Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
 
  11#include "volumes.h"
  12#include "disk-io.h"
  13#include "ordered-data.h"
  14#include "transaction.h"
  15#include "backref.h"
  16#include "extent_io.h"
  17#include "dev-replace.h"
  18#include "check-integrity.h"
  19#include "rcu-string.h"
  20#include "raid56.h"
  21#include "block-group.h"
 
 
 
 
 
  22
  23/*
  24 * This is only the first step towards a full-features scrub. It reads all
  25 * extent and super block and verifies the checksums. In case a bad checksum
  26 * is found or the extent cannot be read, good data will be written back if
  27 * any can be found.
  28 *
  29 * Future enhancements:
  30 *  - In case an unrepairable extent is encountered, track which files are
  31 *    affected and report them
  32 *  - track and record media errors, throw out bad devices
  33 *  - add a mode to also read unallocated space
  34 */
  35
  36struct scrub_block;
  37struct scrub_ctx;
  38
  39/*
  40 * the following three values only influence the performance.
 
  41 * The last one configures the number of parallel and outstanding I/O
  42 * operations. The first two values configure an upper limit for the number
  43 * of (dynamically allocated) pages that are added to a bio.
  44 */
  45#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  46#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  47#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  48
  49/*
  50 * the following value times PAGE_SIZE needs to be large enough to match the
  51 * largest node/leaf/sector size that shall be supported.
  52 * Values larger than BTRFS_STRIPE_LEN are not supported.
  53 */
  54#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
 
 
 
 
 
 
 
 
 
 
 
 
 
  55
  56struct scrub_recover {
  57	refcount_t		refs;
  58	struct btrfs_bio	*bbio;
  59	u64			map_length;
  60};
  61
  62struct scrub_page {
  63	struct scrub_block	*sblock;
  64	struct page		*page;
  65	struct btrfs_device	*dev;
  66	struct list_head	list;
  67	u64			flags;  /* extent flags */
  68	u64			generation;
  69	u64			logical;
  70	u64			physical;
  71	u64			physical_for_dev_replace;
  72	atomic_t		refs;
  73	struct {
  74		unsigned int	mirror_num:8;
  75		unsigned int	have_csum:1;
  76		unsigned int	io_error:1;
  77	};
  78	u8			csum[BTRFS_CSUM_SIZE];
  79
  80	struct scrub_recover	*recover;
  81};
  82
  83struct scrub_bio {
  84	int			index;
  85	struct scrub_ctx	*sctx;
  86	struct btrfs_device	*dev;
  87	struct bio		*bio;
  88	blk_status_t		status;
  89	u64			logical;
  90	u64			physical;
  91#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  92	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  93#else
  94	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  95#endif
  96	int			page_count;
  97	int			next_free;
  98	struct btrfs_work	work;
  99};
 100
 101struct scrub_block {
 102	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 103	int			page_count;
 104	atomic_t		outstanding_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105	refcount_t		refs; /* free mem on transition to zero */
 106	struct scrub_ctx	*sctx;
 107	struct scrub_parity	*sparity;
 108	struct {
 109		unsigned int	header_error:1;
 110		unsigned int	checksum_error:1;
 111		unsigned int	no_io_error_seen:1;
 112		unsigned int	generation_error:1; /* also sets header_error */
 113
 114		/* The following is for the data used to check parity */
 115		/* It is for the data with checksum */
 116		unsigned int	data_corrected:1;
 117	};
 118	struct btrfs_work	work;
 119};
 120
 121/* Used for the chunks with parity stripe such RAID5/6 */
 122struct scrub_parity {
 123	struct scrub_ctx	*sctx;
 124
 125	struct btrfs_device	*scrub_dev;
 126
 127	u64			logic_start;
 128
 129	u64			logic_end;
 130
 131	int			nsectors;
 132
 133	u64			stripe_len;
 134
 135	refcount_t		refs;
 136
 137	struct list_head	spages;
 138
 139	/* Work of parity check and repair */
 140	struct btrfs_work	work;
 141
 142	/* Mark the parity blocks which have data */
 143	unsigned long		*dbitmap;
 144
 145	/*
 146	 * Mark the parity blocks which have data, but errors happen when
 147	 * read data or check data
 148	 */
 149	unsigned long		*ebitmap;
 150
 151	unsigned long		bitmap[0];
 152};
 153
 154struct scrub_ctx {
 155	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 156	struct btrfs_fs_info	*fs_info;
 157	int			first_free;
 158	int			curr;
 159	atomic_t		bios_in_flight;
 160	atomic_t		workers_pending;
 161	spinlock_t		list_lock;
 162	wait_queue_head_t	list_wait;
 163	u16			csum_size;
 164	struct list_head	csum_list;
 165	atomic_t		cancel_req;
 166	int			readonly;
 167	int			pages_per_rd_bio;
 
 
 
 
 168
 169	int			is_dev_replace;
 
 170
 171	struct scrub_bio        *wr_curr_bio;
 172	struct mutex            wr_lock;
 173	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 174	struct btrfs_device     *wr_tgtdev;
 175	bool                    flush_all_writes;
 176
 177	/*
 178	 * statistics
 179	 */
 180	struct btrfs_scrub_progress stat;
 181	spinlock_t		stat_lock;
 182
 183	/*
 184	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 185	 * decrement bios_in_flight and workers_pending and then do a wakeup
 186	 * on the list_wait wait queue. We must ensure the main scrub task
 187	 * doesn't free the scrub context before or while the workers are
 188	 * doing the wakeup() call.
 189	 */
 190	refcount_t              refs;
 191};
 192
 193struct scrub_warning {
 194	struct btrfs_path	*path;
 195	u64			extent_item_size;
 196	const char		*errstr;
 197	u64			physical;
 198	u64			logical;
 199	struct btrfs_device	*dev;
 200};
 201
 202struct full_stripe_lock {
 203	struct rb_node node;
 204	u64 logical;
 205	u64 refs;
 206	struct mutex mutex;
 207};
 208
 209static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 210static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 211static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 213				     struct scrub_block *sblocks_for_recheck);
 214static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 215				struct scrub_block *sblock,
 216				int retry_failed_mirror);
 217static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 218static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 219					     struct scrub_block *sblock_good);
 220static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 221					    struct scrub_block *sblock_good,
 222					    int page_num, int force_write);
 223static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 224static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 225					   int page_num);
 226static int scrub_checksum_data(struct scrub_block *sblock);
 227static int scrub_checksum_tree_block(struct scrub_block *sblock);
 228static int scrub_checksum_super(struct scrub_block *sblock);
 229static void scrub_block_get(struct scrub_block *sblock);
 230static void scrub_block_put(struct scrub_block *sblock);
 231static void scrub_page_get(struct scrub_page *spage);
 232static void scrub_page_put(struct scrub_page *spage);
 233static void scrub_parity_get(struct scrub_parity *sparity);
 234static void scrub_parity_put(struct scrub_parity *sparity);
 235static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 236				    struct scrub_page *spage);
 237static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 238		       u64 physical, struct btrfs_device *dev, u64 flags,
 239		       u64 gen, int mirror_num, u8 *csum, int force,
 240		       u64 physical_for_dev_replace);
 241static void scrub_bio_end_io(struct bio *bio);
 242static void scrub_bio_end_io_worker(struct btrfs_work *work);
 243static void scrub_block_complete(struct scrub_block *sblock);
 244static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 245			       u64 extent_logical, u64 extent_len,
 246			       u64 *extent_physical,
 247			       struct btrfs_device **extent_dev,
 248			       int *extent_mirror_num);
 249static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 250				    struct scrub_page *spage);
 251static void scrub_wr_submit(struct scrub_ctx *sctx);
 252static void scrub_wr_bio_end_io(struct bio *bio);
 253static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 254static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 255static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 256static void scrub_put_ctx(struct scrub_ctx *sctx);
 257
 258static inline int scrub_is_page_on_raid56(struct scrub_page *page)
 259{
 260	return page->recover &&
 261	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 262}
 263
 264static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 265{
 266	refcount_inc(&sctx->refs);
 267	atomic_inc(&sctx->bios_in_flight);
 268}
 269
 270static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 271{
 272	atomic_dec(&sctx->bios_in_flight);
 273	wake_up(&sctx->list_wait);
 274	scrub_put_ctx(sctx);
 275}
 276
 277static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 278{
 279	while (atomic_read(&fs_info->scrub_pause_req)) {
 280		mutex_unlock(&fs_info->scrub_lock);
 281		wait_event(fs_info->scrub_pause_wait,
 282		   atomic_read(&fs_info->scrub_pause_req) == 0);
 283		mutex_lock(&fs_info->scrub_lock);
 284	}
 285}
 286
 287static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 288{
 289	atomic_inc(&fs_info->scrubs_paused);
 290	wake_up(&fs_info->scrub_pause_wait);
 291}
 292
 293static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 294{
 295	mutex_lock(&fs_info->scrub_lock);
 296	__scrub_blocked_if_needed(fs_info);
 297	atomic_dec(&fs_info->scrubs_paused);
 298	mutex_unlock(&fs_info->scrub_lock);
 299
 300	wake_up(&fs_info->scrub_pause_wait);
 301}
 302
 303static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 304{
 305	scrub_pause_on(fs_info);
 306	scrub_pause_off(fs_info);
 307}
 308
 309/*
 310 * Insert new full stripe lock into full stripe locks tree
 311 *
 312 * Return pointer to existing or newly inserted full_stripe_lock structure if
 313 * everything works well.
 314 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 315 *
 316 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 317 * function
 318 */
 319static struct full_stripe_lock *insert_full_stripe_lock(
 320		struct btrfs_full_stripe_locks_tree *locks_root,
 321		u64 fstripe_logical)
 322{
 323	struct rb_node **p;
 324	struct rb_node *parent = NULL;
 325	struct full_stripe_lock *entry;
 326	struct full_stripe_lock *ret;
 327
 328	lockdep_assert_held(&locks_root->lock);
 329
 330	p = &locks_root->root.rb_node;
 331	while (*p) {
 332		parent = *p;
 333		entry = rb_entry(parent, struct full_stripe_lock, node);
 334		if (fstripe_logical < entry->logical) {
 335			p = &(*p)->rb_left;
 336		} else if (fstripe_logical > entry->logical) {
 337			p = &(*p)->rb_right;
 338		} else {
 339			entry->refs++;
 340			return entry;
 341		}
 342	}
 343
 344	/*
 345	 * Insert new lock.
 346	 */
 347	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 348	if (!ret)
 349		return ERR_PTR(-ENOMEM);
 350	ret->logical = fstripe_logical;
 351	ret->refs = 1;
 352	mutex_init(&ret->mutex);
 353
 354	rb_link_node(&ret->node, parent, p);
 355	rb_insert_color(&ret->node, &locks_root->root);
 356	return ret;
 357}
 358
 359/*
 360 * Search for a full stripe lock of a block group
 361 *
 362 * Return pointer to existing full stripe lock if found
 363 * Return NULL if not found
 364 */
 365static struct full_stripe_lock *search_full_stripe_lock(
 366		struct btrfs_full_stripe_locks_tree *locks_root,
 367		u64 fstripe_logical)
 368{
 369	struct rb_node *node;
 370	struct full_stripe_lock *entry;
 371
 372	lockdep_assert_held(&locks_root->lock);
 373
 374	node = locks_root->root.rb_node;
 375	while (node) {
 376		entry = rb_entry(node, struct full_stripe_lock, node);
 377		if (fstripe_logical < entry->logical)
 378			node = node->rb_left;
 379		else if (fstripe_logical > entry->logical)
 380			node = node->rb_right;
 381		else
 382			return entry;
 383	}
 384	return NULL;
 385}
 386
 387/*
 388 * Helper to get full stripe logical from a normal bytenr.
 389 *
 390 * Caller must ensure @cache is a RAID56 block group.
 391 */
 392static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
 393				   u64 bytenr)
 394{
 395	u64 ret;
 396
 397	/*
 398	 * Due to chunk item size limit, full stripe length should not be
 399	 * larger than U32_MAX. Just a sanity check here.
 400	 */
 401	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 402
 403	/*
 404	 * round_down() can only handle power of 2, while RAID56 full
 405	 * stripe length can be 64KiB * n, so we need to manually round down.
 406	 */
 407	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
 408		cache->full_stripe_len + cache->key.objectid;
 409	return ret;
 410}
 411
 412/*
 413 * Lock a full stripe to avoid concurrency of recovery and read
 414 *
 415 * It's only used for profiles with parities (RAID5/6), for other profiles it
 416 * does nothing.
 417 *
 418 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 419 * So caller must call unlock_full_stripe() at the same context.
 420 *
 421 * Return <0 if encounters error.
 422 */
 423static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 424			    bool *locked_ret)
 425{
 426	struct btrfs_block_group_cache *bg_cache;
 427	struct btrfs_full_stripe_locks_tree *locks_root;
 428	struct full_stripe_lock *existing;
 429	u64 fstripe_start;
 430	int ret = 0;
 431
 432	*locked_ret = false;
 433	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 434	if (!bg_cache) {
 435		ASSERT(0);
 436		return -ENOENT;
 437	}
 438
 439	/* Profiles not based on parity don't need full stripe lock */
 440	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 441		goto out;
 442	locks_root = &bg_cache->full_stripe_locks_root;
 443
 444	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 445
 446	/* Now insert the full stripe lock */
 447	mutex_lock(&locks_root->lock);
 448	existing = insert_full_stripe_lock(locks_root, fstripe_start);
 449	mutex_unlock(&locks_root->lock);
 450	if (IS_ERR(existing)) {
 451		ret = PTR_ERR(existing);
 452		goto out;
 453	}
 454	mutex_lock(&existing->mutex);
 455	*locked_ret = true;
 456out:
 457	btrfs_put_block_group(bg_cache);
 458	return ret;
 459}
 460
 461/*
 462 * Unlock a full stripe.
 463 *
 464 * NOTE: Caller must ensure it's the same context calling corresponding
 465 * lock_full_stripe().
 466 *
 467 * Return 0 if we unlock full stripe without problem.
 468 * Return <0 for error
 469 */
 470static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 471			      bool locked)
 472{
 473	struct btrfs_block_group_cache *bg_cache;
 474	struct btrfs_full_stripe_locks_tree *locks_root;
 475	struct full_stripe_lock *fstripe_lock;
 476	u64 fstripe_start;
 477	bool freeit = false;
 478	int ret = 0;
 479
 480	/* If we didn't acquire full stripe lock, no need to continue */
 481	if (!locked)
 482		return 0;
 483
 484	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 485	if (!bg_cache) {
 486		ASSERT(0);
 487		return -ENOENT;
 488	}
 489	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 490		goto out;
 491
 492	locks_root = &bg_cache->full_stripe_locks_root;
 493	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 494
 495	mutex_lock(&locks_root->lock);
 496	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 497	/* Unpaired unlock_full_stripe() detected */
 498	if (!fstripe_lock) {
 499		WARN_ON(1);
 500		ret = -ENOENT;
 501		mutex_unlock(&locks_root->lock);
 502		goto out;
 503	}
 504
 505	if (fstripe_lock->refs == 0) {
 506		WARN_ON(1);
 507		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 508			fstripe_lock->logical);
 509	} else {
 510		fstripe_lock->refs--;
 511	}
 512
 513	if (fstripe_lock->refs == 0) {
 514		rb_erase(&fstripe_lock->node, &locks_root->root);
 515		freeit = true;
 516	}
 517	mutex_unlock(&locks_root->lock);
 518
 519	mutex_unlock(&fstripe_lock->mutex);
 520	if (freeit)
 521		kfree(fstripe_lock);
 522out:
 523	btrfs_put_block_group(bg_cache);
 524	return ret;
 525}
 526
 527static void scrub_free_csums(struct scrub_ctx *sctx)
 528{
 529	while (!list_empty(&sctx->csum_list)) {
 530		struct btrfs_ordered_sum *sum;
 531		sum = list_first_entry(&sctx->csum_list,
 532				       struct btrfs_ordered_sum, list);
 533		list_del(&sum->list);
 534		kfree(sum);
 535	}
 536}
 537
 538static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 539{
 540	int i;
 541
 542	if (!sctx)
 543		return;
 544
 545	/* this can happen when scrub is cancelled */
 546	if (sctx->curr != -1) {
 547		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 548
 549		for (i = 0; i < sbio->page_count; i++) {
 550			WARN_ON(!sbio->pagev[i]->page);
 551			scrub_block_put(sbio->pagev[i]->sblock);
 552		}
 553		bio_put(sbio->bio);
 554	}
 555
 556	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 557		struct scrub_bio *sbio = sctx->bios[i];
 558
 559		if (!sbio)
 560			break;
 561		kfree(sbio);
 562	}
 563
 564	kfree(sctx->wr_curr_bio);
 565	scrub_free_csums(sctx);
 566	kfree(sctx);
 567}
 568
 569static void scrub_put_ctx(struct scrub_ctx *sctx)
 570{
 571	if (refcount_dec_and_test(&sctx->refs))
 572		scrub_free_ctx(sctx);
 573}
 574
 575static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 576		struct btrfs_fs_info *fs_info, int is_dev_replace)
 577{
 578	struct scrub_ctx *sctx;
 579	int		i;
 580
 581	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 582	if (!sctx)
 583		goto nomem;
 584	refcount_set(&sctx->refs, 1);
 585	sctx->is_dev_replace = is_dev_replace;
 586	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 587	sctx->curr = -1;
 588	sctx->fs_info = fs_info;
 589	INIT_LIST_HEAD(&sctx->csum_list);
 590	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 591		struct scrub_bio *sbio;
 592
 593		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 594		if (!sbio)
 595			goto nomem;
 596		sctx->bios[i] = sbio;
 597
 598		sbio->index = i;
 599		sbio->sctx = sctx;
 600		sbio->page_count = 0;
 601		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 602				scrub_bio_end_io_worker, NULL, NULL);
 603
 604		if (i != SCRUB_BIOS_PER_SCTX - 1)
 605			sctx->bios[i]->next_free = i + 1;
 606		else
 607			sctx->bios[i]->next_free = -1;
 608	}
 609	sctx->first_free = 0;
 610	atomic_set(&sctx->bios_in_flight, 0);
 611	atomic_set(&sctx->workers_pending, 0);
 612	atomic_set(&sctx->cancel_req, 0);
 613	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 614
 615	spin_lock_init(&sctx->list_lock);
 616	spin_lock_init(&sctx->stat_lock);
 617	init_waitqueue_head(&sctx->list_wait);
 
 618
 619	WARN_ON(sctx->wr_curr_bio != NULL);
 620	mutex_init(&sctx->wr_lock);
 621	sctx->wr_curr_bio = NULL;
 622	if (is_dev_replace) {
 623		WARN_ON(!fs_info->dev_replace.tgtdev);
 624		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 625		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 626		sctx->flush_all_writes = false;
 627	}
 628
 629	return sctx;
 630
 631nomem:
 632	scrub_free_ctx(sctx);
 633	return ERR_PTR(-ENOMEM);
 634}
 635
 636static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 637				     void *warn_ctx)
 638{
 639	u64 isize;
 640	u32 nlink;
 641	int ret;
 642	int i;
 643	unsigned nofs_flag;
 644	struct extent_buffer *eb;
 645	struct btrfs_inode_item *inode_item;
 646	struct scrub_warning *swarn = warn_ctx;
 647	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 648	struct inode_fs_paths *ipath = NULL;
 649	struct btrfs_root *local_root;
 650	struct btrfs_key root_key;
 651	struct btrfs_key key;
 652
 653	root_key.objectid = root;
 654	root_key.type = BTRFS_ROOT_ITEM_KEY;
 655	root_key.offset = (u64)-1;
 656	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 657	if (IS_ERR(local_root)) {
 658		ret = PTR_ERR(local_root);
 659		goto err;
 660	}
 661
 662	/*
 663	 * this makes the path point to (inum INODE_ITEM ioff)
 664	 */
 665	key.objectid = inum;
 666	key.type = BTRFS_INODE_ITEM_KEY;
 667	key.offset = 0;
 668
 669	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 670	if (ret) {
 
 671		btrfs_release_path(swarn->path);
 672		goto err;
 673	}
 674
 675	eb = swarn->path->nodes[0];
 676	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 677					struct btrfs_inode_item);
 678	isize = btrfs_inode_size(eb, inode_item);
 679	nlink = btrfs_inode_nlink(eb, inode_item);
 680	btrfs_release_path(swarn->path);
 681
 682	/*
 683	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 684	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 685	 * not seem to be strictly necessary.
 686	 */
 687	nofs_flag = memalloc_nofs_save();
 688	ipath = init_ipath(4096, local_root, swarn->path);
 689	memalloc_nofs_restore(nofs_flag);
 690	if (IS_ERR(ipath)) {
 
 691		ret = PTR_ERR(ipath);
 692		ipath = NULL;
 693		goto err;
 694	}
 695	ret = paths_from_inode(inum, ipath);
 696
 697	if (ret < 0)
 698		goto err;
 699
 700	/*
 701	 * we deliberately ignore the bit ipath might have been too small to
 702	 * hold all of the paths here
 703	 */
 704	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 705		btrfs_warn_in_rcu(fs_info,
 706"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 707				  swarn->errstr, swarn->logical,
 708				  rcu_str_deref(swarn->dev->name),
 709				  swarn->physical,
 710				  root, inum, offset,
 711				  min(isize - offset, (u64)PAGE_SIZE), nlink,
 712				  (char *)(unsigned long)ipath->fspath->val[i]);
 713
 
 714	free_ipath(ipath);
 715	return 0;
 716
 717err:
 718	btrfs_warn_in_rcu(fs_info,
 719			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 720			  swarn->errstr, swarn->logical,
 721			  rcu_str_deref(swarn->dev->name),
 722			  swarn->physical,
 723			  root, inum, offset, ret);
 724
 725	free_ipath(ipath);
 726	return 0;
 727}
 728
 729static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 730{
 731	struct btrfs_device *dev;
 732	struct btrfs_fs_info *fs_info;
 733	struct btrfs_path *path;
 734	struct btrfs_key found_key;
 735	struct extent_buffer *eb;
 736	struct btrfs_extent_item *ei;
 737	struct scrub_warning swarn;
 738	unsigned long ptr = 0;
 739	u64 extent_item_pos;
 740	u64 flags = 0;
 741	u64 ref_root;
 742	u32 item_size;
 743	u8 ref_level = 0;
 744	int ret;
 745
 746	WARN_ON(sblock->page_count < 1);
 747	dev = sblock->pagev[0]->dev;
 748	fs_info = sblock->sctx->fs_info;
 749
 
 
 
 
 
 
 750	path = btrfs_alloc_path();
 751	if (!path)
 752		return;
 753
 754	swarn.physical = sblock->pagev[0]->physical;
 755	swarn.logical = sblock->pagev[0]->logical;
 756	swarn.errstr = errstr;
 757	swarn.dev = NULL;
 758
 759	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 760				  &flags);
 761	if (ret < 0)
 762		goto out;
 763
 764	extent_item_pos = swarn.logical - found_key.objectid;
 765	swarn.extent_item_size = found_key.offset;
 766
 767	eb = path->nodes[0];
 768	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 769	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 770
 771	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 772		do {
 773			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 774						      item_size, &ref_root,
 775						      &ref_level);
 776			btrfs_warn_in_rcu(fs_info,
 777"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 778				errstr, swarn.logical,
 779				rcu_str_deref(dev->name),
 780				swarn.physical,
 781				ref_level ? "node" : "leaf",
 782				ret < 0 ? -1 : ref_level,
 783				ret < 0 ? -1 : ref_root);
 784		} while (ret != 1);
 785		btrfs_release_path(path);
 786	} else {
 
 
 787		btrfs_release_path(path);
 
 
 
 
 
 788		swarn.path = path;
 789		swarn.dev = dev;
 790		iterate_extent_inodes(fs_info, found_key.objectid,
 791					extent_item_pos, 1,
 792					scrub_print_warning_inode, &swarn, false);
 793	}
 794
 795out:
 796	btrfs_free_path(path);
 797}
 798
 799static inline void scrub_get_recover(struct scrub_recover *recover)
 800{
 801	refcount_inc(&recover->refs);
 802}
 803
 804static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 805				     struct scrub_recover *recover)
 806{
 807	if (refcount_dec_and_test(&recover->refs)) {
 808		btrfs_bio_counter_dec(fs_info);
 809		btrfs_put_bbio(recover->bbio);
 810		kfree(recover);
 811	}
 812}
 813
 814/*
 815 * scrub_handle_errored_block gets called when either verification of the
 816 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 817 * case, this function handles all pages in the bio, even though only one
 818 * may be bad.
 819 * The goal of this function is to repair the errored block by using the
 820 * contents of one of the mirrors.
 821 */
 822static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 823{
 824	struct scrub_ctx *sctx = sblock_to_check->sctx;
 825	struct btrfs_device *dev;
 826	struct btrfs_fs_info *fs_info;
 827	u64 logical;
 828	unsigned int failed_mirror_index;
 829	unsigned int is_metadata;
 830	unsigned int have_csum;
 831	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 
 832	struct scrub_block *sblock_bad;
 833	int ret;
 834	int mirror_index;
 835	int page_num;
 836	int success;
 837	bool full_stripe_locked;
 838	unsigned int nofs_flag;
 839	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 840				      DEFAULT_RATELIMIT_BURST);
 841
 842	BUG_ON(sblock_to_check->page_count < 1);
 843	fs_info = sctx->fs_info;
 844	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 845		/*
 846		 * if we find an error in a super block, we just report it.
 847		 * They will get written with the next transaction commit
 848		 * anyway
 849		 */
 
 850		spin_lock(&sctx->stat_lock);
 851		++sctx->stat.super_errors;
 852		spin_unlock(&sctx->stat_lock);
 
 853		return 0;
 854	}
 855	logical = sblock_to_check->pagev[0]->logical;
 856	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 857	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 858	is_metadata = !(sblock_to_check->pagev[0]->flags &
 859			BTRFS_EXTENT_FLAG_DATA);
 860	have_csum = sblock_to_check->pagev[0]->have_csum;
 861	dev = sblock_to_check->pagev[0]->dev;
 
 
 862
 863	/*
 864	 * We must use GFP_NOFS because the scrub task might be waiting for a
 865	 * worker task executing this function and in turn a transaction commit
 866	 * might be waiting the scrub task to pause (which needs to wait for all
 867	 * the worker tasks to complete before pausing).
 868	 * We do allocations in the workers through insert_full_stripe_lock()
 869	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
 870	 * this function.
 871	 */
 872	nofs_flag = memalloc_nofs_save();
 873	/*
 874	 * For RAID5/6, race can happen for a different device scrub thread.
 875	 * For data corruption, Parity and Data threads will both try
 876	 * to recovery the data.
 877	 * Race can lead to doubly added csum error, or even unrecoverable
 878	 * error.
 879	 */
 880	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
 881	if (ret < 0) {
 882		memalloc_nofs_restore(nofs_flag);
 883		spin_lock(&sctx->stat_lock);
 884		if (ret == -ENOMEM)
 885			sctx->stat.malloc_errors++;
 886		sctx->stat.read_errors++;
 887		sctx->stat.uncorrectable_errors++;
 888		spin_unlock(&sctx->stat_lock);
 889		return ret;
 890	}
 891
 892	/*
 893	 * read all mirrors one after the other. This includes to
 894	 * re-read the extent or metadata block that failed (that was
 895	 * the cause that this fixup code is called) another time,
 896	 * page by page this time in order to know which pages
 897	 * caused I/O errors and which ones are good (for all mirrors).
 898	 * It is the goal to handle the situation when more than one
 899	 * mirror contains I/O errors, but the errors do not
 900	 * overlap, i.e. the data can be repaired by selecting the
 901	 * pages from those mirrors without I/O error on the
 902	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 903	 * would be that mirror #1 has an I/O error on the first page,
 904	 * the second page is good, and mirror #2 has an I/O error on
 905	 * the second page, but the first page is good.
 906	 * Then the first page of the first mirror can be repaired by
 907	 * taking the first page of the second mirror, and the
 908	 * second page of the second mirror can be repaired by
 909	 * copying the contents of the 2nd page of the 1st mirror.
 910	 * One more note: if the pages of one mirror contain I/O
 911	 * errors, the checksum cannot be verified. In order to get
 912	 * the best data for repairing, the first attempt is to find
 913	 * a mirror without I/O errors and with a validated checksum.
 914	 * Only if this is not possible, the pages are picked from
 915	 * mirrors with I/O errors without considering the checksum.
 916	 * If the latter is the case, at the end, the checksum of the
 917	 * repaired area is verified in order to correctly maintain
 918	 * the statistics.
 919	 */
 920
 921	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 922				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
 923	if (!sblocks_for_recheck) {
 924		spin_lock(&sctx->stat_lock);
 925		sctx->stat.malloc_errors++;
 926		sctx->stat.read_errors++;
 927		sctx->stat.uncorrectable_errors++;
 928		spin_unlock(&sctx->stat_lock);
 929		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 930		goto out;
 
 
 
 
 
 
 
 
 
 
 
 931	}
 932
 933	/* setup the context, map the logical blocks and alloc the pages */
 934	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 935	if (ret) {
 936		spin_lock(&sctx->stat_lock);
 937		sctx->stat.read_errors++;
 938		sctx->stat.uncorrectable_errors++;
 939		spin_unlock(&sctx->stat_lock);
 940		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 941		goto out;
 942	}
 943	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 944	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 945
 946	/* build and submit the bios for the failed mirror, check checksums */
 947	scrub_recheck_block(fs_info, sblock_bad, 1);
 948
 949	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 950	    sblock_bad->no_io_error_seen) {
 951		/*
 952		 * the error disappeared after reading page by page, or
 953		 * the area was part of a huge bio and other parts of the
 954		 * bio caused I/O errors, or the block layer merged several
 955		 * read requests into one and the error is caused by a
 956		 * different bio (usually one of the two latter cases is
 957		 * the cause)
 958		 */
 959		spin_lock(&sctx->stat_lock);
 960		sctx->stat.unverified_errors++;
 961		sblock_to_check->data_corrected = 1;
 962		spin_unlock(&sctx->stat_lock);
 963
 964		if (sctx->is_dev_replace)
 965			scrub_write_block_to_dev_replace(sblock_bad);
 966		goto out;
 967	}
 968
 969	if (!sblock_bad->no_io_error_seen) {
 970		spin_lock(&sctx->stat_lock);
 971		sctx->stat.read_errors++;
 972		spin_unlock(&sctx->stat_lock);
 973		if (__ratelimit(&_rs))
 974			scrub_print_warning("i/o error", sblock_to_check);
 975		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 976	} else if (sblock_bad->checksum_error) {
 977		spin_lock(&sctx->stat_lock);
 978		sctx->stat.csum_errors++;
 979		spin_unlock(&sctx->stat_lock);
 980		if (__ratelimit(&_rs))
 981			scrub_print_warning("checksum error", sblock_to_check);
 982		btrfs_dev_stat_inc_and_print(dev,
 983					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 984	} else if (sblock_bad->header_error) {
 985		spin_lock(&sctx->stat_lock);
 986		sctx->stat.verify_errors++;
 987		spin_unlock(&sctx->stat_lock);
 988		if (__ratelimit(&_rs))
 989			scrub_print_warning("checksum/header error",
 990					    sblock_to_check);
 991		if (sblock_bad->generation_error)
 992			btrfs_dev_stat_inc_and_print(dev,
 993				BTRFS_DEV_STAT_GENERATION_ERRS);
 994		else
 995			btrfs_dev_stat_inc_and_print(dev,
 996				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 997	}
 998
 999	if (sctx->readonly) {
1000		ASSERT(!sctx->is_dev_replace);
1001		goto out;
1002	}
1003
1004	/*
1005	 * now build and submit the bios for the other mirrors, check
1006	 * checksums.
1007	 * First try to pick the mirror which is completely without I/O
1008	 * errors and also does not have a checksum error.
1009	 * If one is found, and if a checksum is present, the full block
1010	 * that is known to contain an error is rewritten. Afterwards
1011	 * the block is known to be corrected.
1012	 * If a mirror is found which is completely correct, and no
1013	 * checksum is present, only those pages are rewritten that had
1014	 * an I/O error in the block to be repaired, since it cannot be
1015	 * determined, which copy of the other pages is better (and it
1016	 * could happen otherwise that a correct page would be
1017	 * overwritten by a bad one).
1018	 */
1019	for (mirror_index = 0; ;mirror_index++) {
1020		struct scrub_block *sblock_other;
1021
1022		if (mirror_index == failed_mirror_index)
1023			continue;
1024
1025		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1026		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1027			if (mirror_index >= BTRFS_MAX_MIRRORS)
1028				break;
1029			if (!sblocks_for_recheck[mirror_index].page_count)
1030				break;
1031
1032			sblock_other = sblocks_for_recheck + mirror_index;
1033		} else {
1034			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1035			int max_allowed = r->bbio->num_stripes -
1036						r->bbio->num_tgtdevs;
1037
1038			if (mirror_index >= max_allowed)
1039				break;
1040			if (!sblocks_for_recheck[1].page_count)
1041				break;
1042
1043			ASSERT(failed_mirror_index == 0);
1044			sblock_other = sblocks_for_recheck + 1;
1045			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1046		}
1047
1048		/* build and submit the bios, check checksums */
1049		scrub_recheck_block(fs_info, sblock_other, 0);
1050
1051		if (!sblock_other->header_error &&
1052		    !sblock_other->checksum_error &&
1053		    sblock_other->no_io_error_seen) {
1054			if (sctx->is_dev_replace) {
1055				scrub_write_block_to_dev_replace(sblock_other);
1056				goto corrected_error;
1057			} else {
1058				ret = scrub_repair_block_from_good_copy(
1059						sblock_bad, sblock_other);
1060				if (!ret)
1061					goto corrected_error;
1062			}
1063		}
1064	}
1065
1066	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1067		goto did_not_correct_error;
1068
1069	/*
1070	 * In case of I/O errors in the area that is supposed to be
1071	 * repaired, continue by picking good copies of those pages.
1072	 * Select the good pages from mirrors to rewrite bad pages from
1073	 * the area to fix. Afterwards verify the checksum of the block
1074	 * that is supposed to be repaired. This verification step is
1075	 * only done for the purpose of statistic counting and for the
1076	 * final scrub report, whether errors remain.
1077	 * A perfect algorithm could make use of the checksum and try
1078	 * all possible combinations of pages from the different mirrors
1079	 * until the checksum verification succeeds. For example, when
1080	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1081	 * of mirror #2 is readable but the final checksum test fails,
1082	 * then the 2nd page of mirror #3 could be tried, whether now
1083	 * the final checksum succeeds. But this would be a rare
1084	 * exception and is therefore not implemented. At least it is
1085	 * avoided that the good copy is overwritten.
1086	 * A more useful improvement would be to pick the sectors
1087	 * without I/O error based on sector sizes (512 bytes on legacy
1088	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1089	 * mirror could be repaired by taking 512 byte of a different
1090	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1091	 * area are unreadable.
1092	 */
1093	success = 1;
1094	for (page_num = 0; page_num < sblock_bad->page_count;
1095	     page_num++) {
1096		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1097		struct scrub_block *sblock_other = NULL;
1098
1099		/* skip no-io-error page in scrub */
1100		if (!page_bad->io_error && !sctx->is_dev_replace)
1101			continue;
1102
1103		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1104			/*
1105			 * In case of dev replace, if raid56 rebuild process
1106			 * didn't work out correct data, then copy the content
1107			 * in sblock_bad to make sure target device is identical
1108			 * to source device, instead of writing garbage data in
1109			 * sblock_for_recheck array to target device.
1110			 */
1111			sblock_other = NULL;
1112		} else if (page_bad->io_error) {
1113			/* try to find no-io-error page in mirrors */
1114			for (mirror_index = 0;
1115			     mirror_index < BTRFS_MAX_MIRRORS &&
1116			     sblocks_for_recheck[mirror_index].page_count > 0;
1117			     mirror_index++) {
1118				if (!sblocks_for_recheck[mirror_index].
1119				    pagev[page_num]->io_error) {
1120					sblock_other = sblocks_for_recheck +
1121						       mirror_index;
1122					break;
1123				}
1124			}
1125			if (!sblock_other)
1126				success = 0;
1127		}
1128
1129		if (sctx->is_dev_replace) {
1130			/*
1131			 * did not find a mirror to fetch the page
1132			 * from. scrub_write_page_to_dev_replace()
1133			 * handles this case (page->io_error), by
1134			 * filling the block with zeros before
1135			 * submitting the write request
1136			 */
1137			if (!sblock_other)
1138				sblock_other = sblock_bad;
1139
1140			if (scrub_write_page_to_dev_replace(sblock_other,
1141							    page_num) != 0) {
1142				atomic64_inc(
1143					&fs_info->dev_replace.num_write_errors);
1144				success = 0;
1145			}
1146		} else if (sblock_other) {
1147			ret = scrub_repair_page_from_good_copy(sblock_bad,
1148							       sblock_other,
1149							       page_num, 0);
1150			if (0 == ret)
1151				page_bad->io_error = 0;
1152			else
1153				success = 0;
1154		}
1155	}
1156
1157	if (success && !sctx->is_dev_replace) {
1158		if (is_metadata || have_csum) {
1159			/*
1160			 * need to verify the checksum now that all
1161			 * sectors on disk are repaired (the write
1162			 * request for data to be repaired is on its way).
1163			 * Just be lazy and use scrub_recheck_block()
1164			 * which re-reads the data before the checksum
1165			 * is verified, but most likely the data comes out
1166			 * of the page cache.
1167			 */
1168			scrub_recheck_block(fs_info, sblock_bad, 1);
1169			if (!sblock_bad->header_error &&
1170			    !sblock_bad->checksum_error &&
1171			    sblock_bad->no_io_error_seen)
1172				goto corrected_error;
1173			else
1174				goto did_not_correct_error;
1175		} else {
1176corrected_error:
1177			spin_lock(&sctx->stat_lock);
1178			sctx->stat.corrected_errors++;
1179			sblock_to_check->data_corrected = 1;
1180			spin_unlock(&sctx->stat_lock);
1181			btrfs_err_rl_in_rcu(fs_info,
1182				"fixed up error at logical %llu on dev %s",
1183				logical, rcu_str_deref(dev->name));
1184		}
1185	} else {
1186did_not_correct_error:
1187		spin_lock(&sctx->stat_lock);
1188		sctx->stat.uncorrectable_errors++;
1189		spin_unlock(&sctx->stat_lock);
1190		btrfs_err_rl_in_rcu(fs_info,
1191			"unable to fixup (regular) error at logical %llu on dev %s",
1192			logical, rcu_str_deref(dev->name));
1193	}
1194
1195out:
1196	if (sblocks_for_recheck) {
1197		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1198		     mirror_index++) {
1199			struct scrub_block *sblock = sblocks_for_recheck +
1200						     mirror_index;
1201			struct scrub_recover *recover;
1202			int page_index;
1203
1204			for (page_index = 0; page_index < sblock->page_count;
1205			     page_index++) {
1206				sblock->pagev[page_index]->sblock = NULL;
1207				recover = sblock->pagev[page_index]->recover;
1208				if (recover) {
1209					scrub_put_recover(fs_info, recover);
1210					sblock->pagev[page_index]->recover =
1211									NULL;
1212				}
1213				scrub_page_put(sblock->pagev[page_index]);
 
