Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/power/main.c - Where the driver meets power management.
   4 *
   5 * Copyright (c) 2003 Patrick Mochel
   6 * Copyright (c) 2003 Open Source Development Lab
   7 *
   8 * The driver model core calls device_pm_add() when a device is registered.
   9 * This will initialize the embedded device_pm_info object in the device
  10 * and add it to the list of power-controlled devices. sysfs entries for
  11 * controlling device power management will also be added.
  12 *
  13 * A separate list is used for keeping track of power info, because the power
  14 * domain dependencies may differ from the ancestral dependencies that the
  15 * subsystem list maintains.
  16 */
  17
  18#define pr_fmt(fmt) "PM: " fmt
 
  19
  20#include <linux/device.h>
  21#include <linux/export.h>
  22#include <linux/mutex.h>
  23#include <linux/pm.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/pm-trace.h>
  26#include <linux/pm_wakeirq.h>
  27#include <linux/interrupt.h>
  28#include <linux/sched.h>
  29#include <linux/sched/debug.h>
  30#include <linux/async.h>
  31#include <linux/suspend.h>
  32#include <trace/events/power.h>
  33#include <linux/cpufreq.h>
  34#include <linux/cpuidle.h>
  35#include <linux/devfreq.h>
  36#include <linux/timer.h>
  37
  38#include "../base.h"
  39#include "power.h"
  40
  41typedef int (*pm_callback_t)(struct device *);
  42
 
 
 
 
  43/*
  44 * The entries in the dpm_list list are in a depth first order, simply
  45 * because children are guaranteed to be discovered after parents, and
  46 * are inserted at the back of the list on discovery.
  47 *
  48 * Since device_pm_add() may be called with a device lock held,
  49 * we must never try to acquire a device lock while holding
  50 * dpm_list_mutex.
  51 */
  52
  53LIST_HEAD(dpm_list);
  54static LIST_HEAD(dpm_prepared_list);
  55static LIST_HEAD(dpm_suspended_list);
  56static LIST_HEAD(dpm_late_early_list);
  57static LIST_HEAD(dpm_noirq_list);
  58
  59struct suspend_stats suspend_stats;
  60static DEFINE_MUTEX(dpm_list_mtx);
  61static pm_message_t pm_transition;
  62
  63static int async_error;
  64
  65static const char *pm_verb(int event)
  66{
  67	switch (event) {
  68	case PM_EVENT_SUSPEND:
  69		return "suspend";
  70	case PM_EVENT_RESUME:
  71		return "resume";
  72	case PM_EVENT_FREEZE:
  73		return "freeze";
  74	case PM_EVENT_QUIESCE:
  75		return "quiesce";
  76	case PM_EVENT_HIBERNATE:
  77		return "hibernate";
  78	case PM_EVENT_THAW:
  79		return "thaw";
  80	case PM_EVENT_RESTORE:
  81		return "restore";
  82	case PM_EVENT_RECOVER:
  83		return "recover";
  84	default:
  85		return "(unknown PM event)";
  86	}
  87}
  88
  89/**
  90 * device_pm_sleep_init - Initialize system suspend-related device fields.
  91 * @dev: Device object being initialized.
  92 */
  93void device_pm_sleep_init(struct device *dev)
  94{
  95	dev->power.is_prepared = false;
  96	dev->power.is_suspended = false;
  97	dev->power.is_noirq_suspended = false;
  98	dev->power.is_late_suspended = false;
  99	init_completion(&dev->power.completion);
 100	complete_all(&dev->power.completion);
 101	dev->power.wakeup = NULL;
 102	INIT_LIST_HEAD(&dev->power.entry);
 103}
 104
 105/**
 106 * device_pm_lock - Lock the list of active devices used by the PM core.
 107 */
 108void device_pm_lock(void)
 109{
 110	mutex_lock(&dpm_list_mtx);
 111}
 112
 113/**
 114 * device_pm_unlock - Unlock the list of active devices used by the PM core.
 115 */
 116void device_pm_unlock(void)
 117{
 118	mutex_unlock(&dpm_list_mtx);
 119}
 120
 121/**
 122 * device_pm_add - Add a device to the PM core's list of active devices.
 123 * @dev: Device to add to the list.
 124 */
 125void device_pm_add(struct device *dev)
 126{
 127	/* Skip PM setup/initialization. */
 128	if (device_pm_not_required(dev))
 129		return;
 130
 131	pr_debug("Adding info for %s:%s\n",
 132		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 133	device_pm_check_callbacks(dev);
 134	mutex_lock(&dpm_list_mtx);
 135	if (dev->parent && dev->parent->power.is_prepared)
 136		dev_warn(dev, "parent %s should not be sleeping\n",
 137			dev_name(dev->parent));
 138	list_add_tail(&dev->power.entry, &dpm_list);
 139	dev->power.in_dpm_list = true;
 140	mutex_unlock(&dpm_list_mtx);
 141}
 142
 143/**
 144 * device_pm_remove - Remove a device from the PM core's list of active devices.
 145 * @dev: Device to be removed from the list.
 146 */
 147void device_pm_remove(struct device *dev)
 148{
 149	if (device_pm_not_required(dev))
 150		return;
 151
 152	pr_debug("Removing info for %s:%s\n",
 153		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 154	complete_all(&dev->power.completion);
 155	mutex_lock(&dpm_list_mtx);
 156	list_del_init(&dev->power.entry);
 157	dev->power.in_dpm_list = false;
 158	mutex_unlock(&dpm_list_mtx);
 159	device_wakeup_disable(dev);
 160	pm_runtime_remove(dev);
 161	device_pm_check_callbacks(dev);
 162}
 163
 164/**
 165 * device_pm_move_before - Move device in the PM core's list of active devices.
 166 * @deva: Device to move in dpm_list.
 167 * @devb: Device @deva should come before.
 168 */
 169void device_pm_move_before(struct device *deva, struct device *devb)
 170{
 171	pr_debug("Moving %s:%s before %s:%s\n",
 172		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 173		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 174	/* Delete deva from dpm_list and reinsert before devb. */
 175	list_move_tail(&deva->power.entry, &devb->power.entry);
 176}
 177
 178/**
 179 * device_pm_move_after - Move device in the PM core's list of active devices.
 180 * @deva: Device to move in dpm_list.
 181 * @devb: Device @deva should come after.
 182 */
 183void device_pm_move_after(struct device *deva, struct device *devb)
 184{
 185	pr_debug("Moving %s:%s after %s:%s\n",
 186		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 187		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 188	/* Delete deva from dpm_list and reinsert after devb. */
 189	list_move(&deva->power.entry, &devb->power.entry);
 190}
 191
 192/**
 193 * device_pm_move_last - Move device to end of the PM core's list of devices.
 194 * @dev: Device to move in dpm_list.
 195 */
 196void device_pm_move_last(struct device *dev)
 197{
 198	pr_debug("Moving %s:%s to end of list\n",
 199		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 200	list_move_tail(&dev->power.entry, &dpm_list);
 201}
 202
 203static ktime_t initcall_debug_start(struct device *dev, void *cb)
 204{
 205	if (!pm_print_times_enabled)
 206		return 0;
 207
 208	dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
 209		 task_pid_nr(current),
 210		 dev->parent ? dev_name(dev->parent) : "none");
 211	return ktime_get();
 212}
 213
 214static void initcall_debug_report(struct device *dev, ktime_t calltime,
 215				  void *cb, int error)
 216{
 217	ktime_t rettime;
 218	s64 nsecs;
 219
 220	if (!pm_print_times_enabled)
 221		return;
 222
 223	rettime = ktime_get();
 224	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
 225
 226	dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
 227		 (unsigned long long)nsecs >> 10);
 228}
 229
 230/**
 231 * dpm_wait - Wait for a PM operation to complete.
 232 * @dev: Device to wait for.
 233 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 234 */
 235static void dpm_wait(struct device *dev, bool async)
 236{
 237	if (!dev)
 238		return;
 239
 240	if (async || (pm_async_enabled && dev->power.async_suspend))
 241		wait_for_completion(&dev->power.completion);
 242}
 243
 244static int dpm_wait_fn(struct device *dev, void *async_ptr)
 245{
 246	dpm_wait(dev, *((bool *)async_ptr));
 247	return 0;
 248}
 249
 250static void dpm_wait_for_children(struct device *dev, bool async)
 251{
 252       device_for_each_child(dev, &async, dpm_wait_fn);
 253}
 254
 255static void dpm_wait_for_suppliers(struct device *dev, bool async)
 256{
 257	struct device_link *link;
 258	int idx;
 259
 260	idx = device_links_read_lock();
 261
 262	/*
 263	 * If the supplier goes away right after we've checked the link to it,
 264	 * we'll wait for its completion to change the state, but that's fine,
 265	 * because the only things that will block as a result are the SRCU
 266	 * callbacks freeing the link objects for the links in the list we're
 267	 * walking.
 268	 */
 269	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
 270		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 271			dpm_wait(link->supplier, async);
 272
 273	device_links_read_unlock(idx);
 274}
 275
 276static void dpm_wait_for_superior(struct device *dev, bool async)
 277{
 278	dpm_wait(dev->parent, async);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279	dpm_wait_for_suppliers(dev, async);
 
 
 
 
 
 
 280}
 281
 282static void dpm_wait_for_consumers(struct device *dev, bool async)
 283{
 284	struct device_link *link;
 285	int idx;
 286
 287	idx = device_links_read_lock();
 288
 289	/*
 290	 * The status of a device link can only be changed from "dormant" by a
 291	 * probe, but that cannot happen during system suspend/resume.  In
 292	 * theory it can change to "dormant" at that time, but then it is
 293	 * reasonable to wait for the target device anyway (eg. if it goes
 294	 * away, it's better to wait for it to go away completely and then
 295	 * continue instead of trying to continue in parallel with its
 296	 * unregistration).
 297	 */
 298	list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
 299		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 300			dpm_wait(link->consumer, async);
 301
 302	device_links_read_unlock(idx);
 303}
 304
 305static void dpm_wait_for_subordinate(struct device *dev, bool async)
 306{
 307	dpm_wait_for_children(dev, async);
 308	dpm_wait_for_consumers(dev, async);
 309}
 310
 311/**
 312 * pm_op - Return the PM operation appropriate for given PM event.
 313 * @ops: PM operations to choose from.
 314 * @state: PM transition of the system being carried out.
 315 */
 316static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
 317{
 318	switch (state.event) {
 319#ifdef CONFIG_SUSPEND
 320	case PM_EVENT_SUSPEND:
 321		return ops->suspend;
 322	case PM_EVENT_RESUME:
 323		return ops->resume;
 324#endif /* CONFIG_SUSPEND */
 325#ifdef CONFIG_HIBERNATE_CALLBACKS
 326	case PM_EVENT_FREEZE:
 327	case PM_EVENT_QUIESCE:
 328		return ops->freeze;
 329	case PM_EVENT_HIBERNATE:
 330		return ops->poweroff;
 331	case PM_EVENT_THAW:
 332	case PM_EVENT_RECOVER:
 333		return ops->thaw;
 334		break;
 335	case PM_EVENT_RESTORE:
 336		return ops->restore;
 337#endif /* CONFIG_HIBERNATE_CALLBACKS */
 338	}
 339
 340	return NULL;
 341}
 342
 343/**
 344 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 345 * @ops: PM operations to choose from.
 346 * @state: PM transition of the system being carried out.
 347 *
 348 * Runtime PM is disabled for @dev while this function is being executed.
 349 */
 350static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
 351				      pm_message_t state)
 352{
 353	switch (state.event) {
 354#ifdef CONFIG_SUSPEND
 355	case PM_EVENT_SUSPEND:
 356		return ops->suspend_late;
 357	case PM_EVENT_RESUME:
 358		return ops->resume_early;
 359#endif /* CONFIG_SUSPEND */
 360#ifdef CONFIG_HIBERNATE_CALLBACKS
 361	case PM_EVENT_FREEZE:
 362	case PM_EVENT_QUIESCE:
 363		return ops->freeze_late;
 364	case PM_EVENT_HIBERNATE:
 365		return ops->poweroff_late;
 366	case PM_EVENT_THAW:
 367	case PM_EVENT_RECOVER:
 368		return ops->thaw_early;
 369	case PM_EVENT_RESTORE:
 370		return ops->restore_early;
 371#endif /* CONFIG_HIBERNATE_CALLBACKS */
 372	}
 373
 374	return NULL;
 375}
 376
 377/**
 378 * pm_noirq_op - Return the PM operation appropriate for given PM event.
 379 * @ops: PM operations to choose from.
 380 * @state: PM transition of the system being carried out.
 381 *
 382 * The driver of @dev will not receive interrupts while this function is being
 383 * executed.
 384 */
 385static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
 386{
 387	switch (state.event) {
 388#ifdef CONFIG_SUSPEND
 389	case PM_EVENT_SUSPEND:
 390		return ops->suspend_noirq;
 391	case PM_EVENT_RESUME:
 392		return ops->resume_noirq;
 393#endif /* CONFIG_SUSPEND */
 394#ifdef CONFIG_HIBERNATE_CALLBACKS
 395	case PM_EVENT_FREEZE:
 396	case PM_EVENT_QUIESCE:
 397		return ops->freeze_noirq;
 398	case PM_EVENT_HIBERNATE:
 399		return ops->poweroff_noirq;
 400	case PM_EVENT_THAW:
 401	case PM_EVENT_RECOVER:
 402		return ops->thaw_noirq;
 403	case PM_EVENT_RESTORE:
 404		return ops->restore_noirq;
 405#endif /* CONFIG_HIBERNATE_CALLBACKS */
 406	}
 407
 408	return NULL;
 409}
 410
 411static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
 412{
 413	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
 414		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
 415		", may wakeup" : "");
 416}
 417
 418static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
 419			int error)
 420{
 421	pr_err("Device %s failed to %s%s: error %d\n",
 422	       dev_name(dev), pm_verb(state.event), info, error);
 423}
 424
 425static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
 426			  const char *info)
 427{
 428	ktime_t calltime;
 429	u64 usecs64;
 430	int usecs;
 431
 432	calltime = ktime_get();
 433	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
 434	do_div(usecs64, NSEC_PER_USEC);
 435	usecs = usecs64;
 436	if (usecs == 0)
 437		usecs = 1;
 438
 439	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
 440		  info ?: "", info ? " " : "", pm_verb(state.event),
 441		  error ? "aborted" : "complete",
 442		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
 443}
 444
 445static int dpm_run_callback(pm_callback_t cb, struct device *dev,
 446			    pm_message_t state, const char *info)
 447{
 448	ktime_t calltime;
 449	int error;
 450
 451	if (!cb)
 452		return 0;
 453
 454	calltime = initcall_debug_start(dev, cb);
 455
 456	pm_dev_dbg(dev, state, info);
 457	trace_device_pm_callback_start(dev, info, state.event);
 458	error = cb(dev);
 459	trace_device_pm_callback_end(dev, error);
 460	suspend_report_result(cb, error);
 461
 462	initcall_debug_report(dev, calltime, cb, error);
 463
 464	return error;
 465}
 466
 467#ifdef CONFIG_DPM_WATCHDOG
 468struct dpm_watchdog {
 469	struct device		*dev;
 470	struct task_struct	*tsk;
 471	struct timer_list	timer;
 472};
 473
 474#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
 475	struct dpm_watchdog wd
 476
 477/**
 478 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 479 * @t: The timer that PM watchdog depends on.
 480 *
 481 * Called when a driver has timed out suspending or resuming.
 482 * There's not much we can do here to recover so panic() to
 483 * capture a crash-dump in pstore.
 484 */
 485static void dpm_watchdog_handler(struct timer_list *t)
 486{
 487	struct dpm_watchdog *wd = from_timer(wd, t, timer);
 488
 489	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
 490	show_stack(wd->tsk, NULL);
 491	panic("%s %s: unrecoverable failure\n",
 492		dev_driver_string(wd->dev), dev_name(wd->dev));
 493}
 494
 495/**
 496 * dpm_watchdog_set - Enable pm watchdog for given device.
 497 * @wd: Watchdog. Must be allocated on the stack.
 498 * @dev: Device to handle.
 499 */
 500static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
 501{
 502	struct timer_list *timer = &wd->timer;
 503
 504	wd->dev = dev;
 505	wd->tsk = current;
 506
 507	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
 508	/* use same timeout value for both suspend and resume */
 509	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
 510	add_timer(timer);
 511}
 512
 513/**
 514 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 515 * @wd: Watchdog to disable.
 516 */
 517static void dpm_watchdog_clear(struct dpm_watchdog *wd)
 518{
 519	struct timer_list *timer = &wd->timer;
 520
 521	del_timer_sync(timer);
 522	destroy_timer_on_stack(timer);
 523}
 524#else
 525#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
 526#define dpm_watchdog_set(x, y)
 527#define dpm_watchdog_clear(x)
 528#endif
 529
 530/*------------------------- Resume routines -------------------------*/
 531
 532/**
 533 * suspend_event - Return a "suspend" message for given "resume" one.
 534 * @resume_msg: PM message representing a system-wide resume transition.
 535 */
 536static pm_message_t suspend_event(pm_message_t resume_msg)
 537{
 538	switch (resume_msg.event) {
 539	case PM_EVENT_RESUME:
 540		return PMSG_SUSPEND;
 541	case PM_EVENT_THAW:
 542	case PM_EVENT_RESTORE:
 543		return PMSG_FREEZE;
 544	case PM_EVENT_RECOVER:
 545		return PMSG_HIBERNATE;
 546	}
 547	return PMSG_ON;
 548}
 549
 550/**
 551 * dev_pm_may_skip_resume - System-wide device resume optimization check.
 552 * @dev: Target device.
 553 *
 554 * Checks whether or not the device may be left in suspend after a system-wide
 555 * transition to the working state.
 
