Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/power/main.c - Where the driver meets power management.
   4 *
   5 * Copyright (c) 2003 Patrick Mochel
   6 * Copyright (c) 2003 Open Source Development Lab
   7 *
 
 
 
   8 * The driver model core calls device_pm_add() when a device is registered.
   9 * This will initialize the embedded device_pm_info object in the device
  10 * and add it to the list of power-controlled devices. sysfs entries for
  11 * controlling device power management will also be added.
  12 *
  13 * A separate list is used for keeping track of power info, because the power
  14 * domain dependencies may differ from the ancestral dependencies that the
  15 * subsystem list maintains.
  16 */
  17
  18#define pr_fmt(fmt) "PM: " fmt
  19
  20#include <linux/device.h>
  21#include <linux/export.h>
  22#include <linux/mutex.h>
  23#include <linux/pm.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/pm-trace.h>
  26#include <linux/pm_wakeirq.h>
  27#include <linux/interrupt.h>
  28#include <linux/sched.h>
  29#include <linux/sched/debug.h>
  30#include <linux/async.h>
  31#include <linux/suspend.h>
  32#include <trace/events/power.h>
  33#include <linux/cpufreq.h>
  34#include <linux/cpuidle.h>
  35#include <linux/devfreq.h>
  36#include <linux/timer.h>
  37
  38#include "../base.h"
  39#include "power.h"
  40
  41typedef int (*pm_callback_t)(struct device *);
  42
  43/*
  44 * The entries in the dpm_list list are in a depth first order, simply
  45 * because children are guaranteed to be discovered after parents, and
  46 * are inserted at the back of the list on discovery.
  47 *
  48 * Since device_pm_add() may be called with a device lock held,
  49 * we must never try to acquire a device lock while holding
  50 * dpm_list_mutex.
  51 */
  52
  53LIST_HEAD(dpm_list);
  54static LIST_HEAD(dpm_prepared_list);
  55static LIST_HEAD(dpm_suspended_list);
  56static LIST_HEAD(dpm_late_early_list);
  57static LIST_HEAD(dpm_noirq_list);
  58
  59struct suspend_stats suspend_stats;
  60static DEFINE_MUTEX(dpm_list_mtx);
  61static pm_message_t pm_transition;
  62
  63static int async_error;
  64
  65static const char *pm_verb(int event)
  66{
  67	switch (event) {
  68	case PM_EVENT_SUSPEND:
  69		return "suspend";
  70	case PM_EVENT_RESUME:
  71		return "resume";
  72	case PM_EVENT_FREEZE:
  73		return "freeze";
  74	case PM_EVENT_QUIESCE:
  75		return "quiesce";
  76	case PM_EVENT_HIBERNATE:
  77		return "hibernate";
  78	case PM_EVENT_THAW:
  79		return "thaw";
  80	case PM_EVENT_RESTORE:
  81		return "restore";
  82	case PM_EVENT_RECOVER:
  83		return "recover";
  84	default:
  85		return "(unknown PM event)";
  86	}
  87}
  88
  89/**
  90 * device_pm_sleep_init - Initialize system suspend-related device fields.
  91 * @dev: Device object being initialized.
  92 */
  93void device_pm_sleep_init(struct device *dev)
  94{
  95	dev->power.is_prepared = false;
  96	dev->power.is_suspended = false;
  97	dev->power.is_noirq_suspended = false;
  98	dev->power.is_late_suspended = false;
  99	init_completion(&dev->power.completion);
 100	complete_all(&dev->power.completion);
 101	dev->power.wakeup = NULL;
 102	INIT_LIST_HEAD(&dev->power.entry);
 103}
 104
 105/**
 106 * device_pm_lock - Lock the list of active devices used by the PM core.
 107 */
 108void device_pm_lock(void)
 109{
 110	mutex_lock(&dpm_list_mtx);
 111}
 112
 113/**
 114 * device_pm_unlock - Unlock the list of active devices used by the PM core.
 115 */
 116void device_pm_unlock(void)
 117{
 118	mutex_unlock(&dpm_list_mtx);
 119}
 120
 121/**
 122 * device_pm_add - Add a device to the PM core's list of active devices.
 123 * @dev: Device to add to the list.
 124 */
 125void device_pm_add(struct device *dev)
 126{
 127	/* Skip PM setup/initialization. */
 128	if (device_pm_not_required(dev))
 129		return;
 130
 131	pr_debug("Adding info for %s:%s\n",
 132		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 133	device_pm_check_callbacks(dev);
 134	mutex_lock(&dpm_list_mtx);
 135	if (dev->parent && dev->parent->power.is_prepared)
 136		dev_warn(dev, "parent %s should not be sleeping\n",
 137			dev_name(dev->parent));
 138	list_add_tail(&dev->power.entry, &dpm_list);
 139	dev->power.in_dpm_list = true;
 140	mutex_unlock(&dpm_list_mtx);
 141}
 142
 143/**
 144 * device_pm_remove - Remove a device from the PM core's list of active devices.
 145 * @dev: Device to be removed from the list.
 146 */
 147void device_pm_remove(struct device *dev)
 148{
 149	if (device_pm_not_required(dev))
 150		return;
 151
 152	pr_debug("Removing info for %s:%s\n",
 153		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 154	complete_all(&dev->power.completion);
 155	mutex_lock(&dpm_list_mtx);
 156	list_del_init(&dev->power.entry);
 157	dev->power.in_dpm_list = false;
 158	mutex_unlock(&dpm_list_mtx);
 159	device_wakeup_disable(dev);
 160	pm_runtime_remove(dev);
 161	device_pm_check_callbacks(dev);
 162}
 163
 164/**
 165 * device_pm_move_before - Move device in the PM core's list of active devices.
 166 * @deva: Device to move in dpm_list.
 167 * @devb: Device @deva should come before.
 168 */
 169void device_pm_move_before(struct device *deva, struct device *devb)
 170{
 171	pr_debug("Moving %s:%s before %s:%s\n",
 172		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 173		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 174	/* Delete deva from dpm_list and reinsert before devb. */
 175	list_move_tail(&deva->power.entry, &devb->power.entry);
 176}
 177
 178/**
 179 * device_pm_move_after - Move device in the PM core's list of active devices.
 180 * @deva: Device to move in dpm_list.
 181 * @devb: Device @deva should come after.
 182 */
 183void device_pm_move_after(struct device *deva, struct device *devb)
 184{
 185	pr_debug("Moving %s:%s after %s:%s\n",
 186		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 187		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 188	/* Delete deva from dpm_list and reinsert after devb. */
 189	list_move(&deva->power.entry, &devb->power.entry);
 190}
 191
 192/**
 193 * device_pm_move_last - Move device to end of the PM core's list of devices.
 194 * @dev: Device to move in dpm_list.
 195 */
 196void device_pm_move_last(struct device *dev)
 197{
 198	pr_debug("Moving %s:%s to end of list\n",
 199		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 200	list_move_tail(&dev->power.entry, &dpm_list);
 201}
 202
 203static ktime_t initcall_debug_start(struct device *dev, void *cb)
 204{
 205	if (!pm_print_times_enabled)
 206		return 0;
 
 
 
 
 
 
 207
 208	dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
 209		 task_pid_nr(current),
 210		 dev->parent ? dev_name(dev->parent) : "none");
 211	return ktime_get();
 212}
 213
 214static void initcall_debug_report(struct device *dev, ktime_t calltime,
 215				  void *cb, int error)
 
 216{
 217	ktime_t rettime;
 218	s64 nsecs;
 219
 220	if (!pm_print_times_enabled)
 221		return;
 222
 223	rettime = ktime_get();
 224	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
 225
 226	dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
 227		 (unsigned long long)nsecs >> 10);
 
 
 228}
 229
 230/**
 231 * dpm_wait - Wait for a PM operation to complete.
 232 * @dev: Device to wait for.
 233 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 234 */
 235static void dpm_wait(struct device *dev, bool async)
 236{
 237	if (!dev)
 238		return;
 239
 240	if (async || (pm_async_enabled && dev->power.async_suspend))
 241		wait_for_completion(&dev->power.completion);
 242}
 243
 244static int dpm_wait_fn(struct device *dev, void *async_ptr)
 245{
 246	dpm_wait(dev, *((bool *)async_ptr));
 247	return 0;
 248}
 249
 250static void dpm_wait_for_children(struct device *dev, bool async)
 251{
 252       device_for_each_child(dev, &async, dpm_wait_fn);
 253}
 254
 255static void dpm_wait_for_suppliers(struct device *dev, bool async)
 256{
 257	struct device_link *link;
 258	int idx;
 259
 260	idx = device_links_read_lock();
 261
 262	/*
 263	 * If the supplier goes away right after we've checked the link to it,
 264	 * we'll wait for its completion to change the state, but that's fine,
 265	 * because the only things that will block as a result are the SRCU
 266	 * callbacks freeing the link objects for the links in the list we're
 267	 * walking.
 268	 */
 269	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
 270		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 271			dpm_wait(link->supplier, async);
 272
 273	device_links_read_unlock(idx);
 274}
 275
 276static void dpm_wait_for_superior(struct device *dev, bool async)
 277{
 278	dpm_wait(dev->parent, async);
 279	dpm_wait_for_suppliers(dev, async);
 280}
 281
 282static void dpm_wait_for_consumers(struct device *dev, bool async)
 283{
 284	struct device_link *link;
 285	int idx;
 286
 287	idx = device_links_read_lock();
 288
 289	/*
 290	 * The status of a device link can only be changed from "dormant" by a
 291	 * probe, but that cannot happen during system suspend/resume.  In
 292	 * theory it can change to "dormant" at that time, but then it is
 293	 * reasonable to wait for the target device anyway (eg. if it goes
 294	 * away, it's better to wait for it to go away completely and then
 295	 * continue instead of trying to continue in parallel with its
 296	 * unregistration).
 297	 */
 298	list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
 299		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 300			dpm_wait(link->consumer, async);
 301
 302	device_links_read_unlock(idx);
 303}
 304
 305static void dpm_wait_for_subordinate(struct device *dev, bool async)
 306{
 307	dpm_wait_for_children(dev, async);
 308	dpm_wait_for_consumers(dev, async);
 309}
 310
 311/**
 312 * pm_op - Return the PM operation appropriate for given PM event.
 313 * @ops: PM operations to choose from.
 314 * @state: PM transition of the system being carried out.
 315 */
 316static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
 317{
 318	switch (state.event) {
 319#ifdef CONFIG_SUSPEND
 320	case PM_EVENT_SUSPEND:
 321		return ops->suspend;
 322	case PM_EVENT_RESUME:
 323		return ops->resume;
 324#endif /* CONFIG_SUSPEND */
 325#ifdef CONFIG_HIBERNATE_CALLBACKS
 326	case PM_EVENT_FREEZE:
 327	case PM_EVENT_QUIESCE:
 328		return ops->freeze;
 329	case PM_EVENT_HIBERNATE:
 330		return ops->poweroff;
 331	case PM_EVENT_THAW:
 332	case PM_EVENT_RECOVER:
 333		return ops->thaw;
 334		break;
 335	case PM_EVENT_RESTORE:
 336		return ops->restore;
 337#endif /* CONFIG_HIBERNATE_CALLBACKS */
 338	}
 339
 340	return NULL;
 341}
 342
 343/**
 344 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 345 * @ops: PM operations to choose from.
 346 * @state: PM transition of the system being carried out.
 347 *
 348 * Runtime PM is disabled for @dev while this function is being executed.
 349 */
 350static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
 351				      pm_message_t state)
 352{
 353	switch (state.event) {
 354#ifdef CONFIG_SUSPEND
 355	case PM_EVENT_SUSPEND:
 356		return ops->suspend_late;
 357	case PM_EVENT_RESUME:
 358		return ops->resume_early;
 359#endif /* CONFIG_SUSPEND */
 360#ifdef CONFIG_HIBERNATE_CALLBACKS
 361	case PM_EVENT_FREEZE:
 362	case PM_EVENT_QUIESCE:
 363		return ops->freeze_late;
 364	case PM_EVENT_HIBERNATE:
 365		return ops->poweroff_late;
 366	case PM_EVENT_THAW:
 367	case PM_EVENT_RECOVER:
 368		return ops->thaw_early;
 369	case PM_EVENT_RESTORE:
 370		return ops->restore_early;
 371#endif /* CONFIG_HIBERNATE_CALLBACKS */
 372	}
 373
 374	return NULL;
 375}
 376
 377/**
 378 * pm_noirq_op - Return the PM operation appropriate for given PM event.
 379 * @ops: PM operations to choose from.
 380 * @state: PM transition of the system being carried out.
 381 *
 382 * The driver of @dev will not receive interrupts while this function is being
 383 * executed.
 384 */
 385static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
 386{
 387	switch (state.event) {
 388#ifdef CONFIG_SUSPEND
 389	case PM_EVENT_SUSPEND:
 390		return ops->suspend_noirq;
 391	case PM_EVENT_RESUME:
 392		return ops->resume_noirq;
 393#endif /* CONFIG_SUSPEND */
 394#ifdef CONFIG_HIBERNATE_CALLBACKS
 395	case PM_EVENT_FREEZE:
 396	case PM_EVENT_QUIESCE:
 397		return ops->freeze_noirq;
 398	case PM_EVENT_HIBERNATE:
 399		return ops->poweroff_noirq;
 400	case PM_EVENT_THAW:
 401	case PM_EVENT_RECOVER:
 402		return ops->thaw_noirq;
 403	case PM_EVENT_RESTORE:
 404		return ops->restore_noirq;
 405#endif /* CONFIG_HIBERNATE_CALLBACKS */
 406	}
 407
 408	return NULL;
 409}
 410
 411static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
 412{
 413	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
 414		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
 415		", may wakeup" : "");
 416}
 417
 418static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
 419			int error)
 420{
 421	pr_err("Device %s failed to %s%s: error %d\n",
 422	       dev_name(dev), pm_verb(state.event), info, error);
 423}
 424
 425static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
 426			  const char *info)
 427{
 428	ktime_t calltime;
 429	u64 usecs64;
 430	int usecs;
 431
 432	calltime = ktime_get();
 433	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
 434	do_div(usecs64, NSEC_PER_USEC);
 435	usecs = usecs64;
 436	if (usecs == 0)
 437		usecs = 1;
 438
 439	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
 440		  info ?: "", info ? " " : "", pm_verb(state.event),
 441		  error ? "aborted" : "complete",
 442		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
 443}
 444
 445static int dpm_run_callback(pm_callback_t cb, struct device *dev,
 446			    pm_message_t state, const char *info)
 447{
 448	ktime_t calltime;
 449	int error;
 450
 451	if (!cb)
 452		return 0;
 453
 454	calltime = initcall_debug_start(dev, cb);
 455
 456	pm_dev_dbg(dev, state, info);
 457	trace_device_pm_callback_start(dev, info, state.event);
 458	error = cb(dev);
 459	trace_device_pm_callback_end(dev, error);
 460	suspend_report_result(cb, error);
 461
 462	initcall_debug_report(dev, calltime, cb, error);
 463
 464	return error;
 465}
 466
 467#ifdef CONFIG_DPM_WATCHDOG
 468struct dpm_watchdog {
 469	struct device		*dev;
 470	struct task_struct	*tsk;
 471	struct timer_list	timer;
 472};
 473
 474#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
 475	struct dpm_watchdog wd
 476
 477/**
 478 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 479 * @t: The timer that PM watchdog depends on.
 480 *
 481 * Called when a driver has timed out suspending or resuming.
 482 * There's not much we can do here to recover so panic() to
 483 * capture a crash-dump in pstore.
 484 */
 485static void dpm_watchdog_handler(struct timer_list *t)
 486{
 487	struct dpm_watchdog *wd = from_timer(wd, t, timer);
 488
 489	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
 490	show_stack(wd->tsk, NULL);
 491	panic("%s %s: unrecoverable failure\n",
 492		dev_driver_string(wd->dev), dev_name(wd->dev));
 493}
 494
 495/**
 496 * dpm_watchdog_set - Enable pm watchdog for given device.
 497 * @wd: Watchdog. Must be allocated on the stack.
 498 * @dev: Device to handle.
 499 */
 500static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
 501{
 502	struct timer_list *timer = &wd->timer;
 503
 504	wd->dev = dev;
 505	wd->tsk = current;
 506
 507	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
 508	/* use same timeout value for both suspend and resume */
 509	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
 510	add_timer(timer);
 511}
 512
 513/**
 514 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 515 * @wd: Watchdog to disable.
 516 */
 517static void dpm_watchdog_clear(struct dpm_watchdog *wd)
 518{
 519	struct timer_list *timer = &wd->timer;
 520
 521	del_timer_sync(timer);
 522	destroy_timer_on_stack(timer);
 523}
 524#else
 525#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
 526#define dpm_watchdog_set(x, y)
 527#define dpm_watchdog_clear(x)
 528#endif
 529
 530/*------------------------- Resume routines -------------------------*/
 531
 532/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533 * suspend_event - Return a "suspend" message for given "resume" one.
 534 * @resume_msg: PM message representing a system-wide resume transition.
 535 */
 536static pm_message_t suspend_event(pm_message_t resume_msg)
 537{
 538	switch (resume_msg.event) {
 539	case PM_EVENT_RESUME:
 540		return PMSG_SUSPEND;
 541	case PM_EVENT_THAW:
 542	case PM_EVENT_RESTORE:
 543		return PMSG_FREEZE;
 544	case PM_EVENT_RECOVER:
 545		return PMSG_HIBERNATE;
 546	}
 547	return PMSG_ON;
 548}
 549
 550/**
 551 * dev_pm_may_skip_resume - System-wide device resume optimization check.
 552 * @dev: Target device.
 553 *
 554 * Checks whether or not the device may be left in suspend after a system-wide
 555 * transition to the working state.
 556 */
 557bool dev_pm_may_skip_resume(struct device *dev)
 558{
 559	return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
 560}
 561
 562static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
 563						pm_message_t state,
 564						const char **info_p)
 565{
 566	pm_callback_t callback;
 567	const char *info;
 568
 569	if (dev->pm_domain) {
 570		info = "noirq power domain ";
 571		callback = pm_noirq_op(&dev->pm_domain->ops, state);
 572	} else if (dev->type && dev->type->pm) {
 573		info = "noirq type ";
 574		callback = pm_noirq_op(dev->type->pm, state);
 575	} else if (dev->class && dev->class->pm) {
 576		info = "noirq class ";
 577		callback = pm_noirq_op(dev->class->pm, state);
 578	} else if (dev->bus && dev->bus->pm) {
 579		info = "noirq bus ";
 580		callback = pm_noirq_op(dev->bus->pm, state);
 581	} else {
 582		return NULL;
 583	}
 584
 585	if (info_p)
 586		*info_p = info;
 587
 588	return callback;
 589}
 590
 591static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
 592						 pm_message_t state,
 593						 const char **info_p);
 594
 595static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
 596						pm_message_t state,
 597						const char **info_p);
 598
 599/**
 600 * device_resume_noirq - Execute a "noirq resume" callback for given device.
 601 * @dev: Device to handle.
 602 * @state: PM transition of the system being carried out.
 603 * @async: If true, the device is being resumed asynchronously.
 604 *
 605 * The driver of @dev will not receive interrupts while this function is being
 606 * executed.
 607 */
 608static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
 609{
 610	pm_callback_t callback;
 611	const char *info;
 612	bool skip_resume;
 613	int error = 0;
 614
 615	TRACE_DEVICE(dev);
 616	TRACE_RESUME(0);
 617
 618	if (dev->power.syscore || dev->power.direct_complete)
 619		goto Out;
 620
 621	if (!dev->power.is_noirq_suspended)
 622		goto Out;
 623
 624	dpm_wait_for_superior(dev, async);
 625
 626	skip_resume = dev_pm_may_skip_resume(dev);
 627
 628	callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
 629	if (callback)
 630		goto Run;
 631
 632	if (skip_resume)
 633		goto Skip;
 634
 635	if (dev_pm_smart_suspend_and_suspended(dev)) {
 636		pm_message_t suspend_msg = suspend_event(state);
 637
 638		/*
 639		 * If "freeze" callbacks have been skipped during a transition
 640		 * related to hibernation, the subsequent "thaw" callbacks must
 641		 * be skipped too or bad things may happen.  Otherwise, resume
 642		 * callbacks are going to be run for the device, so its runtime
 643		 * PM status must be changed to reflect the new state after the
 644		 * transition under way.
 645		 */
 646		if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
 647		    !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
 648			if (state.event == PM_EVENT_THAW) {
 649				skip_resume = true;
 650				goto Skip;
 651			} else {
 652				pm_runtime_set_active(dev);
 653			}
 654		}
 655	}
 656
 657	if (dev->driver && dev->driver->pm) {
 658		info = "noirq driver ";
 659		callback = pm_noirq_op(dev->driver->pm, state);
 660	}
 661
 662Run:
 663	error = dpm_run_callback(callback, dev, state, info);
 664
 665Skip:
 666	dev->power.is_noirq_suspended = false;
 667
 668	if (skip_resume) {
 669		/* Make the next phases of resume skip the device. */
 670		dev->power.is_late_suspended = false;
 671		dev->power.is_suspended = false;
 672		/*
 673		 * The device is going to be left in suspend, but it might not
 674		 * have been in runtime suspend before the system suspended, so
 675		 * its runtime PM status needs to be updated to avoid confusing
 676		 * the runtime PM framework when runtime PM is enabled for the
 677		 * device again.
 678		 */
 679		pm_runtime_set_suspended(dev);
 
