted_anchor_cleanup(skb);
1787	__skb_unlink(skb, &sk->sk_write_queue);
1788}
1789
1790void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1791
1792static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1793{
1794	tcp_skb_tsorted_anchor_cleanup(skb);
1795	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1796}
1797
1798static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1799{
1800	list_del(&skb->tcp_tsorted_anchor);
1801	tcp_rtx_queue_unlink(skb, sk);
1802	sk_wmem_free_skb(sk, skb);
1803}
1804
1805static inline void tcp_push_pending_frames(struct sock *sk)
1806{
1807	if (tcp_send_head(sk)) {
1808		struct tcp_sock *tp = tcp_sk(sk);
1809
1810		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1811	}
1812}
1813
1814/* Start sequence of the skb just after the highest skb with SACKed
1815 * bit, valid only if sacked_out > 0 or when the caller has ensured
1816 * validity by itself.
1817 */
1818static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1819{
1820	if (!tp->sacked_out)
1821		return tp->snd_una;
1822
1823	if (tp->highest_sack == NULL)
1824		return tp->snd_nxt;
1825
1826	return TCP_SKB_CB(tp->highest_sack)->seq;
1827}
1828
1829static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1830{
1831	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1832}
1833
1834static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1835{
1836	return tcp_sk(sk)->highest_sack;
1837}
1838
1839static inline void tcp_highest_sack_reset(struct sock *sk)
1840{
1841	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1842}
1843
1844/* Called when old skb is about to be deleted and replaced by new skb */
1845static inline void tcp_highest_sack_replace(struct sock *sk,
1846					    struct sk_buff *old,
1847					    struct sk_buff *new)
1848{
1849	if (old == tcp_highest_sack(sk))
1850		tcp_sk(sk)->highest_sack = new;
1851}
1852
1853/* This helper checks if socket has IP_TRANSPARENT set */
1854static inline bool inet_sk_transparent(const struct sock *sk)
1855{
1856	switch (sk->sk_state) {
1857	case TCP_TIME_WAIT:
1858		return inet_twsk(sk)->tw_transparent;
1859	case TCP_NEW_SYN_RECV:
1860		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1861	}
1862	return inet_sk(sk)->transparent;
1863}
1864
1865/* Determines whether this is a thin stream (which may suffer from
1866 * increased latency). Used to trigger latency-reducing mechanisms.
1867 */
1868static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1869{
1870	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1871}
1872
1873/* /proc */
1874enum tcp_seq_states {
1875	TCP_SEQ_STATE_LISTENING,
1876	TCP_SEQ_STATE_ESTABLISHED,
1877};
1878
1879void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1880void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1881void tcp_seq_stop(struct seq_file *seq, void *v);
1882
1883struct tcp_seq_afinfo {
1884	sa_family_t			family;
1885};
1886
1887struct tcp_iter_state {
1888	struct seq_net_private	p;
1889	enum tcp_seq_states	state;
1890	struct sock		*syn_wait_sk;
1891	int			bucket, offset, sbucket, num;
1892	loff_t			last_pos;
1893};
1894
1895extern struct request_sock_ops tcp_request_sock_ops;
1896extern struct request_sock_ops tcp6_request_sock_ops;
1897
1898void tcp_v4_destroy_sock(struct sock *sk);
1899
1900struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1901				netdev_features_t features);
1902struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
 
 
 
 
1903int tcp_gro_complete(struct sk_buff *skb);
1904
1905void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1906
1907static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1908{
1909	struct net *net = sock_net((struct sock *)tp);
1910	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1911}
1912
1913/* @wake is one when sk_stream_write_space() calls us.
1914 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1915 * This mimics the strategy used in sock_def_write_space().
1916 */
1917static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1918{
1919	const struct tcp_sock *tp = tcp_sk(sk);
1920	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1921			    READ_ONCE(tp->snd_nxt);
1922
1923	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1924}
1925
1926#ifdef CONFIG_PROC_FS
1927int tcp4_proc_init(void);
1928void tcp4_proc_exit(void);
1929#endif
1930
1931int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1932int tcp_conn_request(struct request_sock_ops *rsk_ops,
1933		     const struct tcp_request_sock_ops *af_ops,
1934		     struct sock *sk, struct sk_buff *skb);
1935
1936/* TCP af-specific functions */
1937struct tcp_sock_af_ops {
1938#ifdef CONFIG_TCP_MD5SIG
1939	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1940						const struct sock *addr_sk);
1941	int		(*calc_md5_hash)(char *location,
1942					 const struct tcp_md5sig_key *md5,
1943					 const struct sock *sk,
1944					 const struct sk_buff *skb);
1945	int		(*md5_parse)(struct sock *sk,
1946				     int optname,
1947				     char __user *optval,
1948				     int optlen);
1949#endif
1950};
1951
1952struct tcp_request_sock_ops {
1953	u16 mss_clamp;
1954#ifdef CONFIG_TCP_MD5SIG
1955	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1956						 const struct sock *addr_sk);
1957	int		(*calc_md5_hash) (char *location,
1958					  const struct tcp_md5sig_key *md5,
1959					  const struct sock *sk,
1960					  const struct sk_buff *skb);
1961#endif
1962	void (*init_req)(struct request_sock *req,
1963			 const struct sock *sk_listener,
1964			 struct sk_buff *skb);
1965#ifdef CONFIG_SYN_COOKIES
1966	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1967				 __u16 *mss);
1968#endif
1969	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1970				       const struct request_sock *req);
 
 
1971	u32 (*init_seq)(const struct sk_buff *skb);
1972	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1973	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1974			   struct flowi *fl, struct request_sock *req,
1975			   struct tcp_fastopen_cookie *foc,
1976			   enum tcp_synack_type synack_type);
 
1977};
1978
 
 
 
 
 
1979#ifdef CONFIG_SYN_COOKIES
1980static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1981					 const struct sock *sk, struct sk_buff *skb,
1982					 __u16 *mss)
1983{
1984	tcp_synq_overflow(sk);
1985	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1986	return ops->cookie_init_seq(skb, mss);
1987}
1988#else
1989static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1990					 const struct sock *sk, struct sk_buff *skb,
1991					 __u16 *mss)
1992{
1993	return 0;
1994}
1995#endif
1996
1997int tcpv4_offload_init(void);
1998
1999void tcp_v4_init(void);
2000void tcp_init(void);
2001
2002/* tcp_recovery.c */
2003void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2004void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2005extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2006				u32 reo_wnd);
2007extern void tcp_rack_mark_lost(struct sock *sk);
2008extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2009			     u64 xmit_time);
2010extern void tcp_rack_reo_timeout(struct sock *sk);
2011extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013/* At how many usecs into the future should the RTO fire? */
2014static inline s64 tcp_rto_delta_us(const struct sock *sk)
2015{
2016	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2017	u32 rto = inet_csk(sk)->icsk_rto;
2018	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2019
2020	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2021}
2022
2023/*
2024 * Save and compile IPv4 options, return a pointer to it
2025 */
2026static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2027							 struct sk_buff *skb)
2028{
2029	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2030	struct ip_options_rcu *dopt = NULL;
2031
2032	if (opt->optlen) {
2033		int opt_size = sizeof(*dopt) + opt->optlen;
2034
2035		dopt = kmalloc(opt_size, GFP_ATOMIC);
2036		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2037			kfree(dopt);
2038			dopt = NULL;
2039		}
2040	}
2041	return dopt;
2042}
2043
2044/* locally generated TCP pure ACKs have skb->truesize == 2
2045 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2046 * This is much faster than dissecting the packet to find out.
2047 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2048 */
2049static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2050{
2051	return skb->truesize == 2;
2052}
2053
2054static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2055{
2056	skb->truesize = 2;
2057}
2058
2059static inline int tcp_inq(struct sock *sk)
2060{
2061	struct tcp_sock *tp = tcp_sk(sk);
2062	int answ;
2063
2064	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2065		answ = 0;
2066	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2067		   !tp->urg_data ||
2068		   before(tp->urg_seq, tp->copied_seq) ||
2069		   !before(tp->urg_seq, tp->rcv_nxt)) {
2070
2071		answ = tp->rcv_nxt - tp->copied_seq;
2072
2073		/* Subtract 1, if FIN was received */
2074		if (answ && sock_flag(sk, SOCK_DONE))
2075			answ--;
2076	} else {
2077		answ = tp->urg_seq - tp->copied_seq;
2078	}
2079
2080	return answ;
2081}
2082
2083int tcp_peek_len(struct socket *sock);
2084
2085static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2086{
2087	u16 segs_in;
2088
2089	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2090	tp->segs_in += segs_in;
 
 
 
 
2091	if (skb->len > tcp_hdrlen(skb))
2092		tp->data_segs_in += segs_in;
2093}
2094
2095/*
2096 * TCP listen path runs lockless.
2097 * We forced "struct sock" to be const qualified to make sure
2098 * we don't modify one of its field by mistake.
2099 * Here, we increment sk_drops which is an atomic_t, so we can safely
2100 * make sock writable again.
2101 */
2102static inline void tcp_listendrop(const struct sock *sk)
2103{
2104	atomic_inc(&((struct sock *)sk)->sk_drops);
2105	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2106}
2107
2108enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2109
2110/*
2111 * Interface for adding Upper Level Protocols over TCP
2112 */
2113
2114#define TCP_ULP_NAME_MAX	16
2115#define TCP_ULP_MAX		128
2116#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2117
2118struct tcp_ulp_ops {
2119	struct list_head	list;
2120
2121	/* initialize ulp */
2122	int (*init)(struct sock *sk);
2123	/* update ulp */
2124	void (*update)(struct sock *sk, struct proto *p);
 
2125	/* cleanup ulp */
2126	void (*release)(struct sock *sk);
2127	/* diagnostic */
2128	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2129	size_t (*get_info_size)(const struct sock *sk);
 
 
 
2130
2131	char		name[TCP_ULP_NAME_MAX];
2132	struct module	*owner;
2133};
2134int tcp_register_ulp(struct tcp_ulp_ops *type);
2135void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2136int tcp_set_ulp(struct sock *sk, const char *name);
2137void tcp_get_available_ulp(char *buf, size_t len);
2138void tcp_cleanup_ulp(struct sock *sk);
2139void tcp_update_ulp(struct sock *sk, struct proto *p);
 
2140
2141#define MODULE_ALIAS_TCP_ULP(name)				\
2142	__MODULE_INFO(alias, alias_userspace, name);		\
2143	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2144
 