1214			}
1215		}
1216		kfree(sblocks_for_recheck);
1217	}
1218
1219	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1220	memalloc_nofs_restore(nofs_flag);
1221	if (ret < 0)
1222		return ret;
1223	return 0;
1224}
1225
1226static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1227{
1228	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1229		return 2;
1230	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1231		return 3;
1232	else
1233		return (int)bbio->num_stripes;
1234}
1235
1236static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1237						 u64 *raid_map,
1238						 u64 mapped_length,
1239						 int nstripes, int mirror,
1240						 int *stripe_index,
1241						 u64 *stripe_offset)
1242{
1243	int i;
1244
1245	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1246		/* RAID5/6 */
1247		for (i = 0; i < nstripes; i++) {
1248			if (raid_map[i] == RAID6_Q_STRIPE ||
1249			    raid_map[i] == RAID5_P_STRIPE)
1250				continue;
1251
1252			if (logical >= raid_map[i] &&
1253			    logical < raid_map[i] + mapped_length)
1254				break;
1255		}
1256
1257		*stripe_index = i;
1258		*stripe_offset = logical - raid_map[i];
1259	} else {
1260		/* The other RAID type */
1261		*stripe_index = mirror;
1262		*stripe_offset = 0;
1263	}
1264}
1265
1266static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1267				     struct scrub_block *sblocks_for_recheck)
1268{
1269	struct scrub_ctx *sctx = original_sblock->sctx;
1270	struct btrfs_fs_info *fs_info = sctx->fs_info;
1271	u64 length = original_sblock->page_count * PAGE_SIZE;
1272	u64 logical = original_sblock->pagev[0]->logical;
1273	u64 generation = original_sblock->pagev[0]->generation;
1274	u64 flags = original_sblock->pagev[0]->flags;
1275	u64 have_csum = original_sblock->pagev[0]->have_csum;
1276	struct scrub_recover *recover;
1277	struct btrfs_bio *bbio;
1278	u64 sublen;
1279	u64 mapped_length;
1280	u64 stripe_offset;
1281	int stripe_index;
1282	int page_index = 0;
1283	int mirror_index;
1284	int nmirrors;
1285	int ret;
1286
1287	/*
1288	 * note: the two members refs and outstanding_pages
1289	 * are not used (and not set) in the blocks that are used for
1290	 * the recheck procedure
1291	 */
1292
1293	while (length > 0) {
1294		sublen = min_t(u64, length, PAGE_SIZE);
1295		mapped_length = sublen;
1296		bbio = NULL;
1297
1298		/*
1299		 * with a length of PAGE_SIZE, each returned stripe
1300		 * represents one mirror
1301		 */
1302		btrfs_bio_counter_inc_blocked(fs_info);
1303		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1304				logical, &mapped_length, &bbio);
1305		if (ret || !bbio || mapped_length < sublen) {
1306			btrfs_put_bbio(bbio);
1307			btrfs_bio_counter_dec(fs_info);
1308			return -EIO;
1309		}
1310
1311		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1312		if (!recover) {
1313			btrfs_put_bbio(bbio);
1314			btrfs_bio_counter_dec(fs_info);
1315			return -ENOMEM;
1316		}
1317
1318		refcount_set(&recover->refs, 1);
1319		recover->bbio = bbio;
1320		recover->map_length = mapped_length;
1321
1322		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1323
1324		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1325
1326		for (mirror_index = 0; mirror_index < nmirrors;
1327		     mirror_index++) {
1328			struct scrub_block *sblock;
1329			struct scrub_page *page;
1330
1331			sblock = sblocks_for_recheck + mirror_index;
1332			sblock->sctx = sctx;
1333
1334			page = kzalloc(sizeof(*page), GFP_NOFS);
1335			if (!page) {
1336leave_nomem:
1337				spin_lock(&sctx->stat_lock);
1338				sctx->stat.malloc_errors++;
1339				spin_unlock(&sctx->stat_lock);
1340				scrub_put_recover(fs_info, recover);
1341				return -ENOMEM;
1342			}
1343			scrub_page_get(page);
1344			sblock->pagev[page_index] = page;
1345			page->sblock = sblock;
1346			page->flags = flags;
1347			page->generation = generation;
1348			page->logical = logical;
1349			page->have_csum = have_csum;
1350			if (have_csum)
1351				memcpy(page->csum,
1352				       original_sblock->pagev[0]->csum,
1353				       sctx->csum_size);
1354
1355			scrub_stripe_index_and_offset(logical,
1356						      bbio->map_type,
1357						      bbio->raid_map,
1358						      mapped_length,
1359						      bbio->num_stripes -
1360						      bbio->num_tgtdevs,
1361						      mirror_index,
1362						      &stripe_index,
1363						      &stripe_offset);
1364			page->physical = bbio->stripes[stripe_index].physical +
1365					 stripe_offset;
1366			page->dev = bbio->stripes[stripe_index].dev;
1367
1368			BUG_ON(page_index >= original_sblock->page_count);
1369			page->physical_for_dev_replace =
1370				original_sblock->pagev[page_index]->
1371				physical_for_dev_replace;
1372			/* for missing devices, dev->bdev is NULL */
1373			page->mirror_num = mirror_index + 1;
1374			sblock->page_count++;
1375			page->page = alloc_page(GFP_NOFS);
1376			if (!page->page)
1377				goto leave_nomem;
1378
 
1379			scrub_get_recover(recover);
1380			page->recover = recover;
1381		}
1382		scrub_put_recover(fs_info, recover);
1383		length -= sublen;
1384		logical += sublen;
1385		page_index++;
1386	}
1387
1388	return 0;
1389}
1390
1391static void scrub_bio_wait_endio(struct bio *bio)
1392{
1393	complete(bio->bi_private);
1394}
1395
1396static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1397					struct bio *bio,
1398					struct scrub_page *page)
1399{
1400	DECLARE_COMPLETION_ONSTACK(done);
1401	int ret;
1402	int mirror_num;
1403
1404	bio->bi_iter.bi_sector = page->logical >> 9;
 
1405	bio->bi_private = &done;
1406	bio->bi_end_io = scrub_bio_wait_endio;
1407
1408	mirror_num = page->sblock->pagev[0]->mirror_num;
1409	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1410				    page->recover->map_length,
1411				    mirror_num, 0);
1412	if (ret)
1413		return ret;
1414
1415	wait_for_completion_io(&done);
1416	return blk_status_to_errno(bio->bi_status);
1417}
1418
1419static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1420					  struct scrub_block *sblock)
1421{
1422	struct scrub_page *first_page = sblock->pagev[0];
1423	struct bio *bio;
1424	int page_num;
1425
1426	/* All pages in sblock belong to the same stripe on the same device. */
1427	ASSERT(first_page->dev);
1428	if (!first_page->dev->bdev)
1429		goto out;
1430
1431	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1432	bio_set_dev(bio, first_page->dev->bdev);
1433
1434	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1435		struct scrub_page *page = sblock->pagev[page_num];
1436
1437		WARN_ON(!page->page);
1438		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1439	}
1440
1441	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1442		bio_put(bio);
1443		goto out;
1444	}
1445
1446	bio_put(bio);
1447
1448	scrub_recheck_block_checksum(sblock);
1449
1450	return;
1451out:
1452	for (page_num = 0; page_num < sblock->page_count; page_num++)
1453		sblock->pagev[page_num]->io_error = 1;
1454
1455	sblock->no_io_error_seen = 0;
1456}
1457
1458/*
1459 * this function will check the on disk data for checksum errors, header
1460 * errors and read I/O errors. If any I/O errors happen, the exact pages
1461 * which are errored are marked as being bad. The goal is to enable scrub
1462 * to take those pages that are not errored from all the mirrors so that
1463 * the pages that are errored in the just handled mirror can be repaired.
1464 */
1465static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1466				struct scrub_block *sblock,
1467				int retry_failed_mirror)
1468{
1469	int page_num;
1470
1471	sblock->no_io_error_seen = 1;
1472
1473	/* short cut for raid56 */
1474	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1475		return scrub_recheck_block_on_raid56(fs_info, sblock);
1476
1477	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1478		struct bio *bio;
1479		struct scrub_page *page = sblock->pagev[page_num];
 
1480
1481		if (page->dev->bdev == NULL) {
1482			page->io_error = 1;
1483			sblock->no_io_error_seen = 0;
1484			continue;
1485		}
1486
1487		WARN_ON(!page->page);
1488		bio = btrfs_io_bio_alloc(1);
1489		bio_set_dev(bio, page->dev->bdev);
1490
1491		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1492		bio->bi_iter.bi_sector = page->physical >> 9;
1493		bio->bi_opf = REQ_OP_READ;
1494
1495		if (btrfsic_submit_bio_wait(bio)) {
1496			page->io_error = 1;
1497			sblock->no_io_error_seen = 0;
1498		}
1499
1500		bio_put(bio);
1501	}
1502
1503	if (sblock->no_io_error_seen)
1504		scrub_recheck_block_checksum(sblock);
1505}
1506
1507static inline int scrub_check_fsid(u8 fsid[],
1508				   struct scrub_page *spage)
1509{
1510	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1511	int ret;
1512
1513	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1514	return !ret;
1515}
1516
1517static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1518{
1519	sblock->header_error = 0;
1520	sblock->checksum_error = 0;
1521	sblock->generation_error = 0;
1522
1523	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1524		scrub_checksum_data(sblock);
1525	else
1526		scrub_checksum_tree_block(sblock);
1527}
1528
1529static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1530					     struct scrub_block *sblock_good)
1531{
1532	int page_num;
1533	int ret = 0;
1534
1535	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1536		int ret_sub;
1537
1538		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1539							   sblock_good,
1540							   page_num, 1);
1541		if (ret_sub)
1542			ret = ret_sub;
1543	}
1544
1545	return ret;
1546}
1547
1548static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1549					    struct scrub_block *sblock_good,
1550					    int page_num, int force_write)
1551{
1552	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1553	struct scrub_page *page_good = sblock_good->pagev[page_num];
1554	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
 
1555
1556	BUG_ON(page_bad->page == NULL);
1557	BUG_ON(page_good->page == NULL);
1558	if (force_write || sblock_bad->header_error ||
1559	    sblock_bad->checksum_error || page_bad->io_error) {
1560		struct bio *bio;
 
1561		int ret;
1562
1563		if (!page_bad->dev->bdev) {
1564			btrfs_warn_rl(fs_info,
1565				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1566			return -EIO;
1567		}
1568
1569		bio = btrfs_io_bio_alloc(1);
1570		bio_set_dev(bio, page_bad->dev->bdev);
1571		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1572		bio->bi_opf = REQ_OP_WRITE;
1573
1574		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1575		if (PAGE_SIZE != ret) {
1576			bio_put(bio);
1577			return -EIO;
1578		}
1579
1580		if (btrfsic_submit_bio_wait(bio)) {
1581			btrfs_dev_stat_inc_and_print(page_bad->dev,
1582				BTRFS_DEV_STAT_WRITE_ERRS);
1583			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1584			bio_put(bio);
1585			return -EIO;
1586		}
1587		bio_put(bio);
1588	}
1589
1590	return 0;
1591}
1592
1593static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1594{
1595	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1596	int page_num;
1597
1598	/*
1599	 * This block is used for the check of the parity on the source device,
1600	 * so the data needn't be written into the destination device.
1601	 */
1602	if (sblock->sparity)
1603		return;
1604
1605	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1606		int ret;
1607
1608		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1609		if (ret)
1610			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1611	}
1612}
1613
1614static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1615					   int page_num)
 
 
 
 
 
 
 
 
 
 
1616{
1617	struct scrub_page *spage = sblock->pagev[page_num];
 
 
 
 
 
 
 
1618
1619	BUG_ON(spage->page == NULL);
1620	if (spage->io_error) {
1621		void *mapped_buffer = kmap_atomic(spage->page);
1622
1623		clear_page(mapped_buffer);
1624		flush_dcache_page(spage->page);
1625		kunmap_atomic(mapped_buffer);
 
1626	}
1627	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
 
 
 
 
 
1628}
1629
1630static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1631				    struct scrub_page *spage)
1632{
 
1633	struct scrub_bio *sbio;
1634	int ret;
 
1635
1636	mutex_lock(&sctx->wr_lock);
1637again:
1638	if (!sctx->wr_curr_bio) {
1639		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1640					      GFP_KERNEL);
1641		if (!sctx->wr_curr_bio) {
1642			mutex_unlock(&sctx->wr_lock);
1643			return -ENOMEM;
1644		}
1645		sctx->wr_curr_bio->sctx = sctx;
1646		sctx->wr_curr_bio->page_count = 0;
1647	}
1648	sbio = sctx->wr_curr_bio;
1649	if (sbio->page_count == 0) {
1650		struct bio *bio;
1651
1652		sbio->physical = spage->physical_for_dev_replace;
1653		sbio->logical = spage->logical;
1654		sbio->dev = sctx->wr_tgtdev;
1655		bio = sbio->bio;
1656		if (!bio) {
1657			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1658			sbio->bio = bio;
1659		}
1660
1661		bio->bi_private = sbio;
1662		bio->bi_end_io = scrub_wr_bio_end_io;
1663		bio_set_dev(bio, sbio->dev->bdev);
1664		bio->bi_iter.bi_sector = sbio->physical >> 9;
1665		bio->bi_opf = REQ_OP_WRITE;
 
 
 
 
 
1666		sbio->status = 0;
1667	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1668		   spage->physical_for_dev_replace ||
1669		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1670		   spage->logical) {
1671		scrub_wr_submit(sctx);
1672		goto again;
1673	}
1674
1675	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1676	if (ret != PAGE_SIZE) {
1677		if (sbio->page_count < 1) {
1678			bio_put(sbio->bio);
1679			sbio->bio = NULL;
1680			mutex_unlock(&sctx->wr_lock);
1681			return -EIO;
1682		}
1683		scrub_wr_submit(sctx);
1684		goto again;
1685	}
1686
1687	sbio->pagev[sbio->page_count] = spage;
1688	scrub_page_get(spage);
1689	sbio->page_count++;
1690	if (sbio->page_count == sctx->pages_per_wr_bio)
 
 
 
 
 
 
 
1691		scrub_wr_submit(sctx);
1692	mutex_unlock(&sctx->wr_lock);
1693
1694	return 0;
1695}
1696
1697static void scrub_wr_submit(struct scrub_ctx *sctx)
1698{
1699	struct scrub_bio *sbio;
1700
1701	if (!sctx->wr_curr_bio)
1702		return;
1703
1704	sbio = sctx->wr_curr_bio;
1705	sctx->wr_curr_bio = NULL;
1706	WARN_ON(!sbio->bio->bi_disk);
1707	scrub_pending_bio_inc(sctx);
1708	/* process all writes in a single worker thread. Then the block layer
1709	 * orders the requests before sending them to the driver which
1710	 * doubled the write performance on spinning disks when measured
1711	 * with Linux 3.5 */
1712	btrfsic_submit_bio(sbio->bio);
 
 
 
 
 
1713}
1714
1715static void scrub_wr_bio_end_io(struct bio *bio)
1716{
1717	struct scrub_bio *sbio = bio->bi_private;
1718	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1719
1720	sbio->status = bio->bi_status;
1721	sbio->bio = bio;
1722
1723	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1724			 scrub_wr_bio_end_io_worker, NULL, NULL);
1725	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1726}
1727
1728static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1729{
1730	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1731	struct scrub_ctx *sctx = sbio->sctx;
1732	int i;
1733
1734	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1735	if (sbio->status) {
1736		struct btrfs_dev_replace *dev_replace =
1737			&sbio->sctx->fs_info->dev_replace;
1738
1739		for (i = 0; i < sbio->page_count; i++) {
1740			struct scrub_page *spage = sbio->pagev[i];
1741
1742			spage->io_error = 1;
1743			atomic64_inc(&dev_replace->num_write_errors);
1744		}
1745	}
1746
1747	for (i = 0; i < sbio->page_count; i++)
1748		scrub_page_put(sbio->pagev[i]);
 
 
 
 
 
 
1749
1750	bio_put(sbio->bio);
1751	kfree(sbio);
1752	scrub_pending_bio_dec(sctx);
1753}
1754
1755static int scrub_checksum(struct scrub_block *sblock)
1756{
1757	u64 flags;
1758	int ret;
1759
1760	/*
1761	 * No need to initialize these stats currently,
1762	 * because this function only use return value
1763	 * instead of these stats value.
1764	 *
1765	 * Todo:
1766	 * always use stats
1767	 */
1768	sblock->header_error = 0;
1769	sblock->generation_error = 0;
1770	sblock->checksum_error = 0;
1771
1772	WARN_ON(sblock->page_count < 1);
1773	flags = sblock->pagev[0]->flags;
1774	ret = 0;
1775	if (flags & BTRFS_EXTENT_FLAG_DATA)
1776		ret = scrub_checksum_data(sblock);
1777	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1778		ret = scrub_checksum_tree_block(sblock);
1779	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1780		(void)scrub_checksum_super(sblock);
1781	else
1782		WARN_ON(1);
1783	if (ret)
1784		scrub_handle_errored_block(sblock);
1785
1786	return ret;
1787}
1788
1789static int scrub_checksum_data(struct scrub_block *sblock)
1790{
1791	struct scrub_ctx *sctx = sblock->sctx;
1792	struct btrfs_fs_info *fs_info = sctx->fs_info;
1793	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1794	u8 csum[BTRFS_CSUM_SIZE];
1795	u8 *on_disk_csum;
1796	struct page *page;
1797	void *buffer;
1798	u64 len;
1799	int index;
1800
1801	BUG_ON(sblock->page_count < 1);
1802	if (!sblock->pagev[0]->have_csum)
 
1803		return 0;
1804
 
 
1805	shash->tfm = fs_info->csum_shash;
1806	crypto_shash_init(shash);
1807
1808	on_disk_csum = sblock->pagev[0]->csum;
1809	page = sblock->pagev[0]->page;
1810	buffer = kmap_atomic(page);
1811
1812	len = sctx->fs_info->sectorsize;
1813	index = 0;
1814	for (;;) {
1815		u64 l = min_t(u64, len, PAGE_SIZE);
1816
1817		crypto_shash_update(shash, buffer, l);
1818		kunmap_atomic(buffer);
1819		len -= l;
1820		if (len == 0)
1821			break;
1822		index++;
1823		BUG_ON(index >= sblock->page_count);
1824		BUG_ON(!sblock->pagev[index]->page);
1825		page = sblock->pagev[index]->page;
1826		buffer = kmap_atomic(page);
1827	}
1828
1829	crypto_shash_final(shash, csum);
1830	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1831		sblock->checksum_error = 1;
1832
1833	return sblock->checksum_error;
1834}
1835
1836static int scrub_checksum_tree_block(struct scrub_block *sblock)
1837{
1838	struct scrub_ctx *sctx = sblock->sctx;
1839	struct btrfs_header *h;
1840	struct btrfs_fs_info *fs_info = sctx->fs_info;
1841	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1842	u8 calculated_csum[BTRFS_CSUM_SIZE];
1843	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1844	struct page *page;
1845	void *mapped_buffer;
1846	u64 mapped_size;
1847	void *p;
1848	u64 len;
1849	int index;
 
 
 
 
1850
1851	shash->tfm = fs_info->csum_shash;
1852	crypto_shash_init(shash);
 
 
1853
1854	BUG_ON(sblock->page_count < 1);
1855	page = sblock->pagev[0]->page;
1856	mapped_buffer = kmap_atomic(page);
1857	h = (struct btrfs_header *)mapped_buffer;
1858	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1859
1860	/*
1861	 * we don't use the getter functions here, as we
1862	 * a) don't have an extent buffer and
1863	 * b) the page is already kmapped
1864	 */
1865	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1866		sblock->header_error = 1;
1867
1868	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1869		sblock->header_error = 1;
1870		sblock->generation_error = 1;
1871	}
1872
1873	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1874		sblock->header_error = 1;
1875
1876	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1877		   BTRFS_UUID_SIZE))
1878		sblock->header_error = 1;
1879
1880	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1881	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1882	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1883	index = 0;
1884	for (;;) {
1885		u64 l = min_t(u64, len, mapped_size);
1886
1887		crypto_shash_update(shash, p, l);
1888		kunmap_atomic(mapped_buffer);
1889		len -= l;
1890		if (len == 0)
1891			break;
1892		index++;
1893		BUG_ON(index >= sblock->page_count);
1894		BUG_ON(!sblock->pagev[index]->page);
1895		page = sblock->pagev[index]->page;
1896		mapped_buffer = kmap_atomic(page);
1897		mapped_size = PAGE_SIZE;
1898		p = mapped_buffer;
1899	}
1900
1901	crypto_shash_final(shash, calculated_csum);
1902	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1903		sblock->checksum_error = 1;
1904
1905	return sblock->header_error || sblock->checksum_error;
1906}
1907
1908static int scrub_checksum_super(struct scrub_block *sblock)
1909{
1910	struct btrfs_super_block *s;
1911	struct scrub_ctx *sctx = sblock->sctx;
1912	struct btrfs_fs_info *fs_info = sctx->fs_info;
1913	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1914	u8 calculated_csum[BTRFS_CSUM_SIZE];
1915	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1916	struct page *page;
1917	void *mapped_buffer;
1918	u64 mapped_size;
1919	void *p;
1920	int fail_gen = 0;
1921	int fail_cor = 0;
1922	u64 len;
1923	int index;
1924
1925	shash->tfm = fs_info->csum_shash;
1926	crypto_shash_init(shash);
1927
1928	BUG_ON(sblock->page_count < 1);
1929	page = sblock->pagev[0]->page;
1930	mapped_buffer = kmap_atomic(page);
1931	s = (struct btrfs_super_block *)mapped_buffer;
1932	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1933
1934	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1935		++fail_cor;
1936
1937	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1938		++fail_gen;
1939
1940	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1941		++fail_cor;
1942
1943	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1944	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1945	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1946	index = 0;
1947	for (;;) {
1948		u64 l = min_t(u64, len, mapped_size);
1949
1950		crypto_shash_update(shash, p, l);
1951		kunmap_atomic(mapped_buffer);
1952		len -= l;
1953		if (len == 0)
1954			break;
1955		index++;
1956		BUG_ON(index >= sblock->page_count);
1957		BUG_ON(!sblock->pagev[index]->page);
1958		page = sblock->pagev[index]->page;
1959		mapped_buffer = kmap_atomic(page);
1960		mapped_size = PAGE_SIZE;
1961		p = mapped_buffer;
1962	}
1963
1964	crypto_shash_final(shash, calculated_csum);
1965	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1966		++fail_cor;
1967
1968	if (fail_cor + fail_gen) {
1969		/*
1970		 * if we find an error in a super block, we just report it.
1971		 * They will get written with the next transaction commit
1972		 * anyway
1973		 */
1974		spin_lock(&sctx->stat_lock);
1975		++sctx->stat.super_errors;
1976		spin_unlock(&sctx->stat_lock);
1977		if (fail_cor)
1978			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1979				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1980		else
1981			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1982				BTRFS_DEV_STAT_GENERATION_ERRS);
1983	}
1984
1985	return fail_cor + fail_gen;
1986}
1987
1988static void scrub_block_get(struct scrub_block *sblock)
1989{
1990	refcount_inc(&sblock->refs);
1991}
1992
1993static void scrub_block_put(struct scrub_block *sblock)
1994{
1995	if (refcount_dec_and_test(&sblock->refs)) {
1996		int i;
1997
1998		if (sblock->sparity)
1999			scrub_parity_put(sblock->sparity);
2000
2001		for (i = 0; i < sblock->page_count; i++)
2002			scrub_page_put(sblock->pagev[i]);
 
 
 
 
 
 
2003		kfree(sblock);
2004	}
2005}
2006
2007static void scrub_page_get(struct scrub_page *spage)
 
 
 
 
 
2008{
2009	atomic_inc(&spage->refs);
 
2010}
2011
2012static void scrub_page_put(struct scrub_page *spage)
 
 
 
 
2013{
2014	if (atomic_dec_and_test(&spage->refs)) {
2015		if (spage->page)
2016			__free_page(spage->page);
2017		kfree(spage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2018	}
 
 
 
2019}
2020
2021static void scrub_submit(struct scrub_ctx *sctx)
2022{
2023	struct scrub_bio *sbio;
2024
2025	if (sctx->curr == -1)
2026		return;
2027
 
 
2028	sbio = sctx->bios[sctx->curr];
2029	sctx->curr = -1;
2030	scrub_pending_bio_inc(sctx);
2031	btrfsic_submit_bio(sbio->bio);
 
2032}
2033
2034static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2035				    struct scrub_page *spage)
2036{
2037	struct scrub_block *sblock = spage->sblock;
2038	struct scrub_bio *sbio;
 
2039	int ret;
2040
2041again:
2042	/*
2043	 * grab a fresh bio or wait for one to become available
2044	 */
2045	while (sctx->curr == -1) {
2046		spin_lock(&sctx->list_lock);
2047		sctx->curr = sctx->first_free;
2048		if (sctx->curr != -1) {
2049			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2050			sctx->bios[sctx->curr]->next_free = -1;
2051			sctx->bios[sctx->curr]->page_count = 0;
2052			spin_unlock(&sctx->list_lock);
2053		} else {
2054			spin_unlock(&sctx->list_lock);
2055			wait_event(sctx->list_wait, sctx->first_free != -1);
2056		}
2057	}
2058	sbio = sctx->bios[sctx->curr];
2059	if (sbio->page_count == 0) {
2060		struct bio *bio;
2061
2062		sbio->physical = spage->physical;
2063		sbio->logical = spage->logical;
2064		sbio->dev = spage->dev;
2065		bio = sbio->bio;
2066		if (!bio) {
2067			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2068			sbio->bio = bio;
2069		}
2070
2071		bio->bi_private = sbio;
2072		bio->bi_end_io = scrub_bio_end_io;
2073		bio_set_dev(bio, sbio->dev->bdev);
2074		bio->bi_iter.bi_sector = sbio->physical >> 9;
2075		bio->bi_opf = REQ_OP_READ;
2076		sbio->status = 0;
2077	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2078		   spage->physical ||
2079		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2080		   spage->logical ||
2081		   sbio->dev != spage->dev) {
2082		scrub_submit(sctx);
2083		goto again;
2084	}
2085
2086	sbio->pagev[sbio->page_count] = spage;
2087	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2088	if (ret != PAGE_SIZE) {
2089		if (sbio->page_count < 1) {
2090			bio_put(sbio->bio);
2091			sbio->bio = NULL;
2092			return -EIO;
2093		}
2094		scrub_submit(sctx);
2095		goto again;
2096	}
2097
2098	scrub_block_get(sblock); /* one for the page added to the bio */
2099	atomic_inc(&sblock->outstanding_pages);
2100	sbio->page_count++;
2101	if (sbio->page_count == sctx->pages_per_rd_bio)
2102		scrub_submit(sctx);
2103
2104	return 0;
2105}
2106
2107static void scrub_missing_raid56_end_io(struct bio *bio)
2108{
2109	struct scrub_block *sblock = bio->bi_private;
2110	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2111
 
2112	if (bio->bi_status)
2113		sblock->no_io_error_seen = 0;
2114
2115	bio_put(bio);
2116
2117	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2118}
2119
2120static void scrub_missing_raid56_worker(struct btrfs_work *work)
2121{
2122	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2123	struct scrub_ctx *sctx = sblock->sctx;
2124	struct btrfs_fs_info *fs_info = sctx->fs_info;
2125	u64 logical;
2126	struct btrfs_device *dev;
2127
2128	logical = sblock->pagev[0]->logical;
2129	dev = sblock->pagev[0]->dev;
2130
2131	if (sblock->no_io_error_seen)
2132		scrub_recheck_block_checksum(sblock);
2133
2134	if (!sblock->no_io_error_seen) {
2135		spin_lock(&sctx->stat_lock);
2136		sctx->stat.read_errors++;
2137		spin_unlock(&sctx->stat_lock);
2138		btrfs_err_rl_in_rcu(fs_info,
2139			"IO error rebuilding logical %llu for dev %s",
2140			logical, rcu_str_deref(dev->name));
2141	} else if (sblock->header_error || sblock->checksum_error) {
2142		spin_lock(&sctx->stat_lock);
2143		sctx->stat.uncorrectable_errors++;
2144		spin_unlock(&sctx->stat_lock);
2145		btrfs_err_rl_in_rcu(fs_info,
2146			"failed to rebuild valid logical %llu for dev %s",
2147			logical, rcu_str_deref(dev->name));
2148	} else {
2149		scrub_write_block_to_dev_replace(sblock);
2150	}
2151
2152	scrub_block_put(sblock);
2153
2154	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2155		mutex_lock(&sctx->wr_lock);
2156		scrub_wr_submit(sctx);
2157		mutex_unlock(&sctx->wr_lock);
2158	}
2159
 