 680	}
 681
 682Out:
 683	complete_all(&dev->power.completion);
 684	TRACE_RESUME(error);
 685	return error;
 686}
 687
 688static bool is_async(struct device *dev)
 689{
 690	return dev->power.async_suspend && pm_async_enabled
 691		&& !pm_trace_is_enabled();
 692}
 693
 694static bool dpm_async_fn(struct device *dev, async_func_t func)
 695{
 696	reinit_completion(&dev->power.completion);
 697
 698	if (is_async(dev)) {
 699		get_device(dev);
 700		async_schedule(func, dev);
 701		return true;
 702	}
 703
 704	return false;
 705}
 706
 707static void async_resume_noirq(void *data, async_cookie_t cookie)
 708{
 709	struct device *dev = (struct device *)data;
 710	int error;
 711
 712	error = device_resume_noirq(dev, pm_transition, true);
 713	if (error)
 714		pm_dev_err(dev, pm_transition, " async", error);
 715
 716	put_device(dev);
 717}
 718
 719static void dpm_noirq_resume_devices(pm_message_t state)
 720{
 721	struct device *dev;
 722	ktime_t starttime = ktime_get();
 723
 724	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
 725	mutex_lock(&dpm_list_mtx);
 726	pm_transition = state;
 727
 728	/*
 729	 * Advanced the async threads upfront,
 730	 * in case the starting of async threads is
 731	 * delayed by non-async resuming devices.
 732	 */
 733	list_for_each_entry(dev, &dpm_noirq_list, power.entry)
 734		dpm_async_fn(dev, async_resume_noirq);
 
 
 
 
 
 735
 736	while (!list_empty(&dpm_noirq_list)) {
 737		dev = to_device(dpm_noirq_list.next);
 738		get_device(dev);
 739		list_move_tail(&dev->power.entry, &dpm_late_early_list);
 740		mutex_unlock(&dpm_list_mtx);
 741
 742		if (!is_async(dev)) {
 743			int error;
 744
 745			error = device_resume_noirq(dev, state, false);
 746			if (error) {
 747				suspend_stats.failed_resume_noirq++;
 748				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
 749				dpm_save_failed_dev(dev_name(dev));
 750				pm_dev_err(dev, state, " noirq", error);
 751			}
 752		}
 753
 754		mutex_lock(&dpm_list_mtx);
 755		put_device(dev);
 756	}
 757	mutex_unlock(&dpm_list_mtx);
 758	async_synchronize_full();
 759	dpm_show_time(starttime, state, 0, "noirq");
 760	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
 761}
 762
 
 
 
 
 
 
 
 763/**
 764 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
 765 * @state: PM transition of the system being carried out.
 766 *
 767 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
 768 * allow device drivers' interrupt handlers to be called.
 769 */
 770void dpm_resume_noirq(pm_message_t state)
 771{
 772	dpm_noirq_resume_devices(state);
 773
 774	resume_device_irqs();
 775	device_wakeup_disarm_wake_irqs();
 776
 777	cpuidle_resume();
 778}
 779
 780static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
 781						pm_message_t state,
 782						const char **info_p)
 783{
 784	pm_callback_t callback;
 785	const char *info;
 786
 787	if (dev->pm_domain) {
 788		info = "early power domain ";
 789		callback = pm_late_early_op(&dev->pm_domain->ops, state);
 790	} else if (dev->type && dev->type->pm) {
 791		info = "early type ";
 792		callback = pm_late_early_op(dev->type->pm, state);
 793	} else if (dev->class && dev->class->pm) {
 794		info = "early class ";
 795		callback = pm_late_early_op(dev->class->pm, state);
 796	} else if (dev->bus && dev->bus->pm) {
 797		info = "early bus ";
 798		callback = pm_late_early_op(dev->bus->pm, state);
 799	} else {
 800		return NULL;
 801	}
 802
 803	if (info_p)
 804		*info_p = info;
 805
 806	return callback;
 807}
 808
 809/**
 810 * device_resume_early - Execute an "early resume" callback for given device.
 811 * @dev: Device to handle.
 812 * @state: PM transition of the system being carried out.
 813 * @async: If true, the device is being resumed asynchronously.
 814 *
 815 * Runtime PM is disabled for @dev while this function is being executed.
 816 */
 817static int device_resume_early(struct device *dev, pm_message_t state, bool async)
 818{
 819	pm_callback_t callback;
 820	const char *info;
 821	int error = 0;
 822
 823	TRACE_DEVICE(dev);
 824	TRACE_RESUME(0);
 825
 826	if (dev->power.syscore || dev->power.direct_complete)
 827		goto Out;
 828
 829	if (!dev->power.is_late_suspended)
 830		goto Out;
 831
 832	dpm_wait_for_superior(dev, async);
 833
 834	callback = dpm_subsys_resume_early_cb(dev, state, &info);
 835
 836	if (!callback && dev->driver && dev->driver->pm) {
 837		info = "early driver ";
 838		callback = pm_late_early_op(dev->driver->pm, state);
 839	}
 840
 841	error = dpm_run_callback(callback, dev, state, info);
 842	dev->power.is_late_suspended = false;
 843
 844 Out:
 845	TRACE_RESUME(error);
 846
 847	pm_runtime_enable(dev);
 848	complete_all(&dev->power.completion);
 849	return error;
 850}
 851
 852static void async_resume_early(void *data, async_cookie_t cookie)
 853{
 854	struct device *dev = (struct device *)data;
 855	int error;
 856
 857	error = device_resume_early(dev, pm_transition, true);
 858	if (error)
 859		pm_dev_err(dev, pm_transition, " async", error);
 860
 861	put_device(dev);
 862}
 863
 864/**
 865 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 866 * @state: PM transition of the system being carried out.
 867 */
 868void dpm_resume_early(pm_message_t state)
 869{
 870	struct device *dev;
 871	ktime_t starttime = ktime_get();
 872
 873	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
 874	mutex_lock(&dpm_list_mtx);
 875	pm_transition = state;
 876
 877	/*
 878	 * Advanced the async threads upfront,
 879	 * in case the starting of async threads is
 880	 * delayed by non-async resuming devices.
 881	 */
 882	list_for_each_entry(dev, &dpm_late_early_list, power.entry)
 883		dpm_async_fn(dev, async_resume_early);
 
 
 
 
 
 884
 885	while (!list_empty(&dpm_late_early_list)) {
 886		dev = to_device(dpm_late_early_list.next);
 887		get_device(dev);
 888		list_move_tail(&dev->power.entry, &dpm_suspended_list);
 889		mutex_unlock(&dpm_list_mtx);
 890
 891		if (!is_async(dev)) {
 892			int error;
 893
 894			error = device_resume_early(dev, state, false);
 895			if (error) {
 896				suspend_stats.failed_resume_early++;
 897				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
 898				dpm_save_failed_dev(dev_name(dev));
 899				pm_dev_err(dev, state, " early", error);
 900			}
 901		}
 902		mutex_lock(&dpm_list_mtx);
 903		put_device(dev);
 904	}
 905	mutex_unlock(&dpm_list_mtx);
 906	async_synchronize_full();
 907	dpm_show_time(starttime, state, 0, "early");
 908	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
 909}
 910
 911/**
 912 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 913 * @state: PM transition of the system being carried out.
 914 */
 915void dpm_resume_start(pm_message_t state)
 916{
 917	dpm_resume_noirq(state);
 918	dpm_resume_early(state);
 919}
 920EXPORT_SYMBOL_GPL(dpm_resume_start);
 921
 922/**
 923 * device_resume - Execute "resume" callbacks for given device.
 924 * @dev: Device to handle.
 925 * @state: PM transition of the system being carried out.
 926 * @async: If true, the device is being resumed asynchronously.
 927 */
 928static int device_resume(struct device *dev, pm_message_t state, bool async)
 929{
 930	pm_callback_t callback = NULL;
 931	const char *info = NULL;
 932	int error = 0;
 933	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
 934
 935	TRACE_DEVICE(dev);
 936	TRACE_RESUME(0);
 937
 938	if (dev->power.syscore)
 939		goto Complete;
 940
 941	if (dev->power.direct_complete) {
 942		/* Match the pm_runtime_disable() in __device_suspend(). */
 943		pm_runtime_enable(dev);
 944		goto Complete;
 945	}
 946
 947	dpm_wait_for_superior(dev, async);
 948	dpm_watchdog_set(&wd, dev);
 949	device_lock(dev);
 950
 951	/*
 952	 * This is a fib.  But we'll allow new children to be added below
 953	 * a resumed device, even if the device hasn't been completed yet.
 954	 */
 955	dev->power.is_prepared = false;
 956
 957	if (!dev->power.is_suspended)
 958		goto Unlock;
 959
 960	if (dev->pm_domain) {
 961		info = "power domain ";
 962		callback = pm_op(&dev->pm_domain->ops, state);
 963		goto Driver;
 964	}
 965
 966	if (dev->type && dev->type->pm) {
 967		info = "type ";
 968		callback = pm_op(dev->type->pm, state);
 969		goto Driver;
 970	}
 971
 972	if (dev->class && dev->class->pm) {
 973		info = "class ";
 974		callback = pm_op(dev->class->pm, state);
 975		goto Driver;
 976	}
 977
 978	if (dev->bus) {
 979		if (dev->bus->pm) {
 980			info = "bus ";
 981			callback = pm_op(dev->bus->pm, state);
 982		} else if (dev->bus->resume) {
 983			info = "legacy bus ";
 984			callback = dev->bus->resume;
 985			goto End;
 986		}
 987	}
 988
 989 Driver:
 990	if (!callback && dev->driver && dev->driver->pm) {
 991		info = "driver ";
 992		callback = pm_op(dev->driver->pm, state);
 993	}
 994
 995 End:
 996	error = dpm_run_callback(callback, dev, state, info);
 997	dev->power.is_suspended = false;
 998
 999 Unlock:
1000	device_unlock(dev);
1001	dpm_watchdog_clear(&wd);
1002
1003 Complete:
1004	complete_all(&dev->power.completion);
1005
1006	TRACE_RESUME(error);
1007
1008	return error;
1009}
1010
1011static void async_resume(void *data, async_cookie_t cookie)
1012{
1013	struct device *dev = (struct device *)data;
1014	int error;
1015
1016	error = device_resume(dev, pm_transition, true);
1017	if (error)
1018		pm_dev_err(dev, pm_transition, " async", error);
1019	put_device(dev);
1020}
1021
1022/**
1023 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1024 * @state: PM transition of the system being carried out.
1025 *
1026 * Execute the appropriate "resume" callback for all devices whose status
1027 * indicates that they are suspended.
1028 */
1029void dpm_resume(pm_message_t state)
1030{
1031	struct device *dev;
1032	ktime_t starttime = ktime_get();
1033
1034	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1035	might_sleep();
1036
1037	mutex_lock(&dpm_list_mtx);
1038	pm_transition = state;
1039	async_error = 0;
1040
1041	list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1042		dpm_async_fn(dev, async_resume);
 