 
 
 556 */
 557bool dev_pm_may_skip_resume(struct device *dev)
 558{
 559	return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
 560}
 561
 562static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
 563						pm_message_t state,
 564						const char **info_p)
 565{
 566	pm_callback_t callback;
 567	const char *info;
 568
 569	if (dev->pm_domain) {
 570		info = "noirq power domain ";
 571		callback = pm_noirq_op(&dev->pm_domain->ops, state);
 572	} else if (dev->type && dev->type->pm) {
 573		info = "noirq type ";
 574		callback = pm_noirq_op(dev->type->pm, state);
 575	} else if (dev->class && dev->class->pm) {
 576		info = "noirq class ";
 577		callback = pm_noirq_op(dev->class->pm, state);
 578	} else if (dev->bus && dev->bus->pm) {
 579		info = "noirq bus ";
 580		callback = pm_noirq_op(dev->bus->pm, state);
 581	} else {
 582		return NULL;
 583	}
 584
 585	if (info_p)
 586		*info_p = info;
 587
 588	return callback;
 589}
 590
 591static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
 592						 pm_message_t state,
 593						 const char **info_p);
 594
 595static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
 596						pm_message_t state,
 597						const char **info_p);
 598
 599/**
 600 * device_resume_noirq - Execute a "noirq resume" callback for given device.
 601 * @dev: Device to handle.
 602 * @state: PM transition of the system being carried out.
 603 * @async: If true, the device is being resumed asynchronously.
 604 *
 605 * The driver of @dev will not receive interrupts while this function is being
 606 * executed.
 607 */
 608static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
 609{
 610	pm_callback_t callback;
 611	const char *info;
 612	bool skip_resume;
 613	int error = 0;
 614
 615	TRACE_DEVICE(dev);
 616	TRACE_RESUME(0);
 617
 618	if (dev->power.syscore || dev->power.direct_complete)
 619		goto Out;
 620
 621	if (!dev->power.is_noirq_suspended)
 622		goto Out;
 623
 624	dpm_wait_for_superior(dev, async);
 
 625
 626	skip_resume = dev_pm_may_skip_resume(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627
 628	callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
 
 
 
 
 
 
 
 
 
 
 
 
 629	if (callback)
 630		goto Run;
 631
 632	if (skip_resume)
 633		goto Skip;
 634
 635	if (dev_pm_smart_suspend_and_suspended(dev)) {
 636		pm_message_t suspend_msg = suspend_event(state);
 637
 638		/*
 639		 * If "freeze" callbacks have been skipped during a transition
 640		 * related to hibernation, the subsequent "thaw" callbacks must
 641		 * be skipped too or bad things may happen.  Otherwise, resume
 642		 * callbacks are going to be run for the device, so its runtime
 643		 * PM status must be changed to reflect the new state after the
 644		 * transition under way.
 645		 */
 646		if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
 647		    !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
 648			if (state.event == PM_EVENT_THAW) {
 649				skip_resume = true;
 650				goto Skip;
 651			} else {
 652				pm_runtime_set_active(dev);
 653			}
 654		}
 655	}
 656
 657	if (dev->driver && dev->driver->pm) {
 658		info = "noirq driver ";
 659		callback = pm_noirq_op(dev->driver->pm, state);
 660	}
 661
 662Run:
 663	error = dpm_run_callback(callback, dev, state, info);
 664
 665Skip:
 666	dev->power.is_noirq_suspended = false;
 667
 668	if (skip_resume) {
 669		/* Make the next phases of resume skip the device. */
 670		dev->power.is_late_suspended = false;
 671		dev->power.is_suspended = false;
 672		/*
 673		 * The device is going to be left in suspend, but it might not
 674		 * have been in runtime suspend before the system suspended, so
 675		 * its runtime PM status needs to be updated to avoid confusing
 676		 * the runtime PM framework when runtime PM is enabled for the
 677		 * device again.
 678		 */
 679		pm_runtime_set_suspended(dev);
 680	}
 681
 682Out:
 683	complete_all(&dev->power.completion);
 684	TRACE_RESUME(error);
 685	return error;
 686}
 687
 688static bool is_async(struct device *dev)
 689{
 690	return dev->power.async_suspend && pm_async_enabled
 691		&& !pm_trace_is_enabled();
 692}
 693
 694static bool dpm_async_fn(struct device *dev, async_func_t func)
 695{
 696	reinit_completion(&dev->power.completion);
 697
 698	if (is_async(dev)) {
 699		get_device(dev);
 700		async_schedule(func, dev);
 701		return true;
 702	}
 703
 704	return false;
 705}
 706
 707static void async_resume_noirq(void *data, async_cookie_t cookie)
 708{
 709	struct device *dev = (struct device *)data;
 710	int error;
 711
 712	error = device_resume_noirq(dev, pm_transition, true);
 713	if (error)
 714		pm_dev_err(dev, pm_transition, " async", error);
 715
 716	put_device(dev);
 717}
 718
 719static void dpm_noirq_resume_devices(pm_message_t state)
 720{
 721	struct device *dev;
 722	ktime_t starttime = ktime_get();
 723
 724	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
 725	mutex_lock(&dpm_list_mtx);
 726	pm_transition = state;
 727
 728	/*
 729	 * Advanced the async threads upfront,
 730	 * in case the starting of async threads is
 731	 * delayed by non-async resuming devices.
 732	 */
 733	list_for_each_entry(dev, &dpm_noirq_list, power.entry)
 734		dpm_async_fn(dev, async_resume_noirq);
 735
 736	while (!list_empty(&dpm_noirq_list)) {
 737		dev = to_device(dpm_noirq_list.next);
 738		get_device(dev);
 739		list_move_tail(&dev->power.entry, &dpm_late_early_list);
 
 740		mutex_unlock(&dpm_list_mtx);
 741
 742		if (!is_async(dev)) {
 743			int error;
 744
 745			error = device_resume_noirq(dev, state, false);
 746			if (error) {
 747				suspend_stats.failed_resume_noirq++;
 748				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
 749				dpm_save_failed_dev(dev_name(dev));
 750				pm_dev_err(dev, state, " noirq", error);
 751			}
 752		}
 753
 754		mutex_lock(&dpm_list_mtx);
 755		put_device(dev);
 
 
 756	}
 757	mutex_unlock(&dpm_list_mtx);
 758	async_synchronize_full();
 759	dpm_show_time(starttime, state, 0, "noirq");
 760	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
 761}
 762
 763/**
 764 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
 765 * @state: PM transition of the system being carried out.
 766 *
 767 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
 768 * allow device drivers' interrupt handlers to be called.
 769 */
 770void dpm_resume_noirq(pm_message_t state)
 771{
 772	dpm_noirq_resume_devices(state);
 773
 774	resume_device_irqs();
 775	device_wakeup_disarm_wake_irqs();
 776
 777	cpuidle_resume();
 778}
 779
 780static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
 781						pm_message_t state,
 782						const char **info_p)
 783{
 784	pm_callback_t callback;
 785	const char *info;
 786
 787	if (dev->pm_domain) {
 788		info = "early power domain ";
 789		callback = pm_late_early_op(&dev->pm_domain->ops, state);
 790	} else if (dev->type && dev->type->pm) {
 791		info = "early type ";
 792		callback = pm_late_early_op(dev->type->pm, state);
 793	} else if (dev->class && dev->class->pm) {
 794		info = "early class ";
 795		callback = pm_late_early_op(dev->class->pm, state);
 796	} else if (dev->bus && dev->bus->pm) {
 797		info = "early bus ";
 798		callback = pm_late_early_op(dev->bus->pm, state);
 799	} else {
 800		return NULL;
 801	}
 802
 803	if (info_p)
 804		*info_p = info;
 805
 806	return callback;
 807}
 808
 809/**
 810 * device_resume_early - Execute an "early resume" callback for given device.
 811 * @dev: Device to handle.
 812 * @state: PM transition of the system being carried out.
 813 * @async: If true, the device is being resumed asynchronously.
 814 *
 815 * Runtime PM is disabled for @dev while this function is being executed.
 816 */
 817static int device_resume_early(struct device *dev, pm_message_t state, bool async)
 818{
 819	pm_callback_t callback;
 820	const char *info;
 821	int error = 0;
 822
 823	TRACE_DEVICE(dev);
 824	TRACE_RESUME(0);
 825
 826	if (dev->power.syscore || dev->power.direct_complete)
 827		goto Out;
 828
 829	if (!dev->power.is_late_suspended)
 830		goto Out;
 831
 832	dpm_wait_for_superior(dev, async);
 
 833
 834	callback = dpm_subsys_resume_early_cb(dev, state, &info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836	if (!callback && dev->driver && dev->driver->pm) {
 
 
 
 837		info = "early driver ";
 838		callback = pm_late_early_op(dev->driver->pm, state);
 839	}
 840
 
 841	error = dpm_run_callback(callback, dev, state, info);
 
 
 842	dev->power.is_late_suspended = false;
 843
 844 Out:
 845	TRACE_RESUME(error);
 846
 847	pm_runtime_enable(dev);
 848	complete_all(&dev->power.completion);
 849	return error;
 850}
 851
 852static void async_resume_early(void *data, async_cookie_t cookie)
 853{
 854	struct device *dev = (struct device *)data;
 855	int error;
 856
 857	error = device_resume_early(dev, pm_transition, true);
 858	if (error)
 859		pm_dev_err(dev, pm_transition, " async", error);
 860
 861	put_device(dev);
 862}
 863
 864/**
 865 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 866 * @state: PM transition of the system being carried out.
 867 */
 868void dpm_resume_early(pm_message_t state)
 869{
 870	struct device *dev;
 871	ktime_t starttime = ktime_get();
 872
 873	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
 874	mutex_lock(&dpm_list_mtx);
 875	pm_transition = state;
 876
 877	/*
 878	 * Advanced the async threads upfront,
 879	 * in case the starting of async threads is
 880	 * delayed by non-async resuming devices.
 881	 */
 882	list_for_each_entry(dev, &dpm_late_early_list, power.entry)
 883		dpm_async_fn(dev, async_resume_early);
 884
 885	while (!list_empty(&dpm_late_early_list)) {
 886		dev = to_device(dpm_late_early_list.next);
 887		get_device(dev);
 888		list_move_tail(&dev->power.entry, &dpm_suspended_list);
 
 889		mutex_unlock(&dpm_list_mtx);
 890
 891		if (!is_async(dev)) {
 892			int error;
 893
 894			error = device_resume_early(dev, state, false);
 895			if (error) {
 896				suspend_stats.failed_resume_early++;
 897				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
 898				dpm_save_failed_dev(dev_name(dev));
 899				pm_dev_err(dev, state, " early", error);
 900			}
 901		}
 902		mutex_lock(&dpm_list_mtx);
 903		put_device(dev);
 
 
 904	}
 905	mutex_unlock(&dpm_list_mtx);
 906	async_synchronize_full();
 907	dpm_show_time(starttime, state, 0, "early");
 908	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
 909}
 910
 911/**
 912 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 913 * @state: PM transition of the system being carried out.
 914 */
 915void dpm_resume_start(pm_message_t state)
 916{
 917	dpm_resume_noirq(state);
 918	dpm_resume_early(state);
 919}
 920EXPORT_SYMBOL_GPL(dpm_resume_start);
 921
 922/**
 923 * device_resume - Execute "resume" callbacks for given device.
 924 * @dev: Device to handle.
 925 * @state: PM transition of the system being carried out.
 926 * @async: If true, the device is being resumed asynchronously.
 927 */
 928static int device_resume(struct device *dev, pm_message_t state, bool async)
 929{
 930	pm_callback_t callback = NULL;
 931	const char *info = NULL;
 932	int error = 0;
 933	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
 934
 935	TRACE_DEVICE(dev);
 936	TRACE_RESUME(0);
 937
 938	if (dev->power.syscore)
 939		goto Complete;
 940
 941	if (dev->power.direct_complete) {
 942		/* Match the pm_runtime_disable() in __device_suspend(). */
 943		pm_runtime_enable(dev);
 944		goto Complete;
 945	}
 946
 947	dpm_wait_for_superior(dev, async);
 
 
 948	dpm_watchdog_set(&wd, dev);
 949	device_lock(dev);
 950
 951	/*
 952	 * This is a fib.  But we'll allow new children to be added below
 953	 * a resumed device, even if the device hasn't been completed yet.
 954	 */
 955	dev->power.is_prepared = false;
 956
 957	if (!dev->power.is_suspended)
 958		goto Unlock;
 959
 960	if (dev->pm_domain) {
 961		info = "power domain ";
 962		callback = pm_op(&dev->pm_domain->ops, state);
 963		goto Driver;
 964	}
 965
 966	if (dev->type && dev->type->pm) {
 967		info = "type ";
 968		callback = pm_op(dev->type->pm, state);
 969		goto Driver;
 970	}
 971
 972	if (dev->class && dev->class->pm) {
 973		info = "class ";
 974		callback = pm_op(dev->class->pm, state);
 975		goto Driver;
 976	}
 977
 978	if (dev->bus) {
 979		if (dev->bus->pm) {
 980			info = "bus ";
 981			callback = pm_op(dev->bus->pm, state);
 982		} else if (dev->bus->resume) {
 983			info = "legacy bus ";
 984			callback = dev->bus->resume;
 985			goto End;
 986		}
 987	}
 988
 989 Driver:
 990	if (!callback && dev->driver && dev->driver->pm) {
 991		info = "driver ";
 992		callback = pm_op(dev->driver->pm, state);
 993	}
 994
 995 End:
 996	error = dpm_run_callback(callback, dev, state, info);
 997	dev->power.is_suspended = false;
 998
 999 Unlock:
1000	device_unlock(dev);
1001	dpm_watchdog_clear(&wd);
1002
1003 Complete:
1004	complete_all(&dev->power.completion);
1005
1006	TRACE_RESUME(error);
1007
1008	return error;
1009}
1010
1011static void async_resume(void *data, async_cookie_t cookie)
1012{
1013	struct device *dev = (struct device *)data;
1014	int error;
1015
1016	error = device_resume(dev, pm_transition, true);
1017	if (error)
1018		pm_dev_err(dev, pm_transition, " async", error);
1019	put_device(dev);
1020}
1021
1022/**
1023 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1024 * @state: PM transition of the system being carried out.
1025 *
1026 * Execute the appropriate "resume" callback for all devices whose status
1027 * indicates that they are suspended.
1028 */
1029void dpm_resume(pm_message_t state)
1030{
1031	struct device *dev;
1032	ktime_t starttime = ktime_get();
1033
1034	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1035	might_sleep();
1036
1037	mutex_lock(&dpm_list_mtx);
1038	pm_transition = state;
1039	async_error = 0;
1040
1041	list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1042		dpm_async_fn(dev, async_resume);
1043
1044	while (!list_empty(&dpm_suspended_list)) {
1045		dev = to_device(dpm_suspended_list.next);
1046		get_device(dev);
1047		if (!is_async(dev)) {
1048			int error;
1049
1050			mutex_unlock(&dpm_list_mtx);
1051
1052			error = device_resume(dev, state, false);
1053			if (error) {
1054				suspend_stats.failed_resume++;
1055				dpm_save_failed_step(SUSPEND_RESUME);
1056				dpm_save_failed_dev(dev_name(dev));
1057				pm_dev_err(dev, state, "", error);
1058			}
1059
1060			mutex_lock(&dpm_list_mtx);
1061		}
1062		if (!list_empty(&dev->power.entry))
1063			list_move_tail(&dev->power.entry, &dpm_prepared_list);
 