2145struct sk_msg;
2146struct sk_psock;
2147
2148int tcp_bpf_init(struct sock *sk);
2149void tcp_bpf_reinit(struct sock *sk);
2150int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2151			  int flags);
2152int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2153		    int nonblock, int flags, int *addr_len);
2154int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2155		      struct msghdr *msg, int len, int flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2156
2157/* Call BPF_SOCK_OPS program that returns an int. If the return value
2158 * is < 0, then the BPF op failed (for example if the loaded BPF
2159 * program does not support the chosen operation or there is no BPF
2160 * program loaded).
2161 */
2162#ifdef CONFIG_BPF
2163static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2164{
2165	struct bpf_sock_ops_kern sock_ops;
2166	int ret;
2167
2168	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2169	if (sk_fullsock(sk)) {
2170		sock_ops.is_fullsock = 1;
2171		sock_owned_by_me(sk);
2172	}
2173
2174	sock_ops.sk = sk;
2175	sock_ops.op = op;
2176	if (nargs > 0)
2177		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2178
2179	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2180	if (ret == 0)
2181		ret = sock_ops.reply;
2182	else
2183		ret = -1;
2184	return ret;
2185}
2186
2187static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2188{
2189	u32 args[2] = {arg1, arg2};
2190
2191	return tcp_call_bpf(sk, op, 2, args);
2192}
2193
2194static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2195				    u32 arg3)
2196{
2197	u32 args[3] = {arg1, arg2, arg3};
2198
2199	return tcp_call_bpf(sk, op, 3, args);
2200}
2201
2202#else
2203static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2204{
2205	return -EPERM;
2206}
2207
2208static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2209{
2210	return -EPERM;
2211}
2212
2213static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2214				    u32 arg3)
2215{
2216	return -EPERM;
2217}
2218
2219#endif
2220
2221static inline u32 tcp_timeout_init(struct sock *sk)
2222{
2223	int timeout;
2224
2225	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2226
2227	if (timeout <= 0)
2228		timeout = TCP_TIMEOUT_INIT;
2229	return timeout;
2230}
2231
2232static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2233{
2234	int rwnd;
2235
2236	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2237
2238	if (rwnd < 0)
2239		rwnd = 0;
2240	return rwnd;
2241}
2242
2243static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2244{
2245	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2246}
2247
2248static inline void tcp_bpf_rtt(struct sock *sk)
2249{
2250	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2251		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2252}
2253
2254#if IS_ENABLED(CONFIG_SMC)
2255extern struct static_key_false tcp_have_smc;
2256#endif
2257
2258#if IS_ENABLED(CONFIG_TLS_DEVICE)
2259void clean_acked_data_enable(struct inet_connection_sock *icsk,
2260			     void (*cad)(struct sock *sk, u32 ack_seq));
2261void clean_acked_data_disable(struct inet_connection_sock *icsk);
2262void clean_acked_data_flush(void);
2263#endif
2264
2265DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2266static inline void tcp_add_tx_delay(struct sk_buff *skb,
2267				    const struct tcp_sock *tp)
2268{
2269	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2270		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2271}
2272
2273/* Compute Earliest Departure Time for some control packets
2274 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2275 */
2276static inline u64 tcp_transmit_time(const struct sock *sk)
2277{
2278	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2279		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2280			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2281
2282		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2283	}
2284	return 0;
2285}
2286
2287#endif	/* _TCP_H */
v6.2
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the TCP module.
   8 *
   9 * Version:	@(#)tcp.h	1.0.5	05/23/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
 
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/inet_ecn.h>
  41#include <net/dst.h>
  42#include <net/mptcp.h>
  43
  44#include <linux/seq_file.h>
  45#include <linux/memcontrol.h>
  46#include <linux/bpf-cgroup.h>
  47#include <linux/siphash.h>
  48
  49extern struct inet_hashinfo tcp_hashinfo;
  50
  51DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
  52int tcp_orphan_count_sum(void);
  53
  54void tcp_time_wait(struct sock *sk, int state, int timeo);
  55
  56#define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
  57#define MAX_TCP_OPTION_SPACE 40
  58#define TCP_MIN_SND_MSS		48
  59#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  60
  61/*
  62 * Never offer a window over 32767 without using window scaling. Some
  63 * poor stacks do signed 16bit maths!
  64 */
  65#define MAX_TCP_WINDOW		32767U
  66
  67/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  68#define TCP_MIN_MSS		88U
  69
  70/* The initial MTU to use for probing */
  71#define TCP_BASE_MSS		1024
  72
  73/* probing interval, default to 10 minutes as per RFC4821 */
  74#define TCP_PROBE_INTERVAL	600
  75
  76/* Specify interval when tcp mtu probing will stop */
  77#define TCP_PROBE_THRESHOLD	8
  78
  79/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  80#define TCP_FASTRETRANS_THRESH 3
  81
  82/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  83#define TCP_MAX_QUICKACKS	16U
  84
  85/* Maximal number of window scale according to RFC1323 */
  86#define TCP_MAX_WSCALE		14U
  87
  88/* urg_data states */
  89#define TCP_URG_VALID	0x0100
  90#define TCP_URG_NOTYET	0x0200
  91#define TCP_URG_READ	0x0400
  92
  93#define TCP_RETR1	3	/*
  94				 * This is how many retries it does before it
  95				 * tries to figure out if the gateway is
  96				 * down. Minimal RFC value is 3; it corresponds
  97				 * to ~3sec-8min depending on RTO.
  98				 */
  99
 100#define TCP_RETR2	15	/*
 101				 * This should take at least
 102				 * 90 minutes to time out.
 103				 * RFC1122 says that the limit is 100 sec.
 104				 * 15 is ~13-30min depending on RTO.
 105				 */
 106
 107#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 108				 * when active opening a connection.
 109				 * RFC1122 says the minimum retry MUST
 110				 * be at least 180secs.  Nevertheless
 111				 * this value is corresponding to
 112				 * 63secs of retransmission with the
 113				 * current initial RTO.
 114				 */
 115
 116#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 117				 * when passive opening a connection.
 118				 * This is corresponding to 31secs of
 119				 * retransmission with the current
 120				 * initial RTO.
 121				 */
 122
 123#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 124				  * state, about 60 seconds	*/
 125#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 126                                 /* BSD style FIN_WAIT2 deadlock breaker.
 127				  * It used to be 3min, new value is 60sec,
 128				  * to combine FIN-WAIT-2 timeout with
 129				  * TIME-WAIT timer.
 130				  */
 131#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 132
 133#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 134#if HZ >= 100
 135#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 136#define TCP_ATO_MIN	((unsigned)(HZ/25))
 137#else
 138#define TCP_DELACK_MIN	4U
 139#define TCP_ATO_MIN	4U
 140#endif
 141#define TCP_RTO_MAX	((unsigned)(120*HZ))
 142#define TCP_RTO_MIN	((unsigned)(HZ/5))
 143#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
 144#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 145#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 146						 * used as a fallback RTO for the
 147						 * initial data transmission if no
 148						 * valid RTT sample has been acquired,
 149						 * most likely due to retrans in 3WHS.
 150						 */
 151
 152#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 153					                 * for local resources.
 154					                 */
 155#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 156#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 157#define TCP_KEEPALIVE_INTVL	(75*HZ)
 158
 159#define MAX_TCP_KEEPIDLE	32767
 160#define MAX_TCP_KEEPINTVL	32767
 161#define MAX_TCP_KEEPCNT		127
 162#define MAX_TCP_SYNCNT		127
 163
 164#define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
 165
 166#define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
 167#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 168					 * after this time. It should be equal
 169					 * (or greater than) TCP_TIMEWAIT_LEN
 170					 * to provide reliability equal to one
 171					 * provided by timewait state.
 172					 */
 173#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 174					 * timestamps. It must be less than
 175					 * minimal timewait lifetime.
 176					 */
 177/*
 178 *	TCP option
 179 */
 180
 181#define TCPOPT_NOP		1	/* Padding */
 182#define TCPOPT_EOL		0	/* End of options */
 183#define TCPOPT_MSS		2	/* Segment size negotiating */
 184#define TCPOPT_WINDOW		3	/* Window scaling */
 185#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 186#define TCPOPT_SACK             5       /* SACK Block */
 187#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 188#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 189#define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
 190#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 191#define TCPOPT_EXP		254	/* Experimental */
 192/* Magic number to be after the option value for sharing TCP
 193 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 194 */
 195#define TCPOPT_FASTOPEN_MAGIC	0xF989
 196#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
 197
 198/*
 199 *     TCP option lengths
 200 */
 201
 202#define TCPOLEN_MSS            4
 203#define TCPOLEN_WINDOW         3
 204#define TCPOLEN_SACK_PERM      2
 205#define TCPOLEN_TIMESTAMP      10
 206#define TCPOLEN_MD5SIG         18
 207#define TCPOLEN_FASTOPEN_BASE  2
 208#define TCPOLEN_EXP_FASTOPEN_BASE  4
 209#define TCPOLEN_EXP_SMC_BASE   6
 210
 211/* But this is what stacks really send out. */
 212#define TCPOLEN_TSTAMP_ALIGNED		12
 213#define TCPOLEN_WSCALE_ALIGNED		4
 214#define TCPOLEN_SACKPERM_ALIGNED	4
 215#define TCPOLEN_SACK_BASE		2
 216#define TCPOLEN_SACK_BASE_ALIGNED	4
 217#define TCPOLEN_SACK_PERBLOCK		8
 218#define TCPOLEN_MD5SIG_ALIGNED		20
 219#define TCPOLEN_MSS_ALIGNED		4
 220#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
 221
 222/* Flags in tp->nonagle */
 223#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 224#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 225#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 226
 227/* TCP thin-stream limits */
 228#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 229
 230/* TCP initial congestion window as per rfc6928 */
 231#define TCP_INIT_CWND		10
 232
 233/* Bit Flags for sysctl_tcp_fastopen */
 234#define	TFO_CLIENT_ENABLE	1
 235#define	TFO_SERVER_ENABLE	2
 236#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 237
 238/* Accept SYN data w/o any cookie option */
 239#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 240
 241/* Force enable TFO on all listeners, i.e., not requiring the
 242 * TCP_FASTOPEN socket option.
 243 */
 244#define	TFO_SERVER_WO_SOCKOPT1	0x400
 245
 246
 247/* sysctl variables for tcp */
 248extern int sysctl_tcp_max_orphans;
 249extern long sysctl_tcp_mem[3];
 250
 251#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 252#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 253#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 254
 255extern atomic_long_t tcp_memory_allocated;
 256DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 257
 258extern struct percpu_counter tcp_sockets_allocated;
 259extern unsigned long tcp_memory_pressure;
 260
 261/* optimized version of sk_under_memory_pressure() for TCP sockets */
 262static inline bool tcp_under_memory_pressure(const struct sock *sk)
 263{
 264	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 265	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 266		return true;
 267
 268	return READ_ONCE(tcp_memory_pressure);
 269}
 270/*
 271 * The next routines deal with comparing 32 bit unsigned ints
 272 * and worry about wraparound (automatic with unsigned arithmetic).
 273 */
 274
 275static inline bool before(__u32 seq1, __u32 seq2)
 276{
 277        return (__s32)(seq1-seq2) < 0;
 278}
 279#define after(seq2, seq1) 	before(seq1, seq2)
 280
 281/* is s2<=s1<=s3 ? */
 282static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 283{
 284	return seq3 - seq2 >= seq1 - seq2;
 285}
 286
 287static inline bool tcp_out_of_memory(struct sock *sk)
 288{
 289	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 290	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 291		return true;
 292	return false;
 293}
 294
 295static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
 
