Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14#ifndef _TCP_H
15#define _TCP_H
16
17#define FASTRETRANS_DEBUG 1
18
19#include <linux/list.h>
20#include <linux/tcp.h>
21#include <linux/bug.h>
22#include <linux/slab.h>
23#include <linux/cache.h>
24#include <linux/percpu.h>
25#include <linux/skbuff.h>
26#include <linux/cryptohash.h>
27#include <linux/kref.h>
28#include <linux/ktime.h>
29
30#include <net/inet_connection_sock.h>
31#include <net/inet_timewait_sock.h>
32#include <net/inet_hashtables.h>
33#include <net/checksum.h>
34#include <net/request_sock.h>
35#include <net/sock_reuseport.h>
36#include <net/sock.h>
37#include <net/snmp.h>
38#include <net/ip.h>
39#include <net/tcp_states.h>
40#include <net/inet_ecn.h>
41#include <net/dst.h>
42
43#include <linux/seq_file.h>
44#include <linux/memcontrol.h>
45#include <linux/bpf-cgroup.h>
46#include <linux/siphash.h>
47
48extern struct inet_hashinfo tcp_hashinfo;
49
50extern struct percpu_counter tcp_orphan_count;
51void tcp_time_wait(struct sock *sk, int state, int timeo);
52
53#define MAX_TCP_HEADER (128 + MAX_HEADER)
54#define MAX_TCP_OPTION_SPACE 40
55#define TCP_MIN_SND_MSS 48
56#define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
57
58/*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62#define MAX_TCP_WINDOW 32767U
63
64/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65#define TCP_MIN_MSS 88U
66
67/* The initial MTU to use for probing */
68#define TCP_BASE_MSS 1024
69
70/* probing interval, default to 10 minutes as per RFC4821 */
71#define TCP_PROBE_INTERVAL 600
72
73/* Specify interval when tcp mtu probing will stop */
74#define TCP_PROBE_THRESHOLD 8
75
76/* After receiving this amount of duplicate ACKs fast retransmit starts. */
77#define TCP_FASTRETRANS_THRESH 3
78
79/* Maximal number of ACKs sent quickly to accelerate slow-start. */
80#define TCP_MAX_QUICKACKS 16U
81
82/* Maximal number of window scale according to RFC1323 */
83#define TCP_MAX_WSCALE 14U
84
85/* urg_data states */
86#define TCP_URG_VALID 0x0100
87#define TCP_URG_NOTYET 0x0200
88#define TCP_URG_READ 0x0400
89
90#define TCP_RETR1 3 /*
91 * This is how many retries it does before it
92 * tries to figure out if the gateway is
93 * down. Minimal RFC value is 3; it corresponds
94 * to ~3sec-8min depending on RTO.
95 */
96
97#define TCP_RETR2 15 /*
98 * This should take at least
99 * 90 minutes to time out.
100 * RFC1122 says that the limit is 100 sec.
101 * 15 is ~13-30min depending on RTO.
102 */
103
104#define TCP_SYN_RETRIES 6 /* This is how many retries are done
105 * when active opening a connection.
106 * RFC1122 says the minimum retry MUST
107 * be at least 180secs. Nevertheless
108 * this value is corresponding to
109 * 63secs of retransmission with the
110 * current initial RTO.
111 */
112
113#define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
114 * when passive opening a connection.
115 * This is corresponding to 31secs of
116 * retransmission with the current
117 * initial RTO.
118 */
119
120#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 * state, about 60 seconds */
122#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
123 /* BSD style FIN_WAIT2 deadlock breaker.
124 * It used to be 3min, new value is 60sec,
125 * to combine FIN-WAIT-2 timeout with
126 * TIME-WAIT timer.
127 */
128
129#define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
130#if HZ >= 100
131#define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
132#define TCP_ATO_MIN ((unsigned)(HZ/25))
133#else
134#define TCP_DELACK_MIN 4U
135#define TCP_ATO_MIN 4U
136#endif
137#define TCP_RTO_MAX ((unsigned)(120*HZ))
138#define TCP_RTO_MIN ((unsigned)(HZ/5))
139#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
140#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
141#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
142 * used as a fallback RTO for the
143 * initial data transmission if no
144 * valid RTT sample has been acquired,
145 * most likely due to retrans in 3WHS.
146 */
147
148#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 * for local resources.
150 */
151#define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
152#define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
153#define TCP_KEEPALIVE_INTVL (75*HZ)
154
155#define MAX_TCP_KEEPIDLE 32767
156#define MAX_TCP_KEEPINTVL 32767
157#define MAX_TCP_KEEPCNT 127
158#define MAX_TCP_SYNCNT 127
159
160#define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
161
162#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
163#define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
164 * after this time. It should be equal
165 * (or greater than) TCP_TIMEWAIT_LEN
166 * to provide reliability equal to one
167 * provided by timewait state.
168 */
169#define TCP_PAWS_WINDOW 1 /* Replay window for per-host
170 * timestamps. It must be less than
171 * minimal timewait lifetime.
172 */
173/*
174 * TCP option
175 */
176
177#define TCPOPT_NOP 1 /* Padding */
178#define TCPOPT_EOL 0 /* End of options */
179#define TCPOPT_MSS 2 /* Segment size negotiating */
180#define TCPOPT_WINDOW 3 /* Window scaling */
181#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
182#define TCPOPT_SACK 5 /* SACK Block */
183#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
184#define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
185#define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
186#define TCPOPT_EXP 254 /* Experimental */
187/* Magic number to be after the option value for sharing TCP
188 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189 */
190#define TCPOPT_FASTOPEN_MAGIC 0xF989
191#define TCPOPT_SMC_MAGIC 0xE2D4C3D9
192
193/*
194 * TCP option lengths
195 */
196
197#define TCPOLEN_MSS 4
198#define TCPOLEN_WINDOW 3
199#define TCPOLEN_SACK_PERM 2
200#define TCPOLEN_TIMESTAMP 10
201#define TCPOLEN_MD5SIG 18
202#define TCPOLEN_FASTOPEN_BASE 2
203#define TCPOLEN_EXP_FASTOPEN_BASE 4
204#define TCPOLEN_EXP_SMC_BASE 6
205
206/* But this is what stacks really send out. */
207#define TCPOLEN_TSTAMP_ALIGNED 12
208#define TCPOLEN_WSCALE_ALIGNED 4
209#define TCPOLEN_SACKPERM_ALIGNED 4
210#define TCPOLEN_SACK_BASE 2
211#define TCPOLEN_SACK_BASE_ALIGNED 4
212#define TCPOLEN_SACK_PERBLOCK 8
213#define TCPOLEN_MD5SIG_ALIGNED 20
214#define TCPOLEN_MSS_ALIGNED 4
215#define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
216
217/* Flags in tp->nonagle */
218#define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
219#define TCP_NAGLE_CORK 2 /* Socket is corked */
220#define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
221
222/* TCP thin-stream limits */
223#define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
224
225/* TCP initial congestion window as per rfc6928 */
226#define TCP_INIT_CWND 10
227
228/* Bit Flags for sysctl_tcp_fastopen */
229#define TFO_CLIENT_ENABLE 1
230#define TFO_SERVER_ENABLE 2
231#define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
232
233/* Accept SYN data w/o any cookie option */
234#define TFO_SERVER_COOKIE_NOT_REQD 0x200
235
236/* Force enable TFO on all listeners, i.e., not requiring the
237 * TCP_FASTOPEN socket option.
238 */
239#define TFO_SERVER_WO_SOCKOPT1 0x400
240
241
242/* sysctl variables for tcp */
243extern int sysctl_tcp_max_orphans;
244extern long sysctl_tcp_mem[3];
245
246#define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
247#define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
248#define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
249
250extern atomic_long_t tcp_memory_allocated;
251extern struct percpu_counter tcp_sockets_allocated;
252extern unsigned long tcp_memory_pressure;
253
254/* optimized version of sk_under_memory_pressure() for TCP sockets */
255static inline bool tcp_under_memory_pressure(const struct sock *sk)
256{
257 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
258 mem_cgroup_under_socket_pressure(sk->sk_memcg))
259 return true;
260
261 return READ_ONCE(tcp_memory_pressure);
262}
263/*
264 * The next routines deal with comparing 32 bit unsigned ints
265 * and worry about wraparound (automatic with unsigned arithmetic).
266 */
267
268static inline bool before(__u32 seq1, __u32 seq2)
269{
270 return (__s32)(seq1-seq2) < 0;
271}
272#define after(seq2, seq1) before(seq1, seq2)
273
274/* is s2<=s1<=s3 ? */
275static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
276{
277 return seq3 - seq2 >= seq1 - seq2;
278}
279
280static inline bool tcp_out_of_memory(struct sock *sk)
281{
282 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
284 return true;
285 return false;
286}
287
288void sk_forced_mem_schedule(struct sock *sk, int size);
289
290static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
291{
292 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
293 int orphans = percpu_counter_read_positive(ocp);
294
295 if (orphans << shift > sysctl_tcp_max_orphans) {
296 orphans = percpu_counter_sum_positive(ocp);
297 if (orphans << shift > sysctl_tcp_max_orphans)
298 return true;
299 }
300 return false;
301}
302
303bool tcp_check_oom(struct sock *sk, int shift);
304
305
306extern struct proto tcp_prot;
307
308#define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309#define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310#define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311#define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
312
313void tcp_tasklet_init(void);
314
315int tcp_v4_err(struct sk_buff *skb, u32);
316
317void tcp_shutdown(struct sock *sk, int how);
318
319int tcp_v4_early_demux(struct sk_buff *skb);
320int tcp_v4_rcv(struct sk_buff *skb);
321
322int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
326 int flags);
327int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 size_t size, int flags);
329ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 size_t size, int flags);
331void tcp_release_cb(struct sock *sk);
332void tcp_wfree(struct sk_buff *skb);
333void tcp_write_timer_handler(struct sock *sk);
334void tcp_delack_timer_handler(struct sock *sk);
335int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
337void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
338void tcp_rcv_space_adjust(struct sock *sk);
339int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340void tcp_twsk_destructor(struct sock *sk);
341ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 struct pipe_inode_info *pipe, size_t len,
343 unsigned int flags);
344
345void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
346static inline void tcp_dec_quickack_mode(struct sock *sk,
347 const unsigned int pkts)
348{
349 struct inet_connection_sock *icsk = inet_csk(sk);
350
351 if (icsk->icsk_ack.quick) {
352 if (pkts >= icsk->icsk_ack.quick) {
353 icsk->icsk_ack.quick = 0;
354 /* Leaving quickack mode we deflate ATO. */
355 icsk->icsk_ack.ato = TCP_ATO_MIN;
356 } else
357 icsk->icsk_ack.quick -= pkts;
358 }
359}
360
361#define TCP_ECN_OK 1
362#define TCP_ECN_QUEUE_CWR 2
363#define TCP_ECN_DEMAND_CWR 4
364#define TCP_ECN_SEEN 8
365
366enum tcp_tw_status {
367 TCP_TW_SUCCESS = 0,
368 TCP_TW_RST = 1,
369 TCP_TW_ACK = 2,
370 TCP_TW_SYN = 3
371};
372
373
374enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
375 struct sk_buff *skb,
376 const struct tcphdr *th);
377struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
378 struct request_sock *req, bool fastopen,
379 bool *lost_race);
380int tcp_child_process(struct sock *parent, struct sock *child,
381 struct sk_buff *skb);
382void tcp_enter_loss(struct sock *sk);
383void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
384void tcp_clear_retrans(struct tcp_sock *tp);
385void tcp_update_metrics(struct sock *sk);
386void tcp_init_metrics(struct sock *sk);
387void tcp_metrics_init(void);
388bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
389void tcp_close(struct sock *sk, long timeout);
390void tcp_init_sock(struct sock *sk);
391void tcp_init_transfer(struct sock *sk, int bpf_op);
392__poll_t tcp_poll(struct file *file, struct socket *sock,
393 struct poll_table_struct *wait);
394int tcp_getsockopt(struct sock *sk, int level, int optname,
395 char __user *optval, int __user *optlen);
396int tcp_setsockopt(struct sock *sk, int level, int optname,
397 char __user *optval, unsigned int optlen);
398int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
399 char __user *optval, int __user *optlen);
400int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
401 char __user *optval, unsigned int optlen);
402void tcp_set_keepalive(struct sock *sk, int val);
403void tcp_syn_ack_timeout(const struct request_sock *req);
404int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
405 int flags, int *addr_len);
406int tcp_set_rcvlowat(struct sock *sk, int val);
407void tcp_data_ready(struct sock *sk);
408#ifdef CONFIG_MMU
409int tcp_mmap(struct file *file, struct socket *sock,
410 struct vm_area_struct *vma);
411#endif
412void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
413 struct tcp_options_received *opt_rx,
414 int estab, struct tcp_fastopen_cookie *foc);
415const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
416
417/*
418 * BPF SKB-less helpers
419 */
420u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
421 struct tcphdr *th, u32 *cookie);
422u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
423 struct tcphdr *th, u32 *cookie);
424u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
425 const struct tcp_request_sock_ops *af_ops,
426 struct sock *sk, struct tcphdr *th);
427/*
428 * TCP v4 functions exported for the inet6 API
429 */
430
431void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
432void tcp_v4_mtu_reduced(struct sock *sk);
433void tcp_req_err(struct sock *sk, u32 seq, bool abort);
434int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
435struct sock *tcp_create_openreq_child(const struct sock *sk,
436 struct request_sock *req,
437 struct sk_buff *skb);
438void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
439struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
440 struct request_sock *req,
441 struct dst_entry *dst,
442 struct request_sock *req_unhash,
443 bool *own_req);
444int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
445int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
446int tcp_connect(struct sock *sk);
447enum tcp_synack_type {
448 TCP_SYNACK_NORMAL,
449 TCP_SYNACK_FASTOPEN,
450 TCP_SYNACK_COOKIE,
451};
452struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
453 struct request_sock *req,
454 struct tcp_fastopen_cookie *foc,
455 enum tcp_synack_type synack_type);
456int tcp_disconnect(struct sock *sk, int flags);
457
458void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
459int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
460void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
461
462/* From syncookies.c */
463struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
464 struct request_sock *req,
465 struct dst_entry *dst, u32 tsoff);
466int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
467 u32 cookie);
468struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
469#ifdef CONFIG_SYN_COOKIES
470
471/* Syncookies use a monotonic timer which increments every 60 seconds.
