Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * libata-core.c - helper library for ATA
4 *
5 * Maintained by: Tejun Heo <tj@kernel.org>
6 * Please ALWAYS copy linux-ide@vger.kernel.org
7 * on emails.
8 *
9 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
10 * Copyright 2003-2004 Jeff Garzik
11 *
12 * libata documentation is available via 'make {ps|pdf}docs',
13 * as Documentation/driver-api/libata.rst
14 *
15 * Hardware documentation available from http://www.t13.org/ and
16 * http://www.sata-io.org/
17 *
18 * Standards documents from:
19 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
20 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
21 * http://www.sata-io.org (SATA)
22 * http://www.compactflash.org (CF)
23 * http://www.qic.org (QIC157 - Tape and DSC)
24 * http://www.ce-ata.org (CE-ATA: not supported)
25 */
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/pci.h>
30#include <linux/init.h>
31#include <linux/list.h>
32#include <linux/mm.h>
33#include <linux/spinlock.h>
34#include <linux/blkdev.h>
35#include <linux/delay.h>
36#include <linux/timer.h>
37#include <linux/time.h>
38#include <linux/interrupt.h>
39#include <linux/completion.h>
40#include <linux/suspend.h>
41#include <linux/workqueue.h>
42#include <linux/scatterlist.h>
43#include <linux/io.h>
44#include <linux/async.h>
45#include <linux/log2.h>
46#include <linux/slab.h>
47#include <linux/glob.h>
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
50#include <scsi/scsi_host.h>
51#include <linux/libata.h>
52#include <asm/byteorder.h>
53#include <asm/unaligned.h>
54#include <linux/cdrom.h>
55#include <linux/ratelimit.h>
56#include <linux/leds.h>
57#include <linux/pm_runtime.h>
58#include <linux/platform_device.h>
59
60#define CREATE_TRACE_POINTS
61#include <trace/events/libata.h>
62
63#include "libata.h"
64#include "libata-transport.h"
65
66/* debounce timing parameters in msecs { interval, duration, timeout } */
67const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
68const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
69const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70
71const struct ata_port_operations ata_base_port_ops = {
72 .prereset = ata_std_prereset,
73 .postreset = ata_std_postreset,
74 .error_handler = ata_std_error_handler,
75 .sched_eh = ata_std_sched_eh,
76 .end_eh = ata_std_end_eh,
77};
78
79const struct ata_port_operations sata_port_ops = {
80 .inherits = &ata_base_port_ops,
81
82 .qc_defer = ata_std_qc_defer,
83 .hardreset = sata_std_hardreset,
84};
85
86static unsigned int ata_dev_init_params(struct ata_device *dev,
87 u16 heads, u16 sectors);
88static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
89static void ata_dev_xfermask(struct ata_device *dev);
90static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
91
92atomic_t ata_print_id = ATOMIC_INIT(0);
93
94struct ata_force_param {
95 const char *name;
96 unsigned int cbl;
97 int spd_limit;
98 unsigned long xfer_mask;
99 unsigned int horkage_on;
100 unsigned int horkage_off;
101 unsigned int lflags;
102};
103
104struct ata_force_ent {
105 int port;
106 int device;
107 struct ata_force_param param;
108};
109
110static struct ata_force_ent *ata_force_tbl;
111static int ata_force_tbl_size;
112
113static char ata_force_param_buf[PAGE_SIZE] __initdata;
114/* param_buf is thrown away after initialization, disallow read */
115module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
116MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
117
118static int atapi_enabled = 1;
119module_param(atapi_enabled, int, 0444);
120MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121
122static int atapi_dmadir = 0;
123module_param(atapi_dmadir, int, 0444);
124MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125
126int atapi_passthru16 = 1;
127module_param(atapi_passthru16, int, 0444);
128MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129
130int libata_fua = 0;
131module_param_named(fua, libata_fua, int, 0444);
132MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133
134static int ata_ignore_hpa;
135module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137
138static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139module_param_named(dma, libata_dma_mask, int, 0444);
140MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141
142static int ata_probe_timeout;
143module_param(ata_probe_timeout, int, 0444);
144MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145
146int libata_noacpi = 0;
147module_param_named(noacpi, libata_noacpi, int, 0444);
148MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149
150int libata_allow_tpm = 0;
151module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153
154static int atapi_an;
155module_param(atapi_an, int, 0444);
156MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157
158MODULE_AUTHOR("Jeff Garzik");
159MODULE_DESCRIPTION("Library module for ATA devices");
160MODULE_LICENSE("GPL");
161MODULE_VERSION(DRV_VERSION);
162
163
164static bool ata_sstatus_online(u32 sstatus)
165{
166 return (sstatus & 0xf) == 0x3;
167}
168
169/**
170 * ata_link_next - link iteration helper
171 * @link: the previous link, NULL to start
172 * @ap: ATA port containing links to iterate
173 * @mode: iteration mode, one of ATA_LITER_*
174 *
175 * LOCKING:
176 * Host lock or EH context.
177 *
178 * RETURNS:
179 * Pointer to the next link.
180 */
181struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
182 enum ata_link_iter_mode mode)
183{
184 BUG_ON(mode != ATA_LITER_EDGE &&
185 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
186
187 /* NULL link indicates start of iteration */
188 if (!link)
189 switch (mode) {
190 case ATA_LITER_EDGE:
191 case ATA_LITER_PMP_FIRST:
192 if (sata_pmp_attached(ap))
193 return ap->pmp_link;
194 /* fall through */
195 case ATA_LITER_HOST_FIRST:
196 return &ap->link;
197 }
198
199 /* we just iterated over the host link, what's next? */
200 if (link == &ap->link)
201 switch (mode) {
202 case ATA_LITER_HOST_FIRST:
203 if (sata_pmp_attached(ap))
204 return ap->pmp_link;
205 /* fall through */
206 case ATA_LITER_PMP_FIRST:
207 if (unlikely(ap->slave_link))
208 return ap->slave_link;
209 /* fall through */
210 case ATA_LITER_EDGE:
211 return NULL;
212 }
213
214 /* slave_link excludes PMP */
215 if (unlikely(link == ap->slave_link))
216 return NULL;
217
218 /* we were over a PMP link */
219 if (++link < ap->pmp_link + ap->nr_pmp_links)
220 return link;
221
222 if (mode == ATA_LITER_PMP_FIRST)
223 return &ap->link;
224
225 return NULL;
226}
227
228/**
229 * ata_dev_next - device iteration helper
230 * @dev: the previous device, NULL to start
231 * @link: ATA link containing devices to iterate
232 * @mode: iteration mode, one of ATA_DITER_*
233 *
234 * LOCKING:
235 * Host lock or EH context.
236 *
237 * RETURNS:
238 * Pointer to the next device.
239 */
240struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
241 enum ata_dev_iter_mode mode)
242{
243 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
244 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
245
246 /* NULL dev indicates start of iteration */
247 if (!dev)
248 switch (mode) {
249 case ATA_DITER_ENABLED:
250 case ATA_DITER_ALL:
251 dev = link->device;
252 goto check;
253 case ATA_DITER_ENABLED_REVERSE:
254 case ATA_DITER_ALL_REVERSE:
255 dev = link->device + ata_link_max_devices(link) - 1;
256 goto check;
257 }
258
259 next:
260 /* move to the next one */
261 switch (mode) {
262 case ATA_DITER_ENABLED:
263 case ATA_DITER_ALL:
264 if (++dev < link->device + ata_link_max_devices(link))
265 goto check;
266 return NULL;
267 case ATA_DITER_ENABLED_REVERSE:
268 case ATA_DITER_ALL_REVERSE:
269 if (--dev >= link->device)
270 goto check;
271 return NULL;
272 }
273
274 check:
275 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
276 !ata_dev_enabled(dev))
277 goto next;
278 return dev;
279}
280
281/**
282 * ata_dev_phys_link - find physical link for a device
283 * @dev: ATA device to look up physical link for
284 *
285 * Look up physical link which @dev is attached to. Note that
286 * this is different from @dev->link only when @dev is on slave
287 * link. For all other cases, it's the same as @dev->link.
288 *
289 * LOCKING:
290 * Don't care.
291 *
292 * RETURNS:
293 * Pointer to the found physical link.
294 */
295struct ata_link *ata_dev_phys_link(struct ata_device *dev)
296{
297 struct ata_port *ap = dev->link->ap;
298
299 if (!ap->slave_link)
300 return dev->link;
301 if (!dev->devno)
302 return &ap->link;
303 return ap->slave_link;
304}
305
306/**
307 * ata_force_cbl - force cable type according to libata.force
308 * @ap: ATA port of interest
309 *
310 * Force cable type according to libata.force and whine about it.
311 * The last entry which has matching port number is used, so it
312 * can be specified as part of device force parameters. For
313 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
314 * same effect.
315 *
316 * LOCKING:
317 * EH context.
318 */
319void ata_force_cbl(struct ata_port *ap)
320{
321 int i;
322
323 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
324 const struct ata_force_ent *fe = &ata_force_tbl[i];
325
326 if (fe->port != -1 && fe->port != ap->print_id)
327 continue;
328
329 if (fe->param.cbl == ATA_CBL_NONE)
330 continue;
331
332 ap->cbl = fe->param.cbl;
333 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
334 return;
335 }
336}
337
338/**
339 * ata_force_link_limits - force link limits according to libata.force
340 * @link: ATA link of interest
341 *
342 * Force link flags and SATA spd limit according to libata.force
343 * and whine about it. When only the port part is specified
344 * (e.g. 1:), the limit applies to all links connected to both
345 * the host link and all fan-out ports connected via PMP. If the
346 * device part is specified as 0 (e.g. 1.00:), it specifies the
347 * first fan-out link not the host link. Device number 15 always
348 * points to the host link whether PMP is attached or not. If the
349 * controller has slave link, device number 16 points to it.
350 *
351 * LOCKING:
352 * EH context.
353 */
354static void ata_force_link_limits(struct ata_link *link)
355{
356 bool did_spd = false;
357 int linkno = link->pmp;
358 int i;
359
360 if (ata_is_host_link(link))
361 linkno += 15;
362
363 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
364 const struct ata_force_ent *fe = &ata_force_tbl[i];
365
366 if (fe->port != -1 && fe->port != link->ap->print_id)
367 continue;
368
369 if (fe->device != -1 && fe->device != linkno)
370 continue;
371
372 /* only honor the first spd limit */
373 if (!did_spd && fe->param.spd_limit) {
374 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
375 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
376 fe->param.name);
377 did_spd = true;
378 }
379
380 /* let lflags stack */
381 if (fe->param.lflags) {
382 link->flags |= fe->param.lflags;
383 ata_link_notice(link,
384 "FORCE: link flag 0x%x forced -> 0x%x\n",
385 fe->param.lflags, link->flags);
386 }
387 }
388}
389
390/**
391 * ata_force_xfermask - force xfermask according to libata.force
392 * @dev: ATA device of interest
393 *
394 * Force xfer_mask according to libata.force and whine about it.
395 * For consistency with link selection, device number 15 selects
396 * the first device connected to the host link.
397 *
398 * LOCKING:
399 * EH context.
400 */
401static void ata_force_xfermask(struct ata_device *dev)
402{
403 int devno = dev->link->pmp + dev->devno;
404 int alt_devno = devno;
405 int i;
406
407 /* allow n.15/16 for devices attached to host port */
408 if (ata_is_host_link(dev->link))
409 alt_devno += 15;
410
411 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
412 const struct ata_force_ent *fe = &ata_force_tbl[i];
413 unsigned long pio_mask, mwdma_mask, udma_mask;
414
415 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
416 continue;
417
418 if (fe->device != -1 && fe->device != devno &&
419 fe->device != alt_devno)
420 continue;
421
422 if (!fe->param.xfer_mask)
423 continue;
424
425 ata_unpack_xfermask(fe->param.xfer_mask,
426 &pio_mask, &mwdma_mask, &udma_mask);
427 if (udma_mask)
428 dev->udma_mask = udma_mask;
429 else if (mwdma_mask) {
430 dev->udma_mask = 0;
431 dev->mwdma_mask = mwdma_mask;
432 } else {
433 dev->udma_mask = 0;
434 dev->mwdma_mask = 0;
435 dev->pio_mask = pio_mask;
436 }
437
438 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
439 fe->param.name);
440 return;
441 }
442}
443
444/**
445 * ata_force_horkage - force horkage according to libata.force
446 * @dev: ATA device of interest
447 *
448 * Force horkage according to libata.force and whine about it.
449 * For consistency with link selection, device number 15 selects
450 * the first device connected to the host link.
451 *
452 * LOCKING:
453 * EH context.
454 */
455static void ata_force_horkage(struct ata_device *dev)
456{
457 int devno = dev->link->pmp + dev->devno;
458 int alt_devno = devno;
459 int i;
460
461 /* allow n.15/16 for devices attached to host port */
462 if (ata_is_host_link(dev->link))
463 alt_devno += 15;
464
465 for (i = 0; i < ata_force_tbl_size; i++) {
466 const struct ata_force_ent *fe = &ata_force_tbl[i];
467
468 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
469 continue;
470
471 if (fe->device != -1 && fe->device != devno &&
472 fe->device != alt_devno)
473 continue;
474
475 if (!(~dev->horkage & fe->param.horkage_on) &&
476 !(dev->horkage & fe->param.horkage_off))
477 continue;
478
479 dev->horkage |= fe->param.horkage_on;
480 dev->horkage &= ~fe->param.horkage_off;
481
482 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
483 fe->param.name);
484 }
485}
486
487/**
488 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
489 * @opcode: SCSI opcode
490 *
491 * Determine ATAPI command type from @opcode.
492 *
493 * LOCKING:
494 * None.
495 *
496 * RETURNS:
497 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
498 */
499int atapi_cmd_type(u8 opcode)
500{
501 switch (opcode) {
502 case GPCMD_READ_10:
503 case GPCMD_READ_12:
504 return ATAPI_READ;
505
506 case GPCMD_WRITE_10:
507 case GPCMD_WRITE_12:
508 case GPCMD_WRITE_AND_VERIFY_10:
509 return ATAPI_WRITE;
510
511 case GPCMD_READ_CD:
512 case GPCMD_READ_CD_MSF:
513 return ATAPI_READ_CD;
514
515 case ATA_16:
516 case ATA_12:
517 if (atapi_passthru16)
518 return ATAPI_PASS_THRU;
519 /* fall thru */
520 default:
521 return ATAPI_MISC;
522 }
523}
524
525/**
526 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
527 * @tf: Taskfile to convert
528 * @pmp: Port multiplier port
529 * @is_cmd: This FIS is for command
530 * @fis: Buffer into which data will output
531 *
532 * Converts a standard ATA taskfile to a Serial ATA
533 * FIS structure (Register - Host to Device).
534 *
535 * LOCKING:
536 * Inherited from caller.
537 */
538void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
539{
540 fis[0] = 0x27; /* Register - Host to Device FIS */
541 fis[1] = pmp & 0xf; /* Port multiplier number*/
542 if (is_cmd)
543 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
544
545 fis[2] = tf->command;
546 fis[3] = tf->feature;
547
548 fis[4] = tf->lbal;
549 fis[5] = tf->lbam;
550 fis[6] = tf->lbah;
551 fis[7] = tf->device;
552
553 fis[8] = tf->hob_lbal;
554 fis[9] = tf->hob_lbam;
555 fis[10] = tf->hob_lbah;
556 fis[11] = tf->hob_feature;
557
558 fis[12] = tf->nsect;
559 fis[13] = tf->hob_nsect;
560 fis[14] = 0;
561 fis[15] = tf->ctl;
562
563 fis[16] = tf->auxiliary & 0xff;
564 fis[17] = (tf->auxiliary >> 8) & 0xff;
565 fis[18] = (tf->auxiliary >> 16) & 0xff;
566 fis[19] = (tf->auxiliary >> 24) & 0xff;
567}
568
569/**
570 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
571 * @fis: Buffer from which data will be input
572 * @tf: Taskfile to output
573 *
574 * Converts a serial ATA FIS structure to a standard ATA taskfile.
575 *
576 * LOCKING:
577 * Inherited from caller.
578 */
579
580void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
581{
582 tf->command = fis[2]; /* status */
583 tf->feature = fis[3]; /* error */
584
585 tf->lbal = fis[4];
586 tf->lbam = fis[5];
587 tf->lbah = fis[6];
588 tf->device = fis[7];
589
590 tf->hob_lbal = fis[8];
591 tf->hob_lbam = fis[9];
592 tf->hob_lbah = fis[10];
593
594 tf->nsect = fis[12];
595 tf->hob_nsect = fis[13];
596}
597
598static const u8 ata_rw_cmds[] = {
599 /* pio multi */
600 ATA_CMD_READ_MULTI,
601 ATA_CMD_WRITE_MULTI,
602 ATA_CMD_READ_MULTI_EXT,
603 ATA_CMD_WRITE_MULTI_EXT,
604 0,
605 0,
606 0,
607 ATA_CMD_WRITE_MULTI_FUA_EXT,
608 /* pio */
609 ATA_CMD_PIO_READ,
610 ATA_CMD_PIO_WRITE,
611 ATA_CMD_PIO_READ_EXT,
612 ATA_CMD_PIO_WRITE_EXT,
613 0,
614 0,
615 0,
616 0,
617 /* dma */
618 ATA_CMD_READ,
619 ATA_CMD_WRITE,
620 ATA_CMD_READ_EXT,
621 ATA_CMD_WRITE_EXT,
622 0,
623 0,
624 0,
625 ATA_CMD_WRITE_FUA_EXT
626};
627
628/**
629 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
630 * @tf: command to examine and configure
631 * @dev: device tf belongs to
632 *
633 * Examine the device configuration and tf->flags to calculate
634 * the proper read/write commands and protocol to use.
635 *
636 * LOCKING:
637 * caller.
638 */
639static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
640{
641 u8 cmd;
642
643 int index, fua, lba48, write;
644
645 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
646 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
647 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
648
649 if (dev->flags & ATA_DFLAG_PIO) {
650 tf->protocol = ATA_PROT_PIO;
651 index = dev->multi_count ? 0 : 8;
652 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
653 /* Unable to use DMA due to host limitation */
654 tf->protocol = ATA_PROT_PIO;
655 index = dev->multi_count ? 0 : 8;
656 } else {
657 tf->protocol = ATA_PROT_DMA;
658 index = 16;
659 }
660
661 cmd = ata_rw_cmds[index + fua + lba48 + write];
662 if (cmd) {
663 tf->command = cmd;
664 return 0;
665 }
666 return -1;
667}
668
669/**
670 * ata_tf_read_block - Read block address from ATA taskfile
671 * @tf: ATA taskfile of interest
672 * @dev: ATA device @tf belongs to
673 *
674 * LOCKING:
675 * None.
676 *
677 * Read block address from @tf. This function can handle all
678 * three address formats - LBA, LBA48 and CHS. tf->protocol and
679 * flags select the address format to use.
680 *
681 * RETURNS:
682 * Block address read from @tf.
683 */
684u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
685{
686 u64 block = 0;
687
688 if (tf->flags & ATA_TFLAG_LBA) {
689 if (tf->flags & ATA_TFLAG_LBA48) {
690 block |= (u64)tf->hob_lbah << 40;
691 block |= (u64)tf->hob_lbam << 32;
692 block |= (u64)tf->hob_lbal << 24;
693 } else
694 block |= (tf->device & 0xf) << 24;
695
696 block |= tf->lbah << 16;
697 block |= tf->lbam << 8;
698 block |= tf->lbal;
699 } else {
700 u32 cyl, head, sect;
701
702 cyl = tf->lbam | (tf->lbah << 8);
703 head = tf->device & 0xf;
704 sect = tf->lbal;
705
706 if (!sect) {
707 ata_dev_warn(dev,
708 "device reported invalid CHS sector 0\n");
709 return U64_MAX;
710 }
711
712 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
713 }
714
715 return block;
716}
717
718/**
719 * ata_build_rw_tf - Build ATA taskfile for given read/write request
720 * @tf: Target ATA taskfile
721 * @dev: ATA device @tf belongs to
722 * @block: Block address
723 * @n_block: Number of blocks
724 * @tf_flags: RW/FUA etc...
725 * @tag: tag
726 * @class: IO priority class
727 *
728 * LOCKING:
729 * None.
730 *
731 * Build ATA taskfile @tf for read/write request described by
732 * @block, @n_block, @tf_flags and @tag on @dev.
733 *
734 * RETURNS:
735 *
736 * 0 on success, -ERANGE if the request is too large for @dev,
737 * -EINVAL if the request is invalid.
738 */
739int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
740 u64 block, u32 n_block, unsigned int tf_flags,
741 unsigned int tag, int class)
742{
743 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
744 tf->flags |= tf_flags;
745
746 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
747 /* yay, NCQ */
748 if (!lba_48_ok(block, n_block))
749 return -ERANGE;
750
751 tf->protocol = ATA_PROT_NCQ;
752 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
753
754 if (tf->flags & ATA_TFLAG_WRITE)
755 tf->command = ATA_CMD_FPDMA_WRITE;
756 else
757 tf->command = ATA_CMD_FPDMA_READ;
758
759 tf->nsect = tag << 3;
760 tf->hob_feature = (n_block >> 8) & 0xff;
761 tf->feature = n_block & 0xff;
762
763 tf->hob_lbah = (block >> 40) & 0xff;
764 tf->hob_lbam = (block >> 32) & 0xff;
765 tf->hob_lbal = (block >> 24) & 0xff;
766 tf->lbah = (block >> 16) & 0xff;
767 tf->lbam = (block >> 8) & 0xff;
768 tf->lbal = block & 0xff;
769
770 tf->device = ATA_LBA;
771 if (tf->flags & ATA_TFLAG_FUA)
772 tf->device |= 1 << 7;
773
774 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
775 if (class == IOPRIO_CLASS_RT)
776 tf->hob_nsect |= ATA_PRIO_HIGH <<
777 ATA_SHIFT_PRIO;
778 }
779 } else if (dev->flags & ATA_DFLAG_LBA) {
780 tf->flags |= ATA_TFLAG_LBA;
781
782 if (lba_28_ok(block, n_block)) {
783 /* use LBA28 */
784 tf->device |= (block >> 24) & 0xf;
785 } else if (lba_48_ok(block, n_block)) {
786 if (!(dev->flags & ATA_DFLAG_LBA48))
787 return -ERANGE;
788
789 /* use LBA48 */
790 tf->flags |= ATA_TFLAG_LBA48;
791
792 tf->hob_nsect = (n_block >> 8) & 0xff;
793
794 tf->hob_lbah = (block >> 40) & 0xff;
795 tf->hob_lbam = (block >> 32) & 0xff;
796 tf->hob_lbal = (block >> 24) & 0xff;
797 } else
798 /* request too large even for LBA48 */
799 return -ERANGE;
800
801 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
802 return -EINVAL;
803
804 tf->nsect = n_block & 0xff;
805
806 tf->lbah = (block >> 16) & 0xff;
807 tf->lbam = (block >> 8) & 0xff;
808 tf->lbal = block & 0xff;
809
810 tf->device |= ATA_LBA;
811 } else {
812 /* CHS */
813 u32 sect, head, cyl, track;
814
815 /* The request -may- be too large for CHS addressing. */
816 if (!lba_28_ok(block, n_block))
817 return -ERANGE;
818
819 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
820 return -EINVAL;
821
822 /* Convert LBA to CHS */
823 track = (u32)block / dev->sectors;
824 cyl = track / dev->heads;
825 head = track % dev->heads;
826 sect = (u32)block % dev->sectors + 1;
827
828 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
829 (u32)block, track, cyl, head, sect);
830
831 /* Check whether the converted CHS can fit.
832 Cylinder: 0-65535
833 Head: 0-15
834 Sector: 1-255*/
835 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
836 return -ERANGE;
837
838 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
839 tf->lbal = sect;
840 tf->lbam = cyl;
841 tf->lbah = cyl >> 8;
842 tf->device |= head;
843 }
844
845 return 0;
846}
847
848/**
849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
850 * @pio_mask: pio_mask
851 * @mwdma_mask: mwdma_mask
852 * @udma_mask: udma_mask
853 *
854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
855 * unsigned int xfer_mask.
856 *
857 * LOCKING:
858 * None.
859 *
860 * RETURNS:
861 * Packed xfer_mask.
862 */
863unsigned long ata_pack_xfermask(unsigned long pio_mask,
864 unsigned long mwdma_mask,
865 unsigned long udma_mask)
866{
867 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
868 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
869 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
870}
871
872/**
873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
874 * @xfer_mask: xfer_mask to unpack
875 * @pio_mask: resulting pio_mask
876 * @mwdma_mask: resulting mwdma_mask
877 * @udma_mask: resulting udma_mask
878 *
879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
880 * Any NULL destination masks will be ignored.
881 */
882void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
883 unsigned long *mwdma_mask, unsigned long *udma_mask)
884{
885 if (pio_mask)
886 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
887 if (mwdma_mask)
888 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
889 if (udma_mask)
890 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
891}
892
893static const struct ata_xfer_ent {
894 int shift, bits;
895 u8 base;
896} ata_xfer_tbl[] = {
897 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
898 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
899 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
900 { -1, },
901};
902
903/**
904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
905 * @xfer_mask: xfer_mask of interest
906 *
907 * Return matching XFER_* value for @xfer_mask. Only the highest
908 * bit of @xfer_mask is considered.
909 *
910 * LOCKING:
911 * None.
912 *
913 * RETURNS:
914 * Matching XFER_* value, 0xff if no match found.
915 */
916u8 ata_xfer_mask2mode(unsigned long xfer_mask)
917{
918 int highbit = fls(xfer_mask) - 1;
919 const struct ata_xfer_ent *ent;
920
921 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
922 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
923 return ent->base + highbit - ent->shift;
924 return 0xff;
925}
926
927/**
928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
929 * @xfer_mode: XFER_* of interest
930 *
931 * Return matching xfer_mask for @xfer_mode.
932 *
933 * LOCKING:
934 * None.
935 *
936 * RETURNS:
937 * Matching xfer_mask, 0 if no match found.
938 */
939unsigned long ata_xfer_mode2mask(u8 xfer_mode)
940{
941 const struct ata_xfer_ent *ent;
942
943 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
944 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
945 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
946 & ~((1 << ent->shift) - 1);
947 return 0;
948}
949
950/**
951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
952 * @xfer_mode: XFER_* of interest
953 *
954 * Return matching xfer_shift for @xfer_mode.
955 *
956 * LOCKING:
957 * None.
958 *
959 * RETURNS:
960 * Matching xfer_shift, -1 if no match found.
961 */
962int ata_xfer_mode2shift(unsigned long xfer_mode)
963{
964 const struct ata_xfer_ent *ent;
965
966 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
967 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
968 return ent->shift;
969 return -1;
970}
971
972/**
973 * ata_mode_string - convert xfer_mask to string
974 * @xfer_mask: mask of bits supported; only highest bit counts.
975 *
976 * Determine string which represents the highest speed
977 * (highest bit in @modemask).
978 *
979 * LOCKING:
980 * None.
981 *
982 * RETURNS:
983 * Constant C string representing highest speed listed in
984 * @mode_mask, or the constant C string "<n/a>".
985 */
986const char *ata_mode_string(unsigned long xfer_mask)
987{
988 static const char * const xfer_mode_str[] = {
989 "PIO0",
990 "PIO1",
991 "PIO2",
992 "PIO3",
993 "PIO4",
994 "PIO5",
995 "PIO6",
996 "MWDMA0",
997 "MWDMA1",
998 "MWDMA2",
999 "MWDMA3",
1000 "MWDMA4",
1001 "UDMA/16",
1002 "UDMA/25",
1003 "UDMA/33",
1004 "UDMA/44",
1005 "UDMA/66",
1006 "UDMA/100",
1007 "UDMA/133",
1008 "UDMA7",
1009 };
1010 int highbit;
1011
1012 highbit = fls(xfer_mask) - 1;
1013 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014 return xfer_mode_str[highbit];
1015 return "<n/a>";
1016}
1017
1018const char *sata_spd_string(unsigned int spd)
1019{
1020 static const char * const spd_str[] = {
1021 "1.5 Gbps",
1022 "3.0 Gbps",
1023 "6.0 Gbps",
1024 };
1025
1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 return "<unknown>";
1028 return spd_str[spd - 1];
1029}
1030
1031/**
1032 * ata_dev_classify - determine device type based on ATA-spec signature
1033 * @tf: ATA taskfile register set for device to be identified
1034 *
1035 * Determine from taskfile register contents whether a device is
1036 * ATA or ATAPI, as per "Signature and persistence" section
1037 * of ATA/PI spec (volume 1, sect 5.14).
1038 *
1039 * LOCKING:
1040 * None.
1041 *
1042 * RETURNS:
1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045 */
1046unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047{
1048 /* Apple's open source Darwin code hints that some devices only
1049 * put a proper signature into the LBA mid/high registers,
1050 * So, we only check those. It's sufficient for uniqueness.
1051 *
1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055 * spec has never mentioned about using different signatures
1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1057 * Multiplier specification began to use 0x69/0x96 to identify
1058 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 * 0x69/0x96 shortly and described them as reserved for
1061 * SerialATA.
1062 *
1063 * We follow the current spec and consider that 0x69/0x96
1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 * SEMB signature. This is worked around in
1067 * ata_dev_read_id().
