Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "volumes.h"
  12#include "disk-io.h"
  13#include "ordered-data.h"
  14#include "transaction.h"
  15#include "backref.h"
  16#include "extent_io.h"
  17#include "dev-replace.h"
  18#include "check-integrity.h"
  19#include "rcu-string.h"
  20#include "raid56.h"
  21#include "block-group.h"
  22
  23/*
  24 * This is only the first step towards a full-features scrub. It reads all
  25 * extent and super block and verifies the checksums. In case a bad checksum
  26 * is found or the extent cannot be read, good data will be written back if
  27 * any can be found.
  28 *
  29 * Future enhancements:
  30 *  - In case an unrepairable extent is encountered, track which files are
  31 *    affected and report them
  32 *  - track and record media errors, throw out bad devices
  33 *  - add a mode to also read unallocated space
  34 */
  35
  36struct scrub_block;
  37struct scrub_ctx;
  38
  39/*
  40 * the following three values only influence the performance.
  41 * The last one configures the number of parallel and outstanding I/O
  42 * operations. The first two values configure an upper limit for the number
  43 * of (dynamically allocated) pages that are added to a bio.
  44 */
  45#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  46#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  47#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  48
  49/*
  50 * the following value times PAGE_SIZE needs to be large enough to match the
  51 * largest node/leaf/sector size that shall be supported.
  52 * Values larger than BTRFS_STRIPE_LEN are not supported.
  53 */
  54#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  55
  56struct scrub_recover {
  57	refcount_t		refs;
  58	struct btrfs_bio	*bbio;
  59	u64			map_length;
  60};
  61
  62struct scrub_page {
  63	struct scrub_block	*sblock;
  64	struct page		*page;
  65	struct btrfs_device	*dev;
  66	struct list_head	list;
  67	u64			flags;  /* extent flags */
  68	u64			generation;
  69	u64			logical;
  70	u64			physical;
  71	u64			physical_for_dev_replace;
  72	atomic_t		refs;
  73	struct {
  74		unsigned int	mirror_num:8;
  75		unsigned int	have_csum:1;
  76		unsigned int	io_error:1;
  77	};
  78	u8			csum[BTRFS_CSUM_SIZE];
  79
  80	struct scrub_recover	*recover;
  81};
  82
  83struct scrub_bio {
  84	int			index;
  85	struct scrub_ctx	*sctx;
  86	struct btrfs_device	*dev;
  87	struct bio		*bio;
  88	blk_status_t		status;
  89	u64			logical;
  90	u64			physical;
  91#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  92	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  93#else
  94	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  95#endif
  96	int			page_count;
  97	int			next_free;
  98	struct btrfs_work	work;
  99};
 100
 101struct scrub_block {
 102	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 103	int			page_count;
 104	atomic_t		outstanding_pages;
 105	refcount_t		refs; /* free mem on transition to zero */
 106	struct scrub_ctx	*sctx;
 107	struct scrub_parity	*sparity;
 108	struct {
 109		unsigned int	header_error:1;
 110		unsigned int	checksum_error:1;
 111		unsigned int	no_io_error_seen:1;
 112		unsigned int	generation_error:1; /* also sets header_error */
 113
 114		/* The following is for the data used to check parity */
 115		/* It is for the data with checksum */
 116		unsigned int	data_corrected:1;
 117	};
 118	struct btrfs_work	work;
 119};
 120
 121/* Used for the chunks with parity stripe such RAID5/6 */
 122struct scrub_parity {
 123	struct scrub_ctx	*sctx;
 124
 125	struct btrfs_device	*scrub_dev;
 126
 127	u64			logic_start;
 128
 129	u64			logic_end;
 130
 131	int			nsectors;
 132
 133	u64			stripe_len;
 134
 135	refcount_t		refs;
 136
 137	struct list_head	spages;
 138
 139	/* Work of parity check and repair */
 140	struct btrfs_work	work;
 141
 142	/* Mark the parity blocks which have data */
 143	unsigned long		*dbitmap;
 144
 145	/*
 146	 * Mark the parity blocks which have data, but errors happen when
 147	 * read data or check data
 148	 */
 149	unsigned long		*ebitmap;
 150
 151	unsigned long		bitmap[0];
 152};
 153
 154struct scrub_ctx {
 155	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 156	struct btrfs_fs_info	*fs_info;
 157	int			first_free;
 158	int			curr;
 159	atomic_t		bios_in_flight;
 160	atomic_t		workers_pending;
 161	spinlock_t		list_lock;
 162	wait_queue_head_t	list_wait;
 163	u16			csum_size;
 164	struct list_head	csum_list;
 165	atomic_t		cancel_req;
 166	int			readonly;
 167	int			pages_per_rd_bio;
 
 
 
 168
 169	int			is_dev_replace;
 170
 171	struct scrub_bio        *wr_curr_bio;
 172	struct mutex            wr_lock;
 173	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 174	struct btrfs_device     *wr_tgtdev;
 175	bool                    flush_all_writes;
 176
 177	/*
 178	 * statistics
 179	 */
 180	struct btrfs_scrub_progress stat;
 181	spinlock_t		stat_lock;
 
 182
 183	/*
 184	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 185	 * decrement bios_in_flight and workers_pending and then do a wakeup
 186	 * on the list_wait wait queue. We must ensure the main scrub task
 187	 * doesn't free the scrub context before or while the workers are
 188	 * doing the wakeup() call.
 189	 */
 190	refcount_t              refs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191};
 192
 193struct scrub_warning {
 194	struct btrfs_path	*path;
 195	u64			extent_item_size;
 
 
 196	const char		*errstr;
 197	u64			physical;
 198	u64			logical;
 199	struct btrfs_device	*dev;
 
 
 200};
 201
 202struct full_stripe_lock {
 203	struct rb_node node;
 204	u64 logical;
 205	u64 refs;
 206	struct mutex mutex;
 207};
 208
 209static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 210static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 
 
 211static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 212static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 
 
 
 213				     struct scrub_block *sblocks_for_recheck);
 214static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 215				struct scrub_block *sblock,
 216				int retry_failed_mirror);
 217static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 
 
 
 
 
 218static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 219					     struct scrub_block *sblock_good);
 
 220static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 221					    struct scrub_block *sblock_good,
 222					    int page_num, int force_write);
 223static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 224static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 225					   int page_num);
 226static int scrub_checksum_data(struct scrub_block *sblock);
 227static int scrub_checksum_tree_block(struct scrub_block *sblock);
 228static int scrub_checksum_super(struct scrub_block *sblock);
 229static void scrub_block_get(struct scrub_block *sblock);
 230static void scrub_block_put(struct scrub_block *sblock);
 231static void scrub_page_get(struct scrub_page *spage);
 232static void scrub_page_put(struct scrub_page *spage);
 233static void scrub_parity_get(struct scrub_parity *sparity);
 234static void scrub_parity_put(struct scrub_parity *sparity);
 235static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 236				    struct scrub_page *spage);
 237static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 238		       u64 physical, struct btrfs_device *dev, u64 flags,
 239		       u64 gen, int mirror_num, u8 *csum, int force,
 240		       u64 physical_for_dev_replace);
 241static void scrub_bio_end_io(struct bio *bio);
 242static void scrub_bio_end_io_worker(struct btrfs_work *work);
 243static void scrub_block_complete(struct scrub_block *sblock);
 244static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 245			       u64 extent_logical, u64 extent_len,
 246			       u64 *extent_physical,
 247			       struct btrfs_device **extent_dev,
 248			       int *extent_mirror_num);
 
 
 
 
 
 
 249static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 250				    struct scrub_page *spage);
 251static void scrub_wr_submit(struct scrub_ctx *sctx);
 252static void scrub_wr_bio_end_io(struct bio *bio);
 253static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 
 
 
 
 
 
 
 254static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 255static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 256static void scrub_put_ctx(struct scrub_ctx *sctx);
 257
 258static inline int scrub_is_page_on_raid56(struct scrub_page *page)
 259{
 260	return page->recover &&
 261	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 262}
 263
 264static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 265{
 266	refcount_inc(&sctx->refs);
 267	atomic_inc(&sctx->bios_in_flight);
 268}
 269
 270static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 271{
 272	atomic_dec(&sctx->bios_in_flight);
 273	wake_up(&sctx->list_wait);
 274	scrub_put_ctx(sctx);
 275}
 276
 277static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 278{
 279	while (atomic_read(&fs_info->scrub_pause_req)) {
 280		mutex_unlock(&fs_info->scrub_lock);
 281		wait_event(fs_info->scrub_pause_wait,
 282		   atomic_read(&fs_info->scrub_pause_req) == 0);
 283		mutex_lock(&fs_info->scrub_lock);
 284	}
 285}
 286
 287static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 288{
 289	atomic_inc(&fs_info->scrubs_paused);
 290	wake_up(&fs_info->scrub_pause_wait);
 291}
 292
 293static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 294{
 295	mutex_lock(&fs_info->scrub_lock);
 296	__scrub_blocked_if_needed(fs_info);
 297	atomic_dec(&fs_info->scrubs_paused);
 298	mutex_unlock(&fs_info->scrub_lock);
 299
 300	wake_up(&fs_info->scrub_pause_wait);
 301}
 302
 303static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 304{
 305	scrub_pause_on(fs_info);
 306	scrub_pause_off(fs_info);
 307}
 308
 309/*
 310 * Insert new full stripe lock into full stripe locks tree
 311 *
 312 * Return pointer to existing or newly inserted full_stripe_lock structure if
 313 * everything works well.
 314 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 315 *
 316 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 317 * function
 318 */
 319static struct full_stripe_lock *insert_full_stripe_lock(
 320		struct btrfs_full_stripe_locks_tree *locks_root,
 321		u64 fstripe_logical)
 322{
 323	struct rb_node **p;
 324	struct rb_node *parent = NULL;
 325	struct full_stripe_lock *entry;
 326	struct full_stripe_lock *ret;
 327
 328	lockdep_assert_held(&locks_root->lock);
 329
 330	p = &locks_root->root.rb_node;
 331	while (*p) {
 332		parent = *p;
 333		entry = rb_entry(parent, struct full_stripe_lock, node);
 334		if (fstripe_logical < entry->logical) {
 335			p = &(*p)->rb_left;
 336		} else if (fstripe_logical > entry->logical) {
 337			p = &(*p)->rb_right;
 338		} else {
 339			entry->refs++;
 340			return entry;
 341		}
 342	}
 343
 344	/*
 345	 * Insert new lock.
 346	 */
 347	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 348	if (!ret)
 349		return ERR_PTR(-ENOMEM);
 350	ret->logical = fstripe_logical;
 351	ret->refs = 1;
 352	mutex_init(&ret->mutex);
 353
 354	rb_link_node(&ret->node, parent, p);
 355	rb_insert_color(&ret->node, &locks_root->root);
 356	return ret;
 357}
 358
 359/*
 360 * Search for a full stripe lock of a block group
 361 *
 362 * Return pointer to existing full stripe lock if found
 363 * Return NULL if not found
 364 */
 365static struct full_stripe_lock *search_full_stripe_lock(
 366		struct btrfs_full_stripe_locks_tree *locks_root,
 367		u64 fstripe_logical)
 368{
 369	struct rb_node *node;
 370	struct full_stripe_lock *entry;
 371
 372	lockdep_assert_held(&locks_root->lock);
 373
 374	node = locks_root->root.rb_node;
 375	while (node) {
 376		entry = rb_entry(node, struct full_stripe_lock, node);
 377		if (fstripe_logical < entry->logical)
 378			node = node->rb_left;
 379		else if (fstripe_logical > entry->logical)
 380			node = node->rb_right;
 381		else
 382			return entry;
 383	}
 384	return NULL;
 385}
 386
 387/*
 388 * Helper to get full stripe logical from a normal bytenr.
 389 *
 390 * Caller must ensure @cache is a RAID56 block group.
 391 */
 392static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
 393				   u64 bytenr)
 394{
 395	u64 ret;
 396
 397	/*
 398	 * Due to chunk item size limit, full stripe length should not be
 399	 * larger than U32_MAX. Just a sanity check here.
 
 
 
 
 
 400	 */
 401	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 
 
 
 402
 403	/*
 404	 * round_down() can only handle power of 2, while RAID56 full
 405	 * stripe length can be 64KiB * n, so we need to manually round down.
 
 
 
 406	 */
 407	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
 408		cache->full_stripe_len + cache->key.objectid;
 409	return ret;
 410}
 411
 412/*
 413 * Lock a full stripe to avoid concurrency of recovery and read
 414 *
 415 * It's only used for profiles with parities (RAID5/6), for other profiles it
 416 * does nothing.
 417 *
 418 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 419 * So caller must call unlock_full_stripe() at the same context.
 420 *
 421 * Return <0 if encounters error.
 422 */
 423static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 424			    bool *locked_ret)
 425{
 426	struct btrfs_block_group_cache *bg_cache;
 427	struct btrfs_full_stripe_locks_tree *locks_root;
 428	struct full_stripe_lock *existing;
 429	u64 fstripe_start;
 430	int ret = 0;
 431
 432	*locked_ret = false;
 433	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 434	if (!bg_cache) {
 435		ASSERT(0);
 436		return -ENOENT;
 437	}
 438
 439	/* Profiles not based on parity don't need full stripe lock */
 440	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 441		goto out;
 442	locks_root = &bg_cache->full_stripe_locks_root;
 443
 444	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 445
 446	/* Now insert the full stripe lock */
 447	mutex_lock(&locks_root->lock);
 448	existing = insert_full_stripe_lock(locks_root, fstripe_start);
 449	mutex_unlock(&locks_root->lock);
 450	if (IS_ERR(existing)) {
 451		ret = PTR_ERR(existing);
 452		goto out;
 453	}
 454	mutex_lock(&existing->mutex);
 455	*locked_ret = true;
 456out:
 457	btrfs_put_block_group(bg_cache);
 458	return ret;
 459}
 460
 461/*
 462 * Unlock a full stripe.
 463 *
 464 * NOTE: Caller must ensure it's the same context calling corresponding
 465 * lock_full_stripe().
 466 *
 467 * Return 0 if we unlock full stripe without problem.
 468 * Return <0 for error
 469 */
 470static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 471			      bool locked)
 472{
 473	struct btrfs_block_group_cache *bg_cache;
 474	struct btrfs_full_stripe_locks_tree *locks_root;
 475	struct full_stripe_lock *fstripe_lock;
 476	u64 fstripe_start;
 477	bool freeit = false;
 478	int ret = 0;
 479
 480	/* If we didn't acquire full stripe lock, no need to continue */
 481	if (!locked)
 482		return 0;
 483
 484	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 485	if (!bg_cache) {
 486		ASSERT(0);
 487		return -ENOENT;
 488	}
 489	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 490		goto out;
 491
 492	locks_root = &bg_cache->full_stripe_locks_root;
 493	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 494
 495	mutex_lock(&locks_root->lock);
 496	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 497	/* Unpaired unlock_full_stripe() detected */
 498	if (!fstripe_lock) {
 499		WARN_ON(1);
 500		ret = -ENOENT;
 501		mutex_unlock(&locks_root->lock);
 502		goto out;
 503	}
 504
 505	if (fstripe_lock->refs == 0) {
 506		WARN_ON(1);
 507		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 508			fstripe_lock->logical);
 509	} else {
 510		fstripe_lock->refs--;
 511	}
 512
 513	if (fstripe_lock->refs == 0) {
 514		rb_erase(&fstripe_lock->node, &locks_root->root);
 515		freeit = true;
 516	}
 517	mutex_unlock(&locks_root->lock);
 518
 519	mutex_unlock(&fstripe_lock->mutex);
 520	if (freeit)
 521		kfree(fstripe_lock);
 522out:
 523	btrfs_put_block_group(bg_cache);
 524	return ret;
 525}
 526
 527static void scrub_free_csums(struct scrub_ctx *sctx)
 528{
 529	while (!list_empty(&sctx->csum_list)) {
 530		struct btrfs_ordered_sum *sum;
 531		sum = list_first_entry(&sctx->csum_list,
 532				       struct btrfs_ordered_sum, list);
 533		list_del(&sum->list);
 534		kfree(sum);
 535	}
 536}
 537
 538static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 539{
 540	int i;
 541
 542	if (!sctx)
 543		return;
 544
 
 
 545	/* this can happen when scrub is cancelled */
 546	if (sctx->curr != -1) {
 547		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 548
 549		for (i = 0; i < sbio->page_count; i++) {
 550			WARN_ON(!sbio->pagev[i]->page);
 551			scrub_block_put(sbio->pagev[i]->sblock);
 552		}
 553		bio_put(sbio->bio);
 554	}
 555
 556	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 557		struct scrub_bio *sbio = sctx->bios[i];
 558
 559		if (!sbio)
 560			break;
 561		kfree(sbio);
 562	}
 563
 564	kfree(sctx->wr_curr_bio);
 565	scrub_free_csums(sctx);
 566	kfree(sctx);
 567}
 568
 569static void scrub_put_ctx(struct scrub_ctx *sctx)
 570{
 571	if (refcount_dec_and_test(&sctx->refs))
 572		scrub_free_ctx(sctx);
 573}
 574
 575static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 576		struct btrfs_fs_info *fs_info, int is_dev_replace)
 577{
 578	struct scrub_ctx *sctx;
 579	int		i;
 
 
 
 580
 581	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 582	if (!sctx)
 583		goto nomem;
 584	refcount_set(&sctx->refs, 1);
 585	sctx->is_dev_replace = is_dev_replace;
 586	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 587	sctx->curr = -1;
 588	sctx->fs_info = fs_info;
 589	INIT_LIST_HEAD(&sctx->csum_list);
 590	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 591		struct scrub_bio *sbio;
 592
 593		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 594		if (!sbio)
 595			goto nomem;
 596		sctx->bios[i] = sbio;
 597
 598		sbio->index = i;
 599		sbio->sctx = sctx;
 600		sbio->page_count = 0;
 601		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 602				scrub_bio_end_io_worker, NULL, NULL);
 603
 604		if (i != SCRUB_BIOS_PER_SCTX - 1)
 605			sctx->bios[i]->next_free = i + 1;
 606		else
 607			sctx->bios[i]->next_free = -1;
 608	}
 609	sctx->first_free = 0;
 
 
 
 610	atomic_set(&sctx->bios_in_flight, 0);
 611	atomic_set(&sctx->workers_pending, 0);
 612	atomic_set(&sctx->cancel_req, 0);
 613	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 
 614
 615	spin_lock_init(&sctx->list_lock);
 616	spin_lock_init(&sctx->stat_lock);
 617	init_waitqueue_head(&sctx->list_wait);
 618
 619	WARN_ON(sctx->wr_curr_bio != NULL);
 620	mutex_init(&sctx->wr_lock);
 621	sctx->wr_curr_bio = NULL;
 622	if (is_dev_replace) {
 623		WARN_ON(!fs_info->dev_replace.tgtdev);
 624		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 625		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 626		sctx->flush_all_writes = false;
 627	}
 628
 629	return sctx;
 630
 631nomem:
 632	scrub_free_ctx(sctx);
 633	return ERR_PTR(-ENOMEM);
 634}
 635
 636static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 637				     void *warn_ctx)
 638{
 639	u64 isize;
 640	u32 nlink;
 641	int ret;
 642	int i;
 643	unsigned nofs_flag;
 644	struct extent_buffer *eb;
 645	struct btrfs_inode_item *inode_item;
 646	struct scrub_warning *swarn = warn_ctx;
 647	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 648	struct inode_fs_paths *ipath = NULL;
 649	struct btrfs_root *local_root;
 650	struct btrfs_key root_key;
 651	struct btrfs_key key;
 652
 653	root_key.objectid = root;
 654	root_key.type = BTRFS_ROOT_ITEM_KEY;
 655	root_key.offset = (u64)-1;
 656	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 657	if (IS_ERR(local_root)) {
 658		ret = PTR_ERR(local_root);
 659		goto err;
 660	}
 661
 662	/*
 663	 * this makes the path point to (inum INODE_ITEM ioff)
 664	 */
 665	key.objectid = inum;
 666	key.type = BTRFS_INODE_ITEM_KEY;
 667	key.offset = 0;
 668
 669	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 670	if (ret) {
 671		btrfs_release_path(swarn->path);
 672		goto err;
 673	}
 674
 675	eb = swarn->path->nodes[0];
 676	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 677					struct btrfs_inode_item);
 678	isize = btrfs_inode_size(eb, inode_item);
 679	nlink = btrfs_inode_nlink(eb, inode_item);
 680	btrfs_release_path(swarn->path);
 681
 682	/*
 683	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 684	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 685	 * not seem to be strictly necessary.
 686	 */
 687	nofs_flag = memalloc_nofs_save();
 688	ipath = init_ipath(4096, local_root, swarn->path);
 689	memalloc_nofs_restore(nofs_flag);
 690	if (IS_ERR(ipath)) {
 691		ret = PTR_ERR(ipath);
 692		ipath = NULL;
 693		goto err;
 694	}
 695	ret = paths_from_inode(inum, ipath);
 696
 697	if (ret < 0)
 698		goto err;
 699
 700	/*
 701	 * we deliberately ignore the bit ipath might have been too small to
 702	 * hold all of the paths here
 703	 */
 704	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 705		btrfs_warn_in_rcu(fs_info,
 706"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 707				  swarn->errstr, swarn->logical,
 708				  rcu_str_deref(swarn->dev->name),
 709				  swarn->physical,
 710				  root, inum, offset,
 711				  min(isize - offset, (u64)PAGE_SIZE), nlink,
 712				  (char *)(unsigned long)ipath->fspath->val[i]);
 713
 714	free_ipath(ipath);
 715	return 0;
 716
 717err:
 718	btrfs_warn_in_rcu(fs_info,
 719			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 720			  swarn->errstr, swarn->logical,
 721			  rcu_str_deref(swarn->dev->name),
 722			  swarn->physical,
 723			  root, inum, offset, ret);
 724
 725	free_ipath(ipath);
 726	return 0;
 727}
 728
 729static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 730{
 731	struct btrfs_device *dev;
 732	struct btrfs_fs_info *fs_info;
 733	struct btrfs_path *path;
 734	struct btrfs_key found_key;
 735	struct extent_buffer *eb;
 736	struct btrfs_extent_item *ei;
 737	struct scrub_warning swarn;
 738	unsigned long ptr = 0;
 739	u64 extent_item_pos;
 740	u64 flags = 0;
 741	u64 ref_root;
 742	u32 item_size;
 743	u8 ref_level = 0;
 
 744	int ret;
 745
 746	WARN_ON(sblock->page_count < 1);
 747	dev = sblock->pagev[0]->dev;
 748	fs_info = sblock->sctx->fs_info;
 749
 750	path = btrfs_alloc_path();
 751	if (!path)
 752		return;
 753
 754	swarn.physical = sblock->pagev[0]->physical;
 
 
 755	swarn.logical = sblock->pagev[0]->logical;
 756	swarn.errstr = errstr;
 757	swarn.dev = NULL;
 
 
 
 
 
 758
 759	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 760				  &flags);
 761	if (ret < 0)
 762		goto out;
 763
 764	extent_item_pos = swarn.logical - found_key.objectid;
 765	swarn.extent_item_size = found_key.offset;
 766
 767	eb = path->nodes[0];
 768	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 769	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 770
 771	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 772		do {
 773			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 774						      item_size, &ref_root,
 775						      &ref_level);
 776			btrfs_warn_in_rcu(fs_info,
 777"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 778				errstr, swarn.logical,
 779				rcu_str_deref(dev->name),
 780				swarn.physical,
 781				ref_level ? "node" : "leaf",
 782				ret < 0 ? -1 : ref_level,
 783				ret < 0 ? -1 : ref_root);
 784		} while (ret != 1);
 785		btrfs_release_path(path);
 786	} else {
 787		btrfs_release_path(path);
 788		swarn.path = path;
 789		swarn.dev = dev;
 790		iterate_extent_inodes(fs_info, found_key.objectid,
 791					extent_item_pos, 1,
 792					scrub_print_warning_inode, &swarn, false);
 793	}
 794
 795out:
 796	btrfs_free_path(path);
 
 
 797}
 798
 799static inline void scrub_get_recover(struct scrub_recover *recover)
 800{
 801	refcount_inc(&recover->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802}
 803
 804static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 805				     struct scrub_recover *recover)
 806{
 807	if (refcount_dec_and_test(&recover->refs)) {
 808		btrfs_bio_counter_dec(fs_info);
 809		btrfs_put_bbio(recover->bbio);
 810		kfree(recover);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811	}
 
 
 
 
 
 812}
 813
 814/*
 815 * scrub_handle_errored_block gets called when either verification of the
 816 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 817 * case, this function handles all pages in the bio, even though only one
 818 * may be bad.
 819 * The goal of this function is to repair the errored block by using the
 820 * contents of one of the mirrors.
 821 */
 822static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 823{
 824	struct scrub_ctx *sctx = sblock_to_check->sctx;
 825	struct btrfs_device *dev;
 826	struct btrfs_fs_info *fs_info;
 
 827	u64 logical;
 
 828	unsigned int failed_mirror_index;
 829	unsigned int is_metadata;
 830	unsigned int have_csum;
 
 831	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 832	struct scrub_block *sblock_bad;
 833	int ret;
 834	int mirror_index;
 835	int page_num;
 836	int success;
 837	bool full_stripe_locked;
 838	unsigned int nofs_flag;
 839	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 840				      DEFAULT_RATELIMIT_BURST);
 841
 842	BUG_ON(sblock_to_check->page_count < 1);
 843	fs_info = sctx->fs_info;
 844	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 845		/*
 846		 * if we find an error in a super block, we just report it.
 847		 * They will get written with the next transaction commit
 848		 * anyway
 849		 */
 850		spin_lock(&sctx->stat_lock);
 851		++sctx->stat.super_errors;
 852		spin_unlock(&sctx->stat_lock);
 853		return 0;
 854	}
 
 855	logical = sblock_to_check->pagev[0]->logical;
 
 856	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 857	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 858	is_metadata = !(sblock_to_check->pagev[0]->flags &
 859			BTRFS_EXTENT_FLAG_DATA);
 860	have_csum = sblock_to_check->pagev[0]->have_csum;
 
 861	dev = sblock_to_check->pagev[0]->dev;
 862
 863	/*
 864	 * We must use GFP_NOFS because the scrub task might be waiting for a
 865	 * worker task executing this function and in turn a transaction commit
 866	 * might be waiting the scrub task to pause (which needs to wait for all
 867	 * the worker tasks to complete before pausing).
 868	 * We do allocations in the workers through insert_full_stripe_lock()
 869	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
 870	 * this function.
 871	 */
 872	nofs_flag = memalloc_nofs_save();
 873	/*
 874	 * For RAID5/6, race can happen for a different device scrub thread.
 875	 * For data corruption, Parity and Data threads will both try
 876	 * to recovery the data.
 877	 * Race can lead to doubly added csum error, or even unrecoverable
 878	 * error.
 879	 */
 880	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
 881	if (ret < 0) {
 882		memalloc_nofs_restore(nofs_flag);
 883		spin_lock(&sctx->stat_lock);
 884		if (ret == -ENOMEM)
 885			sctx->stat.malloc_errors++;
 886		sctx->stat.read_errors++;
 887		sctx->stat.uncorrectable_errors++;
 888		spin_unlock(&sctx->stat_lock);
 889		return ret;
 890	}
 891
 892	/*
 893	 * read all mirrors one after the other. This includes to
 894	 * re-read the extent or metadata block that failed (that was
 895	 * the cause that this fixup code is called) another time,
 896	 * page by page this time in order to know which pages
 897	 * caused I/O errors and which ones are good (for all mirrors).
 898	 * It is the goal to handle the situation when more than one
 899	 * mirror contains I/O errors, but the errors do not
 900	 * overlap, i.e. the data can be repaired by selecting the
 901	 * pages from those mirrors without I/O error on the
 902	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 903	 * would be that mirror #1 has an I/O error on the first page,
 904	 * the second page is good, and mirror #2 has an I/O error on
 905	 * the second page, but the first page is good.
 906	 * Then the first page of the first mirror can be repaired by
 907	 * taking the first page of the second mirror, and the
 908	 * second page of the second mirror can be repaired by
 909	 * copying the contents of the 2nd page of the 1st mirror.
 910	 * One more note: if the pages of one mirror contain I/O
 911	 * errors, the checksum cannot be verified. In order to get
 912	 * the best data for repairing, the first attempt is to find
 913	 * a mirror without I/O errors and with a validated checksum.
 914	 * Only if this is not possible, the pages are picked from
 915	 * mirrors with I/O errors without considering the checksum.
 916	 * If the latter is the case, at the end, the checksum of the
 917	 * repaired area is verified in order to correctly maintain
 918	 * the statistics.
 919	 */
 920
 921	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 922				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
 
 923	if (!sblocks_for_recheck) {
 924		spin_lock(&sctx->stat_lock);
 925		sctx->stat.malloc_errors++;
 926		sctx->stat.read_errors++;
 927		sctx->stat.uncorrectable_errors++;
 928		spin_unlock(&sctx->stat_lock);
 929		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 930		goto out;
 931	}
 932
 933	/* setup the context, map the logical blocks and alloc the pages */
 934	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 
 935	if (ret) {
 936		spin_lock(&sctx->stat_lock);
 937		sctx->stat.read_errors++;
 938		sctx->stat.uncorrectable_errors++;
 939		spin_unlock(&sctx->stat_lock);
 940		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 941		goto out;
 942	}
 943	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 944	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 945
 946	/* build and submit the bios for the failed mirror, check checksums */
 947	scrub_recheck_block(fs_info, sblock_bad, 1);
 