 
 
 
 
1043
1044	while (!list_empty(&dpm_suspended_list)) {
1045		dev = to_device(dpm_suspended_list.next);
1046		get_device(dev);
1047		if (!is_async(dev)) {
1048			int error;
1049
1050			mutex_unlock(&dpm_list_mtx);
1051
1052			error = device_resume(dev, state, false);
1053			if (error) {
1054				suspend_stats.failed_resume++;
1055				dpm_save_failed_step(SUSPEND_RESUME);
1056				dpm_save_failed_dev(dev_name(dev));
1057				pm_dev_err(dev, state, "", error);
1058			}
1059
1060			mutex_lock(&dpm_list_mtx);
1061		}
1062		if (!list_empty(&dev->power.entry))
1063			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1064		put_device(dev);
1065	}
1066	mutex_unlock(&dpm_list_mtx);
1067	async_synchronize_full();
1068	dpm_show_time(starttime, state, 0, NULL);
1069
1070	cpufreq_resume();
1071	devfreq_resume();
1072	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1073}
1074
1075/**
1076 * device_complete - Complete a PM transition for given device.
1077 * @dev: Device to handle.
1078 * @state: PM transition of the system being carried out.
1079 */
1080static void device_complete(struct device *dev, pm_message_t state)
1081{
1082	void (*callback)(struct device *) = NULL;
1083	const char *info = NULL;
1084
1085	if (dev->power.syscore)
1086		return;
1087
1088	device_lock(dev);
1089
1090	if (dev->pm_domain) {
1091		info = "completing power domain ";
1092		callback = dev->pm_domain->ops.complete;
1093	} else if (dev->type && dev->type->pm) {
1094		info = "completing type ";
1095		callback = dev->type->pm->complete;
1096	} else if (dev->class && dev->class->pm) {
1097		info = "completing class ";
1098		callback = dev->class->pm->complete;
1099	} else if (dev->bus && dev->bus->pm) {
1100		info = "completing bus ";
1101		callback = dev->bus->pm->complete;
1102	}
1103
1104	if (!callback && dev->driver && dev->driver->pm) {
1105		info = "completing driver ";
1106		callback = dev->driver->pm->complete;
1107	}
1108
1109	if (callback) {
1110		pm_dev_dbg(dev, state, info);
1111		callback(dev);
1112	}
1113
1114	device_unlock(dev);
1115
1116	pm_runtime_put(dev);
1117}
1118
1119/**
1120 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1121 * @state: PM transition of the system being carried out.
1122 *
1123 * Execute the ->complete() callbacks for all devices whose PM status is not
1124 * DPM_ON (this allows new devices to be registered).
1125 */
1126void dpm_complete(pm_message_t state)
1127{
1128	struct list_head list;
1129
1130	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1131	might_sleep();
1132
1133	INIT_LIST_HEAD(&list);
1134	mutex_lock(&dpm_list_mtx);
1135	while (!list_empty(&dpm_prepared_list)) {
1136		struct device *dev = to_device(dpm_prepared_list.prev);
1137
1138		get_device(dev);
1139		dev->power.is_prepared = false;
1140		list_move(&dev->power.entry, &list);
1141		mutex_unlock(&dpm_list_mtx);
1142
1143		trace_device_pm_callback_start(dev, "", state.event);
1144		device_complete(dev, state);
1145		trace_device_pm_callback_end(dev, 0);
1146
1147		mutex_lock(&dpm_list_mtx);
1148		put_device(dev);
1149	}
1150	list_splice(&list, &dpm_list);
1151	mutex_unlock(&dpm_list_mtx);
1152
1153	/* Allow device probing and trigger re-probing of deferred devices */
1154	device_unblock_probing();
1155	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1156}
1157
1158/**
1159 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1160 * @state: PM transition of the system being carried out.
1161 *
1162 * Execute "resume" callbacks for all devices and complete the PM transition of
1163 * the system.
1164 */
1165void dpm_resume_end(pm_message_t state)
1166{
1167	dpm_resume(state);
1168	dpm_complete(state);
1169}
1170EXPORT_SYMBOL_GPL(dpm_resume_end);
1171
1172
1173/*------------------------- Suspend routines -------------------------*/
1174
1175/**
1176 * resume_event - Return a "resume" message for given "suspend" sleep state.
1177 * @sleep_state: PM message representing a sleep state.
1178 *
1179 * Return a PM message representing the resume event corresponding to given
1180 * sleep state.
1181 */
1182static pm_message_t resume_event(pm_message_t sleep_state)
1183{
1184	switch (sleep_state.event) {
1185	case PM_EVENT_SUSPEND:
1186		return PMSG_RESUME;
1187	case PM_EVENT_FREEZE:
1188	case PM_EVENT_QUIESCE:
1189		return PMSG_RECOVER;
1190	case PM_EVENT_HIBERNATE:
1191		return PMSG_RESTORE;
1192	}
1193	return PMSG_ON;
1194}
1195
1196static void dpm_superior_set_must_resume(struct device *dev)
1197{
1198	struct device_link *link;
1199	int idx;
1200
1201	if (dev->parent)
1202		dev->parent->power.must_resume = true;
1203
1204	idx = device_links_read_lock();
1205
1206	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1207		link->supplier->power.must_resume = true;
1208
1209	device_links_read_unlock(idx);
1210}
1211
1212static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1213						 pm_message_t state,
1214						 const char **info_p)
1215{
1216	pm_callback_t callback;
1217	const char *info;
1218
1219	if (dev->pm_domain) {
1220		info = "noirq power domain ";
1221		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1222	} else if (dev->type && dev->type->pm) {
1223		info = "noirq type ";
1224		callback = pm_noirq_op(dev->type->pm, state);
1225	} else if (dev->class && dev->class->pm) {
1226		info = "noirq class ";
1227		callback = pm_noirq_op(dev->class->pm, state);
1228	} else if (dev->bus && dev->bus->pm) {
1229		info = "noirq bus ";
1230		callback = pm_noirq_op(dev->bus->pm, state);
1231	} else {
1232		return NULL;
1233	}
1234
1235	if (info_p)
1236		*info_p = info;
1237
1238	return callback;
1239}
1240
1241static bool device_must_resume(struct device *dev, pm_message_t state,
1242			       bool no_subsys_suspend_noirq)
1243{
1244	pm_message_t resume_msg = resume_event(state);
1245
1246	/*
1247	 * If all of the device driver's "noirq", "late" and "early" callbacks
1248	 * are invoked directly by the core, the decision to allow the device to
1249	 * stay in suspend can be based on its current runtime PM status and its
1250	 * wakeup settings.
1251	 */
1252	if (no_subsys_suspend_noirq &&
1253	    !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1254	    !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1255	    !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1256		return !pm_runtime_status_suspended(dev) &&
1257			(resume_msg.event != PM_EVENT_RESUME ||
1258			 (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1259
1260	/*
1261	 * The only safe strategy here is to require that if the device may not
1262	 * be left in suspend, resume callbacks must be invoked for it.
1263	 */
1264	return !dev->power.may_skip_resume;
1265}
1266
1267/**
1268 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1269 * @dev: Device to handle.
1270 * @state: PM transition of the system being carried out.
1271 * @async: If true, the device is being suspended asynchronously.
1272 *
1273 * The driver of @dev will not receive interrupts while this function is being
1274 * executed.
1275 */
1276static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1277{
1278	pm_callback_t callback;
1279	const char *info;
1280	bool no_subsys_cb = false;
1281	int error = 0;
1282
1283	TRACE_DEVICE(dev);
1284	TRACE_SUSPEND(0);
1285
1286	dpm_wait_for_subordinate(dev, async);
1287
1288	if (async_error)
1289		goto Complete;
1290
 
 
 
 
 
1291	if (dev->power.syscore || dev->power.direct_complete)
1292		goto Complete;
1293
1294	callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
1295	if (callback)
1296		goto Run;
1297
1298	no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1299
1300	if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1301		goto Skip;
1302
1303	if (dev->driver && dev->driver->pm) {
1304		info = "noirq driver ";
1305		callback = pm_noirq_op(dev->driver->pm, state);
1306	}
1307
1308Run:
1309	error = dpm_run_callback(callback, dev, state, info);
1310	if (error) {
1311		async_error = error;
1312		goto Complete;
1313	}
1314
1315Skip:
1316	dev->power.is_noirq_suspended = true;
1317
1318	if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1319		dev->power.must_resume = dev->power.must_resume ||
1320				atomic_read(&dev->power.usage_count) > 1 ||
1321				device_must_resume(dev, state, no_subsys_cb);
1322	} else {
1323		dev->power.must_resume = true;
1324	}
1325
1326	if (dev->power.must_resume)
1327		dpm_superior_set_must_resume(dev);
1328
1329Complete:
1330	complete_all(&dev->power.completion);
1331	TRACE_SUSPEND(error);
1332	return error;
1333}
1334
1335static void async_suspend_noirq(void *data, async_cookie_t cookie)
1336{
1337	struct device *dev = (struct device *)data;
1338	int error;
1339
1340	error = __device_suspend_noirq(dev, pm_transition, true);
1341	if (error) {
1342		dpm_save_failed_dev(dev_name(dev));
1343		pm_dev_err(dev, pm_transition, " async", error);
1344	}
1345
1346	put_device(dev);
1347}
1348
1349static int device_suspend_noirq(struct device *dev)
1350{
1351	if (dpm_async_fn(dev, async_suspend_noirq))
1352		return 0;
1353
 
 
 
 
 
1354	return __device_suspend_noirq(dev, pm_transition, false);
1355}
1356
1357static int dpm_noirq_suspend_devices(pm_message_t state)
 
 
 
 
 
 
 
1358{
1359	ktime_t starttime = ktime_get();
1360	int error = 0;
1361
1362	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1363	mutex_lock(&dpm_list_mtx);
1364	pm_transition = state;
1365	async_error = 0;
1366
1367	while (!list_empty(&dpm_late_early_list)) {
1368		struct device *dev = to_device(dpm_late_early_list.prev);
1369
1370		get_device(dev);
1371		mutex_unlock(&dpm_list_mtx);
1372
1373		error = device_suspend_noirq(dev);
1374
1375		mutex_lock(&dpm_list_mtx);
1376		if (error) {
1377			pm_dev_err(dev, state, " noirq", error);
1378			dpm_save_failed_dev(dev_name(dev));
1379			put_device(dev);
1380			break;
1381		}
1382		if (!list_empty(&dev->power.entry))
1383			list_move(&dev->power.entry, &dpm_noirq_list);
1384		put_device(dev);
1385
1386		if (async_error)
1387			break;
1388	}
1389	mutex_unlock(&dpm_list_mtx);
1390	async_synchronize_full();
1391	if (!error)
1392		error = async_error;
1393
1394	if (error) {
1395		suspend_stats.failed_suspend_noirq++;
1396		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1397	}
1398	dpm_show_time(starttime, state, error, "noirq");
1399	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1400	return error;
1401}
1402
1403/**
1404 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1405 * @state: PM transition of the system being carried out.
1406 *
1407 * Prevent device drivers' interrupt handlers from being called and invoke
1408 * "noirq" suspend callbacks for all non-sysdev devices.
1409 */
1410int dpm_suspend_noirq(pm_message_t state)
1411{
1412	int ret;
1413
1414	cpuidle_pause();
1415
1416	device_wakeup_arm_wake_irqs();
1417	suspend_device_irqs();
1418
1419	ret = dpm_noirq_suspend_devices(state);
1420	if (ret)
1421		dpm_resume_noirq(resume_event(state));
1422
1423	return ret;
1424}
1425
1426static void dpm_propagate_wakeup_to_parent(struct device *dev)
1427{
1428	struct device *parent = dev->parent;
1429
1430	if (!parent)
1431		return;
1432
1433	spin_lock_irq(&parent->power.lock);
1434
1435	if (dev->power.wakeup_path && !parent->power.ignore_children)
1436		parent->power.wakeup_path = true;
1437
1438	spin_unlock_irq(&parent->power.lock);
1439}
1440
1441static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1442						pm_message_t state,
1443						const char **info_p)
1444{
1445	pm_callback_t callback;
1446	const char *info;
1447
1448	if (dev->pm_domain) {
1449		info = "late power domain ";
1450		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1451	} else if (dev->type && dev->type->pm) {
1452		info = "late type ";
1453		callback = pm_late_early_op(dev->type->pm, state);
1454	} else if (dev->class && dev->class->pm) {
1455		info = "late class ";
1456		callback = pm_late_early_op(dev->class->pm, state);
1457	} else if (dev->bus && dev->bus->pm) {
1458		info = "late bus ";
1459		callback = pm_late_early_op(dev->bus->pm, state);
1460	} else {
1461		return NULL;
1462	}
1463
1464	if (info_p)
1465		*info_p = info;
1466
1467	return callback;
1468}
1469
1470/**
1471 * __device_suspend_late - Execute a "late suspend" callback for given device.
1472 * @dev: Device to handle.
1473 * @state: PM transition of the system being carried out.
1474 * @async: If true, the device is being suspended asynchronously.
1475 *
1476 * Runtime PM is disabled for @dev while this function is being executed.
1477 */
1478static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1479{
1480	pm_callback_t callback;
1481	const char *info;
1482	int error = 0;
1483
1484	TRACE_DEVICE(dev);
1485	TRACE_SUSPEND(0);
1486
1487	__pm_runtime_disable(dev, false);
1488
1489	dpm_wait_for_subordinate(dev, async);
1490
1491	if (async_error)
1492		goto Complete;
1493
1494	if (pm_wakeup_pending()) {
1495		async_error = -EBUSY;
1496		goto Complete;
1497	}
1498
1499	if (dev->power.syscore || dev->power.direct_complete)
1500		goto Complete;
1501
1502	callback = dpm_subsys_suspend_late_cb(dev, state, &info);
1503	if (callback)
1504		goto Run;
1505
1506	if (dev_pm_smart_suspend_and_suspended(dev) &&
1507	    !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1508		goto Skip;
1509
1510	if (dev->driver && dev->driver->pm) {
1511		info = "late driver ";
1512		callback = pm_late_early_op(dev->driver->pm, state);
1513	}
1514
1515Run:
1516	error = dpm_run_callback(callback, dev, state, info);
1517	if (error) {
1518		async_error = error;
1519		goto Complete;
1520	}
1521	dpm_propagate_wakeup_to_parent(dev);
1522
1523Skip:
1524	dev->power.is_late_suspended = true;
1525
1526Complete:
1527	TRACE_SUSPEND(error);
1528	complete_all(&dev->power.completion);
1529	return error;
1530}
1531
1532static void async_suspend_late(void *data, async_cookie_t cookie)
1533{
1534	struct device *dev = (struct device *)data;
1535	int error;
1536
1537	error = __device_suspend_late(dev, pm_transition, true);
1538	if (error) {
1539		dpm_save_failed_dev(dev_name(dev));
1540		pm_dev_err(dev, pm_transition, " async", error);
1541	}
1542	put_device(dev);
1543}
1544
1545static int device_suspend_late(struct device *dev)
1546{
1547	if (dpm_async_fn(dev, async_suspend_late))
 
 
 
 
1548		return 0;
 