2160	scrub_pending_bio_dec(sctx);
2161}
2162
2163static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2164{
2165	struct scrub_ctx *sctx = sblock->sctx;
2166	struct btrfs_fs_info *fs_info = sctx->fs_info;
2167	u64 length = sblock->page_count * PAGE_SIZE;
2168	u64 logical = sblock->pagev[0]->logical;
2169	struct btrfs_bio *bbio = NULL;
2170	struct bio *bio;
2171	struct btrfs_raid_bio *rbio;
2172	int ret;
2173	int i;
2174
2175	btrfs_bio_counter_inc_blocked(fs_info);
2176	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2177			&length, &bbio);
2178	if (ret || !bbio || !bbio->raid_map)
2179		goto bbio_out;
2180
2181	if (WARN_ON(!sctx->is_dev_replace ||
2182		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2183		/*
2184		 * We shouldn't be scrubbing a missing device. Even for dev
2185		 * replace, we should only get here for RAID 5/6. We either
2186		 * managed to mount something with no mirrors remaining or
2187		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2188		 */
2189		goto bbio_out;
2190	}
2191
2192	bio = btrfs_io_bio_alloc(0);
2193	bio->bi_iter.bi_sector = logical >> 9;
2194	bio->bi_private = sblock;
2195	bio->bi_end_io = scrub_missing_raid56_end_io;
2196
2197	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2198	if (!rbio)
2199		goto rbio_out;
2200
2201	for (i = 0; i < sblock->page_count; i++) {
2202		struct scrub_page *spage = sblock->pagev[i];
2203
2204		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
 
 
2205	}
2206
2207	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2208			scrub_missing_raid56_worker, NULL, NULL);
2209	scrub_block_get(sblock);
2210	scrub_pending_bio_inc(sctx);
2211	raid56_submit_missing_rbio(rbio);
 
2212	return;
2213
2214rbio_out:
2215	bio_put(bio);
2216bbio_out:
2217	btrfs_bio_counter_dec(fs_info);
2218	btrfs_put_bbio(bbio);
2219	spin_lock(&sctx->stat_lock);
2220	sctx->stat.malloc_errors++;
2221	spin_unlock(&sctx->stat_lock);
2222}
2223
2224static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2225		       u64 physical, struct btrfs_device *dev, u64 flags,
2226		       u64 gen, int mirror_num, u8 *csum, int force,
2227		       u64 physical_for_dev_replace)
2228{
2229	struct scrub_block *sblock;
 
2230	int index;
2231
2232	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
 
2233	if (!sblock) {
2234		spin_lock(&sctx->stat_lock);
2235		sctx->stat.malloc_errors++;
2236		spin_unlock(&sctx->stat_lock);
2237		return -ENOMEM;
2238	}
2239
2240	/* one ref inside this function, plus one for each page added to
2241	 * a bio later on */
2242	refcount_set(&sblock->refs, 1);
2243	sblock->sctx = sctx;
2244	sblock->no_io_error_seen = 1;
2245
2246	for (index = 0; len > 0; index++) {
2247		struct scrub_page *spage;
2248		u64 l = min_t(u64, len, PAGE_SIZE);
 
 
 
 
 
2249
2250		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2251		if (!spage) {
2252leave_nomem:
2253			spin_lock(&sctx->stat_lock);
2254			sctx->stat.malloc_errors++;
2255			spin_unlock(&sctx->stat_lock);
2256			scrub_block_put(sblock);
2257			return -ENOMEM;
2258		}
2259		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2260		scrub_page_get(spage);
2261		sblock->pagev[index] = spage;
2262		spage->sblock = sblock;
2263		spage->dev = dev;
2264		spage->flags = flags;
2265		spage->generation = gen;
2266		spage->logical = logical;
2267		spage->physical = physical;
2268		spage->physical_for_dev_replace = physical_for_dev_replace;
2269		spage->mirror_num = mirror_num;
2270		if (csum) {
2271			spage->have_csum = 1;
2272			memcpy(spage->csum, csum, sctx->csum_size);
2273		} else {
2274			spage->have_csum = 0;
2275		}
2276		sblock->page_count++;
2277		spage->page = alloc_page(GFP_KERNEL);
2278		if (!spage->page)
2279			goto leave_nomem;
2280		len -= l;
2281		logical += l;
2282		physical += l;
2283		physical_for_dev_replace += l;
2284	}
2285
2286	WARN_ON(sblock->page_count == 0);
2287	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2288		/*
2289		 * This case should only be hit for RAID 5/6 device replace. See
2290		 * the comment in scrub_missing_raid56_pages() for details.
2291		 */
2292		scrub_missing_raid56_pages(sblock);
2293	} else {
2294		for (index = 0; index < sblock->page_count; index++) {
2295			struct scrub_page *spage = sblock->pagev[index];
2296			int ret;
2297
2298			ret = scrub_add_page_to_rd_bio(sctx, spage);
2299			if (ret) {
2300				scrub_block_put(sblock);
2301				return ret;
2302			}
2303		}
2304
2305		if (force)
2306			scrub_submit(sctx);
2307	}
2308
2309	/* last one frees, either here or in bio completion for last page */
2310	scrub_block_put(sblock);
2311	return 0;
2312}
2313
2314static void scrub_bio_end_io(struct bio *bio)
2315{
2316	struct scrub_bio *sbio = bio->bi_private;
2317	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2318
2319	sbio->status = bio->bi_status;
2320	sbio->bio = bio;
2321
2322	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2323}
2324
2325static void scrub_bio_end_io_worker(struct btrfs_work *work)
2326{
2327	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2328	struct scrub_ctx *sctx = sbio->sctx;
2329	int i;
2330
2331	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2332	if (sbio->status) {
2333		for (i = 0; i < sbio->page_count; i++) {
2334			struct scrub_page *spage = sbio->pagev[i];
2335
2336			spage->io_error = 1;
2337			spage->sblock->no_io_error_seen = 0;
2338		}
2339	}
2340
2341	/* now complete the scrub_block items that have all pages completed */
2342	for (i = 0; i < sbio->page_count; i++) {
2343		struct scrub_page *spage = sbio->pagev[i];
2344		struct scrub_block *sblock = spage->sblock;
2345
2346		if (atomic_dec_and_test(&sblock->outstanding_pages))
2347			scrub_block_complete(sblock);
2348		scrub_block_put(sblock);
2349	}
2350
2351	bio_put(sbio->bio);
2352	sbio->bio = NULL;
2353	spin_lock(&sctx->list_lock);
2354	sbio->next_free = sctx->first_free;
2355	sctx->first_free = sbio->index;
2356	spin_unlock(&sctx->list_lock);
2357
2358	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2359		mutex_lock(&sctx->wr_lock);
2360		scrub_wr_submit(sctx);
2361		mutex_unlock(&sctx->wr_lock);
2362	}
2363
2364	scrub_pending_bio_dec(sctx);
2365}
2366
2367static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2368				       unsigned long *bitmap,
2369				       u64 start, u64 len)
2370{
2371	u64 offset;
2372	u64 nsectors64;
2373	u32 nsectors;
2374	int sectorsize = sparity->sctx->fs_info->sectorsize;
2375
2376	if (len >= sparity->stripe_len) {
2377		bitmap_set(bitmap, 0, sparity->nsectors);
2378		return;
2379	}
2380
2381	start -= sparity->logic_start;
2382	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2383	offset = div_u64(offset, sectorsize);
2384	nsectors64 = div_u64(len, sectorsize);
2385
2386	ASSERT(nsectors64 < UINT_MAX);
2387	nsectors = (u32)nsectors64;
2388
2389	if (offset + nsectors <= sparity->nsectors) {
2390		bitmap_set(bitmap, offset, nsectors);
2391		return;
2392	}
2393
2394	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2395	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2396}
2397
2398static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2399						   u64 start, u64 len)
2400{
2401	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2402}
2403
2404static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2405						  u64 start, u64 len)
2406{
2407	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2408}
2409
2410static void scrub_block_complete(struct scrub_block *sblock)
2411{
2412	int corrupted = 0;
2413
2414	if (!sblock->no_io_error_seen) {
2415		corrupted = 1;
2416		scrub_handle_errored_block(sblock);
2417	} else {
2418		/*
2419		 * if has checksum error, write via repair mechanism in
2420		 * dev replace case, otherwise write here in dev replace
2421		 * case.
2422		 */
2423		corrupted = scrub_checksum(sblock);
2424		if (!corrupted && sblock->sctx->is_dev_replace)
2425			scrub_write_block_to_dev_replace(sblock);
2426	}
2427
2428	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2429		u64 start = sblock->pagev[0]->logical;
2430		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2431			  PAGE_SIZE;
 
2432
 
2433		scrub_parity_mark_sectors_error(sblock->sparity,
2434						start, end - start);
2435	}
2436}
2437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2438static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2439{
2440	struct btrfs_ordered_sum *sum = NULL;
2441	unsigned long index;
2442	unsigned long num_sectors;
2443
2444	while (!list_empty(&sctx->csum_list)) {
 
 
 
 
2445		sum = list_first_entry(&sctx->csum_list,
2446				       struct btrfs_ordered_sum, list);
 
2447		if (sum->bytenr > logical)
2448			return 0;
2449		if (sum->bytenr + sum->len > logical)
2450			break;
2451
2452		++sctx->stat.csum_discards;
2453		list_del(&sum->list);
2454		kfree(sum);
2455		sum = NULL;
2456	}
2457	if (!sum)
2458		return 0;
2459
2460	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2461	ASSERT(index < UINT_MAX);
2462
2463	num_sectors = sum->len / sctx->fs_info->sectorsize;
2464	memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2465	if (index == num_sectors - 1) {
2466		list_del(&sum->list);
2467		kfree(sum);
 
 
 
 
 
 
 
2468	}
 
 
2469	return 1;
2470}
2471
2472/* scrub extent tries to collect up to 64 kB for each bio */
2473static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2474			u64 logical, u64 len,
2475			u64 physical, struct btrfs_device *dev, u64 flags,
2476			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2477{
 
 
 
2478	int ret;
2479	u8 csum[BTRFS_CSUM_SIZE];
2480	u32 blocksize;
2481
2482	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2483		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2484			blocksize = map->stripe_len;
2485		else
2486			blocksize = sctx->fs_info->sectorsize;
2487		spin_lock(&sctx->stat_lock);
2488		sctx->stat.data_extents_scrubbed++;
2489		sctx->stat.data_bytes_scrubbed += len;
2490		spin_unlock(&sctx->stat_lock);
2491	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2492		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2493			blocksize = map->stripe_len;
2494		else
2495			blocksize = sctx->fs_info->nodesize;
2496		spin_lock(&sctx->stat_lock);
2497		sctx->stat.tree_extents_scrubbed++;
2498		sctx->stat.tree_bytes_scrubbed += len;
2499		spin_unlock(&sctx->stat_lock);
2500	} else {
2501		blocksize = sctx->fs_info->sectorsize;
2502		WARN_ON(1);
2503	}
2504
 
 
 
 
 
 
 
 
 
 
 
 
2505	while (len) {
2506		u64 l = min_t(u64, len, blocksize);
2507		int have_csum = 0;
2508
2509		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2510			/* push csums to sbio */
2511			have_csum = scrub_find_csum(sctx, logical, csum);
2512			if (have_csum == 0)
2513				++sctx->stat.no_csum;
2514		}
2515		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2516				  mirror_num, have_csum ? csum : NULL, 0,
2517				  physical_for_dev_replace);
2518		if (ret)
2519			return ret;
2520		len -= l;
2521		logical += l;
2522		physical += l;
2523		physical_for_dev_replace += l;
2524	}
2525	return 0;
2526}
2527
2528static int scrub_pages_for_parity(struct scrub_parity *sparity,
2529				  u64 logical, u64 len,
2530				  u64 physical, struct btrfs_device *dev,
2531				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2532{
2533	struct scrub_ctx *sctx = sparity->sctx;
2534	struct scrub_block *sblock;
 
2535	int index;
2536
2537	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
 
 
2538	if (!sblock) {
2539		spin_lock(&sctx->stat_lock);
2540		sctx->stat.malloc_errors++;
2541		spin_unlock(&sctx->stat_lock);
2542		return -ENOMEM;
2543	}
2544
2545	/* one ref inside this function, plus one for each page added to
2546	 * a bio later on */
2547	refcount_set(&sblock->refs, 1);
2548	sblock->sctx = sctx;
2549	sblock->no_io_error_seen = 1;
2550	sblock->sparity = sparity;
2551	scrub_parity_get(sparity);
2552
2553	for (index = 0; len > 0; index++) {
2554		struct scrub_page *spage;
2555		u64 l = min_t(u64, len, PAGE_SIZE);
2556
2557		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2558		if (!spage) {
2559leave_nomem:
2560			spin_lock(&sctx->stat_lock);
2561			sctx->stat.malloc_errors++;
2562			spin_unlock(&sctx->stat_lock);
2563			scrub_block_put(sblock);
2564			return -ENOMEM;
2565		}
2566		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2567		/* For scrub block */
2568		scrub_page_get(spage);
2569		sblock->pagev[index] = spage;
2570		/* For scrub parity */
2571		scrub_page_get(spage);
2572		list_add_tail(&spage->list, &sparity->spages);
2573		spage->sblock = sblock;
2574		spage->dev = dev;
2575		spage->flags = flags;
2576		spage->generation = gen;
2577		spage->logical = logical;
2578		spage->physical = physical;
2579		spage->mirror_num = mirror_num;
2580		if (csum) {
2581			spage->have_csum = 1;
2582			memcpy(spage->csum, csum, sctx->csum_size);
2583		} else {
2584			spage->have_csum = 0;
2585		}
2586		sblock->page_count++;
2587		spage->page = alloc_page(GFP_KERNEL);
2588		if (!spage->page)
2589			goto leave_nomem;
2590		len -= l;
2591		logical += l;
2592		physical += l;
2593	}
2594
2595	WARN_ON(sblock->page_count == 0);
2596	for (index = 0; index < sblock->page_count; index++) {
2597		struct scrub_page *spage = sblock->pagev[index];
2598		int ret;
2599
2600		ret = scrub_add_page_to_rd_bio(sctx, spage);
2601		if (ret) {
2602			scrub_block_put(sblock);
2603			return ret;
2604		}
2605	}
2606
2607	/* last one frees, either here or in bio completion for last page */
2608	scrub_block_put(sblock);
2609	return 0;
2610}
2611
2612static int scrub_extent_for_parity(struct scrub_parity *sparity,
2613				   u64 logical, u64 len,
2614				   u64 physical, struct btrfs_device *dev,
2615				   u64 flags, u64 gen, int mirror_num)
2616{
2617	struct scrub_ctx *sctx = sparity->sctx;
2618	int ret;
2619	u8 csum[BTRFS_CSUM_SIZE];
2620	u32 blocksize;
2621
2622	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2623		scrub_parity_mark_sectors_error(sparity, logical, len);
2624		return 0;
2625	}
2626
2627	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2628		blocksize = sparity->stripe_len;
2629	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2630		blocksize = sparity->stripe_len;
2631	} else {
2632		blocksize = sctx->fs_info->sectorsize;
2633		WARN_ON(1);
2634	}
2635
2636	while (len) {
2637		u64 l = min_t(u64, len, blocksize);
2638		int have_csum = 0;
2639
2640		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2641			/* push csums to sbio */
2642			have_csum = scrub_find_csum(sctx, logical, csum);
2643			if (have_csum == 0)
2644				goto skip;
2645		}
2646		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2647					     flags, gen, mirror_num,
2648					     have_csum ? csum : NULL);
2649		if (ret)
2650			return ret;
2651skip:
2652		len -= l;
2653		logical += l;
2654		physical += l;
2655	}
2656	return 0;
2657}
2658
2659/*
2660 * Given a physical address, this will calculate it's
2661 * logical offset. if this is a parity stripe, it will return
2662 * the most left data stripe's logical offset.
2663 *
2664 * return 0 if it is a data stripe, 1 means parity stripe.
2665 */
2666static int get_raid56_logic_offset(u64 physical, int num,
2667				   struct map_lookup *map, u64 *offset,
2668				   u64 *stripe_start)
2669{
2670	int i;
2671	int j = 0;
2672	u64 stripe_nr;
2673	u64 last_offset;
2674	u32 stripe_index;
2675	u32 rot;
2676	const int data_stripes = nr_data_stripes(map);
2677
2678	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2679	if (stripe_start)
2680		*stripe_start = last_offset;
2681
2682	*offset = last_offset;
2683	for (i = 0; i < data_stripes; i++) {
2684		*offset = last_offset + i * map->stripe_len;
2685
2686		stripe_nr = div64_u64(*offset, map->stripe_len);
2687		stripe_nr = div_u64(stripe_nr, data_stripes);
2688
2689		/* Work out the disk rotation on this stripe-set */
2690		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2691		/* calculate which stripe this data locates */
2692		rot += i;
2693		stripe_index = rot % map->num_stripes;
2694		if (stripe_index == num)
2695			return 0;
2696		if (stripe_index < num)
2697			j++;
2698	}
2699	*offset = last_offset + j * map->stripe_len;
2700	return 1;
2701}
2702
2703static void scrub_free_parity(struct scrub_parity *sparity)
2704{
2705	struct scrub_ctx *sctx = sparity->sctx;
2706	struct scrub_page *curr, *next;
2707	int nbits;
2708
2709	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2710	if (nbits) {
2711		spin_lock(&sctx->stat_lock);
2712		sctx->stat.read_errors += nbits;
2713		sctx->stat.uncorrectable_errors += nbits;
2714		spin_unlock(&sctx->stat_lock);
2715	}
2716
2717	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2718		list_del_init(&curr->list);
2719		scrub_page_put(curr);
2720	}
2721
2722	kfree(sparity);
2723}
2724
2725static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2726{
2727	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2728						    work);
2729	struct scrub_ctx *sctx = sparity->sctx;
2730
 
2731	scrub_free_parity(sparity);
2732	scrub_pending_bio_dec(sctx);
2733}
2734
2735static void scrub_parity_bio_endio(struct bio *bio)
2736{
2737	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2738	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2739
2740	if (bio->bi_status)
2741		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2742			  sparity->nsectors);
2743
2744	bio_put(bio);
2745
2746	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2747			scrub_parity_bio_endio_worker, NULL, NULL);
2748	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2749}
2750
2751static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2752{
2753	struct scrub_ctx *sctx = sparity->sctx;
2754	struct btrfs_fs_info *fs_info = sctx->fs_info;
2755	struct bio *bio;
2756	struct btrfs_raid_bio *rbio;
2757	struct btrfs_bio *bbio = NULL;
2758	u64 length;
2759	int ret;
2760
2761	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2762			   sparity->nsectors))
2763		goto out;
2764
2765	length = sparity->logic_end - sparity->logic_start;
2766
2767	btrfs_bio_counter_inc_blocked(fs_info);
2768	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2769			       &length, &bbio);
2770	if (ret || !bbio || !bbio->raid_map)
2771		goto bbio_out;
2772
2773	bio = btrfs_io_bio_alloc(0);
2774	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2775	bio->bi_private = sparity;
2776	bio->bi_end_io = scrub_parity_bio_endio;
2777
2778	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2779					      length, sparity->scrub_dev,
2780					      sparity->dbitmap,
2781					      sparity->nsectors);
 
2782	if (!rbio)
2783		goto rbio_out;
2784
2785	scrub_pending_bio_inc(sctx);
2786	raid56_parity_submit_scrub_rbio(rbio);
2787	return;
2788
2789rbio_out:
2790	bio_put(bio);
2791bbio_out:
2792	btrfs_bio_counter_dec(fs_info);
2793	btrfs_put_bbio(bbio);
2794	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2795		  sparity->nsectors);
2796	spin_lock(&sctx->stat_lock);
2797	sctx->stat.malloc_errors++;
2798	spin_unlock(&sctx->stat_lock);
2799out:
2800	scrub_free_parity(sparity);
2801}
2802
2803static inline int scrub_calc_parity_bitmap_len(int nsectors)
2804{
2805	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2806}
2807
2808static void scrub_parity_get(struct scrub_parity *sparity)
2809{
2810	refcount_inc(&sparity->refs);
2811}
2812
2813static void scrub_parity_put(struct scrub_parity *sparity)
2814{
2815	if (!refcount_dec_and_test(&sparity->refs))
2816		return;
2817
2818	scrub_parity_check_and_repair(sparity);
2819}
2820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2821static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2822						  struct map_lookup *map,
2823						  struct btrfs_device *sdev,
2824						  struct btrfs_path *path,
2825						  u64 logic_start,
2826						  u64 logic_end)
2827{
2828	struct btrfs_fs_info *fs_info = sctx->fs_info;
2829	struct btrfs_root *root = fs_info->extent_root;
2830	struct btrfs_root *csum_root = fs_info->csum_root;
2831	struct btrfs_extent_item *extent;
2832	struct btrfs_bio *bbio = NULL;
2833	u64 flags;
2834	int ret;
2835	int slot;
2836	struct extent_buffer *l;
2837	struct btrfs_key key;
2838	u64 generation;
2839	u64 extent_logical;
2840	u64 extent_physical;
2841	u64 extent_len;
2842	u64 mapped_length;
2843	struct btrfs_device *extent_dev;
2844	struct scrub_parity *sparity;
2845	int nsectors;
2846	int bitmap_len;
2847	int extent_mirror_num;
2848	int stop_loop = 0;
2849
2850	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2851	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2852	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2853			  GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
2854	if (!sparity) {
2855		spin_lock(&sctx->stat_lock);
2856		sctx->stat.malloc_errors++;
2857		spin_unlock(&sctx->stat_lock);
 
2858		return -ENOMEM;
2859	}
2860
 
2861	sparity->stripe_len = map->stripe_len;
2862	sparity->nsectors = nsectors;
2863	sparity->sctx = sctx;
2864	sparity->scrub_dev = sdev;
2865	sparity->logic_start = logic_start;
2866	sparity->logic_end = logic_end;
2867	refcount_set(&sparity->refs, 1);
2868	INIT_LIST_HEAD(&sparity->spages);
2869	sparity->dbitmap = sparity->bitmap;
2870	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2871
2872	ret = 0;
2873	while (logic_start < logic_end) {
2874		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2875			key.type = BTRFS_METADATA_ITEM_KEY;
2876		else
2877			key.type = BTRFS_EXTENT_ITEM_KEY;
2878		key.objectid = logic_start;
2879		key.offset = (u64)-1;
2880
2881		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2882		if (ret < 0)
2883			goto out;
 
2884
2885		if (ret > 0) {
2886			ret = btrfs_previous_extent_item(root, path, 0);
2887			if (ret < 0)
2888				goto out;
2889			if (ret > 0) {
2890				btrfs_release_path(path);
2891				ret = btrfs_search_slot(NULL, root, &key,
2892							path, 0, 0);
2893				if (ret < 0)
2894					goto out;
2895			}
2896		}
2897
2898		stop_loop = 0;
2899		while (1) {
2900			u64 bytes;
2901
2902			l = path->nodes[0];
2903			slot = path->slots[0];
2904			if (slot >= btrfs_header_nritems(l)) {
2905				ret = btrfs_next_leaf(root, path);
2906				if (ret == 0)
2907					continue;
2908				if (ret < 0)
2909					goto out;
2910
2911				stop_loop = 1;
2912				break;
2913			}
2914			btrfs_item_key_to_cpu(l, &key, slot);
 
 
 
 
 
 
2915
2916			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2917			    key.type != BTRFS_METADATA_ITEM_KEY)
2918				goto next;
2919
2920			if (key.type == BTRFS_METADATA_ITEM_KEY)
2921				bytes = fs_info->nodesize;
2922			else
2923				bytes = key.offset;
 
2924
2925			if (key.objectid + bytes <= logic_start)
2926				goto next;
2927
2928			if (key.objectid >= logic_end) {
2929				stop_loop = 1;
2930				break;
2931			}
2932
2933			while (key.objectid >= logic_start + map->stripe_len)
2934				logic_start += map->stripe_len;
 
 
 
 
 
 
 
 
 
2935
2936			extent = btrfs_item_ptr(l, slot,
2937						struct btrfs_extent_item);
2938			flags = btrfs_extent_flags(l, extent);
2939			generation = btrfs_extent_generation(l, extent);
2940
2941			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2942			    (key.objectid < logic_start ||
2943			     key.objectid + bytes >
2944			     logic_start + map->stripe_len)) {
2945				btrfs_err(fs_info,
2946					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2947					  key.objectid, logic_start);
2948				spin_lock(&sctx->stat_lock);
2949				sctx->stat.uncorrectable_errors++;
2950				spin_unlock(&sctx->stat_lock);
2951				goto next;
2952			}
2953again:
2954			extent_logical = key.objectid;
2955			extent_len = bytes;
2956
2957			if (extent_logical < logic_start) {
2958				extent_len -= logic_start - extent_logical;
2959				extent_logical = logic_start;
2960			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2961
2962			if (extent_logical + extent_len >
2963			    logic_start + map->stripe_len)
2964				extent_len = logic_start + map->stripe_len -
2965					     extent_logical;
2966
2967			scrub_parity_mark_sectors_data(sparity, extent_logical,
2968						       extent_len);
2969
2970			mapped_length = extent_len;
2971			bbio = NULL;
2972			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2973					extent_logical, &mapped_length, &bbio,
2974					0);
2975			if (!ret) {
2976				if (!bbio || mapped_length < extent_len)
2977					ret = -EIO;
2978			}
2979			if (ret) {
2980				btrfs_put_bbio(bbio);
2981				goto out;
2982			}
2983			extent_physical = bbio->stripes[0].physical;
2984			extent_mirror_num = bbio->mirror_num;
2985			extent_dev = bbio->stripes[0].dev;
2986			btrfs_put_bbio(bbio);
2987
2988			ret = btrfs_lookup_csums_range(csum_root,
2989						extent_logical,
2990						extent_logical + extent_len - 1,
2991						&sctx->csum_list, 1);
2992			if (ret)
2993				goto out;
2994
2995			ret = scrub_extent_for_parity(sparity, extent_logical,
2996						      extent_len,
2997						      extent_physical,
2998						      extent_dev, flags,
2999						      generation,
3000						      extent_mirror_num);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3001
3002			scrub_free_csums(sctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
3003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3004			if (ret)
3005				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3006
3007			if (extent_logical + extent_len <
3008			    key.objectid + bytes) {
3009				logic_start += map->stripe_len;
 
 
3010
3011				if (logic_start >= logic_end) {
3012					stop_loop = 1;
3013					break;
3014				}
3015
3016				if (logic_start < key.objectid + bytes) {
3017					cond_resched();
3018					goto again;
3019				}
3020			}
3021next:
3022			path->slots[0]++;
3023		}
3024
3025		btrfs_release_path(path);
 
 
 
 
 
3026
3027		if (stop_loop)
3028			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3029
3030		logic_start += map->stripe_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3031	}
3032out:
3033	if (ret < 0)
3034		scrub_parity_mark_sectors_error(sparity, logic_start,
3035						logic_end - logic_start);
3036	scrub_parity_put(sparity);
3037	scrub_submit(sctx);
3038	mutex_lock(&sctx->wr_lock);
3039	scrub_wr_submit(sctx);
3040	mutex_unlock(&sctx->wr_lock);
3041
3042	btrfs_release_path(path);
3043	return ret < 0 ? ret : 0;
3044}
3045
3046static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3047					   struct map_lookup *map,
 
3048					   struct btrfs_device *scrub_dev,
3049					   int num, u64 base, u64 length)
3050{
3051	struct btrfs_path *path, *ppath;
3052	struct btrfs_fs_info *fs_info = sctx->fs_info;
3053	struct btrfs_root *root = fs_info->extent_root;
3054	struct btrfs_root *csum_root = fs_info->csum_root;
3055	struct btrfs_extent_item *extent;
3056	struct blk_plug plug;
3057	u64 flags;
 
 
3058	int ret;
3059	int slot;
3060	u64 nstripes;
3061	struct extent_buffer *l;
3062	u64 physical;
3063	u64 logical;
3064	u64 logic_end;
3065	u64 physical_end;
3066	u64 generation;
3067	int mirror_num;
3068	struct reada_control *reada1;
3069	struct reada_control *reada2;
3070	struct btrfs_key key;
3071	struct btrfs_key key_end;
3072	u64 increment = map->stripe_len;
3073	u64 offset;
3074	u64 extent_logical;
3075	u64 extent_physical;
3076	u64 extent_len;
3077	u64 stripe_logical;
3078	u64 stripe_end;
3079	struct btrfs_device *extent_dev;
3080	int extent_mirror_num;
3081	int stop_loop = 0;
3082
3083	physical = map->stripes[num].physical;
3084	offset = 0;
3085	nstripes = div64_u64(length, map->stripe_len);
3086	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3087		offset = map->stripe_len * num;
3088		increment = map->stripe_len * map->num_stripes;
3089		mirror_num = 1;
3090	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3091		int factor = map->num_stripes / map->sub_stripes;
3092		offset = map->stripe_len * (num / map->sub_stripes);
3093		increment = map->stripe_len * factor;
3094		mirror_num = num % map->sub_stripes + 1;
3095	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3096		increment = map->stripe_len;
3097		mirror_num = num % map->num_stripes + 1;
3098	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3099		increment = map->stripe_len;
3100		mirror_num = num % map->num_stripes + 1;
3101	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3102		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3103		increment = map->stripe_len * nr_data_stripes(map);
3104		mirror_num = 1;
3105	} else {
3106		increment = map->stripe_len;
3107		mirror_num = 1;
3108	}
3109
3110	path = btrfs_alloc_path();
3111	if (!path)
3112		return -ENOMEM;
3113
3114	ppath = btrfs_alloc_path();
3115	if (!ppath) {
3116		btrfs_free_path(path);
3117		return -ENOMEM;
3118	}
3119
3120	/*
3121	 * work on commit root. The related disk blocks are static as
3122	 * long as COW is applied. This means, it is save to rewrite
3123	 * them to repair disk errors without any race conditions
3124	 */
3125	path->search_commit_root = 1;
3126	path->skip_locking = 1;
 
3127
3128	ppath->search_commit_root = 1;
3129	ppath->skip_locking = 1;
3130	/*
3131	 * trigger the readahead for extent tree csum tree and wait for
3132	 * completion. During readahead, the scrub is officially paused
3133	 * to not hold off transaction commits
3134	 */
3135	logical = base + offset;
3136	physical_end = physical + nstripes * map->stripe_len;
3137	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3138		get_raid56_logic_offset(physical_end, num,
3139					map, &logic_end, NULL);
3140		logic_end += base;
3141	} else {
3142		logic_end = logical + increment * nstripes;
3143	}
3144	wait_event(sctx->list_wait,
3145		   atomic_read(&sctx->bios_in_flight) == 0);
3146	scrub_blocked_if_needed(fs_info);
3147
3148	/* FIXME it might be better to start readahead at commit root */
3149	key.objectid = logical;
3150	key.type = BTRFS_EXTENT_ITEM_KEY;
3151	key.offset = (u64)0;
3152	key_end.objectid = logic_end;
3153	key_end.type = BTRFS_METADATA_ITEM_KEY;
3154	key_end.offset = (u64)-1;
3155	reada1 = btrfs_reada_add(root, &key, &key_end);
3156
3157	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3158	key.type = BTRFS_EXTENT_CSUM_KEY;
3159	key.offset = logical;
3160	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3161	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3162	key_end.offset = logic_end;
3163	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3164
3165	if (!IS_ERR(reada1))
3166		btrfs_reada_wait(reada1);
3167	if (!IS_ERR(reada2))
3168		btrfs_reada_wait(reada2);
3169
3170
3171	/*
3172	 * collect all data csums for the stripe to avoid seeking during
3173	 * the scrub. This might currently (crc32) end up to be about 1MB
3174	 */
3175	blk_start_plug(&plug);
3176
 
 
 
 
 
 
 
 
3177	/*
3178	 * now find all extents for each stripe and scrub them
 
 
 
 
3179	 */
3180	ret = 0;
3181	while (physical < physical_end) {
3182		/*
3183		 * canceled?
3184		 */
3185		if (atomic_read(&fs_info->scrub_cancel_req) ||
3186		    atomic_read(&sctx->cancel_req)) {
3187			ret = -ECANCELED;
3188			goto out;
3189		}
3190		/*
3191		 * check to see if we have to pause
 
 
 
 
 
3192		 */
3193		if (atomic_read(&fs_info->scrub_pause_req)) {
3194			/* push queued extents */
3195			sctx->flush_all_writes = true;
3196			scrub_submit(sctx);
3197			mutex_lock(&sctx->wr_lock);
3198			scrub_wr_submit(sctx);
3199			mutex_unlock(&sctx->wr_lock);
3200			wait_event(sctx->list_wait,
3201				   atomic_read(&sctx->bios_in_flight) == 0);
3202			sctx->flush_all_writes = false;
3203			scrub_blocked_if_needed(fs_info);
3204		}
3205
3206		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3207			ret = get_raid56_logic_offset(physical, num, map,
3208						      &logical,
3209						      &stripe_logical);
3210			logical += base;
3211			if (ret) {
3212				/* it is parity strip */
3213				stripe_logical += base;
3214				stripe_end = stripe_logical + increment;
3215				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3216							  ppath, stripe_logical,
3217							  stripe_end);
3218				if (ret)
3219					goto out;
3220				goto skip;
3221			}
3222		}
3223
3224		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3225			key.type = BTRFS_METADATA_ITEM_KEY;
3226		else
3227			key.type = BTRFS_EXTENT_ITEM_KEY;
3228		key.objectid = logical;
3229		key.offset = (u64)-1;
3230
3231		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3232		if (ret < 0)
3233			goto out;
3234
3235		if (ret > 0) {
3236			ret = btrfs_previous_extent_item(root, path, 0);
3237			if (ret < 0)
3238				goto out;
3239			if (ret > 0) {
3240				/* there's no smaller item, so stick with the
3241				 * larger one */
3242				btrfs_release_path(path);
3243				ret = btrfs_search_slot(NULL, root, &key,
3244							path, 0, 0);
3245				if (ret < 0)
3246					goto out;
3247			}
3248		}
3249
3250		stop_loop = 0;
3251		while (1) {
3252			u64 bytes;
3253
3254			l = path->nodes[0];
3255			slot = path->slots[0];
3256			if (slot >= btrfs_header_nritems(l)) {
3257				ret = btrfs_next_leaf(root, path);
3258				if (ret == 0)
3259					continue;
3260				if (ret < 0)
3261					goto out;
3262
3263				stop_loop = 1;
3264				break;
3265			}
3266			btrfs_item_key_to_cpu(l, &key, slot);
3267
3268			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3269			    key.type != BTRFS_METADATA_ITEM_KEY)
3270				goto next;
3271
3272			if (key.type == BTRFS_METADATA_ITEM_KEY)
3273				bytes = fs_info->nodesize;
3274			else
3275				bytes = key.offset;
3276
3277			if (key.objectid + bytes <= logical)
3278				goto next;
3279
3280			if (key.objectid >= logical + map->stripe_len) {
3281				/* out of this device extent */
3282				if (key.objectid >= logic_end)
3283					stop_loop = 1;
3284				break;
3285			}
3286
3287			extent = btrfs_item_ptr(l, slot,
3288						struct btrfs_extent_item);
3289			flags = btrfs_extent_flags(l, extent);
3290			generation = btrfs_extent_generation(l, extent);
3291
3292			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3293			    (key.objectid < logical ||
3294			     key.objectid + bytes >
3295			     logical + map->stripe_len)) {
3296				btrfs_err(fs_info,
3297					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3298				       key.objectid, logical);
3299				spin_lock(&sctx->stat_lock);
3300				sctx->stat.uncorrectable_errors++;
3301				spin_unlock(&sctx->stat_lock);
3302				goto next;
3303			}
3304
3305again:
3306			extent_logical = key.objectid;
3307			extent_len = bytes;
3308
3309			/*
3310			 * trim extent to this stripe
3311			 */
3312			if (extent_logical < logical) {
3313				extent_len -= logical - extent_logical;
3314				extent_logical = logical;
3315			}
3316			if (extent_logical + extent_len >
3317			    logical + map->stripe_len) {
3318				extent_len = logical + map->stripe_len -
3319					     extent_logical;
3320			}
3321
3322			extent_physical = extent_logical - logical + physical;
3323			extent_dev = scrub_dev;
3324			extent_mirror_num = mirror_num;
3325			if (sctx->is_dev_replace)
3326				scrub_remap_extent(fs_info, extent_logical,
3327						   extent_len, &extent_physical,
3328						   &extent_dev,
3329						   &extent_mirror_num);
3330
3331			ret = btrfs_lookup_csums_range(csum_root,
3332						       extent_logical,
3333						       extent_logical +
3334						       extent_len - 1,
3335						       &sctx->csum_list, 1);
3336			if (ret)
3337				goto out;
3338
3339			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3340					   extent_physical, extent_dev, flags,
3341					   generation, extent_mirror_num,
3342					   extent_logical - logical + physical);
3343
3344			scrub_free_csums(sctx);
 