 948
 949	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 950	    sblock_bad->no_io_error_seen) {
 951		/*
 952		 * the error disappeared after reading page by page, or
 953		 * the area was part of a huge bio and other parts of the
 954		 * bio caused I/O errors, or the block layer merged several
 955		 * read requests into one and the error is caused by a
 956		 * different bio (usually one of the two latter cases is
 957		 * the cause)
 958		 */
 959		spin_lock(&sctx->stat_lock);
 960		sctx->stat.unverified_errors++;
 961		sblock_to_check->data_corrected = 1;
 962		spin_unlock(&sctx->stat_lock);
 963
 964		if (sctx->is_dev_replace)
 965			scrub_write_block_to_dev_replace(sblock_bad);
 966		goto out;
 967	}
 968
 969	if (!sblock_bad->no_io_error_seen) {
 970		spin_lock(&sctx->stat_lock);
 971		sctx->stat.read_errors++;
 972		spin_unlock(&sctx->stat_lock);
 973		if (__ratelimit(&_rs))
 974			scrub_print_warning("i/o error", sblock_to_check);
 975		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 976	} else if (sblock_bad->checksum_error) {
 977		spin_lock(&sctx->stat_lock);
 978		sctx->stat.csum_errors++;
 979		spin_unlock(&sctx->stat_lock);
 980		if (__ratelimit(&_rs))
 981			scrub_print_warning("checksum error", sblock_to_check);
 982		btrfs_dev_stat_inc_and_print(dev,
 983					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 984	} else if (sblock_bad->header_error) {
 985		spin_lock(&sctx->stat_lock);
 986		sctx->stat.verify_errors++;
 987		spin_unlock(&sctx->stat_lock);
 988		if (__ratelimit(&_rs))
 989			scrub_print_warning("checksum/header error",
 990					    sblock_to_check);
 991		if (sblock_bad->generation_error)
 992			btrfs_dev_stat_inc_and_print(dev,
 993				BTRFS_DEV_STAT_GENERATION_ERRS);
 994		else
 995			btrfs_dev_stat_inc_and_print(dev,
 996				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 997	}
 998
 999	if (sctx->readonly) {
1000		ASSERT(!sctx->is_dev_replace);
1001		goto out;
1002	}
1003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004	/*
1005	 * now build and submit the bios for the other mirrors, check
1006	 * checksums.
1007	 * First try to pick the mirror which is completely without I/O
1008	 * errors and also does not have a checksum error.
1009	 * If one is found, and if a checksum is present, the full block
1010	 * that is known to contain an error is rewritten. Afterwards
1011	 * the block is known to be corrected.
1012	 * If a mirror is found which is completely correct, and no
1013	 * checksum is present, only those pages are rewritten that had
1014	 * an I/O error in the block to be repaired, since it cannot be
1015	 * determined, which copy of the other pages is better (and it
1016	 * could happen otherwise that a correct page would be
1017	 * overwritten by a bad one).
1018	 */
1019	for (mirror_index = 0; ;mirror_index++) {
 
 
 
1020		struct scrub_block *sblock_other;
1021
1022		if (mirror_index == failed_mirror_index)
1023			continue;
1024
1025		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1026		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1027			if (mirror_index >= BTRFS_MAX_MIRRORS)
1028				break;
1029			if (!sblocks_for_recheck[mirror_index].page_count)
1030				break;
1031
1032			sblock_other = sblocks_for_recheck + mirror_index;
1033		} else {
1034			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1035			int max_allowed = r->bbio->num_stripes -
1036						r->bbio->num_tgtdevs;
1037
1038			if (mirror_index >= max_allowed)
1039				break;
1040			if (!sblocks_for_recheck[1].page_count)
1041				break;
1042
1043			ASSERT(failed_mirror_index == 0);
1044			sblock_other = sblocks_for_recheck + 1;
1045			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1046		}
1047
1048		/* build and submit the bios, check checksums */
1049		scrub_recheck_block(fs_info, sblock_other, 0);
 
 
1050
1051		if (!sblock_other->header_error &&
1052		    !sblock_other->checksum_error &&
1053		    sblock_other->no_io_error_seen) {
1054			if (sctx->is_dev_replace) {
1055				scrub_write_block_to_dev_replace(sblock_other);
1056				goto corrected_error;
1057			} else {
 
 
1058				ret = scrub_repair_block_from_good_copy(
1059						sblock_bad, sblock_other);
1060				if (!ret)
1061					goto corrected_error;
1062			}
 
 
1063		}
1064	}
1065
1066	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1067		goto did_not_correct_error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068
1069	/*
 
1070	 * In case of I/O errors in the area that is supposed to be
1071	 * repaired, continue by picking good copies of those pages.
1072	 * Select the good pages from mirrors to rewrite bad pages from
1073	 * the area to fix. Afterwards verify the checksum of the block
1074	 * that is supposed to be repaired. This verification step is
1075	 * only done for the purpose of statistic counting and for the
1076	 * final scrub report, whether errors remain.
1077	 * A perfect algorithm could make use of the checksum and try
1078	 * all possible combinations of pages from the different mirrors
1079	 * until the checksum verification succeeds. For example, when
1080	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1081	 * of mirror #2 is readable but the final checksum test fails,
1082	 * then the 2nd page of mirror #3 could be tried, whether now
1083	 * the final checksum succeeds. But this would be a rare
1084	 * exception and is therefore not implemented. At least it is
1085	 * avoided that the good copy is overwritten.
1086	 * A more useful improvement would be to pick the sectors
1087	 * without I/O error based on sector sizes (512 bytes on legacy
1088	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1089	 * mirror could be repaired by taking 512 byte of a different
1090	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1091	 * area are unreadable.
1092	 */
 
 
 
 
 
1093	success = 1;
1094	for (page_num = 0; page_num < sblock_bad->page_count;
1095	     page_num++) {
1096		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1097		struct scrub_block *sblock_other = NULL;
1098
1099		/* skip no-io-error page in scrub */
1100		if (!page_bad->io_error && !sctx->is_dev_replace)
1101			continue;
1102
1103		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1104			/*
1105			 * In case of dev replace, if raid56 rebuild process
1106			 * didn't work out correct data, then copy the content
1107			 * in sblock_bad to make sure target device is identical
1108			 * to source device, instead of writing garbage data in
1109			 * sblock_for_recheck array to target device.
1110			 */
1111			sblock_other = NULL;
1112		} else if (page_bad->io_error) {
1113			/* try to find no-io-error page in mirrors */
1114			for (mirror_index = 0;
1115			     mirror_index < BTRFS_MAX_MIRRORS &&
1116			     sblocks_for_recheck[mirror_index].page_count > 0;
1117			     mirror_index++) {
1118				if (!sblocks_for_recheck[mirror_index].
1119				    pagev[page_num]->io_error) {
1120					sblock_other = sblocks_for_recheck +
1121						       mirror_index;
1122					break;
1123				}
1124			}
1125			if (!sblock_other)
1126				success = 0;
1127		}
1128
1129		if (sctx->is_dev_replace) {
1130			/*
1131			 * did not find a mirror to fetch the page
1132			 * from. scrub_write_page_to_dev_replace()
1133			 * handles this case (page->io_error), by
1134			 * filling the block with zeros before
1135			 * submitting the write request
1136			 */
1137			if (!sblock_other)
1138				sblock_other = sblock_bad;
1139
1140			if (scrub_write_page_to_dev_replace(sblock_other,
1141							    page_num) != 0) {
1142				atomic64_inc(
1143					&fs_info->dev_replace.num_write_errors);
1144				success = 0;
1145			}
1146		} else if (sblock_other) {
1147			ret = scrub_repair_page_from_good_copy(sblock_bad,
1148							       sblock_other,
1149							       page_num, 0);
1150			if (0 == ret)
1151				page_bad->io_error = 0;
1152			else
1153				success = 0;
1154		}
1155	}
1156
1157	if (success && !sctx->is_dev_replace) {
1158		if (is_metadata || have_csum) {
1159			/*
1160			 * need to verify the checksum now that all
1161			 * sectors on disk are repaired (the write
1162			 * request for data to be repaired is on its way).
1163			 * Just be lazy and use scrub_recheck_block()
1164			 * which re-reads the data before the checksum
1165			 * is verified, but most likely the data comes out
1166			 * of the page cache.
1167			 */
1168			scrub_recheck_block(fs_info, sblock_bad, 1);
 
 
1169			if (!sblock_bad->header_error &&
1170			    !sblock_bad->checksum_error &&
1171			    sblock_bad->no_io_error_seen)
1172				goto corrected_error;
1173			else
1174				goto did_not_correct_error;
1175		} else {
1176corrected_error:
1177			spin_lock(&sctx->stat_lock);
1178			sctx->stat.corrected_errors++;
1179			sblock_to_check->data_corrected = 1;
1180			spin_unlock(&sctx->stat_lock);
1181			btrfs_err_rl_in_rcu(fs_info,
1182				"fixed up error at logical %llu on dev %s",
1183				logical, rcu_str_deref(dev->name));
1184		}
1185	} else {
1186did_not_correct_error:
1187		spin_lock(&sctx->stat_lock);
1188		sctx->stat.uncorrectable_errors++;
1189		spin_unlock(&sctx->stat_lock);
1190		btrfs_err_rl_in_rcu(fs_info,
1191			"unable to fixup (regular) error at logical %llu on dev %s",
1192			logical, rcu_str_deref(dev->name));
1193	}
1194
1195out:
1196	if (sblocks_for_recheck) {
1197		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1198		     mirror_index++) {
1199			struct scrub_block *sblock = sblocks_for_recheck +
1200						     mirror_index;
1201			struct scrub_recover *recover;
1202			int page_index;
1203
1204			for (page_index = 0; page_index < sblock->page_count;
1205			     page_index++) {
1206				sblock->pagev[page_index]->sblock = NULL;
1207				recover = sblock->pagev[page_index]->recover;
1208				if (recover) {
1209					scrub_put_recover(fs_info, recover);
1210					sblock->pagev[page_index]->recover =
1211									NULL;
1212				}
1213				scrub_page_put(sblock->pagev[page_index]);
1214			}
1215		}
1216		kfree(sblocks_for_recheck);
1217	}
1218
1219	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1220	memalloc_nofs_restore(nofs_flag);
1221	if (ret < 0)
1222		return ret;
1223	return 0;
1224}
1225
1226static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1227{
1228	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1229		return 2;
1230	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1231		return 3;
1232	else
1233		return (int)bbio->num_stripes;
1234}
1235
1236static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1237						 u64 *raid_map,
1238						 u64 mapped_length,
1239						 int nstripes, int mirror,
1240						 int *stripe_index,
1241						 u64 *stripe_offset)
1242{
1243	int i;
1244
1245	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1246		/* RAID5/6 */
1247		for (i = 0; i < nstripes; i++) {
1248			if (raid_map[i] == RAID6_Q_STRIPE ||
1249			    raid_map[i] == RAID5_P_STRIPE)
1250				continue;
1251
1252			if (logical >= raid_map[i] &&
1253			    logical < raid_map[i] + mapped_length)
1254				break;
1255		}
1256
1257		*stripe_index = i;
1258		*stripe_offset = logical - raid_map[i];
1259	} else {
1260		/* The other RAID type */
1261		*stripe_index = mirror;
1262		*stripe_offset = 0;
1263	}
1264}
1265
1266static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1267				     struct scrub_block *sblocks_for_recheck)
1268{
1269	struct scrub_ctx *sctx = original_sblock->sctx;
1270	struct btrfs_fs_info *fs_info = sctx->fs_info;
1271	u64 length = original_sblock->page_count * PAGE_SIZE;
1272	u64 logical = original_sblock->pagev[0]->logical;
1273	u64 generation = original_sblock->pagev[0]->generation;
1274	u64 flags = original_sblock->pagev[0]->flags;
1275	u64 have_csum = original_sblock->pagev[0]->have_csum;
1276	struct scrub_recover *recover;
1277	struct btrfs_bio *bbio;
1278	u64 sublen;
1279	u64 mapped_length;
1280	u64 stripe_offset;
1281	int stripe_index;
1282	int page_index = 0;
1283	int mirror_index;
1284	int nmirrors;
1285	int ret;
1286
1287	/*
1288	 * note: the two members refs and outstanding_pages
1289	 * are not used (and not set) in the blocks that are used for
1290	 * the recheck procedure
1291	 */
1292
 
1293	while (length > 0) {
1294		sublen = min_t(u64, length, PAGE_SIZE);
1295		mapped_length = sublen;
1296		bbio = NULL;
1297
1298		/*
1299		 * with a length of PAGE_SIZE, each returned stripe
1300		 * represents one mirror
1301		 */
1302		btrfs_bio_counter_inc_blocked(fs_info);
1303		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1304				logical, &mapped_length, &bbio);
1305		if (ret || !bbio || mapped_length < sublen) {
1306			btrfs_put_bbio(bbio);
1307			btrfs_bio_counter_dec(fs_info);
1308			return -EIO;
1309		}
1310
1311		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1312		if (!recover) {
1313			btrfs_put_bbio(bbio);
1314			btrfs_bio_counter_dec(fs_info);
1315			return -ENOMEM;
1316		}
1317
1318		refcount_set(&recover->refs, 1);
1319		recover->bbio = bbio;
1320		recover->map_length = mapped_length;
1321
1322		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1323
1324		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1325
1326		for (mirror_index = 0; mirror_index < nmirrors;
1327		     mirror_index++) {
1328			struct scrub_block *sblock;
1329			struct scrub_page *page;
1330
 
 
 
1331			sblock = sblocks_for_recheck + mirror_index;
1332			sblock->sctx = sctx;
1333
1334			page = kzalloc(sizeof(*page), GFP_NOFS);
1335			if (!page) {
1336leave_nomem:
1337				spin_lock(&sctx->stat_lock);
1338				sctx->stat.malloc_errors++;
1339				spin_unlock(&sctx->stat_lock);
1340				scrub_put_recover(fs_info, recover);
1341				return -ENOMEM;
1342			}
1343			scrub_page_get(page);
1344			sblock->pagev[page_index] = page;
1345			page->sblock = sblock;
1346			page->flags = flags;
1347			page->generation = generation;
1348			page->logical = logical;
1349			page->have_csum = have_csum;
1350			if (have_csum)
1351				memcpy(page->csum,
1352				       original_sblock->pagev[0]->csum,
1353				       sctx->csum_size);
1354
1355			scrub_stripe_index_and_offset(logical,
1356						      bbio->map_type,
1357						      bbio->raid_map,
1358						      mapped_length,
1359						      bbio->num_stripes -
1360						      bbio->num_tgtdevs,
1361						      mirror_index,
1362						      &stripe_index,
1363						      &stripe_offset);
1364			page->physical = bbio->stripes[stripe_index].physical +
1365					 stripe_offset;
1366			page->dev = bbio->stripes[stripe_index].dev;
1367
1368			BUG_ON(page_index >= original_sblock->page_count);
1369			page->physical_for_dev_replace =
1370				original_sblock->pagev[page_index]->
1371				physical_for_dev_replace;
1372			/* for missing devices, dev->bdev is NULL */
 
1373			page->mirror_num = mirror_index + 1;
1374			sblock->page_count++;
1375			page->page = alloc_page(GFP_NOFS);
1376			if (!page->page)
1377				goto leave_nomem;
1378
1379			scrub_get_recover(recover);
1380			page->recover = recover;
1381		}
1382		scrub_put_recover(fs_info, recover);
1383		length -= sublen;
1384		logical += sublen;
1385		page_index++;
1386	}
1387
1388	return 0;
1389}
1390
1391static void scrub_bio_wait_endio(struct bio *bio)
1392{
1393	complete(bio->bi_private);
1394}
1395
1396static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1397					struct bio *bio,
1398					struct scrub_page *page)
1399{
1400	DECLARE_COMPLETION_ONSTACK(done);
1401	int ret;
1402	int mirror_num;
1403
1404	bio->bi_iter.bi_sector = page->logical >> 9;
1405	bio->bi_private = &done;
1406	bio->bi_end_io = scrub_bio_wait_endio;
1407
1408	mirror_num = page->sblock->pagev[0]->mirror_num;
1409	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1410				    page->recover->map_length,
1411				    mirror_num, 0);
1412	if (ret)
1413		return ret;
1414
1415	wait_for_completion_io(&done);
1416	return blk_status_to_errno(bio->bi_status);
1417}
1418
1419static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1420					  struct scrub_block *sblock)
1421{
1422	struct scrub_page *first_page = sblock->pagev[0];
1423	struct bio *bio;
1424	int page_num;
1425
1426	/* All pages in sblock belong to the same stripe on the same device. */
1427	ASSERT(first_page->dev);
1428	if (!first_page->dev->bdev)
1429		goto out;
1430
1431	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1432	bio_set_dev(bio, first_page->dev->bdev);
1433
1434	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1435		struct scrub_page *page = sblock->pagev[page_num];
1436
1437		WARN_ON(!page->page);
1438		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1439	}
1440
1441	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1442		bio_put(bio);
1443		goto out;
1444	}
1445
1446	bio_put(bio);
1447
1448	scrub_recheck_block_checksum(sblock);
1449
1450	return;
1451out:
1452	for (page_num = 0; page_num < sblock->page_count; page_num++)
1453		sblock->pagev[page_num]->io_error = 1;
1454
1455	sblock->no_io_error_seen = 0;
1456}
1457
1458/*
1459 * this function will check the on disk data for checksum errors, header
1460 * errors and read I/O errors. If any I/O errors happen, the exact pages
1461 * which are errored are marked as being bad. The goal is to enable scrub
1462 * to take those pages that are not errored from all the mirrors so that
1463 * the pages that are errored in the just handled mirror can be repaired.
1464 */
1465static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1466				struct scrub_block *sblock,
1467				int retry_failed_mirror)
 
1468{
1469	int page_num;
1470
1471	sblock->no_io_error_seen = 1;
1472
1473	/* short cut for raid56 */
1474	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1475		return scrub_recheck_block_on_raid56(fs_info, sblock);
1476
1477	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1478		struct bio *bio;
1479		struct scrub_page *page = sblock->pagev[page_num];
1480
1481		if (page->dev->bdev == NULL) {
1482			page->io_error = 1;
1483			sblock->no_io_error_seen = 0;
1484			continue;
1485		}
1486
1487		WARN_ON(!page->page);
1488		bio = btrfs_io_bio_alloc(1);
1489		bio_set_dev(bio, page->dev->bdev);
1490
1491		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1492		bio->bi_iter.bi_sector = page->physical >> 9;
1493		bio->bi_opf = REQ_OP_READ;
1494
1495		if (btrfsic_submit_bio_wait(bio)) {
1496			page->io_error = 1;
1497			sblock->no_io_error_seen = 0;
 
1498		}
 
 
 
 
 
 
1499
1500		bio_put(bio);
1501	}
1502
1503	if (sblock->no_io_error_seen)
1504		scrub_recheck_block_checksum(sblock);
 
 
 
 
1505}
1506
1507static inline int scrub_check_fsid(u8 fsid[],
1508				   struct scrub_page *spage)
 
 
 
1509{
1510	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1511	int ret;
 
 
1512
1513	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1514	return !ret;
1515}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516
1517static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1518{
1519	sblock->header_error = 0;
1520	sblock->checksum_error = 0;
1521	sblock->generation_error = 0;
1522
1523	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1524		scrub_checksum_data(sblock);
1525	else
1526		scrub_checksum_tree_block(sblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1527}
1528
1529static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1530					     struct scrub_block *sblock_good)
 
1531{
1532	int page_num;
1533	int ret = 0;
1534
1535	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1536		int ret_sub;
1537
1538		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1539							   sblock_good,
1540							   page_num, 1);
 
1541		if (ret_sub)
1542			ret = ret_sub;
1543	}
1544
1545	return ret;
1546}
1547
1548static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1549					    struct scrub_block *sblock_good,
1550					    int page_num, int force_write)
1551{
1552	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1553	struct scrub_page *page_good = sblock_good->pagev[page_num];
1554	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1555
1556	BUG_ON(page_bad->page == NULL);
1557	BUG_ON(page_good->page == NULL);
1558	if (force_write || sblock_bad->header_error ||
1559	    sblock_bad->checksum_error || page_bad->io_error) {
1560		struct bio *bio;
1561		int ret;
1562
1563		if (!page_bad->dev->bdev) {
1564			btrfs_warn_rl(fs_info,
1565				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
 
1566			return -EIO;
1567		}
1568
1569		bio = btrfs_io_bio_alloc(1);
1570		bio_set_dev(bio, page_bad->dev->bdev);
 
 
1571		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1572		bio->bi_opf = REQ_OP_WRITE;
1573
1574		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1575		if (PAGE_SIZE != ret) {
1576			bio_put(bio);
1577			return -EIO;
1578		}
1579
1580		if (btrfsic_submit_bio_wait(bio)) {
1581			btrfs_dev_stat_inc_and_print(page_bad->dev,
1582				BTRFS_DEV_STAT_WRITE_ERRS);
1583			atomic64_inc(&fs_info->dev_replace.num_write_errors);
 
 
1584			bio_put(bio);
1585			return -EIO;
1586		}
1587		bio_put(bio);
1588	}
1589
1590	return 0;
1591}
1592
1593static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1594{
1595	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1596	int page_num;
1597
1598	/*
1599	 * This block is used for the check of the parity on the source device,
1600	 * so the data needn't be written into the destination device.
1601	 */
1602	if (sblock->sparity)
1603		return;
1604
1605	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1606		int ret;
1607
1608		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1609		if (ret)
1610			atomic64_inc(&fs_info->dev_replace.num_write_errors);
 
 
1611	}
1612}
1613
1614static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1615					   int page_num)
1616{
1617	struct scrub_page *spage = sblock->pagev[page_num];
1618
1619	BUG_ON(spage->page == NULL);
1620	if (spage->io_error) {
1621		void *mapped_buffer = kmap_atomic(spage->page);
1622
1623		clear_page(mapped_buffer);
1624		flush_dcache_page(spage->page);
1625		kunmap_atomic(mapped_buffer);
1626	}
1627	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1628}
1629
1630static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1631				    struct scrub_page *spage)
1632{
 
1633	struct scrub_bio *sbio;
1634	int ret;
1635
1636	mutex_lock(&sctx->wr_lock);
1637again:
1638	if (!sctx->wr_curr_bio) {
1639		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1640					      GFP_KERNEL);
1641		if (!sctx->wr_curr_bio) {
1642			mutex_unlock(&sctx->wr_lock);
1643			return -ENOMEM;
1644		}
1645		sctx->wr_curr_bio->sctx = sctx;
1646		sctx->wr_curr_bio->page_count = 0;
1647	}
1648	sbio = sctx->wr_curr_bio;
1649	if (sbio->page_count == 0) {
1650		struct bio *bio;
1651
1652		sbio->physical = spage->physical_for_dev_replace;
1653		sbio->logical = spage->logical;
1654		sbio->dev = sctx->wr_tgtdev;
1655		bio = sbio->bio;
1656		if (!bio) {
1657			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
 
 
 
 
1658			sbio->bio = bio;
1659		}
1660
1661		bio->bi_private = sbio;
1662		bio->bi_end_io = scrub_wr_bio_end_io;
1663		bio_set_dev(bio, sbio->dev->bdev);
1664		bio->bi_iter.bi_sector = sbio->physical >> 9;
1665		bio->bi_opf = REQ_OP_WRITE;
1666		sbio->status = 0;
1667	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1668		   spage->physical_for_dev_replace ||
1669		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1670		   spage->logical) {
1671		scrub_wr_submit(sctx);
1672		goto again;
1673	}
1674
1675	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1676	if (ret != PAGE_SIZE) {
1677		if (sbio->page_count < 1) {
1678			bio_put(sbio->bio);
1679			sbio->bio = NULL;
1680			mutex_unlock(&sctx->wr_lock);
1681			return -EIO;
1682		}
1683		scrub_wr_submit(sctx);
1684		goto again;
1685	}
1686
1687	sbio->pagev[sbio->page_count] = spage;
1688	scrub_page_get(spage);
1689	sbio->page_count++;
1690	if (sbio->page_count == sctx->pages_per_wr_bio)
1691		scrub_wr_submit(sctx);
1692	mutex_unlock(&sctx->wr_lock);
1693
1694	return 0;
1695}
1696
1697static void scrub_wr_submit(struct scrub_ctx *sctx)
1698{
 
1699	struct scrub_bio *sbio;
1700
1701	if (!sctx->wr_curr_bio)
1702		return;
1703
1704	sbio = sctx->wr_curr_bio;
1705	sctx->wr_curr_bio = NULL;
1706	WARN_ON(!sbio->bio->bi_disk);
1707	scrub_pending_bio_inc(sctx);
1708	/* process all writes in a single worker thread. Then the block layer
1709	 * orders the requests before sending them to the driver which
1710	 * doubled the write performance on spinning disks when measured
1711	 * with Linux 3.5 */
1712	btrfsic_submit_bio(sbio->bio);
1713}
1714
1715static void scrub_wr_bio_end_io(struct bio *bio)
1716{
1717	struct scrub_bio *sbio = bio->bi_private;
1718	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1719
1720	sbio->status = bio->bi_status;
1721	sbio->bio = bio;
1722
1723	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1724			 scrub_wr_bio_end_io_worker, NULL, NULL);
1725	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1726}
1727
1728static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1729{
1730	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1731	struct scrub_ctx *sctx = sbio->sctx;
1732	int i;
1733
1734	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1735	if (sbio->status) {
1736		struct btrfs_dev_replace *dev_replace =
1737			&sbio->sctx->fs_info->dev_replace;
1738
1739		for (i = 0; i < sbio->page_count; i++) {
1740			struct scrub_page *spage = sbio->pagev[i];
1741
1742			spage->io_error = 1;
1743			atomic64_inc(&dev_replace->num_write_errors);
 
1744		}
1745	}
1746
1747	for (i = 0; i < sbio->page_count; i++)
1748		scrub_page_put(sbio->pagev[i]);
1749
1750	bio_put(sbio->bio);
1751	kfree(sbio);
1752	scrub_pending_bio_dec(sctx);
1753}
1754
1755static int scrub_checksum(struct scrub_block *sblock)
1756{
1757	u64 flags;
1758	int ret;
1759
1760	/*
1761	 * No need to initialize these stats currently,
1762	 * because this function only use return value
1763	 * instead of these stats value.
1764	 *
1765	 * Todo:
1766	 * always use stats
1767	 */
1768	sblock->header_error = 0;
1769	sblock->generation_error = 0;
1770	sblock->checksum_error = 0;
1771
1772	WARN_ON(sblock->page_count < 1);
1773	flags = sblock->pagev[0]->flags;
1774	ret = 0;
1775	if (flags & BTRFS_EXTENT_FLAG_DATA)
1776		ret = scrub_checksum_data(sblock);
1777	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1778		ret = scrub_checksum_tree_block(sblock);
1779	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1780		(void)scrub_checksum_super(sblock);
1781	else
1782		WARN_ON(1);
1783	if (ret)
1784		scrub_handle_errored_block(sblock);
1785
1786	return ret;
1787}
1788
1789static int scrub_checksum_data(struct scrub_block *sblock)
1790{
1791	struct scrub_ctx *sctx = sblock->sctx;
1792	struct btrfs_fs_info *fs_info = sctx->fs_info;
1793	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1794	u8 csum[BTRFS_CSUM_SIZE];
1795	u8 *on_disk_csum;
1796	struct page *page;
1797	void *buffer;
 
 
1798	u64 len;
1799	int index;
1800
1801	BUG_ON(sblock->page_count < 1);
1802	if (!sblock->pagev[0]->have_csum)
1803		return 0;
1804
1805	shash->tfm = fs_info->csum_shash;
1806	crypto_shash_init(shash);
1807
1808	on_disk_csum = sblock->pagev[0]->csum;
1809	page = sblock->pagev[0]->page;
1810	buffer = kmap_atomic(page);
1811
1812	len = sctx->fs_info->sectorsize;
1813	index = 0;
1814	for (;;) {
1815		u64 l = min_t(u64, len, PAGE_SIZE);
1816
1817		crypto_shash_update(shash, buffer, l);
1818		kunmap_atomic(buffer);
1819		len -= l;
1820		if (len == 0)
1821			break;
1822		index++;
1823		BUG_ON(index >= sblock->page_count);
1824		BUG_ON(!sblock->pagev[index]->page);
1825		page = sblock->pagev[index]->page;
1826		buffer = kmap_atomic(page);
1827	}
1828
1829	crypto_shash_final(shash, csum);
1830	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1831		sblock->checksum_error = 1;
1832
1833	return sblock->checksum_error;
1834}
1835
1836static int scrub_checksum_tree_block(struct scrub_block *sblock)
1837{
1838	struct scrub_ctx *sctx = sblock->sctx;
1839	struct btrfs_header *h;
1840	struct btrfs_fs_info *fs_info = sctx->fs_info;
1841	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1842	u8 calculated_csum[BTRFS_CSUM_SIZE];
1843	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1844	struct page *page;
1845	void *mapped_buffer;
1846	u64 mapped_size;
1847	void *p;
 
 
 
1848	u64 len;
1849	int index;
1850
1851	shash->tfm = fs_info->csum_shash;
1852	crypto_shash_init(shash);
1853
1854	BUG_ON(sblock->page_count < 1);
1855	page = sblock->pagev[0]->page;
1856	mapped_buffer = kmap_atomic(page);
1857	h = (struct btrfs_header *)mapped_buffer;
1858	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1859
1860	/*
1861	 * we don't use the getter functions here, as we
1862	 * a) don't have an extent buffer and
1863	 * b) the page is already kmapped
1864	 */
 
1865	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1866		sblock->header_error = 1;
1867
1868	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1869		sblock->header_error = 1;
1870		sblock->generation_error = 1;
1871	}
1872
1873	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1874		sblock->header_error = 1;
1875
1876	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1877		   BTRFS_UUID_SIZE))
1878		sblock->header_error = 1;
1879
1880	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
 