1068 */
1069 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1070 DPRINTK("found ATA device by sig\n");
1071 return ATA_DEV_ATA;
1072 }
1073
1074 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1075 DPRINTK("found ATAPI device by sig\n");
1076 return ATA_DEV_ATAPI;
1077 }
1078
1079 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1080 DPRINTK("found PMP device by sig\n");
1081 return ATA_DEV_PMP;
1082 }
1083
1084 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1085 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1086 return ATA_DEV_SEMB;
1087 }
1088
1089 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1090 DPRINTK("found ZAC device by sig\n");
1091 return ATA_DEV_ZAC;
1092 }
1093
1094 DPRINTK("unknown device\n");
1095 return ATA_DEV_UNKNOWN;
1096}
1097
1098/**
1099 * ata_id_string - Convert IDENTIFY DEVICE page into string
1100 * @id: IDENTIFY DEVICE results we will examine
1101 * @s: string into which data is output
1102 * @ofs: offset into identify device page
1103 * @len: length of string to return. must be an even number.
1104 *
1105 * The strings in the IDENTIFY DEVICE page are broken up into
1106 * 16-bit chunks. Run through the string, and output each
1107 * 8-bit chunk linearly, regardless of platform.
1108 *
1109 * LOCKING:
1110 * caller.
1111 */
1112
1113void ata_id_string(const u16 *id, unsigned char *s,
1114 unsigned int ofs, unsigned int len)
1115{
1116 unsigned int c;
1117
1118 BUG_ON(len & 1);
1119
1120 while (len > 0) {
1121 c = id[ofs] >> 8;
1122 *s = c;
1123 s++;
1124
1125 c = id[ofs] & 0xff;
1126 *s = c;
1127 s++;
1128
1129 ofs++;
1130 len -= 2;
1131 }
1132}
1133
1134/**
1135 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1136 * @id: IDENTIFY DEVICE results we will examine
1137 * @s: string into which data is output
1138 * @ofs: offset into identify device page
1139 * @len: length of string to return. must be an odd number.
1140 *
1141 * This function is identical to ata_id_string except that it
1142 * trims trailing spaces and terminates the resulting string with
1143 * null. @len must be actual maximum length (even number) + 1.
1144 *
1145 * LOCKING:
1146 * caller.
1147 */
1148void ata_id_c_string(const u16 *id, unsigned char *s,
1149 unsigned int ofs, unsigned int len)
1150{
1151 unsigned char *p;
1152
1153 ata_id_string(id, s, ofs, len - 1);
1154
1155 p = s + strnlen(s, len - 1);
1156 while (p > s && p[-1] == ' ')
1157 p--;
1158 *p = '\0';
1159}
1160
1161static u64 ata_id_n_sectors(const u16 *id)
1162{
1163 if (ata_id_has_lba(id)) {
1164 if (ata_id_has_lba48(id))
1165 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1166 else
1167 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1168 } else {
1169 if (ata_id_current_chs_valid(id))
1170 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1171 id[ATA_ID_CUR_SECTORS];
1172 else
1173 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1174 id[ATA_ID_SECTORS];
1175 }
1176}
1177
1178u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1179{
1180 u64 sectors = 0;
1181
1182 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1183 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1184 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1185 sectors |= (tf->lbah & 0xff) << 16;
1186 sectors |= (tf->lbam & 0xff) << 8;
1187 sectors |= (tf->lbal & 0xff);
1188
1189 return sectors;
1190}
1191
1192u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1193{
1194 u64 sectors = 0;
1195
1196 sectors |= (tf->device & 0x0f) << 24;
1197 sectors |= (tf->lbah & 0xff) << 16;
1198 sectors |= (tf->lbam & 0xff) << 8;
1199 sectors |= (tf->lbal & 0xff);
1200
1201 return sectors;
1202}
1203
1204/**
1205 * ata_read_native_max_address - Read native max address
1206 * @dev: target device
1207 * @max_sectors: out parameter for the result native max address
1208 *
1209 * Perform an LBA48 or LBA28 native size query upon the device in
1210 * question.
1211 *
1212 * RETURNS:
1213 * 0 on success, -EACCES if command is aborted by the drive.
1214 * -EIO on other errors.
1215 */
1216static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1217{
1218 unsigned int err_mask;
1219 struct ata_taskfile tf;
1220 int lba48 = ata_id_has_lba48(dev->id);
1221
1222 ata_tf_init(dev, &tf);
1223
1224 /* always clear all address registers */
1225 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1226
1227 if (lba48) {
1228 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1229 tf.flags |= ATA_TFLAG_LBA48;
1230 } else
1231 tf.command = ATA_CMD_READ_NATIVE_MAX;
1232
1233 tf.protocol = ATA_PROT_NODATA;
1234 tf.device |= ATA_LBA;
1235
1236 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1237 if (err_mask) {
1238 ata_dev_warn(dev,
1239 "failed to read native max address (err_mask=0x%x)\n",
1240 err_mask);
1241 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1242 return -EACCES;
1243 return -EIO;
1244 }
1245
1246 if (lba48)
1247 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1248 else
1249 *max_sectors = ata_tf_to_lba(&tf) + 1;
1250 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1251 (*max_sectors)--;
1252 return 0;
1253}
1254
1255/**
1256 * ata_set_max_sectors - Set max sectors
1257 * @dev: target device
1258 * @new_sectors: new max sectors value to set for the device
1259 *
1260 * Set max sectors of @dev to @new_sectors.
1261 *
1262 * RETURNS:
1263 * 0 on success, -EACCES if command is aborted or denied (due to
1264 * previous non-volatile SET_MAX) by the drive. -EIO on other
1265 * errors.
1266 */
1267static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1268{
1269 unsigned int err_mask;
1270 struct ata_taskfile tf;
1271 int lba48 = ata_id_has_lba48(dev->id);
1272
1273 new_sectors--;
1274
1275 ata_tf_init(dev, &tf);
1276
1277 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1278
1279 if (lba48) {
1280 tf.command = ATA_CMD_SET_MAX_EXT;
1281 tf.flags |= ATA_TFLAG_LBA48;
1282
1283 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1284 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1285 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1286 } else {
1287 tf.command = ATA_CMD_SET_MAX;
1288
1289 tf.device |= (new_sectors >> 24) & 0xf;
1290 }
1291
1292 tf.protocol = ATA_PROT_NODATA;
1293 tf.device |= ATA_LBA;
1294
1295 tf.lbal = (new_sectors >> 0) & 0xff;
1296 tf.lbam = (new_sectors >> 8) & 0xff;
1297 tf.lbah = (new_sectors >> 16) & 0xff;
1298
1299 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1300 if (err_mask) {
1301 ata_dev_warn(dev,
1302 "failed to set max address (err_mask=0x%x)\n",
1303 err_mask);
1304 if (err_mask == AC_ERR_DEV &&
1305 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1306 return -EACCES;
1307 return -EIO;
1308 }
1309
1310 return 0;
1311}
1312
1313/**
1314 * ata_hpa_resize - Resize a device with an HPA set
1315 * @dev: Device to resize
1316 *
1317 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1318 * it if required to the full size of the media. The caller must check
1319 * the drive has the HPA feature set enabled.
1320 *
1321 * RETURNS:
1322 * 0 on success, -errno on failure.
1323 */
1324static int ata_hpa_resize(struct ata_device *dev)
1325{
1326 struct ata_eh_context *ehc = &dev->link->eh_context;
1327 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1328 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1329 u64 sectors = ata_id_n_sectors(dev->id);
1330 u64 native_sectors;
1331 int rc;
1332
1333 /* do we need to do it? */
1334 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1335 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1336 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1337 return 0;
1338
1339 /* read native max address */
1340 rc = ata_read_native_max_address(dev, &native_sectors);
1341 if (rc) {
1342 /* If device aborted the command or HPA isn't going to
1343 * be unlocked, skip HPA resizing.
1344 */
1345 if (rc == -EACCES || !unlock_hpa) {
1346 ata_dev_warn(dev,
1347 "HPA support seems broken, skipping HPA handling\n");
1348 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1349
1350 /* we can continue if device aborted the command */
1351 if (rc == -EACCES)
1352 rc = 0;
1353 }
1354
1355 return rc;
1356 }
1357 dev->n_native_sectors = native_sectors;
1358
1359 /* nothing to do? */
1360 if (native_sectors <= sectors || !unlock_hpa) {
1361 if (!print_info || native_sectors == sectors)
1362 return 0;
1363
1364 if (native_sectors > sectors)
1365 ata_dev_info(dev,
1366 "HPA detected: current %llu, native %llu\n",
1367 (unsigned long long)sectors,
1368 (unsigned long long)native_sectors);
1369 else if (native_sectors < sectors)
1370 ata_dev_warn(dev,
1371 "native sectors (%llu) is smaller than sectors (%llu)\n",
1372 (unsigned long long)native_sectors,
1373 (unsigned long long)sectors);
1374 return 0;
1375 }
1376
1377 /* let's unlock HPA */
1378 rc = ata_set_max_sectors(dev, native_sectors);
1379 if (rc == -EACCES) {
1380 /* if device aborted the command, skip HPA resizing */
1381 ata_dev_warn(dev,
1382 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1386 return 0;
1387 } else if (rc)
1388 return rc;
1389
1390 /* re-read IDENTIFY data */
1391 rc = ata_dev_reread_id(dev, 0);
1392 if (rc) {
1393 ata_dev_err(dev,
1394 "failed to re-read IDENTIFY data after HPA resizing\n");
1395 return rc;
1396 }
1397
1398 if (print_info) {
1399 u64 new_sectors = ata_id_n_sectors(dev->id);
1400 ata_dev_info(dev,
1401 "HPA unlocked: %llu -> %llu, native %llu\n",
1402 (unsigned long long)sectors,
1403 (unsigned long long)new_sectors,
1404 (unsigned long long)native_sectors);
1405 }
1406
1407 return 0;
1408}
1409
1410/**
1411 * ata_dump_id - IDENTIFY DEVICE info debugging output
1412 * @id: IDENTIFY DEVICE page to dump
1413 *
1414 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1415 * page.
1416 *
1417 * LOCKING:
1418 * caller.
1419 */
1420
1421static inline void ata_dump_id(const u16 *id)
1422{
1423 DPRINTK("49==0x%04x "
1424 "53==0x%04x "
1425 "63==0x%04x "
1426 "64==0x%04x "
1427 "75==0x%04x \n",
1428 id[49],
1429 id[53],
1430 id[63],
1431 id[64],
1432 id[75]);
1433 DPRINTK("80==0x%04x "
1434 "81==0x%04x "
1435 "82==0x%04x "
1436 "83==0x%04x "
1437 "84==0x%04x \n",
1438 id[80],
1439 id[81],
1440 id[82],
1441 id[83],
1442 id[84]);
1443 DPRINTK("88==0x%04x "
1444 "93==0x%04x\n",
1445 id[88],
1446 id[93]);
1447}
1448
1449/**
1450 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1451 * @id: IDENTIFY data to compute xfer mask from
1452 *
1453 * Compute the xfermask for this device. This is not as trivial
1454 * as it seems if we must consider early devices correctly.
1455 *
1456 * FIXME: pre IDE drive timing (do we care ?).
1457 *
1458 * LOCKING:
1459 * None.
1460 *
1461 * RETURNS:
1462 * Computed xfermask
1463 */
1464unsigned long ata_id_xfermask(const u16 *id)
1465{
1466 unsigned long pio_mask, mwdma_mask, udma_mask;
1467
1468 /* Usual case. Word 53 indicates word 64 is valid */
1469 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1470 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1471 pio_mask <<= 3;
1472 pio_mask |= 0x7;
1473 } else {
1474 /* If word 64 isn't valid then Word 51 high byte holds
1475 * the PIO timing number for the maximum. Turn it into
1476 * a mask.
1477 */
1478 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1479 if (mode < 5) /* Valid PIO range */
1480 pio_mask = (2 << mode) - 1;
1481 else
1482 pio_mask = 1;
1483
1484 /* But wait.. there's more. Design your standards by
1485 * committee and you too can get a free iordy field to
1486 * process. However its the speeds not the modes that
1487 * are supported... Note drivers using the timing API
1488 * will get this right anyway
1489 */
1490 }
1491
1492 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1493
1494 if (ata_id_is_cfa(id)) {
1495 /*
1496 * Process compact flash extended modes
1497 */
1498 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1499 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1500
1501 if (pio)
1502 pio_mask |= (1 << 5);
1503 if (pio > 1)
1504 pio_mask |= (1 << 6);
1505 if (dma)
1506 mwdma_mask |= (1 << 3);
1507 if (dma > 1)
1508 mwdma_mask |= (1 << 4);
1509 }
1510
1511 udma_mask = 0;
1512 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1513 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1514
1515 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1516}
1517
1518static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1519{
1520 struct completion *waiting = qc->private_data;
1521
1522 complete(waiting);
1523}
1524
1525/**
1526 * ata_exec_internal_sg - execute libata internal command
1527 * @dev: Device to which the command is sent
1528 * @tf: Taskfile registers for the command and the result
1529 * @cdb: CDB for packet command
1530 * @dma_dir: Data transfer direction of the command
1531 * @sgl: sg list for the data buffer of the command
1532 * @n_elem: Number of sg entries
1533 * @timeout: Timeout in msecs (0 for default)
1534 *
1535 * Executes libata internal command with timeout. @tf contains
1536 * command on entry and result on return. Timeout and error
1537 * conditions are reported via return value. No recovery action
1538 * is taken after a command times out. It's caller's duty to
1539 * clean up after timeout.
1540 *
1541 * LOCKING:
1542 * None. Should be called with kernel context, might sleep.
1543 *
1544 * RETURNS:
1545 * Zero on success, AC_ERR_* mask on failure
1546 */
1547unsigned ata_exec_internal_sg(struct ata_device *dev,
1548 struct ata_taskfile *tf, const u8 *cdb,
1549 int dma_dir, struct scatterlist *sgl,
1550 unsigned int n_elem, unsigned long timeout)
1551{
1552 struct ata_link *link = dev->link;
1553 struct ata_port *ap = link->ap;
1554 u8 command = tf->command;
1555 int auto_timeout = 0;
1556 struct ata_queued_cmd *qc;
1557 unsigned int preempted_tag;
1558 u32 preempted_sactive;
1559 u64 preempted_qc_active;
1560 int preempted_nr_active_links;
1561 DECLARE_COMPLETION_ONSTACK(wait);
1562 unsigned long flags;
1563 unsigned int err_mask;
1564 int rc;
1565
1566 spin_lock_irqsave(ap->lock, flags);
1567
1568 /* no internal command while frozen */
1569 if (ap->pflags & ATA_PFLAG_FROZEN) {
1570 spin_unlock_irqrestore(ap->lock, flags);
1571 return AC_ERR_SYSTEM;
1572 }
1573
1574 /* initialize internal qc */
1575 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1576
1577 qc->tag = ATA_TAG_INTERNAL;
1578 qc->hw_tag = 0;
1579 qc->scsicmd = NULL;
1580 qc->ap = ap;
1581 qc->dev = dev;
1582 ata_qc_reinit(qc);
1583
1584 preempted_tag = link->active_tag;
1585 preempted_sactive = link->sactive;
1586 preempted_qc_active = ap->qc_active;
1587 preempted_nr_active_links = ap->nr_active_links;
1588 link->active_tag = ATA_TAG_POISON;
1589 link->sactive = 0;
1590 ap->qc_active = 0;
1591 ap->nr_active_links = 0;
1592
1593 /* prepare & issue qc */
1594 qc->tf = *tf;
1595 if (cdb)
1596 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1597
1598 /* some SATA bridges need us to indicate data xfer direction */
1599 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1600 dma_dir == DMA_FROM_DEVICE)
1601 qc->tf.feature |= ATAPI_DMADIR;
1602
1603 qc->flags |= ATA_QCFLAG_RESULT_TF;
1604 qc->dma_dir = dma_dir;
1605 if (dma_dir != DMA_NONE) {
1606 unsigned int i, buflen = 0;
1607 struct scatterlist *sg;
1608
1609 for_each_sg(sgl, sg, n_elem, i)
1610 buflen += sg->length;
1611
1612 ata_sg_init(qc, sgl, n_elem);
1613 qc->nbytes = buflen;
1614 }
1615
1616 qc->private_data = &wait;
1617 qc->complete_fn = ata_qc_complete_internal;
1618
1619 ata_qc_issue(qc);
1620
1621 spin_unlock_irqrestore(ap->lock, flags);
1622
1623 if (!timeout) {
1624 if (ata_probe_timeout)
1625 timeout = ata_probe_timeout * 1000;
1626 else {
1627 timeout = ata_internal_cmd_timeout(dev, command);
1628 auto_timeout = 1;
1629 }
1630 }
1631
1632 if (ap->ops->error_handler)
1633 ata_eh_release(ap);
1634
1635 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1636
1637 if (ap->ops->error_handler)
1638 ata_eh_acquire(ap);
1639
1640 ata_sff_flush_pio_task(ap);
1641
1642 if (!rc) {
1643 spin_lock_irqsave(ap->lock, flags);
1644
1645 /* We're racing with irq here. If we lose, the
1646 * following test prevents us from completing the qc
1647 * twice. If we win, the port is frozen and will be
1648 * cleaned up by ->post_internal_cmd().
1649 */
1650 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1651 qc->err_mask |= AC_ERR_TIMEOUT;
1652
1653 if (ap->ops->error_handler)
1654 ata_port_freeze(ap);
1655 else
1656 ata_qc_complete(qc);
1657
1658 if (ata_msg_warn(ap))
1659 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1660 command);
1661 }
1662
1663 spin_unlock_irqrestore(ap->lock, flags);
1664 }
1665
1666 /* do post_internal_cmd */
1667 if (ap->ops->post_internal_cmd)
1668 ap->ops->post_internal_cmd(qc);
1669
1670 /* perform minimal error analysis */
1671 if (qc->flags & ATA_QCFLAG_FAILED) {
1672 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1673 qc->err_mask |= AC_ERR_DEV;
1674
1675 if (!qc->err_mask)
1676 qc->err_mask |= AC_ERR_OTHER;
1677
1678 if (qc->err_mask & ~AC_ERR_OTHER)
1679 qc->err_mask &= ~AC_ERR_OTHER;
1680 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1681 qc->result_tf.command |= ATA_SENSE;
1682 }
1683
1684 /* finish up */
1685 spin_lock_irqsave(ap->lock, flags);
1686
1687 *tf = qc->result_tf;
1688 err_mask = qc->err_mask;
1689
1690 ata_qc_free(qc);
1691 link->active_tag = preempted_tag;
1692 link->sactive = preempted_sactive;
1693 ap->qc_active = preempted_qc_active;
1694 ap->nr_active_links = preempted_nr_active_links;
1695
1696 spin_unlock_irqrestore(ap->lock, flags);
1697
1698 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1699 ata_internal_cmd_timed_out(dev, command);
1700
1701 return err_mask;
1702}
1703
1704/**
1705 * ata_exec_internal - execute libata internal command
1706 * @dev: Device to which the command is sent
1707 * @tf: Taskfile registers for the command and the result
1708 * @cdb: CDB for packet command
1709 * @dma_dir: Data transfer direction of the command
1710 * @buf: Data buffer of the command
1711 * @buflen: Length of data buffer
1712 * @timeout: Timeout in msecs (0 for default)
1713 *
1714 * Wrapper around ata_exec_internal_sg() which takes simple
1715 * buffer instead of sg list.
1716 *
1717 * LOCKING:
1718 * None. Should be called with kernel context, might sleep.
1719 *
1720 * RETURNS:
1721 * Zero on success, AC_ERR_* mask on failure
1722 */
1723unsigned ata_exec_internal(struct ata_device *dev,
1724 struct ata_taskfile *tf, const u8 *cdb,
1725 int dma_dir, void *buf, unsigned int buflen,
1726 unsigned long timeout)
1727{
1728 struct scatterlist *psg = NULL, sg;
1729 unsigned int n_elem = 0;
1730
1731 if (dma_dir != DMA_NONE) {
1732 WARN_ON(!buf);
1733 sg_init_one(&sg, buf, buflen);
1734 psg = &sg;
1735 n_elem++;
1736 }
1737
1738 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1739 timeout);
1740}
1741
1742/**
1743 * ata_pio_need_iordy - check if iordy needed
1744 * @adev: ATA device
1745 *
1746 * Check if the current speed of the device requires IORDY. Used
1747 * by various controllers for chip configuration.
1748 */
1749unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1750{
1751 /* Don't set IORDY if we're preparing for reset. IORDY may
1752 * lead to controller lock up on certain controllers if the
1753 * port is not occupied. See bko#11703 for details.
1754 */
1755 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1756 return 0;
1757 /* Controller doesn't support IORDY. Probably a pointless
1758 * check as the caller should know this.
1759 */
1760 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1761 return 0;
1762 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1763 if (ata_id_is_cfa(adev->id)
1764 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1765 return 0;
1766 /* PIO3 and higher it is mandatory */
1767 if (adev->pio_mode > XFER_PIO_2)
1768 return 1;
1769 /* We turn it on when possible */
1770 if (ata_id_has_iordy(adev->id))
1771 return 1;
1772 return 0;
1773}
1774
1775/**
1776 * ata_pio_mask_no_iordy - Return the non IORDY mask
1777 * @adev: ATA device
1778 *
1779 * Compute the highest mode possible if we are not using iordy. Return
1780 * -1 if no iordy mode is available.
1781 */
1782static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1783{
1784 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1785 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1786 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1787 /* Is the speed faster than the drive allows non IORDY ? */
1788 if (pio) {
1789 /* This is cycle times not frequency - watch the logic! */
1790 if (pio > 240) /* PIO2 is 240nS per cycle */
1791 return 3 << ATA_SHIFT_PIO;
1792 return 7 << ATA_SHIFT_PIO;
1793 }
1794 }
1795 return 3 << ATA_SHIFT_PIO;
1796}
1797
1798/**
1799 * ata_do_dev_read_id - default ID read method
1800 * @dev: device
1801 * @tf: proposed taskfile
1802 * @id: data buffer
1803 *
1804 * Issue the identify taskfile and hand back the buffer containing
1805 * identify data. For some RAID controllers and for pre ATA devices
1806 * this function is wrapped or replaced by the driver
1807 */
1808unsigned int ata_do_dev_read_id(struct ata_device *dev,
1809 struct ata_taskfile *tf, u16 *id)
1810{
1811 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1812 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1813}
1814
1815/**
1816 * ata_dev_read_id - Read ID data from the specified device
1817 * @dev: target device
1818 * @p_class: pointer to class of the target device (may be changed)
1819 * @flags: ATA_READID_* flags
1820 * @id: buffer to read IDENTIFY data into
1821 *
1822 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1823 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1824 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1825 * for pre-ATA4 drives.
1826 *
1827 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1828 * now we abort if we hit that case.
1829 *
1830 * LOCKING:
1831 * Kernel thread context (may sleep)
1832 *
1833 * RETURNS:
1834 * 0 on success, -errno otherwise.
1835 */
1836int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1837 unsigned int flags, u16 *id)
1838{
1839 struct ata_port *ap = dev->link->ap;
1840 unsigned int class = *p_class;
1841 struct ata_taskfile tf;
1842 unsigned int err_mask = 0;
1843 const char *reason;
1844 bool is_semb = class == ATA_DEV_SEMB;
1845 int may_fallback = 1, tried_spinup = 0;
1846 int rc;
1847
1848 if (ata_msg_ctl(ap))
1849 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1850
1851retry:
1852 ata_tf_init(dev, &tf);
1853
1854 switch (class) {
1855 case ATA_DEV_SEMB:
1856 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1857 /* fall through */
1858 case ATA_DEV_ATA:
1859 case ATA_DEV_ZAC:
1860 tf.command = ATA_CMD_ID_ATA;
1861 break;
1862 case ATA_DEV_ATAPI:
1863 tf.command = ATA_CMD_ID_ATAPI;
1864 break;
1865 default:
1866 rc = -ENODEV;
1867 reason = "unsupported class";
1868 goto err_out;
1869 }
1870
1871 tf.protocol = ATA_PROT_PIO;
1872
1873 /* Some devices choke if TF registers contain garbage. Make
1874 * sure those are properly initialized.
1875 */
1876 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1877
1878 /* Device presence detection is unreliable on some
1879 * controllers. Always poll IDENTIFY if available.
1880 */
1881 tf.flags |= ATA_TFLAG_POLLING;
1882
1883 if (ap->ops->read_id)
1884 err_mask = ap->ops->read_id(dev, &tf, id);
1885 else
1886 err_mask = ata_do_dev_read_id(dev, &tf, id);
1887
1888 if (err_mask) {
1889 if (err_mask & AC_ERR_NODEV_HINT) {
1890 ata_dev_dbg(dev, "NODEV after polling detection\n");
1891 return -ENOENT;
1892 }
1893
1894 if (is_semb) {
1895 ata_dev_info(dev,
1896 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1897 /* SEMB is not supported yet */
1898 *p_class = ATA_DEV_SEMB_UNSUP;
1899 return 0;
1900 }
1901
1902 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1903 /* Device or controller might have reported
1904 * the wrong device class. Give a shot at the
1905 * other IDENTIFY if the current one is
1906 * aborted by the device.
1907 */
1908 if (may_fallback) {
1909 may_fallback = 0;
1910
1911 if (class == ATA_DEV_ATA)
1912 class = ATA_DEV_ATAPI;
1913 else
1914 class = ATA_DEV_ATA;
1915 goto retry;
1916 }
1917
1918 /* Control reaches here iff the device aborted
1919 * both flavors of IDENTIFYs which happens
1920 * sometimes with phantom devices.
1921 */
1922 ata_dev_dbg(dev,
1923 "both IDENTIFYs aborted, assuming NODEV\n");
1924 return -ENOENT;
1925 }
1926
1927 rc = -EIO;
1928 reason = "I/O error";
1929 goto err_out;
1930 }
1931
1932 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1933 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1934 "class=%d may_fallback=%d tried_spinup=%d\n",
1935 class, may_fallback, tried_spinup);
1936 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1937 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1938 }
1939
1940 /* Falling back doesn't make sense if ID data was read
1941 * successfully at least once.
1942 */
1943 may_fallback = 0;
1944
1945 swap_buf_le16(id, ATA_ID_WORDS);
1946
1947 /* sanity check */
1948 rc = -EINVAL;
1949 reason = "device reports invalid type";
1950
1951 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1952 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1953 goto err_out;
1954 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1955 ata_id_is_ata(id)) {
1956 ata_dev_dbg(dev,
1957 "host indicates ignore ATA devices, ignored\n");
1958 return -ENOENT;
1959 }
1960 } else {
1961 if (ata_id_is_ata(id))
1962 goto err_out;
1963 }
1964
1965 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1966 tried_spinup = 1;
1967 /*
1968 * Drive powered-up in standby mode, and requires a specific
1969 * SET_FEATURES spin-up subcommand before it will accept
1970 * anything other than the original IDENTIFY command.
1971 */
1972 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1973 if (err_mask && id[2] != 0x738c) {
1974 rc = -EIO;
1975 reason = "SPINUP failed";
1976 goto err_out;
1977 }
1978 /*
1979 * If the drive initially returned incomplete IDENTIFY info,
1980 * we now must reissue the IDENTIFY command.
1981 */
1982 if (id[2] == 0x37c8)
1983 goto retry;
1984 }
1985
1986 if ((flags & ATA_READID_POSTRESET) &&
1987 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1988 /*
1989 * The exact sequence expected by certain pre-ATA4 drives is:
1990 * SRST RESET
1991 * IDENTIFY (optional in early ATA)
1992 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1993 * anything else..
1994 * Some drives were very specific about that exact sequence.
1995 *
1996 * Note that ATA4 says lba is mandatory so the second check
1997 * should never trigger.
1998 */
1999 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2000 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2001 if (err_mask) {
2002 rc = -EIO;
2003 reason = "INIT_DEV_PARAMS failed";
2004 goto err_out;
2005 }
2006
2007 /* current CHS translation info (id[53-58]) might be
2008 * changed. reread the identify device info.
2009 */
2010 flags &= ~ATA_READID_POSTRESET;
2011 goto retry;
2012 }
2013 }
2014
2015 *p_class = class;
2016
2017 return 0;
2018
2019 err_out:
2020 if (ata_msg_warn(ap))
2021 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2022 reason, err_mask);
2023 return rc;
2024}
2025
2026/**
2027 * ata_read_log_page - read a specific log page
2028 * @dev: target device
2029 * @log: log to read
2030 * @page: page to read
2031 * @buf: buffer to store read page
2032 * @sectors: number of sectors to read
2033 *
2034 * Read log page using READ_LOG_EXT command.
2035 *
2036 * LOCKING:
2037 * Kernel thread context (may sleep).
2038 *
2039 * RETURNS:
2040 * 0 on success, AC_ERR_* mask otherwise.
2041 */
2042unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2043 u8 page, void *buf, unsigned int sectors)
2044{
2045 unsigned long ap_flags = dev->link->ap->flags;
2046 struct ata_taskfile tf;
2047 unsigned int err_mask;
2048 bool dma = false;
2049
2050 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2051
2052 /*
2053 * Return error without actually issuing the command on controllers
2054 * which e.g. lockup on a read log page.