 
 
 
 
 
 
3345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3346			if (ret)
3347				goto out;
 
 
3348
3349			if (extent_logical + extent_len <
3350			    key.objectid + bytes) {
3351				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3352					/*
3353					 * loop until we find next data stripe
3354					 * or we have finished all stripes.
3355					 */
3356loop:
3357					physical += map->stripe_len;
3358					ret = get_raid56_logic_offset(physical,
3359							num, map, &logical,
3360							&stripe_logical);
3361					logical += base;
3362
3363					if (ret && physical < physical_end) {
3364						stripe_logical += base;
3365						stripe_end = stripe_logical +
3366								increment;
3367						ret = scrub_raid56_parity(sctx,
3368							map, scrub_dev, ppath,
3369							stripe_logical,
3370							stripe_end);
3371						if (ret)
3372							goto out;
3373						goto loop;
3374					}
3375				} else {
3376					physical += map->stripe_len;
3377					logical += increment;
3378				}
3379				if (logical < key.objectid + bytes) {
3380					cond_resched();
3381					goto again;
3382				}
3383
3384				if (physical >= physical_end) {
3385					stop_loop = 1;
3386					break;
3387				}
3388			}
3389next:
3390			path->slots[0]++;
3391		}
3392		btrfs_release_path(path);
3393skip:
3394		logical += increment;
3395		physical += map->stripe_len;
3396		spin_lock(&sctx->stat_lock);
3397		if (stop_loop)
3398			sctx->stat.last_physical = map->stripes[num].physical +
3399						   length;
3400		else
3401			sctx->stat.last_physical = physical;
3402		spin_unlock(&sctx->stat_lock);
3403		if (stop_loop)
3404			break;
3405	}
3406out:
3407	/* push queued extents */
3408	scrub_submit(sctx);
3409	mutex_lock(&sctx->wr_lock);
3410	scrub_wr_submit(sctx);
3411	mutex_unlock(&sctx->wr_lock);
3412
3413	blk_finish_plug(&plug);
3414	btrfs_free_path(path);
3415	btrfs_free_path(ppath);
 
 
 
 
 
 
 
 
 
 
 
3416	return ret < 0 ? ret : 0;
3417}
3418
3419static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
 
3420					  struct btrfs_device *scrub_dev,
3421					  u64 chunk_offset, u64 length,
3422					  u64 dev_offset,
3423					  struct btrfs_block_group_cache *cache)
3424{
3425	struct btrfs_fs_info *fs_info = sctx->fs_info;
3426	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3427	struct map_lookup *map;
3428	struct extent_map *em;
3429	int i;
3430	int ret = 0;
3431
3432	read_lock(&map_tree->lock);
3433	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3434	read_unlock(&map_tree->lock);
3435
3436	if (!em) {
3437		/*
3438		 * Might have been an unused block group deleted by the cleaner
3439		 * kthread or relocation.
3440		 */
3441		spin_lock(&cache->lock);
3442		if (!cache->removed)
3443			ret = -EINVAL;
3444		spin_unlock(&cache->lock);
3445
3446		return ret;
3447	}
3448
3449	map = em->map_lookup;
3450	if (em->start != chunk_offset)
3451		goto out;
3452
3453	if (em->len < length)
3454		goto out;
3455
 
3456	for (i = 0; i < map->num_stripes; ++i) {
3457		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3458		    map->stripes[i].physical == dev_offset) {
3459			ret = scrub_stripe(sctx, map, scrub_dev, i,
3460					   chunk_offset, length);
3461			if (ret)
3462				goto out;
3463		}
3464	}
3465out:
3466	free_extent_map(em);
3467
3468	return ret;
3469}
3470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3471static noinline_for_stack
3472int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3473			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3474{
3475	struct btrfs_dev_extent *dev_extent = NULL;
3476	struct btrfs_path *path;
3477	struct btrfs_fs_info *fs_info = sctx->fs_info;
3478	struct btrfs_root *root = fs_info->dev_root;
3479	u64 length;
3480	u64 chunk_offset;
3481	int ret = 0;
3482	int ro_set;
3483	int slot;
3484	struct extent_buffer *l;
3485	struct btrfs_key key;
3486	struct btrfs_key found_key;
3487	struct btrfs_block_group_cache *cache;
3488	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3489
3490	path = btrfs_alloc_path();
3491	if (!path)
3492		return -ENOMEM;
3493
3494	path->reada = READA_FORWARD;
3495	path->search_commit_root = 1;
3496	path->skip_locking = 1;
3497
3498	key.objectid = scrub_dev->devid;
3499	key.offset = 0ull;
3500	key.type = BTRFS_DEV_EXTENT_KEY;
3501
3502	while (1) {
 
 
3503		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3504		if (ret < 0)
3505			break;
3506		if (ret > 0) {
3507			if (path->slots[0] >=
3508			    btrfs_header_nritems(path->nodes[0])) {
3509				ret = btrfs_next_leaf(root, path);
3510				if (ret < 0)
3511					break;
3512				if (ret > 0) {
3513					ret = 0;
3514					break;
3515				}
3516			} else {
3517				ret = 0;
3518			}
3519		}
3520
3521		l = path->nodes[0];
3522		slot = path->slots[0];
3523
3524		btrfs_item_key_to_cpu(l, &found_key, slot);
3525
3526		if (found_key.objectid != scrub_dev->devid)
3527			break;
3528
3529		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3530			break;
3531
3532		if (found_key.offset >= end)
3533			break;
3534
3535		if (found_key.offset < key.offset)
3536			break;
3537
3538		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3539		length = btrfs_dev_extent_length(l, dev_extent);
3540
3541		if (found_key.offset + length <= start)
3542			goto skip;
3543
3544		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3545
3546		/*
3547		 * get a reference on the corresponding block group to prevent
3548		 * the chunk from going away while we scrub it
3549		 */
3550		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3551
3552		/* some chunks are removed but not committed to disk yet,
3553		 * continue scrubbing */
3554		if (!cache)
3555			goto skip;
3556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3557		/*
3558		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3559		 * to avoid deadlock caused by:
3560		 * btrfs_inc_block_group_ro()
3561		 * -> btrfs_wait_for_commit()
3562		 * -> btrfs_commit_transaction()
3563		 * -> btrfs_scrub_pause()
3564		 */
3565		scrub_pause_on(fs_info);
3566		ret = btrfs_inc_block_group_ro(cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3567		if (!ret && sctx->is_dev_replace) {
3568			/*
3569			 * If we are doing a device replace wait for any tasks
3570			 * that started delalloc right before we set the block
3571			 * group to RO mode, as they might have just allocated
3572			 * an extent from it or decided they could do a nocow
3573			 * write. And if any such tasks did that, wait for their
3574			 * ordered extents to complete and then commit the
3575			 * current transaction, so that we can later see the new
3576			 * extent items in the extent tree - the ordered extents
3577			 * create delayed data references (for cow writes) when
3578			 * they complete, which will be run and insert the
3579			 * corresponding extent items into the extent tree when
3580			 * we commit the transaction they used when running
3581			 * inode.c:btrfs_finish_ordered_io(). We later use
3582			 * the commit root of the extent tree to find extents
3583			 * to copy from the srcdev into the tgtdev, and we don't
3584			 * want to miss any new extents.
3585			 */
3586			btrfs_wait_block_group_reservations(cache);
3587			btrfs_wait_nocow_writers(cache);
3588			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3589						       cache->key.objectid,
3590						       cache->key.offset);
3591			if (ret > 0) {
3592				struct btrfs_trans_handle *trans;
3593
3594				trans = btrfs_join_transaction(root);
3595				if (IS_ERR(trans))
3596					ret = PTR_ERR(trans);
3597				else
3598					ret = btrfs_commit_transaction(trans);
3599				if (ret) {
3600					scrub_pause_off(fs_info);
3601					btrfs_put_block_group(cache);
3602					break;
3603				}
3604			}
3605		}
3606		scrub_pause_off(fs_info);
3607
3608		if (ret == 0) {
3609			ro_set = 1;
3610		} else if (ret == -ENOSPC) {
3611			/*
3612			 * btrfs_inc_block_group_ro return -ENOSPC when it
3613			 * failed in creating new chunk for metadata.
3614			 * It is not a problem for scrub/replace, because
3615			 * metadata are always cowed, and our scrub paused
3616			 * commit_transactions.
3617			 */
3618			ro_set = 0;
 
 
 
 
 
 
 
3619		} else {
3620			btrfs_warn(fs_info,
3621				   "failed setting block group ro: %d", ret);
 
3622			btrfs_put_block_group(cache);
 
3623			break;
3624		}
3625
3626		down_write(&fs_info->dev_replace.rwsem);
3627		dev_replace->cursor_right = found_key.offset + length;
 
 
 
 
 
 
 
 
 
 
 
 
3628		dev_replace->cursor_left = found_key.offset;
3629		dev_replace->item_needs_writeback = 1;
3630		up_write(&dev_replace->rwsem);
3631
3632		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3633				  found_key.offset, cache);
3634
3635		/*
3636		 * flush, submit all pending read and write bios, afterwards
3637		 * wait for them.
3638		 * Note that in the dev replace case, a read request causes
3639		 * write requests that are submitted in the read completion
3640		 * worker. Therefore in the current situation, it is required
3641		 * that all write requests are flushed, so that all read and
3642		 * write requests are really completed when bios_in_flight
3643		 * changes to 0.
3644		 */
3645		sctx->flush_all_writes = true;
3646		scrub_submit(sctx);
3647		mutex_lock(&sctx->wr_lock);
3648		scrub_wr_submit(sctx);
3649		mutex_unlock(&sctx->wr_lock);
3650
3651		wait_event(sctx->list_wait,
3652			   atomic_read(&sctx->bios_in_flight) == 0);
3653
3654		scrub_pause_on(fs_info);
3655
3656		/*
3657		 * must be called before we decrease @scrub_paused.
3658		 * make sure we don't block transaction commit while
3659		 * we are waiting pending workers finished.
3660		 */
3661		wait_event(sctx->list_wait,
3662			   atomic_read(&sctx->workers_pending) == 0);
3663		sctx->flush_all_writes = false;
3664
3665		scrub_pause_off(fs_info);
3666
3667		down_write(&fs_info->dev_replace.rwsem);
 
 
 
 
 
3668		dev_replace->cursor_left = dev_replace->cursor_right;
3669		dev_replace->item_needs_writeback = 1;
3670		up_write(&fs_info->dev_replace.rwsem);
3671
3672		if (ro_set)
3673			btrfs_dec_block_group_ro(cache);
3674
3675		/*
3676		 * We might have prevented the cleaner kthread from deleting
3677		 * this block group if it was already unused because we raced
3678		 * and set it to RO mode first. So add it back to the unused
3679		 * list, otherwise it might not ever be deleted unless a manual
3680		 * balance is triggered or it becomes used and unused again.
3681		 */
3682		spin_lock(&cache->lock);
3683		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3684		    btrfs_block_group_used(&cache->item) == 0) {
3685			spin_unlock(&cache->lock);
3686			btrfs_mark_bg_unused(cache);
 
 
 
 
3687		} else {
3688			spin_unlock(&cache->lock);
3689		}
3690
 
3691		btrfs_put_block_group(cache);
3692		if (ret)
3693			break;
3694		if (sctx->is_dev_replace &&
3695		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3696			ret = -EIO;
3697			break;
3698		}
3699		if (sctx->stat.malloc_errors > 0) {
3700			ret = -ENOMEM;
3701			break;
3702		}
3703skip:
3704		key.offset = found_key.offset + length;
3705		btrfs_release_path(path);
3706	}
3707
3708	btrfs_free_path(path);
3709
3710	return ret;
3711}
3712
3713static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3714					   struct btrfs_device *scrub_dev)
3715{
3716	int	i;
3717	u64	bytenr;
3718	u64	gen;
3719	int	ret;
3720	struct btrfs_fs_info *fs_info = sctx->fs_info;
3721
3722	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3723		return -EIO;
3724
3725	/* Seed devices of a new filesystem has their own generation. */
3726	if (scrub_dev->fs_devices != fs_info->fs_devices)
3727		gen = scrub_dev->generation;
3728	else
3729		gen = fs_info->last_trans_committed;
3730
3731	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3732		bytenr = btrfs_sb_offset(i);
3733		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3734		    scrub_dev->commit_total_bytes)
3735			break;
 
 
3736
3737		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3738				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3739				  NULL, 1, bytenr);
3740		if (ret)
3741			return ret;
3742	}
3743	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3744
3745	return 0;
3746}
3747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3748/*
3749 * get a reference count on fs_info->scrub_workers. start worker if necessary
3750 */
3751static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3752						int is_dev_replace)
3753{
 
 
 
3754	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3755	int max_active = fs_info->thread_pool_size;
 
3756
3757	lockdep_assert_held(&fs_info->scrub_lock);
 
3758
3759	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3760		ASSERT(fs_info->scrub_workers == NULL);
3761		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3762				flags, is_dev_replace ? 1 : max_active, 4);
3763		if (!fs_info->scrub_workers)
3764			goto fail_scrub_workers;
3765
3766		ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3767		fs_info->scrub_wr_completion_workers =
3768			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3769					      max_active, 2);
3770		if (!fs_info->scrub_wr_completion_workers)
3771			goto fail_scrub_wr_completion_workers;
3772
3773		ASSERT(fs_info->scrub_parity_workers == NULL);
3774		fs_info->scrub_parity_workers =
3775			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3776					      max_active, 2);
3777		if (!fs_info->scrub_parity_workers)
3778			goto fail_scrub_parity_workers;
3779
 
 
 
 
 
 
 
 
3780		refcount_set(&fs_info->scrub_workers_refcnt, 1);
3781	} else {
3782		refcount_inc(&fs_info->scrub_workers_refcnt);
3783	}
3784	return 0;
 
 
3785
 
 
3786fail_scrub_parity_workers:
3787	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3788fail_scrub_wr_completion_workers:
3789	btrfs_destroy_workqueue(fs_info->scrub_workers);
3790fail_scrub_workers:
3791	return -ENOMEM;
3792}
3793
3794int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3795		    u64 end, struct btrfs_scrub_progress *progress,
3796		    int readonly, int is_dev_replace)
3797{
 
3798	struct scrub_ctx *sctx;
3799	int ret;
3800	struct btrfs_device *dev;
3801	unsigned int nofs_flag;
3802	struct btrfs_workqueue *scrub_workers = NULL;
3803	struct btrfs_workqueue *scrub_wr_comp = NULL;
3804	struct btrfs_workqueue *scrub_parity = NULL;
3805
3806	if (btrfs_fs_closing(fs_info))
3807		return -EAGAIN;
3808
3809	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3810		/*
3811		 * in this case scrub is unable to calculate the checksum
3812		 * the way scrub is implemented. Do not handle this
3813		 * situation at all because it won't ever happen.
3814		 */
3815		btrfs_err(fs_info,
3816			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3817		       fs_info->nodesize,
3818		       BTRFS_STRIPE_LEN);
3819		return -EINVAL;
3820	}
3821
3822	if (fs_info->sectorsize != PAGE_SIZE) {
3823		/* not supported for data w/o checksums */
3824		btrfs_err_rl(fs_info,
3825			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3826		       fs_info->sectorsize, PAGE_SIZE);
3827		return -EINVAL;
3828	}
3829
3830	if (fs_info->nodesize >
3831	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3832	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3833		/*
3834		 * would exhaust the array bounds of pagev member in
3835		 * struct scrub_block
3836		 */
3837		btrfs_err(fs_info,
3838			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3839		       fs_info->nodesize,
3840		       SCRUB_MAX_PAGES_PER_BLOCK,
3841		       fs_info->sectorsize,
3842		       SCRUB_MAX_PAGES_PER_BLOCK);
3843		return -EINVAL;
3844	}
3845
3846	/* Allocate outside of device_list_mutex */
3847	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3848	if (IS_ERR(sctx))
3849		return PTR_ERR(sctx);
3850
 
 
 
 
3851	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3852	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3853	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3854		     !is_dev_replace)) {
3855		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3856		ret = -ENODEV;
3857		goto out_free_ctx;
3858	}
3859
3860	if (!is_dev_replace && !readonly &&
3861	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3862		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3863		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3864				rcu_str_deref(dev->name));
 
3865		ret = -EROFS;
3866		goto out_free_ctx;
3867	}
3868
3869	mutex_lock(&fs_info->scrub_lock);
3870	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3871	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3872		mutex_unlock(&fs_info->scrub_lock);
3873		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3874		ret = -EIO;
3875		goto out_free_ctx;
3876	}
3877
3878	down_read(&fs_info->dev_replace.rwsem);
3879	if (dev->scrub_ctx ||
3880	    (!is_dev_replace &&
3881	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3882		up_read(&fs_info->dev_replace.rwsem);
3883		mutex_unlock(&fs_info->scrub_lock);
3884		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3885		ret = -EINPROGRESS;
3886		goto out_free_ctx;
3887	}
3888	up_read(&fs_info->dev_replace.rwsem);
3889
3890	ret = scrub_workers_get(fs_info, is_dev_replace);
3891	if (ret) {
3892		mutex_unlock(&fs_info->scrub_lock);
3893		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3894		goto out_free_ctx;
3895	}
3896
3897	sctx->readonly = readonly;
3898	dev->scrub_ctx = sctx;
3899	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3900
3901	/*
3902	 * checking @scrub_pause_req here, we can avoid
3903	 * race between committing transaction and scrubbing.
3904	 */
3905	__scrub_blocked_if_needed(fs_info);
3906	atomic_inc(&fs_info->scrubs_running);
3907	mutex_unlock(&fs_info->scrub_lock);
3908
3909	/*
3910	 * In order to avoid deadlock with reclaim when there is a transaction
3911	 * trying to pause scrub, make sure we use GFP_NOFS for all the
3912	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3913	 * invoked by our callees. The pausing request is done when the
3914	 * transaction commit starts, and it blocks the transaction until scrub
3915	 * is paused (done at specific points at scrub_stripe() or right above
3916	 * before incrementing fs_info->scrubs_running).
3917	 */
3918	nofs_flag = memalloc_nofs_save();
3919	if (!is_dev_replace) {
 
 
 
 
 
 
3920		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3921		/*
3922		 * by holding device list mutex, we can
3923		 * kick off writing super in log tree sync.
3924		 */
3925		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3926		ret = scrub_supers(sctx, dev);
3927		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
3928	}
3929
3930	if (!ret)
3931		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3932	memalloc_nofs_restore(nofs_flag);
3933
3934	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3935	atomic_dec(&fs_info->scrubs_running);
3936	wake_up(&fs_info->scrub_pause_wait);
3937
3938	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3939
3940	if (progress)
3941		memcpy(progress, &sctx->stat, sizeof(*progress));
3942
3943	if (!is_dev_replace)
3944		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3945			ret ? "not finished" : "finished", devid, ret);
3946
3947	mutex_lock(&fs_info->scrub_lock);
3948	dev->scrub_ctx = NULL;
3949	if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3950		scrub_workers = fs_info->scrub_workers;
3951		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3952		scrub_parity = fs_info->scrub_parity_workers;
3953
3954		fs_info->scrub_workers = NULL;
3955		fs_info->scrub_wr_completion_workers = NULL;
3956		fs_info->scrub_parity_workers = NULL;
3957	}
3958	mutex_unlock(&fs_info->scrub_lock);
3959
3960	btrfs_destroy_workqueue(scrub_workers);
3961	btrfs_destroy_workqueue(scrub_wr_comp);
3962	btrfs_destroy_workqueue(scrub_parity);
3963	scrub_put_ctx(sctx);
3964
3965	return ret;
 
 
 
 
 
3966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3967out_free_ctx:
3968	scrub_free_ctx(sctx);
3969
3970	return ret;
3971}
3972
3973void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3974{
3975	mutex_lock(&fs_info->scrub_lock);
3976	atomic_inc(&fs_info->scrub_pause_req);
3977	while (atomic_read(&fs_info->scrubs_paused) !=
3978	       atomic_read(&fs_info->scrubs_running)) {
3979		mutex_unlock(&fs_info->scrub_lock);
3980		wait_event(fs_info->scrub_pause_wait,
3981			   atomic_read(&fs_info->scrubs_paused) ==
3982			   atomic_read(&fs_info->scrubs_running));
3983		mutex_lock(&fs_info->scrub_lock);
3984	}
3985	mutex_unlock(&fs_info->scrub_lock);
3986}
3987
3988void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3989{
3990	atomic_dec(&fs_info->scrub_pause_req);
3991	wake_up(&fs_info->scrub_pause_wait);
3992}
3993
3994int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3995{
3996	mutex_lock(&fs_info->scrub_lock);
3997	if (!atomic_read(&fs_info->scrubs_running)) {
3998		mutex_unlock(&fs_info->scrub_lock);
3999		return -ENOTCONN;
4000	}
4001
4002	atomic_inc(&fs_info->scrub_cancel_req);
4003	while (atomic_read(&fs_info->scrubs_running)) {
4004		mutex_unlock(&fs_info->scrub_lock);
4005		wait_event(fs_info->scrub_pause_wait,
4006			   atomic_read(&fs_info->scrubs_running) == 0);
4007		mutex_lock(&fs_info->scrub_lock);
4008	}
4009	atomic_dec(&fs_info->scrub_cancel_req);
4010	mutex_unlock(&fs_info->scrub_lock);
4011
4012	return 0;
4013}
4014
4015int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4016{
4017	struct btrfs_fs_info *fs_info = dev->fs_info;
4018	struct scrub_ctx *sctx;
4019
4020	mutex_lock(&fs_info->scrub_lock);
4021	sctx = dev->scrub_ctx;
4022	if (!sctx) {
4023		mutex_unlock(&fs_info->scrub_lock);
4024		return -ENOTCONN;
4025	}
4026	atomic_inc(&sctx->cancel_req);
4027	while (dev->scrub_ctx) {
4028		mutex_unlock(&fs_info->scrub_lock);
4029		wait_event(fs_info->scrub_pause_wait,
4030			   dev->scrub_ctx == NULL);
4031		mutex_lock(&fs_info->scrub_lock);
4032	}
4033	mutex_unlock(&fs_info->scrub_lock);
4034
4035	return 0;
4036}
4037
4038int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4039			 struct btrfs_scrub_progress *progress)
4040{
 
4041	struct btrfs_device *dev;
4042	struct scrub_ctx *sctx = NULL;
4043
4044	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4045	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4046	if (dev)
4047		sctx = dev->scrub_ctx;
4048	if (sctx)
4049		memcpy(progress, &sctx->stat, sizeof(*progress));
4050	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4051
4052	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4053}
4054
4055static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4056			       u64 extent_logical, u64 extent_len,
4057			       u64 *extent_physical,
4058			       struct btrfs_device **extent_dev,
4059			       int *extent_mirror_num)
4060{
4061	u64 mapped_length;
4062	struct btrfs_bio *bbio = NULL;
4063	int ret;
4064
4065	mapped_length = extent_len;
4066	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4067			      &mapped_length, &bbio, 0);
4068	if (ret || !bbio || mapped_length < extent_len ||
4069	    !bbio->stripes[0].dev->bdev) {
4070		btrfs_put_bbio(bbio);
4071		return;
4072	}
4073
4074	*extent_physical = bbio->stripes[0].physical;
4075	*extent_mirror_num = bbio->mirror_num;
4076	*extent_dev = bbio->stripes[0].dev;
4077	btrfs_put_bbio(bbio);
4078}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "discard.h"
  12#include "volumes.h"
  13#include "disk-io.h"
  14#include "ordered-data.h"
  15#include "transaction.h"
  16#include "backref.h"
  17#include "extent_io.h"
  18#include "dev-replace.h"
  19#include "check-integrity.h"
 
  20#include "raid56.h"
  21#include "block-group.h"
  22#include "zoned.h"
  23#include "fs.h"
  24#include "accessors.h"
  25#include "file-item.h"
  26#include "scrub.h"
  27
  28/*
  29 * This is only the first step towards a full-features scrub. It reads all
  30 * extent and super block and verifies the checksums. In case a bad checksum
  31 * is found or the extent cannot be read, good data will be written back if
  32 * any can be found.
  33 *
  34 * Future enhancements:
  35 *  - In case an unrepairable extent is encountered, track which files are
  36 *    affected and report them
  37 *  - track and record media errors, throw out bad devices
  38 *  - add a mode to also read unallocated space
  39 */
  40
  41struct scrub_block;
  42struct scrub_ctx;
  43
  44/*
  45 * The following three values only influence the performance.
  46 *
  47 * The last one configures the number of parallel and outstanding I/O
  48 * operations. The first one configures an upper limit for the number
  49 * of (dynamically allocated) pages that are added to a bio.
  50 */
  51#define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
  52#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
 
  53
  54/*
  55 * The following value times PAGE_SIZE needs to be large enough to match the
  56 * largest node/leaf/sector size that shall be supported.
 
  57 */
  58#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
  59
  60#define SCRUB_MAX_PAGES			(DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))
  61
  62/*
  63 * Maximum number of mirrors that can be available for all profiles counting
  64 * the target device of dev-replace as one. During an active device replace
  65 * procedure, the target device of the copy operation is a mirror for the
  66 * filesystem data as well that can be used to read data in order to repair
  67 * read errors on other disks.
  68 *
  69 * Current value is derived from RAID1C4 with 4 copies.
  70 */
  71#define BTRFS_MAX_MIRRORS (4 + 1)
  72
  73struct scrub_recover {
  74	refcount_t		refs;
  75	struct btrfs_io_context	*bioc;
  76	u64			map_length;
  77};
  78
  79struct scrub_sector {
  80	struct scrub_block	*sblock;
 
 
  81	struct list_head	list;
  82	u64			flags;  /* extent flags */
  83	u64			generation;
  84	/* Offset in bytes to @sblock. */
  85	u32			offset;
 
  86	atomic_t		refs;
  87	unsigned int		have_csum:1;
  88	unsigned int		io_error:1;
 
 
 
  89	u8			csum[BTRFS_CSUM_SIZE];
  90
  91	struct scrub_recover	*recover;
  92};
  93
  94struct scrub_bio {
  95	int			index;
  96	struct scrub_ctx	*sctx;
  97	struct btrfs_device	*dev;
  98	struct bio		*bio;
  99	blk_status_t		status;
 100	u64			logical;
 101	u64			physical;
 102	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
 103	int			sector_count;
 
 
 
 
 104	int			next_free;
 105	struct work_struct	work;
 106};
 107
 108struct scrub_block {
 109	/*
 110	 * Each page will have its page::private used to record the logical
 111	 * bytenr.
 112	 */
 113	struct page		*pages[SCRUB_MAX_PAGES];
 114	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
 115	struct btrfs_device	*dev;
 116	/* Logical bytenr of the sblock */
 117	u64			logical;
 118	u64			physical;
 119	u64			physical_for_dev_replace;
 120	/* Length of sblock in bytes */
 121	u32			len;
 122	int			sector_count;
 123	int			mirror_num;
 124
 125	atomic_t		outstanding_sectors;
 126	refcount_t		refs; /* free mem on transition to zero */
 127	struct scrub_ctx	*sctx;
 128	struct scrub_parity	*sparity;
 129	struct {
 130		unsigned int	header_error:1;
 131		unsigned int	checksum_error:1;
 132		unsigned int	no_io_error_seen:1;
 133		unsigned int	generation_error:1; /* also sets header_error */
 134
 135		/* The following is for the data used to check parity */
 136		/* It is for the data with checksum */
 137		unsigned int	data_corrected:1;
 138	};
 139	struct work_struct	work;
 140};
 141
 142/* Used for the chunks with parity stripe such RAID5/6 */
 143struct scrub_parity {
 144	struct scrub_ctx	*sctx;
 145
 146	struct btrfs_device	*scrub_dev;
 147
 148	u64			logic_start;
 149
 150	u64			logic_end;
 151
 152	int			nsectors;
 153
 154	u32			stripe_len;
 155
 156	refcount_t		refs;
 157
 158	struct list_head	sectors_list;
 159
 160	/* Work of parity check and repair */
 161	struct work_struct	work;
 162
 163	/* Mark the parity blocks which have data */
 164	unsigned long		dbitmap;
 165
 166	/*
 167	 * Mark the parity blocks which have data, but errors happen when
 168	 * read data or check data
 169	 */
 170	unsigned long		ebitmap;
 
 
 171};
 172
 173struct scrub_ctx {
 174	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 175	struct btrfs_fs_info	*fs_info;
 176	int			first_free;
 177	int			curr;
 178	atomic_t		bios_in_flight;
 179	atomic_t		workers_pending;
 180	spinlock_t		list_lock;
 181	wait_queue_head_t	list_wait;
 
 182	struct list_head	csum_list;
 183	atomic_t		cancel_req;
 184	int			readonly;
 185	int			sectors_per_bio;
 186
 187	/* State of IO submission throttling affecting the associated device */
 188	ktime_t			throttle_deadline;
 189	u64			throttle_sent;
 190
 191	int			is_dev_replace;
 192	u64			write_pointer;
 193
 194	struct scrub_bio        *wr_curr_bio;
 195	struct mutex            wr_lock;
 