1881	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1882	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1883	index = 0;
1884	for (;;) {
1885		u64 l = min_t(u64, len, mapped_size);
1886
1887		crypto_shash_update(shash, p, l);
1888		kunmap_atomic(mapped_buffer);
1889		len -= l;
1890		if (len == 0)
1891			break;
1892		index++;
1893		BUG_ON(index >= sblock->page_count);
1894		BUG_ON(!sblock->pagev[index]->page);
1895		page = sblock->pagev[index]->page;
1896		mapped_buffer = kmap_atomic(page);
1897		mapped_size = PAGE_SIZE;
1898		p = mapped_buffer;
1899	}
1900
1901	crypto_shash_final(shash, calculated_csum);
1902	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1903		sblock->checksum_error = 1;
1904
1905	return sblock->header_error || sblock->checksum_error;
1906}
1907
1908static int scrub_checksum_super(struct scrub_block *sblock)
1909{
1910	struct btrfs_super_block *s;
1911	struct scrub_ctx *sctx = sblock->sctx;
1912	struct btrfs_fs_info *fs_info = sctx->fs_info;
1913	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1914	u8 calculated_csum[BTRFS_CSUM_SIZE];
1915	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1916	struct page *page;
1917	void *mapped_buffer;
1918	u64 mapped_size;
1919	void *p;
 
1920	int fail_gen = 0;
1921	int fail_cor = 0;
1922	u64 len;
1923	int index;
1924
1925	shash->tfm = fs_info->csum_shash;
1926	crypto_shash_init(shash);
1927
1928	BUG_ON(sblock->page_count < 1);
1929	page = sblock->pagev[0]->page;
1930	mapped_buffer = kmap_atomic(page);
1931	s = (struct btrfs_super_block *)mapped_buffer;
1932	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1933
1934	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1935		++fail_cor;
1936
1937	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1938		++fail_gen;
1939
1940	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1941		++fail_cor;
1942
1943	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1944	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1945	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1946	index = 0;
1947	for (;;) {
1948		u64 l = min_t(u64, len, mapped_size);
1949
1950		crypto_shash_update(shash, p, l);
1951		kunmap_atomic(mapped_buffer);
1952		len -= l;
1953		if (len == 0)
1954			break;
1955		index++;
1956		BUG_ON(index >= sblock->page_count);
1957		BUG_ON(!sblock->pagev[index]->page);
1958		page = sblock->pagev[index]->page;
1959		mapped_buffer = kmap_atomic(page);
1960		mapped_size = PAGE_SIZE;
1961		p = mapped_buffer;
1962	}
1963
1964	crypto_shash_final(shash, calculated_csum);
1965	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1966		++fail_cor;
1967
1968	if (fail_cor + fail_gen) {
1969		/*
1970		 * if we find an error in a super block, we just report it.
1971		 * They will get written with the next transaction commit
1972		 * anyway
1973		 */
1974		spin_lock(&sctx->stat_lock);
1975		++sctx->stat.super_errors;
1976		spin_unlock(&sctx->stat_lock);
1977		if (fail_cor)
1978			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1979				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1980		else
1981			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1982				BTRFS_DEV_STAT_GENERATION_ERRS);
1983	}
1984
1985	return fail_cor + fail_gen;
1986}
1987
1988static void scrub_block_get(struct scrub_block *sblock)
1989{
1990	refcount_inc(&sblock->refs);
1991}
1992
1993static void scrub_block_put(struct scrub_block *sblock)
1994{
1995	if (refcount_dec_and_test(&sblock->refs)) {
1996		int i;
1997
1998		if (sblock->sparity)
1999			scrub_parity_put(sblock->sparity);
2000
2001		for (i = 0; i < sblock->page_count; i++)
2002			scrub_page_put(sblock->pagev[i]);
2003		kfree(sblock);
2004	}
2005}
2006
2007static void scrub_page_get(struct scrub_page *spage)
2008{
2009	atomic_inc(&spage->refs);
2010}
2011
2012static void scrub_page_put(struct scrub_page *spage)
2013{
2014	if (atomic_dec_and_test(&spage->refs)) {
2015		if (spage->page)
2016			__free_page(spage->page);
2017		kfree(spage);
2018	}
2019}
2020
2021static void scrub_submit(struct scrub_ctx *sctx)
2022{
2023	struct scrub_bio *sbio;
2024
2025	if (sctx->curr == -1)
2026		return;
2027
2028	sbio = sctx->bios[sctx->curr];
2029	sctx->curr = -1;
2030	scrub_pending_bio_inc(sctx);
2031	btrfsic_submit_bio(sbio->bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2032}
2033
2034static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2035				    struct scrub_page *spage)
2036{
2037	struct scrub_block *sblock = spage->sblock;
2038	struct scrub_bio *sbio;
2039	int ret;
2040
2041again:
2042	/*
2043	 * grab a fresh bio or wait for one to become available
2044	 */
2045	while (sctx->curr == -1) {
2046		spin_lock(&sctx->list_lock);
2047		sctx->curr = sctx->first_free;
2048		if (sctx->curr != -1) {
2049			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2050			sctx->bios[sctx->curr]->next_free = -1;
2051			sctx->bios[sctx->curr]->page_count = 0;
2052			spin_unlock(&sctx->list_lock);
2053		} else {
2054			spin_unlock(&sctx->list_lock);
2055			wait_event(sctx->list_wait, sctx->first_free != -1);
2056		}
2057	}
2058	sbio = sctx->bios[sctx->curr];
2059	if (sbio->page_count == 0) {
2060		struct bio *bio;
2061
2062		sbio->physical = spage->physical;
2063		sbio->logical = spage->logical;
2064		sbio->dev = spage->dev;
2065		bio = sbio->bio;
2066		if (!bio) {
2067			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
 
 
2068			sbio->bio = bio;
2069		}
2070
2071		bio->bi_private = sbio;
2072		bio->bi_end_io = scrub_bio_end_io;
2073		bio_set_dev(bio, sbio->dev->bdev);
2074		bio->bi_iter.bi_sector = sbio->physical >> 9;
2075		bio->bi_opf = REQ_OP_READ;
2076		sbio->status = 0;
2077	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2078		   spage->physical ||
2079		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2080		   spage->logical ||
2081		   sbio->dev != spage->dev) {
2082		scrub_submit(sctx);
2083		goto again;
2084	}
2085
2086	sbio->pagev[sbio->page_count] = spage;
2087	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2088	if (ret != PAGE_SIZE) {
2089		if (sbio->page_count < 1) {
2090			bio_put(sbio->bio);
2091			sbio->bio = NULL;
2092			return -EIO;
2093		}
2094		scrub_submit(sctx);
2095		goto again;
2096	}
2097
2098	scrub_block_get(sblock); /* one for the page added to the bio */
2099	atomic_inc(&sblock->outstanding_pages);
2100	sbio->page_count++;
2101	if (sbio->page_count == sctx->pages_per_rd_bio)
2102		scrub_submit(sctx);
2103
2104	return 0;
2105}
2106
2107static void scrub_missing_raid56_end_io(struct bio *bio)
2108{
2109	struct scrub_block *sblock = bio->bi_private;
2110	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2111
2112	if (bio->bi_status)
2113		sblock->no_io_error_seen = 0;
2114
2115	bio_put(bio);
2116
2117	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2118}
2119
2120static void scrub_missing_raid56_worker(struct btrfs_work *work)
2121{
2122	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2123	struct scrub_ctx *sctx = sblock->sctx;
2124	struct btrfs_fs_info *fs_info = sctx->fs_info;
2125	u64 logical;
2126	struct btrfs_device *dev;
2127
2128	logical = sblock->pagev[0]->logical;
2129	dev = sblock->pagev[0]->dev;
2130
2131	if (sblock->no_io_error_seen)
2132		scrub_recheck_block_checksum(sblock);
2133
2134	if (!sblock->no_io_error_seen) {
2135		spin_lock(&sctx->stat_lock);
2136		sctx->stat.read_errors++;
2137		spin_unlock(&sctx->stat_lock);
2138		btrfs_err_rl_in_rcu(fs_info,
2139			"IO error rebuilding logical %llu for dev %s",
2140			logical, rcu_str_deref(dev->name));
2141	} else if (sblock->header_error || sblock->checksum_error) {
2142		spin_lock(&sctx->stat_lock);
2143		sctx->stat.uncorrectable_errors++;
2144		spin_unlock(&sctx->stat_lock);
2145		btrfs_err_rl_in_rcu(fs_info,
2146			"failed to rebuild valid logical %llu for dev %s",
2147			logical, rcu_str_deref(dev->name));
2148	} else {
2149		scrub_write_block_to_dev_replace(sblock);
2150	}
2151
2152	scrub_block_put(sblock);
2153
2154	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2155		mutex_lock(&sctx->wr_lock);
2156		scrub_wr_submit(sctx);
2157		mutex_unlock(&sctx->wr_lock);
2158	}
2159
2160	scrub_pending_bio_dec(sctx);
2161}
2162
2163static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2164{
2165	struct scrub_ctx *sctx = sblock->sctx;
2166	struct btrfs_fs_info *fs_info = sctx->fs_info;
2167	u64 length = sblock->page_count * PAGE_SIZE;
2168	u64 logical = sblock->pagev[0]->logical;
2169	struct btrfs_bio *bbio = NULL;
2170	struct bio *bio;
2171	struct btrfs_raid_bio *rbio;
2172	int ret;
2173	int i;
2174
2175	btrfs_bio_counter_inc_blocked(fs_info);
2176	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2177			&length, &bbio);
2178	if (ret || !bbio || !bbio->raid_map)
2179		goto bbio_out;
2180
2181	if (WARN_ON(!sctx->is_dev_replace ||
2182		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2183		/*
2184		 * We shouldn't be scrubbing a missing device. Even for dev
2185		 * replace, we should only get here for RAID 5/6. We either
2186		 * managed to mount something with no mirrors remaining or
2187		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2188		 */
2189		goto bbio_out;
2190	}
2191
2192	bio = btrfs_io_bio_alloc(0);
2193	bio->bi_iter.bi_sector = logical >> 9;
2194	bio->bi_private = sblock;
2195	bio->bi_end_io = scrub_missing_raid56_end_io;
2196
2197	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2198	if (!rbio)
2199		goto rbio_out;
2200
2201	for (i = 0; i < sblock->page_count; i++) {
2202		struct scrub_page *spage = sblock->pagev[i];
2203
2204		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2205	}
2206
2207	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2208			scrub_missing_raid56_worker, NULL, NULL);
2209	scrub_block_get(sblock);
2210	scrub_pending_bio_inc(sctx);
2211	raid56_submit_missing_rbio(rbio);
2212	return;
2213
2214rbio_out:
2215	bio_put(bio);
2216bbio_out:
2217	btrfs_bio_counter_dec(fs_info);
2218	btrfs_put_bbio(bbio);
2219	spin_lock(&sctx->stat_lock);
2220	sctx->stat.malloc_errors++;
2221	spin_unlock(&sctx->stat_lock);
2222}
2223
2224static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2225		       u64 physical, struct btrfs_device *dev, u64 flags,
2226		       u64 gen, int mirror_num, u8 *csum, int force,
2227		       u64 physical_for_dev_replace)
2228{
2229	struct scrub_block *sblock;
2230	int index;
2231
2232	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2233	if (!sblock) {
2234		spin_lock(&sctx->stat_lock);
2235		sctx->stat.malloc_errors++;
2236		spin_unlock(&sctx->stat_lock);
2237		return -ENOMEM;
2238	}
2239
2240	/* one ref inside this function, plus one for each page added to
2241	 * a bio later on */
2242	refcount_set(&sblock->refs, 1);
2243	sblock->sctx = sctx;
2244	sblock->no_io_error_seen = 1;
2245
2246	for (index = 0; len > 0; index++) {
2247		struct scrub_page *spage;
2248		u64 l = min_t(u64, len, PAGE_SIZE);
2249
2250		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2251		if (!spage) {
2252leave_nomem:
2253			spin_lock(&sctx->stat_lock);
2254			sctx->stat.malloc_errors++;
2255			spin_unlock(&sctx->stat_lock);
2256			scrub_block_put(sblock);
2257			return -ENOMEM;
2258		}
2259		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2260		scrub_page_get(spage);
2261		sblock->pagev[index] = spage;
2262		spage->sblock = sblock;
2263		spage->dev = dev;
2264		spage->flags = flags;
2265		spage->generation = gen;
2266		spage->logical = logical;
2267		spage->physical = physical;
2268		spage->physical_for_dev_replace = physical_for_dev_replace;
2269		spage->mirror_num = mirror_num;
2270		if (csum) {
2271			spage->have_csum = 1;
2272			memcpy(spage->csum, csum, sctx->csum_size);
2273		} else {
2274			spage->have_csum = 0;
2275		}
2276		sblock->page_count++;
2277		spage->page = alloc_page(GFP_KERNEL);
2278		if (!spage->page)
2279			goto leave_nomem;
2280		len -= l;
2281		logical += l;
2282		physical += l;
2283		physical_for_dev_replace += l;
2284	}
2285
2286	WARN_ON(sblock->page_count == 0);
2287	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2288		/*
2289		 * This case should only be hit for RAID 5/6 device replace. See
2290		 * the comment in scrub_missing_raid56_pages() for details.
2291		 */
2292		scrub_missing_raid56_pages(sblock);
2293	} else {
2294		for (index = 0; index < sblock->page_count; index++) {
2295			struct scrub_page *spage = sblock->pagev[index];
2296			int ret;
2297
2298			ret = scrub_add_page_to_rd_bio(sctx, spage);
2299			if (ret) {
2300				scrub_block_put(sblock);
2301				return ret;
2302			}
2303		}
2304
2305		if (force)
2306			scrub_submit(sctx);
 
 
 
2307	}
2308
 
 
 
2309	/* last one frees, either here or in bio completion for last page */
2310	scrub_block_put(sblock);
2311	return 0;
2312}
2313
2314static void scrub_bio_end_io(struct bio *bio)
2315{
2316	struct scrub_bio *sbio = bio->bi_private;
2317	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2318
2319	sbio->status = bio->bi_status;
2320	sbio->bio = bio;
2321
2322	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2323}
2324
2325static void scrub_bio_end_io_worker(struct btrfs_work *work)
2326{
2327	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2328	struct scrub_ctx *sctx = sbio->sctx;
2329	int i;
2330
2331	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2332	if (sbio->status) {
2333		for (i = 0; i < sbio->page_count; i++) {
2334			struct scrub_page *spage = sbio->pagev[i];
2335
2336			spage->io_error = 1;
2337			spage->sblock->no_io_error_seen = 0;
2338		}
2339	}
2340
2341	/* now complete the scrub_block items that have all pages completed */
2342	for (i = 0; i < sbio->page_count; i++) {
2343		struct scrub_page *spage = sbio->pagev[i];
2344		struct scrub_block *sblock = spage->sblock;
2345
2346		if (atomic_dec_and_test(&sblock->outstanding_pages))
2347			scrub_block_complete(sblock);
2348		scrub_block_put(sblock);
2349	}
2350
2351	bio_put(sbio->bio);
2352	sbio->bio = NULL;
2353	spin_lock(&sctx->list_lock);
2354	sbio->next_free = sctx->first_free;
2355	sctx->first_free = sbio->index;
2356	spin_unlock(&sctx->list_lock);
2357
2358	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2359		mutex_lock(&sctx->wr_lock);
 
2360		scrub_wr_submit(sctx);
2361		mutex_unlock(&sctx->wr_lock);
2362	}
2363
2364	scrub_pending_bio_dec(sctx);
2365}
2366
2367static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2368				       unsigned long *bitmap,
2369				       u64 start, u64 len)
2370{
2371	u64 offset;
2372	u64 nsectors64;
2373	u32 nsectors;
2374	int sectorsize = sparity->sctx->fs_info->sectorsize;
2375
2376	if (len >= sparity->stripe_len) {
2377		bitmap_set(bitmap, 0, sparity->nsectors);
2378		return;
2379	}
2380
2381	start -= sparity->logic_start;
2382	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2383	offset = div_u64(offset, sectorsize);
2384	nsectors64 = div_u64(len, sectorsize);
2385
2386	ASSERT(nsectors64 < UINT_MAX);
2387	nsectors = (u32)nsectors64;
2388
2389	if (offset + nsectors <= sparity->nsectors) {
2390		bitmap_set(bitmap, offset, nsectors);
2391		return;
2392	}
2393
2394	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2395	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2396}
2397
2398static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2399						   u64 start, u64 len)
2400{
2401	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2402}
2403
2404static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2405						  u64 start, u64 len)
2406{
2407	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2408}
2409
2410static void scrub_block_complete(struct scrub_block *sblock)
2411{
2412	int corrupted = 0;
2413
2414	if (!sblock->no_io_error_seen) {
2415		corrupted = 1;
2416		scrub_handle_errored_block(sblock);
2417	} else {
2418		/*
2419		 * if has checksum error, write via repair mechanism in
2420		 * dev replace case, otherwise write here in dev replace
2421		 * case.
2422		 */
2423		corrupted = scrub_checksum(sblock);
2424		if (!corrupted && sblock->sctx->is_dev_replace)
2425			scrub_write_block_to_dev_replace(sblock);
2426	}
2427
2428	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2429		u64 start = sblock->pagev[0]->logical;
2430		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2431			  PAGE_SIZE;
2432
2433		scrub_parity_mark_sectors_error(sblock->sparity,
2434						start, end - start);
2435	}
2436}
2437
2438static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
 
2439{
2440	struct btrfs_ordered_sum *sum = NULL;
2441	unsigned long index;
2442	unsigned long num_sectors;
2443
2444	while (!list_empty(&sctx->csum_list)) {
2445		sum = list_first_entry(&sctx->csum_list,
2446				       struct btrfs_ordered_sum, list);
2447		if (sum->bytenr > logical)
2448			return 0;
2449		if (sum->bytenr + sum->len > logical)
2450			break;
2451
2452		++sctx->stat.csum_discards;
2453		list_del(&sum->list);
2454		kfree(sum);
2455		sum = NULL;
2456	}
2457	if (!sum)
2458		return 0;
2459
2460	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2461	ASSERT(index < UINT_MAX);
2462
2463	num_sectors = sum->len / sctx->fs_info->sectorsize;
2464	memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2465	if (index == num_sectors - 1) {
2466		list_del(&sum->list);
2467		kfree(sum);
2468	}
2469	return 1;
2470}
2471
2472/* scrub extent tries to collect up to 64 kB for each bio */
2473static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2474			u64 logical, u64 len,
2475			u64 physical, struct btrfs_device *dev, u64 flags,
2476			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2477{
2478	int ret;
2479	u8 csum[BTRFS_CSUM_SIZE];
2480	u32 blocksize;
2481
2482	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2483		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2484			blocksize = map->stripe_len;
2485		else
2486			blocksize = sctx->fs_info->sectorsize;
2487		spin_lock(&sctx->stat_lock);
2488		sctx->stat.data_extents_scrubbed++;
2489		sctx->stat.data_bytes_scrubbed += len;
2490		spin_unlock(&sctx->stat_lock);
2491	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2492		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2493			blocksize = map->stripe_len;
2494		else
2495			blocksize = sctx->fs_info->nodesize;
2496		spin_lock(&sctx->stat_lock);
2497		sctx->stat.tree_extents_scrubbed++;
2498		sctx->stat.tree_bytes_scrubbed += len;
2499		spin_unlock(&sctx->stat_lock);
2500	} else {
2501		blocksize = sctx->fs_info->sectorsize;
2502		WARN_ON(1);
2503	}
2504
2505	while (len) {
2506		u64 l = min_t(u64, len, blocksize);
2507		int have_csum = 0;
2508
2509		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2510			/* push csums to sbio */
2511			have_csum = scrub_find_csum(sctx, logical, csum);
2512			if (have_csum == 0)
2513				++sctx->stat.no_csum;
 
 
 
 
 
 
2514		}
2515		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2516				  mirror_num, have_csum ? csum : NULL, 0,
2517				  physical_for_dev_replace);
 
2518		if (ret)
2519			return ret;
2520		len -= l;
2521		logical += l;
2522		physical += l;
2523		physical_for_dev_replace += l;
2524	}
2525	return 0;
2526}
2527
2528static int scrub_pages_for_parity(struct scrub_parity *sparity,
2529				  u64 logical, u64 len,
2530				  u64 physical, struct btrfs_device *dev,
2531				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2532{
2533	struct scrub_ctx *sctx = sparity->sctx;
2534	struct scrub_block *sblock;
2535	int index;
2536
2537	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2538	if (!sblock) {
2539		spin_lock(&sctx->stat_lock);
2540		sctx->stat.malloc_errors++;
2541		spin_unlock(&sctx->stat_lock);
2542		return -ENOMEM;
2543	}
2544
2545	/* one ref inside this function, plus one for each page added to
2546	 * a bio later on */
2547	refcount_set(&sblock->refs, 1);
2548	sblock->sctx = sctx;
2549	sblock->no_io_error_seen = 1;
2550	sblock->sparity = sparity;
2551	scrub_parity_get(sparity);
2552
2553	for (index = 0; len > 0; index++) {
2554		struct scrub_page *spage;
2555		u64 l = min_t(u64, len, PAGE_SIZE);
2556
2557		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2558		if (!spage) {
2559leave_nomem:
2560			spin_lock(&sctx->stat_lock);
2561			sctx->stat.malloc_errors++;
2562			spin_unlock(&sctx->stat_lock);
2563			scrub_block_put(sblock);
2564			return -ENOMEM;
2565		}
2566		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2567		/* For scrub block */
2568		scrub_page_get(spage);
2569		sblock->pagev[index] = spage;
2570		/* For scrub parity */
2571		scrub_page_get(spage);
2572		list_add_tail(&spage->list, &sparity->spages);
2573		spage->sblock = sblock;
2574		spage->dev = dev;
2575		spage->flags = flags;
2576		spage->generation = gen;
2577		spage->logical = logical;
2578		spage->physical = physical;
2579		spage->mirror_num = mirror_num;
2580		if (csum) {
2581			spage->have_csum = 1;
2582			memcpy(spage->csum, csum, sctx->csum_size);
2583		} else {
2584			spage->have_csum = 0;
2585		}
2586		sblock->page_count++;
2587		spage->page = alloc_page(GFP_KERNEL);
2588		if (!spage->page)
2589			goto leave_nomem;
2590		len -= l;
2591		logical += l;
2592		physical += l;
2593	}
2594
2595	WARN_ON(sblock->page_count == 0);
2596	for (index = 0; index < sblock->page_count; index++) {
2597		struct scrub_page *spage = sblock->pagev[index];
2598		int ret;
2599
2600		ret = scrub_add_page_to_rd_bio(sctx, spage);
2601		if (ret) {
2602			scrub_block_put(sblock);
2603			return ret;
2604		}
2605	}
2606
2607	/* last one frees, either here or in bio completion for last page */
2608	scrub_block_put(sblock);
2609	return 0;
2610}
2611
2612static int scrub_extent_for_parity(struct scrub_parity *sparity,
2613				   u64 logical, u64 len,
2614				   u64 physical, struct btrfs_device *dev,
2615				   u64 flags, u64 gen, int mirror_num)
2616{
2617	struct scrub_ctx *sctx = sparity->sctx;
2618	int ret;
2619	u8 csum[BTRFS_CSUM_SIZE];
2620	u32 blocksize;
2621
2622	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2623		scrub_parity_mark_sectors_error(sparity, logical, len);
2624		return 0;
2625	}
2626
2627	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2628		blocksize = sparity->stripe_len;
2629	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2630		blocksize = sparity->stripe_len;
2631	} else {
2632		blocksize = sctx->fs_info->sectorsize;
2633		WARN_ON(1);
2634	}
2635
2636	while (len) {
2637		u64 l = min_t(u64, len, blocksize);
2638		int have_csum = 0;
2639
2640		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2641			/* push csums to sbio */
2642			have_csum = scrub_find_csum(sctx, logical, csum);
2643			if (have_csum == 0)
2644				goto skip;
2645		}
2646		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2647					     flags, gen, mirror_num,
2648					     have_csum ? csum : NULL);
2649		if (ret)
2650			return ret;
2651skip:
2652		len -= l;
2653		logical += l;
2654		physical += l;
2655	}
2656	return 0;
2657}
2658
2659/*
2660 * Given a physical address, this will calculate it's
2661 * logical offset. if this is a parity stripe, it will return
2662 * the most left data stripe's logical offset.
2663 *
2664 * return 0 if it is a data stripe, 1 means parity stripe.
2665 */
2666static int get_raid56_logic_offset(u64 physical, int num,
2667				   struct map_lookup *map, u64 *offset,
2668				   u64 *stripe_start)
2669{
2670	int i;
2671	int j = 0;
2672	u64 stripe_nr;
2673	u64 last_offset;
2674	u32 stripe_index;
2675	u32 rot;
2676	const int data_stripes = nr_data_stripes(map);
2677
2678	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2679	if (stripe_start)
2680		*stripe_start = last_offset;
2681
 
 
2682	*offset = last_offset;
2683	for (i = 0; i < data_stripes; i++) {
2684		*offset = last_offset + i * map->stripe_len;
2685
2686		stripe_nr = div64_u64(*offset, map->stripe_len);
2687		stripe_nr = div_u64(stripe_nr, data_stripes);
 