2055 */
2056 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2057 return AC_ERR_DEV;
2058
2059retry:
2060 ata_tf_init(dev, &tf);
2061 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2062 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2063 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2064 tf.protocol = ATA_PROT_DMA;
2065 dma = true;
2066 } else {
2067 tf.command = ATA_CMD_READ_LOG_EXT;
2068 tf.protocol = ATA_PROT_PIO;
2069 dma = false;
2070 }
2071 tf.lbal = log;
2072 tf.lbam = page;
2073 tf.nsect = sectors;
2074 tf.hob_nsect = sectors >> 8;
2075 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2076
2077 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2078 buf, sectors * ATA_SECT_SIZE, 0);
2079
2080 if (err_mask && dma) {
2081 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2082 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2083 goto retry;
2084 }
2085
2086 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2087 return err_mask;
2088}
2089
2090static bool ata_log_supported(struct ata_device *dev, u8 log)
2091{
2092 struct ata_port *ap = dev->link->ap;
2093
2094 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2095 return false;
2096 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2097}
2098
2099static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2100{
2101 struct ata_port *ap = dev->link->ap;
2102 unsigned int err, i;
2103
2104 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2105 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2106 return false;
2107 }
2108
2109 /*
2110 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2111 * supported.
2112 */
2113 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2114 1);
2115 if (err) {
2116 ata_dev_info(dev,
2117 "failed to get Device Identify Log Emask 0x%x\n",
2118 err);
2119 return false;
2120 }
2121
2122 for (i = 0; i < ap->sector_buf[8]; i++) {
2123 if (ap->sector_buf[9 + i] == page)
2124 return true;
2125 }
2126
2127 return false;
2128}
2129
2130static int ata_do_link_spd_horkage(struct ata_device *dev)
2131{
2132 struct ata_link *plink = ata_dev_phys_link(dev);
2133 u32 target, target_limit;
2134
2135 if (!sata_scr_valid(plink))
2136 return 0;
2137
2138 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2139 target = 1;
2140 else
2141 return 0;
2142
2143 target_limit = (1 << target) - 1;
2144
2145 /* if already on stricter limit, no need to push further */
2146 if (plink->sata_spd_limit <= target_limit)
2147 return 0;
2148
2149 plink->sata_spd_limit = target_limit;
2150
2151 /* Request another EH round by returning -EAGAIN if link is
2152 * going faster than the target speed. Forward progress is
2153 * guaranteed by setting sata_spd_limit to target_limit above.
2154 */
2155 if (plink->sata_spd > target) {
2156 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2157 sata_spd_string(target));
2158 return -EAGAIN;
2159 }
2160 return 0;
2161}
2162
2163static inline u8 ata_dev_knobble(struct ata_device *dev)
2164{
2165 struct ata_port *ap = dev->link->ap;
2166
2167 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2168 return 0;
2169
2170 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2171}
2172
2173static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2174{
2175 struct ata_port *ap = dev->link->ap;
2176 unsigned int err_mask;
2177
2178 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2179 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2180 return;
2181 }
2182 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2183 0, ap->sector_buf, 1);
2184 if (err_mask) {
2185 ata_dev_dbg(dev,
2186 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2187 err_mask);
2188 } else {
2189 u8 *cmds = dev->ncq_send_recv_cmds;
2190
2191 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2192 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2193
2194 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2195 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2196 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2197 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2198 }
2199 }
2200}
2201
2202static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2203{
2204 struct ata_port *ap = dev->link->ap;
2205 unsigned int err_mask;
2206
2207 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2208 ata_dev_warn(dev,
2209 "NCQ Send/Recv Log not supported\n");
2210 return;
2211 }
2212 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2213 0, ap->sector_buf, 1);
2214 if (err_mask) {
2215 ata_dev_dbg(dev,
2216 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2217 err_mask);
2218 } else {
2219 u8 *cmds = dev->ncq_non_data_cmds;
2220
2221 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2222 }
2223}
2224
2225static void ata_dev_config_ncq_prio(struct ata_device *dev)
2226{
2227 struct ata_port *ap = dev->link->ap;
2228 unsigned int err_mask;
2229
2230 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2231 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2232 return;
2233 }
2234
2235 err_mask = ata_read_log_page(dev,
2236 ATA_LOG_IDENTIFY_DEVICE,
2237 ATA_LOG_SATA_SETTINGS,
2238 ap->sector_buf,
2239 1);
2240 if (err_mask) {
2241 ata_dev_dbg(dev,
2242 "failed to get Identify Device data, Emask 0x%x\n",
2243 err_mask);
2244 return;
2245 }
2246
2247 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2248 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2249 } else {
2250 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2251 ata_dev_dbg(dev, "SATA page does not support priority\n");
2252 }
2253
2254}
2255
2256static int ata_dev_config_ncq(struct ata_device *dev,
2257 char *desc, size_t desc_sz)
2258{
2259 struct ata_port *ap = dev->link->ap;
2260 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2261 unsigned int err_mask;
2262 char *aa_desc = "";
2263
2264 if (!ata_id_has_ncq(dev->id)) {
2265 desc[0] = '\0';
2266 return 0;
2267 }
2268 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2269 snprintf(desc, desc_sz, "NCQ (not used)");
2270 return 0;
2271 }
2272 if (ap->flags & ATA_FLAG_NCQ) {
2273 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2274 dev->flags |= ATA_DFLAG_NCQ;
2275 }
2276
2277 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2278 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2279 ata_id_has_fpdma_aa(dev->id)) {
2280 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2281 SATA_FPDMA_AA);
2282 if (err_mask) {
2283 ata_dev_err(dev,
2284 "failed to enable AA (error_mask=0x%x)\n",
2285 err_mask);
2286 if (err_mask != AC_ERR_DEV) {
2287 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2288 return -EIO;
2289 }
2290 } else
2291 aa_desc = ", AA";
2292 }
2293
2294 if (hdepth >= ddepth)
2295 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2296 else
2297 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2298 ddepth, aa_desc);
2299
2300 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2301 if (ata_id_has_ncq_send_and_recv(dev->id))
2302 ata_dev_config_ncq_send_recv(dev);
2303 if (ata_id_has_ncq_non_data(dev->id))
2304 ata_dev_config_ncq_non_data(dev);
2305 if (ata_id_has_ncq_prio(dev->id))
2306 ata_dev_config_ncq_prio(dev);
2307 }
2308
2309 return 0;
2310}
2311
2312static void ata_dev_config_sense_reporting(struct ata_device *dev)
2313{
2314 unsigned int err_mask;
2315
2316 if (!ata_id_has_sense_reporting(dev->id))
2317 return;
2318
2319 if (ata_id_sense_reporting_enabled(dev->id))
2320 return;
2321
2322 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2323 if (err_mask) {
2324 ata_dev_dbg(dev,
2325 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2326 err_mask);
2327 }
2328}
2329
2330static void ata_dev_config_zac(struct ata_device *dev)
2331{
2332 struct ata_port *ap = dev->link->ap;
2333 unsigned int err_mask;
2334 u8 *identify_buf = ap->sector_buf;
2335
2336 dev->zac_zones_optimal_open = U32_MAX;
2337 dev->zac_zones_optimal_nonseq = U32_MAX;
2338 dev->zac_zones_max_open = U32_MAX;
2339
2340 /*
2341 * Always set the 'ZAC' flag for Host-managed devices.
2342 */
2343 if (dev->class == ATA_DEV_ZAC)
2344 dev->flags |= ATA_DFLAG_ZAC;
2345 else if (ata_id_zoned_cap(dev->id) == 0x01)
2346 /*
2347 * Check for host-aware devices.
2348 */
2349 dev->flags |= ATA_DFLAG_ZAC;
2350
2351 if (!(dev->flags & ATA_DFLAG_ZAC))
2352 return;
2353
2354 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2355 ata_dev_warn(dev,
2356 "ATA Zoned Information Log not supported\n");
2357 return;
2358 }
2359
2360 /*
2361 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2362 */
2363 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2364 ATA_LOG_ZONED_INFORMATION,
2365 identify_buf, 1);
2366 if (!err_mask) {
2367 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2368
2369 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2370 if ((zoned_cap >> 63))
2371 dev->zac_zoned_cap = (zoned_cap & 1);
2372 opt_open = get_unaligned_le64(&identify_buf[24]);
2373 if ((opt_open >> 63))
2374 dev->zac_zones_optimal_open = (u32)opt_open;
2375 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2376 if ((opt_nonseq >> 63))
2377 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2378 max_open = get_unaligned_le64(&identify_buf[40]);
2379 if ((max_open >> 63))
2380 dev->zac_zones_max_open = (u32)max_open;
2381 }
2382}
2383
2384static void ata_dev_config_trusted(struct ata_device *dev)
2385{
2386 struct ata_port *ap = dev->link->ap;
2387 u64 trusted_cap;
2388 unsigned int err;
2389
2390 if (!ata_id_has_trusted(dev->id))
2391 return;
2392
2393 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2394 ata_dev_warn(dev,
2395 "Security Log not supported\n");
2396 return;
2397 }
2398
2399 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2400 ap->sector_buf, 1);
2401 if (err) {
2402 ata_dev_dbg(dev,
2403 "failed to read Security Log, Emask 0x%x\n", err);
2404 return;
2405 }
2406
2407 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2408 if (!(trusted_cap & (1ULL << 63))) {
2409 ata_dev_dbg(dev,
2410 "Trusted Computing capability qword not valid!\n");
2411 return;
2412 }
2413
2414 if (trusted_cap & (1 << 0))
2415 dev->flags |= ATA_DFLAG_TRUSTED;
2416}
2417
2418/**
2419 * ata_dev_configure - Configure the specified ATA/ATAPI device
2420 * @dev: Target device to configure
2421 *
2422 * Configure @dev according to @dev->id. Generic and low-level
2423 * driver specific fixups are also applied.
2424 *
2425 * LOCKING:
2426 * Kernel thread context (may sleep)
2427 *
2428 * RETURNS:
2429 * 0 on success, -errno otherwise
2430 */
2431int ata_dev_configure(struct ata_device *dev)
2432{
2433 struct ata_port *ap = dev->link->ap;
2434 struct ata_eh_context *ehc = &dev->link->eh_context;
2435 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2436 const u16 *id = dev->id;
2437 unsigned long xfer_mask;
2438 unsigned int err_mask;
2439 char revbuf[7]; /* XYZ-99\0 */
2440 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2441 char modelbuf[ATA_ID_PROD_LEN+1];
2442 int rc;
2443
2444 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2445 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2446 return 0;
2447 }
2448
2449 if (ata_msg_probe(ap))
2450 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2451
2452 /* set horkage */
2453 dev->horkage |= ata_dev_blacklisted(dev);
2454 ata_force_horkage(dev);
2455
2456 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2457 ata_dev_info(dev, "unsupported device, disabling\n");
2458 ata_dev_disable(dev);
2459 return 0;
2460 }
2461
2462 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2463 dev->class == ATA_DEV_ATAPI) {
2464 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2465 atapi_enabled ? "not supported with this driver"
2466 : "disabled");
2467 ata_dev_disable(dev);
2468 return 0;
2469 }
2470
2471 rc = ata_do_link_spd_horkage(dev);
2472 if (rc)
2473 return rc;
2474
2475 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2476 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2477 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2478 dev->horkage |= ATA_HORKAGE_NOLPM;
2479
2480 if (ap->flags & ATA_FLAG_NO_LPM)
2481 dev->horkage |= ATA_HORKAGE_NOLPM;
2482
2483 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2484 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2485 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2486 }
2487
2488 /* let ACPI work its magic */
2489 rc = ata_acpi_on_devcfg(dev);
2490 if (rc)
2491 return rc;
2492
2493 /* massage HPA, do it early as it might change IDENTIFY data */
2494 rc = ata_hpa_resize(dev);
2495 if (rc)
2496 return rc;
2497
2498 /* print device capabilities */
2499 if (ata_msg_probe(ap))
2500 ata_dev_dbg(dev,
2501 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2502 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2503 __func__,
2504 id[49], id[82], id[83], id[84],
2505 id[85], id[86], id[87], id[88]);
2506
2507 /* initialize to-be-configured parameters */
2508 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2509 dev->max_sectors = 0;
2510 dev->cdb_len = 0;
2511 dev->n_sectors = 0;
2512 dev->cylinders = 0;
2513 dev->heads = 0;
2514 dev->sectors = 0;
2515 dev->multi_count = 0;
2516
2517 /*
2518 * common ATA, ATAPI feature tests
2519 */
2520
2521 /* find max transfer mode; for printk only */
2522 xfer_mask = ata_id_xfermask(id);
2523
2524 if (ata_msg_probe(ap))
2525 ata_dump_id(id);
2526
2527 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2528 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2529 sizeof(fwrevbuf));
2530
2531 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2532 sizeof(modelbuf));
2533
2534 /* ATA-specific feature tests */
2535 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2536 if (ata_id_is_cfa(id)) {
2537 /* CPRM may make this media unusable */
2538 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2539 ata_dev_warn(dev,
2540 "supports DRM functions and may not be fully accessible\n");
2541 snprintf(revbuf, 7, "CFA");
2542 } else {
2543 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2544 /* Warn the user if the device has TPM extensions */
2545 if (ata_id_has_tpm(id))
2546 ata_dev_warn(dev,
2547 "supports DRM functions and may not be fully accessible\n");
2548 }
2549
2550 dev->n_sectors = ata_id_n_sectors(id);
2551
2552 /* get current R/W Multiple count setting */
2553 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2554 unsigned int max = dev->id[47] & 0xff;
2555 unsigned int cnt = dev->id[59] & 0xff;
2556 /* only recognize/allow powers of two here */
2557 if (is_power_of_2(max) && is_power_of_2(cnt))
2558 if (cnt <= max)
2559 dev->multi_count = cnt;
2560 }
2561
2562 if (ata_id_has_lba(id)) {
2563 const char *lba_desc;
2564 char ncq_desc[24];
2565
2566 lba_desc = "LBA";
2567 dev->flags |= ATA_DFLAG_LBA;
2568 if (ata_id_has_lba48(id)) {
2569 dev->flags |= ATA_DFLAG_LBA48;
2570 lba_desc = "LBA48";
2571
2572 if (dev->n_sectors >= (1UL << 28) &&
2573 ata_id_has_flush_ext(id))
2574 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2575 }
2576
2577 /* config NCQ */
2578 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2579 if (rc)
2580 return rc;
2581
2582 /* print device info to dmesg */
2583 if (ata_msg_drv(ap) && print_info) {
2584 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2585 revbuf, modelbuf, fwrevbuf,
2586 ata_mode_string(xfer_mask));
2587 ata_dev_info(dev,
2588 "%llu sectors, multi %u: %s %s\n",
2589 (unsigned long long)dev->n_sectors,
2590 dev->multi_count, lba_desc, ncq_desc);
2591 }
2592 } else {
2593 /* CHS */
2594
2595 /* Default translation */
2596 dev->cylinders = id[1];
2597 dev->heads = id[3];
2598 dev->sectors = id[6];
2599
2600 if (ata_id_current_chs_valid(id)) {
2601 /* Current CHS translation is valid. */
2602 dev->cylinders = id[54];
2603 dev->heads = id[55];
2604 dev->sectors = id[56];
2605 }
2606
2607 /* print device info to dmesg */
2608 if (ata_msg_drv(ap) && print_info) {
2609 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2610 revbuf, modelbuf, fwrevbuf,
2611 ata_mode_string(xfer_mask));
2612 ata_dev_info(dev,
2613 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2614 (unsigned long long)dev->n_sectors,
2615 dev->multi_count, dev->cylinders,
2616 dev->heads, dev->sectors);
2617 }
2618 }
2619
2620 /* Check and mark DevSlp capability. Get DevSlp timing variables
2621 * from SATA Settings page of Identify Device Data Log.
2622 */
2623 if (ata_id_has_devslp(dev->id)) {
2624 u8 *sata_setting = ap->sector_buf;
2625 int i, j;
2626
2627 dev->flags |= ATA_DFLAG_DEVSLP;
2628 err_mask = ata_read_log_page(dev,
2629 ATA_LOG_IDENTIFY_DEVICE,
2630 ATA_LOG_SATA_SETTINGS,
2631 sata_setting,
2632 1);
2633 if (err_mask)
2634 ata_dev_dbg(dev,
2635 "failed to get Identify Device Data, Emask 0x%x\n",
2636 err_mask);
2637 else
2638 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2639 j = ATA_LOG_DEVSLP_OFFSET + i;
2640 dev->devslp_timing[i] = sata_setting[j];
2641 }
2642 }
2643 ata_dev_config_sense_reporting(dev);
2644 ata_dev_config_zac(dev);
2645 ata_dev_config_trusted(dev);
2646 dev->cdb_len = 32;
2647 }
2648
2649 /* ATAPI-specific feature tests */
2650 else if (dev->class == ATA_DEV_ATAPI) {
2651 const char *cdb_intr_string = "";
2652 const char *atapi_an_string = "";
2653 const char *dma_dir_string = "";
2654 u32 sntf;
2655
2656 rc = atapi_cdb_len(id);
2657 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2658 if (ata_msg_warn(ap))
2659 ata_dev_warn(dev, "unsupported CDB len\n");
2660 rc = -EINVAL;
2661 goto err_out_nosup;
2662 }
2663 dev->cdb_len = (unsigned int) rc;
2664
2665 /* Enable ATAPI AN if both the host and device have
2666 * the support. If PMP is attached, SNTF is required
2667 * to enable ATAPI AN to discern between PHY status
2668 * changed notifications and ATAPI ANs.
2669 */
2670 if (atapi_an &&
2671 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2672 (!sata_pmp_attached(ap) ||
2673 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2674 /* issue SET feature command to turn this on */
2675 err_mask = ata_dev_set_feature(dev,
2676 SETFEATURES_SATA_ENABLE, SATA_AN);
2677 if (err_mask)
2678 ata_dev_err(dev,
2679 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2680 err_mask);
2681 else {
2682 dev->flags |= ATA_DFLAG_AN;
2683 atapi_an_string = ", ATAPI AN";
2684 }
2685 }
2686
2687 if (ata_id_cdb_intr(dev->id)) {
2688 dev->flags |= ATA_DFLAG_CDB_INTR;
2689 cdb_intr_string = ", CDB intr";
2690 }
2691
2692 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2693 dev->flags |= ATA_DFLAG_DMADIR;
2694 dma_dir_string = ", DMADIR";
2695 }
2696
2697 if (ata_id_has_da(dev->id)) {
2698 dev->flags |= ATA_DFLAG_DA;
2699 zpodd_init(dev);
2700 }
2701
2702 /* print device info to dmesg */
2703 if (ata_msg_drv(ap) && print_info)
2704 ata_dev_info(dev,
2705 "ATAPI: %s, %s, max %s%s%s%s\n",
2706 modelbuf, fwrevbuf,
2707 ata_mode_string(xfer_mask),
2708 cdb_intr_string, atapi_an_string,
2709 dma_dir_string);
2710 }
2711
2712 /* determine max_sectors */
2713 dev->max_sectors = ATA_MAX_SECTORS;
2714 if (dev->flags & ATA_DFLAG_LBA48)
2715 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2716
2717 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2718 200 sectors */
2719 if (ata_dev_knobble(dev)) {
2720 if (ata_msg_drv(ap) && print_info)
2721 ata_dev_info(dev, "applying bridge limits\n");
2722 dev->udma_mask &= ATA_UDMA5;
2723 dev->max_sectors = ATA_MAX_SECTORS;
2724 }
2725
2726 if ((dev->class == ATA_DEV_ATAPI) &&
2727 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2728 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2729 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2730 }
2731
2732 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2733 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2734 dev->max_sectors);
2735
2736 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2737 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2738 dev->max_sectors);
2739
2740 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2741 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2742
2743 if (ap->ops->dev_config)
2744 ap->ops->dev_config(dev);
2745
2746 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2747 /* Let the user know. We don't want to disallow opens for
2748 rescue purposes, or in case the vendor is just a blithering
2749 idiot. Do this after the dev_config call as some controllers
2750 with buggy firmware may want to avoid reporting false device
2751 bugs */
2752
2753 if (print_info) {
2754 ata_dev_warn(dev,
2755"Drive reports diagnostics failure. This may indicate a drive\n");
2756 ata_dev_warn(dev,
2757"fault or invalid emulation. Contact drive vendor for information.\n");
2758 }
2759 }
2760
2761 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2762 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2763 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2764 }
2765
2766 return 0;
2767
2768err_out_nosup:
2769 if (ata_msg_probe(ap))
2770 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2771 return rc;
2772}
2773
2774/**
2775 * ata_cable_40wire - return 40 wire cable type
2776 * @ap: port
2777 *
2778 * Helper method for drivers which want to hardwire 40 wire cable
2779 * detection.
2780 */
2781
2782int ata_cable_40wire(struct ata_port *ap)
2783{
2784 return ATA_CBL_PATA40;
2785}
2786
2787/**
2788 * ata_cable_80wire - return 80 wire cable type
2789 * @ap: port
2790 *
2791 * Helper method for drivers which want to hardwire 80 wire cable
2792 * detection.
2793 */
2794
2795int ata_cable_80wire(struct ata_port *ap)
2796{
2797 return ATA_CBL_PATA80;
2798}
2799
2800/**
2801 * ata_cable_unknown - return unknown PATA cable.
2802 * @ap: port
2803 *
2804 * Helper method for drivers which have no PATA cable detection.
2805 */
2806
2807int ata_cable_unknown(struct ata_port *ap)
2808{
2809 return ATA_CBL_PATA_UNK;
2810}
2811
2812/**
2813 * ata_cable_ignore - return ignored PATA cable.
2814 * @ap: port
2815 *
2816 * Helper method for drivers which don't use cable type to limit
2817 * transfer mode.
2818 */
2819int ata_cable_ignore(struct ata_port *ap)
2820{
2821 return ATA_CBL_PATA_IGN;
2822}
2823
2824/**
2825 * ata_cable_sata - return SATA cable type
2826 * @ap: port
2827 *
2828 * Helper method for drivers which have SATA cables
2829 */
2830
2831int ata_cable_sata(struct ata_port *ap)
2832{
2833 return ATA_CBL_SATA;
2834}
2835
2836/**
2837 * ata_bus_probe - Reset and probe ATA bus
2838 * @ap: Bus to probe
2839 *
2840 * Master ATA bus probing function. Initiates a hardware-dependent
2841 * bus reset, then attempts to identify any devices found on
2842 * the bus.
2843 *
2844 * LOCKING:
2845 * PCI/etc. bus probe sem.
2846 *
2847 * RETURNS:
2848 * Zero on success, negative errno otherwise.
2849 */
2850
2851int ata_bus_probe(struct ata_port *ap)
2852{
2853 unsigned int classes[ATA_MAX_DEVICES];
2854 int tries[ATA_MAX_DEVICES];
2855 int rc;
2856 struct ata_device *dev;
2857
2858 ata_for_each_dev(dev, &ap->link, ALL)
2859 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2860
2861 retry:
2862 ata_for_each_dev(dev, &ap->link, ALL) {
2863 /* If we issue an SRST then an ATA drive (not ATAPI)
2864 * may change configuration and be in PIO0 timing. If
2865 * we do a hard reset (or are coming from power on)
2866 * this is true for ATA or ATAPI. Until we've set a
2867 * suitable controller mode we should not touch the
2868 * bus as we may be talking too fast.
2869 */
2870 dev->pio_mode = XFER_PIO_0;
2871 dev->dma_mode = 0xff;
2872
2873 /* If the controller has a pio mode setup function
2874 * then use it to set the chipset to rights. Don't
2875 * touch the DMA setup as that will be dealt with when
2876 * configuring devices.
2877 */
2878 if (ap->ops->set_piomode)
2879 ap->ops->set_piomode(ap, dev);
2880 }
2881
2882 /* reset and determine device classes */
2883 ap->ops->phy_reset(ap);
2884
2885 ata_for_each_dev(dev, &ap->link, ALL) {
2886 if (dev->class != ATA_DEV_UNKNOWN)
2887 classes[dev->devno] = dev->class;
2888 else
2889 classes[dev->devno] = ATA_DEV_NONE;
2890
2891 dev->class = ATA_DEV_UNKNOWN;
2892 }
2893
2894 /* read IDENTIFY page and configure devices. We have to do the identify
2895 specific sequence bass-ackwards so that PDIAG- is released by
2896 the slave device */
2897
2898 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2899 if (tries[dev->devno])
2900 dev->class = classes[dev->devno];
2901
2902 if (!ata_dev_enabled(dev))
2903 continue;
2904
2905 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2906 dev->id);
2907 if (rc)
2908 goto fail;
2909 }
2910
2911 /* Now ask for the cable type as PDIAG- should have been released */
2912 if (ap->ops->cable_detect)
2913 ap->cbl = ap->ops->cable_detect(ap);
2914
2915 /* We may have SATA bridge glue hiding here irrespective of
2916 * the reported cable types and sensed types. When SATA
2917 * drives indicate we have a bridge, we don't know which end
2918 * of the link the bridge is which is a problem.
2919 */
2920 ata_for_each_dev(dev, &ap->link, ENABLED)
2921 if (ata_id_is_sata(dev->id))
2922 ap->cbl = ATA_CBL_SATA;
2923
2924 /* After the identify sequence we can now set up the devices. We do
2925 this in the normal order so that the user doesn't get confused */
2926
2927 ata_for_each_dev(dev, &ap->link, ENABLED) {
2928 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2929 rc = ata_dev_configure(dev);
2930 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2931 if (rc)
2932 goto fail;
2933 }
2934
2935 /* configure transfer mode */
2936 rc = ata_set_mode(&ap->link, &dev);
2937 if (rc)
2938 goto fail;
2939
2940 ata_for_each_dev(dev, &ap->link, ENABLED)
2941 return 0;
2942
2943 return -ENODEV;
2944
2945 fail:
2946 tries[dev->devno]--;
2947
2948 switch (rc) {
2949 case -EINVAL:
2950 /* eeek, something went very wrong, give up */
2951 tries[dev->devno] = 0;
2952 break;
2953
2954 case -ENODEV:
2955 /* give it just one more chance */
2956 tries[dev->devno] = min(tries[dev->devno], 1);
2957 /* fall through */
2958 case -EIO:
2959 if (tries[dev->devno] == 1) {
2960 /* This is the last chance, better to slow
2961 * down than lose it.
2962 */
2963 sata_down_spd_limit(&ap->link, 0);
2964 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2965 }
2966 }
2967
2968 if (!tries[dev->devno])
2969 ata_dev_disable(dev);
2970
2971 goto retry;
2972}
2973
2974/**
2975 * sata_print_link_status - Print SATA link status
2976 * @link: SATA link to printk link status about
2977 *
2978 * This function prints link speed and status of a SATA link.
2979 *
2980 * LOCKING:
2981 * None.
2982 */
2983static void sata_print_link_status(struct ata_link *link)
2984{
2985 u32 sstatus, scontrol, tmp;
2986
2987 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2988 return;
2989 sata_scr_read(link, SCR_CONTROL, &scontrol);
2990
2991 if (ata_phys_link_online(link)) {
2992 tmp = (sstatus >> 4) & 0xf;
2993 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2994 sata_spd_string(tmp), sstatus, scontrol);
2995 } else {
2996 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2997 sstatus, scontrol);
2998 }
2999}
3000
3001/**
3002 * ata_dev_pair - return other device on cable
3003 * @adev: device
3004 *
3005 * Obtain the other device on the same cable, or if none is
3006 * present NULL is returned
3007 */
3008
3009struct ata_device *ata_dev_pair(struct ata_device *adev)
3010{
3011 struct ata_link *link = adev->link;
3012 struct ata_device *pair = &link->device[1 - adev->devno];
3013 if (!ata_dev_enabled(pair))
3014 return NULL;
3015 return pair;
3016}
3017
3018/**
3019 * sata_down_spd_limit - adjust SATA spd limit downward
3020 * @link: Link to adjust SATA spd limit for
3021 * @spd_limit: Additional limit
3022 *
3023 * Adjust SATA spd limit of @link downward. Note that this
3024 * function only adjusts the limit. The change must be applied
3025 * using sata_set_spd().
3026 *
3027 * If @spd_limit is non-zero, the speed is limited to equal to or
3028 * lower than @spd_limit if such speed is supported. If
3029 * @spd_limit is slower than any supported speed, only the lowest
3030 * supported speed is allowed.
3031 *
3032 * LOCKING:
3033 * Inherited from caller.
3034 *
3035 * RETURNS:
3036 * 0 on success, negative errno on failure
3037 */
3038int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3039{
3040 u32 sstatus, spd, mask;
3041 int rc, bit;
3042
3043 if (!sata_scr_valid(link))
3044 return -EOPNOTSUPP;
3045
3046 /* If SCR can be read, use it to determine the current SPD.
3047 * If not, use cached value in link->sata_spd.
3048 */
3049 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3050 if (rc == 0 && ata_sstatus_online(sstatus))
3051 spd = (sstatus >> 4) & 0xf;
3052 else
3053 spd = link->sata_spd;
3054
3055 mask = link->sata_spd_limit;
3056 if (mask <= 1)
3057 return -EINVAL;
3058
3059 /* unconditionally mask off the highest bit */
3060 bit = fls(mask) - 1;
3061 mask &= ~(1 << bit);
3062
3063 /*
3064 * Mask off all speeds higher than or equal to the current one. At
3065 * this point, if current SPD is not available and we previously
3066 * recorded the link speed from SStatus, the driver has already
3067 * masked off the highest bit so mask should already be 1 or 0.
3068 * Otherwise, we should not force 1.5Gbps on a link where we have
3069 * not previously recorded speed from SStatus. Just return in this
3070 * case.