472 * This counter is used both as a hash input and partially encoded into
473 * the cookie value. A cookie is only validated further if the delta
474 * between the current counter value and the encoded one is less than this,
475 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
476 * the counter advances immediately after a cookie is generated).
477 */
478#define MAX_SYNCOOKIE_AGE 2
479#define TCP_SYNCOOKIE_PERIOD (60 * HZ)
480#define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
481
482/* syncookies: remember time of last synqueue overflow
483 * But do not dirty this field too often (once per second is enough)
484 * It is racy as we do not hold a lock, but race is very minor.
485 */
486static inline void tcp_synq_overflow(const struct sock *sk)
487{
488 unsigned int last_overflow;
489 unsigned int now = jiffies;
490
491 if (sk->sk_reuseport) {
492 struct sock_reuseport *reuse;
493
494 reuse = rcu_dereference(sk->sk_reuseport_cb);
495 if (likely(reuse)) {
496 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
497 if (time_after32(now, last_overflow + HZ))
498 WRITE_ONCE(reuse->synq_overflow_ts, now);
499 return;
500 }
501 }
502
503 last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
504 if (time_after32(now, last_overflow + HZ))
505 tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
506}
507
508/* syncookies: no recent synqueue overflow on this listening socket? */
509static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
510{
511 unsigned int last_overflow;
512 unsigned int now = jiffies;
513
514 if (sk->sk_reuseport) {
515 struct sock_reuseport *reuse;
516
517 reuse = rcu_dereference(sk->sk_reuseport_cb);
518 if (likely(reuse)) {
519 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
520 return time_after32(now, last_overflow +
521 TCP_SYNCOOKIE_VALID);
522 }
523 }
524
525 last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
526 return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID);
527}
528
529static inline u32 tcp_cookie_time(void)
530{
531 u64 val = get_jiffies_64();
532
533 do_div(val, TCP_SYNCOOKIE_PERIOD);
534 return val;
535}
536
537u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
538 u16 *mssp);
539__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
540u64 cookie_init_timestamp(struct request_sock *req);
541bool cookie_timestamp_decode(const struct net *net,
542 struct tcp_options_received *opt);
543bool cookie_ecn_ok(const struct tcp_options_received *opt,
544 const struct net *net, const struct dst_entry *dst);
545
546/* From net/ipv6/syncookies.c */
547int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
548 u32 cookie);
549struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
550
551u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
552 const struct tcphdr *th, u16 *mssp);
553__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
554#endif
555/* tcp_output.c */
556
557void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
558 int nonagle);
559int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
560int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
561void tcp_retransmit_timer(struct sock *sk);
562void tcp_xmit_retransmit_queue(struct sock *);
563void tcp_simple_retransmit(struct sock *);
564void tcp_enter_recovery(struct sock *sk, bool ece_ack);
565int tcp_trim_head(struct sock *, struct sk_buff *, u32);
566enum tcp_queue {
567 TCP_FRAG_IN_WRITE_QUEUE,
568 TCP_FRAG_IN_RTX_QUEUE,
569};
570int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
571 struct sk_buff *skb, u32 len,
572 unsigned int mss_now, gfp_t gfp);
573
574void tcp_send_probe0(struct sock *);
575void tcp_send_partial(struct sock *);
576int tcp_write_wakeup(struct sock *, int mib);
577void tcp_send_fin(struct sock *sk);
578void tcp_send_active_reset(struct sock *sk, gfp_t priority);
579int tcp_send_synack(struct sock *);
580void tcp_push_one(struct sock *, unsigned int mss_now);
581void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
582void tcp_send_ack(struct sock *sk);
583void tcp_send_delayed_ack(struct sock *sk);
584void tcp_send_loss_probe(struct sock *sk);
585bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
586void tcp_skb_collapse_tstamp(struct sk_buff *skb,
587 const struct sk_buff *next_skb);
588
589/* tcp_input.c */
590void tcp_rearm_rto(struct sock *sk);
591void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
592void tcp_reset(struct sock *sk);
593void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
594void tcp_fin(struct sock *sk);
595
596/* tcp_timer.c */
597void tcp_init_xmit_timers(struct sock *);
598static inline void tcp_clear_xmit_timers(struct sock *sk)
599{
600 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
601 __sock_put(sk);
602
603 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
604 __sock_put(sk);
605
606 inet_csk_clear_xmit_timers(sk);
607}
608
609unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
610unsigned int tcp_current_mss(struct sock *sk);
611
612/* Bound MSS / TSO packet size with the half of the window */
613static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
614{
615 int cutoff;
616
617 /* When peer uses tiny windows, there is no use in packetizing
618 * to sub-MSS pieces for the sake of SWS or making sure there
619 * are enough packets in the pipe for fast recovery.
620 *
621 * On the other hand, for extremely large MSS devices, handling
622 * smaller than MSS windows in this way does make sense.
623 */
624 if (tp->max_window > TCP_MSS_DEFAULT)
625 cutoff = (tp->max_window >> 1);
626 else
627 cutoff = tp->max_window;
628
629 if (cutoff && pktsize > cutoff)
630 return max_t(int, cutoff, 68U - tp->tcp_header_len);
631 else
632 return pktsize;
633}
634
635/* tcp.c */
636void tcp_get_info(struct sock *, struct tcp_info *);
637
638/* Read 'sendfile()'-style from a TCP socket */
639int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
640 sk_read_actor_t recv_actor);
641
642void tcp_initialize_rcv_mss(struct sock *sk);
643
644int tcp_mtu_to_mss(struct sock *sk, int pmtu);
645int tcp_mss_to_mtu(struct sock *sk, int mss);
646void tcp_mtup_init(struct sock *sk);
647void tcp_init_buffer_space(struct sock *sk);
648
649static inline void tcp_bound_rto(const struct sock *sk)
650{
651 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
652 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
653}
654
655static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
656{
657 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
658}
659
660static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
661{
662 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
663 ntohl(TCP_FLAG_ACK) |
664 snd_wnd);
665}
666
667static inline void tcp_fast_path_on(struct tcp_sock *tp)
668{
669 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
670}
671
672static inline void tcp_fast_path_check(struct sock *sk)
673{
674 struct tcp_sock *tp = tcp_sk(sk);
675
676 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
677 tp->rcv_wnd &&
678 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
679 !tp->urg_data)
680 tcp_fast_path_on(tp);
681}
682
683/* Compute the actual rto_min value */
684static inline u32 tcp_rto_min(struct sock *sk)
685{
686 const struct dst_entry *dst = __sk_dst_get(sk);
687 u32 rto_min = TCP_RTO_MIN;
688
689 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
690 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
691 return rto_min;
692}
693
694static inline u32 tcp_rto_min_us(struct sock *sk)
695{
696 return jiffies_to_usecs(tcp_rto_min(sk));
697}
698
699static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
700{
701 return dst_metric_locked(dst, RTAX_CC_ALGO);
702}
703
704/* Minimum RTT in usec. ~0 means not available. */
705static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
706{
707 return minmax_get(&tp->rtt_min);
708}
709
710/* Compute the actual receive window we are currently advertising.
711 * Rcv_nxt can be after the window if our peer push more data
712 * than the offered window.
713 */
714static inline u32 tcp_receive_window(const struct tcp_sock *tp)
715{
716 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
717
718 if (win < 0)
719 win = 0;
720 return (u32) win;
721}
722
723/* Choose a new window, without checks for shrinking, and without
724 * scaling applied to the result. The caller does these things
725 * if necessary. This is a "raw" window selection.
726 */
727u32 __tcp_select_window(struct sock *sk);
728
729void tcp_send_window_probe(struct sock *sk);
730
731/* TCP uses 32bit jiffies to save some space.
732 * Note that this is different from tcp_time_stamp, which
733 * historically has been the same until linux-4.13.
734 */
735#define tcp_jiffies32 ((u32)jiffies)
736
737/*
738 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
739 * It is no longer tied to jiffies, but to 1 ms clock.
740 * Note: double check if you want to use tcp_jiffies32 instead of this.
741 */
742#define TCP_TS_HZ 1000
743
744static inline u64 tcp_clock_ns(void)
745{
746 return ktime_get_ns();
747}
748
749static inline u64 tcp_clock_us(void)
750{
751 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
752}
753
754/* This should only be used in contexts where tp->tcp_mstamp is up to date */
755static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
756{
757 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
758}
759
760/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
761static inline u32 tcp_time_stamp_raw(void)
762{
763 return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
764}
765
766void tcp_mstamp_refresh(struct tcp_sock *tp);
767
768static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
769{
770 return max_t(s64, t1 - t0, 0);
771}
772
773static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
774{
775 return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
776}
777
778/* provide the departure time in us unit */
779static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
780{
781 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
782}
783
784
785#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
786
787#define TCPHDR_FIN 0x01
788#define TCPHDR_SYN 0x02
789#define TCPHDR_RST 0x04
790#define TCPHDR_PSH 0x08
791#define TCPHDR_ACK 0x10
792#define TCPHDR_URG 0x20
793#define TCPHDR_ECE 0x40
794#define TCPHDR_CWR 0x80
795
796#define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
797
798/* This is what the send packet queuing engine uses to pass
799 * TCP per-packet control information to the transmission code.
800 * We also store the host-order sequence numbers in here too.
801 * This is 44 bytes if IPV6 is enabled.
802 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
803 */
804struct tcp_skb_cb {
805 __u32 seq; /* Starting sequence number */
806 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
807 union {
808 /* Note : tcp_tw_isn is used in input path only
809 * (isn chosen by tcp_timewait_state_process())
810 *
811 * tcp_gso_segs/size are used in write queue only,
812 * cf tcp_skb_pcount()/tcp_skb_mss()
813 */
814 __u32 tcp_tw_isn;
815 struct {
816 u16 tcp_gso_segs;
817 u16 tcp_gso_size;
818 };
819 };
820 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
821
822 __u8 sacked; /* State flags for SACK. */
823#define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
824#define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
825#define TCPCB_LOST 0x04 /* SKB is lost */
826#define TCPCB_TAGBITS 0x07 /* All tag bits */
827#define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
828#define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
829#define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
830 TCPCB_REPAIRED)
831
832 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
833 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
834 eor:1, /* Is skb MSG_EOR marked? */
835 has_rxtstamp:1, /* SKB has a RX timestamp */
836 unused:5;
837 __u32 ack_seq; /* Sequence number ACK'd */
838 union {
839 struct {
840 /* There is space for up to 24 bytes */
841 __u32 in_flight:30,/* Bytes in flight at transmit */
842 is_app_limited:1, /* cwnd not fully used? */
843 unused:1;
844 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
845 __u32 delivered;
846 /* start of send pipeline phase */
847 u64 first_tx_mstamp;
848 /* when we reached the "delivered" count */
849 u64 delivered_mstamp;
850 } tx; /* only used for outgoing skbs */
851 union {
852 struct inet_skb_parm h4;
853#if IS_ENABLED(CONFIG_IPV6)
854 struct inet6_skb_parm h6;
855#endif
856 } header; /* For incoming skbs */
857 struct {
858 __u32 flags;
859 struct sock *sk_redir;
860 void *data_end;
861 } bpf;
862 };
863};
864
865#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
866
867static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
868{
869 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
870}
871
872static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
873{
874 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
875}
876
877static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
878{
879 return TCP_SKB_CB(skb)->bpf.sk_redir;
880}
881
882static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
883{
884 TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
885}
886
887#if IS_ENABLED(CONFIG_IPV6)
888/* This is the variant of inet6_iif() that must be used by TCP,
889 * as TCP moves IP6CB into a different location in skb->cb[]
890 */
891static inline int tcp_v6_iif(const struct sk_buff *skb)
892{
893 return TCP_SKB_CB(skb)->header.h6.iif;
894}
895
896static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
897{
898 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
899
900 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
901}
902
903/* TCP_SKB_CB reference means this can not be used from early demux */
904static inline int tcp_v6_sdif(const struct sk_buff *skb)
905{
906#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
907 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
908 return TCP_SKB_CB(skb)->header.h6.iif;
909#endif
910 return 0;
911}
912#endif
913
914static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
915{
916#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
917 if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
918 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
919 return true;
920#endif
921 return false;
922}
923
924/* TCP_SKB_CB reference means this can not be used from early demux */
925static inline int tcp_v4_sdif(struct sk_buff *skb)
926{
927#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
928 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
929 return TCP_SKB_CB(skb)->header.h4.iif;
930#endif
931 return 0;
932}
933
934/* Due to TSO, an SKB can be composed of multiple actual
935 * packets. To keep these tracked properly, we use this.
936 */
937static inline int tcp_skb_pcount(const struct sk_buff *skb)
938{
939 return TCP_SKB_CB(skb)->tcp_gso_segs;
940}
941
942static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
943{
944 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
945}
946
947static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
948{
949 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
950}
951
952/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
953static inline int tcp_skb_mss(const struct sk_buff *skb)
954{
955 return TCP_SKB_CB(skb)->tcp_gso_size;
956}
957
958static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
959{
960 return likely(!TCP_SKB_CB(skb)->eor);
961}
962
963/* Events passed to congestion control interface */
964enum tcp_ca_event {
965 CA_EVENT_TX_START, /* first transmit when no packets in flight */
966 CA_EVENT_CWND_RESTART, /* congestion window restart */
967 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
968 CA_EVENT_LOSS, /* loss timeout */
969 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
970 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
971};
972
973/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
974enum tcp_ca_ack_event_flags {
975 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
976 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
977 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
978};
979
980/*
981 * Interface for adding new TCP congestion control handlers
982 */
983#define TCP_CA_NAME_MAX 16
984#define TCP_CA_MAX 128
985#define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
986
987#define TCP_CA_UNSPEC 0
988
989/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
990#define TCP_CONG_NON_RESTRICTED 0x1
991/* Requires ECN/ECT set on all packets */
992#define TCP_CONG_NEEDS_ECN 0x2
993
994union tcp_cc_info;
995
996struct ack_sample {
997 u32 pkts_acked;
998 s32 rtt_us;
999 u32 in_flight;
1000};
1001
1002/* A rate sample measures the number of (original/retransmitted) data
1003 * packets delivered "delivered" over an interval of time "interval_us".