2688
2689		/* Work out the disk rotation on this stripe-set */
2690		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2691		/* calculate which stripe this data locates */
2692		rot += i;
2693		stripe_index = rot % map->num_stripes;
2694		if (stripe_index == num)
2695			return 0;
2696		if (stripe_index < num)
2697			j++;
2698	}
2699	*offset = last_offset + j * map->stripe_len;
2700	return 1;
2701}
2702
2703static void scrub_free_parity(struct scrub_parity *sparity)
2704{
2705	struct scrub_ctx *sctx = sparity->sctx;
2706	struct scrub_page *curr, *next;
2707	int nbits;
2708
2709	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2710	if (nbits) {
2711		spin_lock(&sctx->stat_lock);
2712		sctx->stat.read_errors += nbits;
2713		sctx->stat.uncorrectable_errors += nbits;
2714		spin_unlock(&sctx->stat_lock);
2715	}
2716
2717	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2718		list_del_init(&curr->list);
2719		scrub_page_put(curr);
2720	}
2721
2722	kfree(sparity);
2723}
2724
2725static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2726{
2727	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2728						    work);
2729	struct scrub_ctx *sctx = sparity->sctx;
2730
2731	scrub_free_parity(sparity);
2732	scrub_pending_bio_dec(sctx);
2733}
2734
2735static void scrub_parity_bio_endio(struct bio *bio)
2736{
2737	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2738	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2739
2740	if (bio->bi_status)
2741		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2742			  sparity->nsectors);
2743
2744	bio_put(bio);
2745
2746	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2747			scrub_parity_bio_endio_worker, NULL, NULL);
2748	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2749}
2750
2751static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2752{
2753	struct scrub_ctx *sctx = sparity->sctx;
2754	struct btrfs_fs_info *fs_info = sctx->fs_info;
2755	struct bio *bio;
2756	struct btrfs_raid_bio *rbio;
2757	struct btrfs_bio *bbio = NULL;
2758	u64 length;
2759	int ret;
2760
2761	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2762			   sparity->nsectors))
2763		goto out;
2764
2765	length = sparity->logic_end - sparity->logic_start;
2766
2767	btrfs_bio_counter_inc_blocked(fs_info);
2768	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2769			       &length, &bbio);
2770	if (ret || !bbio || !bbio->raid_map)
2771		goto bbio_out;
2772
2773	bio = btrfs_io_bio_alloc(0);
2774	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2775	bio->bi_private = sparity;
2776	bio->bi_end_io = scrub_parity_bio_endio;
2777
2778	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2779					      length, sparity->scrub_dev,
2780					      sparity->dbitmap,
2781					      sparity->nsectors);
2782	if (!rbio)
2783		goto rbio_out;
2784
2785	scrub_pending_bio_inc(sctx);
2786	raid56_parity_submit_scrub_rbio(rbio);
2787	return;
2788
2789rbio_out:
2790	bio_put(bio);
2791bbio_out:
2792	btrfs_bio_counter_dec(fs_info);
2793	btrfs_put_bbio(bbio);
2794	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2795		  sparity->nsectors);
2796	spin_lock(&sctx->stat_lock);
2797	sctx->stat.malloc_errors++;
2798	spin_unlock(&sctx->stat_lock);
2799out:
2800	scrub_free_parity(sparity);
2801}
2802
2803static inline int scrub_calc_parity_bitmap_len(int nsectors)
2804{
2805	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2806}
2807
2808static void scrub_parity_get(struct scrub_parity *sparity)
2809{
2810	refcount_inc(&sparity->refs);
2811}
2812
2813static void scrub_parity_put(struct scrub_parity *sparity)
2814{
2815	if (!refcount_dec_and_test(&sparity->refs))
2816		return;
2817
2818	scrub_parity_check_and_repair(sparity);
2819}
2820
2821static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2822						  struct map_lookup *map,
2823						  struct btrfs_device *sdev,
2824						  struct btrfs_path *path,
2825						  u64 logic_start,
2826						  u64 logic_end)
2827{
2828	struct btrfs_fs_info *fs_info = sctx->fs_info;
2829	struct btrfs_root *root = fs_info->extent_root;
2830	struct btrfs_root *csum_root = fs_info->csum_root;
2831	struct btrfs_extent_item *extent;
2832	struct btrfs_bio *bbio = NULL;
2833	u64 flags;
2834	int ret;
2835	int slot;
2836	struct extent_buffer *l;
2837	struct btrfs_key key;
2838	u64 generation;
2839	u64 extent_logical;
2840	u64 extent_physical;
2841	u64 extent_len;
2842	u64 mapped_length;
2843	struct btrfs_device *extent_dev;
2844	struct scrub_parity *sparity;
2845	int nsectors;
2846	int bitmap_len;
2847	int extent_mirror_num;
2848	int stop_loop = 0;
2849
2850	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2851	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2852	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2853			  GFP_NOFS);
2854	if (!sparity) {
2855		spin_lock(&sctx->stat_lock);
2856		sctx->stat.malloc_errors++;
2857		spin_unlock(&sctx->stat_lock);
2858		return -ENOMEM;
2859	}
2860
2861	sparity->stripe_len = map->stripe_len;
2862	sparity->nsectors = nsectors;
2863	sparity->sctx = sctx;
2864	sparity->scrub_dev = sdev;
2865	sparity->logic_start = logic_start;
2866	sparity->logic_end = logic_end;
2867	refcount_set(&sparity->refs, 1);
2868	INIT_LIST_HEAD(&sparity->spages);
2869	sparity->dbitmap = sparity->bitmap;
2870	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2871
2872	ret = 0;
2873	while (logic_start < logic_end) {
2874		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2875			key.type = BTRFS_METADATA_ITEM_KEY;
2876		else
2877			key.type = BTRFS_EXTENT_ITEM_KEY;
2878		key.objectid = logic_start;
2879		key.offset = (u64)-1;
2880
2881		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2882		if (ret < 0)
2883			goto out;
2884
2885		if (ret > 0) {
2886			ret = btrfs_previous_extent_item(root, path, 0);
2887			if (ret < 0)
2888				goto out;
2889			if (ret > 0) {
2890				btrfs_release_path(path);
2891				ret = btrfs_search_slot(NULL, root, &key,
2892							path, 0, 0);
2893				if (ret < 0)
2894					goto out;
2895			}
2896		}
2897
2898		stop_loop = 0;
2899		while (1) {
2900			u64 bytes;
2901
2902			l = path->nodes[0];
2903			slot = path->slots[0];
2904			if (slot >= btrfs_header_nritems(l)) {
2905				ret = btrfs_next_leaf(root, path);
2906				if (ret == 0)
2907					continue;
2908				if (ret < 0)
2909					goto out;
2910
2911				stop_loop = 1;
2912				break;
2913			}
2914			btrfs_item_key_to_cpu(l, &key, slot);
2915
2916			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2917			    key.type != BTRFS_METADATA_ITEM_KEY)
2918				goto next;
2919
2920			if (key.type == BTRFS_METADATA_ITEM_KEY)
2921				bytes = fs_info->nodesize;
2922			else
2923				bytes = key.offset;
2924
2925			if (key.objectid + bytes <= logic_start)
2926				goto next;
2927
2928			if (key.objectid >= logic_end) {
2929				stop_loop = 1;
2930				break;
2931			}
2932
2933			while (key.objectid >= logic_start + map->stripe_len)
2934				logic_start += map->stripe_len;
2935
2936			extent = btrfs_item_ptr(l, slot,
2937						struct btrfs_extent_item);
2938			flags = btrfs_extent_flags(l, extent);
2939			generation = btrfs_extent_generation(l, extent);
2940
2941			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2942			    (key.objectid < logic_start ||
2943			     key.objectid + bytes >
2944			     logic_start + map->stripe_len)) {
2945				btrfs_err(fs_info,
2946					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2947					  key.objectid, logic_start);
2948				spin_lock(&sctx->stat_lock);
2949				sctx->stat.uncorrectable_errors++;
2950				spin_unlock(&sctx->stat_lock);
2951				goto next;
2952			}
2953again:
2954			extent_logical = key.objectid;
2955			extent_len = bytes;
2956
2957			if (extent_logical < logic_start) {
2958				extent_len -= logic_start - extent_logical;
2959				extent_logical = logic_start;
2960			}
2961
2962			if (extent_logical + extent_len >
2963			    logic_start + map->stripe_len)
2964				extent_len = logic_start + map->stripe_len -
2965					     extent_logical;
2966
2967			scrub_parity_mark_sectors_data(sparity, extent_logical,
2968						       extent_len);
2969
2970			mapped_length = extent_len;
2971			bbio = NULL;
2972			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2973					extent_logical, &mapped_length, &bbio,
2974					0);
2975			if (!ret) {
2976				if (!bbio || mapped_length < extent_len)
2977					ret = -EIO;
2978			}
2979			if (ret) {
2980				btrfs_put_bbio(bbio);
2981				goto out;
2982			}
2983			extent_physical = bbio->stripes[0].physical;
2984			extent_mirror_num = bbio->mirror_num;
2985			extent_dev = bbio->stripes[0].dev;
2986			btrfs_put_bbio(bbio);
2987
2988			ret = btrfs_lookup_csums_range(csum_root,
2989						extent_logical,
2990						extent_logical + extent_len - 1,
2991						&sctx->csum_list, 1);
2992			if (ret)
2993				goto out;
2994
2995			ret = scrub_extent_for_parity(sparity, extent_logical,
2996						      extent_len,
2997						      extent_physical,
2998						      extent_dev, flags,
2999						      generation,
3000						      extent_mirror_num);
3001
3002			scrub_free_csums(sctx);
3003
3004			if (ret)
3005				goto out;
3006
3007			if (extent_logical + extent_len <
3008			    key.objectid + bytes) {
3009				logic_start += map->stripe_len;
3010
3011				if (logic_start >= logic_end) {
3012					stop_loop = 1;
3013					break;
3014				}
3015
3016				if (logic_start < key.objectid + bytes) {
3017					cond_resched();
3018					goto again;
3019				}
3020			}
3021next:
3022			path->slots[0]++;
3023		}
3024
3025		btrfs_release_path(path);
3026
3027		if (stop_loop)
3028			break;
3029
3030		logic_start += map->stripe_len;
3031	}
3032out:
3033	if (ret < 0)
3034		scrub_parity_mark_sectors_error(sparity, logic_start,
3035						logic_end - logic_start);
3036	scrub_parity_put(sparity);
3037	scrub_submit(sctx);
3038	mutex_lock(&sctx->wr_lock);
3039	scrub_wr_submit(sctx);
3040	mutex_unlock(&sctx->wr_lock);
3041
3042	btrfs_release_path(path);
3043	return ret < 0 ? ret : 0;
3044}
3045
3046static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3047					   struct map_lookup *map,
3048					   struct btrfs_device *scrub_dev,
3049					   int num, u64 base, u64 length)
 
3050{
3051	struct btrfs_path *path, *ppath;
3052	struct btrfs_fs_info *fs_info = sctx->fs_info;
3053	struct btrfs_root *root = fs_info->extent_root;
3054	struct btrfs_root *csum_root = fs_info->csum_root;
3055	struct btrfs_extent_item *extent;
3056	struct blk_plug plug;
3057	u64 flags;
3058	int ret;
3059	int slot;
3060	u64 nstripes;
3061	struct extent_buffer *l;
 
3062	u64 physical;
3063	u64 logical;
3064	u64 logic_end;
3065	u64 physical_end;
3066	u64 generation;
3067	int mirror_num;
3068	struct reada_control *reada1;
3069	struct reada_control *reada2;
3070	struct btrfs_key key;
3071	struct btrfs_key key_end;
3072	u64 increment = map->stripe_len;
3073	u64 offset;
3074	u64 extent_logical;
3075	u64 extent_physical;
3076	u64 extent_len;
3077	u64 stripe_logical;
3078	u64 stripe_end;
3079	struct btrfs_device *extent_dev;
3080	int extent_mirror_num;
3081	int stop_loop = 0;
3082
 
3083	physical = map->stripes[num].physical;
3084	offset = 0;
3085	nstripes = div64_u64(length, map->stripe_len);
3086	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3087		offset = map->stripe_len * num;
3088		increment = map->stripe_len * map->num_stripes;
3089		mirror_num = 1;
3090	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3091		int factor = map->num_stripes / map->sub_stripes;
3092		offset = map->stripe_len * (num / map->sub_stripes);
3093		increment = map->stripe_len * factor;
3094		mirror_num = num % map->sub_stripes + 1;
3095	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3096		increment = map->stripe_len;
3097		mirror_num = num % map->num_stripes + 1;
3098	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3099		increment = map->stripe_len;
3100		mirror_num = num % map->num_stripes + 1;
3101	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3102		get_raid56_logic_offset(physical, num, map, &offset, NULL);
 
3103		increment = map->stripe_len * nr_data_stripes(map);
3104		mirror_num = 1;
3105	} else {
3106		increment = map->stripe_len;
3107		mirror_num = 1;
3108	}
3109
3110	path = btrfs_alloc_path();
3111	if (!path)
3112		return -ENOMEM;
3113
3114	ppath = btrfs_alloc_path();
3115	if (!ppath) {
3116		btrfs_free_path(path);
3117		return -ENOMEM;
3118	}
3119
3120	/*
3121	 * work on commit root. The related disk blocks are static as
3122	 * long as COW is applied. This means, it is save to rewrite
3123	 * them to repair disk errors without any race conditions
3124	 */
3125	path->search_commit_root = 1;
3126	path->skip_locking = 1;
3127
3128	ppath->search_commit_root = 1;
3129	ppath->skip_locking = 1;
3130	/*
3131	 * trigger the readahead for extent tree csum tree and wait for
3132	 * completion. During readahead, the scrub is officially paused
3133	 * to not hold off transaction commits
3134	 */
3135	logical = base + offset;
3136	physical_end = physical + nstripes * map->stripe_len;
3137	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 
3138		get_raid56_logic_offset(physical_end, num,
3139					map, &logic_end, NULL);
3140		logic_end += base;
3141	} else {
3142		logic_end = logical + increment * nstripes;
3143	}
3144	wait_event(sctx->list_wait,
3145		   atomic_read(&sctx->bios_in_flight) == 0);
3146	scrub_blocked_if_needed(fs_info);
3147
3148	/* FIXME it might be better to start readahead at commit root */
3149	key.objectid = logical;
3150	key.type = BTRFS_EXTENT_ITEM_KEY;
3151	key.offset = (u64)0;
3152	key_end.objectid = logic_end;
3153	key_end.type = BTRFS_METADATA_ITEM_KEY;
3154	key_end.offset = (u64)-1;
3155	reada1 = btrfs_reada_add(root, &key, &key_end);
3156
3157	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3158	key.type = BTRFS_EXTENT_CSUM_KEY;
3159	key.offset = logical;
3160	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3161	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3162	key_end.offset = logic_end;
3163	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3164
3165	if (!IS_ERR(reada1))
3166		btrfs_reada_wait(reada1);
3167	if (!IS_ERR(reada2))
3168		btrfs_reada_wait(reada2);
3169
3170
3171	/*
3172	 * collect all data csums for the stripe to avoid seeking during
3173	 * the scrub. This might currently (crc32) end up to be about 1MB
3174	 */
3175	blk_start_plug(&plug);
3176
3177	/*
3178	 * now find all extents for each stripe and scrub them
3179	 */
3180	ret = 0;
3181	while (physical < physical_end) {
 
 
 
 
 
 
 
 
 
3182		/*
3183		 * canceled?
3184		 */
3185		if (atomic_read(&fs_info->scrub_cancel_req) ||
3186		    atomic_read(&sctx->cancel_req)) {
3187			ret = -ECANCELED;
3188			goto out;
3189		}
3190		/*
3191		 * check to see if we have to pause
3192		 */
3193		if (atomic_read(&fs_info->scrub_pause_req)) {
3194			/* push queued extents */
3195			sctx->flush_all_writes = true;
3196			scrub_submit(sctx);
3197			mutex_lock(&sctx->wr_lock);
3198			scrub_wr_submit(sctx);
3199			mutex_unlock(&sctx->wr_lock);
3200			wait_event(sctx->list_wait,
3201				   atomic_read(&sctx->bios_in_flight) == 0);
3202			sctx->flush_all_writes = false;
3203			scrub_blocked_if_needed(fs_info);
3204		}
3205
3206		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3207			ret = get_raid56_logic_offset(physical, num, map,
3208						      &logical,
3209						      &stripe_logical);
3210			logical += base;
3211			if (ret) {
3212				/* it is parity strip */
3213				stripe_logical += base;
3214				stripe_end = stripe_logical + increment;
3215				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3216							  ppath, stripe_logical,
3217							  stripe_end);
3218				if (ret)
3219					goto out;
3220				goto skip;
3221			}
3222		}
3223
3224		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3225			key.type = BTRFS_METADATA_ITEM_KEY;
3226		else
3227			key.type = BTRFS_EXTENT_ITEM_KEY;
3228		key.objectid = logical;
3229		key.offset = (u64)-1;
3230
3231		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3232		if (ret < 0)
3233			goto out;
3234
3235		if (ret > 0) {
3236			ret = btrfs_previous_extent_item(root, path, 0);
3237			if (ret < 0)
3238				goto out;
3239			if (ret > 0) {
3240				/* there's no smaller item, so stick with the
3241				 * larger one */
3242				btrfs_release_path(path);
3243				ret = btrfs_search_slot(NULL, root, &key,
3244							path, 0, 0);
3245				if (ret < 0)
3246					goto out;
3247			}
3248		}
3249
3250		stop_loop = 0;
3251		while (1) {
3252			u64 bytes;
3253
3254			l = path->nodes[0];
3255			slot = path->slots[0];
3256			if (slot >= btrfs_header_nritems(l)) {
3257				ret = btrfs_next_leaf(root, path);
3258				if (ret == 0)
3259					continue;
3260				if (ret < 0)
3261					goto out;
3262
3263				stop_loop = 1;
3264				break;
3265			}
3266			btrfs_item_key_to_cpu(l, &key, slot);
3267
3268			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3269			    key.type != BTRFS_METADATA_ITEM_KEY)
3270				goto next;
3271
3272			if (key.type == BTRFS_METADATA_ITEM_KEY)
3273				bytes = fs_info->nodesize;
3274			else
3275				bytes = key.offset;
3276
3277			if (key.objectid + bytes <= logical)
3278				goto next;
3279
 
 
 
 
3280			if (key.objectid >= logical + map->stripe_len) {
3281				/* out of this device extent */
3282				if (key.objectid >= logic_end)
3283					stop_loop = 1;
3284				break;
3285			}
3286
3287			extent = btrfs_item_ptr(l, slot,
3288						struct btrfs_extent_item);
3289			flags = btrfs_extent_flags(l, extent);
3290			generation = btrfs_extent_generation(l, extent);
3291
3292			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3293			    (key.objectid < logical ||
3294			     key.objectid + bytes >
3295			     logical + map->stripe_len)) {
3296				btrfs_err(fs_info,
3297					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
 
3298				       key.objectid, logical);
3299				spin_lock(&sctx->stat_lock);
3300				sctx->stat.uncorrectable_errors++;
3301				spin_unlock(&sctx->stat_lock);
3302				goto next;
3303			}
3304
3305again:
3306			extent_logical = key.objectid;
3307			extent_len = bytes;
3308
3309			/*
3310			 * trim extent to this stripe
3311			 */
3312			if (extent_logical < logical) {
3313				extent_len -= logical - extent_logical;
3314				extent_logical = logical;
3315			}
3316			if (extent_logical + extent_len >
3317			    logical + map->stripe_len) {
3318				extent_len = logical + map->stripe_len -
3319					     extent_logical;
3320			}
3321
3322			extent_physical = extent_logical - logical + physical;
3323			extent_dev = scrub_dev;
3324			extent_mirror_num = mirror_num;
3325			if (sctx->is_dev_replace)
3326				scrub_remap_extent(fs_info, extent_logical,
3327						   extent_len, &extent_physical,
3328						   &extent_dev,
3329						   &extent_mirror_num);
3330
3331			ret = btrfs_lookup_csums_range(csum_root,
3332						       extent_logical,
3333						       extent_logical +
3334						       extent_len - 1,
3335						       &sctx->csum_list, 1);
3336			if (ret)
3337				goto out;
3338
3339			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3340					   extent_physical, extent_dev, flags,
3341					   generation, extent_mirror_num,
3342					   extent_logical - logical + physical);
3343
3344			scrub_free_csums(sctx);
3345
3346			if (ret)
3347				goto out;
3348
 
3349			if (extent_logical + extent_len <
3350			    key.objectid + bytes) {
3351				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 
3352					/*
3353					 * loop until we find next data stripe
3354					 * or we have finished all stripes.
3355					 */
3356loop:
3357					physical += map->stripe_len;
3358					ret = get_raid56_logic_offset(physical,
3359							num, map, &logical,
3360							&stripe_logical);
3361					logical += base;
3362
3363					if (ret && physical < physical_end) {
3364						stripe_logical += base;
3365						stripe_end = stripe_logical +
3366								increment;
3367						ret = scrub_raid56_parity(sctx,
3368							map, scrub_dev, ppath,
3369							stripe_logical,
3370							stripe_end);
3371						if (ret)
3372							goto out;
3373						goto loop;
3374					}
3375				} else {
3376					physical += map->stripe_len;
3377					logical += increment;
3378				}
3379				if (logical < key.objectid + bytes) {
3380					cond_resched();
3381					goto again;
3382				}
3383
3384				if (physical >= physical_end) {
3385					stop_loop = 1;
3386					break;
3387				}
3388			}
3389next:
3390			path->slots[0]++;
3391		}
3392		btrfs_release_path(path);
3393skip:
3394		logical += increment;
3395		physical += map->stripe_len;
3396		spin_lock(&sctx->stat_lock);
3397		if (stop_loop)
3398			sctx->stat.last_physical = map->stripes[num].physical +
3399						   length;
3400		else
3401			sctx->stat.last_physical = physical;
3402		spin_unlock(&sctx->stat_lock);
3403		if (stop_loop)
3404			break;
3405	}
3406out:
3407	/* push queued extents */
3408	scrub_submit(sctx);
3409	mutex_lock(&sctx->wr_lock);
3410	scrub_wr_submit(sctx);
3411	mutex_unlock(&sctx->wr_lock);
3412
3413	blk_finish_plug(&plug);
3414	btrfs_free_path(path);
3415	btrfs_free_path(ppath);
3416	return ret < 0 ? ret : 0;
3417}
3418
3419static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3420					  struct btrfs_device *scrub_dev,
 
3421					  u64 chunk_offset, u64 length,
3422					  u64 dev_offset,
3423					  struct btrfs_block_group_cache *cache)
3424{
3425	struct btrfs_fs_info *fs_info = sctx->fs_info;
3426	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3427	struct map_lookup *map;
3428	struct extent_map *em;
3429	int i;
3430	int ret = 0;
3431
3432	read_lock(&map_tree->lock);
3433	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3434	read_unlock(&map_tree->lock);
3435
3436	if (!em) {
3437		/*
3438		 * Might have been an unused block group deleted by the cleaner
3439		 * kthread or relocation.
3440		 */
3441		spin_lock(&cache->lock);
3442		if (!cache->removed)
3443			ret = -EINVAL;
3444		spin_unlock(&cache->lock);
3445
3446		return ret;
3447	}
3448
3449	map = em->map_lookup;
3450	if (em->start != chunk_offset)
3451		goto out;
3452
3453	if (em->len < length)
3454		goto out;
3455
3456	for (i = 0; i < map->num_stripes; ++i) {
3457		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3458		    map->stripes[i].physical == dev_offset) {
3459			ret = scrub_stripe(sctx, map, scrub_dev, i,
3460					   chunk_offset, length);
 
3461			if (ret)
3462				goto out;
3463		}
3464	}
3465out:
3466	free_extent_map(em);
3467
3468	return ret;
3469}
3470
3471static noinline_for_stack
3472int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3473			   struct btrfs_device *scrub_dev, u64 start, u64 end)
 
3474{
3475	struct btrfs_dev_extent *dev_extent = NULL;
3476	struct btrfs_path *path;
3477	struct btrfs_fs_info *fs_info = sctx->fs_info;
3478	struct btrfs_root *root = fs_info->dev_root;
3479	u64 length;
 
 
3480	u64 chunk_offset;
3481	int ret = 0;
3482	int ro_set;
3483	int slot;
3484	struct extent_buffer *l;
3485	struct btrfs_key key;
3486	struct btrfs_key found_key;
3487	struct btrfs_block_group_cache *cache;
3488	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3489
3490	path = btrfs_alloc_path();
3491	if (!path)
3492		return -ENOMEM;
3493
3494	path->reada = READA_FORWARD;
3495	path->search_commit_root = 1;
3496	path->skip_locking = 1;
3497
3498	key.objectid = scrub_dev->devid;
3499	key.offset = 0ull;
3500	key.type = BTRFS_DEV_EXTENT_KEY;
3501
3502	while (1) {
3503		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3504		if (ret < 0)
3505			break;
3506		if (ret > 0) {
3507			if (path->slots[0] >=
3508			    btrfs_header_nritems(path->nodes[0])) {
3509				ret = btrfs_next_leaf(root, path);
3510				if (ret < 0)
3511					break;
3512				if (ret > 0) {
3513					ret = 0;
3514					break;
3515				}
3516			} else {
3517				ret = 0;
3518			}
3519		}
3520
3521		l = path->nodes[0];
3522		slot = path->slots[0];
3523
3524		btrfs_item_key_to_cpu(l, &found_key, slot);
3525
3526		if (found_key.objectid != scrub_dev->devid)
3527			break;
3528
3529		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3530			break;
3531
3532		if (found_key.offset >= end)
3533			break;
3534
3535		if (found_key.offset < key.offset)
3536			break;
3537
3538		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3539		length = btrfs_dev_extent_length(l, dev_extent);
3540
3541		if (found_key.offset + length <= start)
3542			goto skip;
 
 
 
3543
 
 
3544		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3545
3546		/*
3547		 * get a reference on the corresponding block group to prevent
3548		 * the chunk from going away while we scrub it
3549		 */
3550		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3551
3552		/* some chunks are removed but not committed to disk yet,
3553		 * continue scrubbing */
3554		if (!cache)
3555			goto skip;
3556
3557		/*
3558		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3559		 * to avoid deadlock caused by:
3560		 * btrfs_inc_block_group_ro()
3561		 * -> btrfs_wait_for_commit()
3562		 * -> btrfs_commit_transaction()
3563		 * -> btrfs_scrub_pause()
3564		 */
3565		scrub_pause_on(fs_info);
3566		ret = btrfs_inc_block_group_ro(cache);
3567		if (!ret && sctx->is_dev_replace) {
3568			/*
3569			 * If we are doing a device replace wait for any tasks
3570			 * that started delalloc right before we set the block
3571			 * group to RO mode, as they might have just allocated
3572			 * an extent from it or decided they could do a nocow
3573			 * write. And if any such tasks did that, wait for their
3574			 * ordered extents to complete and then commit the
3575			 * current transaction, so that we can later see the new
3576			 * extent items in the extent tree - the ordered extents
3577			 * create delayed data references (for cow writes) when
3578			 * they complete, which will be run and insert the
3579			 * corresponding extent items into the extent tree when
3580			 * we commit the transaction they used when running
3581			 * inode.c:btrfs_finish_ordered_io(). We later use
3582			 * the commit root of the extent tree to find extents
3583			 * to copy from the srcdev into the tgtdev, and we don't
3584			 * want to miss any new extents.
3585			 */
3586			btrfs_wait_block_group_reservations(cache);
3587			btrfs_wait_nocow_writers(cache);
3588			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3589						       cache->key.objectid,
3590						       cache->key.offset);
3591			if (ret > 0) {
3592				struct btrfs_trans_handle *trans;
3593
3594				trans = btrfs_join_transaction(root);
3595				if (IS_ERR(trans))
3596					ret = PTR_ERR(trans);
3597				else
3598					ret = btrfs_commit_transaction(trans);
3599				if (ret) {
3600					scrub_pause_off(fs_info);
3601					btrfs_put_block_group(cache);
3602					break;
3603				}
3604			}
3605		}
3606		scrub_pause_off(fs_info);
3607
3608		if (ret == 0) {
3609			ro_set = 1;
3610		} else if (ret == -ENOSPC) {
3611			/*
3612			 * btrfs_inc_block_group_ro return -ENOSPC when it
3613			 * failed in creating new chunk for metadata.
3614			 * It is not a problem for scrub/replace, because
3615			 * metadata are always cowed, and our scrub paused
3616			 * commit_transactions.
3617			 */
3618			ro_set = 0;
3619		} else {
3620			btrfs_warn(fs_info,
3621				   "failed setting block group ro: %d", ret);
3622			btrfs_put_block_group(cache);
3623			break;
3624		}
3625
3626		down_write(&fs_info->dev_replace.rwsem);
3627		dev_replace->cursor_right = found_key.offset + length;
3628		dev_replace->cursor_left = found_key.offset;
3629		dev_replace->item_needs_writeback = 1;
3630		up_write(&dev_replace->rwsem);
3631
3632		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3633				  found_key.offset, cache);
3634
3635		/*
3636		 * flush, submit all pending read and write bios, afterwards
3637		 * wait for them.
3638		 * Note that in the dev replace case, a read request causes
3639		 * write requests that are submitted in the read completion
3640		 * worker. Therefore in the current situation, it is required
3641		 * that all write requests are flushed, so that all read and
3642		 * write requests are really completed when bios_in_flight
3643		 * changes to 0.
3644		 */
3645		sctx->flush_all_writes = true;
3646		scrub_submit(sctx);
3647		mutex_lock(&sctx->wr_lock);
3648		scrub_wr_submit(sctx);
3649		mutex_unlock(&sctx->wr_lock);
3650
3651		wait_event(sctx->list_wait,
3652			   atomic_read(&sctx->bios_in_flight) == 0);
3653
3654		scrub_pause_on(fs_info);
3655
3656		/*
3657		 * must be called before we decrease @scrub_paused.
3658		 * make sure we don't block transaction commit while
3659		 * we are waiting pending workers finished.
3660		 */
3661		wait_event(sctx->list_wait,
3662			   atomic_read(&sctx->workers_pending) == 0);
3663		sctx->flush_all_writes = false;
3664
3665		scrub_pause_off(fs_info);
3666
3667		down_write(&fs_info->dev_replace.rwsem);
3668		dev_replace->cursor_left = dev_replace->cursor_right;
3669		dev_replace->item_needs_writeback = 1;
3670		up_write(&fs_info->dev_replace.rwsem);
3671
3672		if (ro_set)
3673			btrfs_dec_block_group_ro(cache);
3674
3675		/*
3676		 * We might have prevented the cleaner kthread from deleting
3677		 * this block group if it was already unused because we raced
3678		 * and set it to RO mode first. So add it back to the unused
3679		 * list, otherwise it might not ever be deleted unless a manual
3680		 * balance is triggered or it becomes used and unused again.
3681		 */
3682		spin_lock(&cache->lock);
3683		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3684		    btrfs_block_group_used(&cache->item) == 0) {
3685			spin_unlock(&cache->lock);
3686			btrfs_mark_bg_unused(cache);
3687		} else {
3688			spin_unlock(&cache->lock);
3689		}
3690
3691		btrfs_put_block_group(cache);
3692		if (ret)
3693			break;
3694		if (sctx->is_dev_replace &&
3695		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3696			ret = -EIO;
3697			break;
3698		}
3699		if (sctx->stat.malloc_errors > 0) {
3700			ret = -ENOMEM;
3701			break;
3702		}
3703skip:
 
 
 
3704		key.offset = found_key.offset + length;
3705		btrfs_release_path(path);
3706	}
3707
3708	btrfs_free_path(path);
3709
3710	return ret;
 
 
 
 
3711}
3712
3713static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3714					   struct btrfs_device *scrub_dev)
3715{
3716	int	i;
3717	u64	bytenr;
3718	u64	gen;
3719	int	ret;
3720	struct btrfs_fs_info *fs_info = sctx->fs_info;
3721
3722	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3723		return -EIO;
3724
3725	/* Seed devices of a new filesystem has their own generation. */
3726	if (scrub_dev->fs_devices != fs_info->fs_devices)
3727		gen = scrub_dev->generation;
3728	else
3729		gen = fs_info->last_trans_committed;
3730
3731	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3732		bytenr = btrfs_sb_offset(i);
3733		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3734		    scrub_dev->commit_total_bytes)
3735			break;
3736
3737		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3738				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3739				  NULL, 1, bytenr);
3740		if (ret)
3741			return ret;
3742	}
3743	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3744
3745	return 0;
3746}
3747
3748/*
3749 * get a reference count on fs_info->scrub_workers. start worker if necessary
3750 */
3751static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3752						int is_dev_replace)
3753{
3754	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
 
3755	int max_active = fs_info->thread_pool_size;
3756
3757	lockdep_assert_held(&fs_info->scrub_lock);
3758
3759	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3760		ASSERT(fs_info->scrub_workers == NULL);
3761		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3762				flags, is_dev_replace ? 1 : max_active, 4);
3763		if (!fs_info->scrub_workers)
3764			goto fail_scrub_workers;
3765
3766		ASSERT(fs_info->scrub_wr_completion_workers == NULL);
 
 
 
3767		fs_info->scrub_wr_completion_workers =
3768			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3769					      max_active, 2);
3770		if (!fs_info->scrub_wr_completion_workers)
3771			goto fail_scrub_wr_completion_workers;
3772
3773		ASSERT(fs_info->scrub_parity_workers == NULL);
3774		fs_info->scrub_parity_workers =
3775			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3776					      max_active, 2);
3777		if (!fs_info->scrub_parity_workers)
3778			goto fail_scrub_parity_workers;
3779
3780		refcount_set(&fs_info->scrub_workers_refcnt, 1);
3781	} else {
3782		refcount_inc(&fs_info->scrub_workers_refcnt);
 
 
 
 
3783	}
3784	return 0;
 
 
 
3785
3786fail_scrub_parity_workers:
3787	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3788fail_scrub_wr_completion_workers:
3789	btrfs_destroy_workqueue(fs_info->scrub_workers);
3790fail_scrub_workers:
3791	return -ENOMEM;
 
 
3792}
3793
3794int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3795		    u64 end, struct btrfs_scrub_progress *progress,
3796		    int readonly, int is_dev_replace)
3797{
3798	struct scrub_ctx *sctx;
3799	int ret;
3800	struct btrfs_device *dev;
3801	unsigned int nofs_flag;
3802	struct btrfs_workqueue *scrub_workers = NULL;
3803	struct btrfs_workqueue *scrub_wr_comp = NULL;
3804	struct btrfs_workqueue *scrub_parity = NULL;
3805
3806	if (btrfs_fs_closing(fs_info))
3807		return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
3808
3809	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3810		/*
3811		 * in this case scrub is unable to calculate the checksum
3812		 * the way scrub is implemented. Do not handle this
3813		 * situation at all because it won't ever happen.
3814		 */
3815		btrfs_err(fs_info,
3816			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3817		       fs_info->nodesize,
3818		       BTRFS_STRIPE_LEN);
3819		return -EINVAL;
3820	}
3821
3822	if (fs_info->sectorsize != PAGE_SIZE) {
3823		/* not supported for data w/o checksums */
3824		btrfs_err_rl(fs_info,
3825			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3826		       fs_info->sectorsize, PAGE_SIZE);
 