3071 */
3072 if (spd > 1)
3073 mask &= (1 << (spd - 1)) - 1;
3074 else
3075 return -EINVAL;
3076
3077 /* were we already at the bottom? */
3078 if (!mask)
3079 return -EINVAL;
3080
3081 if (spd_limit) {
3082 if (mask & ((1 << spd_limit) - 1))
3083 mask &= (1 << spd_limit) - 1;
3084 else {
3085 bit = ffs(mask) - 1;
3086 mask = 1 << bit;
3087 }
3088 }
3089
3090 link->sata_spd_limit = mask;
3091
3092 ata_link_warn(link, "limiting SATA link speed to %s\n",
3093 sata_spd_string(fls(mask)));
3094
3095 return 0;
3096}
3097
3098static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3099{
3100 struct ata_link *host_link = &link->ap->link;
3101 u32 limit, target, spd;
3102
3103 limit = link->sata_spd_limit;
3104
3105 /* Don't configure downstream link faster than upstream link.
3106 * It doesn't speed up anything and some PMPs choke on such
3107 * configuration.
3108 */
3109 if (!ata_is_host_link(link) && host_link->sata_spd)
3110 limit &= (1 << host_link->sata_spd) - 1;
3111
3112 if (limit == UINT_MAX)
3113 target = 0;
3114 else
3115 target = fls(limit);
3116
3117 spd = (*scontrol >> 4) & 0xf;
3118 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3119
3120 return spd != target;
3121}
3122
3123/**
3124 * sata_set_spd_needed - is SATA spd configuration needed
3125 * @link: Link in question
3126 *
3127 * Test whether the spd limit in SControl matches
3128 * @link->sata_spd_limit. This function is used to determine
3129 * whether hardreset is necessary to apply SATA spd
3130 * configuration.
3131 *
3132 * LOCKING:
3133 * Inherited from caller.
3134 *
3135 * RETURNS:
3136 * 1 if SATA spd configuration is needed, 0 otherwise.
3137 */
3138static int sata_set_spd_needed(struct ata_link *link)
3139{
3140 u32 scontrol;
3141
3142 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3143 return 1;
3144
3145 return __sata_set_spd_needed(link, &scontrol);
3146}
3147
3148/**
3149 * sata_set_spd - set SATA spd according to spd limit
3150 * @link: Link to set SATA spd for
3151 *
3152 * Set SATA spd of @link according to sata_spd_limit.
3153 *
3154 * LOCKING:
3155 * Inherited from caller.
3156 *
3157 * RETURNS:
3158 * 0 if spd doesn't need to be changed, 1 if spd has been
3159 * changed. Negative errno if SCR registers are inaccessible.
3160 */
3161int sata_set_spd(struct ata_link *link)
3162{
3163 u32 scontrol;
3164 int rc;
3165
3166 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3167 return rc;
3168
3169 if (!__sata_set_spd_needed(link, &scontrol))
3170 return 0;
3171
3172 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3173 return rc;
3174
3175 return 1;
3176}
3177
3178/*
3179 * This mode timing computation functionality is ported over from
3180 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3181 */
3182/*
3183 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3184 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3185 * for UDMA6, which is currently supported only by Maxtor drives.
3186 *
3187 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3188 */
3189
3190static const struct ata_timing ata_timing[] = {
3191/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3192 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3193 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3194 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3195 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3196 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3197 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3198 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3199
3200 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3201 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3202 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3203
3204 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3205 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3206 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3207 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3208 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3209
3210/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3211 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3212 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3213 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3214 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3215 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3216 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3217 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3218
3219 { 0xFF }
3220};
3221
3222#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3223#define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
3224
3225static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3226{
3227 q->setup = EZ(t->setup, T);
3228 q->act8b = EZ(t->act8b, T);
3229 q->rec8b = EZ(t->rec8b, T);
3230 q->cyc8b = EZ(t->cyc8b, T);
3231 q->active = EZ(t->active, T);
3232 q->recover = EZ(t->recover, T);
3233 q->dmack_hold = EZ(t->dmack_hold, T);
3234 q->cycle = EZ(t->cycle, T);
3235 q->udma = EZ(t->udma, UT);
3236}
3237
3238void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3239 struct ata_timing *m, unsigned int what)
3240{
3241 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3242 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3243 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3244 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3245 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3246 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3247 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3248 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3249 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3250}
3251
3252const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3253{
3254 const struct ata_timing *t = ata_timing;
3255
3256 while (xfer_mode > t->mode)
3257 t++;
3258
3259 if (xfer_mode == t->mode)
3260 return t;
3261
3262 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3263 __func__, xfer_mode);
3264
3265 return NULL;
3266}
3267
3268int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3269 struct ata_timing *t, int T, int UT)
3270{
3271 const u16 *id = adev->id;
3272 const struct ata_timing *s;
3273 struct ata_timing p;
3274
3275 /*
3276 * Find the mode.
3277 */
3278
3279 if (!(s = ata_timing_find_mode(speed)))
3280 return -EINVAL;
3281
3282 memcpy(t, s, sizeof(*s));
3283
3284 /*
3285 * If the drive is an EIDE drive, it can tell us it needs extended
3286 * PIO/MW_DMA cycle timing.
3287 */
3288
3289 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3290 memset(&p, 0, sizeof(p));
3291
3292 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3293 if (speed <= XFER_PIO_2)
3294 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3295 else if ((speed <= XFER_PIO_4) ||
3296 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3297 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3298 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3299 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3300
3301 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3302 }
3303
3304 /*
3305 * Convert the timing to bus clock counts.
3306 */
3307
3308 ata_timing_quantize(t, t, T, UT);
3309
3310 /*
3311 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3312 * S.M.A.R.T * and some other commands. We have to ensure that the
3313 * DMA cycle timing is slower/equal than the fastest PIO timing.
3314 */
3315
3316 if (speed > XFER_PIO_6) {
3317 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3318 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3319 }
3320
3321 /*
3322 * Lengthen active & recovery time so that cycle time is correct.
3323 */
3324
3325 if (t->act8b + t->rec8b < t->cyc8b) {
3326 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3327 t->rec8b = t->cyc8b - t->act8b;
3328 }
3329
3330 if (t->active + t->recover < t->cycle) {
3331 t->active += (t->cycle - (t->active + t->recover)) / 2;
3332 t->recover = t->cycle - t->active;
3333 }
3334
3335 /* In a few cases quantisation may produce enough errors to
3336 leave t->cycle too low for the sum of active and recovery
3337 if so we must correct this */
3338 if (t->active + t->recover > t->cycle)
3339 t->cycle = t->active + t->recover;
3340
3341 return 0;
3342}
3343
3344/**
3345 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3346 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3347 * @cycle: cycle duration in ns
3348 *
3349 * Return matching xfer mode for @cycle. The returned mode is of
3350 * the transfer type specified by @xfer_shift. If @cycle is too
3351 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3352 * than the fastest known mode, the fasted mode is returned.
3353 *
3354 * LOCKING:
3355 * None.
3356 *
3357 * RETURNS:
3358 * Matching xfer_mode, 0xff if no match found.
3359 */
3360u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3361{
3362 u8 base_mode = 0xff, last_mode = 0xff;
3363 const struct ata_xfer_ent *ent;
3364 const struct ata_timing *t;
3365
3366 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3367 if (ent->shift == xfer_shift)
3368 base_mode = ent->base;
3369
3370 for (t = ata_timing_find_mode(base_mode);
3371 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3372 unsigned short this_cycle;
3373
3374 switch (xfer_shift) {
3375 case ATA_SHIFT_PIO:
3376 case ATA_SHIFT_MWDMA:
3377 this_cycle = t->cycle;
3378 break;
3379 case ATA_SHIFT_UDMA:
3380 this_cycle = t->udma;
3381 break;
3382 default:
3383 return 0xff;
3384 }
3385
3386 if (cycle > this_cycle)
3387 break;
3388
3389 last_mode = t->mode;
3390 }
3391
3392 return last_mode;
3393}
3394
3395/**
3396 * ata_down_xfermask_limit - adjust dev xfer masks downward
3397 * @dev: Device to adjust xfer masks
3398 * @sel: ATA_DNXFER_* selector
3399 *
3400 * Adjust xfer masks of @dev downward. Note that this function
3401 * does not apply the change. Invoking ata_set_mode() afterwards
3402 * will apply the limit.
3403 *
3404 * LOCKING:
3405 * Inherited from caller.
3406 *
3407 * RETURNS:
3408 * 0 on success, negative errno on failure
3409 */
3410int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3411{
3412 char buf[32];
3413 unsigned long orig_mask, xfer_mask;
3414 unsigned long pio_mask, mwdma_mask, udma_mask;
3415 int quiet, highbit;
3416
3417 quiet = !!(sel & ATA_DNXFER_QUIET);
3418 sel &= ~ATA_DNXFER_QUIET;
3419
3420 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3421 dev->mwdma_mask,
3422 dev->udma_mask);
3423 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3424
3425 switch (sel) {
3426 case ATA_DNXFER_PIO:
3427 highbit = fls(pio_mask) - 1;
3428 pio_mask &= ~(1 << highbit);
3429 break;
3430
3431 case ATA_DNXFER_DMA:
3432 if (udma_mask) {
3433 highbit = fls(udma_mask) - 1;
3434 udma_mask &= ~(1 << highbit);
3435 if (!udma_mask)
3436 return -ENOENT;
3437 } else if (mwdma_mask) {
3438 highbit = fls(mwdma_mask) - 1;
3439 mwdma_mask &= ~(1 << highbit);
3440 if (!mwdma_mask)
3441 return -ENOENT;
3442 }
3443 break;
3444
3445 case ATA_DNXFER_40C:
3446 udma_mask &= ATA_UDMA_MASK_40C;
3447 break;
3448
3449 case ATA_DNXFER_FORCE_PIO0:
3450 pio_mask &= 1;
3451 /* fall through */
3452 case ATA_DNXFER_FORCE_PIO:
3453 mwdma_mask = 0;
3454 udma_mask = 0;
3455 break;
3456
3457 default:
3458 BUG();
3459 }
3460
3461 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3462
3463 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3464 return -ENOENT;
3465
3466 if (!quiet) {
3467 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3468 snprintf(buf, sizeof(buf), "%s:%s",
3469 ata_mode_string(xfer_mask),
3470 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3471 else
3472 snprintf(buf, sizeof(buf), "%s",
3473 ata_mode_string(xfer_mask));
3474
3475 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3476 }
3477
3478 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3479 &dev->udma_mask);
3480
3481 return 0;
3482}
3483
3484static int ata_dev_set_mode(struct ata_device *dev)
3485{
3486 struct ata_port *ap = dev->link->ap;
3487 struct ata_eh_context *ehc = &dev->link->eh_context;
3488 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3489 const char *dev_err_whine = "";
3490 int ign_dev_err = 0;
3491 unsigned int err_mask = 0;
3492 int rc;
3493
3494 dev->flags &= ~ATA_DFLAG_PIO;
3495 if (dev->xfer_shift == ATA_SHIFT_PIO)
3496 dev->flags |= ATA_DFLAG_PIO;
3497
3498 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3499 dev_err_whine = " (SET_XFERMODE skipped)";
3500 else {
3501 if (nosetxfer)
3502 ata_dev_warn(dev,
3503 "NOSETXFER but PATA detected - can't "
3504 "skip SETXFER, might malfunction\n");
3505 err_mask = ata_dev_set_xfermode(dev);
3506 }
3507
3508 if (err_mask & ~AC_ERR_DEV)
3509 goto fail;
3510
3511 /* revalidate */
3512 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3513 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3514 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3515 if (rc)
3516 return rc;
3517
3518 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3519 /* Old CFA may refuse this command, which is just fine */
3520 if (ata_id_is_cfa(dev->id))
3521 ign_dev_err = 1;
3522 /* Catch several broken garbage emulations plus some pre
3523 ATA devices */
3524 if (ata_id_major_version(dev->id) == 0 &&
3525 dev->pio_mode <= XFER_PIO_2)
3526 ign_dev_err = 1;
3527 /* Some very old devices and some bad newer ones fail
3528 any kind of SET_XFERMODE request but support PIO0-2
3529 timings and no IORDY */
3530 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3531 ign_dev_err = 1;
3532 }
3533 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3534 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3535 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3536 dev->dma_mode == XFER_MW_DMA_0 &&
3537 (dev->id[63] >> 8) & 1)
3538 ign_dev_err = 1;
3539
3540 /* if the device is actually configured correctly, ignore dev err */
3541 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3542 ign_dev_err = 1;
3543
3544 if (err_mask & AC_ERR_DEV) {
3545 if (!ign_dev_err)
3546 goto fail;
3547 else
3548 dev_err_whine = " (device error ignored)";
3549 }
3550
3551 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3552 dev->xfer_shift, (int)dev->xfer_mode);
3553
3554 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3555 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3556 ata_dev_info(dev, "configured for %s%s\n",
3557 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3558 dev_err_whine);
3559
3560 return 0;
3561
3562 fail:
3563 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3564 return -EIO;
3565}
3566
3567/**
3568 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3569 * @link: link on which timings will be programmed
3570 * @r_failed_dev: out parameter for failed device
3571 *
3572 * Standard implementation of the function used to tune and set
3573 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3574 * ata_dev_set_mode() fails, pointer to the failing device is
3575 * returned in @r_failed_dev.
3576 *
3577 * LOCKING:
3578 * PCI/etc. bus probe sem.
3579 *
3580 * RETURNS:
3581 * 0 on success, negative errno otherwise
3582 */
3583
3584int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3585{
3586 struct ata_port *ap = link->ap;
3587 struct ata_device *dev;
3588 int rc = 0, used_dma = 0, found = 0;
3589
3590 /* step 1: calculate xfer_mask */
3591 ata_for_each_dev(dev, link, ENABLED) {
3592 unsigned long pio_mask, dma_mask;
3593 unsigned int mode_mask;
3594
3595 mode_mask = ATA_DMA_MASK_ATA;
3596 if (dev->class == ATA_DEV_ATAPI)
3597 mode_mask = ATA_DMA_MASK_ATAPI;
3598 else if (ata_id_is_cfa(dev->id))
3599 mode_mask = ATA_DMA_MASK_CFA;
3600
3601 ata_dev_xfermask(dev);
3602 ata_force_xfermask(dev);
3603
3604 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3605
3606 if (libata_dma_mask & mode_mask)
3607 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3608 dev->udma_mask);
3609 else
3610 dma_mask = 0;
3611
3612 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3613 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3614
3615 found = 1;
3616 if (ata_dma_enabled(dev))
3617 used_dma = 1;
3618 }
3619 if (!found)
3620 goto out;
3621
3622 /* step 2: always set host PIO timings */
3623 ata_for_each_dev(dev, link, ENABLED) {
3624 if (dev->pio_mode == 0xff) {
3625 ata_dev_warn(dev, "no PIO support\n");
3626 rc = -EINVAL;
3627 goto out;
3628 }
3629
3630 dev->xfer_mode = dev->pio_mode;
3631 dev->xfer_shift = ATA_SHIFT_PIO;
3632 if (ap->ops->set_piomode)
3633 ap->ops->set_piomode(ap, dev);
3634 }
3635
3636 /* step 3: set host DMA timings */
3637 ata_for_each_dev(dev, link, ENABLED) {
3638 if (!ata_dma_enabled(dev))
3639 continue;
3640
3641 dev->xfer_mode = dev->dma_mode;
3642 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3643 if (ap->ops->set_dmamode)
3644 ap->ops->set_dmamode(ap, dev);
3645 }
3646
3647 /* step 4: update devices' xfer mode */
3648 ata_for_each_dev(dev, link, ENABLED) {
3649 rc = ata_dev_set_mode(dev);
3650 if (rc)
3651 goto out;
3652 }
3653
3654 /* Record simplex status. If we selected DMA then the other
3655 * host channels are not permitted to do so.
3656 */
3657 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3658 ap->host->simplex_claimed = ap;
3659
3660 out:
3661 if (rc)
3662 *r_failed_dev = dev;
3663 return rc;
3664}
3665
3666/**
3667 * ata_wait_ready - wait for link to become ready
3668 * @link: link to be waited on
3669 * @deadline: deadline jiffies for the operation
3670 * @check_ready: callback to check link readiness
3671 *
3672 * Wait for @link to become ready. @check_ready should return
3673 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3674 * link doesn't seem to be occupied, other errno for other error
3675 * conditions.
3676 *
3677 * Transient -ENODEV conditions are allowed for
3678 * ATA_TMOUT_FF_WAIT.
3679 *
3680 * LOCKING:
3681 * EH context.
3682 *
3683 * RETURNS:
3684 * 0 if @link is ready before @deadline; otherwise, -errno.
3685 */
3686int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3687 int (*check_ready)(struct ata_link *link))
3688{
3689 unsigned long start = jiffies;
3690 unsigned long nodev_deadline;
3691 int warned = 0;
3692
3693 /* choose which 0xff timeout to use, read comment in libata.h */
3694 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3695 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3696 else
3697 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3698
3699 /* Slave readiness can't be tested separately from master. On
3700 * M/S emulation configuration, this function should be called
3701 * only on the master and it will handle both master and slave.
3702 */
3703 WARN_ON(link == link->ap->slave_link);
3704
3705 if (time_after(nodev_deadline, deadline))
3706 nodev_deadline = deadline;
3707
3708 while (1) {
3709 unsigned long now = jiffies;
3710 int ready, tmp;
3711
3712 ready = tmp = check_ready(link);
3713 if (ready > 0)
3714 return 0;
3715
3716 /*
3717 * -ENODEV could be transient. Ignore -ENODEV if link
3718 * is online. Also, some SATA devices take a long
3719 * time to clear 0xff after reset. Wait for
3720 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3721 * offline.
3722 *
3723 * Note that some PATA controllers (pata_ali) explode
3724 * if status register is read more than once when
3725 * there's no device attached.
3726 */
3727 if (ready == -ENODEV) {
3728 if (ata_link_online(link))
3729 ready = 0;
3730 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3731 !ata_link_offline(link) &&
3732 time_before(now, nodev_deadline))
3733 ready = 0;
3734 }
3735
3736 if (ready)
3737 return ready;
3738 if (time_after(now, deadline))
3739 return -EBUSY;
3740
3741 if (!warned && time_after(now, start + 5 * HZ) &&
3742 (deadline - now > 3 * HZ)) {
3743 ata_link_warn(link,
3744 "link is slow to respond, please be patient "
3745 "(ready=%d)\n", tmp);
3746 warned = 1;
3747 }
3748
3749 ata_msleep(link->ap, 50);
3750 }
3751}
3752
3753/**
3754 * ata_wait_after_reset - wait for link to become ready after reset
3755 * @link: link to be waited on
3756 * @deadline: deadline jiffies for the operation
3757 * @check_ready: callback to check link readiness
3758 *
3759 * Wait for @link to become ready after reset.
3760 *
3761 * LOCKING:
3762 * EH context.
3763 *
3764 * RETURNS:
3765 * 0 if @link is ready before @deadline; otherwise, -errno.
3766 */
3767int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3768 int (*check_ready)(struct ata_link *link))
3769{
3770 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3771
3772 return ata_wait_ready(link, deadline, check_ready);
3773}
3774
3775/**
3776 * sata_link_debounce - debounce SATA phy status
3777 * @link: ATA link to debounce SATA phy status for
3778 * @params: timing parameters { interval, duration, timeout } in msec
3779 * @deadline: deadline jiffies for the operation
3780 *
3781 * Make sure SStatus of @link reaches stable state, determined by
3782 * holding the same value where DET is not 1 for @duration polled
3783 * every @interval, before @timeout. Timeout constraints the
3784 * beginning of the stable state. Because DET gets stuck at 1 on
3785 * some controllers after hot unplugging, this functions waits
3786 * until timeout then returns 0 if DET is stable at 1.
3787 *
3788 * @timeout is further limited by @deadline. The sooner of the
3789 * two is used.
3790 *
3791 * LOCKING:
3792 * Kernel thread context (may sleep)
3793 *
3794 * RETURNS:
3795 * 0 on success, -errno on failure.
3796 */
3797int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3798 unsigned long deadline)
3799{
3800 unsigned long interval = params[0];
3801 unsigned long duration = params[1];
3802 unsigned long last_jiffies, t;
3803 u32 last, cur;
3804 int rc;
3805
3806 t = ata_deadline(jiffies, params[2]);
3807 if (time_before(t, deadline))
3808 deadline = t;
3809
3810 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3811 return rc;
3812 cur &= 0xf;
3813
3814 last = cur;
3815 last_jiffies = jiffies;
3816
3817 while (1) {
3818 ata_msleep(link->ap, interval);
3819 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3820 return rc;
3821 cur &= 0xf;
3822
3823 /* DET stable? */
3824 if (cur == last) {
3825 if (cur == 1 && time_before(jiffies, deadline))
3826 continue;
3827 if (time_after(jiffies,
3828 ata_deadline(last_jiffies, duration)))
3829 return 0;
3830 continue;
3831 }
3832
3833 /* unstable, start over */
3834 last = cur;
3835 last_jiffies = jiffies;
3836
3837 /* Check deadline. If debouncing failed, return
3838 * -EPIPE to tell upper layer to lower link speed.
3839 */
3840 if (time_after(jiffies, deadline))
3841 return -EPIPE;
3842 }
3843}
3844
3845/**
3846 * sata_link_resume - resume SATA link
3847 * @link: ATA link to resume SATA
3848 * @params: timing parameters { interval, duration, timeout } in msec
3849 * @deadline: deadline jiffies for the operation
3850 *
3851 * Resume SATA phy @link and debounce it.
3852 *
3853 * LOCKING:
3854 * Kernel thread context (may sleep)
3855 *
3856 * RETURNS:
3857 * 0 on success, -errno on failure.
3858 */
3859int sata_link_resume(struct ata_link *link, const unsigned long *params,
3860 unsigned long deadline)
3861{
3862 int tries = ATA_LINK_RESUME_TRIES;
3863 u32 scontrol, serror;
3864 int rc;
3865
3866 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3867 return rc;
3868
3869 /*
3870 * Writes to SControl sometimes get ignored under certain
3871 * controllers (ata_piix SIDPR). Make sure DET actually is
3872 * cleared.
3873 */
3874 do {
3875 scontrol = (scontrol & 0x0f0) | 0x300;
3876 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3877 return rc;
3878 /*
3879 * Some PHYs react badly if SStatus is pounded
3880 * immediately after resuming. Delay 200ms before
3881 * debouncing.
3882 */
3883 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3884 ata_msleep(link->ap, 200);
3885
3886 /* is SControl restored correctly? */
3887 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3888 return rc;
3889 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3890
3891 if ((scontrol & 0xf0f) != 0x300) {
3892 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3893 scontrol);
3894 return 0;
3895 }
3896
3897 if (tries < ATA_LINK_RESUME_TRIES)
3898 ata_link_warn(link, "link resume succeeded after %d retries\n",
3899 ATA_LINK_RESUME_TRIES - tries);
3900
3901 if ((rc = sata_link_debounce(link, params, deadline)))
3902 return rc;
3903
3904 /* clear SError, some PHYs require this even for SRST to work */
3905 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3906 rc = sata_scr_write(link, SCR_ERROR, serror);
3907
3908 return rc != -EINVAL ? rc : 0;
3909}
3910
3911/**
3912 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3913 * @link: ATA link to manipulate SControl for
3914 * @policy: LPM policy to configure
3915 * @spm_wakeup: initiate LPM transition to active state
3916 *
3917 * Manipulate the IPM field of the SControl register of @link
3918 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3919 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3920 * the link. This function also clears PHYRDY_CHG before
3921 * returning.
3922 *
3923 * LOCKING:
3924 * EH context.
3925 *
3926 * RETURNS:
3927 * 0 on success, -errno otherwise.
3928 */
3929int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3930 bool spm_wakeup)
3931{
3932 struct ata_eh_context *ehc = &link->eh_context;
3933 bool woken_up = false;
3934 u32 scontrol;
3935 int rc;
3936
3937 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3938 if (rc)
3939 return rc;
3940
3941 switch (policy) {
3942 case ATA_LPM_MAX_POWER:
3943 /* disable all LPM transitions */
3944 scontrol |= (0x7 << 8);
3945 /* initiate transition to active state */
3946 if (spm_wakeup) {
3947 scontrol |= (0x4 << 12);
3948 woken_up = true;
3949 }
3950 break;
3951 case ATA_LPM_MED_POWER:
3952 /* allow LPM to PARTIAL */
3953 scontrol &= ~(0x1 << 8);
3954 scontrol |= (0x6 << 8);
3955 break;
3956 case ATA_LPM_MED_POWER_WITH_DIPM:
3957 case ATA_LPM_MIN_POWER_WITH_PARTIAL:
3958 case ATA_LPM_MIN_POWER:
3959 if (ata_link_nr_enabled(link) > 0)
3960 /* no restrictions on LPM transitions */
3961 scontrol &= ~(0x7 << 8);
3962 else {
3963 /* empty port, power off */
3964 scontrol &= ~0xf;
3965 scontrol |= (0x1 << 2);
3966 }
3967 break;
3968 default:
3969 WARN_ON(1);
3970 }
3971
3972 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3973 if (rc)
3974 return rc;
3975
3976 /* give the link time to transit out of LPM state */
3977 if (woken_up)
3978 msleep(10);
3979
3980 /* clear PHYRDY_CHG from SError */
3981 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3982 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3983}
3984
3985/**
3986 * ata_std_prereset - prepare for reset
3987 * @link: ATA link to be reset
3988 * @deadline: deadline jiffies for the operation
3989 *
3990 * @link is about to be reset. Initialize it. Failure from
3991 * prereset makes libata abort whole reset sequence and give up
3992 * that port, so prereset should be best-effort. It does its
3993 * best to prepare for reset sequence but if things go wrong, it
3994 * should just whine, not fail.
3995 *
3996 * LOCKING:
3997 * Kernel thread context (may sleep)
3998 *
3999 * RETURNS:
4000 * 0 on success, -errno otherwise.
4001 */
4002int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4003{
4004 struct ata_port *ap = link->ap;
4005 struct ata_eh_context *ehc = &link->eh_context;
4006 const unsigned long *timing = sata_ehc_deb_timing(ehc);
4007 int rc;
4008
4009 /* if we're about to do hardreset, nothing more to do */
4010 if (ehc->i.action & ATA_EH_HARDRESET)
4011 return 0;
4012
4013 /* if SATA, resume link */
4014 if (ap->flags & ATA_FLAG_SATA) {
4015 rc = sata_link_resume(link, timing, deadline);
4016 /* whine about phy resume failure but proceed */
4017 if (rc && rc != -EOPNOTSUPP)
4018 ata_link_warn(link,
4019 "failed to resume link for reset (errno=%d)\n",
4020 rc);
4021 }
4022
4023 /* no point in trying softreset on offline link */
4024 if (ata_phys_link_offline(link))
4025 ehc->i.action &= ~ATA_EH_SOFTRESET;
4026
4027 return 0;
4028}
4029
4030/**
4031 * sata_link_hardreset - reset link via SATA phy reset
4032 * @link: link to reset
4033 * @timing: timing parameters { interval, duration, timeout } in msec
4034 * @deadline: deadline jiffies for the operation
4035 * @online: optional out parameter indicating link onlineness
4036 * @check_ready: optional callback to check link readiness
4037 *
4038 * SATA phy-reset @link using DET bits of SControl register.
4039 * After hardreset, link readiness is waited upon using
4040 * ata_wait_ready() if @check_ready is specified. LLDs are
4041 * allowed to not specify @check_ready and wait itself after this
4042 * function returns. Device classification is LLD's
4043 * responsibility.
4044 *
4045 * *@online is set to one iff reset succeeded and @link is online
4046 * after reset.
4047 *
4048 * LOCKING:
4049 * Kernel thread context (may sleep)
4050 *
4051 * RETURNS:
4052 * 0 on success, -errno otherwise.
4053 */
4054int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4055 unsigned long deadline,
4056 bool *online, int (*check_ready)(struct ata_link *))
4057{
4058 u32 scontrol;
4059 int rc;
4060
4061 DPRINTK("ENTER\n");
4062
4063 if (online)
4064 *online = false;
4065
4066 if (sata_set_spd_needed(link)) {
4067 /* SATA spec says nothing about how to reconfigure
4068 * spd. To be on the safe side, turn off phy during
4069 * reconfiguration. This works for at least ICH7 AHCI
4070 * and Sil3124.
4071 */
4072 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4073 goto out;
4074
4075 scontrol = (scontrol & 0x0f0) | 0x304;
4076
4077 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4078 goto out;
4079
4080 sata_set_spd(link);
4081 }
4082
4083 /* issue phy wake/reset */
4084 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4085 goto out;
4086
4087 scontrol = (scontrol & 0x0f0) | 0x301;
4088
4089 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4090 goto out;
4091
4092 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4093 * 10.4.2 says at least 1 ms.
4094 */
4095 ata_msleep(link->ap, 1);
4096
4097 /* bring link back */
4098 rc = sata_link_resume(link, timing, deadline);
4099 if (rc)
4100 goto out;
4101 /* if link is offline nothing more to do */
4102 if (ata_phys_link_offline(link))
4103 goto out;
4104
4105 /* Link is online. From this point, -ENODEV too is an error. */
4106 if (online)
4107 *online = true;
4108
4109 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4110 /* If PMP is supported, we have to do follow-up SRST.