 
 296{
 297	sk_wmem_queued_add(sk, -skb->truesize);
 298	if (!skb_zcopy_pure(skb))
 299		sk_mem_uncharge(sk, skb->truesize);
 300	else
 301		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
 302	__kfree_skb(skb);
 
 
 
 303}
 304
 305void sk_forced_mem_schedule(struct sock *sk, int size);
 306
 307bool tcp_check_oom(struct sock *sk, int shift);
 308
 309
 310extern struct proto tcp_prot;
 311
 312#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 313#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 314#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 315#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 316
 317void tcp_tasklet_init(void);
 318
 319int tcp_v4_err(struct sk_buff *skb, u32);
 320
 321void tcp_shutdown(struct sock *sk, int how);
 322
 323int tcp_v4_early_demux(struct sk_buff *skb);
 324int tcp_v4_rcv(struct sk_buff *skb);
 325
 326void tcp_remove_empty_skb(struct sock *sk);
 327int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 328int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 329int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 330int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
 331			 size_t size, struct ubuf_info *uarg);
 332int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 333		 int flags);
 334int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 335			size_t size, int flags);
 336ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 337		 size_t size, int flags);
 338int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 339void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 340	      int size_goal);
 341void tcp_release_cb(struct sock *sk);
 342void tcp_wfree(struct sk_buff *skb);
 343void tcp_write_timer_handler(struct sock *sk);
 344void tcp_delack_timer_handler(struct sock *sk);
 345int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 346int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 347void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 348void tcp_rcv_space_adjust(struct sock *sk);
 349int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 350void tcp_twsk_destructor(struct sock *sk);
 351void tcp_twsk_purge(struct list_head *net_exit_list, int family);
 352ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 353			struct pipe_inode_info *pipe, size_t len,
 354			unsigned int flags);
 355struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
 356				     bool force_schedule);
 357
 358void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
 359static inline void tcp_dec_quickack_mode(struct sock *sk,
 360					 const unsigned int pkts)
 361{
 362	struct inet_connection_sock *icsk = inet_csk(sk);
 363
 364	if (icsk->icsk_ack.quick) {
 365		if (pkts >= icsk->icsk_ack.quick) {
 366			icsk->icsk_ack.quick = 0;
 367			/* Leaving quickack mode we deflate ATO. */
 368			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 369		} else
 370			icsk->icsk_ack.quick -= pkts;
 371	}
 372}
 373
 374#define	TCP_ECN_OK		1
 375#define	TCP_ECN_QUEUE_CWR	2
 376#define	TCP_ECN_DEMAND_CWR	4
 377#define	TCP_ECN_SEEN		8
 378
 379enum tcp_tw_status {
 380	TCP_TW_SUCCESS = 0,
 381	TCP_TW_RST = 1,
 382	TCP_TW_ACK = 2,
 383	TCP_TW_SYN = 3
 384};
 385
 386
 387enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 388					      struct sk_buff *skb,
 389					      const struct tcphdr *th);
 390struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 391			   struct request_sock *req, bool fastopen,
 392			   bool *lost_race);
 393int tcp_child_process(struct sock *parent, struct sock *child,
 394		      struct sk_buff *skb);
 395void tcp_enter_loss(struct sock *sk);
 396void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
 397void tcp_clear_retrans(struct tcp_sock *tp);
 398void tcp_update_metrics(struct sock *sk);
 399void tcp_init_metrics(struct sock *sk);
 400void tcp_metrics_init(void);
 401bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 402void __tcp_close(struct sock *sk, long timeout);
 403void tcp_close(struct sock *sk, long timeout);
 404void tcp_init_sock(struct sock *sk);
 405void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
 406__poll_t tcp_poll(struct file *file, struct socket *sock,
 407		      struct poll_table_struct *wait);
 408int do_tcp_getsockopt(struct sock *sk, int level,
 409		      int optname, sockptr_t optval, sockptr_t optlen);
 410int tcp_getsockopt(struct sock *sk, int level, int optname,
 411		   char __user *optval, int __user *optlen);
 412bool tcp_bpf_bypass_getsockopt(int level, int optname);
 413int do_tcp_setsockopt(struct sock *sk, int level, int optname,
 414		      sockptr_t optval, unsigned int optlen);
 415int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 416		   unsigned int optlen);
 
 417void tcp_set_keepalive(struct sock *sk, int val);
 418void tcp_syn_ack_timeout(const struct request_sock *req);
 419int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
 420		int flags, int *addr_len);
 421int tcp_set_rcvlowat(struct sock *sk, int val);
 422int tcp_set_window_clamp(struct sock *sk, int val);
 423void tcp_update_recv_tstamps(struct sk_buff *skb,
 424			     struct scm_timestamping_internal *tss);
 425void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
 426			struct scm_timestamping_internal *tss);
 427void tcp_data_ready(struct sock *sk);
 428#ifdef CONFIG_MMU
 429int tcp_mmap(struct file *file, struct socket *sock,
 430	     struct vm_area_struct *vma);
 431#endif
 432void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 433		       struct tcp_options_received *opt_rx,
 434		       int estab, struct tcp_fastopen_cookie *foc);
 435const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 436
 437/*
 438 *	BPF SKB-less helpers
 439 */
 440u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 441			 struct tcphdr *th, u32 *cookie);
 442u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 443			 struct tcphdr *th, u32 *cookie);
 444u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
 445u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 446			  const struct tcp_request_sock_ops *af_ops,
 447			  struct sock *sk, struct tcphdr *th);
 448/*
 449 *	TCP v4 functions exported for the inet6 API
 450 */
 451
 452void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 453void tcp_v4_mtu_reduced(struct sock *sk);
 454void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 455void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 456int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 457struct sock *tcp_create_openreq_child(const struct sock *sk,
 458				      struct request_sock *req,
 459				      struct sk_buff *skb);
 460void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 461struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 462				  struct request_sock *req,
 463				  struct dst_entry *dst,
 464				  struct request_sock *req_unhash,
 465				  bool *own_req);
 466int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 467int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 468int tcp_connect(struct sock *sk);
 469enum tcp_synack_type {
 470	TCP_SYNACK_NORMAL,
 471	TCP_SYNACK_FASTOPEN,
 472	TCP_SYNACK_COOKIE,
 473};
 474struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 475				struct request_sock *req,
 476				struct tcp_fastopen_cookie *foc,
 477				enum tcp_synack_type synack_type,
 478				struct sk_buff *syn_skb);
 479int tcp_disconnect(struct sock *sk, int flags);
 480
 481void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 482int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 483void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 484
 485/* From syncookies.c */
 486struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 487				 struct request_sock *req,
 488				 struct dst_entry *dst, u32 tsoff);
 489int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 490		      u32 cookie);
 491struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 492struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 493					    const struct tcp_request_sock_ops *af_ops,
 494					    struct sock *sk, struct sk_buff *skb);
 495#ifdef CONFIG_SYN_COOKIES
 496
 497/* Syncookies use a monotonic timer which increments every 60 seconds.
 498 * This counter is used both as a hash input and partially encoded into
 499 * the cookie value.  A cookie is only validated further if the delta
 500 * between the current counter value and the encoded one is less than this,
 501 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 502 * the counter advances immediately after a cookie is generated).
 503 */
 504#define MAX_SYNCOOKIE_AGE	2
 505#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 506#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 507
 508/* syncookies: remember time of last synqueue overflow
 509 * But do not dirty this field too often (once per second is enough)
 510 * It is racy as we do not hold a lock, but race is very minor.
 511 */
 512static inline void tcp_synq_overflow(const struct sock *sk)
 513{
 514	unsigned int last_overflow;
 515	unsigned int now = jiffies;
 516
 517	if (sk->sk_reuseport) {
 518		struct sock_reuseport *reuse;
 519
 520		reuse = rcu_dereference(sk->sk_reuseport_cb);
 521		if (likely(reuse)) {
 522			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 523			if (!time_between32(now, last_overflow,
 524					    last_overflow + HZ))
 525				WRITE_ONCE(reuse->synq_overflow_ts, now);
 526			return;
 527		}
 528	}
 529
 530	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 531	if (!time_between32(now, last_overflow, last_overflow + HZ))
 532		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
 533}
 534
 535/* syncookies: no recent synqueue overflow on this listening socket? */
 536static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 537{
 538	unsigned int last_overflow;
 539	unsigned int now = jiffies;
 540
 541	if (sk->sk_reuseport) {
 542		struct sock_reuseport *reuse;
 543
 544		reuse = rcu_dereference(sk->sk_reuseport_cb);
 545		if (likely(reuse)) {
 546			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 547			return !time_between32(now, last_overflow - HZ,
 548					       last_overflow +
 549					       TCP_SYNCOOKIE_VALID);
 550		}
 551	}
 552
 553	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 554
 555	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 556	 * then we're under synflood. However, we have to use
 557	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
 558	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
 559	 * jiffies but before we store .ts_recent_stamp into last_overflow,
 560	 * which could lead to rejecting a valid syncookie.
 561	 */
 562	return !time_between32(now, last_overflow - HZ,
 563			       last_overflow + TCP_SYNCOOKIE_VALID);
 564}
 565
 566static inline u32 tcp_cookie_time(void)
 567{
 568	u64 val = get_jiffies_64();
 569
 570	do_div(val, TCP_SYNCOOKIE_PERIOD);
 571	return val;
 572}
 573
 574u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 575			      u16 *mssp);
 576__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 577u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 578bool cookie_timestamp_decode(const struct net *net,
 579			     struct tcp_options_received *opt);
 580bool cookie_ecn_ok(const struct tcp_options_received *opt,
 581		   const struct net *net, const struct dst_entry *dst);
 582
 583/* From net/ipv6/syncookies.c */
 584int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 585		      u32 cookie);
 586struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 587
 588u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 589			      const struct tcphdr *th, u16 *mssp);
 590__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 591#endif
 592/* tcp_output.c */
 593
 594void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
 595void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
 596void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 597			       int nonagle);
 598int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 599int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 600void tcp_retransmit_timer(struct sock *sk);
 601void tcp_xmit_retransmit_queue(struct sock *);
 602void tcp_simple_retransmit(struct sock *);
 603void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 604int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 605enum tcp_queue {
 606	TCP_FRAG_IN_WRITE_QUEUE,
 607	TCP_FRAG_IN_RTX_QUEUE,
 608};
 609int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 610		 struct sk_buff *skb, u32 len,
 611		 unsigned int mss_now, gfp_t gfp);
 612
 613void tcp_send_probe0(struct sock *);
 614void tcp_send_partial(struct sock *);
 615int tcp_write_wakeup(struct sock *, int mib);
 616void tcp_send_fin(struct sock *sk);
 617void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 618int tcp_send_synack(struct sock *);
 619void tcp_push_one(struct sock *, unsigned int mss_now);
 620void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 621void tcp_send_ack(struct sock *sk);
 622void tcp_send_delayed_ack(struct sock *sk);
 623void tcp_send_loss_probe(struct sock *sk);
 624bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 625void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 626			     const struct sk_buff *next_skb);
 627
 628/* tcp_input.c */
 629void tcp_rearm_rto(struct sock *sk);
 630void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 631void tcp_reset(struct sock *sk, struct sk_buff *skb);
 632void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 633void tcp_fin(struct sock *sk);
 634void tcp_check_space(struct sock *sk);
 635
 636/* tcp_timer.c */
 637void tcp_init_xmit_timers(struct sock *);
 638static inline void tcp_clear_xmit_timers(struct sock *sk)
 639{
 640	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 641		__sock_put(sk);
 642
 643	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 644		__sock_put(sk);
 645
 646	inet_csk_clear_xmit_timers(sk);
 647}
 648
 649unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 650unsigned int tcp_current_mss(struct sock *sk);
 651u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
 652
 653/* Bound MSS / TSO packet size with the half of the window */
 654static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 655{
 656	int cutoff;
 657
 658	/* When peer uses tiny windows, there is no use in packetizing
 659	 * to sub-MSS pieces for the sake of SWS or making sure there
 660	 * are enough packets in the pipe for fast recovery.
 661	 *
 662	 * On the other hand, for extremely large MSS devices, handling
 663	 * smaller than MSS windows in this way does make sense.
 664	 */
 665	if (tp->max_window > TCP_MSS_DEFAULT)
 666		cutoff = (tp->max_window >> 1);
 667	else
 668		cutoff = tp->max_window;
 669
 670	if (cutoff && pktsize > cutoff)
 671		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 672	else
 673		return pktsize;
 674}
 675
 676/* tcp.c */
 677void tcp_get_info(struct sock *, struct tcp_info *);
 678
 679/* Read 'sendfile()'-style from a TCP socket */
 680int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 681		  sk_read_actor_t recv_actor);
 682int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
 683struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
 684void tcp_read_done(struct sock *sk, size_t len);
 685
 686void tcp_initialize_rcv_mss(struct sock *sk);
 687
 688int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 689int tcp_mss_to_mtu(struct sock *sk, int mss);
 690void tcp_mtup_init(struct sock *sk);
 