 
 
1064		put_device(dev);
 
 
1065	}
1066	mutex_unlock(&dpm_list_mtx);
1067	async_synchronize_full();
1068	dpm_show_time(starttime, state, 0, NULL);
1069
1070	cpufreq_resume();
1071	devfreq_resume();
1072	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1073}
1074
1075/**
1076 * device_complete - Complete a PM transition for given device.
1077 * @dev: Device to handle.
1078 * @state: PM transition of the system being carried out.
1079 */
1080static void device_complete(struct device *dev, pm_message_t state)
1081{
1082	void (*callback)(struct device *) = NULL;
1083	const char *info = NULL;
1084
1085	if (dev->power.syscore)
1086		return;
1087
1088	device_lock(dev);
1089
1090	if (dev->pm_domain) {
1091		info = "completing power domain ";
1092		callback = dev->pm_domain->ops.complete;
1093	} else if (dev->type && dev->type->pm) {
1094		info = "completing type ";
1095		callback = dev->type->pm->complete;
1096	} else if (dev->class && dev->class->pm) {
1097		info = "completing class ";
1098		callback = dev->class->pm->complete;
1099	} else if (dev->bus && dev->bus->pm) {
1100		info = "completing bus ";
1101		callback = dev->bus->pm->complete;
1102	}
1103
1104	if (!callback && dev->driver && dev->driver->pm) {
1105		info = "completing driver ";
1106		callback = dev->driver->pm->complete;
1107	}
1108
1109	if (callback) {
1110		pm_dev_dbg(dev, state, info);
1111		callback(dev);
1112	}
1113
1114	device_unlock(dev);
1115
 
1116	pm_runtime_put(dev);
1117}
1118
1119/**
1120 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1121 * @state: PM transition of the system being carried out.
1122 *
1123 * Execute the ->complete() callbacks for all devices whose PM status is not
1124 * DPM_ON (this allows new devices to be registered).
1125 */
1126void dpm_complete(pm_message_t state)
1127{
1128	struct list_head list;
1129
1130	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1131	might_sleep();
1132
1133	INIT_LIST_HEAD(&list);
1134	mutex_lock(&dpm_list_mtx);
1135	while (!list_empty(&dpm_prepared_list)) {
1136		struct device *dev = to_device(dpm_prepared_list.prev);
1137
1138		get_device(dev);
1139		dev->power.is_prepared = false;
1140		list_move(&dev->power.entry, &list);
 
1141		mutex_unlock(&dpm_list_mtx);
1142
1143		trace_device_pm_callback_start(dev, "", state.event);
1144		device_complete(dev, state);
1145		trace_device_pm_callback_end(dev, 0);
1146
1147		mutex_lock(&dpm_list_mtx);
1148		put_device(dev);
 
 
1149	}
1150	list_splice(&list, &dpm_list);
1151	mutex_unlock(&dpm_list_mtx);
1152
1153	/* Allow device probing and trigger re-probing of deferred devices */
1154	device_unblock_probing();
1155	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1156}
1157
1158/**
1159 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1160 * @state: PM transition of the system being carried out.
1161 *
1162 * Execute "resume" callbacks for all devices and complete the PM transition of
1163 * the system.
1164 */
1165void dpm_resume_end(pm_message_t state)
1166{
1167	dpm_resume(state);
1168	dpm_complete(state);
1169}
1170EXPORT_SYMBOL_GPL(dpm_resume_end);
1171
1172
1173/*------------------------- Suspend routines -------------------------*/
1174
1175/**
1176 * resume_event - Return a "resume" message for given "suspend" sleep state.
1177 * @sleep_state: PM message representing a sleep state.
1178 *
1179 * Return a PM message representing the resume event corresponding to given
1180 * sleep state.
1181 */
1182static pm_message_t resume_event(pm_message_t sleep_state)
1183{
1184	switch (sleep_state.event) {
1185	case PM_EVENT_SUSPEND:
1186		return PMSG_RESUME;
1187	case PM_EVENT_FREEZE:
1188	case PM_EVENT_QUIESCE:
1189		return PMSG_RECOVER;
1190	case PM_EVENT_HIBERNATE:
1191		return PMSG_RESTORE;
1192	}
1193	return PMSG_ON;
1194}
1195
1196static void dpm_superior_set_must_resume(struct device *dev)
1197{
1198	struct device_link *link;
1199	int idx;
1200
1201	if (dev->parent)
1202		dev->parent->power.must_resume = true;
1203
1204	idx = device_links_read_lock();
1205
1206	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1207		link->supplier->power.must_resume = true;
1208
1209	device_links_read_unlock(idx);
1210}
1211
1212static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1213						 pm_message_t state,
1214						 const char **info_p)
1215{
1216	pm_callback_t callback;
1217	const char *info;
1218
1219	if (dev->pm_domain) {
1220		info = "noirq power domain ";
1221		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1222	} else if (dev->type && dev->type->pm) {
1223		info = "noirq type ";
1224		callback = pm_noirq_op(dev->type->pm, state);
1225	} else if (dev->class && dev->class->pm) {
1226		info = "noirq class ";
1227		callback = pm_noirq_op(dev->class->pm, state);
1228	} else if (dev->bus && dev->bus->pm) {
1229		info = "noirq bus ";
1230		callback = pm_noirq_op(dev->bus->pm, state);
1231	} else {
1232		return NULL;
1233	}
1234
1235	if (info_p)
1236		*info_p = info;
1237
1238	return callback;
1239}
1240
1241static bool device_must_resume(struct device *dev, pm_message_t state,
1242			       bool no_subsys_suspend_noirq)
1243{
1244	pm_message_t resume_msg = resume_event(state);
1245
1246	/*
1247	 * If all of the device driver's "noirq", "late" and "early" callbacks
1248	 * are invoked directly by the core, the decision to allow the device to
1249	 * stay in suspend can be based on its current runtime PM status and its
1250	 * wakeup settings.
1251	 */
1252	if (no_subsys_suspend_noirq &&
1253	    !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1254	    !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1255	    !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1256		return !pm_runtime_status_suspended(dev) &&
1257			(resume_msg.event != PM_EVENT_RESUME ||
1258			 (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1259
1260	/*
1261	 * The only safe strategy here is to require that if the device may not
1262	 * be left in suspend, resume callbacks must be invoked for it.
1263	 */
1264	return !dev->power.may_skip_resume;
1265}
1266
1267/**
1268 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1269 * @dev: Device to handle.
1270 * @state: PM transition of the system being carried out.
1271 * @async: If true, the device is being suspended asynchronously.
1272 *
1273 * The driver of @dev will not receive interrupts while this function is being
1274 * executed.
1275 */
1276static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1277{
1278	pm_callback_t callback;
1279	const char *info;
1280	bool no_subsys_cb = false;
1281	int error = 0;
1282
1283	TRACE_DEVICE(dev);
1284	TRACE_SUSPEND(0);
1285
1286	dpm_wait_for_subordinate(dev, async);
1287
1288	if (async_error)
1289		goto Complete;
1290
1291	if (dev->power.syscore || dev->power.direct_complete)
1292		goto Complete;
1293
1294	callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
 
 
 
 
 
 
 
 
 
 
 
 
1295	if (callback)
1296		goto Run;
1297
1298	no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1299
1300	if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1301		goto Skip;
1302
1303	if (dev->driver && dev->driver->pm) {
1304		info = "noirq driver ";
1305		callback = pm_noirq_op(dev->driver->pm, state);
1306	}
1307
1308Run:
1309	error = dpm_run_callback(callback, dev, state, info);
1310	if (error) {
1311		async_error = error;
1312		goto Complete;
1313	}
1314
1315Skip:
1316	dev->power.is_noirq_suspended = true;
1317
1318	if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1319		dev->power.must_resume = dev->power.must_resume ||
1320				atomic_read(&dev->power.usage_count) > 1 ||
1321				device_must_resume(dev, state, no_subsys_cb);
1322	} else {
 
 
 
 
1323		dev->power.must_resume = true;
1324	}
1325
1326	if (dev->power.must_resume)
1327		dpm_superior_set_must_resume(dev);
1328
1329Complete:
1330	complete_all(&dev->power.completion);
1331	TRACE_SUSPEND(error);
1332	return error;
1333}
1334
1335static void async_suspend_noirq(void *data, async_cookie_t cookie)
1336{
1337	struct device *dev = (struct device *)data;
1338	int error;
1339
1340	error = __device_suspend_noirq(dev, pm_transition, true);
1341	if (error) {
1342		dpm_save_failed_dev(dev_name(dev));
1343		pm_dev_err(dev, pm_transition, " async", error);
1344	}
1345
1346	put_device(dev);
1347}
1348
1349static int device_suspend_noirq(struct device *dev)
1350{
1351	if (dpm_async_fn(dev, async_suspend_noirq))
1352		return 0;
1353
1354	return __device_suspend_noirq(dev, pm_transition, false);
1355}
1356
1357static int dpm_noirq_suspend_devices(pm_message_t state)
1358{
1359	ktime_t starttime = ktime_get();
1360	int error = 0;
1361
1362	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1363	mutex_lock(&dpm_list_mtx);
1364	pm_transition = state;
1365	async_error = 0;
1366
1367	while (!list_empty(&dpm_late_early_list)) {
1368		struct device *dev = to_device(dpm_late_early_list.prev);
1369
1370		get_device(dev);
1371		mutex_unlock(&dpm_list_mtx);
1372
1373		error = device_suspend_noirq(dev);
1374
1375		mutex_lock(&dpm_list_mtx);
 
1376		if (error) {
1377			pm_dev_err(dev, state, " noirq", error);
1378			dpm_save_failed_dev(dev_name(dev));
1379			put_device(dev);
1380			break;
1381		}
1382		if (!list_empty(&dev->power.entry))
1383			list_move(&dev->power.entry, &dpm_noirq_list);
 
 
 
 
1384		put_device(dev);
1385
1386		if (async_error)
 
 
1387			break;
1388	}
1389	mutex_unlock(&dpm_list_mtx);
1390	async_synchronize_full();
1391	if (!error)
1392		error = async_error;
1393
1394	if (error) {
1395		suspend_stats.failed_suspend_noirq++;
1396		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1397	}
1398	dpm_show_time(starttime, state, error, "noirq");
1399	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1400	return error;
1401}
1402
1403/**
1404 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1405 * @state: PM transition of the system being carried out.
1406 *
1407 * Prevent device drivers' interrupt handlers from being called and invoke
1408 * "noirq" suspend callbacks for all non-sysdev devices.
1409 */
1410int dpm_suspend_noirq(pm_message_t state)
1411{
1412	int ret;
1413
1414	cpuidle_pause();
1415
1416	device_wakeup_arm_wake_irqs();
1417	suspend_device_irqs();
1418
1419	ret = dpm_noirq_suspend_devices(state);
1420	if (ret)
1421		dpm_resume_noirq(resume_event(state));
1422
1423	return ret;
1424}
1425
1426static void dpm_propagate_wakeup_to_parent(struct device *dev)
1427{
1428	struct device *parent = dev->parent;
1429
1430	if (!parent)
1431		return;
1432
1433	spin_lock_irq(&parent->power.lock);
1434
1435	if (dev->power.wakeup_path && !parent->power.ignore_children)
1436		parent->power.wakeup_path = true;
1437
1438	spin_unlock_irq(&parent->power.lock);
1439}
1440
1441static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1442						pm_message_t state,
1443						const char **info_p)
1444{
1445	pm_callback_t callback;
1446	const char *info;
1447
1448	if (dev->pm_domain) {
1449		info = "late power domain ";
1450		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1451	} else if (dev->type && dev->type->pm) {
1452		info = "late type ";
1453		callback = pm_late_early_op(dev->type->pm, state);
1454	} else if (dev->class && dev->class->pm) {
1455		info = "late class ";
1456		callback = pm_late_early_op(dev->class->pm, state);
1457	} else if (dev->bus && dev->bus->pm) {
1458		info = "late bus ";
1459		callback = pm_late_early_op(dev->bus->pm, state);
1460	} else {
1461		return NULL;
1462	}
1463
1464	if (info_p)
1465		*info_p = info;
1466
1467	return callback;
1468}
1469
1470/**
1471 * __device_suspend_late - Execute a "late suspend" callback for given device.
1472 * @dev: Device to handle.
1473 * @state: PM transition of the system being carried out.
1474 * @async: If true, the device is being suspended asynchronously.
1475 *
1476 * Runtime PM is disabled for @dev while this function is being executed.
1477 */
1478static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1479{
1480	pm_callback_t callback;
1481	const char *info;
1482	int error = 0;
1483
1484	TRACE_DEVICE(dev);
1485	TRACE_SUSPEND(0);
1486
1487	__pm_runtime_disable(dev, false);
1488
1489	dpm_wait_for_subordinate(dev, async);
1490
1491	if (async_error)
1492		goto Complete;
1493
1494	if (pm_wakeup_pending()) {
1495		async_error = -EBUSY;
1496		goto Complete;
1497	}
1498
1499	if (dev->power.syscore || dev->power.direct_complete)
1500		goto Complete;
1501
1502	callback = dpm_subsys_suspend_late_cb(dev, state, &info);
 
 
 
 
 
 
 
 
 
 
 
 
1503	if (callback)
1504		goto Run;
1505
1506	if (dev_pm_smart_suspend_and_suspended(dev) &&
1507	    !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1508		goto Skip;
1509
1510	if (dev->driver && dev->driver->pm) {
1511		info = "late driver ";
1512		callback = pm_late_early_op(dev->driver->pm, state);
1513	}
1514
1515Run:
1516	error = dpm_run_callback(callback, dev, state, info);
1517	if (error) {
1518		async_error = error;
1519		goto Complete;
1520	}
1521	dpm_propagate_wakeup_to_parent(dev);
1522
1523Skip:
1524	dev->power.is_late_suspended = true;
1525
1526Complete:
1527	TRACE_SUSPEND(error);
1528	complete_all(&dev->power.completion);
1529	return error;
1530}
1531
1532static void async_suspend_late(void *data, async_cookie_t cookie)
1533{
1534	struct device *dev = (struct device *)data;
1535	int error;
1536
1537	error = __device_suspend_late(dev, pm_transition, true);
1538	if (error) {
1539		dpm_save_failed_dev(dev_name(dev));
1540		pm_dev_err(dev, pm_transition, " async", error);
1541	}
1542	put_device(dev);
1543}
1544
1545static int device_suspend_late(struct device *dev)
1546{
1547	if (dpm_async_fn(dev, async_suspend_late))
1548		return 0;
1549
1550	return __device_suspend_late(dev, pm_transition, false);
1551}
1552
1553/**
1554 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1555 * @state: PM transition of the system being carried out.
1556 */
1557int dpm_suspend_late(pm_message_t state)
1558{
1559	ktime_t starttime = ktime_get();
1560	int error = 0;
1561
1562	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
 