4111 * Some PMPs don't send D2H Reg FIS after hardreset if
4112 * the first port is empty. Wait only for
4113 * ATA_TMOUT_PMP_SRST_WAIT.
4114 */
4115 if (check_ready) {
4116 unsigned long pmp_deadline;
4117
4118 pmp_deadline = ata_deadline(jiffies,
4119 ATA_TMOUT_PMP_SRST_WAIT);
4120 if (time_after(pmp_deadline, deadline))
4121 pmp_deadline = deadline;
4122 ata_wait_ready(link, pmp_deadline, check_ready);
4123 }
4124 rc = -EAGAIN;
4125 goto out;
4126 }
4127
4128 rc = 0;
4129 if (check_ready)
4130 rc = ata_wait_ready(link, deadline, check_ready);
4131 out:
4132 if (rc && rc != -EAGAIN) {
4133 /* online is set iff link is online && reset succeeded */
4134 if (online)
4135 *online = false;
4136 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4137 }
4138 DPRINTK("EXIT, rc=%d\n", rc);
4139 return rc;
4140}
4141
4142/**
4143 * sata_std_hardreset - COMRESET w/o waiting or classification
4144 * @link: link to reset
4145 * @class: resulting class of attached device
4146 * @deadline: deadline jiffies for the operation
4147 *
4148 * Standard SATA COMRESET w/o waiting or classification.
4149 *
4150 * LOCKING:
4151 * Kernel thread context (may sleep)
4152 *
4153 * RETURNS:
4154 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4155 */
4156int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4157 unsigned long deadline)
4158{
4159 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4160 bool online;
4161 int rc;
4162
4163 /* do hardreset */
4164 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4165 return online ? -EAGAIN : rc;
4166}
4167
4168/**
4169 * ata_std_postreset - standard postreset callback
4170 * @link: the target ata_link
4171 * @classes: classes of attached devices
4172 *
4173 * This function is invoked after a successful reset. Note that
4174 * the device might have been reset more than once using
4175 * different reset methods before postreset is invoked.
4176 *
4177 * LOCKING:
4178 * Kernel thread context (may sleep)
4179 */
4180void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4181{
4182 u32 serror;
4183
4184 DPRINTK("ENTER\n");
4185
4186 /* reset complete, clear SError */
4187 if (!sata_scr_read(link, SCR_ERROR, &serror))
4188 sata_scr_write(link, SCR_ERROR, serror);
4189
4190 /* print link status */
4191 sata_print_link_status(link);
4192
4193 DPRINTK("EXIT\n");
4194}
4195
4196/**
4197 * ata_dev_same_device - Determine whether new ID matches configured device
4198 * @dev: device to compare against
4199 * @new_class: class of the new device
4200 * @new_id: IDENTIFY page of the new device
4201 *
4202 * Compare @new_class and @new_id against @dev and determine
4203 * whether @dev is the device indicated by @new_class and
4204 * @new_id.
4205 *
4206 * LOCKING:
4207 * None.
4208 *
4209 * RETURNS:
4210 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4211 */
4212static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4213 const u16 *new_id)
4214{
4215 const u16 *old_id = dev->id;
4216 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4217 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4218
4219 if (dev->class != new_class) {
4220 ata_dev_info(dev, "class mismatch %d != %d\n",
4221 dev->class, new_class);
4222 return 0;
4223 }
4224
4225 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4226 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4227 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4228 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4229
4230 if (strcmp(model[0], model[1])) {
4231 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4232 model[0], model[1]);
4233 return 0;
4234 }
4235
4236 if (strcmp(serial[0], serial[1])) {
4237 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4238 serial[0], serial[1]);
4239 return 0;
4240 }
4241
4242 return 1;
4243}
4244
4245/**
4246 * ata_dev_reread_id - Re-read IDENTIFY data
4247 * @dev: target ATA device
4248 * @readid_flags: read ID flags
4249 *
4250 * Re-read IDENTIFY page and make sure @dev is still attached to
4251 * the port.
4252 *
4253 * LOCKING:
4254 * Kernel thread context (may sleep)
4255 *
4256 * RETURNS:
4257 * 0 on success, negative errno otherwise
4258 */
4259int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4260{
4261 unsigned int class = dev->class;
4262 u16 *id = (void *)dev->link->ap->sector_buf;
4263 int rc;
4264
4265 /* read ID data */
4266 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4267 if (rc)
4268 return rc;
4269
4270 /* is the device still there? */
4271 if (!ata_dev_same_device(dev, class, id))
4272 return -ENODEV;
4273
4274 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4275 return 0;
4276}
4277
4278/**
4279 * ata_dev_revalidate - Revalidate ATA device
4280 * @dev: device to revalidate
4281 * @new_class: new class code
4282 * @readid_flags: read ID flags
4283 *
4284 * Re-read IDENTIFY page, make sure @dev is still attached to the
4285 * port and reconfigure it according to the new IDENTIFY page.
4286 *
4287 * LOCKING:
4288 * Kernel thread context (may sleep)
4289 *
4290 * RETURNS:
4291 * 0 on success, negative errno otherwise
4292 */
4293int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4294 unsigned int readid_flags)
4295{
4296 u64 n_sectors = dev->n_sectors;
4297 u64 n_native_sectors = dev->n_native_sectors;
4298 int rc;
4299
4300 if (!ata_dev_enabled(dev))
4301 return -ENODEV;
4302
4303 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4304 if (ata_class_enabled(new_class) &&
4305 new_class != ATA_DEV_ATA &&
4306 new_class != ATA_DEV_ATAPI &&
4307 new_class != ATA_DEV_ZAC &&
4308 new_class != ATA_DEV_SEMB) {
4309 ata_dev_info(dev, "class mismatch %u != %u\n",
4310 dev->class, new_class);
4311 rc = -ENODEV;
4312 goto fail;
4313 }
4314
4315 /* re-read ID */
4316 rc = ata_dev_reread_id(dev, readid_flags);
4317 if (rc)
4318 goto fail;
4319
4320 /* configure device according to the new ID */
4321 rc = ata_dev_configure(dev);
4322 if (rc)
4323 goto fail;
4324
4325 /* verify n_sectors hasn't changed */
4326 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4327 dev->n_sectors == n_sectors)
4328 return 0;
4329
4330 /* n_sectors has changed */
4331 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4332 (unsigned long long)n_sectors,
4333 (unsigned long long)dev->n_sectors);
4334
4335 /*
4336 * Something could have caused HPA to be unlocked
4337 * involuntarily. If n_native_sectors hasn't changed and the
4338 * new size matches it, keep the device.
4339 */
4340 if (dev->n_native_sectors == n_native_sectors &&
4341 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4342 ata_dev_warn(dev,
4343 "new n_sectors matches native, probably "
4344 "late HPA unlock, n_sectors updated\n");
4345 /* use the larger n_sectors */
4346 return 0;
4347 }
4348
4349 /*
4350 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4351 * unlocking HPA in those cases.
4352 *
4353 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4354 */
4355 if (dev->n_native_sectors == n_native_sectors &&
4356 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4357 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4358 ata_dev_warn(dev,
4359 "old n_sectors matches native, probably "
4360 "late HPA lock, will try to unlock HPA\n");
4361 /* try unlocking HPA */
4362 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4363 rc = -EIO;
4364 } else
4365 rc = -ENODEV;
4366
4367 /* restore original n_[native_]sectors and fail */
4368 dev->n_native_sectors = n_native_sectors;
4369 dev->n_sectors = n_sectors;
4370 fail:
4371 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4372 return rc;
4373}
4374
4375struct ata_blacklist_entry {
4376 const char *model_num;
4377 const char *model_rev;
4378 unsigned long horkage;
4379};
4380
4381static const struct ata_blacklist_entry ata_device_blacklist [] = {
4382 /* Devices with DMA related problems under Linux */
4383 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4384 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4385 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4386 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4387 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4388 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4389 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4390 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4391 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4392 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4393 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4394 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4395 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4396 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4397 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4398 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4399 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4400 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4401 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4402 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4403 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4404 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4405 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4406 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4407 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4408 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4409 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4410 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4411 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4412 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4413 /* Odd clown on sil3726/4726 PMPs */
4414 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4415
4416 /* Weird ATAPI devices */
4417 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4418 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4419 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4420 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4421
4422 /*
4423 * Causes silent data corruption with higher max sects.
4424 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4425 */
4426 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4427
4428 /*
4429 * These devices time out with higher max sects.
4430 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4431 */
4432 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4433 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4434
4435 /* Devices we expect to fail diagnostics */
4436
4437 /* Devices where NCQ should be avoided */
4438 /* NCQ is slow */
4439 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4440 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4441 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4442 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4443 /* NCQ is broken */
4444 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4445 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4446 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4447 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4448 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4449
4450 /* Seagate NCQ + FLUSH CACHE firmware bug */
4451 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4452 ATA_HORKAGE_FIRMWARE_WARN },
4453
4454 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4455 ATA_HORKAGE_FIRMWARE_WARN },
4456
4457 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4458 ATA_HORKAGE_FIRMWARE_WARN },
4459
4460 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4461 ATA_HORKAGE_FIRMWARE_WARN },
4462
4463 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4464 the ST disks also have LPM issues */
4465 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
4466 ATA_HORKAGE_NOLPM, },
4467 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4468
4469 /* Blacklist entries taken from Silicon Image 3124/3132
4470 Windows driver .inf file - also several Linux problem reports */
4471 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4472 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4473 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4474
4475 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4476 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4477
4478 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4479 SD7SN6S256G and SD8SN8U256G */
4480 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, },
4481
4482 /* devices which puke on READ_NATIVE_MAX */
4483 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4484 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4485 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4486 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4487
4488 /* this one allows HPA unlocking but fails IOs on the area */
4489 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4490
4491 /* Devices which report 1 sector over size HPA */
4492 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4493 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4494 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4495
4496 /* Devices which get the IVB wrong */
4497 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4498 /* Maybe we should just blacklist TSSTcorp... */
4499 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4500
4501 /* Devices that do not need bridging limits applied */
4502 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4503 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4504
4505 /* Devices which aren't very happy with higher link speeds */
4506 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4507 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4508
4509 /*
4510 * Devices which choke on SETXFER. Applies only if both the
4511 * device and controller are SATA.
4512 */
4513 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4514 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4515 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4516 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4517 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4518
4519 /* Crucial BX100 SSD 500GB has broken LPM support */
4520 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4521
4522 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4523 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4524 ATA_HORKAGE_ZERO_AFTER_TRIM |
4525 ATA_HORKAGE_NOLPM, },
4526 /* 512GB MX100 with newer firmware has only LPM issues */
4527 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4528 ATA_HORKAGE_NOLPM, },
4529
4530 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4531 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4532 ATA_HORKAGE_ZERO_AFTER_TRIM |
4533 ATA_HORKAGE_NOLPM, },
4534 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4535 ATA_HORKAGE_ZERO_AFTER_TRIM |
4536 ATA_HORKAGE_NOLPM, },
4537
4538 /* These specific Samsung models/firmware-revs do not handle LPM well */
4539 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4540 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4541 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, },
4542 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
4543
4544 /* devices that don't properly handle queued TRIM commands */
4545 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4546 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4547 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4548 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4549 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4550 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4551 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4552 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4553 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4554 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4555 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4556 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4557 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4558 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4559 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4560 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4561 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4562 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4563
4564 /* devices that don't properly handle TRIM commands */
4565 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4566
4567 /*
4568 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4569 * (Return Zero After Trim) flags in the ATA Command Set are
4570 * unreliable in the sense that they only define what happens if
4571 * the device successfully executed the DSM TRIM command. TRIM
4572 * is only advisory, however, and the device is free to silently
4573 * ignore all or parts of the request.
4574 *
4575 * Whitelist drives that are known to reliably return zeroes
4576 * after TRIM.
4577 */
4578
4579 /*
4580 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4581 * that model before whitelisting all other intel SSDs.
4582 */
4583 { "INTEL*SSDSC2MH*", NULL, 0, },
4584
4585 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4586 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4587 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4588 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4589 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4590 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4591 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4592 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4593
4594 /*
4595 * Some WD SATA-I drives spin up and down erratically when the link
4596 * is put into the slumber mode. We don't have full list of the
4597 * affected devices. Disable LPM if the device matches one of the
4598 * known prefixes and is SATA-1. As a side effect LPM partial is
4599 * lost too.
4600 *
4601 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4602 */
4603 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4604 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4605 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4606 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4607 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4608 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4609 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4610
4611 /* End Marker */
4612 { }
4613};
4614
4615static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4616{
4617 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4618 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4619 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4620
4621 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4622 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4623
4624 while (ad->model_num) {
4625 if (glob_match(ad->model_num, model_num)) {
4626 if (ad->model_rev == NULL)
4627 return ad->horkage;
4628 if (glob_match(ad->model_rev, model_rev))
4629 return ad->horkage;
4630 }
4631 ad++;
4632 }
4633 return 0;
4634}
4635
4636static int ata_dma_blacklisted(const struct ata_device *dev)
4637{
4638 /* We don't support polling DMA.
4639 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4640 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4641 */
4642 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4643 (dev->flags & ATA_DFLAG_CDB_INTR))
4644 return 1;
4645 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4646}
4647
4648/**
4649 * ata_is_40wire - check drive side detection
4650 * @dev: device
4651 *
4652 * Perform drive side detection decoding, allowing for device vendors
4653 * who can't follow the documentation.
4654 */
4655
4656static int ata_is_40wire(struct ata_device *dev)
4657{
4658 if (dev->horkage & ATA_HORKAGE_IVB)
4659 return ata_drive_40wire_relaxed(dev->id);
4660 return ata_drive_40wire(dev->id);
4661}
4662
4663/**
4664 * cable_is_40wire - 40/80/SATA decider
4665 * @ap: port to consider
4666 *
4667 * This function encapsulates the policy for speed management
4668 * in one place. At the moment we don't cache the result but
4669 * there is a good case for setting ap->cbl to the result when
4670 * we are called with unknown cables (and figuring out if it
4671 * impacts hotplug at all).
4672 *
4673 * Return 1 if the cable appears to be 40 wire.
4674 */
4675
4676static int cable_is_40wire(struct ata_port *ap)
4677{
4678 struct ata_link *link;
4679 struct ata_device *dev;
4680
4681 /* If the controller thinks we are 40 wire, we are. */
4682 if (ap->cbl == ATA_CBL_PATA40)
4683 return 1;
4684
4685 /* If the controller thinks we are 80 wire, we are. */
4686 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4687 return 0;
4688
4689 /* If the system is known to be 40 wire short cable (eg
4690 * laptop), then we allow 80 wire modes even if the drive
4691 * isn't sure.
4692 */
4693 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4694 return 0;
4695
4696 /* If the controller doesn't know, we scan.
4697 *
4698 * Note: We look for all 40 wire detects at this point. Any
4699 * 80 wire detect is taken to be 80 wire cable because
4700 * - in many setups only the one drive (slave if present) will
4701 * give a valid detect
4702 * - if you have a non detect capable drive you don't want it
4703 * to colour the choice
4704 */
4705 ata_for_each_link(link, ap, EDGE) {
4706 ata_for_each_dev(dev, link, ENABLED) {
4707 if (!ata_is_40wire(dev))
4708 return 0;
4709 }
4710 }
4711 return 1;
4712}
4713
4714/**
4715 * ata_dev_xfermask - Compute supported xfermask of the given device
4716 * @dev: Device to compute xfermask for
4717 *
4718 * Compute supported xfermask of @dev and store it in
4719 * dev->*_mask. This function is responsible for applying all
4720 * known limits including host controller limits, device
4721 * blacklist, etc...
4722 *
4723 * LOCKING:
4724 * None.
4725 */
4726static void ata_dev_xfermask(struct ata_device *dev)
4727{
4728 struct ata_link *link = dev->link;
4729 struct ata_port *ap = link->ap;
4730 struct ata_host *host = ap->host;
4731 unsigned long xfer_mask;
4732
4733 /* controller modes available */
4734 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4735 ap->mwdma_mask, ap->udma_mask);
4736
4737 /* drive modes available */
4738 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4739 dev->mwdma_mask, dev->udma_mask);
4740 xfer_mask &= ata_id_xfermask(dev->id);
4741
4742 /*
4743 * CFA Advanced TrueIDE timings are not allowed on a shared
4744 * cable
4745 */
4746 if (ata_dev_pair(dev)) {
4747 /* No PIO5 or PIO6 */
4748 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4749 /* No MWDMA3 or MWDMA 4 */
4750 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4751 }
4752
4753 if (ata_dma_blacklisted(dev)) {
4754 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4755 ata_dev_warn(dev,
4756 "device is on DMA blacklist, disabling DMA\n");
4757 }
4758
4759 if ((host->flags & ATA_HOST_SIMPLEX) &&
4760 host->simplex_claimed && host->simplex_claimed != ap) {
4761 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4762 ata_dev_warn(dev,
4763 "simplex DMA is claimed by other device, disabling DMA\n");
4764 }
4765
4766 if (ap->flags & ATA_FLAG_NO_IORDY)
4767 xfer_mask &= ata_pio_mask_no_iordy(dev);
4768
4769 if (ap->ops->mode_filter)
4770 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4771
4772 /* Apply cable rule here. Don't apply it early because when
4773 * we handle hot plug the cable type can itself change.
4774 * Check this last so that we know if the transfer rate was
4775 * solely limited by the cable.
4776 * Unknown or 80 wire cables reported host side are checked
4777 * drive side as well. Cases where we know a 40wire cable
4778 * is used safely for 80 are not checked here.
4779 */
4780 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4781 /* UDMA/44 or higher would be available */
4782 if (cable_is_40wire(ap)) {
4783 ata_dev_warn(dev,
4784 "limited to UDMA/33 due to 40-wire cable\n");
4785 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4786 }
4787
4788 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4789 &dev->mwdma_mask, &dev->udma_mask);
4790}
4791
4792/**
4793 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4794 * @dev: Device to which command will be sent
4795 *
4796 * Issue SET FEATURES - XFER MODE command to device @dev
4797 * on port @ap.
4798 *
4799 * LOCKING:
4800 * PCI/etc. bus probe sem.
4801 *
4802 * RETURNS:
4803 * 0 on success, AC_ERR_* mask otherwise.
4804 */
4805
4806static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4807{
4808 struct ata_taskfile tf;
4809 unsigned int err_mask;
4810
4811 /* set up set-features taskfile */
4812 DPRINTK("set features - xfer mode\n");
4813
4814 /* Some controllers and ATAPI devices show flaky interrupt
4815 * behavior after setting xfer mode. Use polling instead.
4816 */
4817 ata_tf_init(dev, &tf);
4818 tf.command = ATA_CMD_SET_FEATURES;
4819 tf.feature = SETFEATURES_XFER;
4820 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4821 tf.protocol = ATA_PROT_NODATA;
4822 /* If we are using IORDY we must send the mode setting command */
4823 if (ata_pio_need_iordy(dev))
4824 tf.nsect = dev->xfer_mode;
4825 /* If the device has IORDY and the controller does not - turn it off */
4826 else if (ata_id_has_iordy(dev->id))
4827 tf.nsect = 0x01;
4828 else /* In the ancient relic department - skip all of this */
4829 return 0;
4830
4831 /* On some disks, this command causes spin-up, so we need longer timeout */
4832 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4833
4834 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4835 return err_mask;
4836}
4837
4838/**
4839 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4840 * @dev: Device to which command will be sent
4841 * @enable: Whether to enable or disable the feature
4842 * @feature: The sector count represents the feature to set
4843 *
4844 * Issue SET FEATURES - SATA FEATURES command to device @dev
4845 * on port @ap with sector count
4846 *
4847 * LOCKING:
4848 * PCI/etc. bus probe sem.
4849 *
4850 * RETURNS:
4851 * 0 on success, AC_ERR_* mask otherwise.
4852 */
4853unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4854{
4855 struct ata_taskfile tf;
4856 unsigned int err_mask;
4857 unsigned long timeout = 0;
4858
4859 /* set up set-features taskfile */
4860 DPRINTK("set features - SATA features\n");
4861
4862 ata_tf_init(dev, &tf);
4863 tf.command = ATA_CMD_SET_FEATURES;
4864 tf.feature = enable;
4865 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4866 tf.protocol = ATA_PROT_NODATA;
4867 tf.nsect = feature;
4868
4869 if (enable == SETFEATURES_SPINUP)
4870 timeout = ata_probe_timeout ?
4871 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4872 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4873
4874 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4875 return err_mask;
4876}
4877EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4878
4879/**
4880 * ata_dev_init_params - Issue INIT DEV PARAMS command
4881 * @dev: Device to which command will be sent
4882 * @heads: Number of heads (taskfile parameter)
4883 * @sectors: Number of sectors (taskfile parameter)
4884 *
4885 * LOCKING:
4886 * Kernel thread context (may sleep)
4887 *
4888 * RETURNS:
4889 * 0 on success, AC_ERR_* mask otherwise.
4890 */
4891static unsigned int ata_dev_init_params(struct ata_device *dev,
4892 u16 heads, u16 sectors)
4893{
4894 struct ata_taskfile tf;
4895 unsigned int err_mask;
4896
4897 /* Number of sectors per track 1-255. Number of heads 1-16 */
4898 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4899 return AC_ERR_INVALID;
4900
4901 /* set up init dev params taskfile */
4902 DPRINTK("init dev params \n");
4903
4904 ata_tf_init(dev, &tf);
4905 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4906 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4907 tf.protocol = ATA_PROT_NODATA;
4908 tf.nsect = sectors;
4909 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4910
4911 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4912 /* A clean abort indicates an original or just out of spec drive
4913 and we should continue as we issue the setup based on the
4914 drive reported working geometry */
4915 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4916 err_mask = 0;
4917
4918 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4919 return err_mask;
4920}
4921
4922/**
4923 * atapi_check_dma - Check whether ATAPI DMA can be supported
4924 * @qc: Metadata associated with taskfile to check
4925 *
4926 * Allow low-level driver to filter ATA PACKET commands, returning
4927 * a status indicating whether or not it is OK to use DMA for the
4928 * supplied PACKET command.
4929 *
4930 * LOCKING:
4931 * spin_lock_irqsave(host lock)
4932 *
4933 * RETURNS: 0 when ATAPI DMA can be used
4934 * nonzero otherwise
4935 */
4936int atapi_check_dma(struct ata_queued_cmd *qc)
4937{
4938 struct ata_port *ap = qc->ap;
4939
4940 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4941 * few ATAPI devices choke on such DMA requests.
4942 */
4943 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4944 unlikely(qc->nbytes & 15))
4945 return 1;
4946
4947 if (ap->ops->check_atapi_dma)
4948 return ap->ops->check_atapi_dma(qc);
4949
4950 return 0;
4951}
4952
4953/**
4954 * ata_std_qc_defer - Check whether a qc needs to be deferred
4955 * @qc: ATA command in question
4956 *
4957 * Non-NCQ commands cannot run with any other command, NCQ or
4958 * not. As upper layer only knows the queue depth, we are
4959 * responsible for maintaining exclusion. This function checks
4960 * whether a new command @qc can be issued.
4961 *
4962 * LOCKING:
4963 * spin_lock_irqsave(host lock)
4964 *
4965 * RETURNS:
4966 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4967 */
4968int ata_std_qc_defer(struct ata_queued_cmd *qc)
4969{
4970 struct ata_link *link = qc->dev->link;
4971
4972 if (ata_is_ncq(qc->tf.protocol)) {
4973 if (!ata_tag_valid(link->active_tag))
4974 return 0;
4975 } else {
4976 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4977 return 0;
4978 }
4979
4980 return ATA_DEFER_LINK;
4981}
4982
4983void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4984
4985/**
4986 * ata_sg_init - Associate command with scatter-gather table.
4987 * @qc: Command to be associated
4988 * @sg: Scatter-gather table.
4989 * @n_elem: Number of elements in s/g table.
4990 *
4991 * Initialize the data-related elements of queued_cmd @qc
4992 * to point to a scatter-gather table @sg, containing @n_elem
4993 * elements.
4994 *
4995 * LOCKING:
4996 * spin_lock_irqsave(host lock)
4997 */
4998void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4999 unsigned int n_elem)
5000{
5001 qc->sg = sg;
5002 qc->n_elem = n_elem;
5003 qc->cursg = qc->sg;
5004}
5005
5006#ifdef CONFIG_HAS_DMA
5007
5008/**
5009 * ata_sg_clean - Unmap DMA memory associated with command
5010 * @qc: Command containing DMA memory to be released
5011 *
5012 * Unmap all mapped DMA memory associated with this command.
5013 *
5014 * LOCKING:
5015 * spin_lock_irqsave(host lock)
5016 */
5017static void ata_sg_clean(struct ata_queued_cmd *qc)
5018{
5019 struct ata_port *ap = qc->ap;
5020 struct scatterlist *sg = qc->sg;
5021 int dir = qc->dma_dir;
5022
5023 WARN_ON_ONCE(sg == NULL);
5024
5025 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5026
5027 if (qc->n_elem)
5028 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5029
5030 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5031 qc->sg = NULL;
5032}
5033
5034/**
5035 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5036 * @qc: Command with scatter-gather table to be mapped.
5037 *
5038 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5039 *
5040 * LOCKING:
5041 * spin_lock_irqsave(host lock)
5042 *
5043 * RETURNS:
5044 * Zero on success, negative on error.
5045 *
5046 */
5047static int ata_sg_setup(struct ata_queued_cmd *qc)
5048{
5049 struct ata_port *ap = qc->ap;
5050 unsigned int n_elem;
5051
5052 VPRINTK("ENTER, ata%u\n", ap->print_id);
5053
5054 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5055 if (n_elem < 1)
5056 return -1;
5057
5058 VPRINTK("%d sg elements mapped\n", n_elem);
5059 qc->orig_n_elem = qc->n_elem;
5060 qc->n_elem = n_elem;
5061 qc->flags |= ATA_QCFLAG_DMAMAP;
5062
5063 return 0;
5064}
5065
5066#else /* !CONFIG_HAS_DMA */
5067
5068static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5069static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5070
5071#endif /* !CONFIG_HAS_DMA */
5072
5073/**
5074 * swap_buf_le16 - swap halves of 16-bit words in place
5075 * @buf: Buffer to swap
5076 * @buf_words: Number of 16-bit words in buffer.
5077 *
5078 * Swap halves of 16-bit words if needed to convert from
5079 * little-endian byte order to native cpu byte order, or
5080 * vice-versa.
5081 *
5082 * LOCKING:
5083 * Inherited from caller.
5084 */
5085void swap_buf_le16(u16 *buf, unsigned int buf_words)
5086{
5087#ifdef __BIG_ENDIAN
5088 unsigned int i;
5089
5090 for (i = 0; i < buf_words; i++)
5091 buf[i] = le16_to_cpu(buf[i]);
5092#endif /* __BIG_ENDIAN */
5093}
5094
5095/**
5096 * ata_qc_new_init - Request an available ATA command, and initialize it
5097 * @dev: Device from whom we request an available command structure
5098 * @tag: tag
5099 *
5100 * LOCKING:
5101 * None.
5102 */
5103
5104struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5105{
5106 struct ata_port *ap = dev->link->ap;
5107 struct ata_queued_cmd *qc;
5108
5109 /* no command while frozen */
5110 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5111 return NULL;
5112
5113 /* libsas case */
5114 if (ap->flags & ATA_FLAG_SAS_HOST) {
5115 tag = ata_sas_allocate_tag(ap);
5116 if (tag < 0)
5117 return NULL;
5118 }
5119
5120 qc = __ata_qc_from_tag(ap, tag);
5121 qc->tag = qc->hw_tag = tag;
5122 qc->scsicmd = NULL;
5123 qc->ap = ap;
5124 qc->dev = dev;
5125
5126 ata_qc_reinit(qc);
5127
5128 return qc;
5129}
5130
5131/**
5132 * ata_qc_free - free unused ata_queued_cmd
5133 * @qc: Command to complete
5134 *
5135 * Designed to free unused ata_queued_cmd object
5136 * in case something prevents using it.
5137 *
5138 * LOCKING:
5139 * spin_lock_irqsave(host lock)
5140 */
5141void ata_qc_free(struct ata_queued_cmd *qc)
5142{
5143 struct ata_port *ap;
5144 unsigned int tag;
5145
5146 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5147 ap = qc->ap;
5148
5149 qc->flags = 0;
5150 tag = qc->tag;
5151 if (ata_tag_valid(tag)) {
5152 qc->tag = ATA_TAG_POISON;
5153 if (ap->flags & ATA_FLAG_SAS_HOST)
5154 ata_sas_free_tag(tag, ap);
5155 }
5156}
5157
5158void __ata_qc_complete(struct ata_queued_cmd *qc)
5159{
5160 struct ata_port *ap;
5161 struct ata_link *link;
5162
5163 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5164 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5165 ap = qc->ap;
5166 link = qc->dev->link;
5167
5168 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5169 ata_sg_clean(qc);
5170
5171 /* command should be marked inactive atomically with qc completion */
5172 if (ata_is_ncq(qc->tf.protocol)) {
5173 link->sactive &= ~(1 << qc->hw_tag);
5174 if (!link->sactive)
5175 ap->nr_active_links--;
5176 } else {
5177 link->active_tag = ATA_TAG_POISON;
5178 ap->nr_active_links--;
5179 }
5180
5181 /* clear exclusive status */
5182 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5183 ap->excl_link == link))
5184 ap->excl_link = NULL;
5185
5186 /* atapi: mark qc as inactive to prevent the interrupt handler
5187 * from completing the command twice later, before the error handler
5188 * is called. (when rc != 0 and atapi request sense is needed)
5189 */
5190 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5191 ap->qc_active &= ~(1ULL << qc->tag);
5192
5193 /* call completion callback */
5194 qc->complete_fn(qc);
5195}
5196
5197static void fill_result_tf(struct ata_queued_cmd *qc)
5198{
5199 struct ata_port *ap = qc->ap;
5200
5201 qc->result_tf.flags = qc->tf.flags;
5202 ap->ops->qc_fill_rtf(qc);
5203}
5204
5205static void ata_verify_xfer(struct ata_queued_cmd *qc)
5206{
5207 struct ata_device *dev = qc->dev;
5208
5209 if (!ata_is_data(qc->tf.protocol))
5210 return;
5211
5212 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5213 return;
5214
5215 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5216}
5217
5218/**
5219 * ata_qc_complete - Complete an active ATA command
5220 * @qc: Command to complete
5221 *
5222 * Indicate to the mid and upper layers that an ATA command has
5223 * completed, with either an ok or not-ok status.