1549
1550	return __device_suspend_late(dev, pm_transition, false);
1551}
1552
1553/**
1554 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1555 * @state: PM transition of the system being carried out.
1556 */
1557int dpm_suspend_late(pm_message_t state)
1558{
1559	ktime_t starttime = ktime_get();
1560	int error = 0;
1561
1562	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1563	mutex_lock(&dpm_list_mtx);
1564	pm_transition = state;
1565	async_error = 0;
1566
1567	while (!list_empty(&dpm_suspended_list)) {
1568		struct device *dev = to_device(dpm_suspended_list.prev);
1569
1570		get_device(dev);
1571		mutex_unlock(&dpm_list_mtx);
1572
1573		error = device_suspend_late(dev);
1574
1575		mutex_lock(&dpm_list_mtx);
1576		if (!list_empty(&dev->power.entry))
1577			list_move(&dev->power.entry, &dpm_late_early_list);
1578
1579		if (error) {
1580			pm_dev_err(dev, state, " late", error);
1581			dpm_save_failed_dev(dev_name(dev));
1582			put_device(dev);
1583			break;
1584		}
1585		put_device(dev);
1586
1587		if (async_error)
1588			break;
1589	}
1590	mutex_unlock(&dpm_list_mtx);
1591	async_synchronize_full();
1592	if (!error)
1593		error = async_error;
1594	if (error) {
1595		suspend_stats.failed_suspend_late++;
1596		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1597		dpm_resume_early(resume_event(state));
1598	}
1599	dpm_show_time(starttime, state, error, "late");
1600	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1601	return error;
1602}
1603
1604/**
1605 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1606 * @state: PM transition of the system being carried out.
1607 */
1608int dpm_suspend_end(pm_message_t state)
1609{
1610	ktime_t starttime = ktime_get();
1611	int error;
1612
1613	error = dpm_suspend_late(state);
1614	if (error)
1615		goto out;
1616
1617	error = dpm_suspend_noirq(state);
1618	if (error)
1619		dpm_resume_early(resume_event(state));
 
 
1620
1621out:
1622	dpm_show_time(starttime, state, error, "end");
1623	return error;
1624}
1625EXPORT_SYMBOL_GPL(dpm_suspend_end);
1626
1627/**
1628 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1629 * @dev: Device to suspend.
1630 * @state: PM transition of the system being carried out.
1631 * @cb: Suspend callback to execute.
1632 * @info: string description of caller.
1633 */
1634static int legacy_suspend(struct device *dev, pm_message_t state,
1635			  int (*cb)(struct device *dev, pm_message_t state),
1636			  const char *info)
1637{
1638	int error;
1639	ktime_t calltime;
1640
1641	calltime = initcall_debug_start(dev, cb);
1642
1643	trace_device_pm_callback_start(dev, info, state.event);
1644	error = cb(dev, state);
1645	trace_device_pm_callback_end(dev, error);
1646	suspend_report_result(cb, error);
1647
1648	initcall_debug_report(dev, calltime, cb, error);
1649
1650	return error;
1651}
1652
1653static void dpm_clear_superiors_direct_complete(struct device *dev)
1654{
1655	struct device_link *link;
1656	int idx;
1657
1658	if (dev->parent) {
1659		spin_lock_irq(&dev->parent->power.lock);
1660		dev->parent->power.direct_complete = false;
1661		spin_unlock_irq(&dev->parent->power.lock);
1662	}
1663
1664	idx = device_links_read_lock();
1665
1666	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1667		spin_lock_irq(&link->supplier->power.lock);
1668		link->supplier->power.direct_complete = false;
1669		spin_unlock_irq(&link->supplier->power.lock);
1670	}
1671
1672	device_links_read_unlock(idx);
1673}
1674
1675/**
1676 * __device_suspend - Execute "suspend" callbacks for given device.
1677 * @dev: Device to handle.
1678 * @state: PM transition of the system being carried out.
1679 * @async: If true, the device is being suspended asynchronously.
1680 */
1681static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1682{
1683	pm_callback_t callback = NULL;
1684	const char *info = NULL;
1685	int error = 0;
1686	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1687
1688	TRACE_DEVICE(dev);
1689	TRACE_SUSPEND(0);
1690
1691	dpm_wait_for_subordinate(dev, async);
1692
1693	if (async_error) {
1694		dev->power.direct_complete = false;
1695		goto Complete;
1696	}
1697
1698	/*
1699	 * If a device configured to wake up the system from sleep states
1700	 * has been suspended at run time and there's a resume request pending
1701	 * for it, this is equivalent to the device signaling wakeup, so the
1702	 * system suspend operation should be aborted.
1703	 */
1704	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1705		pm_wakeup_event(dev, 0);
1706
1707	if (pm_wakeup_pending()) {
1708		dev->power.direct_complete = false;
1709		async_error = -EBUSY;
1710		goto Complete;
1711	}
1712
1713	if (dev->power.syscore)
1714		goto Complete;
1715
1716	/* Avoid direct_complete to let wakeup_path propagate. */
1717	if (device_may_wakeup(dev) || dev->power.wakeup_path)
1718		dev->power.direct_complete = false;
1719
1720	if (dev->power.direct_complete) {
1721		if (pm_runtime_status_suspended(dev)) {
1722			pm_runtime_disable(dev);
1723			if (pm_runtime_status_suspended(dev)) {
1724				pm_dev_dbg(dev, state, "direct-complete ");
1725				goto Complete;
1726			}
1727
1728			pm_runtime_enable(dev);
1729		}
1730		dev->power.direct_complete = false;
1731	}
1732
1733	dev->power.may_skip_resume = false;
1734	dev->power.must_resume = false;
1735
1736	dpm_watchdog_set(&wd, dev);
1737	device_lock(dev);
1738
1739	if (dev->pm_domain) {
1740		info = "power domain ";
1741		callback = pm_op(&dev->pm_domain->ops, state);
1742		goto Run;
1743	}
1744
1745	if (dev->type && dev->type->pm) {
1746		info = "type ";
1747		callback = pm_op(dev->type->pm, state);
1748		goto Run;
1749	}
1750
1751	if (dev->class && dev->class->pm) {
1752		info = "class ";
1753		callback = pm_op(dev->class->pm, state);
1754		goto Run;
1755	}
1756
1757	if (dev->bus) {
1758		if (dev->bus->pm) {
1759			info = "bus ";
1760			callback = pm_op(dev->bus->pm, state);
1761		} else if (dev->bus->suspend) {
1762			pm_dev_dbg(dev, state, "legacy bus ");
1763			error = legacy_suspend(dev, state, dev->bus->suspend,
1764						"legacy bus ");
1765			goto End;
1766		}
1767	}
1768
1769 Run:
1770	if (!callback && dev->driver && dev->driver->pm) {
1771		info = "driver ";
1772		callback = pm_op(dev->driver->pm, state);
1773	}
1774
1775	error = dpm_run_callback(callback, dev, state, info);
1776
1777 End:
1778	if (!error) {
1779		dev->power.is_suspended = true;
1780		if (device_may_wakeup(dev))
1781			dev->power.wakeup_path = true;
1782
1783		dpm_propagate_wakeup_to_parent(dev);
1784		dpm_clear_superiors_direct_complete(dev);
1785	}
1786
1787	device_unlock(dev);
1788	dpm_watchdog_clear(&wd);
1789
1790 Complete:
1791	if (error)
1792		async_error = error;
1793
1794	complete_all(&dev->power.completion);
1795	TRACE_SUSPEND(error);
1796	return error;
1797}
1798
1799static void async_suspend(void *data, async_cookie_t cookie)
1800{
1801	struct device *dev = (struct device *)data;
1802	int error;
1803
1804	error = __device_suspend(dev, pm_transition, true);
1805	if (error) {
1806		dpm_save_failed_dev(dev_name(dev));
1807		pm_dev_err(dev, pm_transition, " async", error);
1808	}
1809
1810	put_device(dev);
1811}
1812
1813static int device_suspend(struct device *dev)
1814{
1815	if (dpm_async_fn(dev, async_suspend))
 
 
 
 
1816		return 0;
 
1817
1818	return __device_suspend(dev, pm_transition, false);
1819}
1820
1821/**
1822 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1823 * @state: PM transition of the system being carried out.
1824 */
1825int dpm_suspend(pm_message_t state)
1826{
1827	ktime_t starttime = ktime_get();
1828	int error = 0;
1829
1830	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1831	might_sleep();
1832
1833	devfreq_suspend();
1834	cpufreq_suspend();
1835
1836	mutex_lock(&dpm_list_mtx);
1837	pm_transition = state;
1838	async_error = 0;
1839	while (!list_empty(&dpm_prepared_list)) {
1840		struct device *dev = to_device(dpm_prepared_list.prev);
1841
1842		get_device(dev);
1843		mutex_unlock(&dpm_list_mtx);
1844
1845		error = device_suspend(dev);
1846
1847		mutex_lock(&dpm_list_mtx);
1848		if (error) {
1849			pm_dev_err(dev, state, "", error);
1850			dpm_save_failed_dev(dev_name(dev));
1851			put_device(dev);
1852			break;
1853		}
1854		if (!list_empty(&dev->power.entry))
1855			list_move(&dev->power.entry, &dpm_suspended_list);
1856		put_device(dev);
1857		if (async_error)
1858			break;
1859	}
1860	mutex_unlock(&dpm_list_mtx);
1861	async_synchronize_full();
1862	if (!error)
1863		error = async_error;
1864	if (error) {
1865		suspend_stats.failed_suspend++;
1866		dpm_save_failed_step(SUSPEND_SUSPEND);
1867	}
1868	dpm_show_time(starttime, state, error, NULL);
1869	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1870	return error;
1871}
1872
1873/**
1874 * device_prepare - Prepare a device for system power transition.
1875 * @dev: Device to handle.
1876 * @state: PM transition of the system being carried out.
1877 *
1878 * Execute the ->prepare() callback(s) for given device.  No new children of the
1879 * device may be registered after this function has returned.
1880 */
1881static int device_prepare(struct device *dev, pm_message_t state)
1882{
1883	int (*callback)(struct device *) = NULL;
1884	int ret = 0;
1885
1886	if (dev->power.syscore)
1887		return 0;
1888
1889	WARN_ON(!pm_runtime_enabled(dev) &&
1890		dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1891					      DPM_FLAG_LEAVE_SUSPENDED));
1892
1893	/*
1894	 * If a device's parent goes into runtime suspend at the wrong time,
1895	 * it won't be possible to resume the device.  To prevent this we
1896	 * block runtime suspend here, during the prepare phase, and allow
1897	 * it again during the complete phase.
1898	 */
1899	pm_runtime_get_noresume(dev);
1900
1901	device_lock(dev);
1902
1903	dev->power.wakeup_path = false;
1904
1905	if (dev->power.no_pm_callbacks)
1906		goto unlock;
1907
1908	if (dev->pm_domain)
1909		callback = dev->pm_domain->ops.prepare;
1910	else if (dev->type && dev->type->pm)
1911		callback = dev->type->pm->prepare;
1912	else if (dev->class && dev->class->pm)
1913		callback = dev->class->pm->prepare;
1914	else if (dev->bus && dev->bus->pm)
1915		callback = dev->bus->pm->prepare;
1916
1917	if (!callback && dev->driver && dev->driver->pm)
1918		callback = dev->driver->pm->prepare;
1919
1920	if (callback)
1921		ret = callback(dev);
1922
1923unlock:
1924	device_unlock(dev);
1925
1926	if (ret < 0) {
1927		suspend_report_result(callback, ret);
1928		pm_runtime_put(dev);
1929		return ret;
1930	}
1931	/*
1932	 * A positive return value from ->prepare() means "this device appears
1933	 * to be runtime-suspended and its state is fine, so if it really is
1934	 * runtime-suspended, you can leave it in that state provided that you
1935	 * will do the same thing with all of its descendants".  This only
1936	 * applies to suspend transitions, however.
1937	 */
1938	spin_lock_irq(&dev->power.lock);
1939	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1940		((pm_runtime_suspended(dev) && ret > 0) ||
1941		 dev->power.no_pm_callbacks) &&
1942		!dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1943	spin_unlock_irq(&dev->power.lock);
1944	return 0;
1945}
1946
1947/**
1948 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1949 * @state: PM transition of the system being carried out.
1950 *
1951 * Execute the ->prepare() callback(s) for all devices.
1952 */
1953int dpm_prepare(pm_message_t state)
1954{
1955	int error = 0;
1956
1957	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1958	might_sleep();
1959
1960	/*
1961	 * Give a chance for the known devices to complete their probes, before
1962	 * disable probing of devices. This sync point is important at least
1963	 * at boot time + hibernation restore.
1964	 */
1965	wait_for_device_probe();
1966	/*
1967	 * It is unsafe if probing of devices will happen during suspend or
1968	 * hibernation and system behavior will be unpredictable in this case.
1969	 * So, let's prohibit device's probing here and defer their probes
1970	 * instead. The normal behavior will be restored in dpm_complete().
1971	 */
1972	device_block_probing();
1973
1974	mutex_lock(&dpm_list_mtx);
1975	while (!list_empty(&dpm_list)) {
1976		struct device *dev = to_device(dpm_list.next);
1977
1978		get_device(dev);
1979		mutex_unlock(&dpm_list_mtx);
1980
1981		trace_device_pm_callback_start(dev, "", state.event);
1982		error = device_prepare(dev, state);
1983		trace_device_pm_callback_end(dev, error);
1984
1985		mutex_lock(&dpm_list_mtx);
1986		if (error) {
1987			if (error == -EAGAIN) {
1988				put_device(dev);
1989				error = 0;
1990				continue;
1991			}
1992			pr_info("Device %s not prepared for power transition: code %d\n",
 
1993				dev_name(dev), error);
1994			put_device(dev);
1995			break;
1996		}
1997		dev->power.is_prepared = true;
1998		if (!list_empty(&dev->power.entry))
1999			list_move_tail(&dev->power.entry, &dpm_prepared_list);
2000		put_device(dev);
2001	}
2002	mutex_unlock(&dpm_list_mtx);
2003	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2004	return error;
2005}
2006
2007/**
2008 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2009 * @state: PM transition of the system being carried out.
2010 *
2011 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2012 * callbacks for them.
2013 */
2014int dpm_suspend_start(pm_message_t state)
2015{
2016	ktime_t starttime = ktime_get();
2017	int error;
2018
2019	error = dpm_prepare(state);
2020	if (error) {
2021		suspend_stats.failed_prepare++;
2022		dpm_save_failed_step(SUSPEND_PREPARE);
2023	} else
2024		error = dpm_suspend(state);
2025	dpm_show_time(starttime, state, error, "start");
2026	return error;
2027}
2028EXPORT_SYMBOL_GPL(dpm_suspend_start);
2029
2030void __suspend_report_result(const char *function, void *fn, int ret)
2031{
2032	if (ret)
2033		pr_err("%s(): %pS returns %d\n", function, fn, ret);
2034}
2035EXPORT_SYMBOL_GPL(__suspend_report_result);
2036
2037/**
2038 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2039 * @subordinate: Device that needs to wait for @dev.
2040 * @dev: Device to wait for.
 