1563	mutex_lock(&dpm_list_mtx);
1564	pm_transition = state;
1565	async_error = 0;
1566
1567	while (!list_empty(&dpm_suspended_list)) {
1568		struct device *dev = to_device(dpm_suspended_list.prev);
1569
1570		get_device(dev);
 
1571		mutex_unlock(&dpm_list_mtx);
1572
1573		error = device_suspend_late(dev);
1574
1575		mutex_lock(&dpm_list_mtx);
 
1576		if (!list_empty(&dev->power.entry))
1577			list_move(&dev->power.entry, &dpm_late_early_list);
1578
1579		if (error) {
1580			pm_dev_err(dev, state, " late", error);
1581			dpm_save_failed_dev(dev_name(dev));
1582			put_device(dev);
1583			break;
1584		}
 
 
 
1585		put_device(dev);
1586
1587		if (async_error)
 
 
1588			break;
1589	}
1590	mutex_unlock(&dpm_list_mtx);
1591	async_synchronize_full();
1592	if (!error)
1593		error = async_error;
1594	if (error) {
1595		suspend_stats.failed_suspend_late++;
1596		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1597		dpm_resume_early(resume_event(state));
1598	}
1599	dpm_show_time(starttime, state, error, "late");
1600	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1601	return error;
1602}
1603
1604/**
1605 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1606 * @state: PM transition of the system being carried out.
1607 */
1608int dpm_suspend_end(pm_message_t state)
1609{
1610	ktime_t starttime = ktime_get();
1611	int error;
1612
1613	error = dpm_suspend_late(state);
1614	if (error)
1615		goto out;
1616
1617	error = dpm_suspend_noirq(state);
1618	if (error)
1619		dpm_resume_early(resume_event(state));
1620
1621out:
1622	dpm_show_time(starttime, state, error, "end");
1623	return error;
1624}
1625EXPORT_SYMBOL_GPL(dpm_suspend_end);
1626
1627/**
1628 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1629 * @dev: Device to suspend.
1630 * @state: PM transition of the system being carried out.
1631 * @cb: Suspend callback to execute.
1632 * @info: string description of caller.
1633 */
1634static int legacy_suspend(struct device *dev, pm_message_t state,
1635			  int (*cb)(struct device *dev, pm_message_t state),
1636			  const char *info)
1637{
1638	int error;
1639	ktime_t calltime;
1640
1641	calltime = initcall_debug_start(dev, cb);
1642
1643	trace_device_pm_callback_start(dev, info, state.event);
1644	error = cb(dev, state);
1645	trace_device_pm_callback_end(dev, error);
1646	suspend_report_result(cb, error);
1647
1648	initcall_debug_report(dev, calltime, cb, error);
1649
1650	return error;
1651}
1652
1653static void dpm_clear_superiors_direct_complete(struct device *dev)
1654{
1655	struct device_link *link;
1656	int idx;
1657
1658	if (dev->parent) {
1659		spin_lock_irq(&dev->parent->power.lock);
1660		dev->parent->power.direct_complete = false;
1661		spin_unlock_irq(&dev->parent->power.lock);
1662	}
1663
1664	idx = device_links_read_lock();
1665
1666	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1667		spin_lock_irq(&link->supplier->power.lock);
1668		link->supplier->power.direct_complete = false;
1669		spin_unlock_irq(&link->supplier->power.lock);
1670	}
1671
1672	device_links_read_unlock(idx);
1673}
1674
1675/**
1676 * __device_suspend - Execute "suspend" callbacks for given device.
1677 * @dev: Device to handle.
1678 * @state: PM transition of the system being carried out.
1679 * @async: If true, the device is being suspended asynchronously.
1680 */
1681static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1682{
1683	pm_callback_t callback = NULL;
1684	const char *info = NULL;
1685	int error = 0;
1686	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1687
1688	TRACE_DEVICE(dev);
1689	TRACE_SUSPEND(0);
1690
1691	dpm_wait_for_subordinate(dev, async);
1692
1693	if (async_error) {
1694		dev->power.direct_complete = false;
1695		goto Complete;
1696	}
1697
1698	/*
1699	 * If a device configured to wake up the system from sleep states
1700	 * has been suspended at run time and there's a resume request pending
1701	 * for it, this is equivalent to the device signaling wakeup, so the
1702	 * system suspend operation should be aborted.
 
 
 
 
 
1703	 */
1704	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1705		pm_wakeup_event(dev, 0);
1706
1707	if (pm_wakeup_pending()) {
1708		dev->power.direct_complete = false;
1709		async_error = -EBUSY;
1710		goto Complete;
1711	}
1712
1713	if (dev->power.syscore)
1714		goto Complete;
1715
1716	/* Avoid direct_complete to let wakeup_path propagate. */
1717	if (device_may_wakeup(dev) || dev->power.wakeup_path)
1718		dev->power.direct_complete = false;
1719
1720	if (dev->power.direct_complete) {
1721		if (pm_runtime_status_suspended(dev)) {
1722			pm_runtime_disable(dev);
1723			if (pm_runtime_status_suspended(dev)) {
1724				pm_dev_dbg(dev, state, "direct-complete ");
1725				goto Complete;
1726			}
1727
1728			pm_runtime_enable(dev);
1729		}
1730		dev->power.direct_complete = false;
1731	}
1732
1733	dev->power.may_skip_resume = false;
1734	dev->power.must_resume = false;
1735
1736	dpm_watchdog_set(&wd, dev);
1737	device_lock(dev);
1738
1739	if (dev->pm_domain) {
1740		info = "power domain ";
1741		callback = pm_op(&dev->pm_domain->ops, state);
1742		goto Run;
1743	}
1744
1745	if (dev->type && dev->type->pm) {
1746		info = "type ";
1747		callback = pm_op(dev->type->pm, state);
1748		goto Run;
1749	}
1750
1751	if (dev->class && dev->class->pm) {
1752		info = "class ";
1753		callback = pm_op(dev->class->pm, state);
1754		goto Run;
1755	}
1756
1757	if (dev->bus) {
1758		if (dev->bus->pm) {
1759			info = "bus ";
1760			callback = pm_op(dev->bus->pm, state);
1761		} else if (dev->bus->suspend) {
1762			pm_dev_dbg(dev, state, "legacy bus ");
1763			error = legacy_suspend(dev, state, dev->bus->suspend,
1764						"legacy bus ");
1765			goto End;
1766		}
1767	}
1768
1769 Run:
1770	if (!callback && dev->driver && dev->driver->pm) {
1771		info = "driver ";
1772		callback = pm_op(dev->driver->pm, state);
1773	}
1774
1775	error = dpm_run_callback(callback, dev, state, info);
1776
1777 End:
1778	if (!error) {
1779		dev->power.is_suspended = true;
1780		if (device_may_wakeup(dev))
1781			dev->power.wakeup_path = true;
1782
1783		dpm_propagate_wakeup_to_parent(dev);
1784		dpm_clear_superiors_direct_complete(dev);
1785	}
1786
1787	device_unlock(dev);
1788	dpm_watchdog_clear(&wd);
1789
1790 Complete:
1791	if (error)
1792		async_error = error;
1793
1794	complete_all(&dev->power.completion);
1795	TRACE_SUSPEND(error);
1796	return error;
1797}
1798
1799static void async_suspend(void *data, async_cookie_t cookie)
1800{
1801	struct device *dev = (struct device *)data;
1802	int error;
1803
1804	error = __device_suspend(dev, pm_transition, true);
1805	if (error) {
1806		dpm_save_failed_dev(dev_name(dev));
1807		pm_dev_err(dev, pm_transition, " async", error);
1808	}
1809
1810	put_device(dev);
1811}
1812
1813static int device_suspend(struct device *dev)
1814{
1815	if (dpm_async_fn(dev, async_suspend))
1816		return 0;
1817
1818	return __device_suspend(dev, pm_transition, false);
1819}
1820
1821/**
1822 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1823 * @state: PM transition of the system being carried out.
1824 */
1825int dpm_suspend(pm_message_t state)
1826{
1827	ktime_t starttime = ktime_get();
1828	int error = 0;
1829
1830	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1831	might_sleep();
1832
1833	devfreq_suspend();
1834	cpufreq_suspend();
1835
1836	mutex_lock(&dpm_list_mtx);
1837	pm_transition = state;
1838	async_error = 0;
1839	while (!list_empty(&dpm_prepared_list)) {
1840		struct device *dev = to_device(dpm_prepared_list.prev);
1841
1842		get_device(dev);
 
1843		mutex_unlock(&dpm_list_mtx);
1844
1845		error = device_suspend(dev);
1846
1847		mutex_lock(&dpm_list_mtx);
 
1848		if (error) {
1849			pm_dev_err(dev, state, "", error);
1850			dpm_save_failed_dev(dev_name(dev));
1851			put_device(dev);
1852			break;
1853		}
1854		if (!list_empty(&dev->power.entry))
1855			list_move(&dev->power.entry, &dpm_suspended_list);
 
 
 
 
1856		put_device(dev);
1857		if (async_error)
 
 
 
1858			break;
1859	}
1860	mutex_unlock(&dpm_list_mtx);
1861	async_synchronize_full();
1862	if (!error)
1863		error = async_error;
1864	if (error) {
1865		suspend_stats.failed_suspend++;
1866		dpm_save_failed_step(SUSPEND_SUSPEND);
1867	}
1868	dpm_show_time(starttime, state, error, NULL);
1869	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1870	return error;
1871}
1872
1873/**
1874 * device_prepare - Prepare a device for system power transition.
1875 * @dev: Device to handle.
1876 * @state: PM transition of the system being carried out.
1877 *
1878 * Execute the ->prepare() callback(s) for given device.  No new children of the
1879 * device may be registered after this function has returned.
1880 */
1881static int device_prepare(struct device *dev, pm_message_t state)
1882{
1883	int (*callback)(struct device *) = NULL;
1884	int ret = 0;
1885
1886	if (dev->power.syscore)
1887		return 0;
1888
1889	WARN_ON(!pm_runtime_enabled(dev) &&
1890		dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1891					      DPM_FLAG_LEAVE_SUSPENDED));
1892
1893	/*
1894	 * If a device's parent goes into runtime suspend at the wrong time,
1895	 * it won't be possible to resume the device.  To prevent this we
1896	 * block runtime suspend here, during the prepare phase, and allow
1897	 * it again during the complete phase.
1898	 */
1899	pm_runtime_get_noresume(dev);
1900
 
 
 
1901	device_lock(dev);
1902
1903	dev->power.wakeup_path = false;
1904
1905	if (dev->power.no_pm_callbacks)
1906		goto unlock;
1907
1908	if (dev->pm_domain)
1909		callback = dev->pm_domain->ops.prepare;
1910	else if (dev->type && dev->type->pm)
1911		callback = dev->type->pm->prepare;
1912	else if (dev->class && dev->class->pm)
1913		callback = dev->class->pm->prepare;
1914	else if (dev->bus && dev->bus->pm)
1915		callback = dev->bus->pm->prepare;
1916
1917	if (!callback && dev->driver && dev->driver->pm)
1918		callback = dev->driver->pm->prepare;
1919
1920	if (callback)
1921		ret = callback(dev);
1922
1923unlock:
1924	device_unlock(dev);
1925
1926	if (ret < 0) {
1927		suspend_report_result(callback, ret);
1928		pm_runtime_put(dev);
1929		return ret;
1930	}
1931	/*
1932	 * A positive return value from ->prepare() means "this device appears
1933	 * to be runtime-suspended and its state is fine, so if it really is
1934	 * runtime-suspended, you can leave it in that state provided that you
1935	 * will do the same thing with all of its descendants".  This only
1936	 * applies to suspend transitions, however.
1937	 */
1938	spin_lock_irq(&dev->power.lock);
1939	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1940		((pm_runtime_suspended(dev) && ret > 0) ||
1941		 dev->power.no_pm_callbacks) &&
1942		!dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1943	spin_unlock_irq(&dev->power.lock);
1944	return 0;
1945}
1946
1947/**
1948 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1949 * @state: PM transition of the system being carried out.
1950 *
1951 * Execute the ->prepare() callback(s) for all devices.
1952 */
1953int dpm_prepare(pm_message_t state)
1954{
1955	int error = 0;
1956
1957	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1958	might_sleep();
1959
1960	/*
1961	 * Give a chance for the known devices to complete their probes, before
1962	 * disable probing of devices. This sync point is important at least
1963	 * at boot time + hibernation restore.
1964	 */
1965	wait_for_device_probe();
1966	/*
1967	 * It is unsafe if probing of devices will happen during suspend or
1968	 * hibernation and system behavior will be unpredictable in this case.
1969	 * So, let's prohibit device's probing here and defer their probes
1970	 * instead. The normal behavior will be restored in dpm_complete().
1971	 */
1972	device_block_probing();
1973
1974	mutex_lock(&dpm_list_mtx);
1975	while (!list_empty(&dpm_list)) {
1976		struct device *dev = to_device(dpm_list.next);
1977
1978		get_device(dev);
 
1979		mutex_unlock(&dpm_list_mtx);
1980
1981		trace_device_pm_callback_start(dev, "", state.event);
1982		error = device_prepare(dev, state);
1983		trace_device_pm_callback_end(dev, error);
1984
1985		mutex_lock(&dpm_list_mtx);
1986		if (error) {
1987			if (error == -EAGAIN) {
1988				put_device(dev);
1989				error = 0;
1990				continue;
1991			}
1992			pr_info("Device %s not prepared for power transition: code %d\n",
1993				dev_name(dev), error);
1994			put_device(dev);
1995			break;
1996		}
1997		dev->power.is_prepared = true;
1998		if (!list_empty(&dev->power.entry))
1999			list_move_tail(&dev->power.entry, &dpm_prepared_list);
2000		put_device(dev);
 
 
2001	}
2002	mutex_unlock(&dpm_list_mtx);
2003	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2004	return error;
2005}
2006
2007/**
2008 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2009 * @state: PM transition of the system being carried out.
2010 *
2011 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2012 * callbacks for them.
2013 */
2014int dpm_suspend_start(pm_message_t state)
2015{
2016	ktime_t starttime = ktime_get();
2017	int error;
2018
2019	error = dpm_prepare(state);
2020	if (error) {
2021		suspend_stats.failed_prepare++;
2022		dpm_save_failed_step(SUSPEND_PREPARE);
2023	} else
2024		error = dpm_suspend(state);
2025	dpm_show_time(starttime, state, error, "start");
2026	return error;
2027}
2028EXPORT_SYMBOL_GPL(dpm_suspend_start);
2029
2030void __suspend_report_result(const char *function, void *fn, int ret)
2031{
2032	if (ret)
2033		pr_err("%s(): %pS returns %d\n", function, fn, ret);
2034}
2035EXPORT_SYMBOL_GPL(__suspend_report_result);
2036
2037/**
2038 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2039 * @subordinate: Device that needs to wait for @dev.
2040 * @dev: Device to wait for.
2041 */
2042int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2043{
2044	dpm_wait(dev, subordinate->power.async_suspend);
2045	return async_error;
2046}
2047EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2048
2049/**
2050 * dpm_for_each_dev - device iterator.
2051 * @data: data for the callback.
2052 * @fn: function to be called for each device.
2053 *
2054 * Iterate over devices in dpm_list, and call @fn for each device,
2055 * passing it @data.
2056 */
2057void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2058{
2059	struct device *dev;
2060
2061	if (!fn)
2062		return;
2063
2064	device_pm_lock();
2065	list_for_each_entry(dev, &dpm_list, power.entry)
2066		fn(dev, data);
2067	device_pm_unlock();
2068}
2069EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2070
2071static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2072{
2073	if (!ops)
2074		return true;
2075
2076	return !ops->prepare &&
2077	       !ops->suspend &&
2078	       !ops->suspend_late &&
2079	       !ops->suspend_noirq &&
2080	       !ops->resume_noirq &&
2081	       !ops->resume_early &&
2082	       !ops->resume &&
2083	       !ops->complete;
2084}
2085
2086void device_pm_check_callbacks(struct device *dev)
2087{
2088	spin_lock_irq(&dev->power.lock);
 