1004 * The tcp_rate.c code fills in the rate sample, and congestion
1005 * control modules that define a cong_control function to run at the end
1006 * of ACK processing can optionally chose to consult this sample when
1007 * setting cwnd and pacing rate.
1008 * A sample is invalid if "delivered" or "interval_us" is negative.
1009 */
1010struct rate_sample {
1011 u64 prior_mstamp; /* starting timestamp for interval */
1012 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1013 s32 delivered; /* number of packets delivered over interval */
1014 long interval_us; /* time for tp->delivered to incr "delivered" */
1015 u32 snd_interval_us; /* snd interval for delivered packets */
1016 u32 rcv_interval_us; /* rcv interval for delivered packets */
1017 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1018 int losses; /* number of packets marked lost upon ACK */
1019 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1020 u32 prior_in_flight; /* in flight before this ACK */
1021 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1022 bool is_retrans; /* is sample from retransmission? */
1023 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1024};
1025
1026struct tcp_congestion_ops {
1027 struct list_head list;
1028 u32 key;
1029 u32 flags;
1030
1031 /* initialize private data (optional) */
1032 void (*init)(struct sock *sk);
1033 /* cleanup private data (optional) */
1034 void (*release)(struct sock *sk);
1035
1036 /* return slow start threshold (required) */
1037 u32 (*ssthresh)(struct sock *sk);
1038 /* do new cwnd calculation (required) */
1039 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1040 /* call before changing ca_state (optional) */
1041 void (*set_state)(struct sock *sk, u8 new_state);
1042 /* call when cwnd event occurs (optional) */
1043 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1044 /* call when ack arrives (optional) */
1045 void (*in_ack_event)(struct sock *sk, u32 flags);
1046 /* new value of cwnd after loss (required) */
1047 u32 (*undo_cwnd)(struct sock *sk);
1048 /* hook for packet ack accounting (optional) */
1049 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1050 /* override sysctl_tcp_min_tso_segs */
1051 u32 (*min_tso_segs)(struct sock *sk);
1052 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1053 u32 (*sndbuf_expand)(struct sock *sk);
1054 /* call when packets are delivered to update cwnd and pacing rate,
1055 * after all the ca_state processing. (optional)
1056 */
1057 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1058 /* get info for inet_diag (optional) */
1059 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1060 union tcp_cc_info *info);
1061
1062 char name[TCP_CA_NAME_MAX];
1063 struct module *owner;
1064};
1065
1066int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1067void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1068
1069void tcp_assign_congestion_control(struct sock *sk);
1070void tcp_init_congestion_control(struct sock *sk);
1071void tcp_cleanup_congestion_control(struct sock *sk);
1072int tcp_set_default_congestion_control(struct net *net, const char *name);
1073void tcp_get_default_congestion_control(struct net *net, char *name);
1074void tcp_get_available_congestion_control(char *buf, size_t len);
1075void tcp_get_allowed_congestion_control(char *buf, size_t len);
1076int tcp_set_allowed_congestion_control(char *allowed);
1077int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1078 bool reinit, bool cap_net_admin);
1079u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1080void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1081
1082u32 tcp_reno_ssthresh(struct sock *sk);
1083u32 tcp_reno_undo_cwnd(struct sock *sk);
1084void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1085extern struct tcp_congestion_ops tcp_reno;
1086
1087struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1088u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1089#ifdef CONFIG_INET
1090char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1091#else
1092static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1093{
1094 return NULL;
1095}
1096#endif
1097
1098static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1099{
1100 const struct inet_connection_sock *icsk = inet_csk(sk);
1101
1102 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1103}
1104
1105static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1106{
1107 struct inet_connection_sock *icsk = inet_csk(sk);
1108
1109 if (icsk->icsk_ca_ops->set_state)
1110 icsk->icsk_ca_ops->set_state(sk, ca_state);
1111 icsk->icsk_ca_state = ca_state;
1112}
1113
1114static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1115{
1116 const struct inet_connection_sock *icsk = inet_csk(sk);
1117
1118 if (icsk->icsk_ca_ops->cwnd_event)
1119 icsk->icsk_ca_ops->cwnd_event(sk, event);
1120}
1121
1122/* From tcp_rate.c */
1123void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1124void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1125 struct rate_sample *rs);
1126void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1127 bool is_sack_reneg, struct rate_sample *rs);
1128void tcp_rate_check_app_limited(struct sock *sk);
1129
1130/* These functions determine how the current flow behaves in respect of SACK
1131 * handling. SACK is negotiated with the peer, and therefore it can vary
1132 * between different flows.
1133 *
1134 * tcp_is_sack - SACK enabled
1135 * tcp_is_reno - No SACK
1136 */
1137static inline int tcp_is_sack(const struct tcp_sock *tp)
1138{
1139 return likely(tp->rx_opt.sack_ok);
1140}
1141
1142static inline bool tcp_is_reno(const struct tcp_sock *tp)
1143{
1144 return !tcp_is_sack(tp);
1145}
1146
1147static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1148{
1149 return tp->sacked_out + tp->lost_out;
1150}
1151
1152/* This determines how many packets are "in the network" to the best
1153 * of our knowledge. In many cases it is conservative, but where
1154 * detailed information is available from the receiver (via SACK
1155 * blocks etc.) we can make more aggressive calculations.
1156 *
1157 * Use this for decisions involving congestion control, use just
1158 * tp->packets_out to determine if the send queue is empty or not.
1159 *
1160 * Read this equation as:
1161 *
1162 * "Packets sent once on transmission queue" MINUS
1163 * "Packets left network, but not honestly ACKed yet" PLUS
1164 * "Packets fast retransmitted"
1165 */
1166static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1167{
1168 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1169}
1170
1171#define TCP_INFINITE_SSTHRESH 0x7fffffff
1172
1173static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1174{
1175 return tp->snd_cwnd < tp->snd_ssthresh;
1176}
1177
1178static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1179{
1180 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1181}
1182
1183static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1184{
1185 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1186 (1 << inet_csk(sk)->icsk_ca_state);
1187}
1188
1189/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1190 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1191 * ssthresh.
1192 */
1193static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1194{
1195 const struct tcp_sock *tp = tcp_sk(sk);
1196
1197 if (tcp_in_cwnd_reduction(sk))
1198 return tp->snd_ssthresh;
1199 else
1200 return max(tp->snd_ssthresh,
1201 ((tp->snd_cwnd >> 1) +
1202 (tp->snd_cwnd >> 2)));
1203}
1204
1205/* Use define here intentionally to get WARN_ON location shown at the caller */
1206#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1207
1208void tcp_enter_cwr(struct sock *sk);
1209__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1210
1211/* The maximum number of MSS of available cwnd for which TSO defers
1212 * sending if not using sysctl_tcp_tso_win_divisor.
1213 */
1214static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1215{
1216 return 3;
1217}
1218
1219/* Returns end sequence number of the receiver's advertised window */
1220static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1221{
1222 return tp->snd_una + tp->snd_wnd;
1223}
1224
1225/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1226 * flexible approach. The RFC suggests cwnd should not be raised unless
1227 * it was fully used previously. And that's exactly what we do in
1228 * congestion avoidance mode. But in slow start we allow cwnd to grow
1229 * as long as the application has used half the cwnd.
1230 * Example :
1231 * cwnd is 10 (IW10), but application sends 9 frames.
1232 * We allow cwnd to reach 18 when all frames are ACKed.
1233 * This check is safe because it's as aggressive as slow start which already
1234 * risks 100% overshoot. The advantage is that we discourage application to
1235 * either send more filler packets or data to artificially blow up the cwnd
1236 * usage, and allow application-limited process to probe bw more aggressively.
1237 */
1238static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1239{
1240 const struct tcp_sock *tp = tcp_sk(sk);
1241
1242 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1243 if (tcp_in_slow_start(tp))
1244 return tp->snd_cwnd < 2 * tp->max_packets_out;
1245
1246 return tp->is_cwnd_limited;
1247}
1248
1249/* BBR congestion control needs pacing.
1250 * Same remark for SO_MAX_PACING_RATE.
1251 * sch_fq packet scheduler is efficiently handling pacing,
1252 * but is not always installed/used.
1253 * Return true if TCP stack should pace packets itself.
1254 */
1255static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1256{
1257 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1258}
1259
1260/* Return in jiffies the delay before one skb is sent.
1261 * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1262 */
1263static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1264 const struct sk_buff *skb)
1265{
1266 s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1267
1268 pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1269
1270 return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1271}
1272
1273static inline void tcp_reset_xmit_timer(struct sock *sk,
1274 const int what,
1275 unsigned long when,
1276 const unsigned long max_when,
1277 const struct sk_buff *skb)
1278{
1279 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1280 max_when);
1281}
1282
1283/* Something is really bad, we could not queue an additional packet,
1284 * because qdisc is full or receiver sent a 0 window, or we are paced.
1285 * We do not want to add fuel to the fire, or abort too early,
1286 * so make sure the timer we arm now is at least 200ms in the future,
1287 * regardless of current icsk_rto value (as it could be ~2ms)
1288 */
1289static inline unsigned long tcp_probe0_base(const struct sock *sk)
1290{
1291 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1292}
1293
1294/* Variant of inet_csk_rto_backoff() used for zero window probes */
1295static inline unsigned long tcp_probe0_when(const struct sock *sk,
1296 unsigned long max_when)
1297{
1298 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1299
1300 return (unsigned long)min_t(u64, when, max_when);
1301}
1302
1303static inline void tcp_check_probe_timer(struct sock *sk)
1304{
1305 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1306 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1307 tcp_probe0_base(sk), TCP_RTO_MAX,
1308 NULL);
1309}
1310
1311static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1312{
1313 tp->snd_wl1 = seq;
1314}
1315
1316static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1317{
1318 tp->snd_wl1 = seq;
1319}
1320
1321/*
1322 * Calculate(/check) TCP checksum
1323 */
1324static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1325 __be32 daddr, __wsum base)
1326{
1327 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1328}
1329
1330static inline bool tcp_checksum_complete(struct sk_buff *skb)
1331{
1332 return !skb_csum_unnecessary(skb) &&
1333 __skb_checksum_complete(skb);
1334}
1335
1336bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1337int tcp_filter(struct sock *sk, struct sk_buff *skb);
1338void tcp_set_state(struct sock *sk, int state);
1339void tcp_done(struct sock *sk);
1340int tcp_abort(struct sock *sk, int err);
1341
1342static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1343{
1344 rx_opt->dsack = 0;
1345 rx_opt->num_sacks = 0;
1346}
1347
1348u32 tcp_default_init_rwnd(u32 mss);
1349void tcp_cwnd_restart(struct sock *sk, s32 delta);
1350
1351static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1352{
1353 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1354 struct tcp_sock *tp = tcp_sk(sk);
1355 s32 delta;
1356
1357 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1358 ca_ops->cong_control)
1359 return;
1360 delta = tcp_jiffies32 - tp->lsndtime;
1361 if (delta > inet_csk(sk)->icsk_rto)
1362 tcp_cwnd_restart(sk, delta);
1363}
1364
1365/* Determine a window scaling and initial window to offer. */
1366void tcp_select_initial_window(const struct sock *sk, int __space,
1367 __u32 mss, __u32 *rcv_wnd,
1368 __u32 *window_clamp, int wscale_ok,
1369 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1370
1371static inline int tcp_win_from_space(const struct sock *sk, int space)
1372{
1373 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1374
1375 return tcp_adv_win_scale <= 0 ?
1376 (space>>(-tcp_adv_win_scale)) :
1377 space - (space>>tcp_adv_win_scale);
1378}
1379
1380/* Note: caller must be prepared to deal with negative returns */
1381static inline int tcp_space(const struct sock *sk)
1382{
1383 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1384 READ_ONCE(sk->sk_backlog.len) -
1385 atomic_read(&sk->sk_rmem_alloc));
1386}
1387
1388static inline int tcp_full_space(const struct sock *sk)
1389{
1390 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1391}
1392
1393extern void tcp_openreq_init_rwin(struct request_sock *req,
1394 const struct sock *sk_listener,
1395 const struct dst_entry *dst);
1396
1397void tcp_enter_memory_pressure(struct sock *sk);
1398void tcp_leave_memory_pressure(struct sock *sk);
1399
1400static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1401{
1402 struct net *net = sock_net((struct sock *)tp);
1403
1404 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1405}
1406
1407static inline int keepalive_time_when(const struct tcp_sock *tp)
1408{
1409 struct net *net = sock_net((struct sock *)tp);
1410
1411 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1412}
1413
1414static inline int keepalive_probes(const struct tcp_sock *tp)
1415{
1416 struct net *net = sock_net((struct sock *)tp);
1417
1418 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1419}
1420
1421static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1422{
1423 const struct inet_connection_sock *icsk = &tp->inet_conn;
1424
1425 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1426 tcp_jiffies32 - tp->rcv_tstamp);
1427}
1428
1429static inline int tcp_fin_time(const struct sock *sk)
1430{
1431 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1432 const int rto = inet_csk(sk)->icsk_rto;
1433
1434 if (fin_timeout < (rto << 2) - (rto >> 1))
1435 fin_timeout = (rto << 2) - (rto >> 1);
1436
1437 return fin_timeout;
1438}
1439
1440static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1441 int paws_win)
1442{
1443 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1444 return true;
1445 if (unlikely(!time_before32(ktime_get_seconds(),
1446 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1447 return true;
1448 /*
1449 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1450 * then following tcp messages have valid values. Ignore 0 value,
1451 * or else 'negative' tsval might forbid us to accept their packets.