3827		return -EINVAL;
3828	}
3829
3830	if (fs_info->nodesize >
3831	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3832	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
 
3833		/*
3834		 * would exhaust the array bounds of pagev member in
3835		 * struct scrub_block
3836		 */
3837		btrfs_err(fs_info,
3838			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3839		       fs_info->nodesize,
3840		       SCRUB_MAX_PAGES_PER_BLOCK,
3841		       fs_info->sectorsize,
3842		       SCRUB_MAX_PAGES_PER_BLOCK);
3843		return -EINVAL;
3844	}
3845
3846	/* Allocate outside of device_list_mutex */
3847	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3848	if (IS_ERR(sctx))
3849		return PTR_ERR(sctx);
3850
3851	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3852	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3853	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3854		     !is_dev_replace)) {
3855		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3856		ret = -ENODEV;
3857		goto out_free_ctx;
3858	}
3859
3860	if (!is_dev_replace && !readonly &&
3861	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3862		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3863		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3864				rcu_str_deref(dev->name));
3865		ret = -EROFS;
3866		goto out_free_ctx;
3867	}
3868
3869	mutex_lock(&fs_info->scrub_lock);
3870	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3871	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3872		mutex_unlock(&fs_info->scrub_lock);
3873		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3874		ret = -EIO;
3875		goto out_free_ctx;
3876	}
3877
3878	down_read(&fs_info->dev_replace.rwsem);
3879	if (dev->scrub_ctx ||
3880	    (!is_dev_replace &&
3881	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3882		up_read(&fs_info->dev_replace.rwsem);
3883		mutex_unlock(&fs_info->scrub_lock);
3884		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3885		ret = -EINPROGRESS;
3886		goto out_free_ctx;
3887	}
3888	up_read(&fs_info->dev_replace.rwsem);
3889
3890	ret = scrub_workers_get(fs_info, is_dev_replace);
3891	if (ret) {
3892		mutex_unlock(&fs_info->scrub_lock);
3893		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3894		goto out_free_ctx;
3895	}
3896
 
 
 
 
 
 
 
3897	sctx->readonly = readonly;
3898	dev->scrub_ctx = sctx;
3899	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3900
3901	/*
3902	 * checking @scrub_pause_req here, we can avoid
3903	 * race between committing transaction and scrubbing.
3904	 */
3905	__scrub_blocked_if_needed(fs_info);
3906	atomic_inc(&fs_info->scrubs_running);
3907	mutex_unlock(&fs_info->scrub_lock);
3908
3909	/*
3910	 * In order to avoid deadlock with reclaim when there is a transaction
3911	 * trying to pause scrub, make sure we use GFP_NOFS for all the
3912	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3913	 * invoked by our callees. The pausing request is done when the
3914	 * transaction commit starts, and it blocks the transaction until scrub
3915	 * is paused (done at specific points at scrub_stripe() or right above
3916	 * before incrementing fs_info->scrubs_running).
3917	 */
3918	nofs_flag = memalloc_nofs_save();
3919	if (!is_dev_replace) {
3920		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3921		/*
3922		 * by holding device list mutex, we can
3923		 * kick off writing super in log tree sync.
3924		 */
3925		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3926		ret = scrub_supers(sctx, dev);
3927		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3928	}
3929
3930	if (!ret)
3931		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3932	memalloc_nofs_restore(nofs_flag);
3933
3934	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3935	atomic_dec(&fs_info->scrubs_running);
3936	wake_up(&fs_info->scrub_pause_wait);
3937
3938	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3939
3940	if (progress)
3941		memcpy(progress, &sctx->stat, sizeof(*progress));
3942
3943	if (!is_dev_replace)
3944		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3945			ret ? "not finished" : "finished", devid, ret);
3946
3947	mutex_lock(&fs_info->scrub_lock);
3948	dev->scrub_ctx = NULL;
3949	if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3950		scrub_workers = fs_info->scrub_workers;
3951		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3952		scrub_parity = fs_info->scrub_parity_workers;
3953
3954		fs_info->scrub_workers = NULL;
3955		fs_info->scrub_wr_completion_workers = NULL;
3956		fs_info->scrub_parity_workers = NULL;
3957	}
3958	mutex_unlock(&fs_info->scrub_lock);
3959
3960	btrfs_destroy_workqueue(scrub_workers);
3961	btrfs_destroy_workqueue(scrub_wr_comp);
3962	btrfs_destroy_workqueue(scrub_parity);
3963	scrub_put_ctx(sctx);
3964
3965	return ret;
3966
3967out_free_ctx:
3968	scrub_free_ctx(sctx);
3969
3970	return ret;
3971}
3972
3973void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3974{
 
 
3975	mutex_lock(&fs_info->scrub_lock);
3976	atomic_inc(&fs_info->scrub_pause_req);
3977	while (atomic_read(&fs_info->scrubs_paused) !=
3978	       atomic_read(&fs_info->scrubs_running)) {
3979		mutex_unlock(&fs_info->scrub_lock);
3980		wait_event(fs_info->scrub_pause_wait,
3981			   atomic_read(&fs_info->scrubs_paused) ==
3982			   atomic_read(&fs_info->scrubs_running));
3983		mutex_lock(&fs_info->scrub_lock);
3984	}
3985	mutex_unlock(&fs_info->scrub_lock);
3986}
3987
3988void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3989{
 
 
3990	atomic_dec(&fs_info->scrub_pause_req);
3991	wake_up(&fs_info->scrub_pause_wait);
3992}
3993
3994int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3995{
3996	mutex_lock(&fs_info->scrub_lock);
3997	if (!atomic_read(&fs_info->scrubs_running)) {
3998		mutex_unlock(&fs_info->scrub_lock);
3999		return -ENOTCONN;
4000	}
4001
4002	atomic_inc(&fs_info->scrub_cancel_req);
4003	while (atomic_read(&fs_info->scrubs_running)) {
4004		mutex_unlock(&fs_info->scrub_lock);
4005		wait_event(fs_info->scrub_pause_wait,
4006			   atomic_read(&fs_info->scrubs_running) == 0);
4007		mutex_lock(&fs_info->scrub_lock);
4008	}
4009	atomic_dec(&fs_info->scrub_cancel_req);
4010	mutex_unlock(&fs_info->scrub_lock);
4011
4012	return 0;
4013}
4014
4015int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
 
4016{
4017	struct btrfs_fs_info *fs_info = dev->fs_info;
4018	struct scrub_ctx *sctx;
4019
4020	mutex_lock(&fs_info->scrub_lock);
4021	sctx = dev->scrub_ctx;
4022	if (!sctx) {
4023		mutex_unlock(&fs_info->scrub_lock);
4024		return -ENOTCONN;
4025	}
4026	atomic_inc(&sctx->cancel_req);
4027	while (dev->scrub_ctx) {
4028		mutex_unlock(&fs_info->scrub_lock);
4029		wait_event(fs_info->scrub_pause_wait,
4030			   dev->scrub_ctx == NULL);
4031		mutex_lock(&fs_info->scrub_lock);
4032	}
4033	mutex_unlock(&fs_info->scrub_lock);
4034
4035	return 0;
4036}
4037
4038int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4039			 struct btrfs_scrub_progress *progress)
4040{
4041	struct btrfs_device *dev;
4042	struct scrub_ctx *sctx = NULL;
4043
4044	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4045	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4046	if (dev)
4047		sctx = dev->scrub_ctx;
4048	if (sctx)
4049		memcpy(progress, &sctx->stat, sizeof(*progress));
4050	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4051
4052	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4053}
4054
4055static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4056			       u64 extent_logical, u64 extent_len,
4057			       u64 *extent_physical,
4058			       struct btrfs_device **extent_dev,
4059			       int *extent_mirror_num)
4060{
4061	u64 mapped_length;
4062	struct btrfs_bio *bbio = NULL;
4063	int ret;
4064
4065	mapped_length = extent_len;
4066	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4067			      &mapped_length, &bbio, 0);
4068	if (ret || !bbio || mapped_length < extent_len ||
4069	    !bbio->stripes[0].dev->bdev) {
4070		btrfs_put_bbio(bbio);
4071		return;
4072	}
4073
4074	*extent_physical = bbio->stripes[0].physical;
4075	*extent_mirror_num = bbio->mirror_num;
4076	*extent_dev = bbio->stripes[0].dev;
4077	btrfs_put_bbio(bbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4078}
v3.15
 
   1/*
   2 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
 
 
  21#include "ctree.h"
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
  28#include "dev-replace.h"
  29#include "check-integrity.h"
  30#include "rcu-string.h"
  31#include "raid56.h"
 
  32
  33/*
  34 * This is only the first step towards a full-features scrub. It reads all
  35 * extent and super block and verifies the checksums. In case a bad checksum
  36 * is found or the extent cannot be read, good data will be written back if
  37 * any can be found.
  38 *
  39 * Future enhancements:
  40 *  - In case an unrepairable extent is encountered, track which files are
  41 *    affected and report them
  42 *  - track and record media errors, throw out bad devices
  43 *  - add a mode to also read unallocated space
  44 */
  45
  46struct scrub_block;
  47struct scrub_ctx;
  48
  49/*
  50 * the following three values only influence the performance.
  51 * The last one configures the number of parallel and outstanding I/O
  52 * operations. The first two values configure an upper limit for the number
  53 * of (dynamically allocated) pages that are added to a bio.
  54 */
  55#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  56#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  57#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  58
  59/*
  60 * the following value times PAGE_SIZE needs to be large enough to match the
  61 * largest node/leaf/sector size that shall be supported.
  62 * Values larger than BTRFS_STRIPE_LEN are not supported.
  63 */
  64#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  65
 
 
 
 
 
 
  66struct scrub_page {
  67	struct scrub_block	*sblock;
  68	struct page		*page;
  69	struct btrfs_device	*dev;
 
  70	u64			flags;  /* extent flags */
  71	u64			generation;
  72	u64			logical;
  73	u64			physical;
  74	u64			physical_for_dev_replace;
  75	atomic_t		ref_count;
  76	struct {
  77		unsigned int	mirror_num:8;
  78		unsigned int	have_csum:1;
  79		unsigned int	io_error:1;
  80	};
  81	u8			csum[BTRFS_CSUM_SIZE];
 
 
  82};
  83
  84struct scrub_bio {
  85	int			index;
  86	struct scrub_ctx	*sctx;
  87	struct btrfs_device	*dev;
  88	struct bio		*bio;
  89	int			err;
  90	u64			logical;
  91	u64			physical;
  92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  93	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  94#else
  95	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  96#endif
  97	int			page_count;
  98	int			next_free;
  99	struct btrfs_work	work;
 100};
 101
 102struct scrub_block {
 103	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 104	int			page_count;
 105	atomic_t		outstanding_pages;
 106	atomic_t		ref_count; /* free mem on transition to zero */
 107	struct scrub_ctx	*sctx;
 
 108	struct {
 109		unsigned int	header_error:1;
 110		unsigned int	checksum_error:1;
 111		unsigned int	no_io_error_seen:1;
 112		unsigned int	generation_error:1; /* also sets header_error */
 
 
 
 
 113	};
 
 114};
 115
 116struct scrub_wr_ctx {
 117	struct scrub_bio *wr_curr_bio;
 118	struct btrfs_device *tgtdev;
 119	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 120	atomic_t flush_all_writes;
 121	struct mutex wr_lock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122};
 123
 124struct scrub_ctx {
 125	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 126	struct btrfs_root	*dev_root;
 127	int			first_free;
 128	int			curr;
 129	atomic_t		bios_in_flight;
 130	atomic_t		workers_pending;
 131	spinlock_t		list_lock;
 132	wait_queue_head_t	list_wait;
 133	u16			csum_size;
 134	struct list_head	csum_list;
 135	atomic_t		cancel_req;
 136	int			readonly;
 137	int			pages_per_rd_bio;
 138	u32			sectorsize;
 139	u32			nodesize;
 140	u32			leafsize;
 141
 142	int			is_dev_replace;
 143	struct scrub_wr_ctx	wr_ctx;
 
 
 
 
 
 144
 145	/*
 146	 * statistics
 147	 */
 148	struct btrfs_scrub_progress stat;
 149	spinlock_t		stat_lock;
 150};
 151
 152struct scrub_fixup_nodatasum {
 153	struct scrub_ctx	*sctx;
 154	struct btrfs_device	*dev;
 155	u64			logical;
 156	struct btrfs_root	*root;
 157	struct btrfs_work	work;
 158	int			mirror_num;
 159};
 160
 161struct scrub_nocow_inode {
 162	u64			inum;
 163	u64			offset;
 164	u64			root;
 165	struct list_head	list;
 166};
 167
 168struct scrub_copy_nocow_ctx {
 169	struct scrub_ctx	*sctx;
 170	u64			logical;
 171	u64			len;
 172	int			mirror_num;
 173	u64			physical_for_dev_replace;
 174	struct list_head	inodes;
 175	struct btrfs_work	work;
 176};
 177
 178struct scrub_warning {
 179	struct btrfs_path	*path;
 180	u64			extent_item_size;
 181	char			*scratch_buf;
 182	char			*msg_buf;
 183	const char		*errstr;
 184	sector_t		sector;
 185	u64			logical;
 186	struct btrfs_device	*dev;
 187	int			msg_bufsize;
 188	int			scratch_bufsize;
 189};
 190
 
 
 
 
 
 
 191
 192static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 193static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 194static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 195static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 196static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 197static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
 198				     struct btrfs_fs_info *fs_info,
 199				     struct scrub_block *original_sblock,
 200				     u64 length, u64 logical,
 201				     struct scrub_block *sblocks_for_recheck);
 202static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 203				struct scrub_block *sblock, int is_metadata,
 204				int have_csum, u8 *csum, u64 generation,
 205				u16 csum_size);
 206static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
 207					 struct scrub_block *sblock,
 208					 int is_metadata, int have_csum,
 209					 const u8 *csum, u64 generation,
 210					 u16 csum_size);
 211static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 212					     struct scrub_block *sblock_good,
 213					     int force_write);
 214static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 215					    struct scrub_block *sblock_good,
 216					    int page_num, int force_write);
 217static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 218static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 219					   int page_num);
 220static int scrub_checksum_data(struct scrub_block *sblock);
 221static int scrub_checksum_tree_block(struct scrub_block *sblock);
 222static int scrub_checksum_super(struct scrub_block *sblock);
 223static void scrub_block_get(struct scrub_block *sblock);
 224static void scrub_block_put(struct scrub_block *sblock);
 225static void scrub_page_get(struct scrub_page *spage);
 226static void scrub_page_put(struct scrub_page *spage);
 
 
 227static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 228				    struct scrub_page *spage);
 229static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 230		       u64 physical, struct btrfs_device *dev, u64 flags,
 231		       u64 gen, int mirror_num, u8 *csum, int force,
 232		       u64 physical_for_dev_replace);
 233static void scrub_bio_end_io(struct bio *bio, int err);
 234static void scrub_bio_end_io_worker(struct btrfs_work *work);
 235static void scrub_block_complete(struct scrub_block *sblock);
 236static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 237			       u64 extent_logical, u64 extent_len,
 238			       u64 *extent_physical,
 239			       struct btrfs_device **extent_dev,
 240			       int *extent_mirror_num);
 241static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
 242			      struct scrub_wr_ctx *wr_ctx,
 243			      struct btrfs_fs_info *fs_info,
 244			      struct btrfs_device *dev,
 245			      int is_dev_replace);
 246static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
 247static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 248				    struct scrub_page *spage);
 249static void scrub_wr_submit(struct scrub_ctx *sctx);
 250static void scrub_wr_bio_end_io(struct bio *bio, int err);
 251static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 252static int write_page_nocow(struct scrub_ctx *sctx,
 253			    u64 physical_for_dev_replace, struct page *page);
 254static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 255				      struct scrub_copy_nocow_ctx *ctx);
 256static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 257			    int mirror_num, u64 physical_for_dev_replace);
 258static void copy_nocow_pages_worker(struct btrfs_work *work);
 259static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 260static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 
 261
 
 
 
 
 
 262
 263static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 264{
 
 265	atomic_inc(&sctx->bios_in_flight);
 266}
 267
 268static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 269{
 270	atomic_dec(&sctx->bios_in_flight);
 271	wake_up(&sctx->list_wait);
 
 272}
 273
 274static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 275{
 276	while (atomic_read(&fs_info->scrub_pause_req)) {
 277		mutex_unlock(&fs_info->scrub_lock);
 278		wait_event(fs_info->scrub_pause_wait,
 279		   atomic_read(&fs_info->scrub_pause_req) == 0);
 280		mutex_lock(&fs_info->scrub_lock);
 281	}
 282}
 283
 284static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 285{
 286	atomic_inc(&fs_info->scrubs_paused);
 287	wake_up(&fs_info->scrub_pause_wait);
 
 288
 
 
 289	mutex_lock(&fs_info->scrub_lock);
 290	__scrub_blocked_if_needed(fs_info);
 291	atomic_dec(&fs_info->scrubs_paused);
 292	mutex_unlock(&fs_info->scrub_lock);
 293
 294	wake_up(&fs_info->scrub_pause_wait);
 295}
 296
 
 
 
 
 
 
 297/*
 298 * used for workers that require transaction commits (i.e., for the
 299 * NOCOW case)
 
 
 
 
 
 
 300 */
 301static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302{
 303	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 304
 305	/*
 306	 * increment scrubs_running to prevent cancel requests from
 307	 * completing as long as a worker is running. we must also
 308	 * increment scrubs_paused to prevent deadlocking on pause
 309	 * requests used for transactions commits (as the worker uses a
 310	 * transaction context). it is safe to regard the worker
 311	 * as paused for all matters practical. effectively, we only
 312	 * avoid cancellation requests from completing.
 313	 */
 314	mutex_lock(&fs_info->scrub_lock);
 315	atomic_inc(&fs_info->scrubs_running);
 316	atomic_inc(&fs_info->scrubs_paused);
 317	mutex_unlock(&fs_info->scrub_lock);
 318
 319	/*
 320	 * check if @scrubs_running=@scrubs_paused condition
 321	 * inside wait_event() is not an atomic operation.
 322	 * which means we may inc/dec @scrub_running/paused
 323	 * at any time. Let's wake up @scrub_pause_wait as
 324	 * much as we can to let commit transaction blocked less.
 325	 */
 326	wake_up(&fs_info->scrub_pause_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327
 328	atomic_inc(&sctx->workers_pending);
 
 
 
 
 
 
 
 
 
 
 
 
 329}
 330
 331/* used for workers that require transaction commits */
 332static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 
 
 
 
 
 
 
 
 
 333{
 334	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 
 
 
 
 
 335
 336	/*
 337	 * see scrub_pending_trans_workers_inc() why we're pretending
 338	 * to be paused in the scrub counters
 339	 */
 340	mutex_lock(&fs_info->scrub_lock);
 341	atomic_dec(&fs_info->scrubs_running);
 342	atomic_dec(&fs_info->scrubs_paused);
 343	mutex_unlock(&fs_info->scrub_lock);
 344	atomic_dec(&sctx->workers_pending);
 345	wake_up(&fs_info->scrub_pause_wait);
 346	wake_up(&sctx->list_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347}
 348
 349static void scrub_free_csums(struct scrub_ctx *sctx)
 350{
 351	while (!list_empty(&sctx->csum_list)) {
 352		struct btrfs_ordered_sum *sum;
 353		sum = list_first_entry(&sctx->csum_list,
 354				       struct btrfs_ordered_sum, list);
 355		list_del(&sum->list);
 356		kfree(sum);
 357	}
 358}
 359
 360static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 361{
 362	int i;
 363
 364	if (!sctx)
 365		return;
 366
 367	scrub_free_wr_ctx(&sctx->wr_ctx);
 368
 369	/* this can happen when scrub is cancelled */
 370	if (sctx->curr != -1) {
 371		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 372
 373		for (i = 0; i < sbio->page_count; i++) {
 374			WARN_ON(!sbio->pagev[i]->page);
 375			scrub_block_put(sbio->pagev[i]->sblock);
 376		}
 377		bio_put(sbio->bio);
 378	}
 379
 380	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 381		struct scrub_bio *sbio = sctx->bios[i];
 382
 383		if (!sbio)
 384			break;
 385		kfree(sbio);
 386	}
 387
 
 388	scrub_free_csums(sctx);
 389	kfree(sctx);
 390}
 391
 392static noinline_for_stack
 393struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 
 
 
 
 
 
 394{
 395	struct scrub_ctx *sctx;
 396	int		i;
 397	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 398	int pages_per_rd_bio;
 399	int ret;
 400
 401	/*
 402	 * the setting of pages_per_rd_bio is correct for scrub but might
 403	 * be wrong for the dev_replace code where we might read from
 404	 * different devices in the initial huge bios. However, that
 405	 * code is able to correctly handle the case when adding a page
 406	 * to a bio fails.
 407	 */
 408	if (dev->bdev)
 409		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
 410					 bio_get_nr_vecs(dev->bdev));
 411	else
 412		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 413	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
 414	if (!sctx)
 415		goto nomem;
 
 416	sctx->is_dev_replace = is_dev_replace;
 417	sctx->pages_per_rd_bio = pages_per_rd_bio;
 418	sctx->curr = -1;
 419	sctx->dev_root = dev->dev_root;
 
 420	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 421		struct scrub_bio *sbio;
 422
 423		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
 424		if (!sbio)
 425			goto nomem;
 426		sctx->bios[i] = sbio;
 427
 428		sbio->index = i;
 429		sbio->sctx = sctx;
 430		sbio->page_count = 0;
 431		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker,
 432				NULL, NULL);
 433
 434		if (i != SCRUB_BIOS_PER_SCTX - 1)
 435			sctx->bios[i]->next_free = i + 1;
 436		else
 437			sctx->bios[i]->next_free = -1;
 438	}
 439	sctx->first_free = 0;
 440	sctx->nodesize = dev->dev_root->nodesize;
 441	sctx->leafsize = dev->dev_root->leafsize;
 442	sctx->sectorsize = dev->dev_root->sectorsize;
 443	atomic_set(&sctx->bios_in_flight, 0);
 444	atomic_set(&sctx->workers_pending, 0);
 445	atomic_set(&sctx->cancel_req, 0);
 446	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 447	INIT_LIST_HEAD(&sctx->csum_list);
 448
 449	spin_lock_init(&sctx->list_lock);
 450	spin_lock_init(&sctx->stat_lock);
 451	init_waitqueue_head(&sctx->list_wait);
 452
 453	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
 454				 fs_info->dev_replace.tgtdev, is_dev_replace);
 455	if (ret) {
 456		scrub_free_ctx(sctx);
 457		return ERR_PTR(ret);
 
 
 
 458	}
 
 459	return sctx;
 460
 461nomem:
 462	scrub_free_ctx(sctx);
 463	return ERR_PTR(-ENOMEM);
 464}
 465
 466static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 467				     void *warn_ctx)
 468{
 469	u64 isize;
 470	u32 nlink;
 471	int ret;
 472	int i;
 
 473	struct extent_buffer *eb;
 474	struct btrfs_inode_item *inode_item;
 475	struct scrub_warning *swarn = warn_ctx;
 476	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
 477	struct inode_fs_paths *ipath = NULL;
 478	struct btrfs_root *local_root;
 479	struct btrfs_key root_key;
 
 480
 481	root_key.objectid = root;
 482	root_key.type = BTRFS_ROOT_ITEM_KEY;
 483	root_key.offset = (u64)-1;
 484	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 485	if (IS_ERR(local_root)) {
 486		ret = PTR_ERR(local_root);
 487		goto err;
 488	}
 489
 490	ret = inode_item_info(inum, 0, local_root, swarn->path);
 
 
 
 
 
 
 
 491	if (ret) {
 492		btrfs_release_path(swarn->path);
 493		goto err;
 494	}
 495
 496	eb = swarn->path->nodes[0];
 497	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 498					struct btrfs_inode_item);
 499	isize = btrfs_inode_size(eb, inode_item);
 500	nlink = btrfs_inode_nlink(eb, inode_item);
 501	btrfs_release_path(swarn->path);
 502
 
 
 
 
 
 
 503	ipath = init_ipath(4096, local_root, swarn->path);
 
 504	if (IS_ERR(ipath)) {
 505		ret = PTR_ERR(ipath);
 506		ipath = NULL;
 507		goto err;
 508	}
 509	ret = paths_from_inode(inum, ipath);
 510
 511	if (ret < 0)
 512		goto err;
 513
 514	/*
 515	 * we deliberately ignore the bit ipath might have been too small to
 516	 * hold all of the paths here
 517	 */
 518	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 519		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
 520			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
 521			"length %llu, links %u (path: %s)\n", swarn->errstr,
 522			swarn->logical, rcu_str_deref(swarn->dev->name),
 523			(unsigned long long)swarn->sector, root, inum, offset,
 524			min(isize - offset, (u64)PAGE_SIZE), nlink,
 525			(char *)(unsigned long)ipath->fspath->val[i]);
 
 526
 527	free_ipath(ipath);
 528	return 0;
 529
 530err:
 531	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
 532		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
 533		"resolving failed with ret=%d\n", swarn->errstr,
 534		swarn->logical, rcu_str_deref(swarn->dev->name),
 535		(unsigned long long)swarn->sector, root, inum, offset, ret);
 
 536
 537	free_ipath(ipath);
 538	return 0;
 539}
 540
 541static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 542{
 543	struct btrfs_device *dev;
 544	struct btrfs_fs_info *fs_info;
 545	struct btrfs_path *path;
 546	struct btrfs_key found_key;
 547	struct extent_buffer *eb;
 548	struct btrfs_extent_item *ei;
 549	struct scrub_warning swarn;
 550	unsigned long ptr = 0;
 551	u64 extent_item_pos;
 552	u64 flags = 0;
 553	u64 ref_root;
 554	u32 item_size;
 555	u8 ref_level;
 556	const int bufsize = 4096;
 557	int ret;
 558
 559	WARN_ON(sblock->page_count < 1);
 560	dev = sblock->pagev[0]->dev;
 561	fs_info = sblock->sctx->dev_root->fs_info;
 562
 563	path = btrfs_alloc_path();
 
 
 564
 565	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
 566	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
 567	swarn.sector = (sblock->pagev[0]->physical) >> 9;
 568	swarn.logical = sblock->pagev[0]->logical;
 569	swarn.errstr = errstr;
 570	swarn.dev = NULL;
 571	swarn.msg_bufsize = bufsize;
 572	swarn.scratch_bufsize = bufsize;
 573
 574	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
 575		goto out;
 576
 577	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 578				  &flags);
 579	if (ret < 0)
 580		goto out;
 581
 582	extent_item_pos = swarn.logical - found_key.objectid;
 583	swarn.extent_item_size = found_key.offset;
 584
 585	eb = path->nodes[0];
 586	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 587	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 588
 589	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 590		do {
 591			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
 592							&ref_root, &ref_level);
 593			printk_in_rcu(KERN_WARNING
 594				"BTRFS: %s at logical %llu on dev %s, "
 595				"sector %llu: metadata %s (level %d) in tree "
 596				"%llu\n", errstr, swarn.logical,
 597				rcu_str_deref(dev->name),
 598				(unsigned long long)swarn.sector,
 599				ref_level ? "node" : "leaf",
 600				ret < 0 ? -1 : ref_level,
 601				ret < 0 ? -1 : ref_root);
 602		} while (ret != 1);
 603		btrfs_release_path(path);
 604	} else {
 605		btrfs_release_path(path);
 606		swarn.path = path;
 607		swarn.dev = dev;
 608		iterate_extent_inodes(fs_info, found_key.objectid,
 609					extent_item_pos, 1,
 610					scrub_print_warning_inode, &swarn);
 611	}
 612
 613out:
 614	btrfs_free_path(path);
 615	kfree(swarn.scratch_buf);
 616	kfree(swarn.msg_buf);
 617}
 618
 619static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 620{
 621	struct page *page = NULL;
 622	unsigned long index;
 623	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 624	int ret;
 625	int corrected = 0;
 626	struct btrfs_key key;
 627	struct inode *inode = NULL;
 628	struct btrfs_fs_info *fs_info;
 629	u64 end = offset + PAGE_SIZE - 1;
 630	struct btrfs_root *local_root;
 631	int srcu_index;
 632
 633	key.objectid = root;
 634	key.type = BTRFS_ROOT_ITEM_KEY;
 635	key.offset = (u64)-1;
 636
 637	fs_info = fixup->root->fs_info;
 638	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 639
 640	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 641	if (IS_ERR(local_root)) {
 642		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 643		return PTR_ERR(local_root);
 644	}
 645
 646	key.type = BTRFS_INODE_ITEM_KEY;
 647	key.objectid = inum;
 648	key.offset = 0;
 649	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 650	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 651	if (IS_ERR(inode))
 652		return PTR_ERR(inode);
 653
 654	index = offset >> PAGE_CACHE_SHIFT;
 655
 656	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 657	if (!page) {
 658		ret = -ENOMEM;
 659		goto out;
 660	}
 661
 662	if (PageUptodate(page)) {
 663		if (PageDirty(page)) {
 664			/*
 665			 * we need to write the data to the defect sector. the
 666			 * data that was in that sector is not in memory,
 667			 * because the page was modified. we must not write the
 668			 * modified page to that sector.
 669			 *
 670			 * TODO: what could be done here: wait for the delalloc
 671			 *       runner to write out that page (might involve
 672			 *       COW) and see whether the sector is still
 673			 *       referenced afterwards.
 674			 *
 675			 * For the meantime, we'll treat this error
 676			 * incorrectable, although there is a chance that a
 677			 * later scrub will find the bad sector again and that
 678			 * there's no dirty page in memory, then.
 679			 */
 680			ret = -EIO;
 681			goto out;
 682		}
 683		fs_info = BTRFS_I(inode)->root->fs_info;
 684		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
 685					fixup->logical, page,
 686					fixup->mirror_num);
 687		unlock_page(page);
 688		corrected = !ret;
 689	} else {
 690		/*
 691		 * we need to get good data first. the general readpage path
 692		 * will call repair_io_failure for us, we just have to make
 693		 * sure we read the bad mirror.
 694		 */
 695		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 696					EXTENT_DAMAGED, GFP_NOFS);
 697		if (ret) {
 698			/* set_extent_bits should give proper error */
 699			WARN_ON(ret > 0);
 700			if (ret > 0)
 701				ret = -EFAULT;
 702			goto out;
 703		}
 704
 705		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 706						btrfs_get_extent,
 707						fixup->mirror_num);
 708		wait_on_page_locked(page);
 709
 710		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 711						end, EXTENT_DAMAGED, 0, NULL);
 712		if (!corrected)
 713			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 714						EXTENT_DAMAGED, GFP_NOFS);
 715	}
 716
 717out:
 718	if (page)
 719		put_page(page);
 720	if (inode)
 721		iput(inode);
 722
 723	if (ret < 0)
 724		return ret;
 725
 726	if (ret == 0 && corrected) {
 727		/*
 728		 * we only need to call readpage for one of the inodes belonging
 729		 * to this extent. so make iterate_extent_inodes stop
 730		 */
 731		return 1;
 732	}
 733
 734	return -EIO;
 735}
 736
 737static void scrub_fixup_nodatasum(struct btrfs_work *work)
 