 
2089	dev->power.no_pm_callbacks =
2090		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2091		 !dev->bus->suspend && !dev->bus->resume)) &&
2092		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2093		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2094		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2095		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2096		 !dev->driver->suspend && !dev->driver->resume));
2097	spin_unlock_irq(&dev->power.lock);
2098}
2099
2100bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2101{
2102	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2103		pm_runtime_status_suspended(dev);
2104}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/power/main.c - Where the driver meets power management.
   4 *
   5 * Copyright (c) 2003 Patrick Mochel
   6 * Copyright (c) 2003 Open Source Development Lab
   7 *
   8 * The driver model core calls device_pm_add() when a device is registered.
   9 * This will initialize the embedded device_pm_info object in the device
  10 * and add it to the list of power-controlled devices. sysfs entries for
  11 * controlling device power management will also be added.
  12 *
  13 * A separate list is used for keeping track of power info, because the power
  14 * domain dependencies may differ from the ancestral dependencies that the
  15 * subsystem list maintains.
  16 */
  17
  18#define pr_fmt(fmt) "PM: " fmt
  19#define dev_fmt pr_fmt
  20
  21#include <linux/device.h>
  22#include <linux/export.h>
  23#include <linux/mutex.h>
  24#include <linux/pm.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm-trace.h>
  27#include <linux/pm_wakeirq.h>
  28#include <linux/interrupt.h>
  29#include <linux/sched.h>
  30#include <linux/sched/debug.h>
  31#include <linux/async.h>
  32#include <linux/suspend.h>
  33#include <trace/events/power.h>
  34#include <linux/cpufreq.h>
 
  35#include <linux/devfreq.h>
  36#include <linux/timer.h>
  37
  38#include "../base.h"
  39#include "power.h"
  40
  41typedef int (*pm_callback_t)(struct device *);
  42
  43#define list_for_each_entry_rcu_locked(pos, head, member) \
  44	list_for_each_entry_rcu(pos, head, member, \
  45			device_links_read_lock_held())
  46
  47/*
  48 * The entries in the dpm_list list are in a depth first order, simply
  49 * because children are guaranteed to be discovered after parents, and
  50 * are inserted at the back of the list on discovery.
  51 *
  52 * Since device_pm_add() may be called with a device lock held,
  53 * we must never try to acquire a device lock while holding
  54 * dpm_list_mutex.
  55 */
  56
  57LIST_HEAD(dpm_list);
  58static LIST_HEAD(dpm_prepared_list);
  59static LIST_HEAD(dpm_suspended_list);
  60static LIST_HEAD(dpm_late_early_list);
  61static LIST_HEAD(dpm_noirq_list);
  62
  63struct suspend_stats suspend_stats;
  64static DEFINE_MUTEX(dpm_list_mtx);
  65static pm_message_t pm_transition;
  66
  67static int async_error;
  68
  69static const char *pm_verb(int event)
  70{
  71	switch (event) {
  72	case PM_EVENT_SUSPEND:
  73		return "suspend";
  74	case PM_EVENT_RESUME:
  75		return "resume";
  76	case PM_EVENT_FREEZE:
  77		return "freeze";
  78	case PM_EVENT_QUIESCE:
  79		return "quiesce";
  80	case PM_EVENT_HIBERNATE:
  81		return "hibernate";
  82	case PM_EVENT_THAW:
  83		return "thaw";
  84	case PM_EVENT_RESTORE:
  85		return "restore";
  86	case PM_EVENT_RECOVER:
  87		return "recover";
  88	default:
  89		return "(unknown PM event)";
  90	}
  91}
  92
  93/**
  94 * device_pm_sleep_init - Initialize system suspend-related device fields.
  95 * @dev: Device object being initialized.
  96 */
  97void device_pm_sleep_init(struct device *dev)
  98{
  99	dev->power.is_prepared = false;
 100	dev->power.is_suspended = false;
 101	dev->power.is_noirq_suspended = false;
 102	dev->power.is_late_suspended = false;
 103	init_completion(&dev->power.completion);
 104	complete_all(&dev->power.completion);
 105	dev->power.wakeup = NULL;
 106	INIT_LIST_HEAD(&dev->power.entry);
 107}
 108
 109/**
 110 * device_pm_lock - Lock the list of active devices used by the PM core.
 111 */
 112void device_pm_lock(void)
 113{
 114	mutex_lock(&dpm_list_mtx);
 115}
 116
 117/**
 118 * device_pm_unlock - Unlock the list of active devices used by the PM core.
 119 */
 120void device_pm_unlock(void)
 121{
 122	mutex_unlock(&dpm_list_mtx);
 123}
 124
 125/**
 126 * device_pm_add - Add a device to the PM core's list of active devices.
 127 * @dev: Device to add to the list.
 128 */
 129void device_pm_add(struct device *dev)
 130{
 131	/* Skip PM setup/initialization. */
 132	if (device_pm_not_required(dev))
 133		return;
 134
 135	pr_debug("Adding info for %s:%s\n",
 136		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 137	device_pm_check_callbacks(dev);
 138	mutex_lock(&dpm_list_mtx);
 139	if (dev->parent && dev->parent->power.is_prepared)
 140		dev_warn(dev, "parent %s should not be sleeping\n",
 141			dev_name(dev->parent));
 142	list_add_tail(&dev->power.entry, &dpm_list);
 143	dev->power.in_dpm_list = true;
 144	mutex_unlock(&dpm_list_mtx);
 145}
 146
 147/**
 148 * device_pm_remove - Remove a device from the PM core's list of active devices.
 149 * @dev: Device to be removed from the list.
 150 */
 151void device_pm_remove(struct device *dev)
 152{
 153	if (device_pm_not_required(dev))
 154		return;
 155
 156	pr_debug("Removing info for %s:%s\n",
 157		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 158	complete_all(&dev->power.completion);
 159	mutex_lock(&dpm_list_mtx);
 160	list_del_init(&dev->power.entry);
 161	dev->power.in_dpm_list = false;
 162	mutex_unlock(&dpm_list_mtx);
 163	device_wakeup_disable(dev);
 164	pm_runtime_remove(dev);
 165	device_pm_check_callbacks(dev);
 166}
 167
 168/**
 169 * device_pm_move_before - Move device in the PM core's list of active devices.
 170 * @deva: Device to move in dpm_list.
 171 * @devb: Device @deva should come before.
 172 */
 173void device_pm_move_before(struct device *deva, struct device *devb)
 174{
 175	pr_debug("Moving %s:%s before %s:%s\n",
 176		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 177		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 178	/* Delete deva from dpm_list and reinsert before devb. */
 179	list_move_tail(&deva->power.entry, &devb->power.entry);
 180}
 181
 182/**
 183 * device_pm_move_after - Move device in the PM core's list of active devices.
 184 * @deva: Device to move in dpm_list.
 185 * @devb: Device @deva should come after.
 186 */
 187void device_pm_move_after(struct device *deva, struct device *devb)
 188{
 189	pr_debug("Moving %s:%s after %s:%s\n",
 190		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 191		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 192	/* Delete deva from dpm_list and reinsert after devb. */
 193	list_move(&deva->power.entry, &devb->power.entry);
 194}
 195
 196/**
 197 * device_pm_move_last - Move device to end of the PM core's list of devices.
 198 * @dev: Device to move in dpm_list.
 199 */
 200void device_pm_move_last(struct device *dev)
 201{
 202	pr_debug("Moving %s:%s to end of list\n",
 203		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 204	list_move_tail(&dev->power.entry, &dpm_list);
 205}
 206
 207static ktime_t initcall_debug_start(struct device *dev, void *cb)
 208{
 209	if (!pm_print_times_enabled)
 210		return 0;
 211
 212	dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
 213		 task_pid_nr(current),
 214		 dev->parent ? dev_name(dev->parent) : "none");
 215	return ktime_get();
 216}
 217
 218static void initcall_debug_report(struct device *dev, ktime_t calltime,
 219				  void *cb, int error)
 220{
 221	ktime_t rettime;
 
 222
 223	if (!pm_print_times_enabled)
 224		return;
 225
 226	rettime = ktime_get();
 
 
 227	dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
 228		 (unsigned long long)ktime_us_delta(rettime, calltime));
 229}
 230
 231/**
 232 * dpm_wait - Wait for a PM operation to complete.
 233 * @dev: Device to wait for.
 234 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 235 */
 236static void dpm_wait(struct device *dev, bool async)
 237{
 238	if (!dev)
 239		return;
 240
 241	if (async || (pm_async_enabled && dev->power.async_suspend))
 242		wait_for_completion(&dev->power.completion);
 243}
 244
 245static int dpm_wait_fn(struct device *dev, void *async_ptr)
 246{
 247	dpm_wait(dev, *((bool *)async_ptr));
 248	return 0;
 249}
 250
 251static void dpm_wait_for_children(struct device *dev, bool async)
 252{
 253       device_for_each_child(dev, &async, dpm_wait_fn);
 254}
 255
 256static void dpm_wait_for_suppliers(struct device *dev, bool async)
 257{
 258	struct device_link *link;
 259	int idx;
 260
 261	idx = device_links_read_lock();
 262
 263	/*
 264	 * If the supplier goes away right after we've checked the link to it,
 265	 * we'll wait for its completion to change the state, but that's fine,
 266	 * because the only things that will block as a result are the SRCU
 267	 * callbacks freeing the link objects for the links in the list we're
 268	 * walking.
 269	 */
 270	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
 271		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 272			dpm_wait(link->supplier, async);
 273
 274	device_links_read_unlock(idx);
 275}
 276
 277static bool dpm_wait_for_superior(struct device *dev, bool async)
 278{
 279	struct device *parent;
 280
 281	/*
 282	 * If the device is resumed asynchronously and the parent's callback
 283	 * deletes both the device and the parent itself, the parent object may
 284	 * be freed while this function is running, so avoid that by reference
 285	 * counting the parent once more unless the device has been deleted
 286	 * already (in which case return right away).
 287	 */
 288	mutex_lock(&dpm_list_mtx);
 289
 290	if (!device_pm_initialized(dev)) {
 291		mutex_unlock(&dpm_list_mtx);
 292		return false;
 293	}
 294
 295	parent = get_device(dev->parent);
 296
 297	mutex_unlock(&dpm_list_mtx);
 298
 299	dpm_wait(parent, async);
 300	put_device(parent);
 301
 302	dpm_wait_for_suppliers(dev, async);
 303
 304	/*
 305	 * If the parent's callback has deleted the device, attempting to resume
 306	 * it would be invalid, so avoid doing that then.
 307	 */
 308	return device_pm_initialized(dev);
 309}
 310
 311static void dpm_wait_for_consumers(struct device *dev, bool async)
 312{
 313	struct device_link *link;
 314	int idx;
 315
 316	idx = device_links_read_lock();
 317
 318	/*
 319	 * The status of a device link can only be changed from "dormant" by a
 320	 * probe, but that cannot happen during system suspend/resume.  In
 321	 * theory it can change to "dormant" at that time, but then it is
 322	 * reasonable to wait for the target device anyway (eg. if it goes
 323	 * away, it's better to wait for it to go away completely and then
 324	 * continue instead of trying to continue in parallel with its
 325	 * unregistration).
 326	 */
 327	list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
 328		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 329			dpm_wait(link->consumer, async);
 330
 331	device_links_read_unlock(idx);
 332}
 333
 334static void dpm_wait_for_subordinate(struct device *dev, bool async)
 335{
 336	dpm_wait_for_children(dev, async);
 337	dpm_wait_for_consumers(dev, async);
 338}
 339
 340/**
 341 * pm_op - Return the PM operation appropriate for given PM event.
 342 * @ops: PM operations to choose from.
 343 * @state: PM transition of the system being carried out.
 344 */
 345static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
 346{
 347	switch (state.event) {
 348#ifdef CONFIG_SUSPEND
 349	case PM_EVENT_SUSPEND:
 350		return ops->suspend;
 351	case PM_EVENT_RESUME:
 352		return ops->resume;
 353#endif /* CONFIG_SUSPEND */
 354#ifdef CONFIG_HIBERNATE_CALLBACKS
 355	case PM_EVENT_FREEZE:
 356	case PM_EVENT_QUIESCE:
 357		return ops->freeze;
 358	case PM_EVENT_HIBERNATE:
 359		return ops->poweroff;
 360	case PM_EVENT_THAW:
 361	case PM_EVENT_RECOVER:
 362		return ops->thaw;
 