5224 *
5225 * Refrain from calling this function multiple times when
5226 * successfully completing multiple NCQ commands.
5227 * ata_qc_complete_multiple() should be used instead, which will
5228 * properly update IRQ expect state.
5229 *
5230 * LOCKING:
5231 * spin_lock_irqsave(host lock)
5232 */
5233void ata_qc_complete(struct ata_queued_cmd *qc)
5234{
5235 struct ata_port *ap = qc->ap;
5236
5237 /* Trigger the LED (if available) */
5238 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
5239
5240 /* XXX: New EH and old EH use different mechanisms to
5241 * synchronize EH with regular execution path.
5242 *
5243 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5244 * Normal execution path is responsible for not accessing a
5245 * failed qc. libata core enforces the rule by returning NULL
5246 * from ata_qc_from_tag() for failed qcs.
5247 *
5248 * Old EH depends on ata_qc_complete() nullifying completion
5249 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5250 * not synchronize with interrupt handler. Only PIO task is
5251 * taken care of.
5252 */
5253 if (ap->ops->error_handler) {
5254 struct ata_device *dev = qc->dev;
5255 struct ata_eh_info *ehi = &dev->link->eh_info;
5256
5257 if (unlikely(qc->err_mask))
5258 qc->flags |= ATA_QCFLAG_FAILED;
5259
5260 /*
5261 * Finish internal commands without any further processing
5262 * and always with the result TF filled.
5263 */
5264 if (unlikely(ata_tag_internal(qc->tag))) {
5265 fill_result_tf(qc);
5266 trace_ata_qc_complete_internal(qc);
5267 __ata_qc_complete(qc);
5268 return;
5269 }
5270
5271 /*
5272 * Non-internal qc has failed. Fill the result TF and
5273 * summon EH.
5274 */
5275 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5276 fill_result_tf(qc);
5277 trace_ata_qc_complete_failed(qc);
5278 ata_qc_schedule_eh(qc);
5279 return;
5280 }
5281
5282 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5283
5284 /* read result TF if requested */
5285 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5286 fill_result_tf(qc);
5287
5288 trace_ata_qc_complete_done(qc);
5289 /* Some commands need post-processing after successful
5290 * completion.
5291 */
5292 switch (qc->tf.command) {
5293 case ATA_CMD_SET_FEATURES:
5294 if (qc->tf.feature != SETFEATURES_WC_ON &&
5295 qc->tf.feature != SETFEATURES_WC_OFF &&
5296 qc->tf.feature != SETFEATURES_RA_ON &&
5297 qc->tf.feature != SETFEATURES_RA_OFF)
5298 break;
5299 /* fall through */
5300 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5301 case ATA_CMD_SET_MULTI: /* multi_count changed */
5302 /* revalidate device */
5303 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5304 ata_port_schedule_eh(ap);
5305 break;
5306
5307 case ATA_CMD_SLEEP:
5308 dev->flags |= ATA_DFLAG_SLEEPING;
5309 break;
5310 }
5311
5312 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5313 ata_verify_xfer(qc);
5314
5315 __ata_qc_complete(qc);
5316 } else {
5317 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5318 return;
5319
5320 /* read result TF if failed or requested */
5321 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5322 fill_result_tf(qc);
5323
5324 __ata_qc_complete(qc);
5325 }
5326}
5327
5328/**
5329 * ata_qc_complete_multiple - Complete multiple qcs successfully
5330 * @ap: port in question
5331 * @qc_active: new qc_active mask
5332 *
5333 * Complete in-flight commands. This functions is meant to be
5334 * called from low-level driver's interrupt routine to complete
5335 * requests normally. ap->qc_active and @qc_active is compared
5336 * and commands are completed accordingly.
5337 *
5338 * Always use this function when completing multiple NCQ commands
5339 * from IRQ handlers instead of calling ata_qc_complete()
5340 * multiple times to keep IRQ expect status properly in sync.
5341 *
5342 * LOCKING:
5343 * spin_lock_irqsave(host lock)
5344 *
5345 * RETURNS:
5346 * Number of completed commands on success, -errno otherwise.
5347 */
5348int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
5349{
5350 u64 done_mask, ap_qc_active = ap->qc_active;
5351 int nr_done = 0;
5352
5353 /*
5354 * If the internal tag is set on ap->qc_active, then we care about
5355 * bit0 on the passed in qc_active mask. Move that bit up to match
5356 * the internal tag.
5357 */
5358 if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5359 qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL;
5360 qc_active ^= qc_active & 0x01;
5361 }
5362
5363 done_mask = ap_qc_active ^ qc_active;
5364
5365 if (unlikely(done_mask & qc_active)) {
5366 ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
5367 ap->qc_active, qc_active);
5368 return -EINVAL;
5369 }
5370
5371 while (done_mask) {
5372 struct ata_queued_cmd *qc;
5373 unsigned int tag = __ffs64(done_mask);
5374
5375 qc = ata_qc_from_tag(ap, tag);
5376 if (qc) {
5377 ata_qc_complete(qc);
5378 nr_done++;
5379 }
5380 done_mask &= ~(1ULL << tag);
5381 }
5382
5383 return nr_done;
5384}
5385
5386/**
5387 * ata_qc_issue - issue taskfile to device
5388 * @qc: command to issue to device
5389 *
5390 * Prepare an ATA command to submission to device.
5391 * This includes mapping the data into a DMA-able
5392 * area, filling in the S/G table, and finally
5393 * writing the taskfile to hardware, starting the command.
5394 *
5395 * LOCKING:
5396 * spin_lock_irqsave(host lock)
5397 */
5398void ata_qc_issue(struct ata_queued_cmd *qc)
5399{
5400 struct ata_port *ap = qc->ap;
5401 struct ata_link *link = qc->dev->link;
5402 u8 prot = qc->tf.protocol;
5403
5404 /* Make sure only one non-NCQ command is outstanding. The
5405 * check is skipped for old EH because it reuses active qc to
5406 * request ATAPI sense.
5407 */
5408 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5409
5410 if (ata_is_ncq(prot)) {
5411 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5412
5413 if (!link->sactive)
5414 ap->nr_active_links++;
5415 link->sactive |= 1 << qc->hw_tag;
5416 } else {
5417 WARN_ON_ONCE(link->sactive);
5418
5419 ap->nr_active_links++;
5420 link->active_tag = qc->tag;
5421 }
5422
5423 qc->flags |= ATA_QCFLAG_ACTIVE;
5424 ap->qc_active |= 1ULL << qc->tag;
5425
5426 /*
5427 * We guarantee to LLDs that they will have at least one
5428 * non-zero sg if the command is a data command.
5429 */
5430 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5431 goto sys_err;
5432
5433 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5434 (ap->flags & ATA_FLAG_PIO_DMA)))
5435 if (ata_sg_setup(qc))
5436 goto sys_err;
5437
5438 /* if device is sleeping, schedule reset and abort the link */
5439 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5440 link->eh_info.action |= ATA_EH_RESET;
5441 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5442 ata_link_abort(link);
5443 return;
5444 }
5445
5446 ap->ops->qc_prep(qc);
5447 trace_ata_qc_issue(qc);
5448 qc->err_mask |= ap->ops->qc_issue(qc);
5449 if (unlikely(qc->err_mask))
5450 goto err;
5451 return;
5452
5453sys_err:
5454 qc->err_mask |= AC_ERR_SYSTEM;
5455err:
5456 ata_qc_complete(qc);
5457}
5458
5459/**
5460 * sata_scr_valid - test whether SCRs are accessible
5461 * @link: ATA link to test SCR accessibility for
5462 *
5463 * Test whether SCRs are accessible for @link.
5464 *
5465 * LOCKING:
5466 * None.
5467 *
5468 * RETURNS:
5469 * 1 if SCRs are accessible, 0 otherwise.
5470 */
5471int sata_scr_valid(struct ata_link *link)
5472{
5473 struct ata_port *ap = link->ap;
5474
5475 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5476}
5477
5478/**
5479 * sata_scr_read - read SCR register of the specified port
5480 * @link: ATA link to read SCR for
5481 * @reg: SCR to read
5482 * @val: Place to store read value
5483 *
5484 * Read SCR register @reg of @link into *@val. This function is
5485 * guaranteed to succeed if @link is ap->link, the cable type of
5486 * the port is SATA and the port implements ->scr_read.
5487 *
5488 * LOCKING:
5489 * None if @link is ap->link. Kernel thread context otherwise.
5490 *
5491 * RETURNS:
5492 * 0 on success, negative errno on failure.
5493 */
5494int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5495{
5496 if (ata_is_host_link(link)) {
5497 if (sata_scr_valid(link))
5498 return link->ap->ops->scr_read(link, reg, val);
5499 return -EOPNOTSUPP;
5500 }
5501
5502 return sata_pmp_scr_read(link, reg, val);
5503}
5504
5505/**
5506 * sata_scr_write - write SCR register of the specified port
5507 * @link: ATA link to write SCR for
5508 * @reg: SCR to write
5509 * @val: value to write
5510 *
5511 * Write @val to SCR register @reg of @link. This function is
5512 * guaranteed to succeed if @link is ap->link, the cable type of
5513 * the port is SATA and the port implements ->scr_read.
5514 *
5515 * LOCKING:
5516 * None if @link is ap->link. Kernel thread context otherwise.
5517 *
5518 * RETURNS:
5519 * 0 on success, negative errno on failure.
5520 */
5521int sata_scr_write(struct ata_link *link, int reg, u32 val)
5522{
5523 if (ata_is_host_link(link)) {
5524 if (sata_scr_valid(link))
5525 return link->ap->ops->scr_write(link, reg, val);
5526 return -EOPNOTSUPP;
5527 }
5528
5529 return sata_pmp_scr_write(link, reg, val);
5530}
5531
5532/**
5533 * sata_scr_write_flush - write SCR register of the specified port and flush
5534 * @link: ATA link to write SCR for
5535 * @reg: SCR to write
5536 * @val: value to write
5537 *
5538 * This function is identical to sata_scr_write() except that this
5539 * function performs flush after writing to the register.
5540 *
5541 * LOCKING:
5542 * None if @link is ap->link. Kernel thread context otherwise.
5543 *
5544 * RETURNS:
5545 * 0 on success, negative errno on failure.
5546 */
5547int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5548{
5549 if (ata_is_host_link(link)) {
5550 int rc;
5551
5552 if (sata_scr_valid(link)) {
5553 rc = link->ap->ops->scr_write(link, reg, val);
5554 if (rc == 0)
5555 rc = link->ap->ops->scr_read(link, reg, &val);
5556 return rc;
5557 }
5558 return -EOPNOTSUPP;
5559 }
5560
5561 return sata_pmp_scr_write(link, reg, val);
5562}
5563
5564/**
5565 * ata_phys_link_online - test whether the given link is online
5566 * @link: ATA link to test
5567 *
5568 * Test whether @link is online. Note that this function returns
5569 * 0 if online status of @link cannot be obtained, so
5570 * ata_link_online(link) != !ata_link_offline(link).
5571 *
5572 * LOCKING:
5573 * None.
5574 *
5575 * RETURNS:
5576 * True if the port online status is available and online.
5577 */
5578bool ata_phys_link_online(struct ata_link *link)
5579{
5580 u32 sstatus;
5581
5582 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5583 ata_sstatus_online(sstatus))
5584 return true;
5585 return false;
5586}
5587
5588/**
5589 * ata_phys_link_offline - test whether the given link is offline
5590 * @link: ATA link to test
5591 *
5592 * Test whether @link is offline. Note that this function
5593 * returns 0 if offline status of @link cannot be obtained, so
5594 * ata_link_online(link) != !ata_link_offline(link).
5595 *
5596 * LOCKING:
5597 * None.
5598 *
5599 * RETURNS:
5600 * True if the port offline status is available and offline.
5601 */
5602bool ata_phys_link_offline(struct ata_link *link)
5603{
5604 u32 sstatus;
5605
5606 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5607 !ata_sstatus_online(sstatus))
5608 return true;
5609 return false;
5610}
5611
5612/**
5613 * ata_link_online - test whether the given link is online
5614 * @link: ATA link to test
5615 *
5616 * Test whether @link is online. This is identical to
5617 * ata_phys_link_online() when there's no slave link. When
5618 * there's a slave link, this function should only be called on
5619 * the master link and will return true if any of M/S links is
5620 * online.
5621 *
5622 * LOCKING:
5623 * None.
5624 *
5625 * RETURNS:
5626 * True if the port online status is available and online.
5627 */
5628bool ata_link_online(struct ata_link *link)
5629{
5630 struct ata_link *slave = link->ap->slave_link;
5631
5632 WARN_ON(link == slave); /* shouldn't be called on slave link */
5633
5634 return ata_phys_link_online(link) ||
5635 (slave && ata_phys_link_online(slave));
5636}
5637
5638/**
5639 * ata_link_offline - test whether the given link is offline
5640 * @link: ATA link to test
5641 *
5642 * Test whether @link is offline. This is identical to
5643 * ata_phys_link_offline() when there's no slave link. When
5644 * there's a slave link, this function should only be called on
5645 * the master link and will return true if both M/S links are
5646 * offline.
5647 *
5648 * LOCKING:
5649 * None.
5650 *
5651 * RETURNS:
5652 * True if the port offline status is available and offline.
5653 */
5654bool ata_link_offline(struct ata_link *link)
5655{
5656 struct ata_link *slave = link->ap->slave_link;
5657
5658 WARN_ON(link == slave); /* shouldn't be called on slave link */
5659
5660 return ata_phys_link_offline(link) &&
5661 (!slave || ata_phys_link_offline(slave));
5662}
5663
5664#ifdef CONFIG_PM
5665static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5666 unsigned int action, unsigned int ehi_flags,
5667 bool async)
5668{
5669 struct ata_link *link;
5670 unsigned long flags;
5671
5672 /* Previous resume operation might still be in
5673 * progress. Wait for PM_PENDING to clear.
5674 */
5675 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5676 ata_port_wait_eh(ap);
5677 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5678 }
5679
5680 /* request PM ops to EH */
5681 spin_lock_irqsave(ap->lock, flags);
5682
5683 ap->pm_mesg = mesg;
5684 ap->pflags |= ATA_PFLAG_PM_PENDING;
5685 ata_for_each_link(link, ap, HOST_FIRST) {
5686 link->eh_info.action |= action;
5687 link->eh_info.flags |= ehi_flags;
5688 }
5689
5690 ata_port_schedule_eh(ap);
5691
5692 spin_unlock_irqrestore(ap->lock, flags);
5693
5694 if (!async) {
5695 ata_port_wait_eh(ap);
5696 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5697 }
5698}
5699
5700/*
5701 * On some hardware, device fails to respond after spun down for suspend. As
5702 * the device won't be used before being resumed, we don't need to touch the
5703 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5704 *
5705 * http://thread.gmane.org/gmane.linux.ide/46764
5706 */
5707static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5708 | ATA_EHI_NO_AUTOPSY
5709 | ATA_EHI_NO_RECOVERY;
5710
5711static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5712{
5713 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5714}
5715
5716static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5717{
5718 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5719}
5720
5721static int ata_port_pm_suspend(struct device *dev)
5722{
5723 struct ata_port *ap = to_ata_port(dev);
5724
5725 if (pm_runtime_suspended(dev))
5726 return 0;
5727
5728 ata_port_suspend(ap, PMSG_SUSPEND);
5729 return 0;
5730}
5731
5732static int ata_port_pm_freeze(struct device *dev)
5733{
5734 struct ata_port *ap = to_ata_port(dev);
5735
5736 if (pm_runtime_suspended(dev))
5737 return 0;
5738
5739 ata_port_suspend(ap, PMSG_FREEZE);
5740 return 0;
5741}
5742
5743static int ata_port_pm_poweroff(struct device *dev)
5744{
5745 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5746 return 0;
5747}
5748
5749static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5750 | ATA_EHI_QUIET;
5751
5752static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5753{
5754 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5755}
5756
5757static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5758{
5759 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5760}
5761
5762static int ata_port_pm_resume(struct device *dev)
5763{
5764 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5765 pm_runtime_disable(dev);
5766 pm_runtime_set_active(dev);
5767 pm_runtime_enable(dev);
5768 return 0;
5769}
5770
5771/*
5772 * For ODDs, the upper layer will poll for media change every few seconds,
5773 * which will make it enter and leave suspend state every few seconds. And
5774 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5775 * is very little and the ODD may malfunction after constantly being reset.
5776 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5777 * ODD is attached to the port.
5778 */
5779static int ata_port_runtime_idle(struct device *dev)
5780{
5781 struct ata_port *ap = to_ata_port(dev);
5782 struct ata_link *link;
5783 struct ata_device *adev;
5784
5785 ata_for_each_link(link, ap, HOST_FIRST) {
5786 ata_for_each_dev(adev, link, ENABLED)
5787 if (adev->class == ATA_DEV_ATAPI &&
5788 !zpodd_dev_enabled(adev))
5789 return -EBUSY;
5790 }
5791
5792 return 0;
5793}
5794
5795static int ata_port_runtime_suspend(struct device *dev)
5796{
5797 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5798 return 0;
5799}
5800
5801static int ata_port_runtime_resume(struct device *dev)
5802{
5803 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5804 return 0;
5805}
5806
5807static const struct dev_pm_ops ata_port_pm_ops = {
5808 .suspend = ata_port_pm_suspend,
5809 .resume = ata_port_pm_resume,
5810 .freeze = ata_port_pm_freeze,
5811 .thaw = ata_port_pm_resume,
5812 .poweroff = ata_port_pm_poweroff,
5813 .restore = ata_port_pm_resume,
5814
5815 .runtime_suspend = ata_port_runtime_suspend,
5816 .runtime_resume = ata_port_runtime_resume,
5817 .runtime_idle = ata_port_runtime_idle,
5818};
5819
5820/* sas ports don't participate in pm runtime management of ata_ports,
5821 * and need to resume ata devices at the domain level, not the per-port
5822 * level. sas suspend/resume is async to allow parallel port recovery
5823 * since sas has multiple ata_port instances per Scsi_Host.
5824 */
5825void ata_sas_port_suspend(struct ata_port *ap)
5826{
5827 ata_port_suspend_async(ap, PMSG_SUSPEND);
5828}
5829EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5830
5831void ata_sas_port_resume(struct ata_port *ap)
5832{
5833 ata_port_resume_async(ap, PMSG_RESUME);
5834}
5835EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5836
5837/**
5838 * ata_host_suspend - suspend host
5839 * @host: host to suspend
5840 * @mesg: PM message
5841 *
5842 * Suspend @host. Actual operation is performed by port suspend.
5843 */
5844int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5845{
5846 host->dev->power.power_state = mesg;
5847 return 0;
5848}
5849
5850/**
5851 * ata_host_resume - resume host
5852 * @host: host to resume
5853 *
5854 * Resume @host. Actual operation is performed by port resume.
5855 */
5856void ata_host_resume(struct ata_host *host)
5857{
5858 host->dev->power.power_state = PMSG_ON;
5859}
5860#endif
5861
5862const struct device_type ata_port_type = {
5863 .name = "ata_port",
5864#ifdef CONFIG_PM
5865 .pm = &ata_port_pm_ops,
5866#endif
5867};
5868
5869/**
5870 * ata_dev_init - Initialize an ata_device structure
5871 * @dev: Device structure to initialize
5872 *
5873 * Initialize @dev in preparation for probing.
5874 *
5875 * LOCKING:
5876 * Inherited from caller.
5877 */
5878void ata_dev_init(struct ata_device *dev)
5879{
5880 struct ata_link *link = ata_dev_phys_link(dev);
5881 struct ata_port *ap = link->ap;
5882 unsigned long flags;
5883
5884 /* SATA spd limit is bound to the attached device, reset together */
5885 link->sata_spd_limit = link->hw_sata_spd_limit;
5886 link->sata_spd = 0;
5887
5888 /* High bits of dev->flags are used to record warm plug
5889 * requests which occur asynchronously. Synchronize using
5890 * host lock.
5891 */
5892 spin_lock_irqsave(ap->lock, flags);
5893 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5894 dev->horkage = 0;
5895 spin_unlock_irqrestore(ap->lock, flags);
5896
5897 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5898 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5899 dev->pio_mask = UINT_MAX;
5900 dev->mwdma_mask = UINT_MAX;
5901 dev->udma_mask = UINT_MAX;
5902}
5903
5904/**
5905 * ata_link_init - Initialize an ata_link structure
5906 * @ap: ATA port link is attached to
5907 * @link: Link structure to initialize
5908 * @pmp: Port multiplier port number
5909 *
5910 * Initialize @link.
5911 *
5912 * LOCKING:
5913 * Kernel thread context (may sleep)
5914 */
5915void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5916{
5917 int i;
5918
5919 /* clear everything except for devices */
5920 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5921 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5922
5923 link->ap = ap;
5924 link->pmp = pmp;
5925 link->active_tag = ATA_TAG_POISON;
5926 link->hw_sata_spd_limit = UINT_MAX;
5927
5928 /* can't use iterator, ap isn't initialized yet */
5929 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5930 struct ata_device *dev = &link->device[i];
5931
5932 dev->link = link;
5933 dev->devno = dev - link->device;
5934#ifdef CONFIG_ATA_ACPI
5935 dev->gtf_filter = ata_acpi_gtf_filter;
5936#endif
5937 ata_dev_init(dev);
5938 }
5939}
5940
5941/**
5942 * sata_link_init_spd - Initialize link->sata_spd_limit
5943 * @link: Link to configure sata_spd_limit for
5944 *
5945 * Initialize @link->[hw_]sata_spd_limit to the currently
5946 * configured value.
5947 *
5948 * LOCKING:
5949 * Kernel thread context (may sleep).
5950 *
5951 * RETURNS:
5952 * 0 on success, -errno on failure.
5953 */
5954int sata_link_init_spd(struct ata_link *link)
5955{
5956 u8 spd;
5957 int rc;
5958
5959 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5960 if (rc)
5961 return rc;
5962
5963 spd = (link->saved_scontrol >> 4) & 0xf;
5964 if (spd)
5965 link->hw_sata_spd_limit &= (1 << spd) - 1;
5966
5967 ata_force_link_limits(link);
5968
5969 link->sata_spd_limit = link->hw_sata_spd_limit;
5970
5971 return 0;
5972}
5973
5974/**
5975 * ata_port_alloc - allocate and initialize basic ATA port resources
5976 * @host: ATA host this allocated port belongs to
5977 *
5978 * Allocate and initialize basic ATA port resources.
5979 *
5980 * RETURNS:
5981 * Allocate ATA port on success, NULL on failure.
5982 *
5983 * LOCKING:
5984 * Inherited from calling layer (may sleep).
5985 */
5986struct ata_port *ata_port_alloc(struct ata_host *host)
5987{
5988 struct ata_port *ap;
5989
5990 DPRINTK("ENTER\n");
5991
5992 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5993 if (!ap)
5994 return NULL;
5995
5996 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5997 ap->lock = &host->lock;
5998 ap->print_id = -1;
5999 ap->local_port_no = -1;
6000 ap->host = host;
6001 ap->dev = host->dev;
6002
6003#if defined(ATA_VERBOSE_DEBUG)
6004 /* turn on all debugging levels */
6005 ap->msg_enable = 0x00FF;
6006#elif defined(ATA_DEBUG)
6007 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6008#else
6009 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6010#endif
6011
6012 mutex_init(&ap->scsi_scan_mutex);
6013 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6014 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6015 INIT_LIST_HEAD(&ap->eh_done_q);
6016 init_waitqueue_head(&ap->eh_wait_q);
6017 init_completion(&ap->park_req_pending);
6018 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6019 TIMER_DEFERRABLE);
6020
6021 ap->cbl = ATA_CBL_NONE;
6022
6023 ata_link_init(ap, &ap->link, 0);
6024
6025#ifdef ATA_IRQ_TRAP
6026 ap->stats.unhandled_irq = 1;
6027 ap->stats.idle_irq = 1;
6028#endif
6029 ata_sff_port_init(ap);
6030
6031 return ap;
6032}
6033
6034static void ata_devres_release(struct device *gendev, void *res)
6035{
6036 struct ata_host *host = dev_get_drvdata(gendev);
6037 int i;
6038
6039 for (i = 0; i < host->n_ports; i++) {
6040 struct ata_port *ap = host->ports[i];
6041
6042 if (!ap)
6043 continue;
6044
6045 if (ap->scsi_host)
6046 scsi_host_put(ap->scsi_host);
6047
6048 }
6049
6050 dev_set_drvdata(gendev, NULL);
6051 ata_host_put(host);
6052}
6053
6054static void ata_host_release(struct kref *kref)
6055{
6056 struct ata_host *host = container_of(kref, struct ata_host, kref);
6057 int i;
6058
6059 for (i = 0; i < host->n_ports; i++) {
6060 struct ata_port *ap = host->ports[i];
6061
6062 kfree(ap->pmp_link);
6063 kfree(ap->slave_link);
6064 kfree(ap);
6065 host->ports[i] = NULL;
6066 }
6067 kfree(host);
6068}
6069
6070void ata_host_get(struct ata_host *host)
6071{
6072 kref_get(&host->kref);
6073}
6074
6075void ata_host_put(struct ata_host *host)
6076{
6077 kref_put(&host->kref, ata_host_release);
6078}
6079
6080/**
6081 * ata_host_alloc - allocate and init basic ATA host resources
6082 * @dev: generic device this host is associated with
6083 * @max_ports: maximum number of ATA ports associated with this host
6084 *
6085 * Allocate and initialize basic ATA host resources. LLD calls
6086 * this function to allocate a host, initializes it fully and
6087 * attaches it using ata_host_register().
6088 *
6089 * @max_ports ports are allocated and host->n_ports is
6090 * initialized to @max_ports. The caller is allowed to decrease
6091 * host->n_ports before calling ata_host_register(). The unused
6092 * ports will be automatically freed on registration.
6093 *
6094 * RETURNS:
6095 * Allocate ATA host on success, NULL on failure.
6096 *
6097 * LOCKING:
6098 * Inherited from calling layer (may sleep).
6099 */
6100struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6101{
6102 struct ata_host *host;
6103 size_t sz;
6104 int i;
6105 void *dr;
6106
6107 DPRINTK("ENTER\n");
6108
6109 /* alloc a container for our list of ATA ports (buses) */
6110 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6111 host = kzalloc(sz, GFP_KERNEL);
6112 if (!host)
6113 return NULL;
6114
6115 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6116 goto err_free;
6117
6118 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
6119 if (!dr)
6120 goto err_out;
6121
6122 devres_add(dev, dr);
6123 dev_set_drvdata(dev, host);
6124
6125 spin_lock_init(&host->lock);
6126 mutex_init(&host->eh_mutex);
6127 host->dev = dev;
6128 host->n_ports = max_ports;
6129 kref_init(&host->kref);
6130
6131 /* allocate ports bound to this host */
6132 for (i = 0; i < max_ports; i++) {
6133 struct ata_port *ap;
6134
6135 ap = ata_port_alloc(host);
6136 if (!ap)
6137 goto err_out;
6138
6139 ap->port_no = i;
6140 host->ports[i] = ap;
6141 }
6142
6143 devres_remove_group(dev, NULL);
6144 return host;
6145
6146 err_out:
6147 devres_release_group(dev, NULL);
6148 err_free:
6149 kfree(host);
6150 return NULL;
6151}
6152
6153/**
6154 * ata_host_alloc_pinfo - alloc host and init with port_info array
6155 * @dev: generic device this host is associated with
6156 * @ppi: array of ATA port_info to initialize host with
6157 * @n_ports: number of ATA ports attached to this host
6158 *
6159 * Allocate ATA host and initialize with info from @ppi. If NULL
6160 * terminated, @ppi may contain fewer entries than @n_ports. The
6161 * last entry will be used for the remaining ports.
6162 *
6163 * RETURNS:
6164 * Allocate ATA host on success, NULL on failure.
6165 *
6166 * LOCKING:
6167 * Inherited from calling layer (may sleep).