1452 */
1453 if (!rx_opt->ts_recent)
1454 return true;
1455 return false;
1456}
1457
1458static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1459 int rst)
1460{
1461 if (tcp_paws_check(rx_opt, 0))
1462 return false;
1463
1464 /* RST segments are not recommended to carry timestamp,
1465 and, if they do, it is recommended to ignore PAWS because
1466 "their cleanup function should take precedence over timestamps."
1467 Certainly, it is mistake. It is necessary to understand the reasons
1468 of this constraint to relax it: if peer reboots, clock may go
1469 out-of-sync and half-open connections will not be reset.
1470 Actually, the problem would be not existing if all
1471 the implementations followed draft about maintaining clock
1472 via reboots. Linux-2.2 DOES NOT!
1473
1474 However, we can relax time bounds for RST segments to MSL.
1475 */
1476 if (rst && !time_before32(ktime_get_seconds(),
1477 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1478 return false;
1479 return true;
1480}
1481
1482bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1483 int mib_idx, u32 *last_oow_ack_time);
1484
1485static inline void tcp_mib_init(struct net *net)
1486{
1487 /* See RFC 2012 */
1488 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1489 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1490 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1491 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1492}
1493
1494/* from STCP */
1495static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1496{
1497 tp->lost_skb_hint = NULL;
1498}
1499
1500static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1501{
1502 tcp_clear_retrans_hints_partial(tp);
1503 tp->retransmit_skb_hint = NULL;
1504}
1505
1506union tcp_md5_addr {
1507 struct in_addr a4;
1508#if IS_ENABLED(CONFIG_IPV6)
1509 struct in6_addr a6;
1510#endif
1511};
1512
1513/* - key database */
1514struct tcp_md5sig_key {
1515 struct hlist_node node;
1516 u8 keylen;
1517 u8 family; /* AF_INET or AF_INET6 */
1518 union tcp_md5_addr addr;
1519 u8 prefixlen;
1520 u8 key[TCP_MD5SIG_MAXKEYLEN];
1521 struct rcu_head rcu;
1522};
1523
1524/* - sock block */
1525struct tcp_md5sig_info {
1526 struct hlist_head head;
1527 struct rcu_head rcu;
1528};
1529
1530/* - pseudo header */
1531struct tcp4_pseudohdr {
1532 __be32 saddr;
1533 __be32 daddr;
1534 __u8 pad;
1535 __u8 protocol;
1536 __be16 len;
1537};
1538
1539struct tcp6_pseudohdr {
1540 struct in6_addr saddr;
1541 struct in6_addr daddr;
1542 __be32 len;
1543 __be32 protocol; /* including padding */
1544};
1545
1546union tcp_md5sum_block {
1547 struct tcp4_pseudohdr ip4;
1548#if IS_ENABLED(CONFIG_IPV6)
1549 struct tcp6_pseudohdr ip6;
1550#endif
1551};
1552
1553/* - pool: digest algorithm, hash description and scratch buffer */
1554struct tcp_md5sig_pool {
1555 struct ahash_request *md5_req;
1556 void *scratch;
1557};
1558
1559/* - functions */
1560int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1561 const struct sock *sk, const struct sk_buff *skb);
1562int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1563 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1564 gfp_t gfp);
1565int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1566 int family, u8 prefixlen);
1567struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1568 const struct sock *addr_sk);
1569
1570#ifdef CONFIG_TCP_MD5SIG
1571#include <linux/jump_label.h>
1572extern struct static_key_false tcp_md5_needed;
1573struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1574 const union tcp_md5_addr *addr,
1575 int family);
1576static inline struct tcp_md5sig_key *
1577tcp_md5_do_lookup(const struct sock *sk,
1578 const union tcp_md5_addr *addr,
1579 int family)
1580{
1581 if (!static_branch_unlikely(&tcp_md5_needed))
1582 return NULL;
1583 return __tcp_md5_do_lookup(sk, addr, family);
1584}
1585
1586#define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1587#else
1588static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1589 const union tcp_md5_addr *addr,
1590 int family)
1591{
1592 return NULL;
1593}
1594#define tcp_twsk_md5_key(twsk) NULL
1595#endif
1596
1597bool tcp_alloc_md5sig_pool(void);
1598
1599struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1600static inline void tcp_put_md5sig_pool(void)
1601{
1602 local_bh_enable();
1603}
1604
1605int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1606 unsigned int header_len);
1607int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1608 const struct tcp_md5sig_key *key);
1609
1610/* From tcp_fastopen.c */
1611void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1612 struct tcp_fastopen_cookie *cookie);
1613void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1614 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1615 u16 try_exp);
1616struct tcp_fastopen_request {
1617 /* Fast Open cookie. Size 0 means a cookie request */
1618 struct tcp_fastopen_cookie cookie;
1619 struct msghdr *data; /* data in MSG_FASTOPEN */
1620 size_t size;
1621 int copied; /* queued in tcp_connect() */
1622 struct ubuf_info *uarg;
1623};
1624void tcp_free_fastopen_req(struct tcp_sock *tp);
1625void tcp_fastopen_destroy_cipher(struct sock *sk);
1626void tcp_fastopen_ctx_destroy(struct net *net);
1627int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1628 void *primary_key, void *backup_key);
1629void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1630struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1631 struct request_sock *req,
1632 struct tcp_fastopen_cookie *foc,
1633 const struct dst_entry *dst);
1634void tcp_fastopen_init_key_once(struct net *net);
1635bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1636 struct tcp_fastopen_cookie *cookie);
1637bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1638#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1639#define TCP_FASTOPEN_KEY_MAX 2
1640#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1641 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1642
1643/* Fastopen key context */
1644struct tcp_fastopen_context {
1645 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1646 int num;
1647 struct rcu_head rcu;
1648};
1649
1650extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1651void tcp_fastopen_active_disable(struct sock *sk);
1652bool tcp_fastopen_active_should_disable(struct sock *sk);
1653void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1654void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1655
1656/* Caller needs to wrap with rcu_read_(un)lock() */
1657static inline
1658struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1659{
1660 struct tcp_fastopen_context *ctx;
1661
1662 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1663 if (!ctx)
1664 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1665 return ctx;
1666}
1667
1668static inline
1669bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1670 const struct tcp_fastopen_cookie *orig)
1671{
1672 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1673 orig->len == foc->len &&
1674 !memcmp(orig->val, foc->val, foc->len))
1675 return true;
1676 return false;
1677}
1678
1679static inline
1680int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1681{
1682 return ctx->num;
1683}
1684
1685/* Latencies incurred by various limits for a sender. They are
1686 * chronograph-like stats that are mutually exclusive.
1687 */
1688enum tcp_chrono {
1689 TCP_CHRONO_UNSPEC,
1690 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1691 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1692 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1693 __TCP_CHRONO_MAX,
1694};
1695
1696void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1697void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1698
1699/* This helper is needed, because skb->tcp_tsorted_anchor uses
1700 * the same memory storage than skb->destructor/_skb_refdst
1701 */
1702static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1703{
1704 skb->destructor = NULL;
1705 skb->_skb_refdst = 0UL;
1706}
1707
1708#define tcp_skb_tsorted_save(skb) { \
1709 unsigned long _save = skb->_skb_refdst; \
1710 skb->_skb_refdst = 0UL;
1711
1712#define tcp_skb_tsorted_restore(skb) \
1713 skb->_skb_refdst = _save; \
1714}
1715
1716void tcp_write_queue_purge(struct sock *sk);
1717
1718static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1719{
1720 return skb_rb_first(&sk->tcp_rtx_queue);
1721}
1722
1723static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1724{
1725 return skb_rb_last(&sk->tcp_rtx_queue);
1726}
1727
1728static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1729{
1730 return skb_peek(&sk->sk_write_queue);
1731}
1732
1733static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1734{
1735 return skb_peek_tail(&sk->sk_write_queue);
1736}
1737
1738#define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1739 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1740
1741static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1742{
1743 return skb_peek(&sk->sk_write_queue);
1744}
1745
1746static inline bool tcp_skb_is_last(const struct sock *sk,
1747 const struct sk_buff *skb)
1748{
1749 return skb_queue_is_last(&sk->sk_write_queue, skb);
1750}
1751
1752static inline bool tcp_write_queue_empty(const struct sock *sk)
1753{
1754 return skb_queue_empty(&sk->sk_write_queue);
1755}
1756
1757static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1758{
1759 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1760}
1761
1762static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1763{
1764 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1765}
1766
1767static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1768{
1769 __skb_queue_tail(&sk->sk_write_queue, skb);
1770
1771 /* Queue it, remembering where we must start sending. */
1772 if (sk->sk_write_queue.next == skb)
1773 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1774}
1775
1776/* Insert new before skb on the write queue of sk. */
1777static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1778 struct sk_buff *skb,
1779 struct sock *sk)
1780{
1781 __skb_queue_before(&sk->sk_write_queue, skb, new);
1782}
1783
1784static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1785{
1786 tcp_skb_tsorted_anchor_cleanup(skb);
1787 __skb_unlink(skb, &sk->sk_write_queue);
1788}
1789
1790void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1791
1792static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1793{
1794 tcp_skb_tsorted_anchor_cleanup(skb);
1795 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1796}
1797
1798static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1799{
1800 list_del(&skb->tcp_tsorted_anchor);
1801 tcp_rtx_queue_unlink(skb, sk);
1802 sk_wmem_free_skb(sk, skb);
1803}
1804
1805static inline void tcp_push_pending_frames(struct sock *sk)
1806{
1807 if (tcp_send_head(sk)) {
1808 struct tcp_sock *tp = tcp_sk(sk);
1809
1810 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1811 }
1812}
1813
1814/* Start sequence of the skb just after the highest skb with SACKed
1815 * bit, valid only if sacked_out > 0 or when the caller has ensured
1816 * validity by itself.
1817 */
1818static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1819{
1820 if (!tp->sacked_out)
1821 return tp->snd_una;
1822
1823 if (tp->highest_sack == NULL)
1824 return tp->snd_nxt;
1825
1826 return TCP_SKB_CB(tp->highest_sack)->seq;
1827}
1828
1829static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1830{
1831 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1832}
1833
1834static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1835{
1836 return tcp_sk(sk)->highest_sack;
1837}
1838
1839static inline void tcp_highest_sack_reset(struct sock *sk)
1840{
1841 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1842}
1843
1844/* Called when old skb is about to be deleted and replaced by new skb */
1845static inline void tcp_highest_sack_replace(struct sock *sk,
1846 struct sk_buff *old,
1847 struct sk_buff *new)
1848{
1849 if (old == tcp_highest_sack(sk))
1850 tcp_sk(sk)->highest_sack = new;
1851}
1852
1853/* This helper checks if socket has IP_TRANSPARENT set */
1854static inline bool inet_sk_transparent(const struct sock *sk)
1855{
1856 switch (sk->sk_state) {
1857 case TCP_TIME_WAIT:
1858 return inet_twsk(sk)->tw_transparent;
1859 case TCP_NEW_SYN_RECV:
1860 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1861 }
1862 return inet_sk(sk)->transparent;
1863}
1864
1865/* Determines whether this is a thin stream (which may suffer from
1866 * increased latency). Used to trigger latency-reducing mechanisms.
1867 */
1868static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1869{
1870 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1871}
1872
1873/* /proc */
1874enum tcp_seq_states {
1875 TCP_SEQ_STATE_LISTENING,
1876 TCP_SEQ_STATE_ESTABLISHED,
1877};
1878
1879void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1880void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1881void tcp_seq_stop(struct seq_file *seq, void *v);
1882
1883struct tcp_seq_afinfo {
1884 sa_family_t family;
1885};
1886
1887struct tcp_iter_state {
1888 struct seq_net_private p;
1889 enum tcp_seq_states state;
1890 struct sock *syn_wait_sk;
1891 int bucket, offset, sbucket, num;
1892 loff_t last_pos;
1893};
1894
1895extern struct request_sock_ops tcp_request_sock_ops;
1896extern struct request_sock_ops tcp6_request_sock_ops;
1897
1898void tcp_v4_destroy_sock(struct sock *sk);
1899
1900struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1901 netdev_features_t features);
1902struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1903int tcp_gro_complete(struct sk_buff *skb);
1904
1905void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1906
1907static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1908{
1909 struct net *net = sock_net((struct sock *)tp);
1910 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1911}
1912
1913/* @wake is one when sk_stream_write_space() calls us.
1914 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1915 * This mimics the strategy used in sock_def_write_space().