 363	case PM_EVENT_RESTORE:
 364		return ops->restore;
 365#endif /* CONFIG_HIBERNATE_CALLBACKS */
 366	}
 367
 368	return NULL;
 369}
 370
 371/**
 372 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 373 * @ops: PM operations to choose from.
 374 * @state: PM transition of the system being carried out.
 375 *
 376 * Runtime PM is disabled for @dev while this function is being executed.
 377 */
 378static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
 379				      pm_message_t state)
 380{
 381	switch (state.event) {
 382#ifdef CONFIG_SUSPEND
 383	case PM_EVENT_SUSPEND:
 384		return ops->suspend_late;
 385	case PM_EVENT_RESUME:
 386		return ops->resume_early;
 387#endif /* CONFIG_SUSPEND */
 388#ifdef CONFIG_HIBERNATE_CALLBACKS
 389	case PM_EVENT_FREEZE:
 390	case PM_EVENT_QUIESCE:
 391		return ops->freeze_late;
 392	case PM_EVENT_HIBERNATE:
 393		return ops->poweroff_late;
 394	case PM_EVENT_THAW:
 395	case PM_EVENT_RECOVER:
 396		return ops->thaw_early;
 397	case PM_EVENT_RESTORE:
 398		return ops->restore_early;
 399#endif /* CONFIG_HIBERNATE_CALLBACKS */
 400	}
 401
 402	return NULL;
 403}
 404
 405/**
 406 * pm_noirq_op - Return the PM operation appropriate for given PM event.
 407 * @ops: PM operations to choose from.
 408 * @state: PM transition of the system being carried out.
 409 *
 410 * The driver of @dev will not receive interrupts while this function is being
 411 * executed.
 412 */
 413static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
 414{
 415	switch (state.event) {
 416#ifdef CONFIG_SUSPEND
 417	case PM_EVENT_SUSPEND:
 418		return ops->suspend_noirq;
 419	case PM_EVENT_RESUME:
 420		return ops->resume_noirq;
 421#endif /* CONFIG_SUSPEND */
 422#ifdef CONFIG_HIBERNATE_CALLBACKS
 423	case PM_EVENT_FREEZE:
 424	case PM_EVENT_QUIESCE:
 425		return ops->freeze_noirq;
 426	case PM_EVENT_HIBERNATE:
 427		return ops->poweroff_noirq;
 428	case PM_EVENT_THAW:
 429	case PM_EVENT_RECOVER:
 430		return ops->thaw_noirq;
 431	case PM_EVENT_RESTORE:
 432		return ops->restore_noirq;
 433#endif /* CONFIG_HIBERNATE_CALLBACKS */
 434	}
 435
 436	return NULL;
 437}
 438
 439static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
 440{
 441	dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
 442		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
 443		", may wakeup" : "", dev->power.driver_flags);
 444}
 445
 446static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
 447			int error)
 448{
 449	dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
 450		error);
 451}
 452
 453static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
 454			  const char *info)
 455{
 456	ktime_t calltime;
 457	u64 usecs64;
 458	int usecs;
 459
 460	calltime = ktime_get();
 461	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
 462	do_div(usecs64, NSEC_PER_USEC);
 463	usecs = usecs64;
 464	if (usecs == 0)
 465		usecs = 1;
 466
 467	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
 468		  info ?: "", info ? " " : "", pm_verb(state.event),
 469		  error ? "aborted" : "complete",
 470		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
 471}
 472
 473static int dpm_run_callback(pm_callback_t cb, struct device *dev,
 474			    pm_message_t state, const char *info)
 475{
 476	ktime_t calltime;
 477	int error;
 478
 479	if (!cb)
 480		return 0;
 481
 482	calltime = initcall_debug_start(dev, cb);
 483
 484	pm_dev_dbg(dev, state, info);
 485	trace_device_pm_callback_start(dev, info, state.event);
 486	error = cb(dev);
 487	trace_device_pm_callback_end(dev, error);
 488	suspend_report_result(dev, cb, error);
 489
 490	initcall_debug_report(dev, calltime, cb, error);
 491
 492	return error;
 493}
 494
 495#ifdef CONFIG_DPM_WATCHDOG
 496struct dpm_watchdog {
 497	struct device		*dev;
 498	struct task_struct	*tsk;
 499	struct timer_list	timer;
 500};
 501
 502#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
 503	struct dpm_watchdog wd
 504
 505/**
 506 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 507 * @t: The timer that PM watchdog depends on.
 508 *
 509 * Called when a driver has timed out suspending or resuming.
 510 * There's not much we can do here to recover so panic() to
 511 * capture a crash-dump in pstore.
 512 */
 513static void dpm_watchdog_handler(struct timer_list *t)
 514{
 515	struct dpm_watchdog *wd = from_timer(wd, t, timer);
 516
 517	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
 518	show_stack(wd->tsk, NULL, KERN_EMERG);
 519	panic("%s %s: unrecoverable failure\n",
 520		dev_driver_string(wd->dev), dev_name(wd->dev));
 521}
 522
 523/**
 524 * dpm_watchdog_set - Enable pm watchdog for given device.
 525 * @wd: Watchdog. Must be allocated on the stack.
 526 * @dev: Device to handle.
 527 */
 528static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
 529{
 530	struct timer_list *timer = &wd->timer;
 531
 532	wd->dev = dev;
 533	wd->tsk = current;
 534
 535	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
 536	/* use same timeout value for both suspend and resume */
 537	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
 538	add_timer(timer);
 539}
 540
 541/**
 542 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 543 * @wd: Watchdog to disable.
 544 */
 545static void dpm_watchdog_clear(struct dpm_watchdog *wd)
 546{
 547	struct timer_list *timer = &wd->timer;
 548
 549	del_timer_sync(timer);
 550	destroy_timer_on_stack(timer);
 551}
 552#else
 553#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
 554#define dpm_watchdog_set(x, y)
 555#define dpm_watchdog_clear(x)
 556#endif
 557
 558/*------------------------- Resume routines -------------------------*/
 559
 560/**
 561 * dev_pm_skip_resume - System-wide device resume optimization check.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562 * @dev: Target device.
 563 *
 564 * Return:
 565 * - %false if the transition under way is RESTORE.
 566 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
 567 * - The logical negation of %power.must_resume otherwise (that is, when the
 568 *   transition under way is RESUME).
 569 */
 570bool dev_pm_skip_resume(struct device *dev)
 
 
 
 
 
 
 
 571{
 572	if (pm_transition.event == PM_EVENT_RESTORE)
 573		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574
 575	if (pm_transition.event == PM_EVENT_THAW)
 576		return dev_pm_skip_suspend(dev);
 577
 578	return !dev->power.must_resume;
 579}
 580
 
 
 
 
 
 
 
 
 581/**
 582 * device_resume_noirq - Execute a "noirq resume" callback for given device.
 583 * @dev: Device to handle.
 584 * @state: PM transition of the system being carried out.
 585 * @async: If true, the device is being resumed asynchronously.
 586 *
 587 * The driver of @dev will not receive interrupts while this function is being
 588 * executed.
 589 */
 590static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
 591{
 592	pm_callback_t callback = NULL;
 593	const char *info = NULL;
 594	bool skip_resume;
 595	int error = 0;
 596
 597	TRACE_DEVICE(dev);
 598	TRACE_RESUME(0);
 599
 600	if (dev->power.syscore || dev->power.direct_complete)
 601		goto Out;
 602
 603	if (!dev->power.is_noirq_suspended)
 604		goto Out;
 605
 606	if (!dpm_wait_for_superior(dev, async))
 607		goto Out;
 608
 609	skip_resume = dev_pm_skip_resume(dev);
 610	/*
 611	 * If the driver callback is skipped below or by the middle layer
 612	 * callback and device_resume_early() also skips the driver callback for
 613	 * this device later, it needs to appear as "suspended" to PM-runtime,
 614	 * so change its status accordingly.
 615	 *
 616	 * Otherwise, the device is going to be resumed, so set its PM-runtime
 617	 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
 618	 * to avoid confusing drivers that don't use it.
 619	 */
 620	if (skip_resume)
 621		pm_runtime_set_suspended(dev);
 622	else if (dev_pm_skip_suspend(dev))
 623		pm_runtime_set_active(dev);
 624
 625	if (dev->pm_domain) {
 626		info = "noirq power domain ";
 627		callback = pm_noirq_op(&dev->pm_domain->ops, state);
 628	} else if (dev->type && dev->type->pm) {
 629		info = "noirq type ";
 630		callback = pm_noirq_op(dev->type->pm, state);
 631	} else if (dev->class && dev->class->pm) {
 632		info = "noirq class ";
 633		callback = pm_noirq_op(dev->class->pm, state);
 634	} else if (dev->bus && dev->bus->pm) {
 635		info = "noirq bus ";
 636		callback = pm_noirq_op(dev->bus->pm, state);
 637	}
 638	if (callback)
 639		goto Run;
 640
 641	if (skip_resume)
 642		goto Skip;
 643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644	if (dev->driver && dev->driver->pm) {
 645		info = "noirq driver ";
 646		callback = pm_noirq_op(dev->driver->pm, state);
 647	}
 648
 649Run:
 650	error = dpm_run_callback(callback, dev, state, info);
 651
 652Skip:
 653	dev->power.is_noirq_suspended = false;
 654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655Out:
 656	complete_all(&dev->power.completion);
 657	TRACE_RESUME(error);
 658	return error;
 659}
 660
 661static bool is_async(struct device *dev)
 662{
 663	return dev->power.async_suspend && pm_async_enabled
 664		&& !pm_trace_is_enabled();
 665}
 666
 667static bool dpm_async_fn(struct device *dev, async_func_t func)
 668{
 669	reinit_completion(&dev->power.completion);
 670
 671	if (is_async(dev)) {
 672		get_device(dev);
 673		async_schedule_dev(func, dev);
 674		return true;
 675	}
 676
 677	return false;
 678}
 679
 680static void async_resume_noirq(void *data, async_cookie_t cookie)
 681{
 682	struct device *dev = (struct device *)data;
 683	int error;
 684
 685	error = device_resume_noirq(dev, pm_transition, true);
 686	if (error)
 687		pm_dev_err(dev, pm_transition, " async", error);
 688
 689	put_device(dev);
 690}
 691
 692static void dpm_noirq_resume_devices(pm_message_t state)
 693{
 694	struct device *dev;
 695	ktime_t starttime = ktime_get();
 696
 697	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
 698	mutex_lock(&dpm_list_mtx);
 699	pm_transition = state;
 700
 701	/*
 702	 * Advanced the async threads upfront,
 703	 * in case the starting of async threads is
 704	 * delayed by non-async resuming devices.
 705	 */
 706	list_for_each_entry(dev, &dpm_noirq_list, power.entry)
 707		dpm_async_fn(dev, async_resume_noirq);
 708
 709	while (!list_empty(&dpm_noirq_list)) {
 710		dev = to_device(dpm_noirq_list.next);
 711		get_device(dev);
 712		list_move_tail(&dev->power.entry, &dpm_late_early_list);
 713
 714		mutex_unlock(&dpm_list_mtx);
 715
 716		if (!is_async(dev)) {
 717			int error;
 718
 719			error = device_resume_noirq(dev, state, false);
 720			if (error) {
 721				suspend_stats.failed_resume_noirq++;
 722				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
 723				dpm_save_failed_dev(dev_name(dev));
 724				pm_dev_err(dev, state, " noirq", error);
 725			}
 726		}
 727
 
 728		put_device(dev);
 729
 730		mutex_lock(&dpm_list_mtx);
 731	}
 732	mutex_unlock(&dpm_list_mtx);
 733	async_synchronize_full();
 734	dpm_show_time(starttime, state, 0, "noirq");
 735	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
 736}
 737
 738/**
 739 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
 740 * @state: PM transition of the system being carried out.
 741 *
 742 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
 743 * allow device drivers' interrupt handlers to be called.
 744 */
 745void dpm_resume_noirq(pm_message_t state)
 746{
 747	dpm_noirq_resume_devices(state);
 748
 749	resume_device_irqs();
 750	device_wakeup_disarm_wake_irqs();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751}
 752
 753/**
 754 * device_resume_early - Execute an "early resume" callback for given device.
 755 * @dev: Device to handle.
 756 * @state: PM transition of the system being carried out.
 757 * @async: If true, the device is being resumed asynchronously.
 758 *
 759 * Runtime PM is disabled for @dev while this function is being executed.
 760 */
 761static int device_resume_early(struct device *dev, pm_message_t state, bool async)
 762{
 763	pm_callback_t callback = NULL;
 764	const char *info = NULL;
 765	int error = 0;
 766
 767	TRACE_DEVICE(dev);
 768	TRACE_RESUME(0);
 769
 770	if (dev->power.syscore || dev->power.direct_complete)
 771		goto Out;
 772
 773	if (!dev->power.is_late_suspended)
 774		goto Out;
 775
 776	if (!dpm_wait_for_superior(dev, async))
 777		goto Out;
 778
 779	if (dev->pm_domain) {
 780		info = "early power domain ";
 781		callback = pm_late_early_op(&dev->pm_domain->ops, state);
 782	} else if (dev->type && dev->type->pm) {
 783		info = "early type ";
 784		callback = pm_late_early_op(dev->type->pm, state);
 785	} else if (dev->class && dev->class->pm) {
 786		info = "early class ";
 787		callback = pm_late_early_op(dev->class->pm, state);
 788	} else if (dev->bus && dev->bus->pm) {
 789		info = "early bus ";
 790		callback = pm_late_early_op(dev->bus->pm, state);
 791	}
 792	if (callback)
 793		goto Run;
 794
 795	if (dev_pm_skip_resume(dev))
 796		goto Skip;
 797
 798	if (dev->driver && dev->driver->pm) {
 799		info = "early driver ";
 800		callback = pm_late_early_op(dev->driver->pm, state);
 801	}
 802
 803Run:
 804	error = dpm_run_callback(callback, dev, state, info);
 805
 806Skip:
 807	dev->power.is_late_suspended = false;
 808
 809Out:
 810	TRACE_RESUME(error);
 811
 812	pm_runtime_enable(dev);
 813	complete_all(&dev->power.completion);
 814	return error;
 815}
 816
 817static void async_resume_early(void *data, async_cookie_t cookie)
 818{
 819	struct device *dev = (struct device *)data;
 820	int error;
 821
 822	error = device_resume_early(dev, pm_transition, true);
 823	if (error)
 824		pm_dev_err(dev, pm_transition, " async", error);
 825
 826	put_device(dev);
 827}
 828
 829/**
 830 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 831 * @state: PM transition of the system being carried out.
 832 */
 833void dpm_resume_early(pm_message_t state)
 834{
 835	struct device *dev;
 836	ktime_t starttime = ktime_get();
 837
 838	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
 839	mutex_lock(&dpm_list_mtx);
 840	pm_transition = state;
 841
 842	/*
 843	 * Advanced the async threads upfront,
 844	 * in case the starting of async threads is
 845	 * delayed by non-async resuming devices.
 846	 */
 847	list_for_each_entry(dev, &dpm_late_early_list, power.entry)
 848		dpm_async_fn(dev, async_resume_early);
 849
 850	while (!list_empty(&dpm_late_early_list)) {
 851		dev = to_device(dpm_late_early_list.next);
 852		get_device(dev);
 853		list_move_tail(&dev->power.entry, &dpm_suspended_list);
 854
 855		mutex_unlock(&dpm_list_mtx);
 856
 857		if (!is_async(dev)) {
 858			int error;
 859
 860			error = device_resume_early(dev, state, false);
 861			if (error) {
 862				suspend_stats.failed_resume_early++;
 863				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
 864				dpm_save_failed_dev(dev_name(dev));
 865				pm_dev_err(dev, state, " early", error);
 866			}
 867		}
 868
 869		put_device(dev);
 870
 871		mutex_lock(&dpm_list_mtx);
 872	}
 873	mutex_unlock(&dpm_list_mtx);
 874	async_synchronize_full();
 875	dpm_show_time(starttime, state, 0, "early");
 876	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
 877}
 878
 879/**
 880 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 881 * @state: PM transition of the system being carried out.
 882 */
 883void dpm_resume_start(pm_message_t state)
 884{
 885	dpm_resume_noirq(state);
 886	dpm_resume_early(state);
 887}
 888EXPORT_SYMBOL_GPL(dpm_resume_start);
 889
 890/**
 891 * device_resume - Execute "resume" callbacks for given device.
 892 * @dev: Device to handle.
 893 * @state: PM transition of the system being carried out.
 894 * @async: If true, the device is being resumed asynchronously.
 895 */
 896static int device_resume(struct device *dev, pm_message_t state, bool async)
 897{
 898	pm_callback_t callback = NULL;
 899	const char *info = NULL;
 900	int error = 0;
 901	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
 902
 903	TRACE_DEVICE(dev);
 904	TRACE_RESUME(0);
 905
 906	if (dev->power.syscore)
 907		goto Complete;
 908
 909	if (dev->power.direct_complete) {
 910		/* Match the pm_runtime_disable() in __device_suspend(). */
 911		pm_runtime_enable(dev);
 912		goto Complete;
 913	}
 914
 915	if (!dpm_wait_for_superior(dev, async))
 916		goto Complete;
 917
 918	dpm_watchdog_set(&wd, dev);
 919	device_lock(dev);
 920
 921	/*
 922	 * This is a fib.  But we'll allow new children to be added below
 923	 * a resumed device, even if the device hasn't been completed yet.
 924	 */
 925	dev->power.is_prepared = false;
 926
 927	if (!dev->power.is_suspended)
 928		goto Unlock;
 929
 930	if (dev->pm_domain) {
 931		info = "power domain ";
 932		callback = pm_op(&dev->pm_domain->ops, state);
 933		goto Driver;
 934	}
 935
 936	if (dev->type && dev->type->pm) {
 937		info = "type ";
 938		callback = pm_op(dev->type->pm, state);
 939		goto Driver;
 940	}
 941
 942	if (dev->class && dev->class->pm) {
 943		info = "class ";
 944		callback = pm_op(dev->class->pm, state);
 945		goto Driver;
 946	}
 947
 948	if (dev->bus) {
 949		if (dev->bus->pm) {
 950			info = "bus ";
 951			callback = pm_op(dev->bus->pm, state);
 952		} else if (dev->bus->resume) {
 953			info = "legacy bus ";
 954			callback = dev->bus->resume;
 955			goto End;
 956		}
 957	}
 958
 959 Driver:
 960	if (!callback && dev->driver && dev->driver->pm) {
 961		info = "driver ";
 962		callback = pm_op(dev->driver->pm, state);
 963	}
 964
 965 End:
 966	error = dpm_run_callback(callback, dev, state, info);
 967	dev->power.is_suspended = false;
 968
 969 Unlock:
 970	device_unlock(dev);
 971	dpm_watchdog_clear(&wd);
 972
 973 Complete:
 974	complete_all(&dev->power.completion);
 975
 976	TRACE_RESUME(error);
 977
 978	return error;
 979}
 980
 981static void async_resume(void *data, async_cookie_t cookie)
 982{
 983	struct device *dev = (struct device *)data;
 984	int error;
 985
 986	error = device_resume(dev, pm_transition, true);
 987	if (error)
 988		pm_dev_err(dev, pm_transition, " async", error);
 989	put_device(dev);
 990}
 991
 992/**
 993 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
 994 * @state: PM transition of the system being carried out.
 995 *
 996 * Execute the appropriate "resume" callback for all devices whose status
 997 * indicates that they are suspended.
 998 */
 999void dpm_resume(pm_message_t state)
1000{
1001	struct device *dev;
1002	ktime_t starttime = ktime_get();
1003
1004	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1005	might_sleep();
1006
1007	mutex_lock(&dpm_list_mtx);
1008	pm_transition = state;
1009	async_error = 0;
1010
1011	list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1012		dpm_async_fn(dev, async_resume);
1013
1014	while (!list_empty(&dpm_suspended_list)) {
1015		dev = to_device(dpm_suspended_list.next);
1016		get_device(dev);
1017		if (!is_async(dev)) {
1018			int error;
1019
1020			mutex_unlock(&dpm_list_mtx);
1021
1022			error = device_resume(dev, state, false);
1023			if (error) {
1024				suspend_stats.failed_resume++;
1025				dpm_save_failed_step(SUSPEND_RESUME);
1026				dpm_save_failed_dev(dev_name(dev));
1027				pm_dev_err(dev, state, "", error);
1028			}
1029
1030			mutex_lock(&dpm_list_mtx);
1031		}
1032		if (!list_empty(&dev->power.entry))
1033			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1034
1035		mutex_unlock(&dpm_list_mtx);
1036
1037		put_device(dev);
1038
1039		mutex_lock(&dpm_list_mtx);
1040	}
1041	mutex_unlock(&dpm_list_mtx);
1042	async_synchronize_full();
1043	dpm_show_time(starttime, state, 0, NULL);
1044
1045	cpufreq_resume();
1046	devfreq_resume();
1047	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1048}
1049
1050/**
1051 * device_complete - Complete a PM transition for given device.
1052 * @dev: Device to handle.
1053 * @state: PM transition of the system being carried out.
1054 */
1055static void device_complete(struct device *dev, pm_message_t state)
1056{
1057	void (*callback)(struct device *) = NULL;
1058	const char *info = NULL;
1059
1060	if (dev->power.syscore)
1061		goto out;
1062
1063	device_lock(dev);
1064
1065	if (dev->pm_domain) {
1066		info = "completing power domain ";
1067		callback = dev->pm_domain->ops.complete;
1068	} else if (dev->type && dev->type->pm) {
1069		info = "completing type ";
1070		callback = dev->type->pm->complete;
1071	} else if (dev->class && dev->class->pm) {
1072		info = "completing class ";
1073		callback = dev->class->pm->complete;
1074	} else if (dev->bus && dev->bus->pm) {
1075		info = "completing bus ";
1076		callback = dev->bus->pm->complete;
1077	}
1078
1079	if (!callback && dev->driver && dev->driver->pm) {
1080		info = "completing driver ";
1081		callback = dev->driver->pm->complete;
1082	}
1083
1084	if (callback) {
1085		pm_dev_dbg(dev, state, info);
1086		callback(dev);
1087	}
1088
1089	device_unlock(dev);
1090
1091out:
1092	pm_runtime_put(dev);
1093}
1094
1095/**
1096 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1097 * @state: PM transition of the system being carried out.
1098 *
1099 * Execute the ->complete() callbacks for all devices whose PM status is not
1100 * DPM_ON (this allows new devices to be registered).
1101 */
1102void dpm_complete(pm_message_t state)
1103{
1104	struct list_head list;
1105
1106	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1107	might_sleep();
1108
1109	INIT_LIST_HEAD(&list);
1110	mutex_lock(&dpm_list_mtx);
1111	while (!list_empty(&dpm_prepared_list)) {
1112		struct device *dev = to_device(dpm_prepared_list.prev);
1113
1114		get_device(dev);
1115		dev->power.is_prepared = false;
1116		list_move(&dev->power.entry, &list);
1117
1118		mutex_unlock(&dpm_list_mtx);
1119
1120		trace_device_pm_callback_start(dev, "", state.event);
1121		device_complete(dev, state);
1122		trace_device_pm_callback_end(dev, 0);
1123
 