 691
 692static inline void tcp_bound_rto(const struct sock *sk)
 693{
 694	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 695		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 696}
 697
 698static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 699{
 700	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 701}
 702
 703static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 704{
 705	/* mptcp hooks are only on the slow path */
 706	if (sk_is_mptcp((struct sock *)tp))
 707		return;
 708
 709	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 710			       ntohl(TCP_FLAG_ACK) |
 711			       snd_wnd);
 712}
 713
 714static inline void tcp_fast_path_on(struct tcp_sock *tp)
 715{
 716	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 717}
 718
 719static inline void tcp_fast_path_check(struct sock *sk)
 720{
 721	struct tcp_sock *tp = tcp_sk(sk);
 722
 723	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 724	    tp->rcv_wnd &&
 725	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 726	    !tp->urg_data)
 727		tcp_fast_path_on(tp);
 728}
 729
 730/* Compute the actual rto_min value */
 731static inline u32 tcp_rto_min(struct sock *sk)
 732{
 733	const struct dst_entry *dst = __sk_dst_get(sk);
 734	u32 rto_min = inet_csk(sk)->icsk_rto_min;
 735
 736	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 737		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 738	return rto_min;
 739}
 740
 741static inline u32 tcp_rto_min_us(struct sock *sk)
 742{
 743	return jiffies_to_usecs(tcp_rto_min(sk));
 744}
 745
 746static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 747{
 748	return dst_metric_locked(dst, RTAX_CC_ALGO);
 749}
 750
 751/* Minimum RTT in usec. ~0 means not available. */
 752static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 753{
 754	return minmax_get(&tp->rtt_min);
 755}
 756
 757/* Compute the actual receive window we are currently advertising.
 758 * Rcv_nxt can be after the window if our peer push more data
 759 * than the offered window.
 760 */
 761static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 762{
 763	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 764
 765	if (win < 0)
 766		win = 0;
 767	return (u32) win;
 768}
 769
 770/* Choose a new window, without checks for shrinking, and without
 771 * scaling applied to the result.  The caller does these things
 772 * if necessary.  This is a "raw" window selection.
 773 */
 774u32 __tcp_select_window(struct sock *sk);
 775
 776void tcp_send_window_probe(struct sock *sk);
 777
 778/* TCP uses 32bit jiffies to save some space.
 779 * Note that this is different from tcp_time_stamp, which
 780 * historically has been the same until linux-4.13.
 781 */
 782#define tcp_jiffies32 ((u32)jiffies)
 783
 784/*
 785 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 786 * It is no longer tied to jiffies, but to 1 ms clock.
 787 * Note: double check if you want to use tcp_jiffies32 instead of this.
 788 */
 789#define TCP_TS_HZ	1000
 790
 791static inline u64 tcp_clock_ns(void)
 792{
 793	return ktime_get_ns();
 794}
 795
 796static inline u64 tcp_clock_us(void)
 797{
 798	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 799}
 800
 801/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 802static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 803{
 804	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 805}
 806
 807/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
 808static inline u32 tcp_ns_to_ts(u64 ns)
 809{
 810	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
 811}
 812
 813/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 814static inline u32 tcp_time_stamp_raw(void)
 815{
 816	return tcp_ns_to_ts(tcp_clock_ns());
 817}
 818
 819void tcp_mstamp_refresh(struct tcp_sock *tp);
 820
 821static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 822{
 823	return max_t(s64, t1 - t0, 0);
 824}
 825
 826static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 827{
 828	return tcp_ns_to_ts(skb->skb_mstamp_ns);
 829}
 830
 831/* provide the departure time in us unit */
 832static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 833{
 834	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 835}
 836
 837
 838#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 839
 840#define TCPHDR_FIN 0x01
 841#define TCPHDR_SYN 0x02
 842#define TCPHDR_RST 0x04
 843#define TCPHDR_PSH 0x08
 844#define TCPHDR_ACK 0x10
 845#define TCPHDR_URG 0x20
 846#define TCPHDR_ECE 0x40
 847#define TCPHDR_CWR 0x80
 848
 849#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 850
 851/* This is what the send packet queuing engine uses to pass
 852 * TCP per-packet control information to the transmission code.
 853 * We also store the host-order sequence numbers in here too.
 854 * This is 44 bytes if IPV6 is enabled.
 855 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 856 */
 857struct tcp_skb_cb {
 858	__u32		seq;		/* Starting sequence number	*/
 859	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 860	union {
 861		/* Note : tcp_tw_isn is used in input path only
 862		 *	  (isn chosen by tcp_timewait_state_process())
 863		 *
 864		 * 	  tcp_gso_segs/size are used in write queue only,
 865		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 866		 */
 867		__u32		tcp_tw_isn;
 868		struct {
 869			u16	tcp_gso_segs;
 870			u16	tcp_gso_size;
 871		};
 872	};
 873	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 874
 875	__u8		sacked;		/* State flags for SACK.	*/
 876#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
 877#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
 878#define TCPCB_LOST		0x04	/* SKB is lost			*/
 879#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
 880#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
 881#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
 882#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 883				TCPCB_REPAIRED)
 884
 885	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 886	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 887			eor:1,		/* Is skb MSG_EOR marked? */
 888			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
 889			unused:5;
 890	__u32		ack_seq;	/* Sequence number ACK'd	*/
 891	union {
 892		struct {
 893#define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
 894			/* There is space for up to 24 bytes */
 895			__u32 is_app_limited:1, /* cwnd not fully used? */
 896			      delivered_ce:20,
 897			      unused:11;
 898			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 899			__u32 delivered;
 900			/* start of send pipeline phase */
 901			u64 first_tx_mstamp;
 902			/* when we reached the "delivered" count */
 903			u64 delivered_mstamp;
 904		} tx;   /* only used for outgoing skbs */
 905		union {
 906			struct inet_skb_parm	h4;
 907#if IS_ENABLED(CONFIG_IPV6)
 908			struct inet6_skb_parm	h6;
 909#endif
 910		} header;	/* For incoming skbs */
 
 
 
 
 
 911	};
 912};
 913
 914#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
 915
 916extern const struct inet_connection_sock_af_ops ipv4_specific;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917
 918#if IS_ENABLED(CONFIG_IPV6)
 919/* This is the variant of inet6_iif() that must be used by TCP,
 920 * as TCP moves IP6CB into a different location in skb->cb[]
 921 */
 922static inline int tcp_v6_iif(const struct sk_buff *skb)
 923{
 924	return TCP_SKB_CB(skb)->header.h6.iif;
 925}
 926
 927static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 928{
 929	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 930
 931	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 932}
 933
 934/* TCP_SKB_CB reference means this can not be used from early demux */
 935static inline int tcp_v6_sdif(const struct sk_buff *skb)
 936{
 937#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 938	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 939		return TCP_SKB_CB(skb)->header.h6.iif;
 940#endif
 941	return 0;
 942}
 
 943
 944extern const struct inet_connection_sock_af_ops ipv6_specific;
 945
 946INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
 947INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
 948void tcp_v6_early_demux(struct sk_buff *skb);
 949
 950#endif
 