 738{
 739	int ret;
 740	struct scrub_fixup_nodatasum *fixup;
 741	struct scrub_ctx *sctx;
 742	struct btrfs_trans_handle *trans = NULL;
 743	struct btrfs_path *path;
 744	int uncorrectable = 0;
 745
 746	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 747	sctx = fixup->sctx;
 748
 749	path = btrfs_alloc_path();
 750	if (!path) {
 751		spin_lock(&sctx->stat_lock);
 752		++sctx->stat.malloc_errors;
 753		spin_unlock(&sctx->stat_lock);
 754		uncorrectable = 1;
 755		goto out;
 756	}
 757
 758	trans = btrfs_join_transaction(fixup->root);
 759	if (IS_ERR(trans)) {
 760		uncorrectable = 1;
 761		goto out;
 762	}
 763
 764	/*
 765	 * the idea is to trigger a regular read through the standard path. we
 766	 * read a page from the (failed) logical address by specifying the
 767	 * corresponding copynum of the failed sector. thus, that readpage is
 768	 * expected to fail.
 769	 * that is the point where on-the-fly error correction will kick in
 770	 * (once it's finished) and rewrite the failed sector if a good copy
 771	 * can be found.
 772	 */
 773	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
 774						path, scrub_fixup_readpage,
 775						fixup);
 776	if (ret < 0) {
 777		uncorrectable = 1;
 778		goto out;
 779	}
 780	WARN_ON(ret != 1);
 781
 782	spin_lock(&sctx->stat_lock);
 783	++sctx->stat.corrected_errors;
 784	spin_unlock(&sctx->stat_lock);
 785
 786out:
 787	if (trans && !IS_ERR(trans))
 788		btrfs_end_transaction(trans, fixup->root);
 789	if (uncorrectable) {
 790		spin_lock(&sctx->stat_lock);
 791		++sctx->stat.uncorrectable_errors;
 792		spin_unlock(&sctx->stat_lock);
 793		btrfs_dev_replace_stats_inc(
 794			&sctx->dev_root->fs_info->dev_replace.
 795			num_uncorrectable_read_errors);
 796		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
 797		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
 798			fixup->logical, rcu_str_deref(fixup->dev->name));
 799	}
 800
 801	btrfs_free_path(path);
 802	kfree(fixup);
 803
 804	scrub_pending_trans_workers_dec(sctx);
 805}
 806
 807/*
 808 * scrub_handle_errored_block gets called when either verification of the
 809 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 810 * case, this function handles all pages in the bio, even though only one
 811 * may be bad.
 812 * The goal of this function is to repair the errored block by using the
 813 * contents of one of the mirrors.
 814 */
 815static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 816{
 817	struct scrub_ctx *sctx = sblock_to_check->sctx;
 818	struct btrfs_device *dev;
 819	struct btrfs_fs_info *fs_info;
 820	u64 length;
 821	u64 logical;
 822	u64 generation;
 823	unsigned int failed_mirror_index;
 824	unsigned int is_metadata;
 825	unsigned int have_csum;
 826	u8 *csum;
 827	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 828	struct scrub_block *sblock_bad;
 829	int ret;
 830	int mirror_index;
 831	int page_num;
 832	int success;
 
 
 833	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 834				      DEFAULT_RATELIMIT_BURST);
 835
 836	BUG_ON(sblock_to_check->page_count < 1);
 837	fs_info = sctx->dev_root->fs_info;
 838	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 839		/*
 840		 * if we find an error in a super block, we just report it.
 841		 * They will get written with the next transaction commit
 842		 * anyway
 843		 */
 844		spin_lock(&sctx->stat_lock);
 845		++sctx->stat.super_errors;
 846		spin_unlock(&sctx->stat_lock);
 847		return 0;
 848	}
 849	length = sblock_to_check->page_count * PAGE_SIZE;
 850	logical = sblock_to_check->pagev[0]->logical;
 851	generation = sblock_to_check->pagev[0]->generation;
 852	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 853	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 854	is_metadata = !(sblock_to_check->pagev[0]->flags &
 855			BTRFS_EXTENT_FLAG_DATA);
 856	have_csum = sblock_to_check->pagev[0]->have_csum;
 857	csum = sblock_to_check->pagev[0]->csum;
 858	dev = sblock_to_check->pagev[0]->dev;
 859
 860	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
 861		sblocks_for_recheck = NULL;
 862		goto nodatasum_case;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863	}
 864
 865	/*
 866	 * read all mirrors one after the other. This includes to
 867	 * re-read the extent or metadata block that failed (that was
 868	 * the cause that this fixup code is called) another time,
 869	 * page by page this time in order to know which pages
 870	 * caused I/O errors and which ones are good (for all mirrors).
 871	 * It is the goal to handle the situation when more than one
 872	 * mirror contains I/O errors, but the errors do not
 873	 * overlap, i.e. the data can be repaired by selecting the
 874	 * pages from those mirrors without I/O error on the
 875	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 876	 * would be that mirror #1 has an I/O error on the first page,
 877	 * the second page is good, and mirror #2 has an I/O error on
 878	 * the second page, but the first page is good.
 879	 * Then the first page of the first mirror can be repaired by
 880	 * taking the first page of the second mirror, and the
 881	 * second page of the second mirror can be repaired by
 882	 * copying the contents of the 2nd page of the 1st mirror.
 883	 * One more note: if the pages of one mirror contain I/O
 884	 * errors, the checksum cannot be verified. In order to get
 885	 * the best data for repairing, the first attempt is to find
 886	 * a mirror without I/O errors and with a validated checksum.
 887	 * Only if this is not possible, the pages are picked from
 888	 * mirrors with I/O errors without considering the checksum.
 889	 * If the latter is the case, at the end, the checksum of the
 890	 * repaired area is verified in order to correctly maintain
 891	 * the statistics.
 892	 */
 893
 894	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
 895				     sizeof(*sblocks_for_recheck),
 896				     GFP_NOFS);
 897	if (!sblocks_for_recheck) {
 898		spin_lock(&sctx->stat_lock);
 899		sctx->stat.malloc_errors++;
 900		sctx->stat.read_errors++;
 901		sctx->stat.uncorrectable_errors++;
 902		spin_unlock(&sctx->stat_lock);
 903		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 904		goto out;
 905	}
 906
 907	/* setup the context, map the logical blocks and alloc the pages */
 908	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
 909					logical, sblocks_for_recheck);
 910	if (ret) {
 911		spin_lock(&sctx->stat_lock);
 912		sctx->stat.read_errors++;
 913		sctx->stat.uncorrectable_errors++;
 914		spin_unlock(&sctx->stat_lock);
 915		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 916		goto out;
 917	}
 918	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 919	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 920
 921	/* build and submit the bios for the failed mirror, check checksums */
 922	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
 923			    csum, generation, sctx->csum_size);
 924
 925	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 926	    sblock_bad->no_io_error_seen) {
 927		/*
 928		 * the error disappeared after reading page by page, or
 929		 * the area was part of a huge bio and other parts of the
 930		 * bio caused I/O errors, or the block layer merged several
 931		 * read requests into one and the error is caused by a
 932		 * different bio (usually one of the two latter cases is
 933		 * the cause)
 934		 */
 935		spin_lock(&sctx->stat_lock);
 936		sctx->stat.unverified_errors++;
 
 937		spin_unlock(&sctx->stat_lock);
 938
 939		if (sctx->is_dev_replace)
 940			scrub_write_block_to_dev_replace(sblock_bad);
 941		goto out;
 942	}
 943
 944	if (!sblock_bad->no_io_error_seen) {
 945		spin_lock(&sctx->stat_lock);
 946		sctx->stat.read_errors++;
 947		spin_unlock(&sctx->stat_lock);
 948		if (__ratelimit(&_rs))
 949			scrub_print_warning("i/o error", sblock_to_check);
 950		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 951	} else if (sblock_bad->checksum_error) {
 952		spin_lock(&sctx->stat_lock);
 953		sctx->stat.csum_errors++;
 954		spin_unlock(&sctx->stat_lock);
 955		if (__ratelimit(&_rs))
 956			scrub_print_warning("checksum error", sblock_to_check);
 957		btrfs_dev_stat_inc_and_print(dev,
 958					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 959	} else if (sblock_bad->header_error) {
 960		spin_lock(&sctx->stat_lock);
 961		sctx->stat.verify_errors++;
 962		spin_unlock(&sctx->stat_lock);
 963		if (__ratelimit(&_rs))
 964			scrub_print_warning("checksum/header error",
 965					    sblock_to_check);
 966		if (sblock_bad->generation_error)
 967			btrfs_dev_stat_inc_and_print(dev,
 968				BTRFS_DEV_STAT_GENERATION_ERRS);
 969		else
 970			btrfs_dev_stat_inc_and_print(dev,
 971				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 972	}
 973
 974	if (sctx->readonly) {
 975		ASSERT(!sctx->is_dev_replace);
 976		goto out;
 977	}
 978
 979	if (!is_metadata && !have_csum) {
 980		struct scrub_fixup_nodatasum *fixup_nodatasum;
 981
 982nodatasum_case:
 983		WARN_ON(sctx->is_dev_replace);
 984
 985		/*
 986		 * !is_metadata and !have_csum, this means that the data
 987		 * might not be COW'ed, that it might be modified
 988		 * concurrently. The general strategy to work on the
 989		 * commit root does not help in the case when COW is not
 990		 * used.
 991		 */
 992		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
 993		if (!fixup_nodatasum)
 994			goto did_not_correct_error;
 995		fixup_nodatasum->sctx = sctx;
 996		fixup_nodatasum->dev = dev;
 997		fixup_nodatasum->logical = logical;
 998		fixup_nodatasum->root = fs_info->extent_root;
 999		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1000		scrub_pending_trans_workers_inc(sctx);
1001		btrfs_init_work(&fixup_nodatasum->work, scrub_fixup_nodatasum,
1002				NULL, NULL);
1003		btrfs_queue_work(fs_info->scrub_workers,
1004				 &fixup_nodatasum->work);
1005		goto out;
1006	}
1007
1008	/*
1009	 * now build and submit the bios for the other mirrors, check
1010	 * checksums.
1011	 * First try to pick the mirror which is completely without I/O
1012	 * errors and also does not have a checksum error.
1013	 * If one is found, and if a checksum is present, the full block
1014	 * that is known to contain an error is rewritten. Afterwards
1015	 * the block is known to be corrected.
1016	 * If a mirror is found which is completely correct, and no
1017	 * checksum is present, only those pages are rewritten that had
1018	 * an I/O error in the block to be repaired, since it cannot be
1019	 * determined, which copy of the other pages is better (and it
1020	 * could happen otherwise that a correct page would be
1021	 * overwritten by a bad one).
1022	 */
1023	for (mirror_index = 0;
1024	     mirror_index < BTRFS_MAX_MIRRORS &&
1025	     sblocks_for_recheck[mirror_index].page_count > 0;
1026	     mirror_index++) {
1027		struct scrub_block *sblock_other;
1028
1029		if (mirror_index == failed_mirror_index)
1030			continue;
1031		sblock_other = sblocks_for_recheck + mirror_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032
1033		/* build and submit the bios, check checksums */
1034		scrub_recheck_block(fs_info, sblock_other, is_metadata,
1035				    have_csum, csum, generation,
1036				    sctx->csum_size);
1037
1038		if (!sblock_other->header_error &&
1039		    !sblock_other->checksum_error &&
1040		    sblock_other->no_io_error_seen) {
1041			if (sctx->is_dev_replace) {
1042				scrub_write_block_to_dev_replace(sblock_other);
 
1043			} else {
1044				int force_write = is_metadata || have_csum;
1045
1046				ret = scrub_repair_block_from_good_copy(
1047						sblock_bad, sblock_other,
1048						force_write);
 
1049			}
1050			if (0 == ret)
1051				goto corrected_error;
1052		}
1053	}
1054
1055	/*
1056	 * for dev_replace, pick good pages and write to the target device.
1057	 */
1058	if (sctx->is_dev_replace) {
1059		success = 1;
1060		for (page_num = 0; page_num < sblock_bad->page_count;
1061		     page_num++) {
1062			int sub_success;
1063
1064			sub_success = 0;
1065			for (mirror_index = 0;
1066			     mirror_index < BTRFS_MAX_MIRRORS &&
1067			     sblocks_for_recheck[mirror_index].page_count > 0;
1068			     mirror_index++) {
1069				struct scrub_block *sblock_other =
1070					sblocks_for_recheck + mirror_index;
1071				struct scrub_page *page_other =
1072					sblock_other->pagev[page_num];
1073
1074				if (!page_other->io_error) {
1075					ret = scrub_write_page_to_dev_replace(
1076							sblock_other, page_num);
1077					if (ret == 0) {
1078						/* succeeded for this page */
1079						sub_success = 1;
1080						break;
1081					} else {
1082						btrfs_dev_replace_stats_inc(
1083							&sctx->dev_root->
1084							fs_info->dev_replace.
1085							num_write_errors);
1086					}
1087				}
1088			}
1089
1090			if (!sub_success) {
1091				/*
1092				 * did not find a mirror to fetch the page
1093				 * from. scrub_write_page_to_dev_replace()
1094				 * handles this case (page->io_error), by
1095				 * filling the block with zeros before
1096				 * submitting the write request
1097				 */
1098				success = 0;
1099				ret = scrub_write_page_to_dev_replace(
1100						sblock_bad, page_num);
1101				if (ret)
1102					btrfs_dev_replace_stats_inc(
1103						&sctx->dev_root->fs_info->
1104						dev_replace.num_write_errors);
1105			}
1106		}
1107
1108		goto out;
1109	}
1110
1111	/*
1112	 * for regular scrub, repair those pages that are errored.
1113	 * In case of I/O errors in the area that is supposed to be
1114	 * repaired, continue by picking good copies of those pages.
1115	 * Select the good pages from mirrors to rewrite bad pages from
1116	 * the area to fix. Afterwards verify the checksum of the block
1117	 * that is supposed to be repaired. This verification step is
1118	 * only done for the purpose of statistic counting and for the
1119	 * final scrub report, whether errors remain.
1120	 * A perfect algorithm could make use of the checksum and try
1121	 * all possible combinations of pages from the different mirrors
1122	 * until the checksum verification succeeds. For example, when
1123	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1124	 * of mirror #2 is readable but the final checksum test fails,
1125	 * then the 2nd page of mirror #3 could be tried, whether now
1126	 * the final checksum succeedes. But this would be a rare
1127	 * exception and is therefore not implemented. At least it is
1128	 * avoided that the good copy is overwritten.
1129	 * A more useful improvement would be to pick the sectors
1130	 * without I/O error based on sector sizes (512 bytes on legacy
1131	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1132	 * mirror could be repaired by taking 512 byte of a different
1133	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1134	 * area are unreadable.
1135	 */
1136
1137	/* can only fix I/O errors from here on */
1138	if (sblock_bad->no_io_error_seen)
1139		goto did_not_correct_error;
1140
1141	success = 1;
1142	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
 
1143		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
 
1144
1145		if (!page_bad->io_error)
 
1146			continue;
1147
1148		for (mirror_index = 0;
1149		     mirror_index < BTRFS_MAX_MIRRORS &&
1150		     sblocks_for_recheck[mirror_index].page_count > 0;
1151		     mirror_index++) {
1152			struct scrub_block *sblock_other = sblocks_for_recheck +
1153							   mirror_index;
1154			struct scrub_page *page_other = sblock_other->pagev[
1155							page_num];
1156
1157			if (!page_other->io_error) {
1158				ret = scrub_repair_page_from_good_copy(
1159					sblock_bad, sblock_other, page_num, 0);
1160				if (0 == ret) {
1161					page_bad->io_error = 0;
1162					break; /* succeeded for this page */
 
 
 
 
 
1163				}
1164			}
 
 
1165		}
1166
1167		if (page_bad->io_error) {
1168			/* did not find a mirror to copy the page from */
1169			success = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170		}
1171	}
1172
1173	if (success) {
1174		if (is_metadata || have_csum) {
1175			/*
1176			 * need to verify the checksum now that all
1177			 * sectors on disk are repaired (the write
1178			 * request for data to be repaired is on its way).
1179			 * Just be lazy and use scrub_recheck_block()
1180			 * which re-reads the data before the checksum
1181			 * is verified, but most likely the data comes out
1182			 * of the page cache.
1183			 */
1184			scrub_recheck_block(fs_info, sblock_bad,
1185					    is_metadata, have_csum, csum,
1186					    generation, sctx->csum_size);
1187			if (!sblock_bad->header_error &&
1188			    !sblock_bad->checksum_error &&
1189			    sblock_bad->no_io_error_seen)
1190				goto corrected_error;
1191			else
1192				goto did_not_correct_error;
1193		} else {
1194corrected_error:
1195			spin_lock(&sctx->stat_lock);
1196			sctx->stat.corrected_errors++;
 
1197			spin_unlock(&sctx->stat_lock);
1198			printk_ratelimited_in_rcu(KERN_ERR
1199				"BTRFS: fixed up error at logical %llu on dev %s\n",
1200				logical, rcu_str_deref(dev->name));
1201		}
1202	} else {
1203did_not_correct_error:
1204		spin_lock(&sctx->stat_lock);
1205		sctx->stat.uncorrectable_errors++;
1206		spin_unlock(&sctx->stat_lock);
1207		printk_ratelimited_in_rcu(KERN_ERR
1208			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1209			logical, rcu_str_deref(dev->name));
1210	}
1211
1212out:
1213	if (sblocks_for_recheck) {
1214		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1215		     mirror_index++) {
1216			struct scrub_block *sblock = sblocks_for_recheck +
1217						     mirror_index;
 
1218			int page_index;
1219
1220			for (page_index = 0; page_index < sblock->page_count;
1221			     page_index++) {
1222				sblock->pagev[page_index]->sblock = NULL;
 
 
 
 
 
 
1223				scrub_page_put(sblock->pagev[page_index]);
1224			}
1225		}
1226		kfree(sblocks_for_recheck);
1227	}
1228
 
 
 
 
1229	return 0;
1230}
1231
1232static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1233				     struct btrfs_fs_info *fs_info,
1234				     struct scrub_block *original_sblock,
1235				     u64 length, u64 logical,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236				     struct scrub_block *sblocks_for_recheck)
1237{
1238	int page_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
1239	int mirror_index;
 
1240	int ret;
1241
1242	/*
1243	 * note: the two members ref_count and outstanding_pages
1244	 * are not used (and not set) in the blocks that are used for
1245	 * the recheck procedure
1246	 */
1247
1248	page_index = 0;
1249	while (length > 0) {
1250		u64 sublen = min_t(u64, length, PAGE_SIZE);
1251		u64 mapped_length = sublen;
1252		struct btrfs_bio *bbio = NULL;
1253
1254		/*
1255		 * with a length of PAGE_SIZE, each returned stripe
1256		 * represents one mirror
1257		 */
1258		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1259				      &mapped_length, &bbio, 0);
 
1260		if (ret || !bbio || mapped_length < sublen) {
1261			kfree(bbio);
 
1262			return -EIO;
1263		}
1264
1265		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1266		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267		     mirror_index++) {
1268			struct scrub_block *sblock;
1269			struct scrub_page *page;
1270
1271			if (mirror_index >= BTRFS_MAX_MIRRORS)
1272				continue;
1273
1274			sblock = sblocks_for_recheck + mirror_index;
1275			sblock->sctx = sctx;
 
1276			page = kzalloc(sizeof(*page), GFP_NOFS);
1277			if (!page) {
1278leave_nomem:
1279				spin_lock(&sctx->stat_lock);
1280				sctx->stat.malloc_errors++;
1281				spin_unlock(&sctx->stat_lock);
1282				kfree(bbio);
1283				return -ENOMEM;
1284			}
1285			scrub_page_get(page);
1286			sblock->pagev[page_index] = page;
 
 
 
1287			page->logical = logical;
1288			page->physical = bbio->stripes[mirror_index].physical;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289			BUG_ON(page_index >= original_sblock->page_count);
1290			page->physical_for_dev_replace =
1291				original_sblock->pagev[page_index]->
1292				physical_for_dev_replace;
1293			/* for missing devices, dev->bdev is NULL */
1294			page->dev = bbio->stripes[mirror_index].dev;
1295			page->mirror_num = mirror_index + 1;
1296			sblock->page_count++;
1297			page->page = alloc_page(GFP_NOFS);
1298			if (!page->page)
1299				goto leave_nomem;
 
 
 
1300		}
1301		kfree(bbio);
1302		length -= sublen;
1303		logical += sublen;
1304		page_index++;
1305	}
1306
1307	return 0;
1308}
1309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310/*
1311 * this function will check the on disk data for checksum errors, header
1312 * errors and read I/O errors. If any I/O errors happen, the exact pages
1313 * which are errored are marked as being bad. The goal is to enable scrub
1314 * to take those pages that are not errored from all the mirrors so that
1315 * the pages that are errored in the just handled mirror can be repaired.
1316 */
1317static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1318				struct scrub_block *sblock, int is_metadata,
1319				int have_csum, u8 *csum, u64 generation,
1320				u16 csum_size)
1321{
1322	int page_num;
1323
1324	sblock->no_io_error_seen = 1;
1325	sblock->header_error = 0;
1326	sblock->checksum_error = 0;
 
 
1327
1328	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1329		struct bio *bio;
1330		struct scrub_page *page = sblock->pagev[page_num];
1331
1332		if (page->dev->bdev == NULL) {
1333			page->io_error = 1;
1334			sblock->no_io_error_seen = 0;
1335			continue;
1336		}
1337
1338		WARN_ON(!page->page);
1339		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1340		if (!bio) {
 
 
 
 
 
 
1341			page->io_error = 1;
1342			sblock->no_io_error_seen = 0;
1343			continue;
1344		}
1345		bio->bi_bdev = page->dev->bdev;
1346		bio->bi_iter.bi_sector = page->physical >> 9;
1347
1348		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1349		if (btrfsic_submit_bio_wait(READ, bio))
1350			sblock->no_io_error_seen = 0;
1351
1352		bio_put(bio);
1353	}
1354
1355	if (sblock->no_io_error_seen)
1356		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1357					     have_csum, csum, generation,
1358					     csum_size);
1359
1360	return;
1361}
1362
1363static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1364					 struct scrub_block *sblock,
1365					 int is_metadata, int have_csum,
1366					 const u8 *csum, u64 generation,
1367					 u16 csum_size)
1368{
1369	int page_num;
1370	u8 calculated_csum[BTRFS_CSUM_SIZE];
1371	u32 crc = ~(u32)0;
1372	void *mapped_buffer;
1373
1374	WARN_ON(!sblock->pagev[0]->page);
1375	if (is_metadata) {
1376		struct btrfs_header *h;
1377
1378		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1379		h = (struct btrfs_header *)mapped_buffer;
1380
1381		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1382		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1383		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1384			   BTRFS_UUID_SIZE)) {
1385			sblock->header_error = 1;
1386		} else if (generation != btrfs_stack_header_generation(h)) {
1387			sblock->header_error = 1;
1388			sblock->generation_error = 1;
1389		}
1390		csum = h->csum;
1391	} else {
1392		if (!have_csum)
1393			return;
1394
1395		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1396	}
 
 
 
1397
1398	for (page_num = 0;;) {
1399		if (page_num == 0 && is_metadata)
1400			crc = btrfs_csum_data(
1401				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1402				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1403		else
1404			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1405
1406		kunmap_atomic(mapped_buffer);
1407		page_num++;
1408		if (page_num >= sblock->page_count)
1409			break;
1410		WARN_ON(!sblock->pagev[page_num]->page);
1411
1412		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1413	}
1414
1415	btrfs_csum_final(crc, calculated_csum);
1416	if (memcmp(calculated_csum, csum, csum_size))
1417		sblock->checksum_error = 1;
1418}
1419
1420static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1421					     struct scrub_block *sblock_good,
1422					     int force_write)
1423{
1424	int page_num;
1425	int ret = 0;
1426
1427	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1428		int ret_sub;
1429
1430		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1431							   sblock_good,
1432							   page_num,
1433							   force_write);
1434		if (ret_sub)
1435			ret = ret_sub;
1436	}
1437
1438	return ret;
1439}
1440
1441static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1442					    struct scrub_block *sblock_good,
1443					    int page_num, int force_write)
1444{
1445	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1446	struct scrub_page *page_good = sblock_good->pagev[page_num];
 
1447
1448	BUG_ON(page_bad->page == NULL);
1449	BUG_ON(page_good->page == NULL);
1450	if (force_write || sblock_bad->header_error ||
1451	    sblock_bad->checksum_error || page_bad->io_error) {
1452		struct bio *bio;
1453		int ret;
1454
1455		if (!page_bad->dev->bdev) {
1456			printk_ratelimited(KERN_WARNING "BTRFS: "
1457				"scrub_repair_page_from_good_copy(bdev == NULL) "
1458				"is unexpected!\n");
1459			return -EIO;
1460		}
1461
1462		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1463		if (!bio)
1464			return -EIO;
1465		bio->bi_bdev = page_bad->dev->bdev;
1466		bio->bi_iter.bi_sector = page_bad->physical >> 9;
 
1467
1468		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1469		if (PAGE_SIZE != ret) {
1470			bio_put(bio);
1471			return -EIO;
1472		}
1473
1474		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1475			btrfs_dev_stat_inc_and_print(page_bad->dev,
1476				BTRFS_DEV_STAT_WRITE_ERRS);
1477			btrfs_dev_replace_stats_inc(
1478				&sblock_bad->sctx->dev_root->fs_info->
1479				dev_replace.num_write_errors);
1480			bio_put(bio);
1481			return -EIO;
1482		}
1483		bio_put(bio);
1484	}
1485
1486	return 0;
1487}
1488
1489static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1490{
 
1491	int page_num;
1492
 
 
 
 
 
 
 
1493	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1494		int ret;
1495
1496		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1497		if (ret)
1498			btrfs_dev_replace_stats_inc(
1499				&sblock->sctx->dev_root->fs_info->dev_replace.
1500				num_write_errors);
1501	}
1502}
1503
1504static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1505					   int page_num)
1506{
1507	struct scrub_page *spage = sblock->pagev[page_num];
1508
1509	BUG_ON(spage->page == NULL);
1510	if (spage->io_error) {
1511		void *mapped_buffer = kmap_atomic(spage->page);
1512
1513		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1514		flush_dcache_page(spage->page);
1515		kunmap_atomic(mapped_buffer);
1516	}
1517	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1518}
1519
1520static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1521				    struct scrub_page *spage)
1522{
1523	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1524	struct scrub_bio *sbio;
1525	int ret;
1526
1527	mutex_lock(&wr_ctx->wr_lock);
1528again:
1529	if (!wr_ctx->wr_curr_bio) {
1530		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1531					      GFP_NOFS);
1532		if (!wr_ctx->wr_curr_bio) {
1533			mutex_unlock(&wr_ctx->wr_lock);
1534			return -ENOMEM;
1535		}
1536		wr_ctx->wr_curr_bio->sctx = sctx;
1537		wr_ctx->wr_curr_bio->page_count = 0;
1538	}
1539	sbio = wr_ctx->wr_curr_bio;
1540	if (sbio->page_count == 0) {
1541		struct bio *bio;
1542
1543		sbio->physical = spage->physical_for_dev_replace;
1544		sbio->logical = spage->logical;
1545		sbio->dev = wr_ctx->tgtdev;
1546		bio = sbio->bio;
1547		if (!bio) {
1548			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1549			if (!bio) {
1550				mutex_unlock(&wr_ctx->wr_lock);
1551				return -ENOMEM;
1552			}
1553			sbio->bio = bio;
1554		}
1555
1556		bio->bi_private = sbio;
1557		bio->bi_end_io = scrub_wr_bio_end_io;
1558		bio->bi_bdev = sbio->dev->bdev;
1559		bio->bi_iter.bi_sector = sbio->physical >> 9;
1560		sbio->err = 0;
 