1124		put_device(dev);
1125
1126		mutex_lock(&dpm_list_mtx);
1127	}
1128	list_splice(&list, &dpm_list);
1129	mutex_unlock(&dpm_list_mtx);
1130
1131	/* Allow device probing and trigger re-probing of deferred devices */
1132	device_unblock_probing();
1133	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1134}
1135
1136/**
1137 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1138 * @state: PM transition of the system being carried out.
1139 *
1140 * Execute "resume" callbacks for all devices and complete the PM transition of
1141 * the system.
1142 */
1143void dpm_resume_end(pm_message_t state)
1144{
1145	dpm_resume(state);
1146	dpm_complete(state);
1147}
1148EXPORT_SYMBOL_GPL(dpm_resume_end);
1149
1150
1151/*------------------------- Suspend routines -------------------------*/
1152
1153/**
1154 * resume_event - Return a "resume" message for given "suspend" sleep state.
1155 * @sleep_state: PM message representing a sleep state.
1156 *
1157 * Return a PM message representing the resume event corresponding to given
1158 * sleep state.
1159 */
1160static pm_message_t resume_event(pm_message_t sleep_state)
1161{
1162	switch (sleep_state.event) {
1163	case PM_EVENT_SUSPEND:
1164		return PMSG_RESUME;
1165	case PM_EVENT_FREEZE:
1166	case PM_EVENT_QUIESCE:
1167		return PMSG_RECOVER;
1168	case PM_EVENT_HIBERNATE:
1169		return PMSG_RESTORE;
1170	}
1171	return PMSG_ON;
1172}
1173
1174static void dpm_superior_set_must_resume(struct device *dev)
1175{
1176	struct device_link *link;
1177	int idx;
1178
1179	if (dev->parent)
1180		dev->parent->power.must_resume = true;
1181
1182	idx = device_links_read_lock();
1183
1184	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1185		link->supplier->power.must_resume = true;
1186
1187	device_links_read_unlock(idx);
1188}
1189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1190/**
1191 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1192 * @dev: Device to handle.
1193 * @state: PM transition of the system being carried out.
1194 * @async: If true, the device is being suspended asynchronously.
1195 *
1196 * The driver of @dev will not receive interrupts while this function is being
1197 * executed.
1198 */
1199static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1200{
1201	pm_callback_t callback = NULL;
1202	const char *info = NULL;
 
1203	int error = 0;
1204
1205	TRACE_DEVICE(dev);
1206	TRACE_SUSPEND(0);
1207
1208	dpm_wait_for_subordinate(dev, async);
1209
1210	if (async_error)
1211		goto Complete;
1212
1213	if (dev->power.syscore || dev->power.direct_complete)
1214		goto Complete;
1215
1216	if (dev->pm_domain) {
1217		info = "noirq power domain ";
1218		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1219	} else if (dev->type && dev->type->pm) {
1220		info = "noirq type ";
1221		callback = pm_noirq_op(dev->type->pm, state);
1222	} else if (dev->class && dev->class->pm) {
1223		info = "noirq class ";
1224		callback = pm_noirq_op(dev->class->pm, state);
1225	} else if (dev->bus && dev->bus->pm) {
1226		info = "noirq bus ";
1227		callback = pm_noirq_op(dev->bus->pm, state);
1228	}
1229	if (callback)
1230		goto Run;
1231
1232	if (dev_pm_skip_suspend(dev))
 
 
1233		goto Skip;
1234
1235	if (dev->driver && dev->driver->pm) {
1236		info = "noirq driver ";
1237		callback = pm_noirq_op(dev->driver->pm, state);
1238	}
1239
1240Run:
1241	error = dpm_run_callback(callback, dev, state, info);
1242	if (error) {
1243		async_error = error;
1244		goto Complete;
1245	}
1246
1247Skip:
1248	dev->power.is_noirq_suspended = true;
1249
1250	/*
1251	 * Skipping the resume of devices that were in use right before the
1252	 * system suspend (as indicated by their PM-runtime usage counters)
1253	 * would be suboptimal.  Also resume them if doing that is not allowed
1254	 * to be skipped.
1255	 */
1256	if (atomic_read(&dev->power.usage_count) > 1 ||
1257	    !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1258	      dev->power.may_skip_resume))
1259		dev->power.must_resume = true;
 
1260
1261	if (dev->power.must_resume)
1262		dpm_superior_set_must_resume(dev);
1263
1264Complete:
1265	complete_all(&dev->power.completion);
1266	TRACE_SUSPEND(error);
1267	return error;
1268}
1269
1270static void async_suspend_noirq(void *data, async_cookie_t cookie)
1271{
1272	struct device *dev = (struct device *)data;
1273	int error;
1274
1275	error = __device_suspend_noirq(dev, pm_transition, true);
1276	if (error) {
1277		dpm_save_failed_dev(dev_name(dev));
1278		pm_dev_err(dev, pm_transition, " async", error);
1279	}
1280
1281	put_device(dev);
1282}
1283
1284static int device_suspend_noirq(struct device *dev)
1285{
1286	if (dpm_async_fn(dev, async_suspend_noirq))
1287		return 0;
1288
1289	return __device_suspend_noirq(dev, pm_transition, false);
1290}
1291
1292static int dpm_noirq_suspend_devices(pm_message_t state)
1293{
1294	ktime_t starttime = ktime_get();
1295	int error = 0;
1296
1297	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1298	mutex_lock(&dpm_list_mtx);
1299	pm_transition = state;
1300	async_error = 0;
1301
1302	while (!list_empty(&dpm_late_early_list)) {
1303		struct device *dev = to_device(dpm_late_early_list.prev);
1304
1305		get_device(dev);
1306		mutex_unlock(&dpm_list_mtx);
1307
1308		error = device_suspend_noirq(dev);
1309
1310		mutex_lock(&dpm_list_mtx);
1311
1312		if (error) {
1313			pm_dev_err(dev, state, " noirq", error);
1314			dpm_save_failed_dev(dev_name(dev));
1315		} else if (!list_empty(&dev->power.entry)) {
 
 
 
1316			list_move(&dev->power.entry, &dpm_noirq_list);
1317		}
1318
1319		mutex_unlock(&dpm_list_mtx);
1320
1321		put_device(dev);
1322
1323		mutex_lock(&dpm_list_mtx);
1324
1325		if (error || async_error)
1326			break;
1327	}
1328	mutex_unlock(&dpm_list_mtx);
1329	async_synchronize_full();
1330	if (!error)
1331		error = async_error;
1332
1333	if (error) {
1334		suspend_stats.failed_suspend_noirq++;
1335		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1336	}
1337	dpm_show_time(starttime, state, error, "noirq");
1338	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1339	return error;
1340}
1341
1342/**
1343 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1344 * @state: PM transition of the system being carried out.
1345 *
1346 * Prevent device drivers' interrupt handlers from being called and invoke
1347 * "noirq" suspend callbacks for all non-sysdev devices.
1348 */
1349int dpm_suspend_noirq(pm_message_t state)
1350{
1351	int ret;
1352
 
 
1353	device_wakeup_arm_wake_irqs();
1354	suspend_device_irqs();
1355
1356	ret = dpm_noirq_suspend_devices(state);
1357	if (ret)
1358		dpm_resume_noirq(resume_event(state));
1359
1360	return ret;
1361}
1362
1363static void dpm_propagate_wakeup_to_parent(struct device *dev)
1364{
1365	struct device *parent = dev->parent;
1366
1367	if (!parent)
1368		return;
1369
1370	spin_lock_irq(&parent->power.lock);
1371
1372	if (device_wakeup_path(dev) && !parent->power.ignore_children)
1373		parent->power.wakeup_path = true;
1374
1375	spin_unlock_irq(&parent->power.lock);
1376}
1377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378/**
1379 * __device_suspend_late - Execute a "late suspend" callback for given device.
1380 * @dev: Device to handle.
1381 * @state: PM transition of the system being carried out.
1382 * @async: If true, the device is being suspended asynchronously.
1383 *
1384 * Runtime PM is disabled for @dev while this function is being executed.
1385 */
1386static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1387{
1388	pm_callback_t callback = NULL;
1389	const char *info = NULL;
1390	int error = 0;
1391
1392	TRACE_DEVICE(dev);
1393	TRACE_SUSPEND(0);
1394
1395	__pm_runtime_disable(dev, false);
1396
1397	dpm_wait_for_subordinate(dev, async);
1398
1399	if (async_error)
1400		goto Complete;
1401
1402	if (pm_wakeup_pending()) {
1403		async_error = -EBUSY;
1404		goto Complete;
1405	}
1406
1407	if (dev->power.syscore || dev->power.direct_complete)
1408		goto Complete;
1409
1410	if (dev->pm_domain) {
1411		info = "late power domain ";
1412		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1413	} else if (dev->type && dev->type->pm) {
1414		info = "late type ";
1415		callback = pm_late_early_op(dev->type->pm, state);
1416	} else if (dev->class && dev->class->pm) {
1417		info = "late class ";
1418		callback = pm_late_early_op(dev->class->pm, state);
1419	} else if (dev->bus && dev->bus->pm) {
1420		info = "late bus ";
1421		callback = pm_late_early_op(dev->bus->pm, state);
1422	}
1423	if (callback)
1424		goto Run;
1425
1426	if (dev_pm_skip_suspend(dev))
 
1427		goto Skip;
1428
1429	if (dev->driver && dev->driver->pm) {
1430		info = "late driver ";
1431		callback = pm_late_early_op(dev->driver->pm, state);
1432	}
1433
1434Run:
1435	error = dpm_run_callback(callback, dev, state, info);
1436	if (error) {
1437		async_error = error;
1438		goto Complete;
1439	}
1440	dpm_propagate_wakeup_to_parent(dev);
1441
1442Skip:
1443	dev->power.is_late_suspended = true;
1444
1445Complete:
1446	TRACE_SUSPEND(error);
1447	complete_all(&dev->power.completion);
1448	return error;
1449}
1450
1451static void async_suspend_late(void *data, async_cookie_t cookie)
1452{
1453	struct device *dev = (struct device *)data;
1454	int error;
1455
1456	error = __device_suspend_late(dev, pm_transition, true);
1457	if (error) {
1458		dpm_save_failed_dev(dev_name(dev));
1459		pm_dev_err(dev, pm_transition, " async", error);
1460	}
1461	put_device(dev);
1462}
1463
1464static int device_suspend_late(struct device *dev)
1465{
1466	if (dpm_async_fn(dev, async_suspend_late))
1467		return 0;
1468
1469	return __device_suspend_late(dev, pm_transition, false);
1470}
1471
1472/**
1473 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1474 * @state: PM transition of the system being carried out.
1475 */
1476int dpm_suspend_late(pm_message_t state)
1477{
1478	ktime_t starttime = ktime_get();
1479	int error = 0;
1480
1481	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1482	wake_up_all_idle_cpus();
1483	mutex_lock(&dpm_list_mtx);
1484	pm_transition = state;
1485	async_error = 0;
1486
1487	while (!list_empty(&dpm_suspended_list)) {
1488		struct device *dev = to_device(dpm_suspended_list.prev);
1489
1490		get_device(dev);
1491
1492		mutex_unlock(&dpm_list_mtx);
1493
1494		error = device_suspend_late(dev);
1495
1496		mutex_lock(&dpm_list_mtx);
1497
1498		if (!list_empty(&dev->power.entry))
1499			list_move(&dev->power.entry, &dpm_late_early_list);
1500
1501		if (error) {
1502			pm_dev_err(dev, state, " late", error);
1503			dpm_save_failed_dev(dev_name(dev));
 