 196	struct btrfs_device     *wr_tgtdev;
 197	bool                    flush_all_writes;
 198
 199	/*
 200	 * statistics
 201	 */
 202	struct btrfs_scrub_progress stat;
 203	spinlock_t		stat_lock;
 204
 205	/*
 206	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 207	 * decrement bios_in_flight and workers_pending and then do a wakeup
 208	 * on the list_wait wait queue. We must ensure the main scrub task
 209	 * doesn't free the scrub context before or while the workers are
 210	 * doing the wakeup() call.
 211	 */
 212	refcount_t              refs;
 213};
 214
 215struct scrub_warning {
 216	struct btrfs_path	*path;
 217	u64			extent_item_size;
 218	const char		*errstr;
 219	u64			physical;
 220	u64			logical;
 221	struct btrfs_device	*dev;
 222};
 223
 224struct full_stripe_lock {
 225	struct rb_node node;
 226	u64 logical;
 227	u64 refs;
 228	struct mutex mutex;
 229};
 230
 231#ifndef CONFIG_64BIT
 232/* This structure is for archtectures whose (void *) is smaller than u64 */
 233struct scrub_page_private {
 234	u64 logical;
 235};
 236#endif
 237
 238static int attach_scrub_page_private(struct page *page, u64 logical)
 239{
 240#ifdef CONFIG_64BIT
 241	attach_page_private(page, (void *)logical);
 242	return 0;
 243#else
 244	struct scrub_page_private *spp;
 245
 246	spp = kmalloc(sizeof(*spp), GFP_KERNEL);
 247	if (!spp)
 248		return -ENOMEM;
 249	spp->logical = logical;
 250	attach_page_private(page, (void *)spp);
 251	return 0;
 252#endif
 253}
 254
 255static void detach_scrub_page_private(struct page *page)
 256{
 257#ifdef CONFIG_64BIT
 258	detach_page_private(page);
 259	return;
 260#else
 261	struct scrub_page_private *spp;
 262
 263	spp = detach_page_private(page);
 264	kfree(spp);
 265	return;
 266#endif
 267}
 268
 269static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx,
 270					     struct btrfs_device *dev,
 271					     u64 logical, u64 physical,
 272					     u64 physical_for_dev_replace,
 273					     int mirror_num)
 274{
 275	struct scrub_block *sblock;
 276
 277	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
 278	if (!sblock)
 279		return NULL;
 280	refcount_set(&sblock->refs, 1);
 281	sblock->sctx = sctx;
 282	sblock->logical = logical;
 283	sblock->physical = physical;
 284	sblock->physical_for_dev_replace = physical_for_dev_replace;
 285	sblock->dev = dev;
 286	sblock->mirror_num = mirror_num;
 287	sblock->no_io_error_seen = 1;
 288	/*
 289	 * Scrub_block::pages will be allocated at alloc_scrub_sector() when
 290	 * the corresponding page is not allocated.
 291	 */
 292	return sblock;
 293}
 294
 295/*
 296 * Allocate a new scrub sector and attach it to @sblock.
 297 *
 298 * Will also allocate new pages for @sblock if needed.
 299 */
 300static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
 301					       u64 logical)
 302{
 303	const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
 304	struct scrub_sector *ssector;
 305
 306	/* We must never have scrub_block exceed U32_MAX in size. */
 307	ASSERT(logical - sblock->logical < U32_MAX);
 308
 309	ssector = kzalloc(sizeof(*ssector), GFP_KERNEL);
 310	if (!ssector)
 311		return NULL;
 312
 313	/* Allocate a new page if the slot is not allocated */
 314	if (!sblock->pages[page_index]) {
 315		int ret;
 316
 317		sblock->pages[page_index] = alloc_page(GFP_KERNEL);
 318		if (!sblock->pages[page_index]) {
 319			kfree(ssector);
 320			return NULL;
 321		}
 322		ret = attach_scrub_page_private(sblock->pages[page_index],
 323				sblock->logical + (page_index << PAGE_SHIFT));
 324		if (ret < 0) {
 325			kfree(ssector);
 326			__free_page(sblock->pages[page_index]);
 327			sblock->pages[page_index] = NULL;
 328			return NULL;
 329		}
 330	}
 331
 332	atomic_set(&ssector->refs, 1);
 333	ssector->sblock = sblock;
 334	/* The sector to be added should not be used */
 335	ASSERT(sblock->sectors[sblock->sector_count] == NULL);
 336	ssector->offset = logical - sblock->logical;
 337
 338	/* The sector count must be smaller than the limit */
 339	ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);
 340
 341	sblock->sectors[sblock->sector_count] = ssector;
 342	sblock->sector_count++;
 343	sblock->len += sblock->sctx->fs_info->sectorsize;
 344
 345	return ssector;
 346}
 347
 348static struct page *scrub_sector_get_page(struct scrub_sector *ssector)
 349{
 350	struct scrub_block *sblock = ssector->sblock;
 351	pgoff_t index;
 352	/*
 353	 * When calling this function, ssector must be alreaday attached to the
 354	 * parent sblock.
 355	 */
 356	ASSERT(sblock);
 357
 358	/* The range should be inside the sblock range */
 359	ASSERT(ssector->offset < sblock->len);
 360
 361	index = ssector->offset >> PAGE_SHIFT;
 362	ASSERT(index < SCRUB_MAX_PAGES);
 363	ASSERT(sblock->pages[index]);
 364	ASSERT(PagePrivate(sblock->pages[index]));
 365	return sblock->pages[index];
 366}
 367
 368static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector)
 369{
 370	struct scrub_block *sblock = ssector->sblock;
 371
 372	/*
 373	 * When calling this function, ssector must be already attached to the
 374	 * parent sblock.
 375	 */
 376	ASSERT(sblock);
 377
 378	/* The range should be inside the sblock range */
 379	ASSERT(ssector->offset < sblock->len);
 380
 381	return offset_in_page(ssector->offset);
 382}
 383
 384static char *scrub_sector_get_kaddr(struct scrub_sector *ssector)
 385{
 386	return page_address(scrub_sector_get_page(ssector)) +
 387	       scrub_sector_get_page_offset(ssector);
 388}
 389
 390static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector,
 391				unsigned int len)
 392{
 393	return bio_add_page(bio, scrub_sector_get_page(ssector), len,
 394			    scrub_sector_get_page_offset(ssector));
 395}
 396
 397static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 398				     struct scrub_block *sblocks_for_recheck[]);
 399static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 400				struct scrub_block *sblock,
 401				int retry_failed_mirror);
 402static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 403static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 404					     struct scrub_block *sblock_good);
 405static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
 406					    struct scrub_block *sblock_good,
 407					    int sector_num, int force_write);
 408static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 409static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
 410					     int sector_num);
 411static int scrub_checksum_data(struct scrub_block *sblock);
 412static int scrub_checksum_tree_block(struct scrub_block *sblock);
 413static int scrub_checksum_super(struct scrub_block *sblock);
 
 414static void scrub_block_put(struct scrub_block *sblock);
 415static void scrub_sector_get(struct scrub_sector *sector);
 416static void scrub_sector_put(struct scrub_sector *sector);
 417static void scrub_parity_get(struct scrub_parity *sparity);
 418static void scrub_parity_put(struct scrub_parity *sparity);
 419static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
 420			 u64 physical, struct btrfs_device *dev, u64 flags,
 421			 u64 gen, int mirror_num, u8 *csum,
 422			 u64 physical_for_dev_replace);
 
 
 423static void scrub_bio_end_io(struct bio *bio);
 424static void scrub_bio_end_io_worker(struct work_struct *work);
 425static void scrub_block_complete(struct scrub_block *sblock);
 426static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
 427				 u64 extent_logical, u32 extent_len,
 428				 u64 *extent_physical,
 429				 struct btrfs_device **extent_dev,
 430				 int *extent_mirror_num);
 431static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
 432				      struct scrub_sector *sector);
 433static void scrub_wr_submit(struct scrub_ctx *sctx);
 434static void scrub_wr_bio_end_io(struct bio *bio);
 435static void scrub_wr_bio_end_io_worker(struct work_struct *work);
 
 
 436static void scrub_put_ctx(struct scrub_ctx *sctx);
 437
 438static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
 439{
 440	return sector->recover &&
 441	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 442}
 443
 444static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 445{
 446	refcount_inc(&sctx->refs);
 447	atomic_inc(&sctx->bios_in_flight);
 448}
 449
 450static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 451{
 452	atomic_dec(&sctx->bios_in_flight);
 453	wake_up(&sctx->list_wait);
 454	scrub_put_ctx(sctx);
 455}
 456
 457static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 458{
 459	while (atomic_read(&fs_info->scrub_pause_req)) {
 460		mutex_unlock(&fs_info->scrub_lock);
 461		wait_event(fs_info->scrub_pause_wait,
 462		   atomic_read(&fs_info->scrub_pause_req) == 0);
 463		mutex_lock(&fs_info->scrub_lock);
 464	}
 465}
 466
 467static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 468{
 469	atomic_inc(&fs_info->scrubs_paused);
 470	wake_up(&fs_info->scrub_pause_wait);
 471}
 472
 473static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 474{
 475	mutex_lock(&fs_info->scrub_lock);
 476	__scrub_blocked_if_needed(fs_info);
 477	atomic_dec(&fs_info->scrubs_paused);
 478	mutex_unlock(&fs_info->scrub_lock);
 479
 480	wake_up(&fs_info->scrub_pause_wait);
 481}
 482
 483static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 484{
 485	scrub_pause_on(fs_info);
 486	scrub_pause_off(fs_info);
 487}
 488
 489/*
 490 * Insert new full stripe lock into full stripe locks tree
 491 *
 492 * Return pointer to existing or newly inserted full_stripe_lock structure if
 493 * everything works well.
 494 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 495 *
 496 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 497 * function
 498 */
 499static struct full_stripe_lock *insert_full_stripe_lock(
 500		struct btrfs_full_stripe_locks_tree *locks_root,
 501		u64 fstripe_logical)
 502{
 503	struct rb_node **p;
 504	struct rb_node *parent = NULL;
 505	struct full_stripe_lock *entry;
 506	struct full_stripe_lock *ret;
 507
 508	lockdep_assert_held(&locks_root->lock);
 509
 510	p = &locks_root->root.rb_node;
 511	while (*p) {
 512		parent = *p;
 513		entry = rb_entry(parent, struct full_stripe_lock, node);
 514		if (fstripe_logical < entry->logical) {
 515			p = &(*p)->rb_left;
 516		} else if (fstripe_logical > entry->logical) {
 517			p = &(*p)->rb_right;
 518		} else {
 519			entry->refs++;
 520			return entry;
 521		}
 522	}
 523
 524	/*
 525	 * Insert new lock.
 526	 */
 527	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 528	if (!ret)
 529		return ERR_PTR(-ENOMEM);
 530	ret->logical = fstripe_logical;
 531	ret->refs = 1;
 532	mutex_init(&ret->mutex);
 533
 534	rb_link_node(&ret->node, parent, p);
 535	rb_insert_color(&ret->node, &locks_root->root);
 536	return ret;
 537}
 538
 539/*
 540 * Search for a full stripe lock of a block group
 541 *
 542 * Return pointer to existing full stripe lock if found
 543 * Return NULL if not found
 544 */
 545static struct full_stripe_lock *search_full_stripe_lock(
 546		struct btrfs_full_stripe_locks_tree *locks_root,
 547		u64 fstripe_logical)
 548{
 549	struct rb_node *node;
 550	struct full_stripe_lock *entry;
 551
 552	lockdep_assert_held(&locks_root->lock);
 553
 554	node = locks_root->root.rb_node;
 555	while (node) {
 556		entry = rb_entry(node, struct full_stripe_lock, node);
 557		if (fstripe_logical < entry->logical)
 558			node = node->rb_left;
 559		else if (fstripe_logical > entry->logical)
 560			node = node->rb_right;
 561		else
 562			return entry;
 563	}
 564	return NULL;
 565}
 566
 567/*
 568 * Helper to get full stripe logical from a normal bytenr.
 569 *
 570 * Caller must ensure @cache is a RAID56 block group.
 571 */
 572static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
 
 573{
 574	u64 ret;
 575
 576	/*
 577	 * Due to chunk item size limit, full stripe length should not be
 578	 * larger than U32_MAX. Just a sanity check here.
 579	 */
 580	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 581
 582	/*
 583	 * round_down() can only handle power of 2, while RAID56 full
 584	 * stripe length can be 64KiB * n, so we need to manually round down.
 585	 */
 586	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
 587			cache->full_stripe_len + cache->start;
 588	return ret;
 589}
 590
 591/*
 592 * Lock a full stripe to avoid concurrency of recovery and read
 593 *
 594 * It's only used for profiles with parities (RAID5/6), for other profiles it
 595 * does nothing.
 596 *
 597 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 598 * So caller must call unlock_full_stripe() at the same context.
 599 *
 600 * Return <0 if encounters error.
 601 */
 602static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 603			    bool *locked_ret)
 604{
 605	struct btrfs_block_group *bg_cache;
 606	struct btrfs_full_stripe_locks_tree *locks_root;
 607	struct full_stripe_lock *existing;
 608	u64 fstripe_start;
 609	int ret = 0;
 610
 611	*locked_ret = false;
 612	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 613	if (!bg_cache) {
 614		ASSERT(0);
 615		return -ENOENT;
 616	}
 617
 618	/* Profiles not based on parity don't need full stripe lock */
 619	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 620		goto out;
 621	locks_root = &bg_cache->full_stripe_locks_root;
 622
 623	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 624
 625	/* Now insert the full stripe lock */
 626	mutex_lock(&locks_root->lock);
 627	existing = insert_full_stripe_lock(locks_root, fstripe_start);
 628	mutex_unlock(&locks_root->lock);
 629	if (IS_ERR(existing)) {
 630		ret = PTR_ERR(existing);
 631		goto out;
 632	}
 633	mutex_lock(&existing->mutex);
 634	*locked_ret = true;
 635out:
 636	btrfs_put_block_group(bg_cache);
 637	return ret;
 638}
 639
 640/*
 641 * Unlock a full stripe.
 642 *
 643 * NOTE: Caller must ensure it's the same context calling corresponding
 644 * lock_full_stripe().
 645 *
 646 * Return 0 if we unlock full stripe without problem.
 647 * Return <0 for error
 648 */
 649static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 650			      bool locked)
 651{
 652	struct btrfs_block_group *bg_cache;
 653	struct btrfs_full_stripe_locks_tree *locks_root;
 654	struct full_stripe_lock *fstripe_lock;
 655	u64 fstripe_start;
 656	bool freeit = false;
 657	int ret = 0;
 658
 659	/* If we didn't acquire full stripe lock, no need to continue */
 660	if (!locked)
 661		return 0;
 662
 663	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 664	if (!bg_cache) {
 665		ASSERT(0);
 666		return -ENOENT;
 667	}
 668	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 669		goto out;
 670
 671	locks_root = &bg_cache->full_stripe_locks_root;
 672	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 673
 674	mutex_lock(&locks_root->lock);
 675	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 676	/* Unpaired unlock_full_stripe() detected */
 677	if (!fstripe_lock) {
 678		WARN_ON(1);
 679		ret = -ENOENT;
 680		mutex_unlock(&locks_root->lock);
 681		goto out;
 682	}
 683
 684	if (fstripe_lock->refs == 0) {
 685		WARN_ON(1);
 686		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 687			fstripe_lock->logical);
 688	} else {
 689		fstripe_lock->refs--;
 690	}
 691
 692	if (fstripe_lock->refs == 0) {
 693		rb_erase(&fstripe_lock->node, &locks_root->root);
 694		freeit = true;
 695	}
 696	mutex_unlock(&locks_root->lock);
 697
 698	mutex_unlock(&fstripe_lock->mutex);
 699	if (freeit)
 700		kfree(fstripe_lock);
 701out:
 702	btrfs_put_block_group(bg_cache);
 703	return ret;
 704}
 705
 706static void scrub_free_csums(struct scrub_ctx *sctx)
 707{
 708	while (!list_empty(&sctx->csum_list)) {
 709		struct btrfs_ordered_sum *sum;
 710		sum = list_first_entry(&sctx->csum_list,
 711				       struct btrfs_ordered_sum, list);
 712		list_del(&sum->list);
 713		kfree(sum);
 714	}
 715}
 716
 717static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 718{
 719	int i;
 720
 721	if (!sctx)
 722		return;
 723
 724	/* this can happen when scrub is cancelled */
 725	if (sctx->curr != -1) {
 726		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 727
 728		for (i = 0; i < sbio->sector_count; i++)
 729			scrub_block_put(sbio->sectors[i]->sblock);
 
 
 730		bio_put(sbio->bio);
 731	}
 732
 733	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 734		struct scrub_bio *sbio = sctx->bios[i];
 735
 736		if (!sbio)
 737			break;
 738		kfree(sbio);
 739	}
 740
 741	kfree(sctx->wr_curr_bio);
 742	scrub_free_csums(sctx);
 743	kfree(sctx);
 744}
 745
 746static void scrub_put_ctx(struct scrub_ctx *sctx)
 747{
 748	if (refcount_dec_and_test(&sctx->refs))
 749		scrub_free_ctx(sctx);
 750}
 751
 752static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 753		struct btrfs_fs_info *fs_info, int is_dev_replace)
 754{
 755	struct scrub_ctx *sctx;
 756	int		i;
 757
 758	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 759	if (!sctx)
 760		goto nomem;
 761	refcount_set(&sctx->refs, 1);
 762	sctx->is_dev_replace = is_dev_replace;
 763	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
 764	sctx->curr = -1;
 765	sctx->fs_info = fs_info;
 766	INIT_LIST_HEAD(&sctx->csum_list);
 767	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 768		struct scrub_bio *sbio;
 769
 770		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 771		if (!sbio)
 772			goto nomem;
 773		sctx->bios[i] = sbio;
 774
 775		sbio->index = i;
 776		sbio->sctx = sctx;
 777		sbio->sector_count = 0;
 778		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
 
 779
 780		if (i != SCRUB_BIOS_PER_SCTX - 1)
 781			sctx->bios[i]->next_free = i + 1;
 782		else
 783			sctx->bios[i]->next_free = -1;
 784	}
 785	sctx->first_free = 0;
 786	atomic_set(&sctx->bios_in_flight, 0);
 787	atomic_set(&sctx->workers_pending, 0);
 788	atomic_set(&sctx->cancel_req, 0);
 
 789
 790	spin_lock_init(&sctx->list_lock);
 791	spin_lock_init(&sctx->stat_lock);
 792	init_waitqueue_head(&sctx->list_wait);
 793	sctx->throttle_deadline = 0;
 794
 795	WARN_ON(sctx->wr_curr_bio != NULL);
 796	mutex_init(&sctx->wr_lock);
 797	sctx->wr_curr_bio = NULL;
 798	if (is_dev_replace) {
 799		WARN_ON(!fs_info->dev_replace.tgtdev);
 
 800		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 801		sctx->flush_all_writes = false;
 802	}
 803
 804	return sctx;
 805
 806nomem:
 807	scrub_free_ctx(sctx);
 808	return ERR_PTR(-ENOMEM);
 809}
 810
 811static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
 812				     u64 root, void *warn_ctx)
 813{
 
 814	u32 nlink;
 815	int ret;
 816	int i;
 817	unsigned nofs_flag;
 818	struct extent_buffer *eb;
 819	struct btrfs_inode_item *inode_item;
 820	struct scrub_warning *swarn = warn_ctx;
 821	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 822	struct inode_fs_paths *ipath = NULL;
 823	struct btrfs_root *local_root;
 
 824	struct btrfs_key key;
 825
 826	local_root = btrfs_get_fs_root(fs_info, root, true);
 
 
 
 827	if (IS_ERR(local_root)) {
 828		ret = PTR_ERR(local_root);
 829		goto err;
 830	}
 831
 832	/*
 833	 * this makes the path point to (inum INODE_ITEM ioff)
 834	 */
 835	key.objectid = inum;
 836	key.type = BTRFS_INODE_ITEM_KEY;
 837	key.offset = 0;
 838
 839	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 840	if (ret) {
 841		btrfs_put_root(local_root);
 842		btrfs_release_path(swarn->path);
 843		goto err;
 844	}
 845
 846	eb = swarn->path->nodes[0];
 847	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 848					struct btrfs_inode_item);
 
 849	nlink = btrfs_inode_nlink(eb, inode_item);
 850	btrfs_release_path(swarn->path);
 851
 852	/*
 853	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 854	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 855	 * not seem to be strictly necessary.
 856	 */
 857	nofs_flag = memalloc_nofs_save();
 858	ipath = init_ipath(4096, local_root, swarn->path);
 859	memalloc_nofs_restore(nofs_flag);
 860	if (IS_ERR(ipath)) {
 861		btrfs_put_root(local_root);
 862		ret = PTR_ERR(ipath);
 863		ipath = NULL;
 864		goto err;
 865	}
 866	ret = paths_from_inode(inum, ipath);
 867
 868	if (ret < 0)
 869		goto err;
 870
 871	/*
 872	 * we deliberately ignore the bit ipath might have been too small to
 873	 * hold all of the paths here
 874	 */
 875	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 876		btrfs_warn_in_rcu(fs_info,
 877"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
 878				  swarn->errstr, swarn->logical,
 879				  btrfs_dev_name(swarn->dev),
 880				  swarn->physical,
 881				  root, inum, offset,
 882				  fs_info->sectorsize, nlink,
 883				  (char *)(unsigned long)ipath->fspath->val[i]);
 884
 885	btrfs_put_root(local_root);
 886	free_ipath(ipath);
 887	return 0;
 888
 889err:
 890	btrfs_warn_in_rcu(fs_info,
 891			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 892			  swarn->errstr, swarn->logical,
 893			  btrfs_dev_name(swarn->dev),
 894			  swarn->physical,
 895			  root, inum, offset, ret);
 896
 897	free_ipath(ipath);
 898	return 0;
 899}
 900
 901static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 902{
 903	struct btrfs_device *dev;
 904	struct btrfs_fs_info *fs_info;
 905	struct btrfs_path *path;
 906	struct btrfs_key found_key;
 907	struct extent_buffer *eb;
 908	struct btrfs_extent_item *ei;
 909	struct scrub_warning swarn;
 910	unsigned long ptr = 0;
 
 911	u64 flags = 0;
 912	u64 ref_root;
 913	u32 item_size;
 914	u8 ref_level = 0;
 915	int ret;
 916
 917	WARN_ON(sblock->sector_count < 1);
 918	dev = sblock->dev;
 919	fs_info = sblock->sctx->fs_info;
 920
 921	/* Super block error, no need to search extent tree. */
 922	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 923		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
 924			errstr, btrfs_dev_name(dev), sblock->physical);
 925		return;
 926	}
 927	path = btrfs_alloc_path();
 928	if (!path)
 929		return;
 930
 931	swarn.physical = sblock->physical;
 932	swarn.logical = sblock->logical;
 933	swarn.errstr = errstr;
 934	swarn.dev = NULL;
 935
 936	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 937				  &flags);
 938	if (ret < 0)
 939		goto out;
 940
 
 941	swarn.extent_item_size = found_key.offset;
 942
 943	eb = path->nodes[0];
 944	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 945	item_size = btrfs_item_size(eb, path->slots[0]);
 946
 947	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 948		do {
 949			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 950						      item_size, &ref_root,
 951						      &ref_level);
 952			btrfs_warn_in_rcu(fs_info,
 953"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 954				errstr, swarn.logical,
 955				btrfs_dev_name(dev),
 956				swarn.physical,
 957				ref_level ? "node" : "leaf",
 958				ret < 0 ? -1 : ref_level,
 959				ret < 0 ? -1 : ref_root);
 960		} while (ret != 1);
 961		btrfs_release_path(path);
 962	} else {
 963		struct btrfs_backref_walk_ctx ctx = { 0 };
 964
 965		btrfs_release_path(path);
 966
 967		ctx.bytenr = found_key.objectid;
 968		ctx.extent_item_pos = swarn.logical - found_key.objectid;
 969		ctx.fs_info = fs_info;
 970
 971		swarn.path = path;
 972		swarn.dev = dev;
 973
 974		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
 
 975	}
 976
 977out:
 978	btrfs_free_path(path);
 979}
 980
 981static inline void scrub_get_recover(struct scrub_recover *recover)
 982{
 983	refcount_inc(&recover->refs);
 984}
 985
 986static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 987				     struct scrub_recover *recover)
 988{
 989	if (refcount_dec_and_test(&recover->refs)) {
 990		btrfs_bio_counter_dec(fs_info);
 991		btrfs_put_bioc(recover->bioc);
 992		kfree(recover);
 993	}
 994}
 995
 996/*
 997 * scrub_handle_errored_block gets called when either verification of the
 998 * sectors failed or the bio failed to read, e.g. with EIO. In the latter
 999 * case, this function handles all sectors in the bio, even though only one
1000 * may be bad.
1001 * The goal of this function is to repair the errored block by using the
1002 * contents of one of the mirrors.
1003 */
1004static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1005{
1006	struct scrub_ctx *sctx = sblock_to_check->sctx;
1007	struct btrfs_device *dev = sblock_to_check->dev;
1008	struct btrfs_fs_info *fs_info;
1009	u64 logical;
1010	unsigned int failed_mirror_index;
1011	unsigned int is_metadata;
1012	unsigned int have_csum;
1013	/* One scrub_block for each mirror */
1014	struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
1015	struct scrub_block *sblock_bad;
1016	int ret;
1017	int mirror_index;
1018	int sector_num;
1019	int success;
1020	bool full_stripe_locked;
1021	unsigned int nofs_flag;
1022	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1023				      DEFAULT_RATELIMIT_BURST);
1024
1025	BUG_ON(sblock_to_check->sector_count < 1);
1026	fs_info = sctx->fs_info;
1027	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1028		/*
1029		 * If we find an error in a super block, we just report it.
1030		 * They will get written with the next transaction commit
1031		 * anyway
1032		 */
1033		scrub_print_warning("super block error", sblock_to_check);
1034		spin_lock(&sctx->stat_lock);
1035		++sctx->stat.super_errors;
1036		spin_unlock(&sctx->stat_lock);
1037		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1038		return 0;
1039	}
1040	logical = sblock_to_check->logical;
1041	ASSERT(sblock_to_check->mirror_num);
1042	failed_mirror_index = sblock_to_check->mirror_num - 1;
1043	is_metadata = !(sblock_to_check->sectors[0]->flags &
1044			BTRFS_EXTENT_FLAG_DATA);
1045	have_csum = sblock_to_check->sectors[0]->have_csum;
1046
1047	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
1048		return 0;
1049
1050	/*
1051	 * We must use GFP_NOFS because the scrub task might be waiting for a
1052	 * worker task executing this function and in turn a transaction commit
1053	 * might be waiting the scrub task to pause (which needs to wait for all
1054	 * the worker tasks to complete before pausing).
1055	 * We do allocations in the workers through insert_full_stripe_lock()
1056	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
1057	 * this function.
1058	 */
1059	nofs_flag = memalloc_nofs_save();
1060	/*
1061	 * For RAID5/6, race can happen for a different device scrub thread.
1062	 * For data corruption, Parity and Data threads will both try
1063	 * to recovery the data.
1064	 * Race can lead to doubly added csum error, or even unrecoverable
1065	 * error.
1066	 */
1067	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1068	if (ret < 0) {
1069		memalloc_nofs_restore(nofs_flag);
1070		spin_lock(&sctx->stat_lock);
1071		if (ret == -ENOMEM)
1072			sctx->stat.malloc_errors++;
1073		sctx->stat.read_errors++;
1074		sctx->stat.uncorrectable_errors++;
1075		spin_unlock(&sctx->stat_lock);
1076		return ret;
1077	}
1078
1079	/*
1080	 * read all mirrors one after the other. This includes to
1081	 * re-read the extent or metadata block that failed (that was
1082	 * the cause that this fixup code is called) another time,
1083	 * sector by sector this time in order to know which sectors
1084	 * caused I/O errors and which ones are good (for all mirrors).
1085	 * It is the goal to handle the situation when more than one
1086	 * mirror contains I/O errors, but the errors do not
1087	 * overlap, i.e. the data can be repaired by selecting the
1088	 * sectors from those mirrors without I/O error on the
1089	 * particular sectors. One example (with blocks >= 2 * sectorsize)
1090	 * would be that mirror #1 has an I/O error on the first sector,
1091	 * the second sector is good, and mirror #2 has an I/O error on
1092	 * the second sector, but the first sector is good.
1093	 * Then the first sector of the first mirror can be repaired by
1094	 * taking the first sector of the second mirror, and the
1095	 * second sector of the second mirror can be repaired by
1096	 * copying the contents of the 2nd sector of the 1st mirror.
1097	 * One more note: if the sectors of one mirror contain I/O
1098	 * errors, the checksum cannot be verified. In order to get
1099	 * the best data for repairing, the first attempt is to find
1100	 * a mirror without I/O errors and with a validated checksum.
1101	 * Only if this is not possible, the sectors are picked from
1102	 * mirrors with I/O errors without considering the checksum.
1103	 * If the latter is the case, at the end, the checksum of the
1104	 * repaired area is verified in order to correctly maintain
1105	 * the statistics.
1106	 */
1107	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1108		/*
1109		 * Note: the two members refs and outstanding_sectors are not
1110		 * used in the blocks that are used for the recheck procedure.
1111		 *
1112		 * But alloc_scrub_block() will initialize sblock::ref anyway,
1113		 * so we can use scrub_block_put() to clean them up.
1114		 *
1115		 * And here we don't setup the physical/dev for the sblock yet,
1116		 * they will be correctly initialized in scrub_setup_recheck_block().
1117		 */
1118		sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL,
1119							logical, 0, 0, mirror_index);
1120		if (!sblocks_for_recheck[mirror_index]) {
1121			spin_lock(&sctx->stat_lock);
1122			sctx->stat.malloc_errors++;
1123			sctx->stat.read_errors++;
1124			sctx->stat.uncorrectable_errors++;
1125			spin_unlock(&sctx->stat_lock);
1126			btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1127			goto out;
1128		}
1129	}
1130
1131	/* Setup the context, map the logical blocks and alloc the sectors */
1132	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1133	if (ret) {
1134		spin_lock(&sctx->stat_lock);
1135		sctx->stat.read_errors++;
1136		sctx->stat.uncorrectable_errors++;
1137		spin_unlock(&sctx->stat_lock);
1138		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1139		goto out;
1140	}
1141	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1142	sblock_bad = sblocks_for_recheck[failed_mirror_index];
1143
1144	/* build and submit the bios for the failed mirror, check checksums */
1145	scrub_recheck_block(fs_info, sblock_bad, 1);
1146
1147	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1148	    sblock_bad->no_io_error_seen) {
1149		/*
1150		 * The error disappeared after reading sector by sector, or
1151		 * the area was part of a huge bio and other parts of the
1152		 * bio caused I/O errors, or the block layer merged several
1153		 * read requests into one and the error is caused by a
1154		 * different bio (usually one of the two latter cases is
1155		 * the cause)
1156		 */
1157		spin_lock(&sctx->stat_lock);
1158		sctx->stat.unverified_errors++;
1159		sblock_to_check->data_corrected = 1;
1160		spin_unlock(&sctx->stat_lock);
1161
1162		if (sctx->is_dev_replace)
1163			scrub_write_block_to_dev_replace(sblock_bad);
1164		goto out;
1165	}
1166
1167	if (!sblock_bad->no_io_error_seen) {
1168		spin_lock(&sctx->stat_lock);
1169		sctx->stat.read_errors++;
1170		spin_unlock(&sctx->stat_lock);
1171		if (__ratelimit(&rs))
1172			scrub_print_warning("i/o error", sblock_to_check);
1173		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1174	} else if (sblock_bad->checksum_error) {
1175		spin_lock(&sctx->stat_lock);
1176		sctx->stat.csum_errors++;
1177		spin_unlock(&sctx->stat_lock);
1178		if (__ratelimit(&rs))
1179			scrub_print_warning("checksum error", sblock_to_check);
1180		btrfs_dev_stat_inc_and_print(dev,
1181					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1182	} else if (sblock_bad->header_error) {
1183		spin_lock(&sctx->stat_lock);
1184		sctx->stat.verify_errors++;
1185		spin_unlock(&sctx->stat_lock);
1186		if (__ratelimit(&rs))
1187			scrub_print_warning("checksum/header error",
1188					    sblock_to_check);
1189		if (sblock_bad->generation_error)
1190			btrfs_dev_stat_inc_and_print(dev,
1191				BTRFS_DEV_STAT_GENERATION_ERRS);
1192		else
1193			btrfs_dev_stat_inc_and_print(dev,
1194				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1195	}
1196
1197	if (sctx->readonly) {
1198		ASSERT(!sctx->is_dev_replace);
1199		goto out;
1200	}
1201
1202	/*
1203	 * now build and submit the bios for the other mirrors, check
1204	 * checksums.
1205	 * First try to pick the mirror which is completely without I/O
1206	 * errors and also does not have a checksum error.
1207	 * If one is found, and if a checksum is present, the full block
1208	 * that is known to contain an error is rewritten. Afterwards
1209	 * the block is known to be corrected.
1210	 * If a mirror is found which is completely correct, and no
1211	 * checksum is present, only those sectors are rewritten that had
1212	 * an I/O error in the block to be repaired, since it cannot be
1213	 * determined, which copy of the other sectors is better (and it
1214	 * could happen otherwise that a correct sector would be
1215	 * overwritten by a bad one).
1216	 */
1217	for (mirror_index = 0; ;mirror_index++) {
1218		struct scrub_block *sblock_other;
1219
1220		if (mirror_index == failed_mirror_index)
1221			continue;
1222
1223		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1224		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1225			if (mirror_index >= BTRFS_MAX_MIRRORS)
1226				break;
1227			if (!sblocks_for_recheck[mirror_index]->sector_count)
1228				break;
1229
1230			sblock_other = sblocks_for_recheck[mirror_index];
1231		} else {
1232			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1233			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
 
1234
1235			if (mirror_index >= max_allowed)
1236				break;
1237			if (!sblocks_for_recheck[1]->sector_count)
1238				break;
1239
1240			ASSERT(failed_mirror_index == 0);
1241			sblock_other = sblocks_for_recheck[1];
1242			sblock_other->mirror_num = 1 + mirror_index;
1243		}
1244
1245		/* build and submit the bios, check checksums */
1246		scrub_recheck_block(fs_info, sblock_other, 0);
1247
1248		if (!sblock_other->header_error &&
1249		    !sblock_other->checksum_error &&
1250		    sblock_other->no_io_error_seen) {
1251			if (sctx->is_dev_replace) {
1252				scrub_write_block_to_dev_replace(sblock_other);
1253				goto corrected_error;
1254			} else {
1255				ret = scrub_repair_block_from_good_copy(
1256						sblock_bad, sblock_other);
1257				if (!ret)
1258					goto corrected_error;
1259			}
1260		}
1261	}
1262
1263	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1264		goto did_not_correct_error;
1265
1266	/*
1267	 * In case of I/O errors in the area that is supposed to be
1268	 * repaired, continue by picking good copies of those sectors.
1269	 * Select the good sectors from mirrors to rewrite bad sectors from
1270	 * the area to fix. Afterwards verify the checksum of the block
1271	 * that is supposed to be repaired. This verification step is
1272	 * only done for the purpose of statistic counting and for the
1273	 * final scrub report, whether errors remain.
1274	 * A perfect algorithm could make use of the checksum and try
1275	 * all possible combinations of sectors from the different mirrors
1276	 * until the checksum verification succeeds. For example, when
1277	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1278	 * of mirror #2 is readable but the final checksum test fails,
1279	 * then the 2nd sector of mirror #3 could be tried, whether now
1280	 * the final checksum succeeds. But this would be a rare
1281	 * exception and is therefore not implemented. At least it is
1282	 * avoided that the good copy is overwritten.
1283	 * A more useful improvement would be to pick the sectors
1284	 * without I/O error based on sector sizes (512 bytes on legacy
1285	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1286	 * mirror could be repaired by taking 512 byte of a different
1287	 * mirror, even if other 512 byte sectors in the same sectorsize
1288	 * area are unreadable.
1289	 */
1290	success = 1;
1291	for (sector_num = 0; sector_num < sblock_bad->sector_count;
1292	     sector_num++) {
1293		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1294		struct scrub_block *sblock_other = NULL;
1295
1296		/* Skip no-io-error sectors in scrub */
1297		if (!sector_bad->io_error && !sctx->is_dev_replace)
1298			continue;
1299
1300		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1301			/*
1302			 * In case of dev replace, if raid56 rebuild process
1303			 * didn't work out correct data, then copy the content
1304			 * in sblock_bad to make sure target device is identical
1305			 * to source device, instead of writing garbage data in
1306			 * sblock_for_recheck array to target device.
1307			 */
1308			sblock_other = NULL;
1309		} else if (sector_bad->io_error) {
1310			/* Try to find no-io-error sector in mirrors */
1311			for (mirror_index = 0;
1312			     mirror_index < BTRFS_MAX_MIRRORS &&
1313			     sblocks_for_recheck[mirror_index]->sector_count > 0;
1314			     mirror_index++) {
1315				if (!sblocks_for_recheck[mirror_index]->
1316				    sectors[sector_num]->io_error) {
1317					sblock_other = sblocks_for_recheck[mirror_index];
 