2041 */
2042int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2043{
2044	dpm_wait(dev, subordinate->power.async_suspend);
2045	return async_error;
2046}
2047EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2048
2049/**
2050 * dpm_for_each_dev - device iterator.
2051 * @data: data for the callback.
2052 * @fn: function to be called for each device.
2053 *
2054 * Iterate over devices in dpm_list, and call @fn for each device,
2055 * passing it @data.
2056 */
2057void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2058{
2059	struct device *dev;
2060
2061	if (!fn)
2062		return;
2063
2064	device_pm_lock();
2065	list_for_each_entry(dev, &dpm_list, power.entry)
2066		fn(dev, data);
2067	device_pm_unlock();
2068}
2069EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2070
2071static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2072{
2073	if (!ops)
2074		return true;
2075
2076	return !ops->prepare &&
2077	       !ops->suspend &&
2078	       !ops->suspend_late &&
2079	       !ops->suspend_noirq &&
2080	       !ops->resume_noirq &&
2081	       !ops->resume_early &&
2082	       !ops->resume &&
2083	       !ops->complete;
2084}
2085
2086void device_pm_check_callbacks(struct device *dev)
2087{
2088	spin_lock_irq(&dev->power.lock);
2089	dev->power.no_pm_callbacks =
2090		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2091		 !dev->bus->suspend && !dev->bus->resume)) &&
2092		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2093		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2094		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2095		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2096		 !dev->driver->suspend && !dev->driver->resume));
2097	spin_unlock_irq(&dev->power.lock);
2098}
2099
2100bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2101{
2102	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2103		pm_runtime_status_suspended(dev);
2104}
v4.17
 
   1/*
   2 * drivers/base/power/main.c - Where the driver meets power management.
   3 *
   4 * Copyright (c) 2003 Patrick Mochel
   5 * Copyright (c) 2003 Open Source Development Lab
   6 *
   7 * This file is released under the GPLv2
   8 *
   9 *
  10 * The driver model core calls device_pm_add() when a device is registered.
  11 * This will initialize the embedded device_pm_info object in the device
  12 * and add it to the list of power-controlled devices. sysfs entries for
  13 * controlling device power management will also be added.
  14 *
  15 * A separate list is used for keeping track of power info, because the power
  16 * domain dependencies may differ from the ancestral dependencies that the
  17 * subsystem list maintains.
  18 */
  19
 
 
  20#include <linux/device.h>
  21#include <linux/export.h>
  22#include <linux/mutex.h>
  23#include <linux/pm.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/pm-trace.h>
  26#include <linux/pm_wakeirq.h>
  27#include <linux/interrupt.h>
  28#include <linux/sched.h>
  29#include <linux/sched/debug.h>
  30#include <linux/async.h>
  31#include <linux/suspend.h>
  32#include <trace/events/power.h>
  33#include <linux/cpufreq.h>
  34#include <linux/cpuidle.h>
 
  35#include <linux/timer.h>
  36
  37#include "../base.h"
  38#include "power.h"
  39
  40typedef int (*pm_callback_t)(struct device *);
  41
  42/*
  43 * The entries in the dpm_list list are in a depth first order, simply
  44 * because children are guaranteed to be discovered after parents, and
  45 * are inserted at the back of the list on discovery.
  46 *
  47 * Since device_pm_add() may be called with a device lock held,
  48 * we must never try to acquire a device lock while holding
  49 * dpm_list_mutex.
  50 */
  51
  52LIST_HEAD(dpm_list);
  53static LIST_HEAD(dpm_prepared_list);
  54static LIST_HEAD(dpm_suspended_list);
  55static LIST_HEAD(dpm_late_early_list);
  56static LIST_HEAD(dpm_noirq_list);
  57
  58struct suspend_stats suspend_stats;
  59static DEFINE_MUTEX(dpm_list_mtx);
  60static pm_message_t pm_transition;
  61
  62static int async_error;
  63
  64static const char *pm_verb(int event)
  65{
  66	switch (event) {
  67	case PM_EVENT_SUSPEND:
  68		return "suspend";
  69	case PM_EVENT_RESUME:
  70		return "resume";
  71	case PM_EVENT_FREEZE:
  72		return "freeze";
  73	case PM_EVENT_QUIESCE:
  74		return "quiesce";
  75	case PM_EVENT_HIBERNATE:
  76		return "hibernate";
  77	case PM_EVENT_THAW:
  78		return "thaw";
  79	case PM_EVENT_RESTORE:
  80		return "restore";
  81	case PM_EVENT_RECOVER:
  82		return "recover";
  83	default:
  84		return "(unknown PM event)";
  85	}
  86}
  87
  88/**
  89 * device_pm_sleep_init - Initialize system suspend-related device fields.
  90 * @dev: Device object being initialized.
  91 */
  92void device_pm_sleep_init(struct device *dev)
  93{
  94	dev->power.is_prepared = false;
  95	dev->power.is_suspended = false;
  96	dev->power.is_noirq_suspended = false;
  97	dev->power.is_late_suspended = false;
  98	init_completion(&dev->power.completion);
  99	complete_all(&dev->power.completion);
 100	dev->power.wakeup = NULL;
 101	INIT_LIST_HEAD(&dev->power.entry);
 102}
 103
 104/**
 105 * device_pm_lock - Lock the list of active devices used by the PM core.
 106 */
 107void device_pm_lock(void)
 108{
 109	mutex_lock(&dpm_list_mtx);
 110}
 111
 112/**
 113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
 114 */
 115void device_pm_unlock(void)
 116{
 117	mutex_unlock(&dpm_list_mtx);
 118}
 119
 120/**
 121 * device_pm_add - Add a device to the PM core's list of active devices.
 122 * @dev: Device to add to the list.
 123 */
 124void device_pm_add(struct device *dev)
 125{
 126	pr_debug("PM: Adding info for %s:%s\n",
 
 
 
 
 127		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 128	device_pm_check_callbacks(dev);
 129	mutex_lock(&dpm_list_mtx);
 130	if (dev->parent && dev->parent->power.is_prepared)
 131		dev_warn(dev, "parent %s should not be sleeping\n",
 132			dev_name(dev->parent));
 133	list_add_tail(&dev->power.entry, &dpm_list);
 134	dev->power.in_dpm_list = true;
 135	mutex_unlock(&dpm_list_mtx);
 136}
 137
 138/**
 139 * device_pm_remove - Remove a device from the PM core's list of active devices.
 140 * @dev: Device to be removed from the list.
 141 */
 142void device_pm_remove(struct device *dev)
 143{
 144	pr_debug("PM: Removing info for %s:%s\n",
 
 
 
 145		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 146	complete_all(&dev->power.completion);
 147	mutex_lock(&dpm_list_mtx);
 148	list_del_init(&dev->power.entry);
 149	dev->power.in_dpm_list = false;
 150	mutex_unlock(&dpm_list_mtx);
 151	device_wakeup_disable(dev);
 152	pm_runtime_remove(dev);
 153	device_pm_check_callbacks(dev);
 154}
 155
 156/**
 157 * device_pm_move_before - Move device in the PM core's list of active devices.
 158 * @deva: Device to move in dpm_list.
 159 * @devb: Device @deva should come before.
 160 */
 161void device_pm_move_before(struct device *deva, struct device *devb)
 162{
 163	pr_debug("PM: Moving %s:%s before %s:%s\n",
 164		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 165		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 166	/* Delete deva from dpm_list and reinsert before devb. */
 167	list_move_tail(&deva->power.entry, &devb->power.entry);
 168}
 169
 170/**
 171 * device_pm_move_after - Move device in the PM core's list of active devices.
 172 * @deva: Device to move in dpm_list.
 173 * @devb: Device @deva should come after.
 174 */
 175void device_pm_move_after(struct device *deva, struct device *devb)
 176{
 177	pr_debug("PM: Moving %s:%s after %s:%s\n",
 178		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 179		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 180	/* Delete deva from dpm_list and reinsert after devb. */
 181	list_move(&deva->power.entry, &devb->power.entry);
 182}
 183
 184/**
 185 * device_pm_move_last - Move device to end of the PM core's list of devices.
 186 * @dev: Device to move in dpm_list.
 187 */
 188void device_pm_move_last(struct device *dev)
 189{
 190	pr_debug("PM: Moving %s:%s to end of list\n",
 191		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 192	list_move_tail(&dev->power.entry, &dpm_list);
 193}
 194
 195static ktime_t initcall_debug_start(struct device *dev)
 196{
 197	ktime_t calltime = 0;
 198
 199	if (pm_print_times_enabled) {
 200		pr_info("calling  %s+ @ %i, parent: %s\n",
 201			dev_name(dev), task_pid_nr(current),
 202			dev->parent ? dev_name(dev->parent) : "none");
 203		calltime = ktime_get();
 204	}
 205
 206	return calltime;
 
 
 
 207}
 208
 209static void initcall_debug_report(struct device *dev, ktime_t calltime,
 210				  int error, pm_message_t state,
 211				  const char *info)
 212{
 213	ktime_t rettime;
 214	s64 nsecs;
 215
 
 
 
 216	rettime = ktime_get();
 217	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
 218
 219	if (pm_print_times_enabled) {
 220		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
 221			error, (unsigned long long)nsecs >> 10);
 222	}
 223}
 224
 225/**
 226 * dpm_wait - Wait for a PM operation to complete.
 227 * @dev: Device to wait for.
 228 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 229 */
 230static void dpm_wait(struct device *dev, bool async)
 231{
 232	if (!dev)
 233		return;
 234
 235	if (async || (pm_async_enabled && dev->power.async_suspend))
 236		wait_for_completion(&dev->power.completion);
 237}
 238
 239static int dpm_wait_fn(struct device *dev, void *async_ptr)
 240{
 241	dpm_wait(dev, *((bool *)async_ptr));
 242	return 0;
 243}
 244
 245static void dpm_wait_for_children(struct device *dev, bool async)
 246{
 247       device_for_each_child(dev, &async, dpm_wait_fn);
 248}
 249
 250static void dpm_wait_for_suppliers(struct device *dev, bool async)
 251{
 252	struct device_link *link;
 253	int idx;
 254
 255	idx = device_links_read_lock();
 256
 257	/*
 258	 * If the supplier goes away right after we've checked the link to it,
 259	 * we'll wait for its completion to change the state, but that's fine,
 260	 * because the only things that will block as a result are the SRCU
 261	 * callbacks freeing the link objects for the links in the list we're
 262	 * walking.
 263	 */
 264	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
 265		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 266			dpm_wait(link->supplier, async);
 267
 268	device_links_read_unlock(idx);
 269}
 270
 271static void dpm_wait_for_superior(struct device *dev, bool async)
 272{
 273	dpm_wait(dev->parent, async);
 274	dpm_wait_for_suppliers(dev, async);
 275}
 276
 277static void dpm_wait_for_consumers(struct device *dev, bool async)
 278{
 279	struct device_link *link;
 280	int idx;
 281
 282	idx = device_links_read_lock();
 283
 284	/*
 285	 * The status of a device link can only be changed from "dormant" by a
 286	 * probe, but that cannot happen during system suspend/resume.  In
 287	 * theory it can change to "dormant" at that time, but then it is
 288	 * reasonable to wait for the target device anyway (eg. if it goes
 289	 * away, it's better to wait for it to go away completely and then
 290	 * continue instead of trying to continue in parallel with its
 291	 * unregistration).
 292	 */
 293	list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
 294		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 295			dpm_wait(link->consumer, async);
 296
 297	device_links_read_unlock(idx);
 298}
 299
 300static void dpm_wait_for_subordinate(struct device *dev, bool async)
 301{
 302	dpm_wait_for_children(dev, async);
 303	dpm_wait_for_consumers(dev, async);
 304}
 305
 306/**
 307 * pm_op - Return the PM operation appropriate for given PM event.
 308 * @ops: PM operations to choose from.
 309 * @state: PM transition of the system being carried out.
 310 */
 311static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
 312{
 313	switch (state.event) {
 314#ifdef CONFIG_SUSPEND
 315	case PM_EVENT_SUSPEND:
 316		return ops->suspend;
 317	case PM_EVENT_RESUME:
 318		return ops->resume;
 319#endif /* CONFIG_SUSPEND */
 320#ifdef CONFIG_HIBERNATE_CALLBACKS
 321	case PM_EVENT_FREEZE:
 322	case PM_EVENT_QUIESCE:
 323		return ops->freeze;
 324	case PM_EVENT_HIBERNATE:
 325		return ops->poweroff;
 326	case PM_EVENT_THAW:
 327	case PM_EVENT_RECOVER:
 328		return ops->thaw;
 329		break;
 330	case PM_EVENT_RESTORE:
 331		return ops->restore;
 332#endif /* CONFIG_HIBERNATE_CALLBACKS */
 333	}
 334
 335	return NULL;
 336}
 337
 338/**
 339 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 340 * @ops: PM operations to choose from.
 341 * @state: PM transition of the system being carried out.
 342 *
 343 * Runtime PM is disabled for @dev while this function is being executed.
 344 */
 345static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
 346				      pm_message_t state)
 347{
 348	switch (state.event) {
 349#ifdef CONFIG_SUSPEND
 350	case PM_EVENT_SUSPEND:
 351		return ops->suspend_late;
 352	case PM_EVENT_RESUME:
 353		return ops->resume_early;
 354#endif /* CONFIG_SUSPEND */
 355#ifdef CONFIG_HIBERNATE_CALLBACKS
 356	case PM_EVENT_FREEZE:
 357	case PM_EVENT_QUIESCE:
 358		return ops->freeze_late;
 359	case PM_EVENT_HIBERNATE:
 360		return ops->poweroff_late;
 361	case PM_EVENT_THAW:
 362	case PM_EVENT_RECOVER:
 363		return ops->thaw_early;
 364	case PM_EVENT_RESTORE:
 365		return ops->restore_early;
 366#endif /* CONFIG_HIBERNATE_CALLBACKS */
 367	}
 368
 369	return NULL;
 370}
 371
 372/**
 373 * pm_noirq_op - Return the PM operation appropriate for given PM event.
 374 * @ops: PM operations to choose from.
 375 * @state: PM transition of the system being carried out.
 376 *
 377 * The driver of @dev will not receive interrupts while this function is being
 378 * executed.
 379 */
 380static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
 381{
 382	switch (state.event) {
 383#ifdef CONFIG_SUSPEND
 384	case PM_EVENT_SUSPEND:
 385		return ops->suspend_noirq;
 386	case PM_EVENT_RESUME:
 387		return ops->resume_noirq;
 388#endif /* CONFIG_SUSPEND */
 389#ifdef CONFIG_HIBERNATE_CALLBACKS
 390	case PM_EVENT_FREEZE:
 391	case PM_EVENT_QUIESCE:
 392		return ops->freeze_noirq;
 393	case PM_EVENT_HIBERNATE:
 394		return ops->poweroff_noirq;
 395	case PM_EVENT_THAW:
 396	case PM_EVENT_RECOVER:
 397		return ops->thaw_noirq;
 398	case PM_EVENT_RESTORE:
 399		return ops->restore_noirq;
 400#endif /* CONFIG_HIBERNATE_CALLBACKS */
 401	}
 402
 403	return NULL;
 404}
 405
 406static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
 407{
 408	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
 409		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
 410		", may wakeup" : "");
 411}
 412
 413static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
 414			int error)
 415{
 416	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
 417		dev_name(dev), pm_verb(state.event), info, error);
 418}
 419
 420static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
 421			  const char *info)
 422{
 423	ktime_t calltime;
 424	u64 usecs64;
 425	int usecs;
 426
 427	calltime = ktime_get();
 428	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
 429	do_div(usecs64, NSEC_PER_USEC);
 430	usecs = usecs64;
 431	if (usecs == 0)
 432		usecs = 1;
 433
 434	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
 435		  info ?: "", info ? " " : "", pm_verb(state.event),
 436		  error ? "aborted" : "complete",
 437		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
 438}
 439
 440static int dpm_run_callback(pm_callback_t cb, struct device *dev,
 441			    pm_message_t state, const char *info)
 442{
 443	ktime_t calltime;
 444	int error;
 445
 446	if (!cb)
 447		return 0;
 448
 449	calltime = initcall_debug_start(dev);
 450
 451	pm_dev_dbg(dev, state, info);
 452	trace_device_pm_callback_start(dev, info, state.event);
 453	error = cb(dev);
 454	trace_device_pm_callback_end(dev, error);
 455	suspend_report_result(cb, error);
 456
 457	initcall_debug_report(dev, calltime, error, state, info);
 458
 459	return error;
 460}
 461
 462#ifdef CONFIG_DPM_WATCHDOG
 463struct dpm_watchdog {
 464	struct device		*dev;
 465	struct task_struct	*tsk;
 466	struct timer_list	timer;
 467};
 468
 469#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
 470	struct dpm_watchdog wd
 471
 472/**
 473 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 474 * @data: Watchdog object address.
 475 *
 476 * Called when a driver has timed out suspending or resuming.
 477 * There's not much we can do here to recover so panic() to
 478 * capture a crash-dump in pstore.
 479 */
 480static void dpm_watchdog_handler(struct timer_list *t)
 481{
 482	struct dpm_watchdog *wd = from_timer(wd, t, timer);
 483
 484	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
 485	show_stack(wd->tsk, NULL);
 486	panic("%s %s: unrecoverable failure\n",
 487		dev_driver_string(wd->dev), dev_name(wd->dev));
 488}
 489
 490/**
 491 * dpm_watchdog_set - Enable pm watchdog for given device.
 492 * @wd: Watchdog. Must be allocated on the stack.
 493 * @dev: Device to handle.
 494 */
 495static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
 496{
 497	struct timer_list *timer = &wd->timer;
 498
 499	wd->dev = dev;
 500	wd->tsk = current;
 501
 502	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
 503	/* use same timeout value for both suspend and resume */
 504	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
 505	add_timer(timer);
 506}
 507
 508/**
 509 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 510 * @wd: Watchdog to disable.
 511 */
 512static void dpm_watchdog_clear(struct dpm_watchdog *wd)
 513{
 514	struct timer_list *timer = &wd->timer;
 515
 516	del_timer_sync(timer);
 517	destroy_timer_on_stack(timer);
 518}
 519#else
 520#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
 521#define dpm_watchdog_set(x, y)
 522#define dpm_watchdog_clear(x)
 523#endif
 524
 525/*------------------------- Resume routines -------------------------*/
 526
 527/**
 528 * dev_pm_skip_next_resume_phases - Skip next system resume phases for device.
 529 * @dev: Target device.
 530 *
 531 * Make the core skip the "early resume" and "resume" phases for @dev.
 532 *
 533 * This function can be called by middle-layer code during the "noirq" phase of
 534 * system resume if necessary, but not by device drivers.
 535 */
 536void dev_pm_skip_next_resume_phases(struct device *dev)
 537{
 538	dev->power.is_late_suspended = false;
 539	dev->power.is_suspended = false;
 540}
 541
 542/**
 543 * suspend_event - Return a "suspend" message for given "resume" one.
 544 * @resume_msg: PM message representing a system-wide resume transition.
 545 */
 546static pm_message_t suspend_event(pm_message_t resume_msg)
 547{
 548	switch (resume_msg.event) {
 549	case PM_EVENT_RESUME:
 550		return PMSG_SUSPEND;
 551	case PM_EVENT_THAW:
 552	case PM_EVENT_RESTORE:
 553		return PMSG_FREEZE;
 554	case PM_EVENT_RECOVER:
 555		return PMSG_HIBERNATE;
 556	}
 557	return PMSG_ON;
 558}
 559
 560/**
 561 * dev_pm_may_skip_resume - System-wide device resume optimization check.
 562 * @dev: Target device.
 563 *
 564 * Checks whether or not the device may be left in suspend after a system-wide
 565 * transition to the working state.
 566 */
 567bool dev_pm_may_skip_resume(struct device *dev)
 568{
 569	return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
 570}
 571
 572static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
 573						pm_message_t state,
 574						const char **info_p)
 575{
 576	pm_callback_t callback;
 577	const char *info;
 578
 579	if (dev->pm_domain) {
 580		info = "noirq power domain ";
 581		callback = pm_noirq_op(&dev->pm_domain->ops, state);
 582	} else if (dev->type && dev->type->pm) {
 583		info = "noirq type ";
 584		callback = pm_noirq_op(dev->type->pm, state);
 585	} else if (dev->class && dev->class->pm) {
 586		info = "noirq class ";
 587		callback = pm_noirq_op(dev->class->pm, state);
 588	} else if (dev->bus && dev->bus->pm) {
 589		info = "noirq bus ";
 590		callback = pm_noirq_op(dev->bus->pm, state);
 591	} else {
 592		return NULL;
 593	}
 594
 595	if (info_p)
 596		*info_p = info;
 597
 598	return callback;
 599}
 600
 601static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
 602						 pm_message_t state,
 603						 const char **info_p);
 604
 605static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
 606						pm_message_t state,
 607						const char **info_p);
 608
 609/**
 610 * device_resume_noirq - Execute a "noirq resume" callback for given device.
 611 * @dev: Device to handle.
 612 * @state: PM transition of the system being carried out.
 613 * @async: If true, the device is being resumed asynchronously.
 614 *
 615 * The driver of @dev will not receive interrupts while this function is being
 616 * executed.
 617 */
 618static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
 619{
 620	pm_callback_t callback;
 621	const char *info;
 622	bool skip_resume;
 623	int error = 0;
 624
 625	TRACE_DEVICE(dev);
 626	TRACE_RESUME(0);
 627
 628	if (dev->power.syscore || dev->power.direct_complete)
 629		goto Out;
 630
 631	if (!dev->power.is_noirq_suspended)
 632		goto Out;
 633
 634	dpm_wait_for_superior(dev, async);
 635
 636	skip_resume = dev_pm_may_skip_resume(dev);
 637
 638	callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
 639	if (callback)
 640		goto Run;
 641
 642	if (skip_resume)
 643		goto Skip;
 644
 645	if (dev_pm_smart_suspend_and_suspended(dev)) {
 646		pm_message_t suspend_msg = suspend_event(state);
 647
 648		/*
 649		 * If "freeze" callbacks have been skipped during a transition
 650		 * related to hibernation, the subsequent "thaw" callbacks must
 651		 * be skipped too or bad things may happen.  Otherwise, resume
 652		 * callbacks are going to be run for the device, so its runtime
 653		 * PM status must be changed to reflect the new state after the
 654		 * transition under way.
 655		 */
 656		if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
 657		    !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
 658			if (state.event == PM_EVENT_THAW) {
 659				skip_resume = true;
 660				goto Skip;
 661			} else {
 662				pm_runtime_set_active(dev);
 663			}
 664		}
 665	}
 666
 667	if (dev->driver && dev->driver->pm) {
 668		info = "noirq driver ";
 669		callback = pm_noirq_op(dev->driver->pm, state);
 670	}
 671
 672Run:
 673	error = dpm_run_callback(callback, dev, state, info);
 674
 675Skip:
 676	dev->power.is_noirq_suspended = false;
 677
 678	if (skip_resume) {
 