1561	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1562		   spage->physical_for_dev_replace ||
1563		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1564		   spage->logical) {
1565		scrub_wr_submit(sctx);
1566		goto again;
1567	}
1568
1569	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1570	if (ret != PAGE_SIZE) {
1571		if (sbio->page_count < 1) {
1572			bio_put(sbio->bio);
1573			sbio->bio = NULL;
1574			mutex_unlock(&wr_ctx->wr_lock);
1575			return -EIO;
1576		}
1577		scrub_wr_submit(sctx);
1578		goto again;
1579	}
1580
1581	sbio->pagev[sbio->page_count] = spage;
1582	scrub_page_get(spage);
1583	sbio->page_count++;
1584	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1585		scrub_wr_submit(sctx);
1586	mutex_unlock(&wr_ctx->wr_lock);
1587
1588	return 0;
1589}
1590
1591static void scrub_wr_submit(struct scrub_ctx *sctx)
1592{
1593	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1594	struct scrub_bio *sbio;
1595
1596	if (!wr_ctx->wr_curr_bio)
1597		return;
1598
1599	sbio = wr_ctx->wr_curr_bio;
1600	wr_ctx->wr_curr_bio = NULL;
1601	WARN_ON(!sbio->bio->bi_bdev);
1602	scrub_pending_bio_inc(sctx);
1603	/* process all writes in a single worker thread. Then the block layer
1604	 * orders the requests before sending them to the driver which
1605	 * doubled the write performance on spinning disks when measured
1606	 * with Linux 3.5 */
1607	btrfsic_submit_bio(WRITE, sbio->bio);
1608}
1609
1610static void scrub_wr_bio_end_io(struct bio *bio, int err)
1611{
1612	struct scrub_bio *sbio = bio->bi_private;
1613	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1614
1615	sbio->err = err;
1616	sbio->bio = bio;
1617
1618	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
 
1619	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1620}
1621
1622static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1623{
1624	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1625	struct scrub_ctx *sctx = sbio->sctx;
1626	int i;
1627
1628	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1629	if (sbio->err) {
1630		struct btrfs_dev_replace *dev_replace =
1631			&sbio->sctx->dev_root->fs_info->dev_replace;
1632
1633		for (i = 0; i < sbio->page_count; i++) {
1634			struct scrub_page *spage = sbio->pagev[i];
1635
1636			spage->io_error = 1;
1637			btrfs_dev_replace_stats_inc(&dev_replace->
1638						    num_write_errors);
1639		}
1640	}
1641
1642	for (i = 0; i < sbio->page_count; i++)
1643		scrub_page_put(sbio->pagev[i]);
1644
1645	bio_put(sbio->bio);
1646	kfree(sbio);
1647	scrub_pending_bio_dec(sctx);
1648}
1649
1650static int scrub_checksum(struct scrub_block *sblock)
1651{
1652	u64 flags;
1653	int ret;
1654
 
 
 
 
 
 
 
 
 
 
 
 
1655	WARN_ON(sblock->page_count < 1);
1656	flags = sblock->pagev[0]->flags;
1657	ret = 0;
1658	if (flags & BTRFS_EXTENT_FLAG_DATA)
1659		ret = scrub_checksum_data(sblock);
1660	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1661		ret = scrub_checksum_tree_block(sblock);
1662	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1663		(void)scrub_checksum_super(sblock);
1664	else
1665		WARN_ON(1);
1666	if (ret)
1667		scrub_handle_errored_block(sblock);
1668
1669	return ret;
1670}
1671
1672static int scrub_checksum_data(struct scrub_block *sblock)
1673{
1674	struct scrub_ctx *sctx = sblock->sctx;
 
 
1675	u8 csum[BTRFS_CSUM_SIZE];
1676	u8 *on_disk_csum;
1677	struct page *page;
1678	void *buffer;
1679	u32 crc = ~(u32)0;
1680	int fail = 0;
1681	u64 len;
1682	int index;
1683
1684	BUG_ON(sblock->page_count < 1);
1685	if (!sblock->pagev[0]->have_csum)
1686		return 0;
1687
 
 
 
1688	on_disk_csum = sblock->pagev[0]->csum;
1689	page = sblock->pagev[0]->page;
1690	buffer = kmap_atomic(page);
1691
1692	len = sctx->sectorsize;
1693	index = 0;
1694	for (;;) {
1695		u64 l = min_t(u64, len, PAGE_SIZE);
1696
1697		crc = btrfs_csum_data(buffer, crc, l);
1698		kunmap_atomic(buffer);
1699		len -= l;
1700		if (len == 0)
1701			break;
1702		index++;
1703		BUG_ON(index >= sblock->page_count);
1704		BUG_ON(!sblock->pagev[index]->page);
1705		page = sblock->pagev[index]->page;
1706		buffer = kmap_atomic(page);
1707	}
1708
1709	btrfs_csum_final(crc, csum);
1710	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1711		fail = 1;
1712
1713	return fail;
1714}
1715
1716static int scrub_checksum_tree_block(struct scrub_block *sblock)
1717{
1718	struct scrub_ctx *sctx = sblock->sctx;
1719	struct btrfs_header *h;
1720	struct btrfs_root *root = sctx->dev_root;
1721	struct btrfs_fs_info *fs_info = root->fs_info;
1722	u8 calculated_csum[BTRFS_CSUM_SIZE];
1723	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1724	struct page *page;
1725	void *mapped_buffer;
1726	u64 mapped_size;
1727	void *p;
1728	u32 crc = ~(u32)0;
1729	int fail = 0;
1730	int crc_fail = 0;
1731	u64 len;
1732	int index;
1733
 
 
 
1734	BUG_ON(sblock->page_count < 1);
1735	page = sblock->pagev[0]->page;
1736	mapped_buffer = kmap_atomic(page);
1737	h = (struct btrfs_header *)mapped_buffer;
1738	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1739
1740	/*
1741	 * we don't use the getter functions here, as we
1742	 * a) don't have an extent buffer and
1743	 * b) the page is already kmapped
1744	 */
1745
1746	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1747		++fail;
1748
1749	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1750		++fail;
 
 
1751
1752	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1753		++fail;
1754
1755	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1756		   BTRFS_UUID_SIZE))
1757		++fail;
1758
1759	WARN_ON(sctx->nodesize != sctx->leafsize);
1760	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1761	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1762	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1763	index = 0;
1764	for (;;) {
1765		u64 l = min_t(u64, len, mapped_size);
1766
1767		crc = btrfs_csum_data(p, crc, l);
1768		kunmap_atomic(mapped_buffer);
1769		len -= l;
1770		if (len == 0)
1771			break;
1772		index++;
1773		BUG_ON(index >= sblock->page_count);
1774		BUG_ON(!sblock->pagev[index]->page);
1775		page = sblock->pagev[index]->page;
1776		mapped_buffer = kmap_atomic(page);
1777		mapped_size = PAGE_SIZE;
1778		p = mapped_buffer;
1779	}
1780
1781	btrfs_csum_final(crc, calculated_csum);
1782	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1783		++crc_fail;
1784
1785	return fail || crc_fail;
1786}
1787
1788static int scrub_checksum_super(struct scrub_block *sblock)
1789{
1790	struct btrfs_super_block *s;
1791	struct scrub_ctx *sctx = sblock->sctx;
1792	struct btrfs_root *root = sctx->dev_root;
1793	struct btrfs_fs_info *fs_info = root->fs_info;
1794	u8 calculated_csum[BTRFS_CSUM_SIZE];
1795	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1796	struct page *page;
1797	void *mapped_buffer;
1798	u64 mapped_size;
1799	void *p;
1800	u32 crc = ~(u32)0;
1801	int fail_gen = 0;
1802	int fail_cor = 0;
1803	u64 len;
1804	int index;
1805
 
 
 
1806	BUG_ON(sblock->page_count < 1);
1807	page = sblock->pagev[0]->page;
1808	mapped_buffer = kmap_atomic(page);
1809	s = (struct btrfs_super_block *)mapped_buffer;
1810	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1811
1812	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1813		++fail_cor;
1814
1815	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1816		++fail_gen;
1817
1818	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1819		++fail_cor;
1820
1821	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1822	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1823	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1824	index = 0;
1825	for (;;) {
1826		u64 l = min_t(u64, len, mapped_size);
1827
1828		crc = btrfs_csum_data(p, crc, l);
1829		kunmap_atomic(mapped_buffer);
1830		len -= l;
1831		if (len == 0)
1832			break;
1833		index++;
1834		BUG_ON(index >= sblock->page_count);
1835		BUG_ON(!sblock->pagev[index]->page);
1836		page = sblock->pagev[index]->page;
1837		mapped_buffer = kmap_atomic(page);
1838		mapped_size = PAGE_SIZE;
1839		p = mapped_buffer;
1840	}
1841
1842	btrfs_csum_final(crc, calculated_csum);
1843	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1844		++fail_cor;
1845
1846	if (fail_cor + fail_gen) {
1847		/*
1848		 * if we find an error in a super block, we just report it.
1849		 * They will get written with the next transaction commit
1850		 * anyway
1851		 */
1852		spin_lock(&sctx->stat_lock);
1853		++sctx->stat.super_errors;
1854		spin_unlock(&sctx->stat_lock);
1855		if (fail_cor)
1856			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1857				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1858		else
1859			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1860				BTRFS_DEV_STAT_GENERATION_ERRS);
1861	}
1862
1863	return fail_cor + fail_gen;
1864}
1865
1866static void scrub_block_get(struct scrub_block *sblock)
1867{
1868	atomic_inc(&sblock->ref_count);
1869}
1870
1871static void scrub_block_put(struct scrub_block *sblock)
1872{
1873	if (atomic_dec_and_test(&sblock->ref_count)) {
1874		int i;
1875
 
 
 
1876		for (i = 0; i < sblock->page_count; i++)
1877			scrub_page_put(sblock->pagev[i]);
1878		kfree(sblock);
1879	}
1880}
1881
1882static void scrub_page_get(struct scrub_page *spage)
1883{
1884	atomic_inc(&spage->ref_count);
1885}
1886
1887static void scrub_page_put(struct scrub_page *spage)
1888{
1889	if (atomic_dec_and_test(&spage->ref_count)) {
1890		if (spage->page)
1891			__free_page(spage->page);
1892		kfree(spage);
1893	}
1894}
1895
1896static void scrub_submit(struct scrub_ctx *sctx)
1897{
1898	struct scrub_bio *sbio;
1899
1900	if (sctx->curr == -1)
1901		return;
1902
1903	sbio = sctx->bios[sctx->curr];
1904	sctx->curr = -1;
1905	scrub_pending_bio_inc(sctx);
1906
1907	if (!sbio->bio->bi_bdev) {
1908		/*
1909		 * this case should not happen. If btrfs_map_block() is
1910		 * wrong, it could happen for dev-replace operations on
1911		 * missing devices when no mirrors are available, but in
1912		 * this case it should already fail the mount.
1913		 * This case is handled correctly (but _very_ slowly).
1914		 */
1915		printk_ratelimited(KERN_WARNING
1916			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1917		bio_endio(sbio->bio, -EIO);
1918	} else {
1919		btrfsic_submit_bio(READ, sbio->bio);
1920	}
1921}
1922
1923static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1924				    struct scrub_page *spage)
1925{
1926	struct scrub_block *sblock = spage->sblock;
1927	struct scrub_bio *sbio;
1928	int ret;
1929
1930again:
1931	/*
1932	 * grab a fresh bio or wait for one to become available
1933	 */
1934	while (sctx->curr == -1) {
1935		spin_lock(&sctx->list_lock);
1936		sctx->curr = sctx->first_free;
1937		if (sctx->curr != -1) {
1938			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1939			sctx->bios[sctx->curr]->next_free = -1;
1940			sctx->bios[sctx->curr]->page_count = 0;
1941			spin_unlock(&sctx->list_lock);
1942		} else {
1943			spin_unlock(&sctx->list_lock);
1944			wait_event(sctx->list_wait, sctx->first_free != -1);
1945		}
1946	}
1947	sbio = sctx->bios[sctx->curr];
1948	if (sbio->page_count == 0) {
1949		struct bio *bio;
1950
1951		sbio->physical = spage->physical;
1952		sbio->logical = spage->logical;
1953		sbio->dev = spage->dev;
1954		bio = sbio->bio;
1955		if (!bio) {
1956			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1957			if (!bio)
1958				return -ENOMEM;
1959			sbio->bio = bio;
1960		}
1961
1962		bio->bi_private = sbio;
1963		bio->bi_end_io = scrub_bio_end_io;
1964		bio->bi_bdev = sbio->dev->bdev;
1965		bio->bi_iter.bi_sector = sbio->physical >> 9;
1966		sbio->err = 0;
 
1967	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1968		   spage->physical ||
1969		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1970		   spage->logical ||
1971		   sbio->dev != spage->dev) {
1972		scrub_submit(sctx);
1973		goto again;
1974	}
1975
1976	sbio->pagev[sbio->page_count] = spage;
1977	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1978	if (ret != PAGE_SIZE) {
1979		if (sbio->page_count < 1) {
1980			bio_put(sbio->bio);
1981			sbio->bio = NULL;
1982			return -EIO;
1983		}
1984		scrub_submit(sctx);
1985		goto again;
1986	}
1987
1988	scrub_block_get(sblock); /* one for the page added to the bio */
1989	atomic_inc(&sblock->outstanding_pages);
1990	sbio->page_count++;
1991	if (sbio->page_count == sctx->pages_per_rd_bio)
1992		scrub_submit(sctx);
1993
1994	return 0;
1995}
1996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1998		       u64 physical, struct btrfs_device *dev, u64 flags,
1999		       u64 gen, int mirror_num, u8 *csum, int force,
2000		       u64 physical_for_dev_replace)
2001{
2002	struct scrub_block *sblock;
2003	int index;
2004
2005	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2006	if (!sblock) {
2007		spin_lock(&sctx->stat_lock);
2008		sctx->stat.malloc_errors++;
2009		spin_unlock(&sctx->stat_lock);
2010		return -ENOMEM;
2011	}
2012
2013	/* one ref inside this function, plus one for each page added to
2014	 * a bio later on */
2015	atomic_set(&sblock->ref_count, 1);
2016	sblock->sctx = sctx;
2017	sblock->no_io_error_seen = 1;
2018
2019	for (index = 0; len > 0; index++) {
2020		struct scrub_page *spage;
2021		u64 l = min_t(u64, len, PAGE_SIZE);
2022
2023		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2024		if (!spage) {
2025leave_nomem:
2026			spin_lock(&sctx->stat_lock);
2027			sctx->stat.malloc_errors++;
2028			spin_unlock(&sctx->stat_lock);
2029			scrub_block_put(sblock);
2030			return -ENOMEM;
2031		}
2032		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2033		scrub_page_get(spage);
2034		sblock->pagev[index] = spage;
2035		spage->sblock = sblock;
2036		spage->dev = dev;
2037		spage->flags = flags;
2038		spage->generation = gen;
2039		spage->logical = logical;
2040		spage->physical = physical;
2041		spage->physical_for_dev_replace = physical_for_dev_replace;
2042		spage->mirror_num = mirror_num;
2043		if (csum) {
2044			spage->have_csum = 1;
2045			memcpy(spage->csum, csum, sctx->csum_size);
2046		} else {
2047			spage->have_csum = 0;
2048		}
2049		sblock->page_count++;
2050		spage->page = alloc_page(GFP_NOFS);
2051		if (!spage->page)
2052			goto leave_nomem;
2053		len -= l;
2054		logical += l;
2055		physical += l;
2056		physical_for_dev_replace += l;
2057	}
2058
2059	WARN_ON(sblock->page_count == 0);
2060	for (index = 0; index < sblock->page_count; index++) {
2061		struct scrub_page *spage = sblock->pagev[index];
2062		int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2063
2064		ret = scrub_add_page_to_rd_bio(sctx, spage);
2065		if (ret) {
2066			scrub_block_put(sblock);
2067			return ret;
2068		}
2069	}
2070
2071	if (force)
2072		scrub_submit(sctx);
2073
2074	/* last one frees, either here or in bio completion for last page */
2075	scrub_block_put(sblock);
2076	return 0;
2077}
2078
2079static void scrub_bio_end_io(struct bio *bio, int err)
2080{
2081	struct scrub_bio *sbio = bio->bi_private;
2082	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2083
2084	sbio->err = err;
2085	sbio->bio = bio;
2086
2087	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2088}
2089
2090static void scrub_bio_end_io_worker(struct btrfs_work *work)
2091{
2092	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2093	struct scrub_ctx *sctx = sbio->sctx;
2094	int i;
2095
2096	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2097	if (sbio->err) {
2098		for (i = 0; i < sbio->page_count; i++) {
2099			struct scrub_page *spage = sbio->pagev[i];
2100
2101			spage->io_error = 1;
2102			spage->sblock->no_io_error_seen = 0;
2103		}
2104	}
2105
2106	/* now complete the scrub_block items that have all pages completed */
2107	for (i = 0; i < sbio->page_count; i++) {
2108		struct scrub_page *spage = sbio->pagev[i];
2109		struct scrub_block *sblock = spage->sblock;
2110
2111		if (atomic_dec_and_test(&sblock->outstanding_pages))
2112			scrub_block_complete(sblock);
2113		scrub_block_put(sblock);
2114	}
2115
2116	bio_put(sbio->bio);
2117	sbio->bio = NULL;
2118	spin_lock(&sctx->list_lock);
2119	sbio->next_free = sctx->first_free;
2120	sctx->first_free = sbio->index;
2121	spin_unlock(&sctx->list_lock);
2122
2123	if (sctx->is_dev_replace &&
2124	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2125		mutex_lock(&sctx->wr_ctx.wr_lock);
2126		scrub_wr_submit(sctx);
2127		mutex_unlock(&sctx->wr_ctx.wr_lock);
2128	}
2129
2130	scrub_pending_bio_dec(sctx);
2131}
2132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133static void scrub_block_complete(struct scrub_block *sblock)
2134{
 
 
2135	if (!sblock->no_io_error_seen) {
 
2136		scrub_handle_errored_block(sblock);
2137	} else {
2138		/*
2139		 * if has checksum error, write via repair mechanism in
2140		 * dev replace case, otherwise write here in dev replace
2141		 * case.
2142		 */
2143		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
 
2144			scrub_write_block_to_dev_replace(sblock);
2145	}
 
 
 
 
 
 
 
 
 
2146}
2147
2148static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2149			   u8 *csum)
2150{
2151	struct btrfs_ordered_sum *sum = NULL;
2152	unsigned long index;
2153	unsigned long num_sectors;
2154
2155	while (!list_empty(&sctx->csum_list)) {
2156		sum = list_first_entry(&sctx->csum_list,
2157				       struct btrfs_ordered_sum, list);
2158		if (sum->bytenr > logical)
2159			return 0;
2160		if (sum->bytenr + sum->len > logical)
2161			break;
2162
2163		++sctx->stat.csum_discards;
2164		list_del(&sum->list);
2165		kfree(sum);
2166		sum = NULL;
2167	}
2168	if (!sum)
2169		return 0;
2170
2171	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2172	num_sectors = sum->len / sctx->sectorsize;
2173	memcpy(csum, sum->sums + index, sctx->csum_size);
 
 
2174	if (index == num_sectors - 1) {
2175		list_del(&sum->list);
2176		kfree(sum);
2177	}
2178	return 1;
2179}
2180
2181/* scrub extent tries to collect up to 64 kB for each bio */
2182static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
 
2183			u64 physical, struct btrfs_device *dev, u64 flags,
2184			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2185{
2186	int ret;
2187	u8 csum[BTRFS_CSUM_SIZE];
2188	u32 blocksize;
2189
2190	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2191		blocksize = sctx->sectorsize;
 
 
 
2192		spin_lock(&sctx->stat_lock);
2193		sctx->stat.data_extents_scrubbed++;
2194		sctx->stat.data_bytes_scrubbed += len;
2195		spin_unlock(&sctx->stat_lock);
2196	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2197		WARN_ON(sctx->nodesize != sctx->leafsize);
2198		blocksize = sctx->nodesize;
 
 
2199		spin_lock(&sctx->stat_lock);
2200		sctx->stat.tree_extents_scrubbed++;
2201		sctx->stat.tree_bytes_scrubbed += len;
2202		spin_unlock(&sctx->stat_lock);
2203	} else {
2204		blocksize = sctx->sectorsize;
2205		WARN_ON(1);
2206	}
2207
2208	while (len) {
2209		u64 l = min_t(u64, len, blocksize);
2210		int have_csum = 0;
2211
2212		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2213			/* push csums to sbio */
2214			have_csum = scrub_find_csum(sctx, logical, l, csum);
2215			if (have_csum == 0)
2216				++sctx->stat.no_csum;
2217			if (sctx->is_dev_replace && !have_csum) {
2218				ret = copy_nocow_pages(sctx, logical, l,
2219						       mirror_num,
2220						      physical_for_dev_replace);
2221				goto behind_scrub_pages;
2222			}
2223		}
2224		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2225				  mirror_num, have_csum ? csum : NULL, 0,
2226				  physical_for_dev_replace);
2227behind_scrub_pages:
2228		if (ret)
2229			return ret;
2230		len -= l;
2231		logical += l;
2232		physical += l;
2233		physical_for_dev_replace += l;
2234	}
2235	return 0;
2236}
2237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2238/*
2239 * Given a physical address, this will calculate it's
2240 * logical offset. if this is a parity stripe, it will return
2241 * the most left data stripe's logical offset.
2242 *
2243 * return 0 if it is a data stripe, 1 means parity stripe.
2244 */
2245static int get_raid56_logic_offset(u64 physical, int num,
2246				   struct map_lookup *map, u64 *offset)
 
2247{
2248	int i;
2249	int j = 0;
2250	u64 stripe_nr;
2251	u64 last_offset;
2252	int stripe_index;
2253	int rot;
 
 
 
 
 
2254
2255	last_offset = (physical - map->stripes[num].physical) *
2256		      nr_data_stripes(map);
2257	*offset = last_offset;
2258	for (i = 0; i < nr_data_stripes(map); i++) {
2259		*offset = last_offset + i * map->stripe_len;
2260
2261		stripe_nr = *offset;
2262		do_div(stripe_nr, map->stripe_len);
2263		do_div(stripe_nr, nr_data_stripes(map));
2264
2265		/* Work out the disk rotation on this stripe-set */
2266		rot = do_div(stripe_nr, map->num_stripes);
2267		/* calculate which stripe this data locates */
2268		rot += i;
2269		stripe_index = rot % map->num_stripes;
2270		if (stripe_index == num)
2271			return 0;
2272		if (stripe_index < num)
2273			j++;
2274	}
2275	*offset = last_offset + j * map->stripe_len;
2276	return 1;
2277}
2278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2279static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2280					   struct map_lookup *map,
2281					   struct btrfs_device *scrub_dev,
2282					   int num, u64 base, u64 length,
2283					   int is_dev_replace)
2284{
2285	struct btrfs_path *path;
2286	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2287	struct btrfs_root *root = fs_info->extent_root;
2288	struct btrfs_root *csum_root = fs_info->csum_root;
2289	struct btrfs_extent_item *extent;
2290	struct blk_plug plug;
2291	u64 flags;
2292	int ret;
2293	int slot;
2294	u64 nstripes;
2295	struct extent_buffer *l;
2296	struct btrfs_key key;
2297	u64 physical;
2298	u64 logical;
2299	u64 logic_end;
2300	u64 physical_end;
2301	u64 generation;
2302	int mirror_num;
2303	struct reada_control *reada1;
2304	struct reada_control *reada2;
2305	struct btrfs_key key_start;
2306	struct btrfs_key key_end;
2307	u64 increment = map->stripe_len;
2308	u64 offset;
2309	u64 extent_logical;
2310	u64 extent_physical;
2311	u64 extent_len;
 
 
2312	struct btrfs_device *extent_dev;
2313	int extent_mirror_num;
2314	int stop_loop = 0;
2315
2316	nstripes = length;
2317	physical = map->stripes[num].physical;
2318	offset = 0;
2319	do_div(nstripes, map->stripe_len);
2320	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2321		offset = map->stripe_len * num;
2322		increment = map->stripe_len * map->num_stripes;
2323		mirror_num = 1;
2324	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2325		int factor = map->num_stripes / map->sub_stripes;
2326		offset = map->stripe_len * (num / map->sub_stripes);
2327		increment = map->stripe_len * factor;
2328		mirror_num = num % map->sub_stripes + 1;
2329	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2330		increment = map->stripe_len;
2331		mirror_num = num % map->num_stripes + 1;
2332	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2333		increment = map->stripe_len;
2334		mirror_num = num % map->num_stripes + 1;
2335	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2336				BTRFS_BLOCK_GROUP_RAID6)) {
2337		get_raid56_logic_offset(physical, num, map, &offset);
2338		increment = map->stripe_len * nr_data_stripes(map);
2339		mirror_num = 1;
2340	} else {
2341		increment = map->stripe_len;
2342		mirror_num = 1;
2343	}
2344
2345	path = btrfs_alloc_path();
2346	if (!path)
2347		return -ENOMEM;
2348
 
 
 
 
 
 
2349	/*
2350	 * work on commit root. The related disk blocks are static as
2351	 * long as COW is applied. This means, it is save to rewrite
2352	 * them to repair disk errors without any race conditions
2353	 */
2354	path->search_commit_root = 1;
2355	path->skip_locking = 1;
2356
 
 
2357	/*
2358	 * trigger the readahead for extent tree csum tree and wait for
2359	 * completion. During readahead, the scrub is officially paused
2360	 * to not hold off transaction commits
2361	 */
2362	logical = base + offset;
2363	physical_end = physical + nstripes * map->stripe_len;
2364	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2365			 BTRFS_BLOCK_GROUP_RAID6)) {
2366		get_raid56_logic_offset(physical_end, num,
2367					map, &logic_end);
2368		logic_end += base;
2369	} else {
2370		logic_end = logical + increment * nstripes;
2371	}
2372	wait_event(sctx->list_wait,
2373		   atomic_read(&sctx->bios_in_flight) == 0);
2374	scrub_blocked_if_needed(fs_info);
2375
2376	/* FIXME it might be better to start readahead at commit root */
2377	key_start.objectid = logical;
2378	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2379	key_start.offset = (u64)0;
2380	key_end.objectid = logic_end;
2381	key_end.type = BTRFS_METADATA_ITEM_KEY;
2382	key_end.offset = (u64)-1;
2383	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2384
2385	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2386	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2387	key_start.offset = logical;
2388	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2389	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2390	key_end.offset = logic_end;
2391	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2392
2393	if (!IS_ERR(reada1))
2394		btrfs_reada_wait(reada1);
2395	if (!IS_ERR(reada2))
2396		btrfs_reada_wait(reada2);
2397
2398
2399	/*
2400	 * collect all data csums for the stripe to avoid seeking during
2401	 * the scrub. This might currently (crc32) end up to be about 1MB
2402	 */
2403	blk_start_plug(&plug);
2404
2405	/*
2406	 * now find all extents for each stripe and scrub them
2407	 */
2408	ret = 0;
2409	while (physical < physical_end) {
2410		/* for raid56, we skip parity stripe */
2411		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2412				BTRFS_BLOCK_GROUP_RAID6)) {
2413			ret = get_raid56_logic_offset(physical, num,
2414					map, &logical);
2415			logical += base;
2416			if (ret)
2417				goto skip;
2418		}
2419		/*
2420		 * canceled?
2421		 */
2422		if (atomic_read(&fs_info->scrub_cancel_req) ||
2423		    atomic_read(&sctx->cancel_req)) {
2424			ret = -ECANCELED;
2425			goto out;
2426		}
2427		/*
2428		 * check to see if we have to pause
2429		 */
2430		if (atomic_read(&fs_info->scrub_pause_req)) {
2431			/* push queued extents */
2432			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2433			scrub_submit(sctx);
2434			mutex_lock(&sctx->wr_ctx.wr_lock);
2435			scrub_wr_submit(sctx);
2436			mutex_unlock(&sctx->wr_ctx.wr_lock);
2437			wait_event(sctx->list_wait,
2438				   atomic_read(&sctx->bios_in_flight) == 0);
2439			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2440			scrub_blocked_if_needed(fs_info);
2441		}
2442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2443		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2444			key.type = BTRFS_METADATA_ITEM_KEY;
2445		else
2446			key.type = BTRFS_EXTENT_ITEM_KEY;
2447		key.objectid = logical;
2448		key.offset = (u64)-1;
2449
2450		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2451		if (ret < 0)
2452			goto out;
2453
2454		if (ret > 0) {
2455			ret = btrfs_previous_extent_item(root, path, 0);
2456			if (ret < 0)
2457				goto out;
2458			if (ret > 0) {
2459				/* there's no smaller item, so stick with the
2460				 * larger one */
2461				btrfs_release_path(path);
2462				ret = btrfs_search_slot(NULL, root, &key,
2463							path, 0, 0);
2464				if (ret < 0)
2465					goto out;
2466			}
2467		}
2468
2469		stop_loop = 0;
2470		while (1) {
2471			u64 bytes;
2472
2473			l = path->nodes[0];
2474			slot = path->slots[0];
2475			if (slot >= btrfs_header_nritems(l)) {
2476				ret = btrfs_next_leaf(root, path);
2477				if (ret == 0)
2478					continue;
2479				if (ret < 0)
2480					goto out;
2481
2482				stop_loop = 1;
2483				break;
2484			}
2485			btrfs_item_key_to_cpu(l, &key, slot);
2486
 
 
 
 
2487			if (key.type == BTRFS_METADATA_ITEM_KEY)
2488				bytes = root->leafsize;
2489			else
2490				bytes = key.offset;
2491
2492			if (key.objectid + bytes <= logical)
2493				goto next;
2494
2495			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2496			    key.type != BTRFS_METADATA_ITEM_KEY)
2497				goto next;
2498
2499			if (key.objectid >= logical + map->stripe_len) {
2500				/* out of this device extent */
2501				if (key.objectid >= logic_end)
2502					stop_loop = 1;
2503				break;
2504			}
2505
2506			extent = btrfs_item_ptr(l, slot,
2507						struct btrfs_extent_item);
2508			flags = btrfs_extent_flags(l, extent);
2509			generation = btrfs_extent_generation(l, extent);
2510
2511			if (key.objectid < logical &&
2512			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
 
 
2513				btrfs_err(fs_info,
2514					   "scrub: tree block %llu spanning "
2515					   "stripes, ignored. logical=%llu",
2516				       key.objectid, logical);
 
 
 