 
1504		}
1505
1506		mutex_unlock(&dpm_list_mtx);
1507
1508		put_device(dev);
1509
1510		mutex_lock(&dpm_list_mtx);
1511
1512		if (error || async_error)
1513			break;
1514	}
1515	mutex_unlock(&dpm_list_mtx);
1516	async_synchronize_full();
1517	if (!error)
1518		error = async_error;
1519	if (error) {
1520		suspend_stats.failed_suspend_late++;
1521		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1522		dpm_resume_early(resume_event(state));
1523	}
1524	dpm_show_time(starttime, state, error, "late");
1525	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1526	return error;
1527}
1528
1529/**
1530 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1531 * @state: PM transition of the system being carried out.
1532 */
1533int dpm_suspend_end(pm_message_t state)
1534{
1535	ktime_t starttime = ktime_get();
1536	int error;
1537
1538	error = dpm_suspend_late(state);
1539	if (error)
1540		goto out;
1541
1542	error = dpm_suspend_noirq(state);
1543	if (error)
1544		dpm_resume_early(resume_event(state));
1545
1546out:
1547	dpm_show_time(starttime, state, error, "end");
1548	return error;
1549}
1550EXPORT_SYMBOL_GPL(dpm_suspend_end);
1551
1552/**
1553 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1554 * @dev: Device to suspend.
1555 * @state: PM transition of the system being carried out.
1556 * @cb: Suspend callback to execute.
1557 * @info: string description of caller.
1558 */
1559static int legacy_suspend(struct device *dev, pm_message_t state,
1560			  int (*cb)(struct device *dev, pm_message_t state),
1561			  const char *info)
1562{
1563	int error;
1564	ktime_t calltime;
1565
1566	calltime = initcall_debug_start(dev, cb);
1567
1568	trace_device_pm_callback_start(dev, info, state.event);
1569	error = cb(dev, state);
1570	trace_device_pm_callback_end(dev, error);
1571	suspend_report_result(dev, cb, error);
1572
1573	initcall_debug_report(dev, calltime, cb, error);
1574
1575	return error;
1576}
1577
1578static void dpm_clear_superiors_direct_complete(struct device *dev)
1579{
1580	struct device_link *link;
1581	int idx;
1582
1583	if (dev->parent) {
1584		spin_lock_irq(&dev->parent->power.lock);
1585		dev->parent->power.direct_complete = false;
1586		spin_unlock_irq(&dev->parent->power.lock);
1587	}
1588
1589	idx = device_links_read_lock();
1590
1591	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1592		spin_lock_irq(&link->supplier->power.lock);
1593		link->supplier->power.direct_complete = false;
1594		spin_unlock_irq(&link->supplier->power.lock);
1595	}
1596
1597	device_links_read_unlock(idx);
1598}
1599
1600/**
1601 * __device_suspend - Execute "suspend" callbacks for given device.
1602 * @dev: Device to handle.
1603 * @state: PM transition of the system being carried out.
1604 * @async: If true, the device is being suspended asynchronously.
1605 */
1606static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1607{
1608	pm_callback_t callback = NULL;
1609	const char *info = NULL;
1610	int error = 0;
1611	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1612
1613	TRACE_DEVICE(dev);
1614	TRACE_SUSPEND(0);
1615
1616	dpm_wait_for_subordinate(dev, async);
1617
1618	if (async_error) {
1619		dev->power.direct_complete = false;
1620		goto Complete;
1621	}
1622
1623	/*
1624	 * Wait for possible runtime PM transitions of the device in progress
1625	 * to complete and if there's a runtime resume request pending for it,
1626	 * resume it before proceeding with invoking the system-wide suspend
1627	 * callbacks for it.
1628	 *
1629	 * If the system-wide suspend callbacks below change the configuration
1630	 * of the device, they must disable runtime PM for it or otherwise
1631	 * ensure that its runtime-resume callbacks will not be confused by that
1632	 * change in case they are invoked going forward.
1633	 */
1634	pm_runtime_barrier(dev);
 
1635
1636	if (pm_wakeup_pending()) {
1637		dev->power.direct_complete = false;
1638		async_error = -EBUSY;
1639		goto Complete;
1640	}
1641
1642	if (dev->power.syscore)
1643		goto Complete;
1644
1645	/* Avoid direct_complete to let wakeup_path propagate. */
1646	if (device_may_wakeup(dev) || device_wakeup_path(dev))
1647		dev->power.direct_complete = false;
1648
1649	if (dev->power.direct_complete) {
1650		if (pm_runtime_status_suspended(dev)) {
1651			pm_runtime_disable(dev);
1652			if (pm_runtime_status_suspended(dev)) {
1653				pm_dev_dbg(dev, state, "direct-complete ");
1654				goto Complete;
1655			}
1656
1657			pm_runtime_enable(dev);
1658		}
1659		dev->power.direct_complete = false;
1660	}
1661
1662	dev->power.may_skip_resume = true;
1663	dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1664
1665	dpm_watchdog_set(&wd, dev);
1666	device_lock(dev);
1667
1668	if (dev->pm_domain) {
1669		info = "power domain ";
1670		callback = pm_op(&dev->pm_domain->ops, state);
1671		goto Run;
1672	}
1673
1674	if (dev->type && dev->type->pm) {
1675		info = "type ";
1676		callback = pm_op(dev->type->pm, state);
1677		goto Run;
1678	}
1679
1680	if (dev->class && dev->class->pm) {
1681		info = "class ";
1682		callback = pm_op(dev->class->pm, state);
1683		goto Run;
1684	}
1685
1686	if (dev->bus) {
1687		if (dev->bus->pm) {
1688			info = "bus ";
1689			callback = pm_op(dev->bus->pm, state);
1690		} else if (dev->bus->suspend) {
1691			pm_dev_dbg(dev, state, "legacy bus ");
1692			error = legacy_suspend(dev, state, dev->bus->suspend,
1693						"legacy bus ");
1694			goto End;
1695		}
1696	}
1697
1698 Run:
1699	if (!callback && dev->driver && dev->driver->pm) {
1700		info = "driver ";
1701		callback = pm_op(dev->driver->pm, state);
1702	}
1703
1704	error = dpm_run_callback(callback, dev, state, info);
1705
1706 End:
1707	if (!error) {
1708		dev->power.is_suspended = true;
1709		if (device_may_wakeup(dev))
1710			dev->power.wakeup_path = true;
1711
1712		dpm_propagate_wakeup_to_parent(dev);
1713		dpm_clear_superiors_direct_complete(dev);
1714	}
1715
1716	device_unlock(dev);
1717	dpm_watchdog_clear(&wd);
1718
1719 Complete:
1720	if (error)
1721		async_error = error;
1722
1723	complete_all(&dev->power.completion);
1724	TRACE_SUSPEND(error);
1725	return error;
1726}
1727
1728static void async_suspend(void *data, async_cookie_t cookie)
1729{
1730	struct device *dev = (struct device *)data;
1731	int error;
1732
1733	error = __device_suspend(dev, pm_transition, true);
1734	if (error) {
1735		dpm_save_failed_dev(dev_name(dev));
1736		pm_dev_err(dev, pm_transition, " async", error);
1737	}
1738
1739	put_device(dev);
1740}
1741
1742static int device_suspend(struct device *dev)
1743{
1744	if (dpm_async_fn(dev, async_suspend))
1745		return 0;
1746
1747	return __device_suspend(dev, pm_transition, false);
1748}
1749
1750/**
1751 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1752 * @state: PM transition of the system being carried out.
1753 */
1754int dpm_suspend(pm_message_t state)
1755{
1756	ktime_t starttime = ktime_get();
1757	int error = 0;
1758
1759	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1760	might_sleep();
1761
1762	devfreq_suspend();
1763	cpufreq_suspend();
1764
1765	mutex_lock(&dpm_list_mtx);
1766	pm_transition = state;
1767	async_error = 0;
1768	while (!list_empty(&dpm_prepared_list)) {
1769		struct device *dev = to_device(dpm_prepared_list.prev);
1770
1771		get_device(dev);
1772
1773		mutex_unlock(&dpm_list_mtx);
1774
1775		error = device_suspend(dev);
1776
1777		mutex_lock(&dpm_list_mtx);
1778
1779		if (error) {
1780			pm_dev_err(dev, state, "", error);
1781			dpm_save_failed_dev(dev_name(dev));
1782		} else if (!list_empty(&dev->power.entry)) {
 
 
 
1783			list_move(&dev->power.entry, &dpm_suspended_list);
1784		}
1785
1786		mutex_unlock(&dpm_list_mtx);
1787
1788		put_device(dev);
1789
1790		mutex_lock(&dpm_list_mtx);
1791
1792		if (error || async_error)
1793			break;
1794	}
1795	mutex_unlock(&dpm_list_mtx);
1796	async_synchronize_full();
1797	if (!error)
1798		error = async_error;
1799	if (error) {
1800		suspend_stats.failed_suspend++;
1801		dpm_save_failed_step(SUSPEND_SUSPEND);
1802	}
1803	dpm_show_time(starttime, state, error, NULL);
1804	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1805	return error;
1806}
1807
1808/**
1809 * device_prepare - Prepare a device for system power transition.
1810 * @dev: Device to handle.
1811 * @state: PM transition of the system being carried out.
1812 *
1813 * Execute the ->prepare() callback(s) for given device.  No new children of the
1814 * device may be registered after this function has returned.
1815 */
1816static int device_prepare(struct device *dev, pm_message_t state)
1817{
1818	int (*callback)(struct device *) = NULL;
1819	int ret = 0;
1820
 
 
 
 
 
 
 
1821	/*
1822	 * If a device's parent goes into runtime suspend at the wrong time,
1823	 * it won't be possible to resume the device.  To prevent this we
1824	 * block runtime suspend here, during the prepare phase, and allow
1825	 * it again during the complete phase.
1826	 */
1827	pm_runtime_get_noresume(dev);
1828
1829	if (dev->power.syscore)
1830		return 0;
1831
1832	device_lock(dev);
1833
1834	dev->power.wakeup_path = false;
1835
1836	if (dev->power.no_pm_callbacks)
1837		goto unlock;
1838
1839	if (dev->pm_domain)
1840		callback = dev->pm_domain->ops.prepare;
1841	else if (dev->type && dev->type->pm)
1842		callback = dev->type->pm->prepare;
1843	else if (dev->class && dev->class->pm)
1844		callback = dev->class->pm->prepare;
1845	else if (dev->bus && dev->bus->pm)
1846		callback = dev->bus->pm->prepare;
1847
1848	if (!callback && dev->driver && dev->driver->pm)
1849		callback = dev->driver->pm->prepare;
1850
1851	if (callback)
1852		ret = callback(dev);
1853
1854unlock:
1855	device_unlock(dev);
1856
1857	if (ret < 0) {
1858		suspend_report_result(dev, callback, ret);
1859		pm_runtime_put(dev);
1860		return ret;
1861	}
1862	/*
1863	 * A positive return value from ->prepare() means "this device appears
1864	 * to be runtime-suspended and its state is fine, so if it really is
1865	 * runtime-suspended, you can leave it in that state provided that you
1866	 * will do the same thing with all of its descendants".  This only
1867	 * applies to suspend transitions, however.
1868	 */
1869	spin_lock_irq(&dev->power.lock);
1870	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1871		(ret > 0 || dev->power.no_pm_callbacks) &&
1872		!dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
 
1873	spin_unlock_irq(&dev->power.lock);
1874	return 0;
1875}
1876
1877/**
1878 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1879 * @state: PM transition of the system being carried out.
1880 *
1881 * Execute the ->prepare() callback(s) for all devices.
1882 */
1883int dpm_prepare(pm_message_t state)
1884{
1885	int error = 0;
1886
1887	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1888	might_sleep();
1889
1890	/*
1891	 * Give a chance for the known devices to complete their probes, before
1892	 * disable probing of devices. This sync point is important at least
1893	 * at boot time + hibernation restore.
1894	 */
1895	wait_for_device_probe();
1896	/*
1897	 * It is unsafe if probing of devices will happen during suspend or
1898	 * hibernation and system behavior will be unpredictable in this case.
1899	 * So, let's prohibit device's probing here and defer their probes
1900	 * instead. The normal behavior will be restored in dpm_complete().
1901	 */
1902	device_block_probing();
1903
1904	mutex_lock(&dpm_list_mtx);
1905	while (!list_empty(&dpm_list) && !error) {
1906		struct device *dev = to_device(dpm_list.next);
1907
1908		get_device(dev);
1909
1910		mutex_unlock(&dpm_list_mtx);
1911
1912		trace_device_pm_callback_start(dev, "", state.event);
1913		error = device_prepare(dev, state);
1914		trace_device_pm_callback_end(dev, error);
1915
1916		mutex_lock(&dpm_list_mtx);
1917
1918		if (!error) {
1919			dev->power.is_prepared = true;
1920			if (!list_empty(&dev->power.entry))
1921				list_move_tail(&dev->power.entry, &dpm_prepared_list);
1922		} else if (error == -EAGAIN) {
1923			error = 0;
1924		} else {
1925			dev_info(dev, "not prepared for power transition: code %d\n",
1926				 error);
1927		}
1928
1929		mutex_unlock(&dpm_list_mtx);
1930
1931		put_device(dev);
1932
1933		mutex_lock(&dpm_list_mtx);
1934	}
1935	mutex_unlock(&dpm_list_mtx);
1936	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1937	return error;
1938}
1939
1940/**
1941 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1942 * @state: PM transition of the system being carried out.
1943 *
1944 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1945 * callbacks for them.
1946 */
1947int dpm_suspend_start(pm_message_t state)
1948{
1949	ktime_t starttime = ktime_get();
1950	int error;
1951
1952	error = dpm_prepare(state);
1953	if (error) {
1954		suspend_stats.failed_prepare++;
1955		dpm_save_failed_step(SUSPEND_PREPARE);
1956	} else
1957		error = dpm_suspend(state);
1958	dpm_show_time(starttime, state, error, "start");
1959	return error;
1960}
1961EXPORT_SYMBOL_GPL(dpm_suspend_start);
1962
1963void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret)
1964{
1965	if (ret)
1966		dev_err(dev, "%s(): %pS returns %d\n", function, fn, ret);
1967}
1968EXPORT_SYMBOL_GPL(__suspend_report_result);
1969
1970/**
1971 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1972 * @subordinate: Device that needs to wait for @dev.
1973 * @dev: Device to wait for.
1974 */
1975int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1976{
1977	dpm_wait(dev, subordinate->power.async_suspend);
1978	return async_error;
1979}
1980EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1981
1982/**
1983 * dpm_for_each_dev - device iterator.
1984 * @data: data for the callback.
1985 * @fn: function to be called for each device.
1986 *
1987 * Iterate over devices in dpm_list, and call @fn for each device,
1988 * passing it @data.
1989 */
1990void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1991{
1992	struct device *dev;
1993
1994	if (!fn)
1995		return;
1996
1997	device_pm_lock();
1998	list_for_each_entry(dev, &dpm_list, power.entry)
1999		fn(dev, data);
2000	device_pm_unlock();
2001}
2002EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2003
2004static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2005{
2006	if (!ops)
2007		return true;
2008
2009	return !ops->prepare &&
2010	       !ops->suspend &&
2011	       !ops->suspend_late &&
2012	       !ops->suspend_noirq &&
2013	       !ops->resume_noirq &&
2014	       !ops->resume_early &&
2015	       !ops->resume &&
2016	       !ops->complete;
2017}
2018
2019void device_pm_check_callbacks(struct device *dev)
2020{
2021	unsigned long flags;
2022
2023	spin_lock_irqsave(&dev->power.lock, flags);
2024	dev->power.no_pm_callbacks =
2025		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2026		 !dev->bus->suspend && !dev->bus->resume)) &&
2027		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2028		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2029		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2030		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2031		 !dev->driver->suspend && !dev->driver->resume));
2032	spin_unlock_irqrestore(&dev->power.lock, flags);
2033}
2034
2035bool dev_pm_skip_suspend(struct device *dev)
2036{
2037	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2038		pm_runtime_status_suspended(dev);
2039}