1916 */
1917static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1918{
1919 const struct tcp_sock *tp = tcp_sk(sk);
1920 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1921 READ_ONCE(tp->snd_nxt);
1922
1923 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1924}
1925
1926#ifdef CONFIG_PROC_FS
1927int tcp4_proc_init(void);
1928void tcp4_proc_exit(void);
1929#endif
1930
1931int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1932int tcp_conn_request(struct request_sock_ops *rsk_ops,
1933 const struct tcp_request_sock_ops *af_ops,
1934 struct sock *sk, struct sk_buff *skb);
1935
1936/* TCP af-specific functions */
1937struct tcp_sock_af_ops {
1938#ifdef CONFIG_TCP_MD5SIG
1939 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1940 const struct sock *addr_sk);
1941 int (*calc_md5_hash)(char *location,
1942 const struct tcp_md5sig_key *md5,
1943 const struct sock *sk,
1944 const struct sk_buff *skb);
1945 int (*md5_parse)(struct sock *sk,
1946 int optname,
1947 char __user *optval,
1948 int optlen);
1949#endif
1950};
1951
1952struct tcp_request_sock_ops {
1953 u16 mss_clamp;
1954#ifdef CONFIG_TCP_MD5SIG
1955 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1956 const struct sock *addr_sk);
1957 int (*calc_md5_hash) (char *location,
1958 const struct tcp_md5sig_key *md5,
1959 const struct sock *sk,
1960 const struct sk_buff *skb);
1961#endif
1962 void (*init_req)(struct request_sock *req,
1963 const struct sock *sk_listener,
1964 struct sk_buff *skb);
1965#ifdef CONFIG_SYN_COOKIES
1966 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1967 __u16 *mss);
1968#endif
1969 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1970 const struct request_sock *req);
1971 u32 (*init_seq)(const struct sk_buff *skb);
1972 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1973 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1974 struct flowi *fl, struct request_sock *req,
1975 struct tcp_fastopen_cookie *foc,
1976 enum tcp_synack_type synack_type);
1977};
1978
1979#ifdef CONFIG_SYN_COOKIES
1980static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1981 const struct sock *sk, struct sk_buff *skb,
1982 __u16 *mss)
1983{
1984 tcp_synq_overflow(sk);
1985 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1986 return ops->cookie_init_seq(skb, mss);
1987}
1988#else
1989static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1990 const struct sock *sk, struct sk_buff *skb,
1991 __u16 *mss)
1992{
1993 return 0;
1994}
1995#endif
1996
1997int tcpv4_offload_init(void);
1998
1999void tcp_v4_init(void);
2000void tcp_init(void);
2001
2002/* tcp_recovery.c */
2003void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2004void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2005extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2006 u32 reo_wnd);
2007extern void tcp_rack_mark_lost(struct sock *sk);
2008extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2009 u64 xmit_time);
2010extern void tcp_rack_reo_timeout(struct sock *sk);
2011extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2012
2013/* At how many usecs into the future should the RTO fire? */
2014static inline s64 tcp_rto_delta_us(const struct sock *sk)
2015{
2016 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2017 u32 rto = inet_csk(sk)->icsk_rto;
2018 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2019
2020 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2021}
2022
2023/*
2024 * Save and compile IPv4 options, return a pointer to it
2025 */
2026static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2027 struct sk_buff *skb)
2028{
2029 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2030 struct ip_options_rcu *dopt = NULL;
2031
2032 if (opt->optlen) {
2033 int opt_size = sizeof(*dopt) + opt->optlen;
2034
2035 dopt = kmalloc(opt_size, GFP_ATOMIC);
2036 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2037 kfree(dopt);
2038 dopt = NULL;
2039 }
2040 }
2041 return dopt;
2042}
2043
2044/* locally generated TCP pure ACKs have skb->truesize == 2
2045 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2046 * This is much faster than dissecting the packet to find out.
2047 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2048 */
2049static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2050{
2051 return skb->truesize == 2;
2052}
2053
2054static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2055{
2056 skb->truesize = 2;
2057}
2058
2059static inline int tcp_inq(struct sock *sk)
2060{
2061 struct tcp_sock *tp = tcp_sk(sk);
2062 int answ;
2063
2064 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2065 answ = 0;
2066 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2067 !tp->urg_data ||
2068 before(tp->urg_seq, tp->copied_seq) ||
2069 !before(tp->urg_seq, tp->rcv_nxt)) {
2070
2071 answ = tp->rcv_nxt - tp->copied_seq;
2072
2073 /* Subtract 1, if FIN was received */
2074 if (answ && sock_flag(sk, SOCK_DONE))
2075 answ--;
2076 } else {
2077 answ = tp->urg_seq - tp->copied_seq;
2078 }
2079
2080 return answ;
2081}
2082
2083int tcp_peek_len(struct socket *sock);
2084
2085static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2086{
2087 u16 segs_in;
2088
2089 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2090 tp->segs_in += segs_in;
2091 if (skb->len > tcp_hdrlen(skb))
2092 tp->data_segs_in += segs_in;
2093}
2094
2095/*
2096 * TCP listen path runs lockless.
2097 * We forced "struct sock" to be const qualified to make sure
2098 * we don't modify one of its field by mistake.
2099 * Here, we increment sk_drops which is an atomic_t, so we can safely
2100 * make sock writable again.
2101 */
2102static inline void tcp_listendrop(const struct sock *sk)
2103{
2104 atomic_inc(&((struct sock *)sk)->sk_drops);
2105 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2106}
2107
2108enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2109
2110/*
2111 * Interface for adding Upper Level Protocols over TCP
2112 */
2113
2114#define TCP_ULP_NAME_MAX 16
2115#define TCP_ULP_MAX 128
2116#define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2117
2118struct tcp_ulp_ops {
2119 struct list_head list;
2120
2121 /* initialize ulp */
2122 int (*init)(struct sock *sk);
2123 /* update ulp */
2124 void (*update)(struct sock *sk, struct proto *p);
2125 /* cleanup ulp */
2126 void (*release)(struct sock *sk);
2127 /* diagnostic */
2128 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2129 size_t (*get_info_size)(const struct sock *sk);
2130
2131 char name[TCP_ULP_NAME_MAX];
2132 struct module *owner;
2133};
2134int tcp_register_ulp(struct tcp_ulp_ops *type);
2135void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2136int tcp_set_ulp(struct sock *sk, const char *name);
2137void tcp_get_available_ulp(char *buf, size_t len);
2138void tcp_cleanup_ulp(struct sock *sk);
2139void tcp_update_ulp(struct sock *sk, struct proto *p);
2140
2141#define MODULE_ALIAS_TCP_ULP(name) \
2142 __MODULE_INFO(alias, alias_userspace, name); \
2143 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2144
2145struct sk_msg;
2146struct sk_psock;
2147
2148int tcp_bpf_init(struct sock *sk);
2149void tcp_bpf_reinit(struct sock *sk);
2150int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2151 int flags);
2152int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2153 int nonblock, int flags, int *addr_len);
2154int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2155 struct msghdr *msg, int len, int flags);
2156
2157/* Call BPF_SOCK_OPS program that returns an int. If the return value
2158 * is < 0, then the BPF op failed (for example if the loaded BPF
2159 * program does not support the chosen operation or there is no BPF
2160 * program loaded).
2161 */
2162#ifdef CONFIG_BPF
2163static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2164{
2165 struct bpf_sock_ops_kern sock_ops;
2166 int ret;
2167
2168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2169 if (sk_fullsock(sk)) {
2170 sock_ops.is_fullsock = 1;
2171 sock_owned_by_me(sk);
2172 }
2173
2174 sock_ops.sk = sk;
2175 sock_ops.op = op;
2176 if (nargs > 0)
2177 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2178
2179 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2180 if (ret == 0)
2181 ret = sock_ops.reply;
2182 else
2183 ret = -1;
2184 return ret;
2185}
2186
2187static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2188{
2189 u32 args[2] = {arg1, arg2};
2190
2191 return tcp_call_bpf(sk, op, 2, args);
2192}
2193
2194static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2195 u32 arg3)
2196{
2197 u32 args[3] = {arg1, arg2, arg3};
2198
2199 return tcp_call_bpf(sk, op, 3, args);
2200}
2201
2202#else
2203static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2204{
2205 return -EPERM;
2206}
2207
2208static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2209{
2210 return -EPERM;
2211}
2212
2213static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2214 u32 arg3)
2215{
2216 return -EPERM;
2217}
2218
2219#endif
2220
2221static inline u32 tcp_timeout_init(struct sock *sk)
2222{
2223 int timeout;
2224
2225 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2226
2227 if (timeout <= 0)
2228 timeout = TCP_TIMEOUT_INIT;
2229 return timeout;
2230}
2231
2232static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2233{
2234 int rwnd;
2235
2236 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2237
2238 if (rwnd < 0)
2239 rwnd = 0;
2240 return rwnd;
2241}
2242
2243static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2244{
2245 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2246}
2247
2248static inline void tcp_bpf_rtt(struct sock *sk)
2249{
2250 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2251 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2252}
2253
2254#if IS_ENABLED(CONFIG_SMC)
2255extern struct static_key_false tcp_have_smc;
2256#endif
2257
2258#if IS_ENABLED(CONFIG_TLS_DEVICE)
2259void clean_acked_data_enable(struct inet_connection_sock *icsk,
2260 void (*cad)(struct sock *sk, u32 ack_seq));
2261void clean_acked_data_disable(struct inet_connection_sock *icsk);
2262void clean_acked_data_flush(void);
2263#endif
2264
2265DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2266static inline void tcp_add_tx_delay(struct sk_buff *skb,
2267 const struct tcp_sock *tp)
2268{
2269 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2270 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2271}
2272
2273/* Compute Earliest Departure Time for some control packets
2274 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2275 */
2276static inline u64 tcp_transmit_time(const struct sock *sk)
2277{
2278 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2279 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2280 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2281
2282 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2283 }
2284 return 0;
2285}
2286
2287#endif /* _TCP_H */
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18#ifndef _TCP_H
19#define _TCP_H
20
21#define FASTRETRANS_DEBUG 1
22
23#include <linux/list.h>
24#include <linux/tcp.h>
25#include <linux/bug.h>
26#include <linux/slab.h>
27#include <linux/cache.h>
28#include <linux/percpu.h>
29#include <linux/skbuff.h>
30#include <linux/dmaengine.h>
31#include <linux/crypto.h>
32#include <linux/cryptohash.h>
33#include <linux/kref.h>
34#include <linux/ktime.h>
35
36#include <net/inet_connection_sock.h>
37#include <net/inet_timewait_sock.h>
38#include <net/inet_hashtables.h>
39#include <net/checksum.h>
40#include <net/request_sock.h>
41#include <net/sock.h>
42#include <net/snmp.h>
43#include <net/ip.h>
44#include <net/tcp_states.h>
45#include <net/inet_ecn.h>
46#include <net/dst.h>
47
48#include <linux/seq_file.h>
49#include <linux/memcontrol.h>
50
51extern struct inet_hashinfo tcp_hashinfo;
52
53extern struct percpu_counter tcp_orphan_count;
54void tcp_time_wait(struct sock *sk, int state, int timeo);
55
56#define MAX_TCP_HEADER (128 + MAX_HEADER)
57#define MAX_TCP_OPTION_SPACE 40
58
59/*
60 * Never offer a window over 32767 without using window scaling. Some
61 * poor stacks do signed 16bit maths!
62 */
63#define MAX_TCP_WINDOW 32767U
64
65/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66#define TCP_MIN_MSS 88U
67
68/* The least MTU to use for probing */
69#define TCP_BASE_MSS 512
70
71/* After receiving this amount of duplicate ACKs fast retransmit starts. */
72#define TCP_FASTRETRANS_THRESH 3
73
74/* Maximal reordering. */
75#define TCP_MAX_REORDERING 127
76
77/* Maximal number of ACKs sent quickly to accelerate slow-start. */
78#define TCP_MAX_QUICKACKS 16U
79
80/* urg_data states */
81#define TCP_URG_VALID 0x0100
82#define TCP_URG_NOTYET 0x0200
83#define TCP_URG_READ 0x0400
84
85#define TCP_RETR1 3 /*
86 * This is how many retries it does before it
87 * tries to figure out if the gateway is
88 * down. Minimal RFC value is 3; it corresponds
89 * to ~3sec-8min depending on RTO.
90 */
91
92#define TCP_RETR2 15 /*
93 * This should take at least
94 * 90 minutes to time out.
95 * RFC1122 says that the limit is 100 sec.
96 * 15 is ~13-30min depending on RTO.
97 */
98
99#define TCP_SYN_RETRIES 6 /* This is how many retries are done
100 * when active opening a connection.
101 * RFC1122 says the minimum retry MUST
102 * be at least 180secs. Nevertheless
103 * this value is corresponding to
104 * 63secs of retransmission with the
105 * current initial RTO.
106 */
107
108#define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
109 * when passive opening a connection.
110 * This is corresponding to 31secs of
111 * retransmission with the current
112 * initial RTO.
113 */
114
115#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
116 * state, about 60 seconds */
117#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
118 /* BSD style FIN_WAIT2 deadlock breaker.
119 * It used to be 3min, new value is 60sec,
120 * to combine FIN-WAIT-2 timeout with
121 * TIME-WAIT timer.
122 */
123
124#define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
125#if HZ >= 100
126#define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
127#define TCP_ATO_MIN ((unsigned)(HZ/25))
128#else
129#define TCP_DELACK_MIN 4U
130#define TCP_ATO_MIN 4U
131#endif
132#define TCP_RTO_MAX ((unsigned)(120*HZ))
133#define TCP_RTO_MIN ((unsigned)(HZ/5))
134#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
135#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
136 * used as a fallback RTO for the
137 * initial data transmission if no
138 * valid RTT sample has been acquired,
139 * most likely due to retrans in 3WHS.
140 */
141
142#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
143 * for local resources.
144 */
145
146#define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
147#define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
148#define TCP_KEEPALIVE_INTVL (75*HZ)
149
150#define MAX_TCP_KEEPIDLE 32767
151#define MAX_TCP_KEEPINTVL 32767
152#define MAX_TCP_KEEPCNT 127
153#define MAX_TCP_SYNCNT 127
154
155#define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
156
157#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
158#define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
159 * after this time. It should be equal
160 * (or greater than) TCP_TIMEWAIT_LEN
161 * to provide reliability equal to one
162 * provided by timewait state.
163 */
164#define TCP_PAWS_WINDOW 1 /* Replay window for per-host
165 * timestamps. It must be less than
166 * minimal timewait lifetime.