6168 */
6169struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6170 const struct ata_port_info * const * ppi,
6171 int n_ports)
6172{
6173 const struct ata_port_info *pi;
6174 struct ata_host *host;
6175 int i, j;
6176
6177 host = ata_host_alloc(dev, n_ports);
6178 if (!host)
6179 return NULL;
6180
6181 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6182 struct ata_port *ap = host->ports[i];
6183
6184 if (ppi[j])
6185 pi = ppi[j++];
6186
6187 ap->pio_mask = pi->pio_mask;
6188 ap->mwdma_mask = pi->mwdma_mask;
6189 ap->udma_mask = pi->udma_mask;
6190 ap->flags |= pi->flags;
6191 ap->link.flags |= pi->link_flags;
6192 ap->ops = pi->port_ops;
6193
6194 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6195 host->ops = pi->port_ops;
6196 }
6197
6198 return host;
6199}
6200
6201/**
6202 * ata_slave_link_init - initialize slave link
6203 * @ap: port to initialize slave link for
6204 *
6205 * Create and initialize slave link for @ap. This enables slave
6206 * link handling on the port.
6207 *
6208 * In libata, a port contains links and a link contains devices.
6209 * There is single host link but if a PMP is attached to it,
6210 * there can be multiple fan-out links. On SATA, there's usually
6211 * a single device connected to a link but PATA and SATA
6212 * controllers emulating TF based interface can have two - master
6213 * and slave.
6214 *
6215 * However, there are a few controllers which don't fit into this
6216 * abstraction too well - SATA controllers which emulate TF
6217 * interface with both master and slave devices but also have
6218 * separate SCR register sets for each device. These controllers
6219 * need separate links for physical link handling
6220 * (e.g. onlineness, link speed) but should be treated like a
6221 * traditional M/S controller for everything else (e.g. command
6222 * issue, softreset).
6223 *
6224 * slave_link is libata's way of handling this class of
6225 * controllers without impacting core layer too much. For
6226 * anything other than physical link handling, the default host
6227 * link is used for both master and slave. For physical link
6228 * handling, separate @ap->slave_link is used. All dirty details
6229 * are implemented inside libata core layer. From LLD's POV, the
6230 * only difference is that prereset, hardreset and postreset are
6231 * called once more for the slave link, so the reset sequence
6232 * looks like the following.
6233 *
6234 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6235 * softreset(M) -> postreset(M) -> postreset(S)
6236 *
6237 * Note that softreset is called only for the master. Softreset
6238 * resets both M/S by definition, so SRST on master should handle
6239 * both (the standard method will work just fine).
6240 *
6241 * LOCKING:
6242 * Should be called before host is registered.
6243 *
6244 * RETURNS:
6245 * 0 on success, -errno on failure.
6246 */
6247int ata_slave_link_init(struct ata_port *ap)
6248{
6249 struct ata_link *link;
6250
6251 WARN_ON(ap->slave_link);
6252 WARN_ON(ap->flags & ATA_FLAG_PMP);
6253
6254 link = kzalloc(sizeof(*link), GFP_KERNEL);
6255 if (!link)
6256 return -ENOMEM;
6257
6258 ata_link_init(ap, link, 1);
6259 ap->slave_link = link;
6260 return 0;
6261}
6262
6263static void ata_host_stop(struct device *gendev, void *res)
6264{
6265 struct ata_host *host = dev_get_drvdata(gendev);
6266 int i;
6267
6268 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6269
6270 for (i = 0; i < host->n_ports; i++) {
6271 struct ata_port *ap = host->ports[i];
6272
6273 if (ap->ops->port_stop)
6274 ap->ops->port_stop(ap);
6275 }
6276
6277 if (host->ops->host_stop)
6278 host->ops->host_stop(host);
6279}
6280
6281/**
6282 * ata_finalize_port_ops - finalize ata_port_operations
6283 * @ops: ata_port_operations to finalize
6284 *
6285 * An ata_port_operations can inherit from another ops and that
6286 * ops can again inherit from another. This can go on as many
6287 * times as necessary as long as there is no loop in the
6288 * inheritance chain.
6289 *
6290 * Ops tables are finalized when the host is started. NULL or
6291 * unspecified entries are inherited from the closet ancestor
6292 * which has the method and the entry is populated with it.
6293 * After finalization, the ops table directly points to all the
6294 * methods and ->inherits is no longer necessary and cleared.
6295 *
6296 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6297 *
6298 * LOCKING:
6299 * None.
6300 */
6301static void ata_finalize_port_ops(struct ata_port_operations *ops)
6302{
6303 static DEFINE_SPINLOCK(lock);
6304 const struct ata_port_operations *cur;
6305 void **begin = (void **)ops;
6306 void **end = (void **)&ops->inherits;
6307 void **pp;
6308
6309 if (!ops || !ops->inherits)
6310 return;
6311
6312 spin_lock(&lock);
6313
6314 for (cur = ops->inherits; cur; cur = cur->inherits) {
6315 void **inherit = (void **)cur;
6316
6317 for (pp = begin; pp < end; pp++, inherit++)
6318 if (!*pp)
6319 *pp = *inherit;
6320 }
6321
6322 for (pp = begin; pp < end; pp++)
6323 if (IS_ERR(*pp))
6324 *pp = NULL;
6325
6326 ops->inherits = NULL;
6327
6328 spin_unlock(&lock);
6329}
6330
6331/**
6332 * ata_host_start - start and freeze ports of an ATA host
6333 * @host: ATA host to start ports for
6334 *
6335 * Start and then freeze ports of @host. Started status is
6336 * recorded in host->flags, so this function can be called
6337 * multiple times. Ports are guaranteed to get started only
6338 * once. If host->ops isn't initialized yet, its set to the
6339 * first non-dummy port ops.
6340 *
6341 * LOCKING:
6342 * Inherited from calling layer (may sleep).
6343 *
6344 * RETURNS:
6345 * 0 if all ports are started successfully, -errno otherwise.
6346 */
6347int ata_host_start(struct ata_host *host)
6348{
6349 int have_stop = 0;
6350 void *start_dr = NULL;
6351 int i, rc;
6352
6353 if (host->flags & ATA_HOST_STARTED)
6354 return 0;
6355
6356 ata_finalize_port_ops(host->ops);
6357
6358 for (i = 0; i < host->n_ports; i++) {
6359 struct ata_port *ap = host->ports[i];
6360
6361 ata_finalize_port_ops(ap->ops);
6362
6363 if (!host->ops && !ata_port_is_dummy(ap))
6364 host->ops = ap->ops;
6365
6366 if (ap->ops->port_stop)
6367 have_stop = 1;
6368 }
6369
6370 if (host->ops->host_stop)
6371 have_stop = 1;
6372
6373 if (have_stop) {
6374 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6375 if (!start_dr)
6376 return -ENOMEM;
6377 }
6378
6379 for (i = 0; i < host->n_ports; i++) {
6380 struct ata_port *ap = host->ports[i];
6381
6382 if (ap->ops->port_start) {
6383 rc = ap->ops->port_start(ap);
6384 if (rc) {
6385 if (rc != -ENODEV)
6386 dev_err(host->dev,
6387 "failed to start port %d (errno=%d)\n",
6388 i, rc);
6389 goto err_out;
6390 }
6391 }
6392 ata_eh_freeze_port(ap);
6393 }
6394
6395 if (start_dr)
6396 devres_add(host->dev, start_dr);
6397 host->flags |= ATA_HOST_STARTED;
6398 return 0;
6399
6400 err_out:
6401 while (--i >= 0) {
6402 struct ata_port *ap = host->ports[i];
6403
6404 if (ap->ops->port_stop)
6405 ap->ops->port_stop(ap);
6406 }
6407 devres_free(start_dr);
6408 return rc;
6409}
6410
6411/**
6412 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6413 * @host: host to initialize
6414 * @dev: device host is attached to
6415 * @ops: port_ops
6416 *
6417 */
6418void ata_host_init(struct ata_host *host, struct device *dev,
6419 struct ata_port_operations *ops)
6420{
6421 spin_lock_init(&host->lock);
6422 mutex_init(&host->eh_mutex);
6423 host->n_tags = ATA_MAX_QUEUE;
6424 host->dev = dev;
6425 host->ops = ops;
6426 kref_init(&host->kref);
6427}
6428
6429void __ata_port_probe(struct ata_port *ap)
6430{
6431 struct ata_eh_info *ehi = &ap->link.eh_info;
6432 unsigned long flags;
6433
6434 /* kick EH for boot probing */
6435 spin_lock_irqsave(ap->lock, flags);
6436
6437 ehi->probe_mask |= ATA_ALL_DEVICES;
6438 ehi->action |= ATA_EH_RESET;
6439 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6440
6441 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6442 ap->pflags |= ATA_PFLAG_LOADING;
6443 ata_port_schedule_eh(ap);
6444
6445 spin_unlock_irqrestore(ap->lock, flags);
6446}
6447
6448int ata_port_probe(struct ata_port *ap)
6449{
6450 int rc = 0;
6451
6452 if (ap->ops->error_handler) {
6453 __ata_port_probe(ap);
6454 ata_port_wait_eh(ap);
6455 } else {
6456 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6457 rc = ata_bus_probe(ap);
6458 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6459 }
6460 return rc;
6461}
6462
6463
6464static void async_port_probe(void *data, async_cookie_t cookie)
6465{
6466 struct ata_port *ap = data;
6467
6468 /*
6469 * If we're not allowed to scan this host in parallel,
6470 * we need to wait until all previous scans have completed
6471 * before going further.
6472 * Jeff Garzik says this is only within a controller, so we
6473 * don't need to wait for port 0, only for later ports.
6474 */
6475 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6476 async_synchronize_cookie(cookie);
6477
6478 (void)ata_port_probe(ap);
6479
6480 /* in order to keep device order, we need to synchronize at this point */
6481 async_synchronize_cookie(cookie);
6482
6483 ata_scsi_scan_host(ap, 1);
6484}
6485
6486/**
6487 * ata_host_register - register initialized ATA host
6488 * @host: ATA host to register
6489 * @sht: template for SCSI host
6490 *
6491 * Register initialized ATA host. @host is allocated using
6492 * ata_host_alloc() and fully initialized by LLD. This function
6493 * starts ports, registers @host with ATA and SCSI layers and
6494 * probe registered devices.
6495 *
6496 * LOCKING:
6497 * Inherited from calling layer (may sleep).
6498 *
6499 * RETURNS:
6500 * 0 on success, -errno otherwise.
6501 */
6502int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6503{
6504 int i, rc;
6505
6506 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
6507
6508 /* host must have been started */
6509 if (!(host->flags & ATA_HOST_STARTED)) {
6510 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6511 WARN_ON(1);
6512 return -EINVAL;
6513 }
6514
6515 /* Blow away unused ports. This happens when LLD can't
6516 * determine the exact number of ports to allocate at
6517 * allocation time.
6518 */
6519 for (i = host->n_ports; host->ports[i]; i++)
6520 kfree(host->ports[i]);
6521
6522 /* give ports names and add SCSI hosts */
6523 for (i = 0; i < host->n_ports; i++) {
6524 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6525 host->ports[i]->local_port_no = i + 1;
6526 }
6527
6528 /* Create associated sysfs transport objects */
6529 for (i = 0; i < host->n_ports; i++) {
6530 rc = ata_tport_add(host->dev,host->ports[i]);
6531 if (rc) {
6532 goto err_tadd;
6533 }
6534 }
6535
6536 rc = ata_scsi_add_hosts(host, sht);
6537 if (rc)
6538 goto err_tadd;
6539
6540 /* set cable, sata_spd_limit and report */
6541 for (i = 0; i < host->n_ports; i++) {
6542 struct ata_port *ap = host->ports[i];
6543 unsigned long xfer_mask;
6544
6545 /* set SATA cable type if still unset */
6546 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6547 ap->cbl = ATA_CBL_SATA;
6548
6549 /* init sata_spd_limit to the current value */
6550 sata_link_init_spd(&ap->link);
6551 if (ap->slave_link)
6552 sata_link_init_spd(ap->slave_link);
6553
6554 /* print per-port info to dmesg */
6555 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6556 ap->udma_mask);
6557
6558 if (!ata_port_is_dummy(ap)) {
6559 ata_port_info(ap, "%cATA max %s %s\n",
6560 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6561 ata_mode_string(xfer_mask),
6562 ap->link.eh_info.desc);
6563 ata_ehi_clear_desc(&ap->link.eh_info);
6564 } else
6565 ata_port_info(ap, "DUMMY\n");
6566 }
6567
6568 /* perform each probe asynchronously */
6569 for (i = 0; i < host->n_ports; i++) {
6570 struct ata_port *ap = host->ports[i];
6571 async_schedule(async_port_probe, ap);
6572 }
6573
6574 return 0;
6575
6576 err_tadd:
6577 while (--i >= 0) {
6578 ata_tport_delete(host->ports[i]);
6579 }
6580 return rc;
6581
6582}
6583
6584/**
6585 * ata_host_activate - start host, request IRQ and register it
6586 * @host: target ATA host
6587 * @irq: IRQ to request
6588 * @irq_handler: irq_handler used when requesting IRQ
6589 * @irq_flags: irq_flags used when requesting IRQ
6590 * @sht: scsi_host_template to use when registering the host
6591 *
6592 * After allocating an ATA host and initializing it, most libata
6593 * LLDs perform three steps to activate the host - start host,
6594 * request IRQ and register it. This helper takes necessary
6595 * arguments and performs the three steps in one go.
6596 *
6597 * An invalid IRQ skips the IRQ registration and expects the host to
6598 * have set polling mode on the port. In this case, @irq_handler
6599 * should be NULL.
6600 *
6601 * LOCKING:
6602 * Inherited from calling layer (may sleep).
6603 *
6604 * RETURNS:
6605 * 0 on success, -errno otherwise.
6606 */
6607int ata_host_activate(struct ata_host *host, int irq,
6608 irq_handler_t irq_handler, unsigned long irq_flags,
6609 struct scsi_host_template *sht)
6610{
6611 int i, rc;
6612 char *irq_desc;
6613
6614 rc = ata_host_start(host);
6615 if (rc)
6616 return rc;
6617
6618 /* Special case for polling mode */
6619 if (!irq) {
6620 WARN_ON(irq_handler);
6621 return ata_host_register(host, sht);
6622 }
6623
6624 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6625 dev_driver_string(host->dev),
6626 dev_name(host->dev));
6627 if (!irq_desc)
6628 return -ENOMEM;
6629
6630 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6631 irq_desc, host);
6632 if (rc)
6633 return rc;
6634
6635 for (i = 0; i < host->n_ports; i++)
6636 ata_port_desc(host->ports[i], "irq %d", irq);
6637
6638 rc = ata_host_register(host, sht);
6639 /* if failed, just free the IRQ and leave ports alone */
6640 if (rc)
6641 devm_free_irq(host->dev, irq, host);
6642
6643 return rc;
6644}
6645
6646/**
6647 * ata_port_detach - Detach ATA port in preparation of device removal
6648 * @ap: ATA port to be detached
6649 *
6650 * Detach all ATA devices and the associated SCSI devices of @ap;
6651 * then, remove the associated SCSI host. @ap is guaranteed to
6652 * be quiescent on return from this function.
6653 *
6654 * LOCKING:
6655 * Kernel thread context (may sleep).
6656 */
6657static void ata_port_detach(struct ata_port *ap)
6658{
6659 unsigned long flags;
6660 struct ata_link *link;
6661 struct ata_device *dev;
6662
6663 if (!ap->ops->error_handler)
6664 goto skip_eh;
6665
6666 /* tell EH we're leaving & flush EH */
6667 spin_lock_irqsave(ap->lock, flags);
6668 ap->pflags |= ATA_PFLAG_UNLOADING;
6669 ata_port_schedule_eh(ap);
6670 spin_unlock_irqrestore(ap->lock, flags);
6671
6672 /* wait till EH commits suicide */
6673 ata_port_wait_eh(ap);
6674
6675 /* it better be dead now */
6676 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6677
6678 cancel_delayed_work_sync(&ap->hotplug_task);
6679
6680 skip_eh:
6681 /* clean up zpodd on port removal */
6682 ata_for_each_link(link, ap, HOST_FIRST) {
6683 ata_for_each_dev(dev, link, ALL) {
6684 if (zpodd_dev_enabled(dev))
6685 zpodd_exit(dev);
6686 }
6687 }
6688 if (ap->pmp_link) {
6689 int i;
6690 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6691 ata_tlink_delete(&ap->pmp_link[i]);
6692 }
6693 /* remove the associated SCSI host */
6694 scsi_remove_host(ap->scsi_host);
6695 ata_tport_delete(ap);
6696}
6697
6698/**
6699 * ata_host_detach - Detach all ports of an ATA host
6700 * @host: Host to detach
6701 *
6702 * Detach all ports of @host.
6703 *
6704 * LOCKING:
6705 * Kernel thread context (may sleep).
6706 */
6707void ata_host_detach(struct ata_host *host)
6708{
6709 int i;
6710
6711 for (i = 0; i < host->n_ports; i++)
6712 ata_port_detach(host->ports[i]);
6713
6714 /* the host is dead now, dissociate ACPI */
6715 ata_acpi_dissociate(host);
6716}
6717
6718#ifdef CONFIG_PCI
6719
6720/**
6721 * ata_pci_remove_one - PCI layer callback for device removal
6722 * @pdev: PCI device that was removed
6723 *
6724 * PCI layer indicates to libata via this hook that hot-unplug or
6725 * module unload event has occurred. Detach all ports. Resource
6726 * release is handled via devres.
6727 *
6728 * LOCKING:
6729 * Inherited from PCI layer (may sleep).
6730 */
6731void ata_pci_remove_one(struct pci_dev *pdev)
6732{
6733 struct ata_host *host = pci_get_drvdata(pdev);
6734
6735 ata_host_detach(host);
6736}
6737
6738/* move to PCI subsystem */
6739int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6740{
6741 unsigned long tmp = 0;
6742
6743 switch (bits->width) {
6744 case 1: {
6745 u8 tmp8 = 0;
6746 pci_read_config_byte(pdev, bits->reg, &tmp8);
6747 tmp = tmp8;
6748 break;
6749 }
6750 case 2: {
6751 u16 tmp16 = 0;
6752 pci_read_config_word(pdev, bits->reg, &tmp16);
6753 tmp = tmp16;
6754 break;
6755 }
6756 case 4: {
6757 u32 tmp32 = 0;
6758 pci_read_config_dword(pdev, bits->reg, &tmp32);
6759 tmp = tmp32;
6760 break;
6761 }
6762
6763 default:
6764 return -EINVAL;
6765 }
6766
6767 tmp &= bits->mask;
6768
6769 return (tmp == bits->val) ? 1 : 0;
6770}
6771
6772#ifdef CONFIG_PM
6773void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6774{
6775 pci_save_state(pdev);
6776 pci_disable_device(pdev);
6777
6778 if (mesg.event & PM_EVENT_SLEEP)
6779 pci_set_power_state(pdev, PCI_D3hot);
6780}
6781
6782int ata_pci_device_do_resume(struct pci_dev *pdev)
6783{
6784 int rc;
6785
6786 pci_set_power_state(pdev, PCI_D0);
6787 pci_restore_state(pdev);
6788
6789 rc = pcim_enable_device(pdev);
6790 if (rc) {
6791 dev_err(&pdev->dev,
6792 "failed to enable device after resume (%d)\n", rc);
6793 return rc;
6794 }
6795
6796 pci_set_master(pdev);
6797 return 0;
6798}
6799
6800int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6801{
6802 struct ata_host *host = pci_get_drvdata(pdev);
6803 int rc = 0;
6804
6805 rc = ata_host_suspend(host, mesg);
6806 if (rc)
6807 return rc;
6808
6809 ata_pci_device_do_suspend(pdev, mesg);
6810
6811 return 0;
6812}
6813
6814int ata_pci_device_resume(struct pci_dev *pdev)
6815{
6816 struct ata_host *host = pci_get_drvdata(pdev);
6817 int rc;
6818
6819 rc = ata_pci_device_do_resume(pdev);
6820 if (rc == 0)
6821 ata_host_resume(host);
6822 return rc;
6823}
6824#endif /* CONFIG_PM */
6825
6826#endif /* CONFIG_PCI */
6827
6828/**
6829 * ata_platform_remove_one - Platform layer callback for device removal
6830 * @pdev: Platform device that was removed
6831 *
6832 * Platform layer indicates to libata via this hook that hot-unplug or
6833 * module unload event has occurred. Detach all ports. Resource
6834 * release is handled via devres.
6835 *
6836 * LOCKING:
6837 * Inherited from platform layer (may sleep).
6838 */
6839int ata_platform_remove_one(struct platform_device *pdev)
6840{
6841 struct ata_host *host = platform_get_drvdata(pdev);
6842
6843 ata_host_detach(host);
6844
6845 return 0;
6846}
6847
6848static int __init ata_parse_force_one(char **cur,
6849 struct ata_force_ent *force_ent,
6850 const char **reason)
6851{
6852 static const struct ata_force_param force_tbl[] __initconst = {
6853 { "40c", .cbl = ATA_CBL_PATA40 },
6854 { "80c", .cbl = ATA_CBL_PATA80 },
6855 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6856 { "unk", .cbl = ATA_CBL_PATA_UNK },
6857 { "ign", .cbl = ATA_CBL_PATA_IGN },
6858 { "sata", .cbl = ATA_CBL_SATA },
6859 { "1.5Gbps", .spd_limit = 1 },
6860 { "3.0Gbps", .spd_limit = 2 },
6861 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6862 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6863 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6864 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6865 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6866 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6867 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6868 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6869 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6870 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6871 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6872 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6873 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6874 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6875 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6876 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6877 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6878 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6879 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6880 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6881 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6882 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6883 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6884 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6885 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6886 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6887 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6888 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6889 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6890 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6891 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6892 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6893 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6894 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6895 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6896 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6897 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6898 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6899 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6900 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6901 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6902 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6903 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6904 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6905 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6906 };
6907 char *start = *cur, *p = *cur;
6908 char *id, *val, *endp;
6909 const struct ata_force_param *match_fp = NULL;
6910 int nr_matches = 0, i;
6911
6912 /* find where this param ends and update *cur */
6913 while (*p != '\0' && *p != ',')
6914 p++;
6915
6916 if (*p == '\0')
6917 *cur = p;
6918 else
6919 *cur = p + 1;
6920
6921 *p = '\0';
6922
6923 /* parse */
6924 p = strchr(start, ':');
6925 if (!p) {
6926 val = strstrip(start);
6927 goto parse_val;
6928 }
6929 *p = '\0';
6930
6931 id = strstrip(start);
6932 val = strstrip(p + 1);
6933
6934 /* parse id */
6935 p = strchr(id, '.');
6936 if (p) {
6937 *p++ = '\0';
6938 force_ent->device = simple_strtoul(p, &endp, 10);
6939 if (p == endp || *endp != '\0') {
6940 *reason = "invalid device";
6941 return -EINVAL;
6942 }
6943 }
6944
6945 force_ent->port = simple_strtoul(id, &endp, 10);
6946 if (id == endp || *endp != '\0') {
6947 *reason = "invalid port/link";
6948 return -EINVAL;
6949 }
6950
6951 parse_val:
6952 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6953 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6954 const struct ata_force_param *fp = &force_tbl[i];
6955
6956 if (strncasecmp(val, fp->name, strlen(val)))
6957 continue;
6958
6959 nr_matches++;
6960 match_fp = fp;
6961
6962 if (strcasecmp(val, fp->name) == 0) {
6963 nr_matches = 1;
6964 break;
6965 }
6966 }
6967
6968 if (!nr_matches) {
6969 *reason = "unknown value";
6970 return -EINVAL;
6971 }
6972 if (nr_matches > 1) {
6973 *reason = "ambiguous value";
6974 return -EINVAL;
6975 }
6976
6977 force_ent->param = *match_fp;
6978
6979 return 0;
6980}
6981
6982static void __init ata_parse_force_param(void)
6983{
6984 int idx = 0, size = 1;
6985 int last_port = -1, last_device = -1;
6986 char *p, *cur, *next;
6987
6988 /* calculate maximum number of params and allocate force_tbl */
6989 for (p = ata_force_param_buf; *p; p++)
6990 if (*p == ',')
6991 size++;
6992
6993 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6994 if (!ata_force_tbl) {
6995 printk(KERN_WARNING "ata: failed to extend force table, "
6996 "libata.force ignored\n");
6997 return;
6998 }
6999
7000 /* parse and populate the table */
7001 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7002 const char *reason = "";
7003 struct ata_force_ent te = { .port = -1, .device = -1 };
7004
7005 next = cur;
7006 if (ata_parse_force_one(&next, &te, &reason)) {
7007 printk(KERN_WARNING "ata: failed to parse force "
7008 "parameter \"%s\" (%s)\n",
7009 cur, reason);
7010 continue;
7011 }
7012
7013 if (te.port == -1) {
7014 te.port = last_port;
7015 te.device = last_device;
7016 }
7017
7018 ata_force_tbl[idx++] = te;
7019
7020 last_port = te.port;
7021 last_device = te.device;
7022 }
7023
7024 ata_force_tbl_size = idx;
7025}
7026
7027static int __init ata_init(void)
7028{
7029 int rc;
7030
7031 ata_parse_force_param();
7032
7033 rc = ata_sff_init();
7034 if (rc) {
7035 kfree(ata_force_tbl);
7036 return rc;
7037 }
7038
7039 libata_transport_init();
7040 ata_scsi_transport_template = ata_attach_transport();
7041 if (!ata_scsi_transport_template) {
7042 ata_sff_exit();
7043 rc = -ENOMEM;
7044 goto err_out;
7045 }
7046
7047 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7048 return 0;
7049
7050err_out:
7051 return rc;
7052}
7053
7054static void __exit ata_exit(void)
7055{
7056 ata_release_transport(ata_scsi_transport_template);
7057 libata_transport_exit();
7058 ata_sff_exit();
7059 kfree(ata_force_tbl);
7060}
7061
7062subsys_initcall(ata_init);
7063module_exit(ata_exit);
7064
7065static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7066
7067int ata_ratelimit(void)
7068{
7069 return __ratelimit(&ratelimit);
7070}
7071
7072/**
7073 * ata_msleep - ATA EH owner aware msleep
7074 * @ap: ATA port to attribute the sleep to
7075 * @msecs: duration to sleep in milliseconds
7076 *
7077 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7078 * ownership is released before going to sleep and reacquired
7079 * after the sleep is complete. IOW, other ports sharing the
7080 * @ap->host will be allowed to own the EH while this task is
7081 * sleeping.
7082 *
7083 * LOCKING:
7084 * Might sleep.
7085 */
7086void ata_msleep(struct ata_port *ap, unsigned int msecs)
7087{
7088 bool owns_eh = ap && ap->host->eh_owner == current;
7089
7090 if (owns_eh)
7091 ata_eh_release(ap);
7092
7093 if (msecs < 20) {
7094 unsigned long usecs = msecs * USEC_PER_MSEC;
7095 usleep_range(usecs, usecs + 50);
7096 } else {
7097 msleep(msecs);
7098 }
7099
7100 if (owns_eh)
7101 ata_eh_acquire(ap);
7102}
7103
7104/**
7105 * ata_wait_register - wait until register value changes
7106 * @ap: ATA port to wait register for, can be NULL
7107 * @reg: IO-mapped register
7108 * @mask: Mask to apply to read register value
7109 * @val: Wait condition
7110 * @interval: polling interval in milliseconds
7111 * @timeout: timeout in milliseconds
7112 *
7113 * Waiting for some bits of register to change is a common
7114 * operation for ATA controllers. This function reads 32bit LE
7115 * IO-mapped register @reg and tests for the following condition.
7116 *
7117 * (*@reg & mask) != val
7118 *
7119 * If the condition is met, it returns; otherwise, the process is
7120 * repeated after @interval_msec until timeout.
7121 *
7122 * LOCKING:
7123 * Kernel thread context (may sleep)
7124 *
7125 * RETURNS:
7126 * The final register value.
7127 */
7128u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7129 unsigned long interval, unsigned long timeout)
7130{
7131 unsigned long deadline;
7132 u32 tmp;
7133
7134 tmp = ioread32(reg);
7135
7136 /* Calculate timeout _after_ the first read to make sure
7137 * preceding writes reach the controller before starting to
7138 * eat away the timeout.
7139 */
7140 deadline = ata_deadline(jiffies, timeout);
7141
7142 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7143 ata_msleep(ap, interval);
7144 tmp = ioread32(reg);
7145 }
7146
7147 return tmp;
7148}
7149
7150/**
7151 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7152 * @link: Link receiving the event
7153 *
7154 * Test whether the received PHY event has to be ignored or not.
7155 *
7156 * LOCKING:
7157 * None:
7158 *
7159 * RETURNS:
7160 * True if the event has to be ignored.
7161 */
7162bool sata_lpm_ignore_phy_events(struct ata_link *link)
7163{
7164 unsigned long lpm_timeout = link->last_lpm_change +
7165 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7166
7167 /* if LPM is enabled, PHYRDY doesn't mean anything */
7168 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7169 return true;
7170
7171 /* ignore the first PHY event after the LPM policy changed
7172 * as it is might be spurious
7173 */
7174 if ((link->flags & ATA_LFLAG_CHANGED) &&
7175 time_before(jiffies, lpm_timeout))
7176 return true;
7177
7178 return false;
7179}
7180EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7181
7182/*
7183 * Dummy port_ops
7184 */
7185static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7186{
7187 return AC_ERR_SYSTEM;
7188}
7189
7190static void ata_dummy_error_handler(struct ata_port *ap)
7191{
7192 /* truly dummy */
7193}
7194
7195struct ata_port_operations ata_dummy_port_ops = {
7196 .qc_prep = ata_noop_qc_prep,
7197 .qc_issue = ata_dummy_qc_issue,
7198 .error_handler = ata_dummy_error_handler,
7199 .sched_eh = ata_std_sched_eh,
7200 .end_eh = ata_std_end_eh,
7201};
7202
7203const struct ata_port_info ata_dummy_port_info = {
7204 .port_ops = &ata_dummy_port_ops,
7205};
7206
7207/*
7208 * Utility print functions
7209 */
7210void ata_port_printk(const struct ata_port *ap, const char *level,
7211 const char *fmt, ...)