 
 
 679		/*
 680		 * The device is going to be left in suspend, but it might not
 681		 * have been in runtime suspend before the system suspended, so
 682		 * its runtime PM status needs to be updated to avoid confusing
 683		 * the runtime PM framework when runtime PM is enabled for the
 684		 * device again.
 685		 */
 686		pm_runtime_set_suspended(dev);
 687		dev_pm_skip_next_resume_phases(dev);
 688	}
 689
 690Out:
 691	complete_all(&dev->power.completion);
 692	TRACE_RESUME(error);
 693	return error;
 694}
 695
 696static bool is_async(struct device *dev)
 697{
 698	return dev->power.async_suspend && pm_async_enabled
 699		&& !pm_trace_is_enabled();
 700}
 701
 
 
 
 
 
 
 
 
 
 
 
 
 
 702static void async_resume_noirq(void *data, async_cookie_t cookie)
 703{
 704	struct device *dev = (struct device *)data;
 705	int error;
 706
 707	error = device_resume_noirq(dev, pm_transition, true);
 708	if (error)
 709		pm_dev_err(dev, pm_transition, " async", error);
 710
 711	put_device(dev);
 712}
 713
 714void dpm_noirq_resume_devices(pm_message_t state)
 715{
 716	struct device *dev;
 717	ktime_t starttime = ktime_get();
 718
 719	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
 720	mutex_lock(&dpm_list_mtx);
 721	pm_transition = state;
 722
 723	/*
 724	 * Advanced the async threads upfront,
 725	 * in case the starting of async threads is
 726	 * delayed by non-async resuming devices.
 727	 */
 728	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
 729		reinit_completion(&dev->power.completion);
 730		if (is_async(dev)) {
 731			get_device(dev);
 732			async_schedule(async_resume_noirq, dev);
 733		}
 734	}
 735
 736	while (!list_empty(&dpm_noirq_list)) {
 737		dev = to_device(dpm_noirq_list.next);
 738		get_device(dev);
 739		list_move_tail(&dev->power.entry, &dpm_late_early_list);
 740		mutex_unlock(&dpm_list_mtx);
 741
 742		if (!is_async(dev)) {
 743			int error;
 744
 745			error = device_resume_noirq(dev, state, false);
 746			if (error) {
 747				suspend_stats.failed_resume_noirq++;
 748				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
 749				dpm_save_failed_dev(dev_name(dev));
 750				pm_dev_err(dev, state, " noirq", error);
 751			}
 752		}
 753
 754		mutex_lock(&dpm_list_mtx);
 755		put_device(dev);
 756	}
 757	mutex_unlock(&dpm_list_mtx);
 758	async_synchronize_full();
 759	dpm_show_time(starttime, state, 0, "noirq");
 760	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
 761}
 762
 763void dpm_noirq_end(void)
 764{
 765	resume_device_irqs();
 766	device_wakeup_disarm_wake_irqs();
 767	cpuidle_resume();
 768}
 769
 770/**
 771 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
 772 * @state: PM transition of the system being carried out.
 773 *
 774 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
 775 * allow device drivers' interrupt handlers to be called.
 776 */
 777void dpm_resume_noirq(pm_message_t state)
 778{
 779	dpm_noirq_resume_devices(state);
 780	dpm_noirq_end();
 
 
 
 
 781}
 782
 783static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
 784						pm_message_t state,
 785						const char **info_p)
 786{
 787	pm_callback_t callback;
 788	const char *info;
 789
 790	if (dev->pm_domain) {
 791		info = "early power domain ";
 792		callback = pm_late_early_op(&dev->pm_domain->ops, state);
 793	} else if (dev->type && dev->type->pm) {
 794		info = "early type ";
 795		callback = pm_late_early_op(dev->type->pm, state);
 796	} else if (dev->class && dev->class->pm) {
 797		info = "early class ";
 798		callback = pm_late_early_op(dev->class->pm, state);
 799	} else if (dev->bus && dev->bus->pm) {
 800		info = "early bus ";
 801		callback = pm_late_early_op(dev->bus->pm, state);
 802	} else {
 803		return NULL;
 804	}
 805
 806	if (info_p)
 807		*info_p = info;
 808
 809	return callback;
 810}
 811
 812/**
 813 * device_resume_early - Execute an "early resume" callback for given device.
 814 * @dev: Device to handle.
 815 * @state: PM transition of the system being carried out.
 816 * @async: If true, the device is being resumed asynchronously.
 817 *
 818 * Runtime PM is disabled for @dev while this function is being executed.
 819 */
 820static int device_resume_early(struct device *dev, pm_message_t state, bool async)
 821{
 822	pm_callback_t callback;
 823	const char *info;
 824	int error = 0;
 825
 826	TRACE_DEVICE(dev);
 827	TRACE_RESUME(0);
 828
 829	if (dev->power.syscore || dev->power.direct_complete)
 830		goto Out;
 831
 832	if (!dev->power.is_late_suspended)
 833		goto Out;
 834
 835	dpm_wait_for_superior(dev, async);
 836
 837	callback = dpm_subsys_resume_early_cb(dev, state, &info);
 838
 839	if (!callback && dev->driver && dev->driver->pm) {
 840		info = "early driver ";
 841		callback = pm_late_early_op(dev->driver->pm, state);
 842	}
 843
 844	error = dpm_run_callback(callback, dev, state, info);
 845	dev->power.is_late_suspended = false;
 846
 847 Out:
 848	TRACE_RESUME(error);
 849
 850	pm_runtime_enable(dev);
 851	complete_all(&dev->power.completion);
 852	return error;
 853}
 854
 855static void async_resume_early(void *data, async_cookie_t cookie)
 856{
 857	struct device *dev = (struct device *)data;
 858	int error;
 859
 860	error = device_resume_early(dev, pm_transition, true);
 861	if (error)
 862		pm_dev_err(dev, pm_transition, " async", error);
 863
 864	put_device(dev);
 865}
 866
 867/**
 868 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 869 * @state: PM transition of the system being carried out.
 870 */
 871void dpm_resume_early(pm_message_t state)
 872{
 873	struct device *dev;
 874	ktime_t starttime = ktime_get();
 875
 876	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
 877	mutex_lock(&dpm_list_mtx);
 878	pm_transition = state;
 879
 880	/*
 881	 * Advanced the async threads upfront,
 882	 * in case the starting of async threads is
 883	 * delayed by non-async resuming devices.
 884	 */
 885	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
 886		reinit_completion(&dev->power.completion);
 887		if (is_async(dev)) {
 888			get_device(dev);
 889			async_schedule(async_resume_early, dev);
 890		}
 891	}
 892
 893	while (!list_empty(&dpm_late_early_list)) {
 894		dev = to_device(dpm_late_early_list.next);
 895		get_device(dev);
 896		list_move_tail(&dev->power.entry, &dpm_suspended_list);
 897		mutex_unlock(&dpm_list_mtx);
 898
 899		if (!is_async(dev)) {
 900			int error;
 901
 902			error = device_resume_early(dev, state, false);
 903			if (error) {
 904				suspend_stats.failed_resume_early++;
 905				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
 906				dpm_save_failed_dev(dev_name(dev));
 907				pm_dev_err(dev, state, " early", error);
 908			}
 909		}
 910		mutex_lock(&dpm_list_mtx);
 911		put_device(dev);
 912	}
 913	mutex_unlock(&dpm_list_mtx);
 914	async_synchronize_full();
 915	dpm_show_time(starttime, state, 0, "early");
 916	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
 917}
 918
 919/**
 920 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 921 * @state: PM transition of the system being carried out.
 922 */
 923void dpm_resume_start(pm_message_t state)
 924{
 925	dpm_resume_noirq(state);
 926	dpm_resume_early(state);
 927}
 928EXPORT_SYMBOL_GPL(dpm_resume_start);
 929
 930/**
 931 * device_resume - Execute "resume" callbacks for given device.
 932 * @dev: Device to handle.
 933 * @state: PM transition of the system being carried out.
 934 * @async: If true, the device is being resumed asynchronously.
 935 */
 936static int device_resume(struct device *dev, pm_message_t state, bool async)
 937{
 938	pm_callback_t callback = NULL;
 939	const char *info = NULL;
 940	int error = 0;
 941	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
 942
 943	TRACE_DEVICE(dev);
 944	TRACE_RESUME(0);
 945
 946	if (dev->power.syscore)
 947		goto Complete;
 948
 949	if (dev->power.direct_complete) {
 950		/* Match the pm_runtime_disable() in __device_suspend(). */
 951		pm_runtime_enable(dev);
 952		goto Complete;
 953	}
 954
 955	dpm_wait_for_superior(dev, async);
 956	dpm_watchdog_set(&wd, dev);
 957	device_lock(dev);
 958
 959	/*
 960	 * This is a fib.  But we'll allow new children to be added below
 961	 * a resumed device, even if the device hasn't been completed yet.
 962	 */
 963	dev->power.is_prepared = false;
 964
 965	if (!dev->power.is_suspended)
 966		goto Unlock;
 967
 968	if (dev->pm_domain) {
 969		info = "power domain ";
 970		callback = pm_op(&dev->pm_domain->ops, state);
 971		goto Driver;
 972	}
 973
 974	if (dev->type && dev->type->pm) {
 975		info = "type ";
 976		callback = pm_op(dev->type->pm, state);
 977		goto Driver;
 978	}
 979
 980	if (dev->class && dev->class->pm) {
 981		info = "class ";
 982		callback = pm_op(dev->class->pm, state);
 983		goto Driver;
 984	}
 985
 986	if (dev->bus) {
 987		if (dev->bus->pm) {
 988			info = "bus ";
 989			callback = pm_op(dev->bus->pm, state);
 990		} else if (dev->bus->resume) {
 991			info = "legacy bus ";
 992			callback = dev->bus->resume;
 993			goto End;
 994		}
 995	}
 996
 997 Driver:
 998	if (!callback && dev->driver && dev->driver->pm) {
 999		info = "driver ";
1000		callback = pm_op(dev->driver->pm, state);
1001	}
1002
1003 End:
1004	error = dpm_run_callback(callback, dev, state, info);
1005	dev->power.is_suspended = false;
1006
1007 Unlock:
1008	device_unlock(dev);
1009	dpm_watchdog_clear(&wd);
1010
1011 Complete:
1012	complete_all(&dev->power.completion);
1013
1014	TRACE_RESUME(error);
1015
1016	return error;
1017}
1018
1019static void async_resume(void *data, async_cookie_t cookie)
1020{
1021	struct device *dev = (struct device *)data;
1022	int error;
1023
1024	error = device_resume(dev, pm_transition, true);
1025	if (error)
1026		pm_dev_err(dev, pm_transition, " async", error);
1027	put_device(dev);
1028}
1029
1030/**
1031 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1032 * @state: PM transition of the system being carried out.
1033 *
1034 * Execute the appropriate "resume" callback for all devices whose status
1035 * indicates that they are suspended.
1036 */
1037void dpm_resume(pm_message_t state)
1038{
1039	struct device *dev;
1040	ktime_t starttime = ktime_get();
1041
1042	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1043	might_sleep();
1044
1045	mutex_lock(&dpm_list_mtx);
1046	pm_transition = state;
1047	async_error = 0;
1048
1049	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
1050		reinit_completion(&dev->power.completion);
1051		if (is_async(dev)) {
1052			get_device(dev);
1053			async_schedule(async_resume, dev);
1054		}
1055	}
1056
1057	while (!list_empty(&dpm_suspended_list)) {
1058		dev = to_device(dpm_suspended_list.next);
1059		get_device(dev);
1060		if (!is_async(dev)) {
1061			int error;
1062
1063			mutex_unlock(&dpm_list_mtx);
1064
1065			error = device_resume(dev, state, false);
1066			if (error) {
1067				suspend_stats.failed_resume++;
1068				dpm_save_failed_step(SUSPEND_RESUME);
1069				dpm_save_failed_dev(dev_name(dev));
1070				pm_dev_err(dev, state, "", error);
1071			}
1072
1073			mutex_lock(&dpm_list_mtx);
1074		}
1075		if (!list_empty(&dev->power.entry))
1076			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1077		put_device(dev);
1078	}
1079	mutex_unlock(&dpm_list_mtx);
1080	async_synchronize_full();
1081	dpm_show_time(starttime, state, 0, NULL);
1082
1083	cpufreq_resume();
 