 
 951
 952/* TCP_SKB_CB reference means this can not be used from early demux */
 953static inline int tcp_v4_sdif(struct sk_buff *skb)
 954{
 955#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 956	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 957		return TCP_SKB_CB(skb)->header.h4.iif;
 958#endif
 959	return 0;
 960}
 961
 962/* Due to TSO, an SKB can be composed of multiple actual
 963 * packets.  To keep these tracked properly, we use this.
 964 */
 965static inline int tcp_skb_pcount(const struct sk_buff *skb)
 966{
 967	return TCP_SKB_CB(skb)->tcp_gso_segs;
 968}
 969
 970static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 971{
 972	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 973}
 974
 975static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 976{
 977	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 978}
 979
 980/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 981static inline int tcp_skb_mss(const struct sk_buff *skb)
 982{
 983	return TCP_SKB_CB(skb)->tcp_gso_size;
 984}
 985
 986static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 987{
 988	return likely(!TCP_SKB_CB(skb)->eor);
 989}
 990
 991static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
 992					const struct sk_buff *from)
 993{
 994	return likely(tcp_skb_can_collapse_to(to) &&
 995		      mptcp_skb_can_collapse(to, from) &&
 996		      skb_pure_zcopy_same(to, from));
 997}
 998
 999/* Events passed to congestion control interface */
1000enum tcp_ca_event {
1001	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1002	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1003	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1004	CA_EVENT_LOSS,		/* loss timeout */
1005	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1006	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1007};
1008
1009/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1010enum tcp_ca_ack_event_flags {
1011	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1012	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1013	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1014};
1015
1016/*
1017 * Interface for adding new TCP congestion control handlers
1018 */
1019#define TCP_CA_NAME_MAX	16
1020#define TCP_CA_MAX	128
1021#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1022
1023#define TCP_CA_UNSPEC	0
1024
1025/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1026#define TCP_CONG_NON_RESTRICTED 0x1
1027/* Requires ECN/ECT set on all packets */
1028#define TCP_CONG_NEEDS_ECN	0x2
1029#define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1030
1031union tcp_cc_info;
1032
1033struct ack_sample {
1034	u32 pkts_acked;
1035	s32 rtt_us;
1036	u32 in_flight;
1037};
1038
1039/* A rate sample measures the number of (original/retransmitted) data
1040 * packets delivered "delivered" over an interval of time "interval_us".
1041 * The tcp_rate.c code fills in the rate sample, and congestion
1042 * control modules that define a cong_control function to run at the end
1043 * of ACK processing can optionally chose to consult this sample when
1044 * setting cwnd and pacing rate.
1045 * A sample is invalid if "delivered" or "interval_us" is negative.
1046 */
1047struct rate_sample {
1048	u64  prior_mstamp; /* starting timestamp for interval */
1049	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1050	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1051	s32  delivered;		/* number of packets delivered over interval */
1052	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1053	long interval_us;	/* time for tp->delivered to incr "delivered" */
1054	u32 snd_interval_us;	/* snd interval for delivered packets */
1055	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1056	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1057	int  losses;		/* number of packets marked lost upon ACK */
1058	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1059	u32  prior_in_flight;	/* in flight before this ACK */
1060	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1061	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1062	bool is_retrans;	/* is sample from retransmission? */
1063	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1064};
1065
1066struct tcp_congestion_ops {
1067/* fast path fields are put first to fill one cache line */
 
 
 
 
 
 
 
1068
1069	/* return slow start threshold (required) */
1070	u32 (*ssthresh)(struct sock *sk);
1071
1072	/* do new cwnd calculation (required) */
1073	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1074
1075	/* call before changing ca_state (optional) */
1076	void (*set_state)(struct sock *sk, u8 new_state);
1077
1078	/* call when cwnd event occurs (optional) */
1079	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1080
1081	/* call when ack arrives (optional) */
1082	void (*in_ack_event)(struct sock *sk, u32 flags);
1083
 
1084	/* hook for packet ack accounting (optional) */
1085	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1086
1087	/* override sysctl_tcp_min_tso_segs */
1088	u32 (*min_tso_segs)(struct sock *sk);
1089
 
1090	/* call when packets are delivered to update cwnd and pacing rate,
1091	 * after all the ca_state processing. (optional)
1092	 */
1093	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1094
1095
1096	/* new value of cwnd after loss (required) */
1097	u32  (*undo_cwnd)(struct sock *sk);
1098	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1099	u32 (*sndbuf_expand)(struct sock *sk);
1100
1101/* control/slow paths put last */
1102	/* get info for inet_diag (optional) */
1103	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1104			   union tcp_cc_info *info);
1105
1106	char 			name[TCP_CA_NAME_MAX];
1107	struct module		*owner;
1108	struct list_head	list;
1109	u32			key;
1110	u32			flags;
1111
1112	/* initialize private data (optional) */
1113	void (*init)(struct sock *sk);
1114	/* cleanup private data  (optional) */
1115	void (*release)(struct sock *sk);
1116} ____cacheline_aligned_in_smp;
1117
1118int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1119void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1120
1121void tcp_assign_congestion_control(struct sock *sk);
1122void tcp_init_congestion_control(struct sock *sk);
1123void tcp_cleanup_congestion_control(struct sock *sk);
1124int tcp_set_default_congestion_control(struct net *net, const char *name);
1125void tcp_get_default_congestion_control(struct net *net, char *name);
1126void tcp_get_available_congestion_control(char *buf, size_t len);
1127void tcp_get_allowed_congestion_control(char *buf, size_t len);
1128int tcp_set_allowed_congestion_control(char *allowed);
1129int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1130			       bool cap_net_admin);
1131u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1132void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1133
1134u32 tcp_reno_ssthresh(struct sock *sk);
1135u32 tcp_reno_undo_cwnd(struct sock *sk);
1136void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1137extern struct tcp_congestion_ops tcp_reno;
1138
1139struct tcp_congestion_ops *tcp_ca_find(const char *name);
1140struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1141u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1142#ifdef CONFIG_INET
1143char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1144#else
1145static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1146{
1147	return NULL;
1148}
1149#endif
1150
1151static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1152{
1153	const struct inet_connection_sock *icsk = inet_csk(sk);
1154
1155	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1156}
1157
 
 
 
 
 
 
 
 
 
1158static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1159{
1160	const struct inet_connection_sock *icsk = inet_csk(sk);
1161
1162	if (icsk->icsk_ca_ops->cwnd_event)
1163		icsk->icsk_ca_ops->cwnd_event(sk, event);
1164}
1165
1166/* From tcp_cong.c */
1167void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1168
1169/* From tcp_rate.c */
1170void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1171void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1172			    struct rate_sample *rs);
1173void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1174		  bool is_sack_reneg, struct rate_sample *rs);
1175void tcp_rate_check_app_limited(struct sock *sk);
1176
1177static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1178{
1179	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1180}
1181
1182/* These functions determine how the current flow behaves in respect of SACK
1183 * handling. SACK is negotiated with the peer, and therefore it can vary
1184 * between different flows.
1185 *
1186 * tcp_is_sack - SACK enabled
1187 * tcp_is_reno - No SACK
1188 */
1189static inline int tcp_is_sack(const struct tcp_sock *tp)
1190{
1191	return likely(tp->rx_opt.sack_ok);
1192}
1193
1194static inline bool tcp_is_reno(const struct tcp_sock *tp)
1195{
1196	return !tcp_is_sack(tp);
1197}
1198
1199static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1200{
1201	return tp->sacked_out + tp->lost_out;
1202}
1203
1204/* This determines how many packets are "in the network" to the best
1205 * of our knowledge.  In many cases it is conservative, but where
1206 * detailed information is available from the receiver (via SACK
1207 * blocks etc.) we can make more aggressive calculations.
1208 *
1209 * Use this for decisions involving congestion control, use just
1210 * tp->packets_out to determine if the send queue is empty or not.
1211 *
1212 * Read this equation as:
1213 *
1214 *	"Packets sent once on transmission queue" MINUS
1215 *	"Packets left network, but not honestly ACKed yet" PLUS
1216 *	"Packets fast retransmitted"
1217 */
1218static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1219{
1220	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1221}
1222
1223#define TCP_INFINITE_SSTHRESH	0x7fffffff
1224
1225static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1226{
1227	return tp->snd_cwnd;
1228}
1229
1230static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1231{
1232	WARN_ON_ONCE((int)val <= 0);
1233	tp->snd_cwnd = val;
1234}
1235
1236static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1237{
1238	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1239}
1240
1241static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1242{
1243	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1244}
1245
1246static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1247{
1248	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1249	       (1 << inet_csk(sk)->icsk_ca_state);
1250}
1251
1252/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1253 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1254 * ssthresh.
1255 */
1256static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1257{
1258	const struct tcp_sock *tp = tcp_sk(sk);
1259
1260	if (tcp_in_cwnd_reduction(sk))
1261		return tp->snd_ssthresh;
1262	else
1263		return max(tp->snd_ssthresh,
1264			   ((tcp_snd_cwnd(tp) >> 1) +
1265			    (tcp_snd_cwnd(tp) >> 2)));
1266}
1267
1268/* Use define here intentionally to get WARN_ON location shown at the caller */
1269#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1270
1271void tcp_enter_cwr(struct sock *sk);
1272__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1273
1274/* The maximum number of MSS of available cwnd for which TSO defers
1275 * sending if not using sysctl_tcp_tso_win_divisor.
1276 */
1277static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1278{
1279	return 3;
1280}
1281
1282/* Returns end sequence number of the receiver's advertised window */
1283static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1284{
1285	return tp->snd_una + tp->snd_wnd;
1286}
1287
1288/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1289 * flexible approach. The RFC suggests cwnd should not be raised unless
1290 * it was fully used previously. And that's exactly what we do in
1291 * congestion avoidance mode. But in slow start we allow cwnd to grow
1292 * as long as the application has used half the cwnd.
1293 * Example :
1294 *    cwnd is 10 (IW10), but application sends 9 frames.
1295 *    We allow cwnd to reach 18 when all frames are ACKed.
1296 * This check is safe because it's as aggressive as slow start which already
1297 * risks 100% overshoot. The advantage is that we discourage application to
1298 * either send more filler packets or data to artificially blow up the cwnd
1299 * usage, and allow application-limited process to probe bw more aggressively.
1300 */
1301static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1302{
1303	const struct tcp_sock *tp = tcp_sk(sk);
1304
1305	if (tp->is_cwnd_limited)
1306		return true;
1307
1308	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1309	if (tcp_in_slow_start(tp))
1310		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1311
1312	return false;
1313}
1314
1315/* BBR congestion control needs pacing.
1316 * Same remark for SO_MAX_PACING_RATE.
1317 * sch_fq packet scheduler is efficiently handling pacing,
1318 * but is not always installed/used.
1319 * Return true if TCP stack should pace packets itself.
1320 */
1321static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1322{
1323	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1324}
1325
1326/* Estimates in how many jiffies next packet for this flow can be sent.
1327 * Scheduling a retransmit timer too early would be silly.
1328 */
1329static inline unsigned long tcp_pacing_delay(const struct sock *sk)
 