167 */
168/*
169 * TCP option
170 */
171
172#define TCPOPT_NOP 1 /* Padding */
173#define TCPOPT_EOL 0 /* End of options */
174#define TCPOPT_MSS 2 /* Segment size negotiating */
175#define TCPOPT_WINDOW 3 /* Window scaling */
176#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
177#define TCPOPT_SACK 5 /* SACK Block */
178#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
179#define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
180#define TCPOPT_EXP 254 /* Experimental */
181/* Magic number to be after the option value for sharing TCP
182 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
183 */
184#define TCPOPT_FASTOPEN_MAGIC 0xF989
185
186/*
187 * TCP option lengths
188 */
189
190#define TCPOLEN_MSS 4
191#define TCPOLEN_WINDOW 3
192#define TCPOLEN_SACK_PERM 2
193#define TCPOLEN_TIMESTAMP 10
194#define TCPOLEN_MD5SIG 18
195#define TCPOLEN_EXP_FASTOPEN_BASE 4
196
197/* But this is what stacks really send out. */
198#define TCPOLEN_TSTAMP_ALIGNED 12
199#define TCPOLEN_WSCALE_ALIGNED 4
200#define TCPOLEN_SACKPERM_ALIGNED 4
201#define TCPOLEN_SACK_BASE 2
202#define TCPOLEN_SACK_BASE_ALIGNED 4
203#define TCPOLEN_SACK_PERBLOCK 8
204#define TCPOLEN_MD5SIG_ALIGNED 20
205#define TCPOLEN_MSS_ALIGNED 4
206
207/* Flags in tp->nonagle */
208#define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
209#define TCP_NAGLE_CORK 2 /* Socket is corked */
210#define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
211
212/* TCP thin-stream limits */
213#define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
214
215/* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
216#define TCP_INIT_CWND 10
217
218/* Bit Flags for sysctl_tcp_fastopen */
219#define TFO_CLIENT_ENABLE 1
220#define TFO_SERVER_ENABLE 2
221#define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
222
223/* Process SYN data but skip cookie validation */
224#define TFO_SERVER_COOKIE_NOT_CHKED 0x100
225/* Accept SYN data w/o any cookie option */
226#define TFO_SERVER_COOKIE_NOT_REQD 0x200
227
228/* Force enable TFO on all listeners, i.e., not requiring the
229 * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
230 */
231#define TFO_SERVER_WO_SOCKOPT1 0x400
232#define TFO_SERVER_WO_SOCKOPT2 0x800
233/* Always create TFO child sockets on a TFO listener even when
234 * cookie/data not present. (For testing purpose!)
235 */
236#define TFO_SERVER_ALWAYS 0x1000
237
238extern struct inet_timewait_death_row tcp_death_row;
239
240/* sysctl variables for tcp */
241extern int sysctl_tcp_timestamps;
242extern int sysctl_tcp_window_scaling;
243extern int sysctl_tcp_sack;
244extern int sysctl_tcp_fin_timeout;
245extern int sysctl_tcp_keepalive_time;
246extern int sysctl_tcp_keepalive_probes;
247extern int sysctl_tcp_keepalive_intvl;
248extern int sysctl_tcp_syn_retries;
249extern int sysctl_tcp_synack_retries;
250extern int sysctl_tcp_retries1;
251extern int sysctl_tcp_retries2;
252extern int sysctl_tcp_orphan_retries;
253extern int sysctl_tcp_syncookies;
254extern int sysctl_tcp_fastopen;
255extern int sysctl_tcp_retrans_collapse;
256extern int sysctl_tcp_stdurg;
257extern int sysctl_tcp_rfc1337;
258extern int sysctl_tcp_abort_on_overflow;
259extern int sysctl_tcp_max_orphans;
260extern int sysctl_tcp_fack;
261extern int sysctl_tcp_reordering;
262extern int sysctl_tcp_dsack;
263extern long sysctl_tcp_mem[3];
264extern int sysctl_tcp_wmem[3];
265extern int sysctl_tcp_rmem[3];
266extern int sysctl_tcp_app_win;
267extern int sysctl_tcp_adv_win_scale;
268extern int sysctl_tcp_tw_reuse;
269extern int sysctl_tcp_frto;
270extern int sysctl_tcp_low_latency;
271extern int sysctl_tcp_dma_copybreak;
272extern int sysctl_tcp_nometrics_save;
273extern int sysctl_tcp_moderate_rcvbuf;
274extern int sysctl_tcp_tso_win_divisor;
275extern int sysctl_tcp_mtu_probing;
276extern int sysctl_tcp_base_mss;
277extern int sysctl_tcp_workaround_signed_windows;
278extern int sysctl_tcp_slow_start_after_idle;
279extern int sysctl_tcp_thin_linear_timeouts;
280extern int sysctl_tcp_thin_dupack;
281extern int sysctl_tcp_early_retrans;
282extern int sysctl_tcp_limit_output_bytes;
283extern int sysctl_tcp_challenge_ack_limit;
284extern unsigned int sysctl_tcp_notsent_lowat;
285extern int sysctl_tcp_min_tso_segs;
286extern int sysctl_tcp_autocorking;
287
288extern atomic_long_t tcp_memory_allocated;
289extern struct percpu_counter tcp_sockets_allocated;
290extern int tcp_memory_pressure;
291
292/*
293 * The next routines deal with comparing 32 bit unsigned ints
294 * and worry about wraparound (automatic with unsigned arithmetic).
295 */
296
297static inline bool before(__u32 seq1, __u32 seq2)
298{
299 return (__s32)(seq1-seq2) < 0;
300}
301#define after(seq2, seq1) before(seq1, seq2)
302
303/* is s2<=s1<=s3 ? */
304static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
305{
306 return seq3 - seq2 >= seq1 - seq2;
307}
308
309static inline bool tcp_out_of_memory(struct sock *sk)
310{
311 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
312 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
313 return true;
314 return false;
315}
316
317static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
318{
319 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
320 int orphans = percpu_counter_read_positive(ocp);
321
322 if (orphans << shift > sysctl_tcp_max_orphans) {
323 orphans = percpu_counter_sum_positive(ocp);
324 if (orphans << shift > sysctl_tcp_max_orphans)
325 return true;
326 }
327 return false;
328}
329
330bool tcp_check_oom(struct sock *sk, int shift);
331
332/* syncookies: remember time of last synqueue overflow */
333static inline void tcp_synq_overflow(struct sock *sk)
334{
335 tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
336}
337
338/* syncookies: no recent synqueue overflow on this listening socket? */
339static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
340{
341 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
342 return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
343}
344
345extern struct proto tcp_prot;
346
347#define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
348#define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
349#define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
350#define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
351#define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
352
353void tcp_tasklet_init(void);
354
355void tcp_v4_err(struct sk_buff *skb, u32);
356
357void tcp_shutdown(struct sock *sk, int how);
358
359void tcp_v4_early_demux(struct sk_buff *skb);
360int tcp_v4_rcv(struct sk_buff *skb);
361
362int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
363int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
364 size_t size);
365int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
366 int flags);
367void tcp_release_cb(struct sock *sk);
368void tcp_wfree(struct sk_buff *skb);
369void tcp_write_timer_handler(struct sock *sk);
370void tcp_delack_timer_handler(struct sock *sk);
371int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
372int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
373 const struct tcphdr *th, unsigned int len);
374void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
375 const struct tcphdr *th, unsigned int len);
376void tcp_rcv_space_adjust(struct sock *sk);
377void tcp_cleanup_rbuf(struct sock *sk, int copied);
378int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
379void tcp_twsk_destructor(struct sock *sk);
380ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
381 struct pipe_inode_info *pipe, size_t len,
382 unsigned int flags);
383
384static inline void tcp_dec_quickack_mode(struct sock *sk,
385 const unsigned int pkts)
386{
387 struct inet_connection_sock *icsk = inet_csk(sk);
388
389 if (icsk->icsk_ack.quick) {
390 if (pkts >= icsk->icsk_ack.quick) {
391 icsk->icsk_ack.quick = 0;
392 /* Leaving quickack mode we deflate ATO. */
393 icsk->icsk_ack.ato = TCP_ATO_MIN;
394 } else
395 icsk->icsk_ack.quick -= pkts;
396 }
397}
398
399#define TCP_ECN_OK 1
400#define TCP_ECN_QUEUE_CWR 2
401#define TCP_ECN_DEMAND_CWR 4
402#define TCP_ECN_SEEN 8
403
404enum tcp_tw_status {
405 TCP_TW_SUCCESS = 0,
406 TCP_TW_RST = 1,
407 TCP_TW_ACK = 2,
408 TCP_TW_SYN = 3
409};
410
411
412enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
413 struct sk_buff *skb,
414 const struct tcphdr *th);
415struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
416 struct request_sock *req, struct request_sock **prev,
417 bool fastopen);
418int tcp_child_process(struct sock *parent, struct sock *child,
419 struct sk_buff *skb);
420void tcp_enter_loss(struct sock *sk, int how);
421void tcp_clear_retrans(struct tcp_sock *tp);
422void tcp_update_metrics(struct sock *sk);
423void tcp_init_metrics(struct sock *sk);
424void tcp_metrics_init(void);
425bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
426 bool paws_check);
427bool tcp_remember_stamp(struct sock *sk);
428bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
429void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
430void tcp_disable_fack(struct tcp_sock *tp);
431void tcp_close(struct sock *sk, long timeout);
432void tcp_init_sock(struct sock *sk);
433unsigned int tcp_poll(struct file *file, struct socket *sock,
434 struct poll_table_struct *wait);
435int tcp_getsockopt(struct sock *sk, int level, int optname,
436 char __user *optval, int __user *optlen);
437int tcp_setsockopt(struct sock *sk, int level, int optname,
438 char __user *optval, unsigned int optlen);
439int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
440 char __user *optval, int __user *optlen);
441int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
442 char __user *optval, unsigned int optlen);
443void tcp_set_keepalive(struct sock *sk, int val);
444void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
445int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
446 size_t len, int nonblock, int flags, int *addr_len);
447void tcp_parse_options(const struct sk_buff *skb,
448 struct tcp_options_received *opt_rx,
449 int estab, struct tcp_fastopen_cookie *foc);
450const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
451
452/*
453 * TCP v4 functions exported for the inet6 API
454 */
455
456void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
457int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
458struct sock *tcp_create_openreq_child(struct sock *sk,
459 struct request_sock *req,
460 struct sk_buff *skb);
461struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
462 struct request_sock *req,
463 struct dst_entry *dst);
464int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
465int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
466int tcp_connect(struct sock *sk);
467struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
468 struct request_sock *req,
469 struct tcp_fastopen_cookie *foc);
470int tcp_disconnect(struct sock *sk, int flags);
471
472void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
473int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
474void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
475
476/* From syncookies.c */
477int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
478 u32 cookie);
479struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
480 struct ip_options *opt);
481#ifdef CONFIG_SYN_COOKIES
482
483/* Syncookies use a monotonic timer which increments every 60 seconds.
484 * This counter is used both as a hash input and partially encoded into
485 * the cookie value. A cookie is only validated further if the delta
486 * between the current counter value and the encoded one is less than this,
487 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
488 * the counter advances immediately after a cookie is generated).
489 */
490#define MAX_SYNCOOKIE_AGE 2
491
492static inline u32 tcp_cookie_time(void)
493{
494 u64 val = get_jiffies_64();
495
496 do_div(val, 60 * HZ);
497 return val;
498}
499
500u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
501 u16 *mssp);
502__u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb, __u16 *mss);
503#else
504static inline __u32 cookie_v4_init_sequence(struct sock *sk,
505 struct sk_buff *skb,
506 __u16 *mss)
507{
508 return 0;
509}
510#endif
511
512__u32 cookie_init_timestamp(struct request_sock *req);
513bool cookie_check_timestamp(struct tcp_options_received *opt, struct net *net,
514 bool *ecn_ok);
515
516/* From net/ipv6/syncookies.c */
517int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
518 u32 cookie);
519struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
520#ifdef CONFIG_SYN_COOKIES
521u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
522 const struct tcphdr *th, u16 *mssp);
523__u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
524 __u16 *mss);
525#else
526static inline __u32 cookie_v6_init_sequence(struct sock *sk,
527 struct sk_buff *skb,
528 __u16 *mss)
529{
530 return 0;
531}
532#endif
533/* tcp_output.c */
534
535void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
536 int nonagle);
537bool tcp_may_send_now(struct sock *sk);
538int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
539int tcp_retransmit_skb(struct sock *, struct sk_buff *);
540void tcp_retransmit_timer(struct sock *sk);
541void tcp_xmit_retransmit_queue(struct sock *);
542void tcp_simple_retransmit(struct sock *);
543int tcp_trim_head(struct sock *, struct sk_buff *, u32);
544int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
545
546void tcp_send_probe0(struct sock *);
547void tcp_send_partial(struct sock *);
548int tcp_write_wakeup(struct sock *);
549void tcp_send_fin(struct sock *sk);
550void tcp_send_active_reset(struct sock *sk, gfp_t priority);
551int tcp_send_synack(struct sock *);
552bool tcp_syn_flood_action(struct sock *sk, const struct sk_buff *skb,
553 const char *proto);
554void tcp_push_one(struct sock *, unsigned int mss_now);
555void tcp_send_ack(struct sock *sk);
556void tcp_send_delayed_ack(struct sock *sk);
557void tcp_send_loss_probe(struct sock *sk);
558bool tcp_schedule_loss_probe(struct sock *sk);
559
560/* tcp_input.c */
561void tcp_cwnd_application_limited(struct sock *sk);
562void tcp_resume_early_retransmit(struct sock *sk);
563void tcp_rearm_rto(struct sock *sk);
564void tcp_reset(struct sock *sk);
565
566/* tcp_timer.c */
567void tcp_init_xmit_timers(struct sock *);
568static inline void tcp_clear_xmit_timers(struct sock *sk)
569{
570 inet_csk_clear_xmit_timers(sk);
571}
572
573unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
574unsigned int tcp_current_mss(struct sock *sk);
575
576/* Bound MSS / TSO packet size with the half of the window */
577static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
578{
579 int cutoff;
580
581 /* When peer uses tiny windows, there is no use in packetizing
582 * to sub-MSS pieces for the sake of SWS or making sure there
583 * are enough packets in the pipe for fast recovery.
584 *
585 * On the other hand, for extremely large MSS devices, handling
586 * smaller than MSS windows in this way does make sense.