1084	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1085}
1086
1087/**
1088 * device_complete - Complete a PM transition for given device.
1089 * @dev: Device to handle.
1090 * @state: PM transition of the system being carried out.
1091 */
1092static void device_complete(struct device *dev, pm_message_t state)
1093{
1094	void (*callback)(struct device *) = NULL;
1095	const char *info = NULL;
1096
1097	if (dev->power.syscore)
1098		return;
1099
1100	device_lock(dev);
1101
1102	if (dev->pm_domain) {
1103		info = "completing power domain ";
1104		callback = dev->pm_domain->ops.complete;
1105	} else if (dev->type && dev->type->pm) {
1106		info = "completing type ";
1107		callback = dev->type->pm->complete;
1108	} else if (dev->class && dev->class->pm) {
1109		info = "completing class ";
1110		callback = dev->class->pm->complete;
1111	} else if (dev->bus && dev->bus->pm) {
1112		info = "completing bus ";
1113		callback = dev->bus->pm->complete;
1114	}
1115
1116	if (!callback && dev->driver && dev->driver->pm) {
1117		info = "completing driver ";
1118		callback = dev->driver->pm->complete;
1119	}
1120
1121	if (callback) {
1122		pm_dev_dbg(dev, state, info);
1123		callback(dev);
1124	}
1125
1126	device_unlock(dev);
1127
1128	pm_runtime_put(dev);
1129}
1130
1131/**
1132 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1133 * @state: PM transition of the system being carried out.
1134 *
1135 * Execute the ->complete() callbacks for all devices whose PM status is not
1136 * DPM_ON (this allows new devices to be registered).
1137 */
1138void dpm_complete(pm_message_t state)
1139{
1140	struct list_head list;
1141
1142	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1143	might_sleep();
1144
1145	INIT_LIST_HEAD(&list);
1146	mutex_lock(&dpm_list_mtx);
1147	while (!list_empty(&dpm_prepared_list)) {
1148		struct device *dev = to_device(dpm_prepared_list.prev);
1149
1150		get_device(dev);
1151		dev->power.is_prepared = false;
1152		list_move(&dev->power.entry, &list);
1153		mutex_unlock(&dpm_list_mtx);
1154
1155		trace_device_pm_callback_start(dev, "", state.event);
1156		device_complete(dev, state);
1157		trace_device_pm_callback_end(dev, 0);
1158
1159		mutex_lock(&dpm_list_mtx);
1160		put_device(dev);
1161	}
1162	list_splice(&list, &dpm_list);
1163	mutex_unlock(&dpm_list_mtx);
1164
1165	/* Allow device probing and trigger re-probing of deferred devices */
1166	device_unblock_probing();
1167	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1168}
1169
1170/**
1171 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1172 * @state: PM transition of the system being carried out.
1173 *
1174 * Execute "resume" callbacks for all devices and complete the PM transition of
1175 * the system.
1176 */
1177void dpm_resume_end(pm_message_t state)
1178{
1179	dpm_resume(state);
1180	dpm_complete(state);
1181}
1182EXPORT_SYMBOL_GPL(dpm_resume_end);
1183
1184
1185/*------------------------- Suspend routines -------------------------*/
1186
1187/**
1188 * resume_event - Return a "resume" message for given "suspend" sleep state.
1189 * @sleep_state: PM message representing a sleep state.
1190 *
1191 * Return a PM message representing the resume event corresponding to given
1192 * sleep state.
1193 */
1194static pm_message_t resume_event(pm_message_t sleep_state)
1195{
1196	switch (sleep_state.event) {
1197	case PM_EVENT_SUSPEND:
1198		return PMSG_RESUME;
1199	case PM_EVENT_FREEZE:
1200	case PM_EVENT_QUIESCE:
1201		return PMSG_RECOVER;
1202	case PM_EVENT_HIBERNATE:
1203		return PMSG_RESTORE;
1204	}
1205	return PMSG_ON;
1206}
1207
1208static void dpm_superior_set_must_resume(struct device *dev)
1209{
1210	struct device_link *link;
1211	int idx;
1212
1213	if (dev->parent)
1214		dev->parent->power.must_resume = true;
1215
1216	idx = device_links_read_lock();
1217
1218	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1219		link->supplier->power.must_resume = true;
1220
1221	device_links_read_unlock(idx);
1222}
1223
1224static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1225						 pm_message_t state,
1226						 const char **info_p)
1227{
1228	pm_callback_t callback;
1229	const char *info;
1230
1231	if (dev->pm_domain) {
1232		info = "noirq power domain ";
1233		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1234	} else if (dev->type && dev->type->pm) {
1235		info = "noirq type ";
1236		callback = pm_noirq_op(dev->type->pm, state);
1237	} else if (dev->class && dev->class->pm) {
1238		info = "noirq class ";
1239		callback = pm_noirq_op(dev->class->pm, state);
1240	} else if (dev->bus && dev->bus->pm) {
1241		info = "noirq bus ";
1242		callback = pm_noirq_op(dev->bus->pm, state);
1243	} else {
1244		return NULL;
1245	}
1246
1247	if (info_p)
1248		*info_p = info;
1249
1250	return callback;
1251}
1252
1253static bool device_must_resume(struct device *dev, pm_message_t state,
1254			       bool no_subsys_suspend_noirq)
1255{
1256	pm_message_t resume_msg = resume_event(state);
1257
1258	/*
1259	 * If all of the device driver's "noirq", "late" and "early" callbacks
1260	 * are invoked directly by the core, the decision to allow the device to
1261	 * stay in suspend can be based on its current runtime PM status and its
1262	 * wakeup settings.
1263	 */
1264	if (no_subsys_suspend_noirq &&
1265	    !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1266	    !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1267	    !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1268		return !pm_runtime_status_suspended(dev) &&
1269			(resume_msg.event != PM_EVENT_RESUME ||
1270			 (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1271
1272	/*
1273	 * The only safe strategy here is to require that if the device may not
1274	 * be left in suspend, resume callbacks must be invoked for it.
1275	 */
1276	return !dev->power.may_skip_resume;
1277}
1278
1279/**
1280 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1281 * @dev: Device to handle.
1282 * @state: PM transition of the system being carried out.
1283 * @async: If true, the device is being suspended asynchronously.
1284 *
1285 * The driver of @dev will not receive interrupts while this function is being
1286 * executed.
1287 */
1288static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1289{
1290	pm_callback_t callback;
1291	const char *info;
1292	bool no_subsys_cb = false;
1293	int error = 0;
1294
1295	TRACE_DEVICE(dev);
1296	TRACE_SUSPEND(0);
1297
1298	dpm_wait_for_subordinate(dev, async);
1299
1300	if (async_error)
1301		goto Complete;
1302
1303	if (pm_wakeup_pending()) {
1304		async_error = -EBUSY;
1305		goto Complete;
1306	}
1307
1308	if (dev->power.syscore || dev->power.direct_complete)
1309		goto Complete;
1310
1311	callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
1312	if (callback)
1313		goto Run;
1314
1315	no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1316
1317	if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1318		goto Skip;
1319
1320	if (dev->driver && dev->driver->pm) {
1321		info = "noirq driver ";
1322		callback = pm_noirq_op(dev->driver->pm, state);
1323	}
1324
1325Run:
1326	error = dpm_run_callback(callback, dev, state, info);
1327	if (error) {
1328		async_error = error;
1329		goto Complete;
1330	}
1331
1332Skip:
1333	dev->power.is_noirq_suspended = true;
1334
1335	if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1336		dev->power.must_resume = dev->power.must_resume ||
1337				atomic_read(&dev->power.usage_count) > 1 ||
1338				device_must_resume(dev, state, no_subsys_cb);
1339	} else {
1340		dev->power.must_resume = true;
1341	}
1342
1343	if (dev->power.must_resume)
1344		dpm_superior_set_must_resume(dev);
1345
1346Complete:
1347	complete_all(&dev->power.completion);
1348	TRACE_SUSPEND(error);
1349	return error;
1350}
1351
1352static void async_suspend_noirq(void *data, async_cookie_t cookie)
1353{
1354	struct device *dev = (struct device *)data;
1355	int error;
1356
1357	error = __device_suspend_noirq(dev, pm_transition, true);
1358	if (error) {
1359		dpm_save_failed_dev(dev_name(dev));
1360		pm_dev_err(dev, pm_transition, " async", error);
1361	}
1362
1363	put_device(dev);
1364}
1365
1366static int device_suspend_noirq(struct device *dev)
1367{
1368	reinit_completion(&dev->power.completion);
 
1369
1370	if (is_async(dev)) {
1371		get_device(dev);
1372		async_schedule(async_suspend_noirq, dev);
1373		return 0;
1374	}
1375	return __device_suspend_noirq(dev, pm_transition, false);
1376}
1377
1378void dpm_noirq_begin(void)
1379{
1380	cpuidle_pause();
1381	device_wakeup_arm_wake_irqs();
1382	suspend_device_irqs();
1383}
1384
1385int dpm_noirq_suspend_devices(pm_message_t state)
1386{
1387	ktime_t starttime = ktime_get();
1388	int error = 0;
1389
1390	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1391	mutex_lock(&dpm_list_mtx);
1392	pm_transition = state;
1393	async_error = 0;
1394
1395	while (!list_empty(&dpm_late_early_list)) {
1396		struct device *dev = to_device(dpm_late_early_list.prev);
1397
1398		get_device(dev);
1399		mutex_unlock(&dpm_list_mtx);
1400
1401		error = device_suspend_noirq(dev);
1402
1403		mutex_lock(&dpm_list_mtx);
1404		if (error) {
1405			pm_dev_err(dev, state, " noirq", error);
1406			dpm_save_failed_dev(dev_name(dev));
1407			put_device(dev);
1408			break;
1409		}
1410		if (!list_empty(&dev->power.entry))
1411			list_move(&dev->power.entry, &dpm_noirq_list);
1412		put_device(dev);
1413
1414		if (async_error)
1415			break;
1416	}
1417	mutex_unlock(&dpm_list_mtx);
1418	async_synchronize_full();
1419	if (!error)
1420		error = async_error;
1421
1422	if (error) {
1423		suspend_stats.failed_suspend_noirq++;
1424		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1425	}
1426	dpm_show_time(starttime, state, error, "noirq");
1427	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1428	return error;
1429}
1430
1431/**
1432 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1433 * @state: PM transition of the system being carried out.
1434 *
1435 * Prevent device drivers' interrupt handlers from being called and invoke
1436 * "noirq" suspend callbacks for all non-sysdev devices.
1437 */
1438int dpm_suspend_noirq(pm_message_t state)
1439{
1440	int ret;
1441
1442	dpm_noirq_begin();
 
 
 
 
1443	ret = dpm_noirq_suspend_devices(state);
1444	if (ret)
1445		dpm_resume_noirq(resume_event(state));
1446
1447	return ret;
1448}
1449
1450static void dpm_propagate_wakeup_to_parent(struct device *dev)
1451{
1452	struct device *parent = dev->parent;
1453
1454	if (!parent)
1455		return;
1456
1457	spin_lock_irq(&parent->power.lock);
1458
1459	if (dev->power.wakeup_path && !parent->power.ignore_children)
1460		parent->power.wakeup_path = true;
1461
1462	spin_unlock_irq(&parent->power.lock);
1463}
1464
1465static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1466						pm_message_t state,
1467						const char **info_p)
1468{
1469	pm_callback_t callback;
1470	const char *info;
1471
1472	if (dev->pm_domain) {
1473		info = "late power domain ";
1474		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1475	} else if (dev->type && dev->type->pm) {
1476		info = "late type ";
1477		callback = pm_late_early_op(dev->type->pm, state);
1478	} else if (dev->class && dev->class->pm) {
1479		info = "late class ";
1480		callback = pm_late_early_op(dev->class->pm, state);
1481	} else if (dev->bus && dev->bus->pm) {
1482		info = "late bus ";
1483		callback = pm_late_early_op(dev->bus->pm, state);
1484	} else {
1485		return NULL;
1486	}
1487
1488	if (info_p)
1489		*info_p = info;
1490
1491	return callback;
1492}
1493
1494/**
1495 * __device_suspend_late - Execute a "late suspend" callback for given device.
1496 * @dev: Device to handle.
1497 * @state: PM transition of the system being carried out.
1498 * @async: If true, the device is being suspended asynchronously.
1499 *
1500 * Runtime PM is disabled for @dev while this function is being executed.
1501 */
1502static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1503{
1504	pm_callback_t callback;
1505	const char *info;
1506	int error = 0;
1507
1508	TRACE_DEVICE(dev);
1509	TRACE_SUSPEND(0);
1510
1511	__pm_runtime_disable(dev, false);
1512
1513	dpm_wait_for_subordinate(dev, async);
1514
1515	if (async_error)
1516		goto Complete;
1517
1518	if (pm_wakeup_pending()) {
1519		async_error = -EBUSY;
1520		goto Complete;
1521	}
1522
1523	if (dev->power.syscore || dev->power.direct_complete)
1524		goto Complete;
1525
1526	callback = dpm_subsys_suspend_late_cb(dev, state, &info);
1527	if (callback)
1528		goto Run;
1529
1530	if (dev_pm_smart_suspend_and_suspended(dev) &&
1531	    !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1532		goto Skip;
1533
1534	if (dev->driver && dev->driver->pm) {
1535		info = "late driver ";
1536		callback = pm_late_early_op(dev->driver->pm, state);
1537	}
1538
1539Run:
1540	error = dpm_run_callback(callback, dev, state, info);
1541	if (error) {
1542		async_error = error;
1543		goto Complete;
1544	}
1545	dpm_propagate_wakeup_to_parent(dev);
1546
1547Skip:
1548	dev->power.is_late_suspended = true;
1549
1550Complete:
1551	TRACE_SUSPEND(error);
1552	complete_all(&dev->power.completion);
1553	return error;
1554}
1555
1556static void async_suspend_late(void *data, async_cookie_t cookie)
1557{
1558	struct device *dev = (struct device *)data;
1559	int error;
1560
1561	error = __device_suspend_late(dev, pm_transition, true);
1562	if (error) {
1563		dpm_save_failed_dev(dev_name(dev));
1564		pm_dev_err(dev, pm_transition, " async", error);
1565	}
1566	put_device(dev);
1567}
1568
1569static int device_suspend_late(struct device *dev)
1570{
1571	reinit_completion(&dev->power.completion);
1572
1573	if (is_async(dev)) {
1574		get_device(dev);
1575		async_schedule(async_suspend_late, dev);
1576		return 0;
1577	}
1578
1579	return __device_suspend_late(dev, pm_transition, false);
1580}
1581
1582/**
1583 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1584 * @state: PM transition of the system being carried out.
1585 */
1586int dpm_suspend_late(pm_message_t state)
1587{
1588	ktime_t starttime = ktime_get();
1589	int error = 0;
1590
1591	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1592	mutex_lock(&dpm_list_mtx);
1593	pm_transition = state;
1594	async_error = 0;
1595
1596	while (!list_empty(&dpm_suspended_list)) {
1597		struct device *dev = to_device(dpm_suspended_list.prev);
1598
1599		get_device(dev);
1600		mutex_unlock(&dpm_list_mtx);
1601
1602		error = device_suspend_late(dev);
1603
1604		mutex_lock(&dpm_list_mtx);
1605		if (!list_empty(&dev->power.entry))
1606			list_move(&dev->power.entry, &dpm_late_early_list);
1607
1608		if (error) {
1609			pm_dev_err(dev, state, " late", error);
1610			dpm_save_failed_dev(dev_name(dev));
1611			put_device(dev);
1612			break;
1613		}
1614		put_device(dev);
1615
1616		if (async_error)
1617			break;
1618	}
1619	mutex_unlock(&dpm_list_mtx);
1620	async_synchronize_full();
1621	if (!error)
1622		error = async_error;
1623	if (error) {
1624		suspend_stats.failed_suspend_late++;
1625		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1626		dpm_resume_early(resume_event(state));
1627	}
1628	dpm_show_time(starttime, state, error, "late");
1629	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1630	return error;
1631}
1632
1633/**
1634 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1635 * @state: PM transition of the system being carried out.
1636 */
1637int dpm_suspend_end(pm_message_t state)
1638{
1639	int error = dpm_suspend_late(state);
 