2517				goto next;
2518			}
2519
2520again:
2521			extent_logical = key.objectid;
2522			extent_len = bytes;
2523
2524			/*
2525			 * trim extent to this stripe
2526			 */
2527			if (extent_logical < logical) {
2528				extent_len -= logical - extent_logical;
2529				extent_logical = logical;
2530			}
2531			if (extent_logical + extent_len >
2532			    logical + map->stripe_len) {
2533				extent_len = logical + map->stripe_len -
2534					     extent_logical;
2535			}
2536
2537			extent_physical = extent_logical - logical + physical;
2538			extent_dev = scrub_dev;
2539			extent_mirror_num = mirror_num;
2540			if (is_dev_replace)
2541				scrub_remap_extent(fs_info, extent_logical,
2542						   extent_len, &extent_physical,
2543						   &extent_dev,
2544						   &extent_mirror_num);
2545
2546			ret = btrfs_lookup_csums_range(csum_root, logical,
2547						logical + map->stripe_len - 1,
2548						&sctx->csum_list, 1);
 
 
2549			if (ret)
2550				goto out;
2551
2552			ret = scrub_extent(sctx, extent_logical, extent_len,
2553					   extent_physical, extent_dev, flags,
2554					   generation, extent_mirror_num,
2555					   extent_logical - logical + physical);
 
 
 
2556			if (ret)
2557				goto out;
2558
2559			scrub_free_csums(sctx);
2560			if (extent_logical + extent_len <
2561			    key.objectid + bytes) {
2562				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2563					BTRFS_BLOCK_GROUP_RAID6)) {
2564					/*
2565					 * loop until we find next data stripe
2566					 * or we have finished all stripes.
2567					 */
2568					do {
2569						physical += map->stripe_len;
2570						ret = get_raid56_logic_offset(
2571								physical, num,
2572								map, &logical);
2573						logical += base;
2574					} while (physical < physical_end && ret);
 
 
 
 
 
 
 
 
 
 
 
 
2575				} else {
2576					physical += map->stripe_len;
2577					logical += increment;
2578				}
2579				if (logical < key.objectid + bytes) {
2580					cond_resched();
2581					goto again;
2582				}
2583
2584				if (physical >= physical_end) {
2585					stop_loop = 1;
2586					break;
2587				}
2588			}
2589next:
2590			path->slots[0]++;
2591		}
2592		btrfs_release_path(path);
2593skip:
2594		logical += increment;
2595		physical += map->stripe_len;
2596		spin_lock(&sctx->stat_lock);
2597		if (stop_loop)
2598			sctx->stat.last_physical = map->stripes[num].physical +
2599						   length;
2600		else
2601			sctx->stat.last_physical = physical;
2602		spin_unlock(&sctx->stat_lock);
2603		if (stop_loop)
2604			break;
2605	}
2606out:
2607	/* push queued extents */
2608	scrub_submit(sctx);
2609	mutex_lock(&sctx->wr_ctx.wr_lock);
2610	scrub_wr_submit(sctx);
2611	mutex_unlock(&sctx->wr_ctx.wr_lock);
2612
2613	blk_finish_plug(&plug);
2614	btrfs_free_path(path);
 
2615	return ret < 0 ? ret : 0;
2616}
2617
2618static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2619					  struct btrfs_device *scrub_dev,
2620					  u64 chunk_tree, u64 chunk_objectid,
2621					  u64 chunk_offset, u64 length,
2622					  u64 dev_offset, int is_dev_replace)
 
2623{
2624	struct btrfs_mapping_tree *map_tree =
2625		&sctx->dev_root->fs_info->mapping_tree;
2626	struct map_lookup *map;
2627	struct extent_map *em;
2628	int i;
2629	int ret = 0;
2630
2631	read_lock(&map_tree->map_tree.lock);
2632	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2633	read_unlock(&map_tree->map_tree.lock);
2634
2635	if (!em)
2636		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
2637
2638	map = (struct map_lookup *)em->bdev;
2639	if (em->start != chunk_offset)
2640		goto out;
2641
2642	if (em->len < length)
2643		goto out;
2644
2645	for (i = 0; i < map->num_stripes; ++i) {
2646		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2647		    map->stripes[i].physical == dev_offset) {
2648			ret = scrub_stripe(sctx, map, scrub_dev, i,
2649					   chunk_offset, length,
2650					   is_dev_replace);
2651			if (ret)
2652				goto out;
2653		}
2654	}
2655out:
2656	free_extent_map(em);
2657
2658	return ret;
2659}
2660
2661static noinline_for_stack
2662int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2663			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2664			   int is_dev_replace)
2665{
2666	struct btrfs_dev_extent *dev_extent = NULL;
2667	struct btrfs_path *path;
2668	struct btrfs_root *root = sctx->dev_root;
2669	struct btrfs_fs_info *fs_info = root->fs_info;
2670	u64 length;
2671	u64 chunk_tree;
2672	u64 chunk_objectid;
2673	u64 chunk_offset;
2674	int ret;
 
2675	int slot;
2676	struct extent_buffer *l;
2677	struct btrfs_key key;
2678	struct btrfs_key found_key;
2679	struct btrfs_block_group_cache *cache;
2680	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2681
2682	path = btrfs_alloc_path();
2683	if (!path)
2684		return -ENOMEM;
2685
2686	path->reada = 2;
2687	path->search_commit_root = 1;
2688	path->skip_locking = 1;
2689
2690	key.objectid = scrub_dev->devid;
2691	key.offset = 0ull;
2692	key.type = BTRFS_DEV_EXTENT_KEY;
2693
2694	while (1) {
2695		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2696		if (ret < 0)
2697			break;
2698		if (ret > 0) {
2699			if (path->slots[0] >=
2700			    btrfs_header_nritems(path->nodes[0])) {
2701				ret = btrfs_next_leaf(root, path);
2702				if (ret)
 
 
 
2703					break;
 
 
 
2704			}
2705		}
2706
2707		l = path->nodes[0];
2708		slot = path->slots[0];
2709
2710		btrfs_item_key_to_cpu(l, &found_key, slot);
2711
2712		if (found_key.objectid != scrub_dev->devid)
2713			break;
2714
2715		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2716			break;
2717
2718		if (found_key.offset >= end)
2719			break;
2720
2721		if (found_key.offset < key.offset)
2722			break;
2723
2724		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2725		length = btrfs_dev_extent_length(l, dev_extent);
2726
2727		if (found_key.offset + length <= start) {
2728			key.offset = found_key.offset + length;
2729			btrfs_release_path(path);
2730			continue;
2731		}
2732
2733		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2734		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2735		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2736
2737		/*
2738		 * get a reference on the corresponding block group to prevent
2739		 * the chunk from going away while we scrub it
2740		 */
2741		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2742		if (!cache) {
2743			ret = -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2744			break;
2745		}
 
 
2746		dev_replace->cursor_right = found_key.offset + length;
2747		dev_replace->cursor_left = found_key.offset;
2748		dev_replace->item_needs_writeback = 1;
2749		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2750				  chunk_offset, length, found_key.offset,
2751				  is_dev_replace);
 
2752
2753		/*
2754		 * flush, submit all pending read and write bios, afterwards
2755		 * wait for them.
2756		 * Note that in the dev replace case, a read request causes
2757		 * write requests that are submitted in the read completion
2758		 * worker. Therefore in the current situation, it is required
2759		 * that all write requests are flushed, so that all read and
2760		 * write requests are really completed when bios_in_flight
2761		 * changes to 0.
2762		 */
2763		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2764		scrub_submit(sctx);
2765		mutex_lock(&sctx->wr_ctx.wr_lock);
2766		scrub_wr_submit(sctx);
2767		mutex_unlock(&sctx->wr_ctx.wr_lock);
2768
2769		wait_event(sctx->list_wait,
2770			   atomic_read(&sctx->bios_in_flight) == 0);
2771		atomic_inc(&fs_info->scrubs_paused);
2772		wake_up(&fs_info->scrub_pause_wait);
2773
2774		/*
2775		 * must be called before we decrease @scrub_paused.
2776		 * make sure we don't block transaction commit while
2777		 * we are waiting pending workers finished.
2778		 */
2779		wait_event(sctx->list_wait,
2780			   atomic_read(&sctx->workers_pending) == 0);
2781		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
 
 
 
 
 
 
 
 
 
 
2782
2783		mutex_lock(&fs_info->scrub_lock);
2784		__scrub_blocked_if_needed(fs_info);
2785		atomic_dec(&fs_info->scrubs_paused);
2786		mutex_unlock(&fs_info->scrub_lock);
2787		wake_up(&fs_info->scrub_pause_wait);
 
 
 
 
 
 
 
 
 
 
2788
2789		btrfs_put_block_group(cache);
2790		if (ret)
2791			break;
2792		if (is_dev_replace &&
2793		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2794			ret = -EIO;
2795			break;
2796		}
2797		if (sctx->stat.malloc_errors > 0) {
2798			ret = -ENOMEM;
2799			break;
2800		}
2801
2802		dev_replace->cursor_left = dev_replace->cursor_right;
2803		dev_replace->item_needs_writeback = 1;
2804
2805		key.offset = found_key.offset + length;
2806		btrfs_release_path(path);
2807	}
2808
2809	btrfs_free_path(path);
2810
2811	/*
2812	 * ret can still be 1 from search_slot or next_leaf,
2813	 * that's not an error
2814	 */
2815	return ret < 0 ? ret : 0;
2816}
2817
2818static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2819					   struct btrfs_device *scrub_dev)
2820{
2821	int	i;
2822	u64	bytenr;
2823	u64	gen;
2824	int	ret;
2825	struct btrfs_root *root = sctx->dev_root;
2826
2827	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2828		return -EIO;
2829
2830	gen = root->fs_info->last_trans_committed;
 
 
 
 
2831
2832	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2833		bytenr = btrfs_sb_offset(i);
2834		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
 
2835			break;
2836
2837		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2838				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2839				  NULL, 1, bytenr);
2840		if (ret)
2841			return ret;
2842	}
2843	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2844
2845	return 0;
2846}
2847
2848/*
2849 * get a reference count on fs_info->scrub_workers. start worker if necessary
2850 */
2851static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2852						int is_dev_replace)
2853{
2854	int ret = 0;
2855	int flags = WQ_FREEZABLE | WQ_UNBOUND;
2856	int max_active = fs_info->thread_pool_size;
2857
2858	if (fs_info->scrub_workers_refcnt == 0) {
2859		if (is_dev_replace)
2860			fs_info->scrub_workers =
2861				btrfs_alloc_workqueue("btrfs-scrub", flags,
2862						      1, 4);
2863		else
2864			fs_info->scrub_workers =
2865				btrfs_alloc_workqueue("btrfs-scrub", flags,
2866						      max_active, 4);
2867		if (!fs_info->scrub_workers) {
2868			ret = -ENOMEM;
2869			goto out;
2870		}
2871		fs_info->scrub_wr_completion_workers =
2872			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
 
 
 
 
 
 
 
2873					      max_active, 2);
2874		if (!fs_info->scrub_wr_completion_workers) {
2875			ret = -ENOMEM;
2876			goto out;
2877		}
2878		fs_info->scrub_nocow_workers =
2879			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2880		if (!fs_info->scrub_nocow_workers) {
2881			ret = -ENOMEM;
2882			goto out;
2883		}
2884	}
2885	++fs_info->scrub_workers_refcnt;
2886out:
2887	return ret;
2888}
2889
2890static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2891{
2892	if (--fs_info->scrub_workers_refcnt == 0) {
2893		btrfs_destroy_workqueue(fs_info->scrub_workers);
2894		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2895		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2896	}
2897	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2898}
2899
2900int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2901		    u64 end, struct btrfs_scrub_progress *progress,
2902		    int readonly, int is_dev_replace)
2903{
2904	struct scrub_ctx *sctx;
2905	int ret;
2906	struct btrfs_device *dev;
 
 
 
 
2907
2908	if (btrfs_fs_closing(fs_info))
2909		return -EINVAL;
2910
2911	/*
2912	 * check some assumptions
2913	 */
2914	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2915		btrfs_err(fs_info,
2916			   "scrub: size assumption nodesize == leafsize (%d == %d) fails",
2917		       fs_info->chunk_root->nodesize,
2918		       fs_info->chunk_root->leafsize);
2919		return -EINVAL;
2920	}
2921
2922	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2923		/*
2924		 * in this case scrub is unable to calculate the checksum
2925		 * the way scrub is implemented. Do not handle this
2926		 * situation at all because it won't ever happen.
2927		 */
2928		btrfs_err(fs_info,
2929			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2930		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
 
2931		return -EINVAL;
2932	}
2933
2934	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2935		/* not supported for data w/o checksums */
2936		btrfs_err(fs_info,
2937			   "scrub: size assumption sectorsize != PAGE_SIZE "
2938			   "(%d != %lu) fails",
2939		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
2940		return -EINVAL;
2941	}
2942
2943	if (fs_info->chunk_root->nodesize >
2944	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2945	    fs_info->chunk_root->sectorsize >
2946	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2947		/*
2948		 * would exhaust the array bounds of pagev member in
2949		 * struct scrub_block
2950		 */
2951		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2952			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2953		       fs_info->chunk_root->nodesize,
2954		       SCRUB_MAX_PAGES_PER_BLOCK,
2955		       fs_info->chunk_root->sectorsize,
2956		       SCRUB_MAX_PAGES_PER_BLOCK);
2957		return -EINVAL;
2958	}
2959
 
 
 
 
2960
2961	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2962	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2963	if (!dev || (dev->missing && !is_dev_replace)) {
 
 
 
 
 
 
 
 
2964		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2965		return -ENODEV;
 
 
 
2966	}
2967
2968	mutex_lock(&fs_info->scrub_lock);
2969	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
 
2970		mutex_unlock(&fs_info->scrub_lock);
2971		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2972		return -EIO;
 
2973	}
2974
2975	btrfs_dev_replace_lock(&fs_info->dev_replace);
2976	if (dev->scrub_device ||
2977	    (!is_dev_replace &&
2978	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2979		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2980		mutex_unlock(&fs_info->scrub_lock);
2981		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2982		return -EINPROGRESS;
 
2983	}
2984	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2985
2986	ret = scrub_workers_get(fs_info, is_dev_replace);
2987	if (ret) {
2988		mutex_unlock(&fs_info->scrub_lock);
2989		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2990		return ret;
2991	}
2992
2993	sctx = scrub_setup_ctx(dev, is_dev_replace);
2994	if (IS_ERR(sctx)) {
2995		mutex_unlock(&fs_info->scrub_lock);
2996		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2997		scrub_workers_put(fs_info);
2998		return PTR_ERR(sctx);
2999	}
3000	sctx->readonly = readonly;
3001	dev->scrub_device = sctx;
3002	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3003
3004	/*
3005	 * checking @scrub_pause_req here, we can avoid
3006	 * race between committing transaction and scrubbing.
3007	 */
3008	__scrub_blocked_if_needed(fs_info);
3009	atomic_inc(&fs_info->scrubs_running);
3010	mutex_unlock(&fs_info->scrub_lock);
3011
 
 
 
 
 
 
 
 
 
 
3012	if (!is_dev_replace) {
 
3013		/*
3014		 * by holding device list mutex, we can
3015		 * kick off writing super in log tree sync.
3016		 */
3017		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3018		ret = scrub_supers(sctx, dev);
3019		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3020	}
3021
3022	if (!ret)
3023		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3024					     is_dev_replace);
3025
3026	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3027	atomic_dec(&fs_info->scrubs_running);
3028	wake_up(&fs_info->scrub_pause_wait);
3029
3030	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3031
3032	if (progress)
3033		memcpy(progress, &sctx->stat, sizeof(*progress));
3034
 
 
 
 
3035	mutex_lock(&fs_info->scrub_lock);
3036	dev->scrub_device = NULL;
3037	scrub_workers_put(fs_info);
 
 
 
 
 
 
 
 
3038	mutex_unlock(&fs_info->scrub_lock);
3039
 
 
 
 
 
 
 
 
3040	scrub_free_ctx(sctx);
3041
3042	return ret;
3043}
3044
3045void btrfs_scrub_pause(struct btrfs_root *root)
3046{
3047	struct btrfs_fs_info *fs_info = root->fs_info;
3048
3049	mutex_lock(&fs_info->scrub_lock);
3050	atomic_inc(&fs_info->scrub_pause_req);
3051	while (atomic_read(&fs_info->scrubs_paused) !=
3052	       atomic_read(&fs_info->scrubs_running)) {
3053		mutex_unlock(&fs_info->scrub_lock);
3054		wait_event(fs_info->scrub_pause_wait,
3055			   atomic_read(&fs_info->scrubs_paused) ==
3056			   atomic_read(&fs_info->scrubs_running));
3057		mutex_lock(&fs_info->scrub_lock);
3058	}
3059	mutex_unlock(&fs_info->scrub_lock);
3060}
3061
3062void btrfs_scrub_continue(struct btrfs_root *root)
3063{
3064	struct btrfs_fs_info *fs_info = root->fs_info;
3065
3066	atomic_dec(&fs_info->scrub_pause_req);
3067	wake_up(&fs_info->scrub_pause_wait);
3068}
3069
3070int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3071{
3072	mutex_lock(&fs_info->scrub_lock);
3073	if (!atomic_read(&fs_info->scrubs_running)) {
3074		mutex_unlock(&fs_info->scrub_lock);
3075		return -ENOTCONN;
3076	}
3077
3078	atomic_inc(&fs_info->scrub_cancel_req);
3079	while (atomic_read(&fs_info->scrubs_running)) {
3080		mutex_unlock(&fs_info->scrub_lock);
3081		wait_event(fs_info->scrub_pause_wait,
3082			   atomic_read(&fs_info->scrubs_running) == 0);
3083		mutex_lock(&fs_info->scrub_lock);
3084	}
3085	atomic_dec(&fs_info->scrub_cancel_req);
3086	mutex_unlock(&fs_info->scrub_lock);
3087
3088	return 0;
3089}
3090
3091int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3092			   struct btrfs_device *dev)
3093{
 
3094	struct scrub_ctx *sctx;
3095
3096	mutex_lock(&fs_info->scrub_lock);
3097	sctx = dev->scrub_device;
3098	if (!sctx) {
3099		mutex_unlock(&fs_info->scrub_lock);
3100		return -ENOTCONN;
3101	}
3102	atomic_inc(&sctx->cancel_req);
3103	while (dev->scrub_device) {
3104		mutex_unlock(&fs_info->scrub_lock);
3105		wait_event(fs_info->scrub_pause_wait,
3106			   dev->scrub_device == NULL);
3107		mutex_lock(&fs_info->scrub_lock);
3108	}
3109	mutex_unlock(&fs_info->scrub_lock);
3110
3111	return 0;
3112}
3113
3114int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3115			 struct btrfs_scrub_progress *progress)
3116{
3117	struct btrfs_device *dev;
3118	struct scrub_ctx *sctx = NULL;
3119
3120	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3121	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3122	if (dev)
3123		sctx = dev->scrub_device;
3124	if (sctx)
3125		memcpy(progress, &sctx->stat, sizeof(*progress));
3126	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3127
3128	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3129}
3130
3131static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3132			       u64 extent_logical, u64 extent_len,
3133			       u64 *extent_physical,
3134			       struct btrfs_device **extent_dev,
3135			       int *extent_mirror_num)
3136{
3137	u64 mapped_length;
3138	struct btrfs_bio *bbio = NULL;
3139	int ret;
3140
3141	mapped_length = extent_len;
3142	ret = btrfs_map_block(fs_info, READ, extent_logical,
3143			      &mapped_length, &bbio, 0);
3144	if (ret || !bbio || mapped_length < extent_len ||
3145	    !bbio->stripes[0].dev->bdev) {
3146		kfree(bbio);
3147		return;
3148	}
3149
3150	*extent_physical = bbio->stripes[0].physical;
3151	*extent_mirror_num = bbio->mirror_num;
3152	*extent_dev = bbio->stripes[0].dev;
3153	kfree(bbio);
3154}
3155
3156static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3157			      struct scrub_wr_ctx *wr_ctx,
3158			      struct btrfs_fs_info *fs_info,
3159			      struct btrfs_device *dev,
3160			      int is_dev_replace)
3161{
3162	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3163
3164	mutex_init(&wr_ctx->wr_lock);
3165	wr_ctx->wr_curr_bio = NULL;
3166	if (!is_dev_replace)
3167		return 0;
3168
3169	WARN_ON(!dev->bdev);
3170	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3171					 bio_get_nr_vecs(dev->bdev));
3172	wr_ctx->tgtdev = dev;
3173	atomic_set(&wr_ctx->flush_all_writes, 0);
3174	return 0;
3175}
3176
3177static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3178{
3179	mutex_lock(&wr_ctx->wr_lock);
3180	kfree(wr_ctx->wr_curr_bio);
3181	wr_ctx->wr_curr_bio = NULL;
3182	mutex_unlock(&wr_ctx->wr_lock);
3183}
3184
3185static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3186			    int mirror_num, u64 physical_for_dev_replace)
3187{
3188	struct scrub_copy_nocow_ctx *nocow_ctx;
3189	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3190
3191	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3192	if (!nocow_ctx) {
3193		spin_lock(&sctx->stat_lock);
3194		sctx->stat.malloc_errors++;
3195		spin_unlock(&sctx->stat_lock);
3196		return -ENOMEM;
3197	}
3198
3199	scrub_pending_trans_workers_inc(sctx);
3200
3201	nocow_ctx->sctx = sctx;
3202	nocow_ctx->logical = logical;
3203	nocow_ctx->len = len;
3204	nocow_ctx->mirror_num = mirror_num;
3205	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3206	btrfs_init_work(&nocow_ctx->work, copy_nocow_pages_worker, NULL, NULL);
3207	INIT_LIST_HEAD(&nocow_ctx->inodes);
3208	btrfs_queue_work(fs_info->scrub_nocow_workers,
3209			 &nocow_ctx->work);
3210
3211	return 0;
3212}
3213
3214static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3215{
3216	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3217	struct scrub_nocow_inode *nocow_inode;
3218
3219	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3220	if (!nocow_inode)
3221		return -ENOMEM;
3222	nocow_inode->inum = inum;
3223	nocow_inode->offset = offset;
3224	nocow_inode->root = root;
3225	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3226	return 0;
3227}
3228
3229#define COPY_COMPLETE 1
3230
3231static void copy_nocow_pages_worker(struct btrfs_work *work)
3232{
3233	struct scrub_copy_nocow_ctx *nocow_ctx =
3234		container_of(work, struct scrub_copy_nocow_ctx, work);
3235	struct scrub_ctx *sctx = nocow_ctx->sctx;
3236	u64 logical = nocow_ctx->logical;
3237	u64 len = nocow_ctx->len;
3238	int mirror_num = nocow_ctx->mirror_num;
3239	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3240	int ret;
3241	struct btrfs_trans_handle *trans = NULL;
3242	struct btrfs_fs_info *fs_info;
3243	struct btrfs_path *path;
3244	struct btrfs_root *root;
3245	int not_written = 0;
3246
3247	fs_info = sctx->dev_root->fs_info;
3248	root = fs_info->extent_root;
3249
3250	path = btrfs_alloc_path();
3251	if (!path) {
3252		spin_lock(&sctx->stat_lock);
3253		sctx->stat.malloc_errors++;
3254		spin_unlock(&sctx->stat_lock);
3255		not_written = 1;
3256		goto out;
3257	}
3258
3259	trans = btrfs_join_transaction(root);
3260	if (IS_ERR(trans)) {
3261		not_written = 1;
3262		goto out;
3263	}
3264
3265	ret = iterate_inodes_from_logical(logical, fs_info, path,
3266					  record_inode_for_nocow, nocow_ctx);
3267	if (ret != 0 && ret != -ENOENT) {
3268		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3269			"phys %llu, len %llu, mir %u, ret %d",
3270			logical, physical_for_dev_replace, len, mirror_num,
3271			ret);
3272		not_written = 1;
3273		goto out;
3274	}
3275
3276	btrfs_end_transaction(trans, root);
3277	trans = NULL;
3278	while (!list_empty(&nocow_ctx->inodes)) {
3279		struct scrub_nocow_inode *entry;
3280		entry = list_first_entry(&nocow_ctx->inodes,
3281					 struct scrub_nocow_inode,
3282					 list);
3283		list_del_init(&entry->list);
3284		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3285						 entry->root, nocow_ctx);
3286		kfree(entry);
3287		if (ret == COPY_COMPLETE) {
3288			ret = 0;
3289			break;
3290		} else if (ret) {
3291			break;
3292		}
3293	}
3294out:
3295	while (!list_empty(&nocow_ctx->inodes)) {
3296		struct scrub_nocow_inode *entry;
3297		entry = list_first_entry(&nocow_ctx->inodes,
3298					 struct scrub_nocow_inode,
3299					 list);
3300		list_del_init(&entry->list);
3301		kfree(entry);
3302	}
3303	if (trans && !IS_ERR(trans))
3304		btrfs_end_transaction(trans, root);
3305	if (not_written)
3306		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3307					    num_uncorrectable_read_errors);
3308
3309	btrfs_free_path(path);
3310	kfree(nocow_ctx);
3311
3312	scrub_pending_trans_workers_dec(sctx);
3313}
3314
3315static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3316				      struct scrub_copy_nocow_ctx *nocow_ctx)
3317{
3318	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3319	struct btrfs_key key;
3320	struct inode *inode;
3321	struct page *page;
3322	struct btrfs_root *local_root;
3323	struct btrfs_ordered_extent *ordered;
3324	struct extent_map *em;
3325	struct extent_state *cached_state = NULL;
3326	struct extent_io_tree *io_tree;
3327	u64 physical_for_dev_replace;
3328	u64 len = nocow_ctx->len;
3329	u64 lockstart = offset, lockend = offset + len - 1;
3330	unsigned long index;
3331	int srcu_index;
3332	int ret = 0;
3333	int err = 0;
3334
3335	key.objectid = root;
3336	key.type = BTRFS_ROOT_ITEM_KEY;
3337	key.offset = (u64)-1;
3338
3339	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3340
3341	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3342	if (IS_ERR(local_root)) {
3343		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3344		return PTR_ERR(local_root);
3345	}
3346
3347	key.type = BTRFS_INODE_ITEM_KEY;
3348	key.objectid = inum;
3349	key.offset = 0;
3350	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3351	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3352	if (IS_ERR(inode))
3353		return PTR_ERR(inode);
3354
3355	/* Avoid truncate/dio/punch hole.. */
3356	mutex_lock(&inode->i_mutex);
3357	inode_dio_wait(inode);
3358
3359	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3360	io_tree = &BTRFS_I(inode)->io_tree;
3361
3362	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3363	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3364	if (ordered) {
3365		btrfs_put_ordered_extent(ordered);
3366		goto out_unlock;
3367	}
3368
3369	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3370	if (IS_ERR(em)) {
3371		ret = PTR_ERR(em);
3372		goto out_unlock;
3373	}
3374
3375	/*
3376	 * This extent does not actually cover the logical extent anymore,
3377	 * move on to the next inode.
3378	 */
3379	if (em->block_start > nocow_ctx->logical ||
3380	    em->block_start + em->block_len < nocow_ctx->logical + len) {
3381		free_extent_map(em);
3382		goto out_unlock;
3383	}
3384	free_extent_map(em);
3385
3386	while (len >= PAGE_CACHE_SIZE) {
3387		index = offset >> PAGE_CACHE_SHIFT;
3388again:
3389		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3390		if (!page) {
3391			btrfs_err(fs_info, "find_or_create_page() failed");
3392			ret = -ENOMEM;
3393			goto out;
3394		}
3395
3396		if (PageUptodate(page)) {
3397			if (PageDirty(page))
3398				goto next_page;
3399		} else {
3400			ClearPageError(page);
3401			err = extent_read_full_page_nolock(io_tree, page,
3402							   btrfs_get_extent,
3403							   nocow_ctx->mirror_num);
3404			if (err) {
3405				ret = err;
3406				goto next_page;
3407			}
3408
3409			lock_page(page);
3410			/*
3411			 * If the page has been remove from the page cache,
3412			 * the data on it is meaningless, because it may be
3413			 * old one, the new data may be written into the new
3414			 * page in the page cache.
3415			 */
3416			if (page->mapping != inode->i_mapping) {
3417				unlock_page(page);
3418				page_cache_release(page);
3419				goto again;
3420			}
3421			if (!PageUptodate(page)) {
3422				ret = -EIO;
3423				goto next_page;
3424			}
3425		}
3426		err = write_page_nocow(nocow_ctx->sctx,
3427				       physical_for_dev_replace, page);
3428		if (err)
3429			ret = err;
3430next_page:
3431		unlock_page(page);
3432		page_cache_release(page);
3433
3434		if (ret)
3435			break;
3436
3437		offset += PAGE_CACHE_SIZE;
3438		physical_for_dev_replace += PAGE_CACHE_SIZE;
3439		len -= PAGE_CACHE_SIZE;
3440	}
3441	ret = COPY_COMPLETE;
3442out_unlock:
3443	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3444			     GFP_NOFS);
3445out:
3446	mutex_unlock(&inode->i_mutex);
3447	iput(inode);
3448	return ret;
3449}
3450
3451static int write_page_nocow(struct scrub_ctx *sctx,
3452			    u64 physical_for_dev_replace, struct page *page)
3453{
3454	struct bio *bio;
3455	struct btrfs_device *dev;
3456	int ret;
3457
3458	dev = sctx->wr_ctx.tgtdev;
3459	if (!dev)
3460		return -EIO;
3461	if (!dev->bdev) {
3462		printk_ratelimited(KERN_WARNING
3463			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3464		return -EIO;
3465	}
3466	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3467	if (!bio) {
3468		spin_lock(&sctx->stat_lock);
3469		sctx->stat.malloc_errors++;
3470		spin_unlock(&sctx->stat_lock);
3471		return -ENOMEM;
3472	}
3473	bio->bi_iter.bi_size = 0;
3474	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3475	bio->bi_bdev = dev->bdev;
3476	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3477	if (ret != PAGE_CACHE_SIZE) {
3478leave_with_eio:
3479		bio_put(bio);
3480		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3481		return -EIO;
3482	}
3483
3484	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3485		goto leave_with_eio;
3486
3487	bio_put(bio);
3488	return 0;
3489}