1318					break;
1319				}
1320			}
1321			if (!sblock_other)
1322				success = 0;
1323		}
1324
1325		if (sctx->is_dev_replace) {
1326			/*
1327			 * Did not find a mirror to fetch the sector from.
1328			 * scrub_write_sector_to_dev_replace() handles this
1329			 * case (sector->io_error), by filling the block with
1330			 * zeros before submitting the write request
 
1331			 */
1332			if (!sblock_other)
1333				sblock_other = sblock_bad;
1334
1335			if (scrub_write_sector_to_dev_replace(sblock_other,
1336							      sector_num) != 0) {
1337				atomic64_inc(
1338					&fs_info->dev_replace.num_write_errors);
1339				success = 0;
1340			}
1341		} else if (sblock_other) {
1342			ret = scrub_repair_sector_from_good_copy(sblock_bad,
1343								 sblock_other,
1344								 sector_num, 0);
1345			if (0 == ret)
1346				sector_bad->io_error = 0;
1347			else
1348				success = 0;
1349		}
1350	}
1351
1352	if (success && !sctx->is_dev_replace) {
1353		if (is_metadata || have_csum) {
1354			/*
1355			 * need to verify the checksum now that all
1356			 * sectors on disk are repaired (the write
1357			 * request for data to be repaired is on its way).
1358			 * Just be lazy and use scrub_recheck_block()
1359			 * which re-reads the data before the checksum
1360			 * is verified, but most likely the data comes out
1361			 * of the page cache.
1362			 */
1363			scrub_recheck_block(fs_info, sblock_bad, 1);
1364			if (!sblock_bad->header_error &&
1365			    !sblock_bad->checksum_error &&
1366			    sblock_bad->no_io_error_seen)
1367				goto corrected_error;
1368			else
1369				goto did_not_correct_error;
1370		} else {
1371corrected_error:
1372			spin_lock(&sctx->stat_lock);
1373			sctx->stat.corrected_errors++;
1374			sblock_to_check->data_corrected = 1;
1375			spin_unlock(&sctx->stat_lock);
1376			btrfs_err_rl_in_rcu(fs_info,
1377				"fixed up error at logical %llu on dev %s",
1378				logical, btrfs_dev_name(dev));
1379		}
1380	} else {
1381did_not_correct_error:
1382		spin_lock(&sctx->stat_lock);
1383		sctx->stat.uncorrectable_errors++;
1384		spin_unlock(&sctx->stat_lock);
1385		btrfs_err_rl_in_rcu(fs_info,
1386			"unable to fixup (regular) error at logical %llu on dev %s",
1387			logical, btrfs_dev_name(dev));
1388	}
1389
1390out:
1391	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1392		struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
1393		struct scrub_recover *recover;
1394		int sector_index;
1395
1396		/* Not allocated, continue checking the next mirror */
1397		if (!sblock)
1398			continue;
1399
1400		for (sector_index = 0; sector_index < sblock->sector_count;
1401		     sector_index++) {
1402			/*
1403			 * Here we just cleanup the recover, each sector will be
1404			 * properly cleaned up by later scrub_block_put()
1405			 */
1406			recover = sblock->sectors[sector_index]->recover;
1407			if (recover) {
1408				scrub_put_recover(fs_info, recover);
1409				sblock->sectors[sector_index]->recover = NULL;
1410			}
1411		}
1412		scrub_block_put(sblock);
1413	}
1414
1415	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1416	memalloc_nofs_restore(nofs_flag);
1417	if (ret < 0)
1418		return ret;
1419	return 0;
1420}
1421
1422static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1423{
1424	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
1425		return 2;
1426	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1427		return 3;
1428	else
1429		return (int)bioc->num_stripes;
1430}
1431
1432static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1433						 u64 *raid_map,
 
1434						 int nstripes, int mirror,
1435						 int *stripe_index,
1436						 u64 *stripe_offset)
1437{
1438	int i;
1439
1440	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1441		/* RAID5/6 */
1442		for (i = 0; i < nstripes; i++) {
1443			if (raid_map[i] == RAID6_Q_STRIPE ||
1444			    raid_map[i] == RAID5_P_STRIPE)
1445				continue;
1446
1447			if (logical >= raid_map[i] &&
1448			    logical < raid_map[i] + BTRFS_STRIPE_LEN)
1449				break;
1450		}
1451
1452		*stripe_index = i;
1453		*stripe_offset = logical - raid_map[i];
1454	} else {
1455		/* The other RAID type */
1456		*stripe_index = mirror;
1457		*stripe_offset = 0;
1458	}
1459}
1460
1461static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1462				     struct scrub_block *sblocks_for_recheck[])
1463{
1464	struct scrub_ctx *sctx = original_sblock->sctx;
1465	struct btrfs_fs_info *fs_info = sctx->fs_info;
1466	u64 logical = original_sblock->logical;
1467	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
1468	u64 generation = original_sblock->sectors[0]->generation;
1469	u64 flags = original_sblock->sectors[0]->flags;
1470	u64 have_csum = original_sblock->sectors[0]->have_csum;
1471	struct scrub_recover *recover;
1472	struct btrfs_io_context *bioc;
1473	u64 sublen;
1474	u64 mapped_length;
1475	u64 stripe_offset;
1476	int stripe_index;
1477	int sector_index = 0;
1478	int mirror_index;
1479	int nmirrors;
1480	int ret;
1481
 
 
 
 
 
 
1482	while (length > 0) {
1483		sublen = min_t(u64, length, fs_info->sectorsize);
1484		mapped_length = sublen;
1485		bioc = NULL;
1486
1487		/*
1488		 * With a length of sectorsize, each returned stripe represents
1489		 * one mirror
1490		 */
1491		btrfs_bio_counter_inc_blocked(fs_info);
1492		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1493				       logical, &mapped_length, &bioc);
1494		if (ret || !bioc || mapped_length < sublen) {
1495			btrfs_put_bioc(bioc);
1496			btrfs_bio_counter_dec(fs_info);
1497			return -EIO;
1498		}
1499
1500		recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL);
1501		if (!recover) {
1502			btrfs_put_bioc(bioc);
1503			btrfs_bio_counter_dec(fs_info);
1504			return -ENOMEM;
1505		}
1506
1507		refcount_set(&recover->refs, 1);
1508		recover->bioc = bioc;
1509		recover->map_length = mapped_length;
1510
1511		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1512
1513		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
1514
1515		for (mirror_index = 0; mirror_index < nmirrors;
1516		     mirror_index++) {
1517			struct scrub_block *sblock;
1518			struct scrub_sector *sector;
1519
1520			sblock = sblocks_for_recheck[mirror_index];
1521			sblock->sctx = sctx;
1522
1523			sector = alloc_scrub_sector(sblock, logical);
1524			if (!sector) {
 
1525				spin_lock(&sctx->stat_lock);
1526				sctx->stat.malloc_errors++;
1527				spin_unlock(&sctx->stat_lock);
1528				scrub_put_recover(fs_info, recover);
1529				return -ENOMEM;
1530			}
1531			sector->flags = flags;
1532			sector->generation = generation;
1533			sector->have_csum = have_csum;
 
 
 
 
1534			if (have_csum)
1535				memcpy(sector->csum,
1536				       original_sblock->sectors[0]->csum,
1537				       sctx->fs_info->csum_size);
1538
1539			scrub_stripe_index_and_offset(logical,
1540						      bioc->map_type,
1541						      bioc->raid_map,
1542						      bioc->num_stripes -
1543						      bioc->num_tgtdevs,
 
1544						      mirror_index,
1545						      &stripe_index,
1546						      &stripe_offset);
1547			/*
1548			 * We're at the first sector, also populate @sblock
1549			 * physical and dev.
1550			 */
1551			if (sector_index == 0) {
1552				sblock->physical =
1553					bioc->stripes[stripe_index].physical +
1554					stripe_offset;
1555				sblock->dev = bioc->stripes[stripe_index].dev;
1556				sblock->physical_for_dev_replace =
1557					original_sblock->physical_for_dev_replace;
1558			}
 
 
1559
1560			BUG_ON(sector_index >= original_sblock->sector_count);
1561			scrub_get_recover(recover);
1562			sector->recover = recover;
1563		}
1564		scrub_put_recover(fs_info, recover);
1565		length -= sublen;
1566		logical += sublen;
1567		sector_index++;
1568	}
1569
1570	return 0;
1571}
1572
1573static void scrub_bio_wait_endio(struct bio *bio)
1574{
1575	complete(bio->bi_private);
1576}
1577
1578static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1579					struct bio *bio,
1580					struct scrub_sector *sector)
1581{
1582	DECLARE_COMPLETION_ONSTACK(done);
 
 
1583
1584	bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >>
1585				 SECTOR_SHIFT;
1586	bio->bi_private = &done;
1587	bio->bi_end_io = scrub_bio_wait_endio;
1588	raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num);
 
 
 
 
 
 
1589
1590	wait_for_completion_io(&done);
1591	return blk_status_to_errno(bio->bi_status);
1592}
1593
1594static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1595					  struct scrub_block *sblock)
1596{
1597	struct scrub_sector *first_sector = sblock->sectors[0];
1598	struct bio *bio;
1599	int i;
1600
1601	/* All sectors in sblock belong to the same stripe on the same device. */
1602	ASSERT(sblock->dev);
1603	if (!sblock->dev->bdev)
1604		goto out;
1605
1606	bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
 
1607
1608	for (i = 0; i < sblock->sector_count; i++) {
1609		struct scrub_sector *sector = sblock->sectors[i];
1610
1611		bio_add_scrub_sector(bio, sector, fs_info->sectorsize);
 
1612	}
1613
1614	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
1615		bio_put(bio);
1616		goto out;
1617	}
1618
1619	bio_put(bio);
1620
1621	scrub_recheck_block_checksum(sblock);
1622
1623	return;
1624out:
1625	for (i = 0; i < sblock->sector_count; i++)
1626		sblock->sectors[i]->io_error = 1;
1627
1628	sblock->no_io_error_seen = 0;
1629}
1630
1631/*
1632 * This function will check the on disk data for checksum errors, header errors
1633 * and read I/O errors. If any I/O errors happen, the exact sectors which are
1634 * errored are marked as being bad. The goal is to enable scrub to take those
1635 * sectors that are not errored from all the mirrors so that the sectors that
1636 * are errored in the just handled mirror can be repaired.
1637 */
1638static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1639				struct scrub_block *sblock,
1640				int retry_failed_mirror)
1641{
1642	int i;
1643
1644	sblock->no_io_error_seen = 1;
1645
1646	/* short cut for raid56 */
1647	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
1648		return scrub_recheck_block_on_raid56(fs_info, sblock);
1649
1650	for (i = 0; i < sblock->sector_count; i++) {
1651		struct scrub_sector *sector = sblock->sectors[i];
1652		struct bio bio;
1653		struct bio_vec bvec;
1654
1655		if (sblock->dev->bdev == NULL) {
1656			sector->io_error = 1;
1657			sblock->no_io_error_seen = 0;
1658			continue;
1659		}
1660
1661		bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ);
1662		bio_add_scrub_sector(&bio, sector, fs_info->sectorsize);
1663		bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >>
1664					SECTOR_SHIFT;
1665
1666		btrfsic_check_bio(&bio);
1667		if (submit_bio_wait(&bio)) {
1668			sector->io_error = 1;
 
 
1669			sblock->no_io_error_seen = 0;
1670		}
1671
1672		bio_uninit(&bio);
1673	}
1674
1675	if (sblock->no_io_error_seen)
1676		scrub_recheck_block_checksum(sblock);
1677}
1678
1679static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
 
1680{
1681	struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices;
1682	int ret;
1683
1684	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1685	return !ret;
1686}
1687
1688static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1689{
1690	sblock->header_error = 0;
1691	sblock->checksum_error = 0;
1692	sblock->generation_error = 0;
1693
1694	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1695		scrub_checksum_data(sblock);
1696	else
1697		scrub_checksum_tree_block(sblock);
1698}
1699
1700static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1701					     struct scrub_block *sblock_good)
1702{
1703	int i;
1704	int ret = 0;
1705
1706	for (i = 0; i < sblock_bad->sector_count; i++) {
1707		int ret_sub;
1708
1709		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
1710							     sblock_good, i, 1);
 
1711		if (ret_sub)
1712			ret = ret_sub;
1713	}
1714
1715	return ret;
1716}
1717
1718static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
1719					      struct scrub_block *sblock_good,
1720					      int sector_num, int force_write)
1721{
1722	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1723	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1724	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1725	const u32 sectorsize = fs_info->sectorsize;
1726
 
 
1727	if (force_write || sblock_bad->header_error ||
1728	    sblock_bad->checksum_error || sector_bad->io_error) {
1729		struct bio bio;
1730		struct bio_vec bvec;
1731		int ret;
1732
1733		if (!sblock_bad->dev->bdev) {
1734			btrfs_warn_rl(fs_info,
1735				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1736			return -EIO;
1737		}
1738
1739		bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
1740		bio.bi_iter.bi_sector = (sblock_bad->physical +
1741					 sector_bad->offset) >> SECTOR_SHIFT;
1742		ret = bio_add_scrub_sector(&bio, sector_good, sectorsize);
1743
1744		btrfsic_check_bio(&bio);
1745		ret = submit_bio_wait(&bio);
1746		bio_uninit(&bio);
 
 
1747
1748		if (ret) {
1749			btrfs_dev_stat_inc_and_print(sblock_bad->dev,
1750				BTRFS_DEV_STAT_WRITE_ERRS);
1751			atomic64_inc(&fs_info->dev_replace.num_write_errors);
 
1752			return -EIO;
1753		}
 
1754	}
1755
1756	return 0;
1757}
1758
1759static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1760{
1761	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1762	int i;
1763
1764	/*
1765	 * This block is used for the check of the parity on the source device,
1766	 * so the data needn't be written into the destination device.
1767	 */
1768	if (sblock->sparity)
1769		return;
1770
1771	for (i = 0; i < sblock->sector_count; i++) {
1772		int ret;
1773
1774		ret = scrub_write_sector_to_dev_replace(sblock, i);
1775		if (ret)
1776			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1777	}
1778}
1779
1780static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1781{
1782	const u32 sectorsize = sblock->sctx->fs_info->sectorsize;
1783	struct scrub_sector *sector = sblock->sectors[sector_num];
1784
1785	if (sector->io_error)
1786		memset(scrub_sector_get_kaddr(sector), 0, sectorsize);
1787
1788	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1789}
1790
1791static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1792{
1793	int ret = 0;
1794	u64 length;
1795
1796	if (!btrfs_is_zoned(sctx->fs_info))
1797		return 0;
1798
1799	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1800		return 0;
1801
1802	if (sctx->write_pointer < physical) {
1803		length = physical - sctx->write_pointer;
 
1804
1805		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1806						sctx->write_pointer, length);
1807		if (!ret)
1808			sctx->write_pointer = physical;
1809	}
1810	return ret;
1811}
1812
1813static void scrub_block_get(struct scrub_block *sblock)
1814{
1815	refcount_inc(&sblock->refs);
1816}
1817
1818static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
1819				      struct scrub_sector *sector)
1820{
1821	struct scrub_block *sblock = sector->sblock;
1822	struct scrub_bio *sbio;
1823	int ret;
1824	const u32 sectorsize = sctx->fs_info->sectorsize;
1825
1826	mutex_lock(&sctx->wr_lock);
1827again:
1828	if (!sctx->wr_curr_bio) {
1829		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1830					      GFP_KERNEL);
1831		if (!sctx->wr_curr_bio) {
1832			mutex_unlock(&sctx->wr_lock);
1833			return -ENOMEM;
1834		}
1835		sctx->wr_curr_bio->sctx = sctx;
1836		sctx->wr_curr_bio->sector_count = 0;
1837	}
1838	sbio = sctx->wr_curr_bio;
1839	if (sbio->sector_count == 0) {
1840		ret = fill_writer_pointer_gap(sctx, sector->offset +
1841					      sblock->physical_for_dev_replace);
1842		if (ret) {
1843			mutex_unlock(&sctx->wr_lock);
1844			return ret;
 
 
 
 
1845		}
1846
1847		sbio->physical = sblock->physical_for_dev_replace + sector->offset;
1848		sbio->logical = sblock->logical + sector->offset;
1849		sbio->dev = sctx->wr_tgtdev;
1850		if (!sbio->bio) {
1851			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
1852					      REQ_OP_WRITE, GFP_NOFS);
1853		}
1854		sbio->bio->bi_private = sbio;
1855		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
1856		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1857		sbio->status = 0;
1858	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1859		   sblock->physical_for_dev_replace + sector->offset ||
1860		   sbio->logical + sbio->sector_count * sectorsize !=
1861		   sblock->logical + sector->offset) {
1862		scrub_wr_submit(sctx);
1863		goto again;
1864	}
1865
1866	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
1867	if (ret != sectorsize) {
1868		if (sbio->sector_count < 1) {
1869			bio_put(sbio->bio);
1870			sbio->bio = NULL;
1871			mutex_unlock(&sctx->wr_lock);
1872			return -EIO;
1873		}
1874		scrub_wr_submit(sctx);
1875		goto again;
1876	}
1877
1878	sbio->sectors[sbio->sector_count] = sector;
1879	scrub_sector_get(sector);
1880	/*
1881	 * Since ssector no longer holds a page, but uses sblock::pages, we
1882	 * have to ensure the sblock had not been freed before our write bio
1883	 * finished.
1884	 */
1885	scrub_block_get(sector->sblock);
1886
1887	sbio->sector_count++;
1888	if (sbio->sector_count == sctx->sectors_per_bio)
1889		scrub_wr_submit(sctx);
1890	mutex_unlock(&sctx->wr_lock);
1891
1892	return 0;
1893}
1894
1895static void scrub_wr_submit(struct scrub_ctx *sctx)
1896{
1897	struct scrub_bio *sbio;
1898
1899	if (!sctx->wr_curr_bio)
1900		return;
1901
1902	sbio = sctx->wr_curr_bio;
1903	sctx->wr_curr_bio = NULL;
 
1904	scrub_pending_bio_inc(sctx);
1905	/* process all writes in a single worker thread. Then the block layer
1906	 * orders the requests before sending them to the driver which
1907	 * doubled the write performance on spinning disks when measured
1908	 * with Linux 3.5 */
1909	btrfsic_check_bio(sbio->bio);
1910	submit_bio(sbio->bio);
1911
1912	if (btrfs_is_zoned(sctx->fs_info))
1913		sctx->write_pointer = sbio->physical + sbio->sector_count *
1914			sctx->fs_info->sectorsize;
1915}
1916
1917static void scrub_wr_bio_end_io(struct bio *bio)
1918{
1919	struct scrub_bio *sbio = bio->bi_private;
1920	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1921
1922	sbio->status = bio->bi_status;
1923	sbio->bio = bio;
1924
1925	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
1926	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
 
1927}
1928
1929static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1930{
1931	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1932	struct scrub_ctx *sctx = sbio->sctx;
1933	int i;
1934
1935	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1936	if (sbio->status) {
1937		struct btrfs_dev_replace *dev_replace =
1938			&sbio->sctx->fs_info->dev_replace;
1939
1940		for (i = 0; i < sbio->sector_count; i++) {
1941			struct scrub_sector *sector = sbio->sectors[i];
1942
1943			sector->io_error = 1;
1944			atomic64_inc(&dev_replace->num_write_errors);
1945		}
1946	}
1947
1948	/*
1949	 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
1950	 * endio we should put the sblock.
1951	 */
1952	for (i = 0; i < sbio->sector_count; i++) {
1953		scrub_block_put(sbio->sectors[i]->sblock);
1954		scrub_sector_put(sbio->sectors[i]);
1955	}
1956
1957	bio_put(sbio->bio);
1958	kfree(sbio);
1959	scrub_pending_bio_dec(sctx);
1960}
1961
1962static int scrub_checksum(struct scrub_block *sblock)
1963{
1964	u64 flags;
1965	int ret;
1966
1967	/*
1968	 * No need to initialize these stats currently,
1969	 * because this function only use return value
1970	 * instead of these stats value.
1971	 *
1972	 * Todo:
1973	 * always use stats
1974	 */
1975	sblock->header_error = 0;
1976	sblock->generation_error = 0;
1977	sblock->checksum_error = 0;
1978
1979	WARN_ON(sblock->sector_count < 1);
1980	flags = sblock->sectors[0]->flags;
1981	ret = 0;
1982	if (flags & BTRFS_EXTENT_FLAG_DATA)
1983		ret = scrub_checksum_data(sblock);
1984	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1985		ret = scrub_checksum_tree_block(sblock);
1986	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1987		ret = scrub_checksum_super(sblock);
1988	else
1989		WARN_ON(1);
1990	if (ret)
1991		scrub_handle_errored_block(sblock);
1992
1993	return ret;
1994}
1995
1996static int scrub_checksum_data(struct scrub_block *sblock)
1997{
1998	struct scrub_ctx *sctx = sblock->sctx;
1999	struct btrfs_fs_info *fs_info = sctx->fs_info;
2000	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2001	u8 csum[BTRFS_CSUM_SIZE];
2002	struct scrub_sector *sector;
2003	char *kaddr;
 
 
 
2004
2005	BUG_ON(sblock->sector_count < 1);
2006	sector = sblock->sectors[0];
2007	if (!sector->have_csum)
2008		return 0;
2009
2010	kaddr = scrub_sector_get_kaddr(sector);
2011
2012	shash->tfm = fs_info->csum_shash;
2013	crypto_shash_init(shash);
2014
2015	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2016
2017	if (memcmp(csum, sector->csum, fs_info->csum_size))
 
2018		sblock->checksum_error = 1;
 
2019	return sblock->checksum_error;
2020}
2021
2022static int scrub_checksum_tree_block(struct scrub_block *sblock)
2023{
2024	struct scrub_ctx *sctx = sblock->sctx;
2025	struct btrfs_header *h;
2026	struct btrfs_fs_info *fs_info = sctx->fs_info;
2027	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2028	u8 calculated_csum[BTRFS_CSUM_SIZE];
2029	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2030	/*
2031	 * This is done in sectorsize steps even for metadata as there's a
2032	 * constraint for nodesize to be aligned to sectorsize. This will need
2033	 * to change so we don't misuse data and metadata units like that.
2034	 */
2035	const u32 sectorsize = sctx->fs_info->sectorsize;
2036	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
2037	int i;
2038	struct scrub_sector *sector;
2039	char *kaddr;
2040
2041	BUG_ON(sblock->sector_count < 1);
2042
2043	/* Each member in sectors is just one sector */
2044	ASSERT(sblock->sector_count == num_sectors);
2045
2046	sector = sblock->sectors[0];
2047	kaddr = scrub_sector_get_kaddr(sector);
2048	h = (struct btrfs_header *)kaddr;
2049	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
 
2050
2051	/*
2052	 * we don't use the getter functions here, as we
2053	 * a) don't have an extent buffer and
2054	 * b) the page is already kmapped
2055	 */
2056	if (sblock->logical != btrfs_stack_header_bytenr(h))
2057		sblock->header_error = 1;
2058
2059	if (sector->generation != btrfs_stack_header_generation(h)) {
2060		sblock->header_error = 1;
2061		sblock->generation_error = 1;
2062	}
2063
2064	if (!scrub_check_fsid(h->fsid, sector))
2065		sblock->header_error = 1;
2066
2067	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2068		   BTRFS_UUID_SIZE))
2069		sblock->header_error = 1;
2070
2071	shash->tfm = fs_info->csum_shash;
2072	crypto_shash_init(shash);
2073	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
2074			    sectorsize - BTRFS_CSUM_SIZE);
 
 
2075
2076	for (i = 1; i < num_sectors; i++) {
2077		kaddr = scrub_sector_get_kaddr(sblock->sectors[i]);
2078		crypto_shash_update(shash, kaddr, sectorsize);
 
 
 
 
 
 
 
 
 
2079	}
2080
2081	crypto_shash_final(shash, calculated_csum);
2082	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
2083		sblock->checksum_error = 1;
2084
2085	return sblock->header_error || sblock->checksum_error;
2086}
2087
2088static int scrub_checksum_super(struct scrub_block *sblock)
2089{
2090	struct btrfs_super_block *s;
2091	struct scrub_ctx *sctx = sblock->sctx;
2092	struct btrfs_fs_info *fs_info = sctx->fs_info;
2093	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2094	u8 calculated_csum[BTRFS_CSUM_SIZE];
2095	struct scrub_sector *sector;
2096	char *kaddr;
 
 
 
2097	int fail_gen = 0;
2098	int fail_cor = 0;
 
 
2099
2100	BUG_ON(sblock->sector_count < 1);
2101	sector = sblock->sectors[0];
2102	kaddr = scrub_sector_get_kaddr(sector);
2103	s = (struct btrfs_super_block *)kaddr;
 
 
 
 
2104
2105	if (sblock->logical != btrfs_super_bytenr(s))
2106		++fail_cor;
2107
2108	if (sector->generation != btrfs_super_generation(s))
2109		++fail_gen;
2110
2111	if (!scrub_check_fsid(s->fsid, sector))
2112		++fail_cor;
2113
2114	shash->tfm = fs_info->csum_shash;
2115	crypto_shash_init(shash);
2116	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
2117			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118
2119	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
 
2120		++fail_cor;
2121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2122	return fail_cor + fail_gen;
2123}
2124
 
 
 
 
 
2125static void scrub_block_put(struct scrub_block *sblock)
2126{
2127	if (refcount_dec_and_test(&sblock->refs)) {
2128		int i;
2129
2130		if (sblock->sparity)
2131			scrub_parity_put(sblock->sparity);
2132
2133		for (i = 0; i < sblock->sector_count; i++)
2134			scrub_sector_put(sblock->sectors[i]);
2135		for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
2136			if (sblock->pages[i]) {
2137				detach_scrub_page_private(sblock->pages[i]);
2138				__free_page(sblock->pages[i]);
2139			}
2140		}
2141		kfree(sblock);
2142	}
2143}
2144
2145static void scrub_sector_get(struct scrub_sector *sector)
2146{
2147	atomic_inc(&sector->refs);
2148}
2149
2150static void scrub_sector_put(struct scrub_sector *sector)
2151{
2152	if (atomic_dec_and_test(&sector->refs))
2153		kfree(sector);
2154}
2155
2156/*
2157 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
2158 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
2159 */
2160static void scrub_throttle(struct scrub_ctx *sctx)
2161{
2162	const int time_slice = 1000;
2163	struct scrub_bio *sbio;
2164	struct btrfs_device *device;
2165	s64 delta;
2166	ktime_t now;
2167	u32 div;
2168	u64 bwlimit;
2169
2170	sbio = sctx->bios[sctx->curr];
2171	device = sbio->dev;
2172	bwlimit = READ_ONCE(device->scrub_speed_max);
2173	if (bwlimit == 0)
2174		return;
2175
2176	/*
2177	 * Slice is divided into intervals when the IO is submitted, adjust by
2178	 * bwlimit and maximum of 64 intervals.
2179	 */
2180	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2181	div = min_t(u32, 64, div);
2182
2183	/* Start new epoch, set deadline */
2184	now = ktime_get();
2185	if (sctx->throttle_deadline == 0) {
2186		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2187		sctx->throttle_sent = 0;
2188	}
2189
2190	/* Still in the time to send? */
2191	if (ktime_before(now, sctx->throttle_deadline)) {
2192		/* If current bio is within the limit, send it */
2193		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2194		if (sctx->throttle_sent <= div_u64(bwlimit, div))
2195			return;
2196
2197		/* We're over the limit, sleep until the rest of the slice */
2198		delta = ktime_ms_delta(sctx->throttle_deadline, now);
2199	} else {
2200		/* New request after deadline, start new epoch */
2201		delta = 0;
2202	}
2203
2204	if (delta) {
2205		long timeout;
2206
2207		timeout = div_u64(delta * HZ, 1000);
2208		schedule_timeout_interruptible(timeout);
2209	}
2210
2211	/* Next call will start the deadline period */
2212	sctx->throttle_deadline = 0;
2213}
2214
2215static void scrub_submit(struct scrub_ctx *sctx)
2216{
2217	struct scrub_bio *sbio;
2218
2219	if (sctx->curr == -1)
2220		return;
2221
2222	scrub_throttle(sctx);
2223
2224	sbio = sctx->bios[sctx->curr];
2225	sctx->curr = -1;
2226	scrub_pending_bio_inc(sctx);
2227	btrfsic_check_bio(sbio->bio);
2228	submit_bio(sbio->bio);
2229}
2230
2231static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
2232				      struct scrub_sector *sector)
2233{
2234	struct scrub_block *sblock = sector->sblock;
2235	struct scrub_bio *sbio;
2236	const u32 sectorsize = sctx->fs_info->sectorsize;
2237	int ret;
2238
2239again:
2240	/*
2241	 * grab a fresh bio or wait for one to become available
2242	 */
2243	while (sctx->curr == -1) {
2244		spin_lock(&sctx->list_lock);
2245		sctx->curr = sctx->first_free;
2246		if (sctx->curr != -1) {
2247			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2248			sctx->bios[sctx->curr]->next_free = -1;
2249			sctx->bios[sctx->curr]->sector_count = 0;
2250			spin_unlock(&sctx->list_lock);
2251		} else {
2252			spin_unlock(&sctx->list_lock);
2253			wait_event(sctx->list_wait, sctx->first_free != -1);
2254		}
2255	}
2256	sbio = sctx->bios[sctx->curr];
2257	if (sbio->sector_count == 0) {
2258		sbio->physical = sblock->physical + sector->offset;
2259		sbio->logical = sblock->logical + sector->offset;
2260		sbio->dev = sblock->dev;
2261		if (!sbio->bio) {
2262			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
2263					      REQ_OP_READ, GFP_NOFS);
2264		}
2265		sbio->bio->bi_private = sbio;
2266		sbio->bio->bi_end_io = scrub_bio_end_io;
2267		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
 
 
 
 
 
 
2268		sbio->status = 0;
2269	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2270		   sblock->physical + sector->offset ||
2271		   sbio->logical + sbio->sector_count * sectorsize !=
2272		   sblock->logical + sector->offset ||
2273		   sbio->dev != sblock->dev) {
2274		scrub_submit(sctx);
2275		goto again;
2276	}
2277
2278	sbio->sectors[sbio->sector_count] = sector;
2279	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2280	if (ret != sectorsize) {
2281		if (sbio->sector_count < 1) {
2282			bio_put(sbio->bio);
2283			sbio->bio = NULL;
2284			return -EIO;
2285		}
2286		scrub_submit(sctx);
2287		goto again;
2288	}
2289
2290	scrub_block_get(sblock); /* one for the page added to the bio */
2291	atomic_inc(&sblock->outstanding_sectors);
2292	sbio->sector_count++;
2293	if (sbio->sector_count == sctx->sectors_per_bio)
2294		scrub_submit(sctx);
2295
2296	return 0;
2297}
2298
2299static void scrub_missing_raid56_end_io(struct bio *bio)
2300{
2301	struct scrub_block *sblock = bio->bi_private;
2302	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2303
2304	btrfs_bio_counter_dec(fs_info);
2305	if (bio->bi_status)
2306		sblock->no_io_error_seen = 0;
2307
2308	bio_put(bio);
2309
2310	queue_work(fs_info->scrub_workers, &sblock->work);
2311}
2312
2313static void scrub_missing_raid56_worker(struct work_struct *work)
2314{
2315	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2316	struct scrub_ctx *sctx = sblock->sctx;
2317	struct btrfs_fs_info *fs_info = sctx->fs_info;
2318	u64 logical;
2319	struct btrfs_device *dev;
2320
2321	logical = sblock->logical;
2322	dev = sblock->dev;
2323
2324	if (sblock->no_io_error_seen)
2325		scrub_recheck_block_checksum(sblock);
2326
2327	if (!sblock->no_io_error_seen) {
2328		spin_lock(&sctx->stat_lock);
2329		sctx->stat.read_errors++;
2330		spin_unlock(&sctx->stat_lock);
2331		btrfs_err_rl_in_rcu(fs_info,
2332			"IO error rebuilding logical %llu for dev %s",
2333			logical, btrfs_dev_name(dev));
2334	} else if (sblock->header_error || sblock->checksum_error) {
2335		spin_lock(&sctx->stat_lock);
2336		sctx->stat.uncorrectable_errors++;
2337		spin_unlock(&sctx->stat_lock);
2338		btrfs_err_rl_in_rcu(fs_info,
2339			"failed to rebuild valid logical %llu for dev %s",
2340			logical, btrfs_dev_name(dev));
2341	} else {
2342		scrub_write_block_to_dev_replace(sblock);
2343	}
2344
 
 
2345	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2346		mutex_lock(&sctx->wr_lock);
2347		scrub_wr_submit(sctx);
2348		mutex_unlock(&sctx->wr_lock);
2349	}
2350
2351	scrub_block_put(sblock);
2352	scrub_pending_bio_dec(sctx);
2353}
2354
2355static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2356{
2357	struct scrub_ctx *sctx = sblock->sctx;
2358	struct btrfs_fs_info *fs_info = sctx->fs_info;
2359	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2360	u64 logical = sblock->logical;
2361	struct btrfs_io_context *bioc = NULL;
2362	struct bio *bio;
2363	struct btrfs_raid_bio *rbio;
2364	int ret;
2365	int i;
2366
2367	btrfs_bio_counter_inc_blocked(fs_info);
2368	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2369			       &length, &bioc);
2370	if (ret || !bioc || !bioc->raid_map)
2371		goto bioc_out;
2372
2373	if (WARN_ON(!sctx->is_dev_replace ||
2374		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2375		/*
2376		 * We shouldn't be scrubbing a missing device. Even for dev
2377		 * replace, we should only get here for RAID 5/6. We either
2378		 * managed to mount something with no mirrors remaining or
2379		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2380		 */
2381		goto bioc_out;
2382	}
2383
2384	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2385	bio->bi_iter.bi_sector = logical >> 9;
2386	bio->bi_private = sblock;
2387	bio->bi_end_io = scrub_missing_raid56_end_io;
2388
2389	rbio = raid56_alloc_missing_rbio(bio, bioc);
2390	if (!rbio)
2391		goto rbio_out;
2392
2393	for (i = 0; i < sblock->sector_count; i++) {
2394		struct scrub_sector *sector = sblock->sectors[i];
2395
2396		raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector),
2397				       scrub_sector_get_page_offset(sector),
2398				       sector->offset + sector->sblock->logical);
2399	}
2400
2401	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
 