1330{
1331	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
 
 
1332
1333	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1334}
1335
1336static inline void tcp_reset_xmit_timer(struct sock *sk,
1337					const int what,
1338					unsigned long when,
1339					const unsigned long max_when)
 
1340{
1341	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1342				  max_when);
1343}
1344
1345/* Something is really bad, we could not queue an additional packet,
1346 * because qdisc is full or receiver sent a 0 window, or we are paced.
1347 * We do not want to add fuel to the fire, or abort too early,
1348 * so make sure the timer we arm now is at least 200ms in the future,
1349 * regardless of current icsk_rto value (as it could be ~2ms)
1350 */
1351static inline unsigned long tcp_probe0_base(const struct sock *sk)
1352{
1353	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1354}
1355
1356/* Variant of inet_csk_rto_backoff() used for zero window probes */
1357static inline unsigned long tcp_probe0_when(const struct sock *sk,
1358					    unsigned long max_when)
1359{
1360	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1361			   inet_csk(sk)->icsk_backoff);
1362	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1363
1364	return (unsigned long)min_t(u64, when, max_when);
1365}
1366
1367static inline void tcp_check_probe_timer(struct sock *sk)
1368{
1369	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1370		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1371				     tcp_probe0_base(sk), TCP_RTO_MAX);
 
1372}
1373
1374static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1375{
1376	tp->snd_wl1 = seq;
1377}
1378
1379static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1380{
1381	tp->snd_wl1 = seq;
1382}
1383
1384/*
1385 * Calculate(/check) TCP checksum
1386 */
1387static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1388				   __be32 daddr, __wsum base)
1389{
1390	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1391}
1392
1393static inline bool tcp_checksum_complete(struct sk_buff *skb)
1394{
1395	return !skb_csum_unnecessary(skb) &&
1396		__skb_checksum_complete(skb);
1397}
1398
1399bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1400		     enum skb_drop_reason *reason);
1401
1402
1403int tcp_filter(struct sock *sk, struct sk_buff *skb);
1404void tcp_set_state(struct sock *sk, int state);
1405void tcp_done(struct sock *sk);
1406int tcp_abort(struct sock *sk, int err);
1407
1408static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1409{
1410	rx_opt->dsack = 0;
1411	rx_opt->num_sacks = 0;
1412}
1413
 
1414void tcp_cwnd_restart(struct sock *sk, s32 delta);
1415
1416static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1417{
1418	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1419	struct tcp_sock *tp = tcp_sk(sk);
1420	s32 delta;
1421
1422	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1423	    tp->packets_out || ca_ops->cong_control)
1424		return;
1425	delta = tcp_jiffies32 - tp->lsndtime;
1426	if (delta > inet_csk(sk)->icsk_rto)
1427		tcp_cwnd_restart(sk, delta);
1428}
1429
1430/* Determine a window scaling and initial window to offer. */
1431void tcp_select_initial_window(const struct sock *sk, int __space,
1432			       __u32 mss, __u32 *rcv_wnd,
1433			       __u32 *window_clamp, int wscale_ok,
1434			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1435
1436static inline int tcp_win_from_space(const struct sock *sk, int space)
1437{
1438	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1439
1440	return tcp_adv_win_scale <= 0 ?
1441		(space>>(-tcp_adv_win_scale)) :
1442		space - (space>>tcp_adv_win_scale);
1443}
1444
1445/* Note: caller must be prepared to deal with negative returns */
1446static inline int tcp_space(const struct sock *sk)
1447{
1448	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1449				  READ_ONCE(sk->sk_backlog.len) -
1450				  atomic_read(&sk->sk_rmem_alloc));
1451}
1452
1453static inline int tcp_full_space(const struct sock *sk)
1454{
1455	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1456}
1457
1458static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1459{
1460	int unused_mem = sk_unused_reserved_mem(sk);
1461	struct tcp_sock *tp = tcp_sk(sk);
1462
1463	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1464	if (unused_mem)
1465		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1466					 tcp_win_from_space(sk, unused_mem));
1467}
1468
1469void tcp_cleanup_rbuf(struct sock *sk, int copied);
1470
1471/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1472 * If 87.5 % (7/8) of the space has been consumed, we want to override
1473 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1474 * len/truesize ratio.
1475 */
1476static inline bool tcp_rmem_pressure(const struct sock *sk)
1477{
1478	int rcvbuf, threshold;
1479
1480	if (tcp_under_memory_pressure(sk))
1481		return true;
1482
1483	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1484	threshold = rcvbuf - (rcvbuf >> 3);
1485
1486	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1487}
1488
1489static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1490{
1491	const struct tcp_sock *tp = tcp_sk(sk);
1492	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1493
1494	if (avail <= 0)
1495		return false;
1496
1497	return (avail >= target) || tcp_rmem_pressure(sk) ||
1498	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1499}
1500
1501extern void tcp_openreq_init_rwin(struct request_sock *req,
1502				  const struct sock *sk_listener,
1503				  const struct dst_entry *dst);
1504
1505void tcp_enter_memory_pressure(struct sock *sk);
1506void tcp_leave_memory_pressure(struct sock *sk);
1507
1508static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1509{
1510	struct net *net = sock_net((struct sock *)tp);
1511
1512	return tp->keepalive_intvl ? :
1513		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1514}
1515
1516static inline int keepalive_time_when(const struct tcp_sock *tp)
1517{
1518	struct net *net = sock_net((struct sock *)tp);
1519
1520	return tp->keepalive_time ? :
1521		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1522}
1523
1524static inline int keepalive_probes(const struct tcp_sock *tp)
1525{
1526	struct net *net = sock_net((struct sock *)tp);
1527
1528	return tp->keepalive_probes ? :
1529		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1530}
1531
1532static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1533{
1534	const struct inet_connection_sock *icsk = &tp->inet_conn;
1535
1536	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1537			  tcp_jiffies32 - tp->rcv_tstamp);
1538}
1539
1540static inline int tcp_fin_time(const struct sock *sk)
1541{
1542	int fin_timeout = tcp_sk(sk)->linger2 ? :
1543		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1544	const int rto = inet_csk(sk)->icsk_rto;
1545
1546	if (fin_timeout < (rto << 2) - (rto >> 1))
1547		fin_timeout = (rto << 2) - (rto >> 1);
1548
1549	return fin_timeout;
1550}
1551
1552static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1553				  int paws_win)
1554{
1555	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1556		return true;
1557	if (unlikely(!time_before32(ktime_get_seconds(),
1558				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1559		return true;
1560	/*
1561	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1562	 * then following tcp messages have valid values. Ignore 0 value,
1563	 * or else 'negative' tsval might forbid us to accept their packets.
1564	 */
1565	if (!rx_opt->ts_recent)
1566		return true;
1567	return false;
1568}
1569
1570static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1571				   int rst)
1572{
1573	if (tcp_paws_check(rx_opt, 0))
1574		return false;
1575
1576	/* RST segments are not recommended to carry timestamp,
1577	   and, if they do, it is recommended to ignore PAWS because
1578	   "their cleanup function should take precedence over timestamps."
1579	   Certainly, it is mistake. It is necessary to understand the reasons
1580	   of this constraint to relax it: if peer reboots, clock may go
1581	   out-of-sync and half-open connections will not be reset.
1582	   Actually, the problem would be not existing if all
1583	   the implementations followed draft about maintaining clock
1584	   via reboots. Linux-2.2 DOES NOT!
1585
1586	   However, we can relax time bounds for RST segments to MSL.
1587	 */
1588	if (rst && !time_before32(ktime_get_seconds(),
1589				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1590		return false;
1591	return true;
1592}
1593
1594bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1595			  int mib_idx, u32 *last_oow_ack_time);
1596
1597static inline void tcp_mib_init(struct net *net)
1598{
1599	/* See RFC 2012 */
1600	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1601	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1602	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1603	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1604}
1605
1606/* from STCP */
1607static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1608{
1609	tp->lost_skb_hint = NULL;
1610}
1611
1612static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1613{
1614	tcp_clear_retrans_hints_partial(tp);
1615	tp->retransmit_skb_hint = NULL;
1616}
1617
1618union tcp_md5_addr {
1619	struct in_addr  a4;
1620#if IS_ENABLED(CONFIG_IPV6)
1621	struct in6_addr	a6;
1622#endif
1623};
1624
1625/* - key database */
1626struct tcp_md5sig_key {
1627	struct hlist_node	node;
1628	u8			keylen;
1629	u8			family; /* AF_INET or AF_INET6 */
 
1630	u8			prefixlen;
1631	u8			flags;
1632	union tcp_md5_addr	addr;
1633	int			l3index; /* set if key added with L3 scope */
1634	u8			key[TCP_MD5SIG_MAXKEYLEN];
1635	struct rcu_head		rcu;
1636};
1637
1638/* - sock block */
1639struct tcp_md5sig_info {
1640	struct hlist_head	head;
1641	struct rcu_head		rcu;
1642};
1643
1644/* - pseudo header */
1645struct tcp4_pseudohdr {
1646	__be32		saddr;
1647	__be32		daddr;
1648	__u8		pad;
1649	__u8		protocol;
1650	__be16		len;
1651};
1652
1653struct tcp6_pseudohdr {
1654	struct in6_addr	saddr;
1655	struct in6_addr daddr;
1656	__be32		len;
1657	__be32		protocol;	/* including padding */
1658};
1659
1660union tcp_md5sum_block {
1661	struct tcp4_pseudohdr ip4;
1662#if IS_ENABLED(CONFIG_IPV6)
1663	struct tcp6_pseudohdr ip6;
1664#endif
1665};
1666
1667/* - pool: digest algorithm, hash description and scratch buffer */
1668struct tcp_md5sig_pool {
1669	struct ahash_request	*md5_req;
1670	void			*scratch;
1671};
1672
1673/* - functions */
1674int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1675			const struct sock *sk, const struct sk_buff *skb);
1676int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1677		   int family, u8 prefixlen, int l3index, u8 flags,
1678		   const u8 *newkey, u8 newkeylen);
1679int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1680		     int family, u8 prefixlen, int l3index,
1681		     struct tcp_md5sig_key *key);
1682
1683int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1684		   int family, u8 prefixlen, int l3index, u8 flags);
1685struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1686					 const struct sock *addr_sk);
1687
1688#ifdef CONFIG_TCP_MD5SIG
1689#include <linux/jump_label.h>
1690extern struct static_key_false_deferred tcp_md5_needed;
1691struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1692					   const union tcp_md5_addr *addr,
1693					   int family);
1694static inline struct tcp_md5sig_key *
1695tcp_md5_do_lookup(const struct sock *sk, int l3index,
1696		  const union tcp_md5_addr *addr, int family)
 