587 */
588 if (tp->max_window >= 512)
589 cutoff = (tp->max_window >> 1);
590 else
591 cutoff = tp->max_window;
592
593 if (cutoff && pktsize > cutoff)
594 return max_t(int, cutoff, 68U - tp->tcp_header_len);
595 else
596 return pktsize;
597}
598
599/* tcp.c */
600void tcp_get_info(const struct sock *, struct tcp_info *);
601
602/* Read 'sendfile()'-style from a TCP socket */
603typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
604 unsigned int, size_t);
605int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
606 sk_read_actor_t recv_actor);
607
608void tcp_initialize_rcv_mss(struct sock *sk);
609
610int tcp_mtu_to_mss(struct sock *sk, int pmtu);
611int tcp_mss_to_mtu(struct sock *sk, int mss);
612void tcp_mtup_init(struct sock *sk);
613void tcp_init_buffer_space(struct sock *sk);
614
615static inline void tcp_bound_rto(const struct sock *sk)
616{
617 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
618 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
619}
620
621static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
622{
623 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
624}
625
626static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
627{
628 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
629 ntohl(TCP_FLAG_ACK) |
630 snd_wnd);
631}
632
633static inline void tcp_fast_path_on(struct tcp_sock *tp)
634{
635 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
636}
637
638static inline void tcp_fast_path_check(struct sock *sk)
639{
640 struct tcp_sock *tp = tcp_sk(sk);
641
642 if (skb_queue_empty(&tp->out_of_order_queue) &&
643 tp->rcv_wnd &&
644 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
645 !tp->urg_data)
646 tcp_fast_path_on(tp);
647}
648
649/* Compute the actual rto_min value */
650static inline u32 tcp_rto_min(struct sock *sk)
651{
652 const struct dst_entry *dst = __sk_dst_get(sk);
653 u32 rto_min = TCP_RTO_MIN;
654
655 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
656 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
657 return rto_min;
658}
659
660static inline u32 tcp_rto_min_us(struct sock *sk)
661{
662 return jiffies_to_usecs(tcp_rto_min(sk));
663}
664
665/* Compute the actual receive window we are currently advertising.
666 * Rcv_nxt can be after the window if our peer push more data
667 * than the offered window.
668 */
669static inline u32 tcp_receive_window(const struct tcp_sock *tp)
670{
671 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
672
673 if (win < 0)
674 win = 0;
675 return (u32) win;
676}
677
678/* Choose a new window, without checks for shrinking, and without
679 * scaling applied to the result. The caller does these things
680 * if necessary. This is a "raw" window selection.
681 */
682u32 __tcp_select_window(struct sock *sk);
683
684void tcp_send_window_probe(struct sock *sk);
685
686/* TCP timestamps are only 32-bits, this causes a slight
687 * complication on 64-bit systems since we store a snapshot
688 * of jiffies in the buffer control blocks below. We decided
689 * to use only the low 32-bits of jiffies and hide the ugly
690 * casts with the following macro.
691 */
692#define tcp_time_stamp ((__u32)(jiffies))
693
694#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
695
696#define TCPHDR_FIN 0x01
697#define TCPHDR_SYN 0x02
698#define TCPHDR_RST 0x04
699#define TCPHDR_PSH 0x08
700#define TCPHDR_ACK 0x10
701#define TCPHDR_URG 0x20
702#define TCPHDR_ECE 0x40
703#define TCPHDR_CWR 0x80
704
705/* This is what the send packet queuing engine uses to pass
706 * TCP per-packet control information to the transmission code.
707 * We also store the host-order sequence numbers in here too.
708 * This is 44 bytes if IPV6 is enabled.
709 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
710 */
711struct tcp_skb_cb {
712 union {
713 struct inet_skb_parm h4;
714#if IS_ENABLED(CONFIG_IPV6)
715 struct inet6_skb_parm h6;
716#endif
717 } header; /* For incoming frames */
718 __u32 seq; /* Starting sequence number */
719 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
720 __u32 when; /* used to compute rtt's */
721 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
722
723 __u8 sacked; /* State flags for SACK/FACK. */
724#define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
725#define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
726#define TCPCB_LOST 0x04 /* SKB is lost */
727#define TCPCB_TAGBITS 0x07 /* All tag bits */
728#define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
729#define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
730
731 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
732 /* 1 byte hole */
733 __u32 ack_seq; /* Sequence number ACK'd */
734};
735
736#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
737
738/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
739 *
740 * If we receive a SYN packet with these bits set, it means a network is
741 * playing bad games with TOS bits. In order to avoid possible false congestion
742 * notifications, we disable TCP ECN negociation.
743 */
744static inline void
745TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb,
746 struct net *net)
747{
748 const struct tcphdr *th = tcp_hdr(skb);
749
750 if (net->ipv4.sysctl_tcp_ecn && th->ece && th->cwr &&
751 INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield))
752 inet_rsk(req)->ecn_ok = 1;
753}
754
755/* Due to TSO, an SKB can be composed of multiple actual
756 * packets. To keep these tracked properly, we use this.
757 */
758static inline int tcp_skb_pcount(const struct sk_buff *skb)
759{
760 return skb_shinfo(skb)->gso_segs;
761}
762
763/* This is valid iff tcp_skb_pcount() > 1. */
764static inline int tcp_skb_mss(const struct sk_buff *skb)
765{
766 return skb_shinfo(skb)->gso_size;
767}
768
769/* Events passed to congestion control interface */
770enum tcp_ca_event {
771 CA_EVENT_TX_START, /* first transmit when no packets in flight */
772 CA_EVENT_CWND_RESTART, /* congestion window restart */
773 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
774 CA_EVENT_LOSS, /* loss timeout */
775 CA_EVENT_FAST_ACK, /* in sequence ack */
776 CA_EVENT_SLOW_ACK, /* other ack */
777};
778
779/*
780 * Interface for adding new TCP congestion control handlers
781 */
782#define TCP_CA_NAME_MAX 16
783#define TCP_CA_MAX 128
784#define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
785
786#define TCP_CONG_NON_RESTRICTED 0x1
787
788struct tcp_congestion_ops {
789 struct list_head list;
790 unsigned long flags;
791
792 /* initialize private data (optional) */
793 void (*init)(struct sock *sk);
794 /* cleanup private data (optional) */
795 void (*release)(struct sock *sk);
796
797 /* return slow start threshold (required) */
798 u32 (*ssthresh)(struct sock *sk);
799 /* do new cwnd calculation (required) */
800 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked, u32 in_flight);
801 /* call before changing ca_state (optional) */
802 void (*set_state)(struct sock *sk, u8 new_state);
803 /* call when cwnd event occurs (optional) */
804 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
805 /* new value of cwnd after loss (optional) */
806 u32 (*undo_cwnd)(struct sock *sk);
807 /* hook for packet ack accounting (optional) */
808 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
809 /* get info for inet_diag (optional) */
810 void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
811
812 char name[TCP_CA_NAME_MAX];
813 struct module *owner;
814};
815
816int tcp_register_congestion_control(struct tcp_congestion_ops *type);
817void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
818
819void tcp_init_congestion_control(struct sock *sk);
820void tcp_cleanup_congestion_control(struct sock *sk);
821int tcp_set_default_congestion_control(const char *name);
822void tcp_get_default_congestion_control(char *name);
823void tcp_get_available_congestion_control(char *buf, size_t len);
824void tcp_get_allowed_congestion_control(char *buf, size_t len);
825int tcp_set_allowed_congestion_control(char *allowed);
826int tcp_set_congestion_control(struct sock *sk, const char *name);
827int tcp_slow_start(struct tcp_sock *tp, u32 acked);
828void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
829
830extern struct tcp_congestion_ops tcp_init_congestion_ops;
831u32 tcp_reno_ssthresh(struct sock *sk);
832void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked, u32 in_flight);
833extern struct tcp_congestion_ops tcp_reno;
834
835static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
836{
837 struct inet_connection_sock *icsk = inet_csk(sk);
838
839 if (icsk->icsk_ca_ops->set_state)
840 icsk->icsk_ca_ops->set_state(sk, ca_state);
841 icsk->icsk_ca_state = ca_state;
842}
843
844static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
845{
846 const struct inet_connection_sock *icsk = inet_csk(sk);
847
848 if (icsk->icsk_ca_ops->cwnd_event)
849 icsk->icsk_ca_ops->cwnd_event(sk, event);
850}
851
852/* These functions determine how the current flow behaves in respect of SACK
853 * handling. SACK is negotiated with the peer, and therefore it can vary
854 * between different flows.
855 *
856 * tcp_is_sack - SACK enabled
857 * tcp_is_reno - No SACK
858 * tcp_is_fack - FACK enabled, implies SACK enabled
859 */
860static inline int tcp_is_sack(const struct tcp_sock *tp)
861{
862 return tp->rx_opt.sack_ok;
863}
864
865static inline bool tcp_is_reno(const struct tcp_sock *tp)
866{
867 return !tcp_is_sack(tp);
868}
869
870static inline bool tcp_is_fack(const struct tcp_sock *tp)
871{
872 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
873}
874
875static inline void tcp_enable_fack(struct tcp_sock *tp)
876{
877 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
878}
879
880/* TCP early-retransmit (ER) is similar to but more conservative than
881 * the thin-dupack feature. Enable ER only if thin-dupack is disabled.
882 */
883static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
884{
885 tp->do_early_retrans = sysctl_tcp_early_retrans &&
886 sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
887 sysctl_tcp_reordering == 3;
888}
889
890static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
891{
892 tp->do_early_retrans = 0;
893}
894
895static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
896{
897 return tp->sacked_out + tp->lost_out;
898}
899
900/* This determines how many packets are "in the network" to the best
901 * of our knowledge. In many cases it is conservative, but where
902 * detailed information is available from the receiver (via SACK
903 * blocks etc.) we can make more aggressive calculations.
904 *
905 * Use this for decisions involving congestion control, use just
906 * tp->packets_out to determine if the send queue is empty or not.
907 *
908 * Read this equation as:
909 *
910 * "Packets sent once on transmission queue" MINUS
911 * "Packets left network, but not honestly ACKed yet" PLUS
912 * "Packets fast retransmitted"
913 */
914static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
915{
916 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
917}
918
919#define TCP_INFINITE_SSTHRESH 0x7fffffff
920
921static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
922{
923 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
924}
925
926static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
927{
928 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
929 (1 << inet_csk(sk)->icsk_ca_state);
930}
931
932/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
933 * The exception is cwnd reduction phase, when cwnd is decreasing towards
934 * ssthresh.
935 */
936static inline __u32 tcp_current_ssthresh(const struct sock *sk)
937{
938 const struct tcp_sock *tp = tcp_sk(sk);
939
940 if (tcp_in_cwnd_reduction(sk))
941 return tp->snd_ssthresh;
942 else
943 return max(tp->snd_ssthresh,
944 ((tp->snd_cwnd >> 1) +
945 (tp->snd_cwnd >> 2)));
946}
947
948/* Use define here intentionally to get WARN_ON location shown at the caller */
949#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
950
951void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
952__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
953
954/* The maximum number of MSS of available cwnd for which TSO defers
955 * sending if not using sysctl_tcp_tso_win_divisor.
956 */
957static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
958{
959 return 3;
960}
961
962/* Slow start with delack produces 3 packets of burst, so that
963 * it is safe "de facto". This will be the default - same as
964 * the default reordering threshold - but if reordering increases,
965 * we must be able to allow cwnd to burst at least this much in order
966 * to not pull it back when holes are filled.
967 */
968static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
969{
970 return tp->reordering;
971}
972
973/* Returns end sequence number of the receiver's advertised window */
974static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
975{
976 return tp->snd_una + tp->snd_wnd;
977}
978bool tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
979
980static inline void tcp_check_probe_timer(struct sock *sk)
981{
982 const struct tcp_sock *tp = tcp_sk(sk);
983 const struct inet_connection_sock *icsk = inet_csk(sk);
984
985 if (!tp->packets_out && !icsk->icsk_pending)
986 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
987 icsk->icsk_rto, TCP_RTO_MAX);
988}
989
990static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
991{
992 tp->snd_wl1 = seq;
993}
994
995static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
996{
997 tp->snd_wl1 = seq;
998}
999
1000/*
1001 * Calculate(/check) TCP checksum
1002 */
1003static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1004 __be32 daddr, __wsum base)
1005{
1006 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1007}
1008
1009static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1010{
1011 return __skb_checksum_complete(skb);
1012}
1013
1014static inline bool tcp_checksum_complete(struct sk_buff *skb)
1015{
1016 return !skb_csum_unnecessary(skb) &&
1017 __tcp_checksum_complete(skb);
1018}
1019
1020/* Prequeue for VJ style copy to user, combined with checksumming. */
1021
1022static inline void tcp_prequeue_init(struct tcp_sock *tp)
1023{
1024 tp->ucopy.task = NULL;
1025 tp->ucopy.len = 0;
1026 tp->ucopy.memory = 0;
1027 skb_queue_head_init(&tp->ucopy.prequeue);
1028#ifdef CONFIG_NET_DMA
1029 tp->ucopy.dma_chan = NULL;
1030 tp->ucopy.wakeup = 0;
1031 tp->ucopy.pinned_list = NULL;
1032 tp->ucopy.dma_cookie = 0;
1033#endif
1034}
1035
1036bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1037
1038#undef STATE_TRACE
1039
1040#ifdef STATE_TRACE
1041static const char *statename[]={
1042 "Unused","Established","Syn Sent","Syn Recv",
1043 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1044 "Close Wait","Last ACK","Listen","Closing"
1045};
1046#endif
1047void tcp_set_state(struct sock *sk, int state);
1048
1049void tcp_done(struct sock *sk);
1050
1051static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1052{
1053 rx_opt->dsack = 0;
1054 rx_opt->num_sacks = 0;
1055}
1056
1057u32 tcp_default_init_rwnd(u32 mss);
1058
1059/* Determine a window scaling and initial window to offer. */
1060void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1061 __u32 *window_clamp, int wscale_ok,
1062 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1063
1064static inline int tcp_win_from_space(int space)
1065{
1066 return sysctl_tcp_adv_win_scale<=0 ?