2402	scrub_block_get(sblock);
2403	scrub_pending_bio_inc(sctx);
2404	raid56_submit_missing_rbio(rbio);
2405	btrfs_put_bioc(bioc);
2406	return;
2407
2408rbio_out:
2409	bio_put(bio);
2410bioc_out:
2411	btrfs_bio_counter_dec(fs_info);
2412	btrfs_put_bioc(bioc);
2413	spin_lock(&sctx->stat_lock);
2414	sctx->stat.malloc_errors++;
2415	spin_unlock(&sctx->stat_lock);
2416}
2417
2418static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2419		       u64 physical, struct btrfs_device *dev, u64 flags,
2420		       u64 gen, int mirror_num, u8 *csum,
2421		       u64 physical_for_dev_replace)
2422{
2423	struct scrub_block *sblock;
2424	const u32 sectorsize = sctx->fs_info->sectorsize;
2425	int index;
2426
2427	sblock = alloc_scrub_block(sctx, dev, logical, physical,
2428				   physical_for_dev_replace, mirror_num);
2429	if (!sblock) {
2430		spin_lock(&sctx->stat_lock);
2431		sctx->stat.malloc_errors++;
2432		spin_unlock(&sctx->stat_lock);
2433		return -ENOMEM;
2434	}
2435
 
 
 
 
 
 
2436	for (index = 0; len > 0; index++) {
2437		struct scrub_sector *sector;
2438		/*
2439		 * Here we will allocate one page for one sector to scrub.
2440		 * This is fine if PAGE_SIZE == sectorsize, but will cost
2441		 * more memory for PAGE_SIZE > sectorsize case.
2442		 */
2443		u32 l = min(sectorsize, len);
2444
2445		sector = alloc_scrub_sector(sblock, logical);
2446		if (!sector) {
 
2447			spin_lock(&sctx->stat_lock);
2448			sctx->stat.malloc_errors++;
2449			spin_unlock(&sctx->stat_lock);
2450			scrub_block_put(sblock);
2451			return -ENOMEM;
2452		}
2453		sector->flags = flags;
2454		sector->generation = gen;
 
 
 
 
 
 
 
 
 
2455		if (csum) {
2456			sector->have_csum = 1;
2457			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2458		} else {
2459			sector->have_csum = 0;
2460		}
 
 
 
 
2461		len -= l;
2462		logical += l;
2463		physical += l;
2464		physical_for_dev_replace += l;
2465	}
2466
2467	WARN_ON(sblock->sector_count == 0);
2468	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2469		/*
2470		 * This case should only be hit for RAID 5/6 device replace. See
2471		 * the comment in scrub_missing_raid56_pages() for details.
2472		 */
2473		scrub_missing_raid56_pages(sblock);
2474	} else {
2475		for (index = 0; index < sblock->sector_count; index++) {
2476			struct scrub_sector *sector = sblock->sectors[index];
2477			int ret;
2478
2479			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2480			if (ret) {
2481				scrub_block_put(sblock);
2482				return ret;
2483			}
2484		}
2485
2486		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2487			scrub_submit(sctx);
2488	}
2489
2490	/* last one frees, either here or in bio completion for last page */
2491	scrub_block_put(sblock);
2492	return 0;
2493}
2494
2495static void scrub_bio_end_io(struct bio *bio)
2496{
2497	struct scrub_bio *sbio = bio->bi_private;
2498	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2499
2500	sbio->status = bio->bi_status;
2501	sbio->bio = bio;
2502
2503	queue_work(fs_info->scrub_workers, &sbio->work);
2504}
2505
2506static void scrub_bio_end_io_worker(struct work_struct *work)
2507{
2508	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2509	struct scrub_ctx *sctx = sbio->sctx;
2510	int i;
2511
2512	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2513	if (sbio->status) {
2514		for (i = 0; i < sbio->sector_count; i++) {
2515			struct scrub_sector *sector = sbio->sectors[i];
2516
2517			sector->io_error = 1;
2518			sector->sblock->no_io_error_seen = 0;
2519		}
2520	}
2521
2522	/* Now complete the scrub_block items that have all pages completed */
2523	for (i = 0; i < sbio->sector_count; i++) {
2524		struct scrub_sector *sector = sbio->sectors[i];
2525		struct scrub_block *sblock = sector->sblock;
2526
2527		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2528			scrub_block_complete(sblock);
2529		scrub_block_put(sblock);
2530	}
2531
2532	bio_put(sbio->bio);
2533	sbio->bio = NULL;
2534	spin_lock(&sctx->list_lock);
2535	sbio->next_free = sctx->first_free;
2536	sctx->first_free = sbio->index;
2537	spin_unlock(&sctx->list_lock);
2538
2539	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2540		mutex_lock(&sctx->wr_lock);
2541		scrub_wr_submit(sctx);
2542		mutex_unlock(&sctx->wr_lock);
2543	}
2544
2545	scrub_pending_bio_dec(sctx);
2546}
2547
2548static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2549				       unsigned long *bitmap,
2550				       u64 start, u32 len)
2551{
2552	u64 offset;
 
2553	u32 nsectors;
2554	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2555
2556	if (len >= sparity->stripe_len) {
2557		bitmap_set(bitmap, 0, sparity->nsectors);
2558		return;
2559	}
2560
2561	start -= sparity->logic_start;
2562	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2563	offset = offset >> sectorsize_bits;
2564	nsectors = len >> sectorsize_bits;
 
 
 
2565
2566	if (offset + nsectors <= sparity->nsectors) {
2567		bitmap_set(bitmap, offset, nsectors);
2568		return;
2569	}
2570
2571	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2572	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2573}
2574
2575static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2576						   u64 start, u32 len)
2577{
2578	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2579}
2580
2581static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2582						  u64 start, u32 len)
2583{
2584	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2585}
2586
2587static void scrub_block_complete(struct scrub_block *sblock)
2588{
2589	int corrupted = 0;
2590
2591	if (!sblock->no_io_error_seen) {
2592		corrupted = 1;
2593		scrub_handle_errored_block(sblock);
2594	} else {
2595		/*
2596		 * if has checksum error, write via repair mechanism in
2597		 * dev replace case, otherwise write here in dev replace
2598		 * case.
2599		 */
2600		corrupted = scrub_checksum(sblock);
2601		if (!corrupted && sblock->sctx->is_dev_replace)
2602			scrub_write_block_to_dev_replace(sblock);
2603	}
2604
2605	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2606		u64 start = sblock->logical;
2607		u64 end = sblock->logical +
2608			  sblock->sectors[sblock->sector_count - 1]->offset +
2609			  sblock->sctx->fs_info->sectorsize;
2610
2611		ASSERT(end - start <= U32_MAX);
2612		scrub_parity_mark_sectors_error(sblock->sparity,
2613						start, end - start);
2614	}
2615}
2616
2617static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2618{
2619	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2620	list_del(&sum->list);
2621	kfree(sum);
2622}
2623
2624/*
2625 * Find the desired csum for range [logical, logical + sectorsize), and store
2626 * the csum into @csum.
2627 *
2628 * The search source is sctx->csum_list, which is a pre-populated list
2629 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2630 * that is before @logical.
2631 *
2632 * Return 0 if there is no csum for the range.
2633 * Return 1 if there is csum for the range and copied to @csum.
2634 */
2635static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2636{
2637	bool found = false;
 
 
2638
2639	while (!list_empty(&sctx->csum_list)) {
2640		struct btrfs_ordered_sum *sum = NULL;
2641		unsigned long index;
2642		unsigned long num_sectors;
2643
2644		sum = list_first_entry(&sctx->csum_list,
2645				       struct btrfs_ordered_sum, list);
2646		/* The current csum range is beyond our range, no csum found */
2647		if (sum->bytenr > logical)
 
 
2648			break;
2649
2650		/*
2651		 * The current sum is before our bytenr, since scrub is always
2652		 * done in bytenr order, the csum will never be used anymore,
2653		 * clean it up so that later calls won't bother with the range,
2654		 * and continue search the next range.
2655		 */
2656		if (sum->bytenr + sum->len <= logical) {
2657			drop_csum_range(sctx, sum);
2658			continue;
2659		}
2660
2661		/* Now the csum range covers our bytenr, copy the csum */
2662		found = true;
2663		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2664		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2665
2666		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2667		       sctx->fs_info->csum_size);
2668
2669		/* Cleanup the range if we're at the end of the csum range */
2670		if (index == num_sectors - 1)
2671			drop_csum_range(sctx, sum);
2672		break;
2673	}
2674	if (!found)
2675		return 0;
2676	return 1;
2677}
2678
2679/* scrub extent tries to collect up to 64 kB for each bio */
2680static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2681			u64 logical, u32 len,
2682			u64 physical, struct btrfs_device *dev, u64 flags,
2683			u64 gen, int mirror_num)
2684{
2685	struct btrfs_device *src_dev = dev;
2686	u64 src_physical = physical;
2687	int src_mirror = mirror_num;
2688	int ret;
2689	u8 csum[BTRFS_CSUM_SIZE];
2690	u32 blocksize;
2691
2692	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2693		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2694			blocksize = map->stripe_len;
2695		else
2696			blocksize = sctx->fs_info->sectorsize;
2697		spin_lock(&sctx->stat_lock);
2698		sctx->stat.data_extents_scrubbed++;
2699		sctx->stat.data_bytes_scrubbed += len;
2700		spin_unlock(&sctx->stat_lock);
2701	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2702		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2703			blocksize = map->stripe_len;
2704		else
2705			blocksize = sctx->fs_info->nodesize;
2706		spin_lock(&sctx->stat_lock);
2707		sctx->stat.tree_extents_scrubbed++;
2708		sctx->stat.tree_bytes_scrubbed += len;
2709		spin_unlock(&sctx->stat_lock);
2710	} else {
2711		blocksize = sctx->fs_info->sectorsize;
2712		WARN_ON(1);
2713	}
2714
2715	/*
2716	 * For dev-replace case, we can have @dev being a missing device.
2717	 * Regular scrub will avoid its execution on missing device at all,
2718	 * as that would trigger tons of read error.
2719	 *
2720	 * Reading from missing device will cause read error counts to
2721	 * increase unnecessarily.
2722	 * So here we change the read source to a good mirror.
2723	 */
2724	if (sctx->is_dev_replace && !dev->bdev)
2725		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
2726				     &src_dev, &src_mirror);
2727	while (len) {
2728		u32 l = min(len, blocksize);
2729		int have_csum = 0;
2730
2731		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2732			/* push csums to sbio */
2733			have_csum = scrub_find_csum(sctx, logical, csum);
2734			if (have_csum == 0)
2735				++sctx->stat.no_csum;
2736		}
2737		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
2738				    flags, gen, src_mirror,
2739				    have_csum ? csum : NULL, physical);
2740		if (ret)
2741			return ret;
2742		len -= l;
2743		logical += l;
2744		physical += l;
2745		src_physical += l;
2746	}
2747	return 0;
2748}
2749
2750static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2751				  u64 logical, u32 len,
2752				  u64 physical, struct btrfs_device *dev,
2753				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2754{
2755	struct scrub_ctx *sctx = sparity->sctx;
2756	struct scrub_block *sblock;
2757	const u32 sectorsize = sctx->fs_info->sectorsize;
2758	int index;
2759
2760	ASSERT(IS_ALIGNED(len, sectorsize));
2761
2762	sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num);
2763	if (!sblock) {
2764		spin_lock(&sctx->stat_lock);
2765		sctx->stat.malloc_errors++;
2766		spin_unlock(&sctx->stat_lock);
2767		return -ENOMEM;
2768	}
2769
 
 
 
 
 
2770	sblock->sparity = sparity;
2771	scrub_parity_get(sparity);
2772
2773	for (index = 0; len > 0; index++) {
2774		struct scrub_sector *sector;
 
2775
2776		sector = alloc_scrub_sector(sblock, logical);
2777		if (!sector) {
 
2778			spin_lock(&sctx->stat_lock);
2779			sctx->stat.malloc_errors++;
2780			spin_unlock(&sctx->stat_lock);
2781			scrub_block_put(sblock);
2782			return -ENOMEM;
2783		}
2784		sblock->sectors[index] = sector;
 
 
 
2785		/* For scrub parity */
2786		scrub_sector_get(sector);
2787		list_add_tail(&sector->list, &sparity->sectors_list);
2788		sector->flags = flags;
2789		sector->generation = gen;
 
 
 
 
 
2790		if (csum) {
2791			sector->have_csum = 1;
2792			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2793		} else {
2794			sector->have_csum = 0;
2795		}
2796
2797		/* Iterate over the stripe range in sectorsize steps */
2798		len -= sectorsize;
2799		logical += sectorsize;
2800		physical += sectorsize;
 
 
2801	}
2802
2803	WARN_ON(sblock->sector_count == 0);
2804	for (index = 0; index < sblock->sector_count; index++) {
2805		struct scrub_sector *sector = sblock->sectors[index];
2806		int ret;
2807
2808		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2809		if (ret) {
2810			scrub_block_put(sblock);
2811			return ret;
2812		}
2813	}
2814
2815	/* Last one frees, either here or in bio completion for last sector */
2816	scrub_block_put(sblock);
2817	return 0;
2818}
2819
2820static int scrub_extent_for_parity(struct scrub_parity *sparity,
2821				   u64 logical, u32 len,
2822				   u64 physical, struct btrfs_device *dev,
2823				   u64 flags, u64 gen, int mirror_num)
2824{
2825	struct scrub_ctx *sctx = sparity->sctx;
2826	int ret;
2827	u8 csum[BTRFS_CSUM_SIZE];
2828	u32 blocksize;
2829
2830	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2831		scrub_parity_mark_sectors_error(sparity, logical, len);
2832		return 0;
2833	}
2834
2835	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2836		blocksize = sparity->stripe_len;
2837	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2838		blocksize = sparity->stripe_len;
2839	} else {
2840		blocksize = sctx->fs_info->sectorsize;
2841		WARN_ON(1);
2842	}
2843
2844	while (len) {
2845		u32 l = min(len, blocksize);
2846		int have_csum = 0;
2847
2848		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2849			/* push csums to sbio */
2850			have_csum = scrub_find_csum(sctx, logical, csum);
2851			if (have_csum == 0)
2852				goto skip;
2853		}
2854		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2855					     flags, gen, mirror_num,
2856					     have_csum ? csum : NULL);
2857		if (ret)
2858			return ret;
2859skip:
2860		len -= l;
2861		logical += l;
2862		physical += l;
2863	}
2864	return 0;
2865}
2866
2867/*
2868 * Given a physical address, this will calculate it's
2869 * logical offset. if this is a parity stripe, it will return
2870 * the most left data stripe's logical offset.
2871 *
2872 * return 0 if it is a data stripe, 1 means parity stripe.
2873 */
2874static int get_raid56_logic_offset(u64 physical, int num,
2875				   struct map_lookup *map, u64 *offset,
2876				   u64 *stripe_start)
2877{
2878	int i;
2879	int j = 0;
2880	u64 stripe_nr;
2881	u64 last_offset;
2882	u32 stripe_index;
2883	u32 rot;
2884	const int data_stripes = nr_data_stripes(map);
2885
2886	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2887	if (stripe_start)
2888		*stripe_start = last_offset;
2889
2890	*offset = last_offset;
2891	for (i = 0; i < data_stripes; i++) {
2892		*offset = last_offset + i * map->stripe_len;
2893
2894		stripe_nr = div64_u64(*offset, map->stripe_len);
2895		stripe_nr = div_u64(stripe_nr, data_stripes);
2896
2897		/* Work out the disk rotation on this stripe-set */
2898		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2899		/* calculate which stripe this data locates */
2900		rot += i;
2901		stripe_index = rot % map->num_stripes;
2902		if (stripe_index == num)
2903			return 0;
2904		if (stripe_index < num)
2905			j++;
2906	}
2907	*offset = last_offset + j * map->stripe_len;
2908	return 1;
2909}
2910
2911static void scrub_free_parity(struct scrub_parity *sparity)
2912{
2913	struct scrub_ctx *sctx = sparity->sctx;
2914	struct scrub_sector *curr, *next;
2915	int nbits;
2916
2917	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2918	if (nbits) {
2919		spin_lock(&sctx->stat_lock);
2920		sctx->stat.read_errors += nbits;
2921		sctx->stat.uncorrectable_errors += nbits;
2922		spin_unlock(&sctx->stat_lock);
2923	}
2924
2925	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2926		list_del_init(&curr->list);
2927		scrub_sector_put(curr);
2928	}
2929
2930	kfree(sparity);
2931}
2932
2933static void scrub_parity_bio_endio_worker(struct work_struct *work)
2934{
2935	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2936						    work);
2937	struct scrub_ctx *sctx = sparity->sctx;
2938
2939	btrfs_bio_counter_dec(sctx->fs_info);
2940	scrub_free_parity(sparity);
2941	scrub_pending_bio_dec(sctx);
2942}
2943
2944static void scrub_parity_bio_endio(struct bio *bio)
2945{
2946	struct scrub_parity *sparity = bio->bi_private;
2947	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2948
2949	if (bio->bi_status)
2950		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
2951			  &sparity->dbitmap, sparity->nsectors);
2952
2953	bio_put(bio);
2954
2955	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
2956	queue_work(fs_info->scrub_parity_workers, &sparity->work);
 
2957}
2958
2959static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2960{
2961	struct scrub_ctx *sctx = sparity->sctx;
2962	struct btrfs_fs_info *fs_info = sctx->fs_info;
2963	struct bio *bio;
2964	struct btrfs_raid_bio *rbio;
2965	struct btrfs_io_context *bioc = NULL;
2966	u64 length;
2967	int ret;
2968
2969	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
2970			   &sparity->ebitmap, sparity->nsectors))
2971		goto out;
2972
2973	length = sparity->logic_end - sparity->logic_start;
2974
2975	btrfs_bio_counter_inc_blocked(fs_info);
2976	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2977			       &length, &bioc);
2978	if (ret || !bioc || !bioc->raid_map)
2979		goto bioc_out;
2980
2981	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2982	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2983	bio->bi_private = sparity;
2984	bio->bi_end_io = scrub_parity_bio_endio;
2985
2986	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
2987					      sparity->scrub_dev,
2988					      &sparity->dbitmap,
2989					      sparity->nsectors);
2990	btrfs_put_bioc(bioc);
2991	if (!rbio)
2992		goto rbio_out;
2993
2994	scrub_pending_bio_inc(sctx);
2995	raid56_parity_submit_scrub_rbio(rbio);
2996	return;
2997
2998rbio_out:
2999	bio_put(bio);
3000bioc_out:
3001	btrfs_bio_counter_dec(fs_info);
3002	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
 
3003		  sparity->nsectors);
3004	spin_lock(&sctx->stat_lock);
3005	sctx->stat.malloc_errors++;
3006	spin_unlock(&sctx->stat_lock);
3007out:
3008	scrub_free_parity(sparity);
3009}
3010
 
 
 
 
 
3011static void scrub_parity_get(struct scrub_parity *sparity)
3012{
3013	refcount_inc(&sparity->refs);
3014}
3015
3016static void scrub_parity_put(struct scrub_parity *sparity)
3017{
3018	if (!refcount_dec_and_test(&sparity->refs))
3019		return;
3020
3021	scrub_parity_check_and_repair(sparity);
3022}
3023
3024/*
3025 * Return 0 if the extent item range covers any byte of the range.
3026 * Return <0 if the extent item is before @search_start.
3027 * Return >0 if the extent item is after @start_start + @search_len.
3028 */
3029static int compare_extent_item_range(struct btrfs_path *path,
3030				     u64 search_start, u64 search_len)
3031{
3032	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
3033	u64 len;
3034	struct btrfs_key key;
3035
3036	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3037	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
3038	       key.type == BTRFS_METADATA_ITEM_KEY);
3039	if (key.type == BTRFS_METADATA_ITEM_KEY)
3040		len = fs_info->nodesize;
3041	else
3042		len = key.offset;
3043
3044	if (key.objectid + len <= search_start)
3045		return -1;
3046	if (key.objectid >= search_start + search_len)
3047		return 1;
3048	return 0;
3049}
3050
3051/*
3052 * Locate one extent item which covers any byte in range
3053 * [@search_start, @search_start + @search_length)
3054 *
3055 * If the path is not initialized, we will initialize the search by doing
3056 * a btrfs_search_slot().
3057 * If the path is already initialized, we will use the path as the initial
3058 * slot, to avoid duplicated btrfs_search_slot() calls.
3059 *
3060 * NOTE: If an extent item starts before @search_start, we will still
3061 * return the extent item. This is for data extent crossing stripe boundary.
3062 *
3063 * Return 0 if we found such extent item, and @path will point to the extent item.
3064 * Return >0 if no such extent item can be found, and @path will be released.
3065 * Return <0 if hit fatal error, and @path will be released.
3066 */
3067static int find_first_extent_item(struct btrfs_root *extent_root,
3068				  struct btrfs_path *path,
3069				  u64 search_start, u64 search_len)
3070{
3071	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3072	struct btrfs_key key;
3073	int ret;
3074
3075	/* Continue using the existing path */
3076	if (path->nodes[0])
3077		goto search_forward;
3078
3079	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3080		key.type = BTRFS_METADATA_ITEM_KEY;
3081	else
3082		key.type = BTRFS_EXTENT_ITEM_KEY;
3083	key.objectid = search_start;
3084	key.offset = (u64)-1;
3085
3086	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3087	if (ret < 0)
3088		return ret;
3089
3090	ASSERT(ret > 0);
3091	/*
3092	 * Here we intentionally pass 0 as @min_objectid, as there could be
3093	 * an extent item starting before @search_start.
3094	 */
3095	ret = btrfs_previous_extent_item(extent_root, path, 0);
3096	if (ret < 0)
3097		return ret;
3098	/*
3099	 * No matter whether we have found an extent item, the next loop will
3100	 * properly do every check on the key.
3101	 */
3102search_forward:
3103	while (true) {
3104		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3105		if (key.objectid >= search_start + search_len)
3106			break;
3107		if (key.type != BTRFS_METADATA_ITEM_KEY &&
3108		    key.type != BTRFS_EXTENT_ITEM_KEY)
3109			goto next;
3110
3111		ret = compare_extent_item_range(path, search_start, search_len);
3112		if (ret == 0)
3113			return ret;
3114		if (ret > 0)
3115			break;
3116next:
3117		path->slots[0]++;
3118		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3119			ret = btrfs_next_leaf(extent_root, path);
3120			if (ret) {
3121				/* Either no more item or fatal error */
3122				btrfs_release_path(path);
3123				return ret;
3124			}
3125		}
3126	}
3127	btrfs_release_path(path);
3128	return 1;
3129}
3130
3131static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
3132			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
3133{
3134	struct btrfs_key key;
3135	struct btrfs_extent_item *ei;
3136
3137	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3138	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
3139	       key.type == BTRFS_EXTENT_ITEM_KEY);
3140	*extent_start_ret = key.objectid;
3141	if (key.type == BTRFS_METADATA_ITEM_KEY)
3142		*size_ret = path->nodes[0]->fs_info->nodesize;
3143	else
3144		*size_ret = key.offset;
3145	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
3146	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
3147	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
3148}
3149
3150static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
3151				      u64 boundary_start, u64 boudary_len)
3152{
3153	return (extent_start < boundary_start &&
3154		extent_start + extent_len > boundary_start) ||
3155	       (extent_start < boundary_start + boudary_len &&
3156		extent_start + extent_len > boundary_start + boudary_len);
3157}
3158
3159static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
3160					       struct scrub_parity *sparity,
3161					       struct map_lookup *map,
3162					       struct btrfs_device *sdev,
3163					       struct btrfs_path *path,
3164					       u64 logical)
3165{
3166	struct btrfs_fs_info *fs_info = sctx->fs_info;
3167	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
3168	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3169	u64 cur_logical = logical;
3170	int ret;
3171
3172	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3173
3174	/* Path must not be populated */
3175	ASSERT(!path->nodes[0]);
3176
3177	while (cur_logical < logical + map->stripe_len) {
3178		struct btrfs_io_context *bioc = NULL;
3179		struct btrfs_device *extent_dev;
3180		u64 extent_start;
3181		u64 extent_size;
3182		u64 mapped_length;
3183		u64 extent_flags;
3184		u64 extent_gen;
3185		u64 extent_physical;
3186		u64 extent_mirror_num;
3187
3188		ret = find_first_extent_item(extent_root, path, cur_logical,
3189					     logical + map->stripe_len - cur_logical);
3190		/* No more extent item in this data stripe */
3191		if (ret > 0) {
3192			ret = 0;
3193			break;
3194		}
3195		if (ret < 0)
3196			break;
3197		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
3198				&extent_gen);
3199
3200		/* Metadata should not cross stripe boundaries */
3201		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3202		    does_range_cross_boundary(extent_start, extent_size,
3203					      logical, map->stripe_len)) {
3204			btrfs_err(fs_info,
3205	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3206				  extent_start, logical);
3207			spin_lock(&sctx->stat_lock);
3208			sctx->stat.uncorrectable_errors++;
3209			spin_unlock(&sctx->stat_lock);
3210			cur_logical += extent_size;
3211			continue;
3212		}
3213
3214		/* Skip hole range which doesn't have any extent */
3215		cur_logical = max(extent_start, cur_logical);
3216
3217		/* Truncate the range inside this data stripe */
3218		extent_size = min(extent_start + extent_size,
3219				  logical + map->stripe_len) - cur_logical;
3220		extent_start = cur_logical;
3221		ASSERT(extent_size <= U32_MAX);
3222
3223		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);
3224
3225		mapped_length = extent_size;
3226		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
3227				      &mapped_length, &bioc, 0);
3228		if (!ret && (!bioc || mapped_length < extent_size))
3229			ret = -EIO;
3230		if (ret) {
3231			btrfs_put_bioc(bioc);
3232			scrub_parity_mark_sectors_error(sparity, extent_start,
3233							extent_size);
3234			break;
3235		}
3236		extent_physical = bioc->stripes[0].physical;
3237		extent_mirror_num = bioc->mirror_num;
3238		extent_dev = bioc->stripes[0].dev;
3239		btrfs_put_bioc(bioc);
3240
3241		ret = btrfs_lookup_csums_list(csum_root, extent_start,
3242					      extent_start + extent_size - 1,
3243					      &sctx->csum_list, 1, false);
3244		if (ret) {
3245			scrub_parity_mark_sectors_error(sparity, extent_start,
3246							extent_size);
3247			break;
3248		}
3249
3250		ret = scrub_extent_for_parity(sparity, extent_start,
3251					      extent_size, extent_physical,
3252					      extent_dev, extent_flags,
3253					      extent_gen, extent_mirror_num);
3254		scrub_free_csums(sctx);
3255
3256		if (ret) {
3257			scrub_parity_mark_sectors_error(sparity, extent_start,
3258							extent_size);
3259			break;
3260		}
3261
3262		cond_resched();
3263		cur_logical += extent_size;
3264	}
3265	btrfs_release_path(path);
3266	return ret;
3267}
3268
3269static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3270						  struct map_lookup *map,
3271						  struct btrfs_device *sdev,
 
3272						  u64 logic_start,
3273						  u64 logic_end)
3274{
3275	struct btrfs_fs_info *fs_info = sctx->fs_info;
3276	struct btrfs_path *path;
3277	u64 cur_logical;
 
 
 
3278	int ret;
 
 
 
 
 
 
 
 
 
3279	struct scrub_parity *sparity;
3280	int nsectors;
 
 
 
3281
3282	path = btrfs_alloc_path();
3283	if (!path) {
3284		spin_lock(&sctx->stat_lock);
3285		sctx->stat.malloc_errors++;
3286		spin_unlock(&sctx->stat_lock);
3287		return -ENOMEM;
3288	}
3289	path->search_commit_root = 1;
3290	path->skip_locking = 1;
3291
3292	ASSERT(map->stripe_len <= U32_MAX);
3293	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3294	ASSERT(nsectors <= BITS_PER_LONG);
3295	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3296	if (!sparity) {
3297		spin_lock(&sctx->stat_lock);
3298		sctx->stat.malloc_errors++;
3299		spin_unlock(&sctx->stat_lock);
3300		btrfs_free_path(path);
3301		return -ENOMEM;
3302	}
3303
3304	ASSERT(map->stripe_len <= U32_MAX);
3305	sparity->stripe_len = map->stripe_len;
3306	sparity->nsectors = nsectors;
3307	sparity->sctx = sctx;
3308	sparity->scrub_dev = sdev;
3309	sparity->logic_start = logic_start;
3310	sparity->logic_end = logic_end;
3311	refcount_set(&sparity->refs, 1);
3312	INIT_LIST_HEAD(&sparity->sectors_list);
 
 
3313
3314	ret = 0;
3315	for (cur_logical = logic_start; cur_logical < logic_end;
3316	     cur_logical += map->stripe_len) {
3317		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
3318							  sdev, path, cur_logical);
 
 
 
 
 
3319		if (ret < 0)
3320			break;
3321	}
3322
3323	scrub_parity_put(sparity);
3324	scrub_submit(sctx);
3325	mutex_lock(&sctx->wr_lock);
3326	scrub_wr_submit(sctx);
3327	mutex_unlock(&sctx->wr_lock);
 
 
 
 
 
 
 
3328
3329	btrfs_free_path(path);
3330	return ret < 0 ? ret : 0;
3331}
 
 
 
 
 
 
 
 
 
3332
3333static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3334{
3335	if (!btrfs_is_zoned(sctx->fs_info))
3336		return;
3337
3338	sctx->flush_all_writes = true;
3339	scrub_submit(sctx);
3340	mutex_lock(&sctx->wr_lock);
3341	scrub_wr_submit(sctx);
3342	mutex_unlock(&sctx->wr_lock);
3343
3344	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3345}
 
3346
3347static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3348					u64 physical, u64 physical_end)
3349{
3350	struct btrfs_fs_info *fs_info = sctx->fs_info;
3351	int ret = 0;
3352
3353	if (!btrfs_is_zoned(fs_info))
3354		return 0;
3355
3356	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
 
 
 
3357
3358	mutex_lock(&sctx->wr_lock);
3359	if (sctx->write_pointer < physical_end) {
3360		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3361						    physical,
3362						    sctx->write_pointer);
3363		if (ret)
3364			btrfs_err(fs_info,
3365				  "zoned: failed to recover write pointer");
3366	}
3367	mutex_unlock(&sctx->wr_lock);
3368	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3369
3370	return ret;
3371}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3372
3373/*
3374 * Scrub one range which can only has simple mirror based profile.
3375 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
3376 *  RAID0/RAID10).
3377 *
3378 * Since we may need to handle a subset of block group, we need @logical_start
3379 * and @logical_length parameter.
3380 */
3381static int scrub_simple_mirror(struct scrub_ctx *sctx,
3382			       struct btrfs_root *extent_root,
3383			       struct btrfs_root *csum_root,
3384			       struct btrfs_block_group *bg,
3385			       struct map_lookup *map,
3386			       u64 logical_start, u64 logical_length,
3387			       struct btrfs_device *device,
3388			       u64 physical, int mirror_num)
3389{
3390	struct btrfs_fs_info *fs_info = sctx->fs_info;
3391	const u64 logical_end = logical_start + logical_length;
3392	/* An artificial limit, inherit from old scrub behavior */
3393	const u32 max_length = SZ_64K;
3394	struct btrfs_path path = { 0 };
3395	u64 cur_logical = logical_start;
3396	int ret;
3397
3398	/* The range must be inside the bg */
3399	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
3400
3401	path.search_commit_root = 1;
3402	path.skip_locking = 1;
3403	/* Go through each extent items inside the logical range */
3404	while (cur_logical < logical_end) {
3405		u64 extent_start;
3406		u64 extent_len;
3407		u64 extent_flags;
3408		u64 extent_gen;
3409		u64 scrub_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3410
3411		/* Canceled? */
3412		if (atomic_read(&fs_info->scrub_cancel_req) ||
3413		    atomic_read(&sctx->cancel_req)) {
3414			ret = -ECANCELED;
3415			break;
3416		}
3417		/* Paused? */
3418		if (atomic_read(&fs_info->scrub_pause_req)) {
3419			/* Push queued extents */
3420			sctx->flush_all_writes = true;
3421			scrub_submit(sctx);
3422			mutex_lock(&sctx->wr_lock);
3423			scrub_wr_submit(sctx);
3424			mutex_unlock(&sctx->wr_lock);
3425			wait_event(sctx->list_wait,
3426				   atomic_read(&sctx->bios_in_flight) == 0);
3427			sctx->flush_all_writes = false;
3428			scrub_blocked_if_needed(fs_info);
3429		}
3430		/* Block group removed? */
3431		spin_lock(&bg->lock);
3432		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
3433			spin_unlock(&bg->lock);
3434			ret = 0;
3435			break;
3436		}
3437		spin_unlock(&bg->lock);
3438
3439		ret = find_first_extent_item(extent_root, &path, cur_logical,
3440					     logical_end - cur_logical);
3441		if (ret > 0) {
3442			/* No more extent, just update the accounting */
3443			sctx->stat.last_physical = physical + logical_length;
3444			ret = 0;
3445			break;
3446		}
3447		if (ret < 0)
3448			break;
3449		get_extent_info(&path, &extent_start, &extent_len,
3450				&extent_flags, &extent_gen);
3451		/* Skip hole range which doesn't have any extent */
3452		cur_logical = max(extent_start, cur_logical);
3453
3454		/*
3455		 * Scrub len has three limits:
3456		 * - Extent size limit
3457		 * - Scrub range limit
3458		 *   This is especially imporatant for RAID0/RAID10 to reuse
3459		 *   this function
3460		 * - Max scrub size limit
3461		 */
3462		scrub_len = min(min(extent_start + extent_len,
3463				    logical_end), cur_logical + max_length) -
3464			    cur_logical;
3465
3466		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
3467			ret = btrfs_lookup_csums_list(csum_root, cur_logical,
3468					cur_logical + scrub_len - 1,
3469					&sctx->csum_list, 1, false);
3470			if (ret)
3471				break;
3472		}
3473		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3474		    does_range_cross_boundary(extent_start, extent_len,
3475					      logical_start, logical_length)) {
3476			btrfs_err(fs_info,
3477"scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
3478				  extent_start, logical_start, logical_end);
3479			spin_lock(&sctx->stat_lock);
3480			sctx->stat.uncorrectable_errors++;
3481			spin_unlock(&sctx->stat_lock);
3482			cur_logical += scrub_len;
3483			continue;
3484		}
3485		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
3486				   cur_logical - logical_start + physical,
3487				   device, extent_flags, extent_gen,
3488				   mirror_num);
3489		scrub_free_csums(sctx);
3490		if (ret)
3491			break;
3492		if (sctx->is_dev_replace)
3493			sync_replace_for_zoned(sctx);
3494		cur_logical += scrub_len;
3495		/* Don't hold CPU for too long time */
3496		cond_resched();
3497	}
3498	btrfs_release_path(&path);
3499	return ret;
3500}
3501
3502/* Calculate the full stripe length for simple stripe based profiles */
3503static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
3504{
3505	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3506			    BTRFS_BLOCK_GROUP_RAID10));
3507
3508	return map->num_stripes / map->sub_stripes * map->stripe_len;
3509}
 