1697{
1698	if (!static_branch_unlikely(&tcp_md5_needed.key))
1699		return NULL;
1700	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1701}
1702
1703enum skb_drop_reason
1704tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1705		     const void *saddr, const void *daddr,
1706		     int family, int dif, int sdif);
1707
1708
1709#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1710#else
1711static inline struct tcp_md5sig_key *
1712tcp_md5_do_lookup(const struct sock *sk, int l3index,
1713		  const union tcp_md5_addr *addr, int family)
1714{
1715	return NULL;
1716}
1717
1718static inline enum skb_drop_reason
1719tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1720		     const void *saddr, const void *daddr,
1721		     int family, int dif, int sdif)
1722{
1723	return SKB_NOT_DROPPED_YET;
1724}
1725#define tcp_twsk_md5_key(twsk)	NULL
1726#endif
1727
1728bool tcp_alloc_md5sig_pool(void);
1729
1730struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1731static inline void tcp_put_md5sig_pool(void)
1732{
1733	local_bh_enable();
1734}
1735
1736int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1737			  unsigned int header_len);
1738int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1739		     const struct tcp_md5sig_key *key);
1740
1741/* From tcp_fastopen.c */
1742void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1743			    struct tcp_fastopen_cookie *cookie);
1744void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1745			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1746			    u16 try_exp);
1747struct tcp_fastopen_request {
1748	/* Fast Open cookie. Size 0 means a cookie request */
1749	struct tcp_fastopen_cookie	cookie;
1750	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1751	size_t				size;
1752	int				copied;	/* queued in tcp_connect() */
1753	struct ubuf_info		*uarg;
1754};
1755void tcp_free_fastopen_req(struct tcp_sock *tp);
1756void tcp_fastopen_destroy_cipher(struct sock *sk);
1757void tcp_fastopen_ctx_destroy(struct net *net);
1758int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1759			      void *primary_key, void *backup_key);
1760int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1761			    u64 *key);
1762void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1763struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1764			      struct request_sock *req,
1765			      struct tcp_fastopen_cookie *foc,
1766			      const struct dst_entry *dst);
1767void tcp_fastopen_init_key_once(struct net *net);
1768bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1769			     struct tcp_fastopen_cookie *cookie);
1770bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1771#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1772#define TCP_FASTOPEN_KEY_MAX 2
1773#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1774	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1775
1776/* Fastopen key context */
1777struct tcp_fastopen_context {
1778	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1779	int		num;
1780	struct rcu_head	rcu;
1781};
1782
 
1783void tcp_fastopen_active_disable(struct sock *sk);
1784bool tcp_fastopen_active_should_disable(struct sock *sk);
1785void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1786void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1787
1788/* Caller needs to wrap with rcu_read_(un)lock() */
1789static inline
1790struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1791{
1792	struct tcp_fastopen_context *ctx;
1793
1794	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1795	if (!ctx)
1796		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1797	return ctx;
1798}
1799
1800static inline
1801bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1802			       const struct tcp_fastopen_cookie *orig)
1803{
1804	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1805	    orig->len == foc->len &&
1806	    !memcmp(orig->val, foc->val, foc->len))
1807		return true;
1808	return false;
1809}
1810
1811static inline
1812int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1813{
1814	return ctx->num;
1815}
1816
1817/* Latencies incurred by various limits for a sender. They are
1818 * chronograph-like stats that are mutually exclusive.
1819 */
1820enum tcp_chrono {
1821	TCP_CHRONO_UNSPEC,
1822	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1823	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1824	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1825	__TCP_CHRONO_MAX,
1826};
1827
1828void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1829void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1830
1831/* This helper is needed, because skb->tcp_tsorted_anchor uses
1832 * the same memory storage than skb->destructor/_skb_refdst
1833 */
1834static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1835{
1836	skb->destructor = NULL;
1837	skb->_skb_refdst = 0UL;
1838}
1839
1840#define tcp_skb_tsorted_save(skb) {		\
1841	unsigned long _save = skb->_skb_refdst;	\
1842	skb->_skb_refdst = 0UL;
1843
1844#define tcp_skb_tsorted_restore(skb)		\
1845	skb->_skb_refdst = _save;		\
1846}
1847
1848void tcp_write_queue_purge(struct sock *sk);
1849
1850static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1851{
1852	return skb_rb_first(&sk->tcp_rtx_queue);
1853}
1854
1855static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1856{
1857	return skb_rb_last(&sk->tcp_rtx_queue);
1858}
1859
 
 
 
 
 
1860static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1861{
1862	return skb_peek_tail(&sk->sk_write_queue);
1863}
1864
1865#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1866	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1867
1868static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1869{
1870	return skb_peek(&sk->sk_write_queue);
1871}
1872
1873static inline bool tcp_skb_is_last(const struct sock *sk,
1874				   const struct sk_buff *skb)
1875{
1876	return skb_queue_is_last(&sk->sk_write_queue, skb);
1877}
1878
1879/**
1880 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1881 * @sk: socket
1882 *
1883 * Since the write queue can have a temporary empty skb in it,
1884 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1885 */
1886static inline bool tcp_write_queue_empty(const struct sock *sk)
1887{
1888	const struct tcp_sock *tp = tcp_sk(sk);
1889
1890	return tp->write_seq == tp->snd_nxt;
1891}
1892
1893static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1894{
1895	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1896}
1897
1898static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1899{
1900	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1901}
1902
1903static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1904{
1905	__skb_queue_tail(&sk->sk_write_queue, skb);
1906
1907	/* Queue it, remembering where we must start sending. */
1908	if (sk->sk_write_queue.next == skb)
1909		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1910}
1911
1912/* Insert new before skb on the write queue of sk.  */
1913static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1914						  struct sk_buff *skb,
1915						  struct sock *sk)
1916{
1917	__skb_queue_before(&sk->sk_write_queue, skb, new);
1918}
1919
1920static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1921{
1922	tcp_skb_tsorted_anchor_cleanup(skb);
1923	__skb_unlink(skb, &sk->sk_write_queue);
1924}
1925
1926void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1927
1928static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1929{
1930	tcp_skb_tsorted_anchor_cleanup(skb);
1931	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1932}
1933
1934static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1935{
1936	list_del(&skb->tcp_tsorted_anchor);
1937	tcp_rtx_queue_unlink(skb, sk);
1938	tcp_wmem_free_skb(sk, skb);
1939}
1940
1941static inline void tcp_push_pending_frames(struct sock *sk)
1942{
1943	if (tcp_send_head(sk)) {
1944		struct tcp_sock *tp = tcp_sk(sk);
1945
1946		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1947	}
1948}
1949
1950/* Start sequence of the skb just after the highest skb with SACKed
1951 * bit, valid only if sacked_out > 0 or when the caller has ensured
1952 * validity by itself.
1953 */
1954static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1955{
1956	if (!tp->sacked_out)
1957		return tp->snd_una;
1958
1959	if (tp->highest_sack == NULL)
1960		return tp->snd_nxt;
1961
1962	return TCP_SKB_CB(tp->highest_sack)->seq;
1963}
1964
1965static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1966{
1967	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1968}
1969
1970static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1971{
1972	return tcp_sk(sk)->highest_sack;
1973}
1974
1975static inline void tcp_highest_sack_reset(struct sock *sk)
1976{
1977	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1978}
1979
1980/* Called when old skb is about to be deleted and replaced by new skb */
1981static inline void tcp_highest_sack_replace(struct sock *sk,
1982					    struct sk_buff *old,
1983					    struct sk_buff *new)
1984{
1985	if (old == tcp_highest_sack(sk))
1986		tcp_sk(sk)->highest_sack = new;
1987}
1988
1989/* This helper checks if socket has IP_TRANSPARENT set */
1990static inline bool inet_sk_transparent(const struct sock *sk)
1991{
1992	switch (sk->sk_state) {
1993	case TCP_TIME_WAIT:
1994		return inet_twsk(sk)->tw_transparent;
1995	case TCP_NEW_SYN_RECV:
1996		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1997	}
1998	return inet_sk(sk)->transparent;
1999}
2000
2001/* Determines whether this is a thin stream (which may suffer from
2002 * increased latency). Used to trigger latency-reducing mechanisms.
2003 */
2004static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2005{
2006	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2007}
2008
2009/* /proc */
2010enum tcp_seq_states {
2011	TCP_SEQ_STATE_LISTENING,
2012	TCP_SEQ_STATE_ESTABLISHED,
2013};
2014
2015void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2016void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2017void tcp_seq_stop(struct seq_file *seq, void *v);
2018
2019struct tcp_seq_afinfo {
2020	sa_family_t			family;
2021};
2022
2023struct tcp_iter_state {
2024	struct seq_net_private	p;
2025	enum tcp_seq_states	state;
2026	struct sock		*syn_wait_sk;
2027	int			bucket, offset, sbucket, num;
2028	loff_t			last_pos;
2029};
2030
2031extern struct request_sock_ops tcp_request_sock_ops;
2032extern struct request_sock_ops tcp6_request_sock_ops;
2033
2034void tcp_v4_destroy_sock(struct sock *sk);
2035
2036struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2037				netdev_features_t features);
2038struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2039INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2040INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2041INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2042INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2043int tcp_gro_complete(struct sk_buff *skb);
2044
2045void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2046
2047static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2048{
2049	struct net *net = sock_net((struct sock *)tp);
2050	return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2051}
2052
2053bool tcp_stream_memory_free(const struct sock *sk, int wake);
 
 
 
 
 
 
 
 
 
 
 
2054
2055#ifdef CONFIG_PROC_FS
2056int tcp4_proc_init(void);
2057void tcp4_proc_exit(void);
2058#endif
2059
2060int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2061int tcp_conn_request(struct request_sock_ops *rsk_ops,
2062		     const struct tcp_request_sock_ops *af_ops,
2063		     struct sock *sk, struct sk_buff *skb);
2064
2065/* TCP af-specific functions */
2066struct tcp_sock_af_ops {
2067#ifdef CONFIG_TCP_MD5SIG
2068	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2069						const struct sock *addr_sk);
2070	int		(*calc_md5_hash)(char *location,
2071					 const struct tcp_md5sig_key *md5,
2072					 const struct sock *sk,
2073					 const struct sk_buff *skb);
2074	int		(*md5_parse)(struct sock *sk,
2075				     int optname,
2076				     sockptr_t optval,
2077				     int optlen);
2078#endif
2079};
2080
2081struct tcp_request_sock_ops {
2082	u16 mss_clamp;
2083#ifdef CONFIG_TCP_MD5SIG
2084	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2085						 const struct sock *addr_sk);
2086	int		(*calc_md5_hash) (char *location,
2087					  const struct tcp_md5sig_key *md5,
2088					  const struct sock *sk,
2089					  const struct sk_buff *skb);
2090#endif
 