1067 (space>>(-sysctl_tcp_adv_win_scale)) :
1068 space - (space>>sysctl_tcp_adv_win_scale);
1069}
1070
1071/* Note: caller must be prepared to deal with negative returns */
1072static inline int tcp_space(const struct sock *sk)
1073{
1074 return tcp_win_from_space(sk->sk_rcvbuf -
1075 atomic_read(&sk->sk_rmem_alloc));
1076}
1077
1078static inline int tcp_full_space(const struct sock *sk)
1079{
1080 return tcp_win_from_space(sk->sk_rcvbuf);
1081}
1082
1083static inline void tcp_openreq_init(struct request_sock *req,
1084 struct tcp_options_received *rx_opt,
1085 struct sk_buff *skb)
1086{
1087 struct inet_request_sock *ireq = inet_rsk(req);
1088
1089 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
1090 req->cookie_ts = 0;
1091 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1092 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
1093 tcp_rsk(req)->snt_synack = 0;
1094 req->mss = rx_opt->mss_clamp;
1095 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1096 ireq->tstamp_ok = rx_opt->tstamp_ok;
1097 ireq->sack_ok = rx_opt->sack_ok;
1098 ireq->snd_wscale = rx_opt->snd_wscale;
1099 ireq->wscale_ok = rx_opt->wscale_ok;
1100 ireq->acked = 0;
1101 ireq->ecn_ok = 0;
1102 ireq->ir_rmt_port = tcp_hdr(skb)->source;
1103 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
1104}
1105
1106void tcp_enter_memory_pressure(struct sock *sk);
1107
1108static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1109{
1110 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1111}
1112
1113static inline int keepalive_time_when(const struct tcp_sock *tp)
1114{
1115 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1116}
1117
1118static inline int keepalive_probes(const struct tcp_sock *tp)
1119{
1120 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1121}
1122
1123static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1124{
1125 const struct inet_connection_sock *icsk = &tp->inet_conn;
1126
1127 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1128 tcp_time_stamp - tp->rcv_tstamp);
1129}
1130
1131static inline int tcp_fin_time(const struct sock *sk)
1132{
1133 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1134 const int rto = inet_csk(sk)->icsk_rto;
1135
1136 if (fin_timeout < (rto << 2) - (rto >> 1))
1137 fin_timeout = (rto << 2) - (rto >> 1);
1138
1139 return fin_timeout;
1140}
1141
1142static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1143 int paws_win)
1144{
1145 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1146 return true;
1147 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1148 return true;
1149 /*
1150 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1151 * then following tcp messages have valid values. Ignore 0 value,
1152 * or else 'negative' tsval might forbid us to accept their packets.
1153 */
1154 if (!rx_opt->ts_recent)
1155 return true;
1156 return false;
1157}
1158
1159static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1160 int rst)
1161{
1162 if (tcp_paws_check(rx_opt, 0))
1163 return false;
1164
1165 /* RST segments are not recommended to carry timestamp,
1166 and, if they do, it is recommended to ignore PAWS because
1167 "their cleanup function should take precedence over timestamps."
1168 Certainly, it is mistake. It is necessary to understand the reasons
1169 of this constraint to relax it: if peer reboots, clock may go
1170 out-of-sync and half-open connections will not be reset.
1171 Actually, the problem would be not existing if all
1172 the implementations followed draft about maintaining clock
1173 via reboots. Linux-2.2 DOES NOT!
1174
1175 However, we can relax time bounds for RST segments to MSL.
1176 */
1177 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1178 return false;
1179 return true;
1180}
1181
1182static inline void tcp_mib_init(struct net *net)
1183{
1184 /* See RFC 2012 */
1185 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1186 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1187 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1188 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1189}
1190
1191/* from STCP */
1192static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1193{
1194 tp->lost_skb_hint = NULL;
1195}
1196
1197static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1198{
1199 tcp_clear_retrans_hints_partial(tp);
1200 tp->retransmit_skb_hint = NULL;
1201}
1202
1203/* MD5 Signature */
1204struct crypto_hash;
1205
1206union tcp_md5_addr {
1207 struct in_addr a4;
1208#if IS_ENABLED(CONFIG_IPV6)
1209 struct in6_addr a6;
1210#endif
1211};
1212
1213/* - key database */
1214struct tcp_md5sig_key {
1215 struct hlist_node node;
1216 u8 keylen;
1217 u8 family; /* AF_INET or AF_INET6 */
1218 union tcp_md5_addr addr;
1219 u8 key[TCP_MD5SIG_MAXKEYLEN];
1220 struct rcu_head rcu;
1221};
1222
1223/* - sock block */
1224struct tcp_md5sig_info {
1225 struct hlist_head head;
1226 struct rcu_head rcu;
1227};
1228
1229/* - pseudo header */
1230struct tcp4_pseudohdr {
1231 __be32 saddr;
1232 __be32 daddr;
1233 __u8 pad;
1234 __u8 protocol;
1235 __be16 len;
1236};
1237
1238struct tcp6_pseudohdr {
1239 struct in6_addr saddr;
1240 struct in6_addr daddr;
1241 __be32 len;
1242 __be32 protocol; /* including padding */
1243};
1244
1245union tcp_md5sum_block {
1246 struct tcp4_pseudohdr ip4;
1247#if IS_ENABLED(CONFIG_IPV6)
1248 struct tcp6_pseudohdr ip6;
1249#endif
1250};
1251
1252/* - pool: digest algorithm, hash description and scratch buffer */
1253struct tcp_md5sig_pool {
1254 struct hash_desc md5_desc;
1255 union tcp_md5sum_block md5_blk;
1256};
1257
1258/* - functions */
1259int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1260 const struct sock *sk, const struct request_sock *req,
1261 const struct sk_buff *skb);
1262int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1263 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1264int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1265 int family);
1266struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1267 struct sock *addr_sk);
1268
1269#ifdef CONFIG_TCP_MD5SIG
1270struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1271 const union tcp_md5_addr *addr,
1272 int family);
1273#define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1274#else
1275static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1276 const union tcp_md5_addr *addr,
1277 int family)
1278{
1279 return NULL;
1280}
1281#define tcp_twsk_md5_key(twsk) NULL
1282#endif
1283
1284bool tcp_alloc_md5sig_pool(void);
1285
1286struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1287static inline void tcp_put_md5sig_pool(void)
1288{
1289 local_bh_enable();
1290}
1291
1292int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1293int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1294 unsigned int header_len);
1295int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1296 const struct tcp_md5sig_key *key);
1297
1298/* From tcp_fastopen.c */
1299void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1300 struct tcp_fastopen_cookie *cookie, int *syn_loss,
1301 unsigned long *last_syn_loss);
1302void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1303 struct tcp_fastopen_cookie *cookie, bool syn_lost);
1304struct tcp_fastopen_request {
1305 /* Fast Open cookie. Size 0 means a cookie request */
1306 struct tcp_fastopen_cookie cookie;
1307 struct msghdr *data; /* data in MSG_FASTOPEN */
1308 size_t size;
1309 int copied; /* queued in tcp_connect() */
1310};
1311void tcp_free_fastopen_req(struct tcp_sock *tp);
1312
1313extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1314int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1315void tcp_fastopen_cookie_gen(__be32 src, __be32 dst,
1316 struct tcp_fastopen_cookie *foc);
1317void tcp_fastopen_init_key_once(bool publish);
1318#define TCP_FASTOPEN_KEY_LENGTH 16
1319
1320/* Fastopen key context */
1321struct tcp_fastopen_context {
1322 struct crypto_cipher *tfm;
1323 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1324 struct rcu_head rcu;
1325};
1326
1327/* write queue abstraction */
1328static inline void tcp_write_queue_purge(struct sock *sk)
1329{
1330 struct sk_buff *skb;
1331
1332 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1333 sk_wmem_free_skb(sk, skb);
1334 sk_mem_reclaim(sk);
1335 tcp_clear_all_retrans_hints(tcp_sk(sk));
1336}
1337
1338static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1339{
1340 return skb_peek(&sk->sk_write_queue);
1341}
1342
1343static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1344{
1345 return skb_peek_tail(&sk->sk_write_queue);
1346}
1347
1348static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1349 const struct sk_buff *skb)
1350{
1351 return skb_queue_next(&sk->sk_write_queue, skb);
1352}
1353
1354static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1355 const struct sk_buff *skb)
1356{
1357 return skb_queue_prev(&sk->sk_write_queue, skb);
1358}
1359
1360#define tcp_for_write_queue(skb, sk) \
1361 skb_queue_walk(&(sk)->sk_write_queue, skb)
1362
1363#define tcp_for_write_queue_from(skb, sk) \
1364 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1365
1366#define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1367 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1368
1369static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1370{
1371 return sk->sk_send_head;
1372}
1373
1374static inline bool tcp_skb_is_last(const struct sock *sk,
1375 const struct sk_buff *skb)
1376{
1377 return skb_queue_is_last(&sk->sk_write_queue, skb);
1378}
1379
1380static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1381{
1382 if (tcp_skb_is_last(sk, skb))
1383 sk->sk_send_head = NULL;
1384 else
1385 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1386}
1387
1388static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1389{
1390 if (sk->sk_send_head == skb_unlinked)
1391 sk->sk_send_head = NULL;
1392}
1393
1394static inline void tcp_init_send_head(struct sock *sk)
1395{
1396 sk->sk_send_head = NULL;
1397}
1398
1399static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1400{
1401 __skb_queue_tail(&sk->sk_write_queue, skb);
1402}
1403
1404static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1405{
1406 __tcp_add_write_queue_tail(sk, skb);
1407
1408 /* Queue it, remembering where we must start sending. */
1409 if (sk->sk_send_head == NULL) {
1410 sk->sk_send_head = skb;
1411
1412 if (tcp_sk(sk)->highest_sack == NULL)
1413 tcp_sk(sk)->highest_sack = skb;
1414 }
1415}
1416
1417static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1418{
1419 __skb_queue_head(&sk->sk_write_queue, skb);
1420}
1421
1422/* Insert buff after skb on the write queue of sk. */
1423static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1424 struct sk_buff *buff,
1425 struct sock *sk)
1426{
1427 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1428}
1429
1430/* Insert new before skb on the write queue of sk. */
1431static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1432 struct sk_buff *skb,
1433 struct sock *sk)
1434{
1435 __skb_queue_before(&sk->sk_write_queue, skb, new);
1436
1437 if (sk->sk_send_head == skb)
1438 sk->sk_send_head = new;
1439}
1440
1441static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1442{
1443 __skb_unlink(skb, &sk->sk_write_queue);
1444}
1445
1446static inline bool tcp_write_queue_empty(struct sock *sk)
1447{
1448 return skb_queue_empty(&sk->sk_write_queue);
1449}
1450
1451static inline void tcp_push_pending_frames(struct sock *sk)
1452{
1453 if (tcp_send_head(sk)) {
1454 struct tcp_sock *tp = tcp_sk(sk);
1455
1456 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1457 }
1458}
1459
1460/* Start sequence of the skb just after the highest skb with SACKed
1461 * bit, valid only if sacked_out > 0 or when the caller has ensured
1462 * validity by itself.
1463 */
1464static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1465{
1466 if (!tp->sacked_out)
1467 return tp->snd_una;
1468
1469 if (tp->highest_sack == NULL)
1470 return tp->snd_nxt;
1471
1472 return TCP_SKB_CB(tp->highest_sack)->seq;
1473}
1474
1475static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1476{
1477 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1478 tcp_write_queue_next(sk, skb);
1479}
1480
1481static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1482{
1483 return tcp_sk(sk)->highest_sack;
1484}
1485
1486static inline void tcp_highest_sack_reset(struct sock *sk)
1487{
1488 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1489}
1490
1491/* Called when old skb is about to be deleted (to be combined with new skb) */
1492static inline void tcp_highest_sack_combine(struct sock *sk,
1493 struct sk_buff *old,
1494 struct sk_buff *new)
1495{
1496 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1497 tcp_sk(sk)->highest_sack = new;
1498}
1499
1500/* Determines whether this is a thin stream (which may suffer from
1501 * increased latency). Used to trigger latency-reducing mechanisms.
1502 */
1503static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1504{
1505 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1506}
1507
1508/* /proc */
1509enum tcp_seq_states {
1510 TCP_SEQ_STATE_LISTENING,
1511 TCP_SEQ_STATE_OPENREQ,
1512 TCP_SEQ_STATE_ESTABLISHED,
1513};
1514
1515int tcp_seq_open(struct inode *inode, struct file *file);
1516
1517struct tcp_seq_afinfo {
1518 char *name;
1519 sa_family_t family;
1520 const struct file_operations *seq_fops;
1521 struct seq_operations seq_ops;
1522};
1523
1524struct tcp_iter_state {
1525 struct seq_net_private p;
1526 sa_family_t family;
1527 enum tcp_seq_states state;
1528 struct sock *syn_wait_sk;
1529 int bucket, offset, sbucket, num;
1530 kuid_t uid;
1531 loff_t last_pos;
1532};
1533
1534int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1535void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1536
1537extern struct request_sock_ops tcp_request_sock_ops;
1538extern struct request_sock_ops tcp6_request_sock_ops;
1539
1540void tcp_v4_destroy_sock(struct sock *sk);
1541
1542struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1543 netdev_features_t features);
1544struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1545int tcp_gro_complete(struct sk_buff *skb);
1546
1547void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1548
1549static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1550{
1551 return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1552}
1553
1554static inline bool tcp_stream_memory_free(const struct sock *sk)
1555{
1556 const struct tcp_sock *tp = tcp_sk(sk);
1557 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1558
1559 return notsent_bytes < tcp_notsent_lowat(tp);
1560}
1561
1562#ifdef CONFIG_PROC_FS
1563int tcp4_proc_init(void);
1564void tcp4_proc_exit(void);
1565#endif
1566
1567/* TCP af-specific functions */
1568struct tcp_sock_af_ops {
1569#ifdef CONFIG_TCP_MD5SIG
1570 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1571 struct sock *addr_sk);
1572 int (*calc_md5_hash) (char *location,
1573 struct tcp_md5sig_key *md5,
1574 const struct sock *sk,
1575 const struct request_sock *req,
1576 const struct sk_buff *skb);
1577 int (*md5_parse) (struct sock *sk,
1578 char __user *optval,
1579 int optlen);
1580#endif
1581};
1582
1583struct tcp_request_sock_ops {
1584#ifdef CONFIG_TCP_MD5SIG
1585 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1586 struct request_sock *req);
1587 int (*calc_md5_hash) (char *location,
1588 struct tcp_md5sig_key *md5,
1589 const struct sock *sk,
1590 const struct request_sock *req,
1591 const struct sk_buff *skb);
1592#endif
1593};
1594
1595int tcpv4_offload_init(void);
1596
1597void tcp_v4_init(void);
1598void tcp_init(void);
1599
1600#endif /* _TCP_H */