 
 
1640	if (error)
1641		return error;
1642
1643	error = dpm_suspend_noirq(state);
1644	if (error) {
1645		dpm_resume_early(resume_event(state));
1646		return error;
1647	}
1648
1649	return 0;
 
 
1650}
1651EXPORT_SYMBOL_GPL(dpm_suspend_end);
1652
1653/**
1654 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1655 * @dev: Device to suspend.
1656 * @state: PM transition of the system being carried out.
1657 * @cb: Suspend callback to execute.
1658 * @info: string description of caller.
1659 */
1660static int legacy_suspend(struct device *dev, pm_message_t state,
1661			  int (*cb)(struct device *dev, pm_message_t state),
1662			  const char *info)
1663{
1664	int error;
1665	ktime_t calltime;
1666
1667	calltime = initcall_debug_start(dev);
1668
1669	trace_device_pm_callback_start(dev, info, state.event);
1670	error = cb(dev, state);
1671	trace_device_pm_callback_end(dev, error);
1672	suspend_report_result(cb, error);
1673
1674	initcall_debug_report(dev, calltime, error, state, info);
1675
1676	return error;
1677}
1678
1679static void dpm_clear_superiors_direct_complete(struct device *dev)
1680{
1681	struct device_link *link;
1682	int idx;
1683
1684	if (dev->parent) {
1685		spin_lock_irq(&dev->parent->power.lock);
1686		dev->parent->power.direct_complete = false;
1687		spin_unlock_irq(&dev->parent->power.lock);
1688	}
1689
1690	idx = device_links_read_lock();
1691
1692	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1693		spin_lock_irq(&link->supplier->power.lock);
1694		link->supplier->power.direct_complete = false;
1695		spin_unlock_irq(&link->supplier->power.lock);
1696	}
1697
1698	device_links_read_unlock(idx);
1699}
1700
1701/**
1702 * __device_suspend - Execute "suspend" callbacks for given device.
1703 * @dev: Device to handle.
1704 * @state: PM transition of the system being carried out.
1705 * @async: If true, the device is being suspended asynchronously.
1706 */
1707static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1708{
1709	pm_callback_t callback = NULL;
1710	const char *info = NULL;
1711	int error = 0;
1712	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1713
1714	TRACE_DEVICE(dev);
1715	TRACE_SUSPEND(0);
1716
1717	dpm_wait_for_subordinate(dev, async);
1718
1719	if (async_error)
 
1720		goto Complete;
 
1721
1722	/*
1723	 * If a device configured to wake up the system from sleep states
1724	 * has been suspended at run time and there's a resume request pending
1725	 * for it, this is equivalent to the device signaling wakeup, so the
1726	 * system suspend operation should be aborted.
1727	 */
1728	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1729		pm_wakeup_event(dev, 0);
1730
1731	if (pm_wakeup_pending()) {
 
1732		async_error = -EBUSY;
1733		goto Complete;
1734	}
1735
1736	if (dev->power.syscore)
1737		goto Complete;
1738
 
 
 
 
1739	if (dev->power.direct_complete) {
1740		if (pm_runtime_status_suspended(dev)) {
1741			pm_runtime_disable(dev);
1742			if (pm_runtime_status_suspended(dev))
 
1743				goto Complete;
 
1744
1745			pm_runtime_enable(dev);
1746		}
1747		dev->power.direct_complete = false;
1748	}
1749
1750	dev->power.may_skip_resume = false;
1751	dev->power.must_resume = false;
1752
1753	dpm_watchdog_set(&wd, dev);
1754	device_lock(dev);
1755
1756	if (dev->pm_domain) {
1757		info = "power domain ";
1758		callback = pm_op(&dev->pm_domain->ops, state);
1759		goto Run;
1760	}
1761
1762	if (dev->type && dev->type->pm) {
1763		info = "type ";
1764		callback = pm_op(dev->type->pm, state);
1765		goto Run;
1766	}
1767
1768	if (dev->class && dev->class->pm) {
1769		info = "class ";
1770		callback = pm_op(dev->class->pm, state);
1771		goto Run;
1772	}
1773
1774	if (dev->bus) {
1775		if (dev->bus->pm) {
1776			info = "bus ";
1777			callback = pm_op(dev->bus->pm, state);
1778		} else if (dev->bus->suspend) {
1779			pm_dev_dbg(dev, state, "legacy bus ");
1780			error = legacy_suspend(dev, state, dev->bus->suspend,
1781						"legacy bus ");
1782			goto End;
1783		}
1784	}
1785
1786 Run:
1787	if (!callback && dev->driver && dev->driver->pm) {
1788		info = "driver ";
1789		callback = pm_op(dev->driver->pm, state);
1790	}
1791
1792	error = dpm_run_callback(callback, dev, state, info);
1793
1794 End:
1795	if (!error) {
1796		dev->power.is_suspended = true;
1797		if (device_may_wakeup(dev))
1798			dev->power.wakeup_path = true;
1799
1800		dpm_propagate_wakeup_to_parent(dev);
1801		dpm_clear_superiors_direct_complete(dev);
1802	}
1803
1804	device_unlock(dev);
1805	dpm_watchdog_clear(&wd);
1806
1807 Complete:
1808	if (error)
1809		async_error = error;
1810
1811	complete_all(&dev->power.completion);
1812	TRACE_SUSPEND(error);
1813	return error;
1814}
1815
1816static void async_suspend(void *data, async_cookie_t cookie)
1817{
1818	struct device *dev = (struct device *)data;
1819	int error;
1820
1821	error = __device_suspend(dev, pm_transition, true);
1822	if (error) {
1823		dpm_save_failed_dev(dev_name(dev));
1824		pm_dev_err(dev, pm_transition, " async", error);
1825	}
1826
1827	put_device(dev);
1828}
1829
1830static int device_suspend(struct device *dev)
1831{
1832	reinit_completion(&dev->power.completion);
1833
1834	if (is_async(dev)) {
1835		get_device(dev);
1836		async_schedule(async_suspend, dev);
1837		return 0;
1838	}
1839
1840	return __device_suspend(dev, pm_transition, false);
1841}
1842
1843/**
1844 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1845 * @state: PM transition of the system being carried out.
1846 */
1847int dpm_suspend(pm_message_t state)
1848{
1849	ktime_t starttime = ktime_get();
1850	int error = 0;
1851
1852	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1853	might_sleep();
1854
 
1855	cpufreq_suspend();
1856
1857	mutex_lock(&dpm_list_mtx);
1858	pm_transition = state;
1859	async_error = 0;
1860	while (!list_empty(&dpm_prepared_list)) {
1861		struct device *dev = to_device(dpm_prepared_list.prev);
1862
1863		get_device(dev);
1864		mutex_unlock(&dpm_list_mtx);
1865
1866		error = device_suspend(dev);
1867
1868		mutex_lock(&dpm_list_mtx);
1869		if (error) {
1870			pm_dev_err(dev, state, "", error);
1871			dpm_save_failed_dev(dev_name(dev));
1872			put_device(dev);
1873			break;
1874		}
1875		if (!list_empty(&dev->power.entry))
1876			list_move(&dev->power.entry, &dpm_suspended_list);
1877		put_device(dev);
1878		if (async_error)
1879			break;
1880	}
1881	mutex_unlock(&dpm_list_mtx);
1882	async_synchronize_full();
1883	if (!error)
1884		error = async_error;
1885	if (error) {
1886		suspend_stats.failed_suspend++;
1887		dpm_save_failed_step(SUSPEND_SUSPEND);
1888	}
1889	dpm_show_time(starttime, state, error, NULL);
1890	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1891	return error;
1892}
1893
1894/**
1895 * device_prepare - Prepare a device for system power transition.
1896 * @dev: Device to handle.
1897 * @state: PM transition of the system being carried out.
1898 *
1899 * Execute the ->prepare() callback(s) for given device.  No new children of the
1900 * device may be registered after this function has returned.
1901 */
1902static int device_prepare(struct device *dev, pm_message_t state)
1903{
1904	int (*callback)(struct device *) = NULL;
1905	int ret = 0;
1906
1907	if (dev->power.syscore)
1908		return 0;
1909
1910	WARN_ON(!pm_runtime_enabled(dev) &&
1911		dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1912					      DPM_FLAG_LEAVE_SUSPENDED));
1913
1914	/*
1915	 * If a device's parent goes into runtime suspend at the wrong time,
1916	 * it won't be possible to resume the device.  To prevent this we
1917	 * block runtime suspend here, during the prepare phase, and allow
1918	 * it again during the complete phase.
1919	 */
1920	pm_runtime_get_noresume(dev);
1921
1922	device_lock(dev);
1923
1924	dev->power.wakeup_path = false;
1925
1926	if (dev->power.no_pm_callbacks)
1927		goto unlock;
1928
1929	if (dev->pm_domain)
1930		callback = dev->pm_domain->ops.prepare;
1931	else if (dev->type && dev->type->pm)
1932		callback = dev->type->pm->prepare;
1933	else if (dev->class && dev->class->pm)
1934		callback = dev->class->pm->prepare;
1935	else if (dev->bus && dev->bus->pm)
1936		callback = dev->bus->pm->prepare;
1937
1938	if (!callback && dev->driver && dev->driver->pm)
1939		callback = dev->driver->pm->prepare;
1940
1941	if (callback)
1942		ret = callback(dev);
1943
1944unlock:
1945	device_unlock(dev);
1946
1947	if (ret < 0) {
1948		suspend_report_result(callback, ret);
1949		pm_runtime_put(dev);
1950		return ret;
1951	}
1952	/*
1953	 * A positive return value from ->prepare() means "this device appears
1954	 * to be runtime-suspended and its state is fine, so if it really is
1955	 * runtime-suspended, you can leave it in that state provided that you
1956	 * will do the same thing with all of its descendants".  This only
1957	 * applies to suspend transitions, however.
1958	 */
1959	spin_lock_irq(&dev->power.lock);
1960	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1961		((pm_runtime_suspended(dev) && ret > 0) ||
1962		 dev->power.no_pm_callbacks) &&
1963		!dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1964	spin_unlock_irq(&dev->power.lock);
1965	return 0;
1966}
1967
1968/**
1969 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1970 * @state: PM transition of the system being carried out.
1971 *
1972 * Execute the ->prepare() callback(s) for all devices.
1973 */
1974int dpm_prepare(pm_message_t state)
1975{
1976	int error = 0;
1977
1978	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1979	might_sleep();
1980
1981	/*
1982	 * Give a chance for the known devices to complete their probes, before
1983	 * disable probing of devices. This sync point is important at least
1984	 * at boot time + hibernation restore.
1985	 */
1986	wait_for_device_probe();
1987	/*
1988	 * It is unsafe if probing of devices will happen during suspend or
1989	 * hibernation and system behavior will be unpredictable in this case.
1990	 * So, let's prohibit device's probing here and defer their probes
1991	 * instead. The normal behavior will be restored in dpm_complete().
1992	 */
1993	device_block_probing();
1994
1995	mutex_lock(&dpm_list_mtx);
1996	while (!list_empty(&dpm_list)) {
1997		struct device *dev = to_device(dpm_list.next);
1998
1999		get_device(dev);
2000		mutex_unlock(&dpm_list_mtx);
2001
2002		trace_device_pm_callback_start(dev, "", state.event);
2003		error = device_prepare(dev, state);
2004		trace_device_pm_callback_end(dev, error);
2005
2006		mutex_lock(&dpm_list_mtx);
2007		if (error) {
2008			if (error == -EAGAIN) {
2009				put_device(dev);
2010				error = 0;
2011				continue;
2012			}
2013			printk(KERN_INFO "PM: Device %s not prepared "
2014				"for power transition: code %d\n",
2015				dev_name(dev), error);
2016			put_device(dev);
2017			break;
2018		}
2019		dev->power.is_prepared = true;
2020		if (!list_empty(&dev->power.entry))
2021			list_move_tail(&dev->power.entry, &dpm_prepared_list);
2022		put_device(dev);
2023	}
2024	mutex_unlock(&dpm_list_mtx);
2025	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2026	return error;
2027}
2028
2029/**
2030 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2031 * @state: PM transition of the system being carried out.
2032 *
2033 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2034 * callbacks for them.
2035 */
2036int dpm_suspend_start(pm_message_t state)
2037{
 
2038	int error;
2039
2040	error = dpm_prepare(state);
2041	if (error) {
2042		suspend_stats.failed_prepare++;
2043		dpm_save_failed_step(SUSPEND_PREPARE);
2044	} else
2045		error = dpm_suspend(state);
 
2046	return error;
2047}
2048EXPORT_SYMBOL_GPL(dpm_suspend_start);
2049
2050void __suspend_report_result(const char *function, void *fn, int ret)
2051{
2052	if (ret)
2053		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
2054}
2055EXPORT_SYMBOL_GPL(__suspend_report_result);
2056
2057/**
2058 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
 
2059 * @dev: Device to wait for.
2060 * @subordinate: Device that needs to wait for @dev.
2061 */
2062int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2063{
2064	dpm_wait(dev, subordinate->power.async_suspend);
2065	return async_error;
2066}
2067EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2068
2069/**
2070 * dpm_for_each_dev - device iterator.
2071 * @data: data for the callback.
2072 * @fn: function to be called for each device.
2073 *
2074 * Iterate over devices in dpm_list, and call @fn for each device,
2075 * passing it @data.
2076 */
2077void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2078{
2079	struct device *dev;
2080
2081	if (!fn)
2082		return;
2083
2084	device_pm_lock();
2085	list_for_each_entry(dev, &dpm_list, power.entry)
2086		fn(dev, data);
2087	device_pm_unlock();
2088}
2089EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2090
2091static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2092{
2093	if (!ops)
2094		return true;
2095
2096	return !ops->prepare &&
2097	       !ops->suspend &&
2098	       !ops->suspend_late &&
2099	       !ops->suspend_noirq &&
2100	       !ops->resume_noirq &&
2101	       !ops->resume_early &&
2102	       !ops->resume &&
2103	       !ops->complete;
2104}
2105
2106void device_pm_check_callbacks(struct device *dev)
2107{
2108	spin_lock_irq(&dev->power.lock);
2109	dev->power.no_pm_callbacks =
2110		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2111		 !dev->bus->suspend && !dev->bus->resume)) &&
2112		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2113		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2114		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2115		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2116		 !dev->driver->suspend && !dev->driver->resume));
2117	spin_unlock_irq(&dev->power.lock);
2118}
2119
2120bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2121{
2122	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2123		pm_runtime_status_suspended(dev);
2124}