 
 
2091#ifdef CONFIG_SYN_COOKIES
2092	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2093				 __u16 *mss);
2094#endif
2095	struct dst_entry *(*route_req)(const struct sock *sk,
2096				       struct sk_buff *skb,
2097				       struct flowi *fl,
2098				       struct request_sock *req);
2099	u32 (*init_seq)(const struct sk_buff *skb);
2100	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2101	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2102			   struct flowi *fl, struct request_sock *req,
2103			   struct tcp_fastopen_cookie *foc,
2104			   enum tcp_synack_type synack_type,
2105			   struct sk_buff *syn_skb);
2106};
2107
2108extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2109#if IS_ENABLED(CONFIG_IPV6)
2110extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2111#endif
2112
2113#ifdef CONFIG_SYN_COOKIES
2114static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2115					 const struct sock *sk, struct sk_buff *skb,
2116					 __u16 *mss)
2117{
2118	tcp_synq_overflow(sk);
2119	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2120	return ops->cookie_init_seq(skb, mss);
2121}
2122#else
2123static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2124					 const struct sock *sk, struct sk_buff *skb,
2125					 __u16 *mss)
2126{
2127	return 0;
2128}
2129#endif
2130
2131int tcpv4_offload_init(void);
2132
2133void tcp_v4_init(void);
2134void tcp_init(void);
2135
2136/* tcp_recovery.c */
2137void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2138void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2139extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2140				u32 reo_wnd);
2141extern bool tcp_rack_mark_lost(struct sock *sk);
2142extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2143			     u64 xmit_time);
2144extern void tcp_rack_reo_timeout(struct sock *sk);
2145extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2146
2147/* tcp_plb.c */
2148
2149/*
2150 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2151 * expects cong_ratio which represents fraction of traffic that experienced
2152 * congestion over a single RTT. In order to avoid floating point operations,
2153 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2154 */
2155#define TCP_PLB_SCALE 8
2156
2157/* State for PLB (Protective Load Balancing) for a single TCP connection. */
2158struct tcp_plb_state {
2159	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2160		unused:3;
2161	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2162};
2163
2164static inline void tcp_plb_init(const struct sock *sk,
2165				struct tcp_plb_state *plb)
2166{
2167	plb->consec_cong_rounds = 0;
2168	plb->pause_until = 0;
2169}
2170void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2171			  const int cong_ratio);
2172void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2173void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2174
2175/* At how many usecs into the future should the RTO fire? */
2176static inline s64 tcp_rto_delta_us(const struct sock *sk)
2177{
2178	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2179	u32 rto = inet_csk(sk)->icsk_rto;
2180	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2181
2182	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2183}
2184
2185/*
2186 * Save and compile IPv4 options, return a pointer to it
2187 */
2188static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2189							 struct sk_buff *skb)
2190{
2191	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2192	struct ip_options_rcu *dopt = NULL;
2193
2194	if (opt->optlen) {
2195		int opt_size = sizeof(*dopt) + opt->optlen;
2196
2197		dopt = kmalloc(opt_size, GFP_ATOMIC);
2198		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2199			kfree(dopt);
2200			dopt = NULL;
2201		}
2202	}
2203	return dopt;
2204}
2205
2206/* locally generated TCP pure ACKs have skb->truesize == 2
2207 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2208 * This is much faster than dissecting the packet to find out.
2209 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2210 */
2211static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2212{
2213	return skb->truesize == 2;
2214}
2215
2216static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2217{
2218	skb->truesize = 2;
2219}
2220
2221static inline int tcp_inq(struct sock *sk)
2222{
2223	struct tcp_sock *tp = tcp_sk(sk);
2224	int answ;
2225
2226	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2227		answ = 0;
2228	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2229		   !tp->urg_data ||
2230		   before(tp->urg_seq, tp->copied_seq) ||
2231		   !before(tp->urg_seq, tp->rcv_nxt)) {
2232
2233		answ = tp->rcv_nxt - tp->copied_seq;
2234
2235		/* Subtract 1, if FIN was received */
2236		if (answ && sock_flag(sk, SOCK_DONE))
2237			answ--;
2238	} else {
2239		answ = tp->urg_seq - tp->copied_seq;
2240	}
2241
2242	return answ;
2243}
2244
2245int tcp_peek_len(struct socket *sock);
2246
2247static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2248{
2249	u16 segs_in;
2250
2251	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2252
2253	/* We update these fields while other threads might
2254	 * read them from tcp_get_info()
2255	 */
2256	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2257	if (skb->len > tcp_hdrlen(skb))
2258		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2259}
2260
2261/*
2262 * TCP listen path runs lockless.
2263 * We forced "struct sock" to be const qualified to make sure
2264 * we don't modify one of its field by mistake.
2265 * Here, we increment sk_drops which is an atomic_t, so we can safely
2266 * make sock writable again.
2267 */
2268static inline void tcp_listendrop(const struct sock *sk)
2269{
2270	atomic_inc(&((struct sock *)sk)->sk_drops);
2271	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2272}
2273
2274enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2275
2276/*
2277 * Interface for adding Upper Level Protocols over TCP
2278 */
2279
2280#define TCP_ULP_NAME_MAX	16
2281#define TCP_ULP_MAX		128
2282#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2283
2284struct tcp_ulp_ops {
2285	struct list_head	list;
2286
2287	/* initialize ulp */
2288	int (*init)(struct sock *sk);
2289	/* update ulp */
2290	void (*update)(struct sock *sk, struct proto *p,
2291		       void (*write_space)(struct sock *sk));
2292	/* cleanup ulp */
2293	void (*release)(struct sock *sk);
2294	/* diagnostic */
2295	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2296	size_t (*get_info_size)(const struct sock *sk);
2297	/* clone ulp */
2298	void (*clone)(const struct request_sock *req, struct sock *newsk,
2299		      const gfp_t priority);
2300
2301	char		name[TCP_ULP_NAME_MAX];
2302	struct module	*owner;
2303};
2304int tcp_register_ulp(struct tcp_ulp_ops *type);
2305void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2306int tcp_set_ulp(struct sock *sk, const char *name);
2307void tcp_get_available_ulp(char *buf, size_t len);
2308void tcp_cleanup_ulp(struct sock *sk);
2309void tcp_update_ulp(struct sock *sk, struct proto *p,
2310		    void (*write_space)(struct sock *sk));
2311
2312#define MODULE_ALIAS_TCP_ULP(name)				\
2313	__MODULE_INFO(alias, alias_userspace, name);		\
2314	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2315
2316#ifdef CONFIG_NET_SOCK_MSG
2317struct sk_msg;
2318struct sk_psock;
2319
2320#ifdef CONFIG_BPF_SYSCALL
2321struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2322int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2323void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2324#endif /* CONFIG_BPF_SYSCALL */
2325
2326int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2327			  struct sk_msg *msg, u32 bytes, int flags);
2328#endif /* CONFIG_NET_SOCK_MSG */
2329
2330#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2331static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2332{
2333}
2334#endif
2335
2336#ifdef CONFIG_CGROUP_BPF
2337static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2338				      struct sk_buff *skb,
2339				      unsigned int end_offset)
2340{
2341	skops->skb = skb;
2342	skops->skb_data_end = skb->data + end_offset;
2343}
2344#else
2345static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2346				      struct sk_buff *skb,
2347				      unsigned int end_offset)
2348{
2349}
2350#endif
2351
2352/* Call BPF_SOCK_OPS program that returns an int. If the return value
2353 * is < 0, then the BPF op failed (for example if the loaded BPF
2354 * program does not support the chosen operation or there is no BPF
2355 * program loaded).
2356 */
2357#ifdef CONFIG_BPF
2358static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2359{
2360	struct bpf_sock_ops_kern sock_ops;
2361	int ret;
2362
2363	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2364	if (sk_fullsock(sk)) {
2365		sock_ops.is_fullsock = 1;
2366		sock_owned_by_me(sk);
2367	}
2368
2369	sock_ops.sk = sk;
2370	sock_ops.op = op;
2371	if (nargs > 0)
2372		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2373
2374	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2375	if (ret == 0)
2376		ret = sock_ops.reply;
2377	else
2378		ret = -1;
2379	return ret;
2380}
2381
2382static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2383{
2384	u32 args[2] = {arg1, arg2};
2385
2386	return tcp_call_bpf(sk, op, 2, args);
2387}
2388
2389static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2390				    u32 arg3)
2391{
2392	u32 args[3] = {arg1, arg2, arg3};
2393
2394	return tcp_call_bpf(sk, op, 3, args);
2395}
2396
2397#else
2398static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2399{
2400	return -EPERM;
2401}
2402
2403static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2404{
2405	return -EPERM;
2406}
2407
2408static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2409				    u32 arg3)
2410{
2411	return -EPERM;
2412}
2413
2414#endif
2415
2416static inline u32 tcp_timeout_init(struct sock *sk)
2417{
2418	int timeout;
2419
2420	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2421
2422	if (timeout <= 0)
2423		timeout = TCP_TIMEOUT_INIT;
2424	return min_t(int, timeout, TCP_RTO_MAX);
2425}
2426
2427static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2428{
2429	int rwnd;
2430
2431	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2432
2433	if (rwnd < 0)
2434		rwnd = 0;
2435	return rwnd;
2436}
2437
2438static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2439{
2440	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2441}
2442
2443static inline void tcp_bpf_rtt(struct sock *sk)
2444{
2445	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2446		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2447}
2448
2449#if IS_ENABLED(CONFIG_SMC)
2450extern struct static_key_false tcp_have_smc;
2451#endif
2452
2453#if IS_ENABLED(CONFIG_TLS_DEVICE)
2454void clean_acked_data_enable(struct inet_connection_sock *icsk,
2455			     void (*cad)(struct sock *sk, u32 ack_seq));
2456void clean_acked_data_disable(struct inet_connection_sock *icsk);
2457void clean_acked_data_flush(void);
2458#endif
2459
2460DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2461static inline void tcp_add_tx_delay(struct sk_buff *skb,
2462				    const struct tcp_sock *tp)
2463{
2464	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2465		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2466}
2467
2468/* Compute Earliest Departure Time for some control packets
2469 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2470 */
2471static inline u64 tcp_transmit_time(const struct sock *sk)
2472{
2473	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2474		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2475			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2476
2477		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2478	}
2479	return 0;
2480}
2481
2482#endif	/* _TCP_H */