 
3510
3511/* Get the logical bytenr for the stripe */
3512static u64 simple_stripe_get_logical(struct map_lookup *map,
3513				     struct btrfs_block_group *bg,
3514				     int stripe_index)
3515{
3516	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3517			    BTRFS_BLOCK_GROUP_RAID10));
3518	ASSERT(stripe_index < map->num_stripes);
3519
3520	/*
3521	 * (stripe_index / sub_stripes) gives how many data stripes we need to
3522	 * skip.
3523	 */
3524	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
3525}
3526
3527/* Get the mirror number for the stripe */
3528static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
3529{
3530	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3531			    BTRFS_BLOCK_GROUP_RAID10));
3532	ASSERT(stripe_index < map->num_stripes);
3533
3534	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
3535	return stripe_index % map->sub_stripes + 1;
3536}
3537
3538static int scrub_simple_stripe(struct scrub_ctx *sctx,
3539			       struct btrfs_root *extent_root,
3540			       struct btrfs_root *csum_root,
3541			       struct btrfs_block_group *bg,
3542			       struct map_lookup *map,
3543			       struct btrfs_device *device,
3544			       int stripe_index)
3545{
3546	const u64 logical_increment = simple_stripe_full_stripe_len(map);
3547	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
3548	const u64 orig_physical = map->stripes[stripe_index].physical;
3549	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
3550	u64 cur_logical = orig_logical;
3551	u64 cur_physical = orig_physical;
3552	int ret = 0;
3553
3554	while (cur_logical < bg->start + bg->length) {
3555		/*
3556		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
3557		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
3558		 * this stripe.
3559		 */
3560		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
3561					  cur_logical, map->stripe_len, device,
3562					  cur_physical, mirror_num);
3563		if (ret)
3564			return ret;
3565		/* Skip to next stripe which belongs to the target device */
3566		cur_logical += logical_increment;
3567		/* For physical offset, we just go to next stripe */
3568		cur_physical += map->stripe_len;
3569	}
3570	return ret;
 
 
 
 
 
 
 
 
 
 
 
3571}
3572
3573static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3574					   struct btrfs_block_group *bg,
3575					   struct extent_map *em,
3576					   struct btrfs_device *scrub_dev,
3577					   int stripe_index)
3578{
3579	struct btrfs_path *path;
3580	struct btrfs_fs_info *fs_info = sctx->fs_info;
3581	struct btrfs_root *root;
3582	struct btrfs_root *csum_root;
 
3583	struct blk_plug plug;
3584	struct map_lookup *map = em->map_lookup;
3585	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3586	const u64 chunk_logical = bg->start;
3587	int ret;
3588	u64 physical = map->stripes[stripe_index].physical;
3589	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
3590	const u64 physical_end = physical + dev_stripe_len;
 
3591	u64 logical;
3592	u64 logic_end;
3593	/* The logical increment after finishing one stripe */
3594	u64 increment;
3595	/* Offset inside the chunk */
 
 
 
 
 
3596	u64 offset;
 
 
 
3597	u64 stripe_logical;
3598	u64 stripe_end;
 
 
3599	int stop_loop = 0;
3600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3601	path = btrfs_alloc_path();
3602	if (!path)
3603		return -ENOMEM;
3604
 
 
 
 
 
 
3605	/*
3606	 * work on commit root. The related disk blocks are static as
3607	 * long as COW is applied. This means, it is save to rewrite
3608	 * them to repair disk errors without any race conditions
3609	 */
3610	path->search_commit_root = 1;
3611	path->skip_locking = 1;
3612	path->reada = READA_FORWARD;
3613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3614	wait_event(sctx->list_wait,
3615		   atomic_read(&sctx->bios_in_flight) == 0);
3616	scrub_blocked_if_needed(fs_info);
3617
3618	root = btrfs_extent_root(fs_info, bg->start);
3619	csum_root = btrfs_csum_root(fs_info, bg->start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3620
3621	/*
3622	 * collect all data csums for the stripe to avoid seeking during
3623	 * the scrub. This might currently (crc32) end up to be about 1MB
3624	 */
3625	blk_start_plug(&plug);
3626
3627	if (sctx->is_dev_replace &&
3628	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3629		mutex_lock(&sctx->wr_lock);
3630		sctx->write_pointer = physical;
3631		mutex_unlock(&sctx->wr_lock);
3632		sctx->flush_all_writes = true;
3633	}
3634
3635	/*
3636	 * There used to be a big double loop to handle all profiles using the
3637	 * same routine, which grows larger and more gross over time.
3638	 *
3639	 * So here we handle each profile differently, so simpler profiles
3640	 * have simpler scrubbing function.
3641	 */
3642	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
3643			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
 
 
 
 
 
 
 
 
3644		/*
3645		 * Above check rules out all complex profile, the remaining
3646		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
3647		 * mirrored duplication without stripe.
3648		 *
3649		 * Only @physical and @mirror_num needs to calculated using
3650		 * @stripe_index.
3651		 */
3652		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3653				bg->start, bg->length, scrub_dev,
3654				map->stripes[stripe_index].physical,
3655				stripe_index + 1);
3656		offset = 0;
3657		goto out;
3658	}
3659	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3660		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
3661					  scrub_dev, stripe_index);
3662		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3663		goto out;
3664	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3665
3666	/* Only RAID56 goes through the old code */
3667	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3668	ret = 0;
 
3669
3670	/* Calculate the logical end of the stripe */
3671	get_raid56_logic_offset(physical_end, stripe_index,
3672				map, &logic_end, NULL);
3673	logic_end += chunk_logical;
3674
3675	/* Initialize @offset in case we need to go to out: label */
3676	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
3677	increment = map->stripe_len * nr_data_stripes(map);
3678
3679	/*
3680	 * Due to the rotation, for RAID56 it's better to iterate each stripe
3681	 * using their physical offset.
3682	 */
3683	while (physical < physical_end) {
3684		ret = get_raid56_logic_offset(physical, stripe_index, map,
3685					      &logical, &stripe_logical);
3686		logical += chunk_logical;
3687		if (ret) {
3688			/* it is parity strip */
3689			stripe_logical += chunk_logical;
3690			stripe_end = stripe_logical + increment;
3691			ret = scrub_raid56_parity(sctx, map, scrub_dev,
3692						  stripe_logical,
3693						  stripe_end);
3694			if (ret)
3695				goto out;
3696			goto next;
3697		}
3698
3699		/*
3700		 * Now we're at a data stripe, scrub each extents in the range.
3701		 *
3702		 * At this stage, if we ignore the repair part, inside each data
3703		 * stripe it is no different than SINGLE profile.
3704		 * We can reuse scrub_simple_mirror() here, as the repair part
3705		 * is still based on @mirror_num.
3706		 */
3707		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3708					  logical, map->stripe_len,
3709					  scrub_dev, physical, 1);
3710		if (ret < 0)
3711			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3712next:
 
 
 
 
3713		logical += increment;
3714		physical += map->stripe_len;
3715		spin_lock(&sctx->stat_lock);
3716		if (stop_loop)
3717			sctx->stat.last_physical =
3718				map->stripes[stripe_index].physical + dev_stripe_len;
3719		else
3720			sctx->stat.last_physical = physical;
3721		spin_unlock(&sctx->stat_lock);
3722		if (stop_loop)
3723			break;
3724	}
3725out:
3726	/* push queued extents */
3727	scrub_submit(sctx);
3728	mutex_lock(&sctx->wr_lock);
3729	scrub_wr_submit(sctx);
3730	mutex_unlock(&sctx->wr_lock);
3731
3732	blk_finish_plug(&plug);
3733	btrfs_free_path(path);
3734
3735	if (sctx->is_dev_replace && ret >= 0) {
3736		int ret2;
3737
3738		ret2 = sync_write_pointer_for_zoned(sctx,
3739				chunk_logical + offset,
3740				map->stripes[stripe_index].physical,
3741				physical_end);
3742		if (ret2)
3743			ret = ret2;
3744	}
3745
3746	return ret < 0 ? ret : 0;
3747}
3748
3749static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3750					  struct btrfs_block_group *bg,
3751					  struct btrfs_device *scrub_dev,
 
3752					  u64 dev_offset,
3753					  u64 dev_extent_len)
3754{
3755	struct btrfs_fs_info *fs_info = sctx->fs_info;
3756	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3757	struct map_lookup *map;
3758	struct extent_map *em;
3759	int i;
3760	int ret = 0;
3761
3762	read_lock(&map_tree->lock);
3763	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3764	read_unlock(&map_tree->lock);
3765
3766	if (!em) {
3767		/*
3768		 * Might have been an unused block group deleted by the cleaner
3769		 * kthread or relocation.
3770		 */
3771		spin_lock(&bg->lock);
3772		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
3773			ret = -EINVAL;
3774		spin_unlock(&bg->lock);
3775
3776		return ret;
3777	}
3778	if (em->start != bg->start)
 
 
3779		goto out;
3780	if (em->len < dev_extent_len)
 
3781		goto out;
3782
3783	map = em->map_lookup;
3784	for (i = 0; i < map->num_stripes; ++i) {
3785		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3786		    map->stripes[i].physical == dev_offset) {
3787			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
 
3788			if (ret)
3789				goto out;
3790		}
3791	}
3792out:
3793	free_extent_map(em);
3794
3795	return ret;
3796}
3797
3798static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3799					  struct btrfs_block_group *cache)
3800{
3801	struct btrfs_fs_info *fs_info = cache->fs_info;
3802	struct btrfs_trans_handle *trans;
3803
3804	if (!btrfs_is_zoned(fs_info))
3805		return 0;
3806
3807	btrfs_wait_block_group_reservations(cache);
3808	btrfs_wait_nocow_writers(cache);
3809	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3810
3811	trans = btrfs_join_transaction(root);
3812	if (IS_ERR(trans))
3813		return PTR_ERR(trans);
3814	return btrfs_commit_transaction(trans);
3815}
3816
3817static noinline_for_stack
3818int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3819			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3820{
3821	struct btrfs_dev_extent *dev_extent = NULL;
3822	struct btrfs_path *path;
3823	struct btrfs_fs_info *fs_info = sctx->fs_info;
3824	struct btrfs_root *root = fs_info->dev_root;
 
3825	u64 chunk_offset;
3826	int ret = 0;
3827	int ro_set;
3828	int slot;
3829	struct extent_buffer *l;
3830	struct btrfs_key key;
3831	struct btrfs_key found_key;
3832	struct btrfs_block_group *cache;
3833	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3834
3835	path = btrfs_alloc_path();
3836	if (!path)
3837		return -ENOMEM;
3838
3839	path->reada = READA_FORWARD;
3840	path->search_commit_root = 1;
3841	path->skip_locking = 1;
3842
3843	key.objectid = scrub_dev->devid;
3844	key.offset = 0ull;
3845	key.type = BTRFS_DEV_EXTENT_KEY;
3846
3847	while (1) {
3848		u64 dev_extent_len;
3849
3850		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3851		if (ret < 0)
3852			break;
3853		if (ret > 0) {
3854			if (path->slots[0] >=
3855			    btrfs_header_nritems(path->nodes[0])) {
3856				ret = btrfs_next_leaf(root, path);
3857				if (ret < 0)
3858					break;
3859				if (ret > 0) {
3860					ret = 0;
3861					break;
3862				}
3863			} else {
3864				ret = 0;
3865			}
3866		}
3867
3868		l = path->nodes[0];
3869		slot = path->slots[0];
3870
3871		btrfs_item_key_to_cpu(l, &found_key, slot);
3872
3873		if (found_key.objectid != scrub_dev->devid)
3874			break;
3875
3876		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3877			break;
3878
3879		if (found_key.offset >= end)
3880			break;
3881
3882		if (found_key.offset < key.offset)
3883			break;
3884
3885		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3886		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
3887
3888		if (found_key.offset + dev_extent_len <= start)
3889			goto skip;
3890
3891		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3892
3893		/*
3894		 * get a reference on the corresponding block group to prevent
3895		 * the chunk from going away while we scrub it
3896		 */
3897		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3898
3899		/* some chunks are removed but not committed to disk yet,
3900		 * continue scrubbing */
3901		if (!cache)
3902			goto skip;
3903
3904		ASSERT(cache->start <= chunk_offset);
3905		/*
3906		 * We are using the commit root to search for device extents, so
3907		 * that means we could have found a device extent item from a
3908		 * block group that was deleted in the current transaction. The
3909		 * logical start offset of the deleted block group, stored at
3910		 * @chunk_offset, might be part of the logical address range of
3911		 * a new block group (which uses different physical extents).
3912		 * In this case btrfs_lookup_block_group() has returned the new
3913		 * block group, and its start address is less than @chunk_offset.
3914		 *
3915		 * We skip such new block groups, because it's pointless to
3916		 * process them, as we won't find their extents because we search
3917		 * for them using the commit root of the extent tree. For a device
3918		 * replace it's also fine to skip it, we won't miss copying them
3919		 * to the target device because we have the write duplication
3920		 * setup through the regular write path (by btrfs_map_block()),
3921		 * and we have committed a transaction when we started the device
3922		 * replace, right after setting up the device replace state.
3923		 */
3924		if (cache->start < chunk_offset) {
3925			btrfs_put_block_group(cache);
3926			goto skip;
3927		}
3928
3929		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3930			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
3931				btrfs_put_block_group(cache);
3932				goto skip;
3933			}
3934		}
3935
3936		/*
3937		 * Make sure that while we are scrubbing the corresponding block
3938		 * group doesn't get its logical address and its device extents
3939		 * reused for another block group, which can possibly be of a
3940		 * different type and different profile. We do this to prevent
3941		 * false error detections and crashes due to bogus attempts to
3942		 * repair extents.
3943		 */
3944		spin_lock(&cache->lock);
3945		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
3946			spin_unlock(&cache->lock);
3947			btrfs_put_block_group(cache);
3948			goto skip;
3949		}
3950		btrfs_freeze_block_group(cache);
3951		spin_unlock(&cache->lock);
3952
3953		/*
3954		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3955		 * to avoid deadlock caused by:
3956		 * btrfs_inc_block_group_ro()
3957		 * -> btrfs_wait_for_commit()
3958		 * -> btrfs_commit_transaction()
3959		 * -> btrfs_scrub_pause()
3960		 */
3961		scrub_pause_on(fs_info);
3962
3963		/*
3964		 * Don't do chunk preallocation for scrub.
3965		 *
3966		 * This is especially important for SYSTEM bgs, or we can hit
3967		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3968		 * 1. The only SYSTEM bg is marked RO.
3969		 *    Since SYSTEM bg is small, that's pretty common.
3970		 * 2. New SYSTEM bg will be allocated
3971		 *    Due to regular version will allocate new chunk.
3972		 * 3. New SYSTEM bg is empty and will get cleaned up
3973		 *    Before cleanup really happens, it's marked RO again.
3974		 * 4. Empty SYSTEM bg get scrubbed
3975		 *    We go back to 2.
3976		 *
3977		 * This can easily boost the amount of SYSTEM chunks if cleaner
3978		 * thread can't be triggered fast enough, and use up all space
3979		 * of btrfs_super_block::sys_chunk_array
3980		 *
3981		 * While for dev replace, we need to try our best to mark block
3982		 * group RO, to prevent race between:
3983		 * - Write duplication
3984		 *   Contains latest data
3985		 * - Scrub copy
3986		 *   Contains data from commit tree
3987		 *
3988		 * If target block group is not marked RO, nocow writes can
3989		 * be overwritten by scrub copy, causing data corruption.
3990		 * So for dev-replace, it's not allowed to continue if a block
3991		 * group is not RO.
3992		 */
3993		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3994		if (!ret && sctx->is_dev_replace) {
3995			ret = finish_extent_writes_for_zoned(root, cache);
3996			if (ret) {
3997				btrfs_dec_block_group_ro(cache);
3998				scrub_pause_off(fs_info);
3999				btrfs_put_block_group(cache);
4000				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4001			}
4002		}
 
4003
4004		if (ret == 0) {
4005			ro_set = 1;
4006		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
4007			/*
4008			 * btrfs_inc_block_group_ro return -ENOSPC when it
4009			 * failed in creating new chunk for metadata.
4010			 * It is not a problem for scrub, because
4011			 * metadata are always cowed, and our scrub paused
4012			 * commit_transactions.
4013			 */
4014			ro_set = 0;
4015		} else if (ret == -ETXTBSY) {
4016			btrfs_warn(fs_info,
4017		   "skipping scrub of block group %llu due to active swapfile",
4018				   cache->start);
4019			scrub_pause_off(fs_info);
4020			ret = 0;
4021			goto skip_unfreeze;
4022		} else {
4023			btrfs_warn(fs_info,
4024				   "failed setting block group ro: %d", ret);
4025			btrfs_unfreeze_block_group(cache);
4026			btrfs_put_block_group(cache);
4027			scrub_pause_off(fs_info);
4028			break;
4029		}
4030
4031		/*
4032		 * Now the target block is marked RO, wait for nocow writes to
4033		 * finish before dev-replace.
4034		 * COW is fine, as COW never overwrites extents in commit tree.
4035		 */
4036		if (sctx->is_dev_replace) {
4037			btrfs_wait_nocow_writers(cache);
4038			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
4039					cache->length);
4040		}
4041
4042		scrub_pause_off(fs_info);
4043		down_write(&dev_replace->rwsem);
4044		dev_replace->cursor_right = found_key.offset + dev_extent_len;
4045		dev_replace->cursor_left = found_key.offset;
4046		dev_replace->item_needs_writeback = 1;
4047		up_write(&dev_replace->rwsem);
4048
4049		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
4050				  dev_extent_len);
4051
4052		/*
4053		 * flush, submit all pending read and write bios, afterwards
4054		 * wait for them.
4055		 * Note that in the dev replace case, a read request causes
4056		 * write requests that are submitted in the read completion
4057		 * worker. Therefore in the current situation, it is required
4058		 * that all write requests are flushed, so that all read and
4059		 * write requests are really completed when bios_in_flight
4060		 * changes to 0.
4061		 */
4062		sctx->flush_all_writes = true;
4063		scrub_submit(sctx);
4064		mutex_lock(&sctx->wr_lock);
4065		scrub_wr_submit(sctx);
4066		mutex_unlock(&sctx->wr_lock);
4067
4068		wait_event(sctx->list_wait,
4069			   atomic_read(&sctx->bios_in_flight) == 0);
4070
4071		scrub_pause_on(fs_info);
4072
4073		/*
4074		 * must be called before we decrease @scrub_paused.
4075		 * make sure we don't block transaction commit while
4076		 * we are waiting pending workers finished.
4077		 */
4078		wait_event(sctx->list_wait,
4079			   atomic_read(&sctx->workers_pending) == 0);
4080		sctx->flush_all_writes = false;
4081
4082		scrub_pause_off(fs_info);
4083
4084		if (sctx->is_dev_replace &&
4085		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
4086						      cache, found_key.offset))
4087			ro_set = 0;
4088
4089		down_write(&dev_replace->rwsem);
4090		dev_replace->cursor_left = dev_replace->cursor_right;
4091		dev_replace->item_needs_writeback = 1;
4092		up_write(&dev_replace->rwsem);
4093
4094		if (ro_set)
4095			btrfs_dec_block_group_ro(cache);
4096
4097		/*
4098		 * We might have prevented the cleaner kthread from deleting
4099		 * this block group if it was already unused because we raced
4100		 * and set it to RO mode first. So add it back to the unused
4101		 * list, otherwise it might not ever be deleted unless a manual
4102		 * balance is triggered or it becomes used and unused again.
4103		 */
4104		spin_lock(&cache->lock);
4105		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
4106		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
4107			spin_unlock(&cache->lock);
4108			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
4109				btrfs_discard_queue_work(&fs_info->discard_ctl,
4110							 cache);
4111			else
4112				btrfs_mark_bg_unused(cache);
4113		} else {
4114			spin_unlock(&cache->lock);
4115		}
4116skip_unfreeze:
4117		btrfs_unfreeze_block_group(cache);
4118		btrfs_put_block_group(cache);
4119		if (ret)
4120			break;
4121		if (sctx->is_dev_replace &&
4122		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4123			ret = -EIO;
4124			break;
4125		}
4126		if (sctx->stat.malloc_errors > 0) {
4127			ret = -ENOMEM;
4128			break;
4129		}
4130skip:
4131		key.offset = found_key.offset + dev_extent_len;
4132		btrfs_release_path(path);
4133	}
4134
4135	btrfs_free_path(path);
4136
4137	return ret;
4138}
4139
4140static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4141					   struct btrfs_device *scrub_dev)
4142{
4143	int	i;
4144	u64	bytenr;
4145	u64	gen;
4146	int	ret;
4147	struct btrfs_fs_info *fs_info = sctx->fs_info;
4148
4149	if (BTRFS_FS_ERROR(fs_info))
4150		return -EROFS;
4151
4152	/* Seed devices of a new filesystem has their own generation. */
4153	if (scrub_dev->fs_devices != fs_info->fs_devices)
4154		gen = scrub_dev->generation;
4155	else
4156		gen = fs_info->last_trans_committed;
4157
4158	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4159		bytenr = btrfs_sb_offset(i);
4160		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4161		    scrub_dev->commit_total_bytes)
4162			break;
4163		if (!btrfs_check_super_location(scrub_dev, bytenr))
4164			continue;
4165
4166		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4167				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4168				    NULL, bytenr);
4169		if (ret)
4170			return ret;
4171	}
4172	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4173
4174	return 0;
4175}
4176
4177static void scrub_workers_put(struct btrfs_fs_info *fs_info)
4178{
4179	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
4180					&fs_info->scrub_lock)) {
4181		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
4182		struct workqueue_struct *scrub_wr_comp =
4183						fs_info->scrub_wr_completion_workers;
4184		struct workqueue_struct *scrub_parity =
4185						fs_info->scrub_parity_workers;
4186
4187		fs_info->scrub_workers = NULL;
4188		fs_info->scrub_wr_completion_workers = NULL;
4189		fs_info->scrub_parity_workers = NULL;
4190		mutex_unlock(&fs_info->scrub_lock);
4191
4192		if (scrub_workers)
4193			destroy_workqueue(scrub_workers);
4194		if (scrub_wr_comp)
4195			destroy_workqueue(scrub_wr_comp);
4196		if (scrub_parity)
4197			destroy_workqueue(scrub_parity);
4198	}
4199}
4200
4201/*
4202 * get a reference count on fs_info->scrub_workers. start worker if necessary
4203 */
4204static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4205						int is_dev_replace)
4206{
4207	struct workqueue_struct *scrub_workers = NULL;
4208	struct workqueue_struct *scrub_wr_comp = NULL;
4209	struct workqueue_struct *scrub_parity = NULL;
4210	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4211	int max_active = fs_info->thread_pool_size;
4212	int ret = -ENOMEM;
4213
4214	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4215		return 0;
4216
4217	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
4218					is_dev_replace ? 1 : max_active);
4219	if (!scrub_workers)
4220		goto fail_scrub_workers;
4221
4222	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4223	if (!scrub_wr_comp)
4224		goto fail_scrub_wr_completion_workers;
4225
4226	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4227	if (!scrub_parity)
4228		goto fail_scrub_parity_workers;
 
 
 
 
 
 
 
 
4229
4230	mutex_lock(&fs_info->scrub_lock);
4231	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4232		ASSERT(fs_info->scrub_workers == NULL &&
4233		       fs_info->scrub_wr_completion_workers == NULL &&
4234		       fs_info->scrub_parity_workers == NULL);
4235		fs_info->scrub_workers = scrub_workers;
4236		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4237		fs_info->scrub_parity_workers = scrub_parity;
4238		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4239		mutex_unlock(&fs_info->scrub_lock);
4240		return 0;
4241	}
4242	/* Other thread raced in and created the workers for us */
4243	refcount_inc(&fs_info->scrub_workers_refcnt);
4244	mutex_unlock(&fs_info->scrub_lock);
4245
4246	ret = 0;
4247	destroy_workqueue(scrub_parity);
4248fail_scrub_parity_workers:
4249	destroy_workqueue(scrub_wr_comp);
4250fail_scrub_wr_completion_workers:
4251	destroy_workqueue(scrub_workers);
4252fail_scrub_workers:
4253	return ret;
4254}
4255
4256int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4257		    u64 end, struct btrfs_scrub_progress *progress,
4258		    int readonly, int is_dev_replace)
4259{
4260	struct btrfs_dev_lookup_args args = { .devid = devid };
4261	struct scrub_ctx *sctx;
4262	int ret;
4263	struct btrfs_device *dev;
4264	unsigned int nofs_flag;
4265	bool need_commit = false;
 
 
4266
4267	if (btrfs_fs_closing(fs_info))
4268		return -EAGAIN;
4269
4270	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
4271	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
4272
4273	/*
4274	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
4275	 * value (max nodesize / min sectorsize), thus nodesize should always
4276	 * be fine.
4277	 */
4278	ASSERT(fs_info->nodesize <=
4279	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4280
4281	/* Allocate outside of device_list_mutex */
4282	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4283	if (IS_ERR(sctx))
4284		return PTR_ERR(sctx);
4285
4286	ret = scrub_workers_get(fs_info, is_dev_replace);
4287	if (ret)
4288		goto out_free_ctx;
4289
4290	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4291	dev = btrfs_find_device(fs_info->fs_devices, &args);
4292	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4293		     !is_dev_replace)) {
4294		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4295		ret = -ENODEV;
4296		goto out;
4297	}
4298
4299	if (!is_dev_replace && !readonly &&
4300	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4301		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4302		btrfs_err_in_rcu(fs_info,
4303			"scrub on devid %llu: filesystem on %s is not writable",
4304				 devid, btrfs_dev_name(dev));
4305		ret = -EROFS;
4306		goto out;
4307	}
4308
4309	mutex_lock(&fs_info->scrub_lock);
4310	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4311	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4312		mutex_unlock(&fs_info->scrub_lock);
4313		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4314		ret = -EIO;
4315		goto out;
4316	}
4317
4318	down_read(&fs_info->dev_replace.rwsem);
4319	if (dev->scrub_ctx ||
4320	    (!is_dev_replace &&
4321	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4322		up_read(&fs_info->dev_replace.rwsem);
4323		mutex_unlock(&fs_info->scrub_lock);
4324		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4325		ret = -EINPROGRESS;
4326		goto out;
4327	}
4328	up_read(&fs_info->dev_replace.rwsem);
4329
 
 
 
 
 
 
 
4330	sctx->readonly = readonly;
4331	dev->scrub_ctx = sctx;
4332	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4333
4334	/*
4335	 * checking @scrub_pause_req here, we can avoid
4336	 * race between committing transaction and scrubbing.
4337	 */
4338	__scrub_blocked_if_needed(fs_info);
4339	atomic_inc(&fs_info->scrubs_running);
4340	mutex_unlock(&fs_info->scrub_lock);
4341
4342	/*
4343	 * In order to avoid deadlock with reclaim when there is a transaction
4344	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4345	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4346	 * invoked by our callees. The pausing request is done when the
4347	 * transaction commit starts, and it blocks the transaction until scrub
4348	 * is paused (done at specific points at scrub_stripe() or right above
4349	 * before incrementing fs_info->scrubs_running).
4350	 */
4351	nofs_flag = memalloc_nofs_save();
4352	if (!is_dev_replace) {
4353		u64 old_super_errors;
4354
4355		spin_lock(&sctx->stat_lock);
4356		old_super_errors = sctx->stat.super_errors;
4357		spin_unlock(&sctx->stat_lock);
4358
4359		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4360		/*
4361		 * by holding device list mutex, we can
4362		 * kick off writing super in log tree sync.
4363		 */
4364		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4365		ret = scrub_supers(sctx, dev);
4366		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4367
4368		spin_lock(&sctx->stat_lock);
4369		/*
4370		 * Super block errors found, but we can not commit transaction
4371		 * at current context, since btrfs_commit_transaction() needs
4372		 * to pause the current running scrub (hold by ourselves).
4373		 */
4374		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
4375			need_commit = true;
4376		spin_unlock(&sctx->stat_lock);
4377	}
4378
4379	if (!ret)
4380		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4381	memalloc_nofs_restore(nofs_flag);
4382
4383	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4384	atomic_dec(&fs_info->scrubs_running);
4385	wake_up(&fs_info->scrub_pause_wait);
4386
4387	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4388
4389	if (progress)
4390		memcpy(progress, &sctx->stat, sizeof(*progress));
4391
4392	if (!is_dev_replace)
4393		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4394			ret ? "not finished" : "finished", devid, ret);
4395
4396	mutex_lock(&fs_info->scrub_lock);
4397	dev->scrub_ctx = NULL;
 
 
 
 
 
 
 
 
 
4398	mutex_unlock(&fs_info->scrub_lock);
4399
4400	scrub_workers_put(fs_info);
 
 
4401	scrub_put_ctx(sctx);
4402
4403	/*
4404	 * We found some super block errors before, now try to force a
4405	 * transaction commit, as scrub has finished.
4406	 */
4407	if (need_commit) {
4408		struct btrfs_trans_handle *trans;
4409
4410		trans = btrfs_start_transaction(fs_info->tree_root, 0);
4411		if (IS_ERR(trans)) {
4412			ret = PTR_ERR(trans);
4413			btrfs_err(fs_info,
4414	"scrub: failed to start transaction to fix super block errors: %d", ret);
4415			return ret;
4416		}
4417		ret = btrfs_commit_transaction(trans);
4418		if (ret < 0)
4419			btrfs_err(fs_info,
4420	"scrub: failed to commit transaction to fix super block errors: %d", ret);
4421	}
4422	return ret;
4423out:
4424	scrub_workers_put(fs_info);
4425out_free_ctx:
4426	scrub_free_ctx(sctx);
4427
4428	return ret;
4429}
4430
4431void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4432{
4433	mutex_lock(&fs_info->scrub_lock);
4434	atomic_inc(&fs_info->scrub_pause_req);
4435	while (atomic_read(&fs_info->scrubs_paused) !=
4436	       atomic_read(&fs_info->scrubs_running)) {
4437		mutex_unlock(&fs_info->scrub_lock);
4438		wait_event(fs_info->scrub_pause_wait,
4439			   atomic_read(&fs_info->scrubs_paused) ==
4440			   atomic_read(&fs_info->scrubs_running));
4441		mutex_lock(&fs_info->scrub_lock);
4442	}
4443	mutex_unlock(&fs_info->scrub_lock);
4444}
4445
4446void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4447{
4448	atomic_dec(&fs_info->scrub_pause_req);
4449	wake_up(&fs_info->scrub_pause_wait);
4450}
4451
4452int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4453{
4454	mutex_lock(&fs_info->scrub_lock);
4455	if (!atomic_read(&fs_info->scrubs_running)) {
4456		mutex_unlock(&fs_info->scrub_lock);
4457		return -ENOTCONN;
4458	}
4459
4460	atomic_inc(&fs_info->scrub_cancel_req);
4461	while (atomic_read(&fs_info->scrubs_running)) {
4462		mutex_unlock(&fs_info->scrub_lock);
4463		wait_event(fs_info->scrub_pause_wait,
4464			   atomic_read(&fs_info->scrubs_running) == 0);
4465		mutex_lock(&fs_info->scrub_lock);
4466	}
4467	atomic_dec(&fs_info->scrub_cancel_req);
4468	mutex_unlock(&fs_info->scrub_lock);
4469
4470	return 0;
4471}
4472
4473int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4474{
4475	struct btrfs_fs_info *fs_info = dev->fs_info;
4476	struct scrub_ctx *sctx;
4477
4478	mutex_lock(&fs_info->scrub_lock);
4479	sctx = dev->scrub_ctx;
4480	if (!sctx) {
4481		mutex_unlock(&fs_info->scrub_lock);
4482		return -ENOTCONN;
4483	}
4484	atomic_inc(&sctx->cancel_req);
4485	while (dev->scrub_ctx) {
4486		mutex_unlock(&fs_info->scrub_lock);
4487		wait_event(fs_info->scrub_pause_wait,
4488			   dev->scrub_ctx == NULL);
4489		mutex_lock(&fs_info->scrub_lock);
4490	}
4491	mutex_unlock(&fs_info->scrub_lock);
4492
4493	return 0;
4494}
4495
4496int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4497			 struct btrfs_scrub_progress *progress)
4498{
4499	struct btrfs_dev_lookup_args args = { .devid = devid };
4500	struct btrfs_device *dev;
4501	struct scrub_ctx *sctx = NULL;
4502
4503	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4504	dev = btrfs_find_device(fs_info->fs_devices, &args);
4505	if (dev)
4506		sctx = dev->scrub_ctx;
4507	if (sctx)
4508		memcpy(progress, &sctx->stat, sizeof(*progress));
4509	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4510
4511	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4512}
4513
4514static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
4515				 u64 extent_logical, u32 extent_len,
4516				 u64 *extent_physical,
4517				 struct btrfs_device **extent_dev,
4518				 int *extent_mirror_num)
4519{
4520	u64 mapped_length;
4521	struct btrfs_io_context *bioc = NULL;
4522	int ret;
4523
4524	mapped_length = extent_len;
4525	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4526			      &mapped_length, &bioc, 0);
4527	if (ret || !bioc || mapped_length < extent_len ||
4528	    !bioc->stripes[0].dev->bdev) {
4529		btrfs_put_bioc(bioc);
4530		return;
4531	}
4532
4533	*extent_physical = bioc->stripes[0].physical;
4534	*extent_mirror_num = bioc->mirror_num;
4535	*extent_dev = bioc->stripes[0].dev;
4536	btrfs_put_bioc(bioc);
4537}