7212{
7213 struct va_format vaf;
7214 va_list args;
7215
7216 va_start(args, fmt);
7217
7218 vaf.fmt = fmt;
7219 vaf.va = &args;
7220
7221 printk("%sata%u: %pV", level, ap->print_id, &vaf);
7222
7223 va_end(args);
7224}
7225EXPORT_SYMBOL(ata_port_printk);
7226
7227void ata_link_printk(const struct ata_link *link, const char *level,
7228 const char *fmt, ...)
7229{
7230 struct va_format vaf;
7231 va_list args;
7232
7233 va_start(args, fmt);
7234
7235 vaf.fmt = fmt;
7236 vaf.va = &args;
7237
7238 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7239 printk("%sata%u.%02u: %pV",
7240 level, link->ap->print_id, link->pmp, &vaf);
7241 else
7242 printk("%sata%u: %pV",
7243 level, link->ap->print_id, &vaf);
7244
7245 va_end(args);
7246}
7247EXPORT_SYMBOL(ata_link_printk);
7248
7249void ata_dev_printk(const struct ata_device *dev, const char *level,
7250 const char *fmt, ...)
7251{
7252 struct va_format vaf;
7253 va_list args;
7254
7255 va_start(args, fmt);
7256
7257 vaf.fmt = fmt;
7258 vaf.va = &args;
7259
7260 printk("%sata%u.%02u: %pV",
7261 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7262 &vaf);
7263
7264 va_end(args);
7265}
7266EXPORT_SYMBOL(ata_dev_printk);
7267
7268void ata_print_version(const struct device *dev, const char *version)
7269{
7270 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7271}
7272EXPORT_SYMBOL(ata_print_version);
7273
7274/*
7275 * libata is essentially a library of internal helper functions for
7276 * low-level ATA host controller drivers. As such, the API/ABI is
7277 * likely to change as new drivers are added and updated.
7278 * Do not depend on ABI/API stability.
7279 */
7280EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7281EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7282EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7283EXPORT_SYMBOL_GPL(ata_base_port_ops);
7284EXPORT_SYMBOL_GPL(sata_port_ops);
7285EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7286EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7287EXPORT_SYMBOL_GPL(ata_link_next);
7288EXPORT_SYMBOL_GPL(ata_dev_next);
7289EXPORT_SYMBOL_GPL(ata_std_bios_param);
7290EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7291EXPORT_SYMBOL_GPL(ata_host_init);
7292EXPORT_SYMBOL_GPL(ata_host_alloc);
7293EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7294EXPORT_SYMBOL_GPL(ata_slave_link_init);
7295EXPORT_SYMBOL_GPL(ata_host_start);
7296EXPORT_SYMBOL_GPL(ata_host_register);
7297EXPORT_SYMBOL_GPL(ata_host_activate);
7298EXPORT_SYMBOL_GPL(ata_host_detach);
7299EXPORT_SYMBOL_GPL(ata_sg_init);
7300EXPORT_SYMBOL_GPL(ata_qc_complete);
7301EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7302EXPORT_SYMBOL_GPL(atapi_cmd_type);
7303EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7304EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7305EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7306EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7307EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7308EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7309EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7310EXPORT_SYMBOL_GPL(ata_mode_string);
7311EXPORT_SYMBOL_GPL(ata_id_xfermask);
7312EXPORT_SYMBOL_GPL(ata_do_set_mode);
7313EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7314EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7315EXPORT_SYMBOL_GPL(ata_dev_disable);
7316EXPORT_SYMBOL_GPL(sata_set_spd);
7317EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7318EXPORT_SYMBOL_GPL(sata_link_debounce);
7319EXPORT_SYMBOL_GPL(sata_link_resume);
7320EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7321EXPORT_SYMBOL_GPL(ata_std_prereset);
7322EXPORT_SYMBOL_GPL(sata_link_hardreset);
7323EXPORT_SYMBOL_GPL(sata_std_hardreset);
7324EXPORT_SYMBOL_GPL(ata_std_postreset);
7325EXPORT_SYMBOL_GPL(ata_dev_classify);
7326EXPORT_SYMBOL_GPL(ata_dev_pair);
7327EXPORT_SYMBOL_GPL(ata_ratelimit);
7328EXPORT_SYMBOL_GPL(ata_msleep);
7329EXPORT_SYMBOL_GPL(ata_wait_register);
7330EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7331EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7332EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7333EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7334EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7335EXPORT_SYMBOL_GPL(sata_scr_valid);
7336EXPORT_SYMBOL_GPL(sata_scr_read);
7337EXPORT_SYMBOL_GPL(sata_scr_write);
7338EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7339EXPORT_SYMBOL_GPL(ata_link_online);
7340EXPORT_SYMBOL_GPL(ata_link_offline);
7341#ifdef CONFIG_PM
7342EXPORT_SYMBOL_GPL(ata_host_suspend);
7343EXPORT_SYMBOL_GPL(ata_host_resume);
7344#endif /* CONFIG_PM */
7345EXPORT_SYMBOL_GPL(ata_id_string);
7346EXPORT_SYMBOL_GPL(ata_id_c_string);
7347EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7348EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7349
7350EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7351EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7352EXPORT_SYMBOL_GPL(ata_timing_compute);
7353EXPORT_SYMBOL_GPL(ata_timing_merge);
7354EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7355
7356#ifdef CONFIG_PCI
7357EXPORT_SYMBOL_GPL(pci_test_config_bits);
7358EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7359#ifdef CONFIG_PM
7360EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7361EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7362EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7363EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7364#endif /* CONFIG_PM */
7365#endif /* CONFIG_PCI */
7366
7367EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7368
7369EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7370EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7371EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7372EXPORT_SYMBOL_GPL(ata_port_desc);
7373#ifdef CONFIG_PCI
7374EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7375#endif /* CONFIG_PCI */
7376EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7377EXPORT_SYMBOL_GPL(ata_link_abort);
7378EXPORT_SYMBOL_GPL(ata_port_abort);
7379EXPORT_SYMBOL_GPL(ata_port_freeze);
7380EXPORT_SYMBOL_GPL(sata_async_notification);
7381EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7382EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7383EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7384EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7385EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7386EXPORT_SYMBOL_GPL(ata_do_eh);
7387EXPORT_SYMBOL_GPL(ata_std_error_handler);
7388
7389EXPORT_SYMBOL_GPL(ata_cable_40wire);
7390EXPORT_SYMBOL_GPL(ata_cable_80wire);
7391EXPORT_SYMBOL_GPL(ata_cable_unknown);
7392EXPORT_SYMBOL_GPL(ata_cable_ignore);
7393EXPORT_SYMBOL_GPL(ata_cable_sata);
7394EXPORT_SYMBOL_GPL(ata_host_get);
7395EXPORT_SYMBOL_GPL(ata_host_put);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/pci.h>
31#include <linux/init.h>
32#include <linux/list.h>
33#include <linux/mm.h>
34#include <linux/spinlock.h>
35#include <linux/blkdev.h>
36#include <linux/delay.h>
37#include <linux/timer.h>
38#include <linux/time.h>
39#include <linux/interrupt.h>
40#include <linux/completion.h>
41#include <linux/suspend.h>
42#include <linux/workqueue.h>
43#include <linux/scatterlist.h>
44#include <linux/io.h>
45#include <linux/log2.h>
46#include <linux/slab.h>
47#include <linux/glob.h>
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
50#include <scsi/scsi_host.h>
51#include <linux/libata.h>
52#include <asm/byteorder.h>
53#include <asm/unaligned.h>
54#include <linux/cdrom.h>
55#include <linux/ratelimit.h>
56#include <linux/leds.h>
57#include <linux/pm_runtime.h>
58#include <linux/platform_device.h>
59#include <asm/setup.h>
60
61#define CREATE_TRACE_POINTS
62#include <trace/events/libata.h>
63
64#include "libata.h"
65#include "libata-transport.h"
66
67const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73};
74
75const struct ata_port_operations sata_port_ops = {
76 .inherits = &ata_base_port_ops,
77
78 .qc_defer = ata_std_qc_defer,
79 .hardreset = sata_std_hardreset,
80};
81EXPORT_SYMBOL_GPL(sata_port_ops);
82
83static unsigned int ata_dev_init_params(struct ata_device *dev,
84 u16 heads, u16 sectors);
85static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86static void ata_dev_xfermask(struct ata_device *dev);
87static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89atomic_t ata_print_id = ATOMIC_INIT(0);
90
91#ifdef CONFIG_ATA_FORCE
92struct ata_force_param {
93 const char *name;
94 u8 cbl;
95 u8 spd_limit;
96 unsigned int xfer_mask;
97 unsigned int horkage_on;
98 unsigned int horkage_off;
99 u16 lflags_on;
100 u16 lflags_off;
101};
102
103struct ata_force_ent {
104 int port;
105 int device;
106 struct ata_force_param param;
107};
108
109static struct ata_force_ent *ata_force_tbl;
110static int ata_force_tbl_size;
111
112static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113/* param_buf is thrown away after initialization, disallow read */
114module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116#endif
117
118static int atapi_enabled = 1;
119module_param(atapi_enabled, int, 0444);
120MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121
122static int atapi_dmadir = 0;
123module_param(atapi_dmadir, int, 0444);
124MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125
126int atapi_passthru16 = 1;
127module_param(atapi_passthru16, int, 0444);
128MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129
130int libata_fua = 0;
131module_param_named(fua, libata_fua, int, 0444);
132MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133
134static int ata_ignore_hpa;
135module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137
138static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139module_param_named(dma, libata_dma_mask, int, 0444);
140MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141
142static int ata_probe_timeout;
143module_param(ata_probe_timeout, int, 0444);
144MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145
146int libata_noacpi = 0;
147module_param_named(noacpi, libata_noacpi, int, 0444);
148MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149
150int libata_allow_tpm = 0;
151module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153
154static int atapi_an;
155module_param(atapi_an, int, 0444);
156MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157
158MODULE_AUTHOR("Jeff Garzik");
159MODULE_DESCRIPTION("Library module for ATA devices");
160MODULE_LICENSE("GPL");
161MODULE_VERSION(DRV_VERSION);
162
163static inline bool ata_dev_print_info(struct ata_device *dev)
164{
165 struct ata_eh_context *ehc = &dev->link->eh_context;
166
167 return ehc->i.flags & ATA_EHI_PRINTINFO;
168}
169
170static bool ata_sstatus_online(u32 sstatus)
171{
172 return (sstatus & 0xf) == 0x3;
173}
174
175/**
176 * ata_link_next - link iteration helper
177 * @link: the previous link, NULL to start
178 * @ap: ATA port containing links to iterate
179 * @mode: iteration mode, one of ATA_LITER_*
180 *
181 * LOCKING:
182 * Host lock or EH context.
183 *
184 * RETURNS:
185 * Pointer to the next link.
186 */
187struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 enum ata_link_iter_mode mode)
189{
190 BUG_ON(mode != ATA_LITER_EDGE &&
191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192
193 /* NULL link indicates start of iteration */
194 if (!link)
195 switch (mode) {
196 case ATA_LITER_EDGE:
197 case ATA_LITER_PMP_FIRST:
198 if (sata_pmp_attached(ap))
199 return ap->pmp_link;
200 fallthrough;
201 case ATA_LITER_HOST_FIRST:
202 return &ap->link;
203 }
204
205 /* we just iterated over the host link, what's next? */
206 if (link == &ap->link)
207 switch (mode) {
208 case ATA_LITER_HOST_FIRST:
209 if (sata_pmp_attached(ap))
210 return ap->pmp_link;
211 fallthrough;
212 case ATA_LITER_PMP_FIRST:
213 if (unlikely(ap->slave_link))
214 return ap->slave_link;
215 fallthrough;
216 case ATA_LITER_EDGE:
217 return NULL;
218 }
219
220 /* slave_link excludes PMP */
221 if (unlikely(link == ap->slave_link))
222 return NULL;
223
224 /* we were over a PMP link */
225 if (++link < ap->pmp_link + ap->nr_pmp_links)
226 return link;
227
228 if (mode == ATA_LITER_PMP_FIRST)
229 return &ap->link;
230
231 return NULL;
232}
233EXPORT_SYMBOL_GPL(ata_link_next);
234
235/**
236 * ata_dev_next - device iteration helper
237 * @dev: the previous device, NULL to start
238 * @link: ATA link containing devices to iterate
239 * @mode: iteration mode, one of ATA_DITER_*
240 *
241 * LOCKING:
242 * Host lock or EH context.
243 *
244 * RETURNS:
245 * Pointer to the next device.
246 */
247struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 enum ata_dev_iter_mode mode)
249{
250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252
253 /* NULL dev indicates start of iteration */
254 if (!dev)
255 switch (mode) {
256 case ATA_DITER_ENABLED:
257 case ATA_DITER_ALL:
258 dev = link->device;
259 goto check;
260 case ATA_DITER_ENABLED_REVERSE:
261 case ATA_DITER_ALL_REVERSE:
262 dev = link->device + ata_link_max_devices(link) - 1;
263 goto check;
264 }
265
266 next:
267 /* move to the next one */
268 switch (mode) {
269 case ATA_DITER_ENABLED:
270 case ATA_DITER_ALL:
271 if (++dev < link->device + ata_link_max_devices(link))
272 goto check;
273 return NULL;
274 case ATA_DITER_ENABLED_REVERSE:
275 case ATA_DITER_ALL_REVERSE:
276 if (--dev >= link->device)
277 goto check;
278 return NULL;
279 }
280
281 check:
282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 !ata_dev_enabled(dev))
284 goto next;
285 return dev;
286}
287EXPORT_SYMBOL_GPL(ata_dev_next);
288
289/**
290 * ata_dev_phys_link - find physical link for a device
291 * @dev: ATA device to look up physical link for
292 *
293 * Look up physical link which @dev is attached to. Note that
294 * this is different from @dev->link only when @dev is on slave
295 * link. For all other cases, it's the same as @dev->link.
296 *
297 * LOCKING:
298 * Don't care.
299 *
300 * RETURNS:
301 * Pointer to the found physical link.
302 */
303struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304{
305 struct ata_port *ap = dev->link->ap;
306
307 if (!ap->slave_link)
308 return dev->link;
309 if (!dev->devno)
310 return &ap->link;
311 return ap->slave_link;
312}
313
314#ifdef CONFIG_ATA_FORCE
315/**
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
328void ata_force_cbl(struct ata_port *ap)
329{
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 return;
344 }
345}
346
347/**
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
350 *
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
359 *
360 * LOCKING:
361 * EH context.
362 */
363static void ata_force_link_limits(struct ata_link *link)
364{
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
368
369 if (ata_is_host_link(link))
370 linkno += 15;
371
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
377
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
380
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
387 }
388
389 /* let lflags stack */
390 if (fe->param.lflags_on) {
391 link->flags |= fe->param.lflags_on;
392 ata_link_notice(link,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags_on, link->flags);
395 }
396 if (fe->param.lflags_off) {
397 link->flags &= ~fe->param.lflags_off;
398 ata_link_notice(link,
399 "FORCE: link flag 0x%x cleared -> 0x%x\n",
400 fe->param.lflags_off, link->flags);
401 }
402 }
403}
404
405/**
406 * ata_force_xfermask - force xfermask according to libata.force
407 * @dev: ATA device of interest
408 *
409 * Force xfer_mask according to libata.force and whine about it.
410 * For consistency with link selection, device number 15 selects
411 * the first device connected to the host link.
412 *
413 * LOCKING:
414 * EH context.
415 */
416static void ata_force_xfermask(struct ata_device *dev)
417{
418 int devno = dev->link->pmp + dev->devno;
419 int alt_devno = devno;
420 int i;
421
422 /* allow n.15/16 for devices attached to host port */
423 if (ata_is_host_link(dev->link))
424 alt_devno += 15;
425
426 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 const struct ata_force_ent *fe = &ata_force_tbl[i];
428 unsigned int pio_mask, mwdma_mask, udma_mask;
429
430 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 continue;
432
433 if (fe->device != -1 && fe->device != devno &&
434 fe->device != alt_devno)
435 continue;
436
437 if (!fe->param.xfer_mask)
438 continue;
439
440 ata_unpack_xfermask(fe->param.xfer_mask,
441 &pio_mask, &mwdma_mask, &udma_mask);
442 if (udma_mask)
443 dev->udma_mask = udma_mask;
444 else if (mwdma_mask) {
445 dev->udma_mask = 0;
446 dev->mwdma_mask = mwdma_mask;
447 } else {
448 dev->udma_mask = 0;
449 dev->mwdma_mask = 0;
450 dev->pio_mask = pio_mask;
451 }
452
453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 fe->param.name);
455 return;
456 }
457}
458
459/**
460 * ata_force_horkage - force horkage according to libata.force
461 * @dev: ATA device of interest
462 *
463 * Force horkage according to libata.force and whine about it.
464 * For consistency with link selection, device number 15 selects
465 * the first device connected to the host link.
466 *
467 * LOCKING:
468 * EH context.
469 */
470static void ata_force_horkage(struct ata_device *dev)
471{
472 int devno = dev->link->pmp + dev->devno;
473 int alt_devno = devno;
474 int i;
475
476 /* allow n.15/16 for devices attached to host port */
477 if (ata_is_host_link(dev->link))
478 alt_devno += 15;
479
480 for (i = 0; i < ata_force_tbl_size; i++) {
481 const struct ata_force_ent *fe = &ata_force_tbl[i];
482
483 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 continue;
485
486 if (fe->device != -1 && fe->device != devno &&
487 fe->device != alt_devno)
488 continue;
489
490 if (!(~dev->horkage & fe->param.horkage_on) &&
491 !(dev->horkage & fe->param.horkage_off))
492 continue;
493
494 dev->horkage |= fe->param.horkage_on;
495 dev->horkage &= ~fe->param.horkage_off;
496
497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 fe->param.name);
499 }
500}
501#else
502static inline void ata_force_link_limits(struct ata_link *link) { }
503static inline void ata_force_xfermask(struct ata_device *dev) { }
504static inline void ata_force_horkage(struct ata_device *dev) { }
505#endif
506
507/**
508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509 * @opcode: SCSI opcode
510 *
511 * Determine ATAPI command type from @opcode.
512 *
513 * LOCKING:
514 * None.
515 *
516 * RETURNS:
517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518 */
519int atapi_cmd_type(u8 opcode)
520{
521 switch (opcode) {
522 case GPCMD_READ_10:
523 case GPCMD_READ_12:
524 return ATAPI_READ;
525
526 case GPCMD_WRITE_10:
527 case GPCMD_WRITE_12:
528 case GPCMD_WRITE_AND_VERIFY_10:
529 return ATAPI_WRITE;
530
531 case GPCMD_READ_CD:
532 case GPCMD_READ_CD_MSF:
533 return ATAPI_READ_CD;
534
535 case ATA_16:
536 case ATA_12:
537 if (atapi_passthru16)
538 return ATAPI_PASS_THRU;
539 fallthrough;
540 default:
541 return ATAPI_MISC;
542 }
543}
544EXPORT_SYMBOL_GPL(atapi_cmd_type);
545
546static const u8 ata_rw_cmds[] = {
547 /* pio multi */
548 ATA_CMD_READ_MULTI,
549 ATA_CMD_WRITE_MULTI,
550 ATA_CMD_READ_MULTI_EXT,
551 ATA_CMD_WRITE_MULTI_EXT,
552 0,
553 0,
554 0,
555 ATA_CMD_WRITE_MULTI_FUA_EXT,
556 /* pio */
557 ATA_CMD_PIO_READ,
558 ATA_CMD_PIO_WRITE,
559 ATA_CMD_PIO_READ_EXT,
560 ATA_CMD_PIO_WRITE_EXT,
561 0,
562 0,
563 0,
564 0,
565 /* dma */
566 ATA_CMD_READ,
567 ATA_CMD_WRITE,
568 ATA_CMD_READ_EXT,
569 ATA_CMD_WRITE_EXT,
570 0,
571 0,
572 0,
573 ATA_CMD_WRITE_FUA_EXT
574};
575
576/**
577 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
578 * @tf: command to examine and configure
579 * @dev: device tf belongs to
580 *
581 * Examine the device configuration and tf->flags to calculate
582 * the proper read/write commands and protocol to use.
583 *
584 * LOCKING:
585 * caller.
586 */
587static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
588{
589 u8 cmd;
590
591 int index, fua, lba48, write;
592
593 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
594 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
595 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
596
597 if (dev->flags & ATA_DFLAG_PIO) {
598 tf->protocol = ATA_PROT_PIO;
599 index = dev->multi_count ? 0 : 8;
600 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
601 /* Unable to use DMA due to host limitation */
602 tf->protocol = ATA_PROT_PIO;
603 index = dev->multi_count ? 0 : 8;
604 } else {
605 tf->protocol = ATA_PROT_DMA;
606 index = 16;
607 }
608
609 cmd = ata_rw_cmds[index + fua + lba48 + write];
610 if (cmd) {
611 tf->command = cmd;
612 return 0;
613 }
614 return -1;
615}
616
617/**
618 * ata_tf_read_block - Read block address from ATA taskfile
619 * @tf: ATA taskfile of interest
620 * @dev: ATA device @tf belongs to
621 *
622 * LOCKING:
623 * None.
624 *
625 * Read block address from @tf. This function can handle all
626 * three address formats - LBA, LBA48 and CHS. tf->protocol and
627 * flags select the address format to use.
628 *
629 * RETURNS:
630 * Block address read from @tf.
631 */
632u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
633{
634 u64 block = 0;
635
636 if (tf->flags & ATA_TFLAG_LBA) {
637 if (tf->flags & ATA_TFLAG_LBA48) {
638 block |= (u64)tf->hob_lbah << 40;
639 block |= (u64)tf->hob_lbam << 32;
640 block |= (u64)tf->hob_lbal << 24;
641 } else
642 block |= (tf->device & 0xf) << 24;
643
644 block |= tf->lbah << 16;
645 block |= tf->lbam << 8;
646 block |= tf->lbal;
647 } else {
648 u32 cyl, head, sect;
649
650 cyl = tf->lbam | (tf->lbah << 8);
651 head = tf->device & 0xf;
652 sect = tf->lbal;
653
654 if (!sect) {
655 ata_dev_warn(dev,
656 "device reported invalid CHS sector 0\n");
657 return U64_MAX;
658 }
659
660 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
661 }
662
663 return block;
664}
665
666/**
667 * ata_build_rw_tf - Build ATA taskfile for given read/write request
668 * @qc: Metadata associated with the taskfile to build
669 * @block: Block address
670 * @n_block: Number of blocks
671 * @tf_flags: RW/FUA etc...
672 * @class: IO priority class
673 *
674 * LOCKING:
675 * None.
676 *
677 * Build ATA taskfile for the command @qc for read/write request described
678 * by @block, @n_block, @tf_flags and @class.
679 *
680 * RETURNS:
681 *
682 * 0 on success, -ERANGE if the request is too large for @dev,
683 * -EINVAL if the request is invalid.
684 */
685int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
686 unsigned int tf_flags, int class)
687{
688 struct ata_taskfile *tf = &qc->tf;
689 struct ata_device *dev = qc->dev;
690
691 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
692 tf->flags |= tf_flags;
693
694 if (ata_ncq_enabled(dev)) {
695 /* yay, NCQ */
696 if (!lba_48_ok(block, n_block))
697 return -ERANGE;
698
699 tf->protocol = ATA_PROT_NCQ;
700 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
701
702 if (tf->flags & ATA_TFLAG_WRITE)
703 tf->command = ATA_CMD_FPDMA_WRITE;
704 else
705 tf->command = ATA_CMD_FPDMA_READ;
706
707 tf->nsect = qc->hw_tag << 3;
708 tf->hob_feature = (n_block >> 8) & 0xff;
709 tf->feature = n_block & 0xff;
710
711 tf->hob_lbah = (block >> 40) & 0xff;
712 tf->hob_lbam = (block >> 32) & 0xff;
713 tf->hob_lbal = (block >> 24) & 0xff;
714 tf->lbah = (block >> 16) & 0xff;
715 tf->lbam = (block >> 8) & 0xff;
716 tf->lbal = block & 0xff;
717
718 tf->device = ATA_LBA;
719 if (tf->flags & ATA_TFLAG_FUA)
720 tf->device |= 1 << 7;
721
722 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
723 class == IOPRIO_CLASS_RT)
724 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
725 } else if (dev->flags & ATA_DFLAG_LBA) {
726 tf->flags |= ATA_TFLAG_LBA;
727
728 if (lba_28_ok(block, n_block)) {
729 /* use LBA28 */
730 tf->device |= (block >> 24) & 0xf;
731 } else if (lba_48_ok(block, n_block)) {
732 if (!(dev->flags & ATA_DFLAG_LBA48))
733 return -ERANGE;
734
735 /* use LBA48 */
736 tf->flags |= ATA_TFLAG_LBA48;
737
738 tf->hob_nsect = (n_block >> 8) & 0xff;
739
740 tf->hob_lbah = (block >> 40) & 0xff;
741 tf->hob_lbam = (block >> 32) & 0xff;
742 tf->hob_lbal = (block >> 24) & 0xff;
743 } else
744 /* request too large even for LBA48 */
745 return -ERANGE;
746
747 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
748 return -EINVAL;
749
750 tf->nsect = n_block & 0xff;
751
752 tf->lbah = (block >> 16) & 0xff;
753 tf->lbam = (block >> 8) & 0xff;
754 tf->lbal = block & 0xff;
755
756 tf->device |= ATA_LBA;
757 } else {
758 /* CHS */
759 u32 sect, head, cyl, track;
760
761 /* The request -may- be too large for CHS addressing. */
762 if (!lba_28_ok(block, n_block))
763 return -ERANGE;
764
765 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
766 return -EINVAL;
767
768 /* Convert LBA to CHS */
769 track = (u32)block / dev->sectors;
770 cyl = track / dev->heads;
771 head = track % dev->heads;
772 sect = (u32)block % dev->sectors + 1;
773
774 /* Check whether the converted CHS can fit.
775 Cylinder: 0-65535
776 Head: 0-15
777 Sector: 1-255*/
778 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
779 return -ERANGE;
780
781 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
782 tf->lbal = sect;
783 tf->lbam = cyl;
784 tf->lbah = cyl >> 8;
785 tf->device |= head;
786 }
787
788 return 0;
789}
790
791/**
792 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
793 * @pio_mask: pio_mask
794 * @mwdma_mask: mwdma_mask
795 * @udma_mask: udma_mask
796 *
797 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
798 * unsigned int xfer_mask.
799 *
800 * LOCKING:
801 * None.
802 *
803 * RETURNS:
804 * Packed xfer_mask.
805 */
806unsigned int ata_pack_xfermask(unsigned int pio_mask,
807 unsigned int mwdma_mask,
808 unsigned int udma_mask)
809{
810 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
811 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
812 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
813}
814EXPORT_SYMBOL_GPL(ata_pack_xfermask);
815
816/**
817 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
818 * @xfer_mask: xfer_mask to unpack
819 * @pio_mask: resulting pio_mask
820 * @mwdma_mask: resulting mwdma_mask
821 * @udma_mask: resulting udma_mask
822 *
823 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
824 * Any NULL destination masks will be ignored.
825 */
826void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
827 unsigned int *mwdma_mask, unsigned int *udma_mask)
828{
829 if (pio_mask)
830 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
831 if (mwdma_mask)
832 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
833 if (udma_mask)
834 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
835}
836
837static const struct ata_xfer_ent {
838 int shift, bits;
839 u8 base;
840} ata_xfer_tbl[] = {
841 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
842 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
843 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
844 { -1, },
845};
846
847/**
848 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
849 * @xfer_mask: xfer_mask of interest
850 *
851 * Return matching XFER_* value for @xfer_mask. Only the highest
852 * bit of @xfer_mask is considered.
853 *
854 * LOCKING:
855 * None.
856 *
857 * RETURNS:
858 * Matching XFER_* value, 0xff if no match found.
859 */
860u8 ata_xfer_mask2mode(unsigned int xfer_mask)
861{
862 int highbit = fls(xfer_mask) - 1;
863 const struct ata_xfer_ent *ent;
864
865 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
866 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
867 return ent->base + highbit - ent->shift;
868 return 0xff;
869}
870EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
871
872/**
873 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
874 * @xfer_mode: XFER_* of interest
875 *
876 * Return matching xfer_mask for @xfer_mode.
877 *
878 * LOCKING:
879 * None.
880 *
881 * RETURNS:
882 * Matching xfer_mask, 0 if no match found.
883 */
884unsigned int ata_xfer_mode2mask(u8 xfer_mode)
885{
886 const struct ata_xfer_ent *ent;
887
888 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
889 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
890 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
891 & ~((1 << ent->shift) - 1);
892 return 0;
893}
894EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
895
896/**
897 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
898 * @xfer_mode: XFER_* of interest
899 *
900 * Return matching xfer_shift for @xfer_mode.
901 *
902 * LOCKING:
903 * None.
904 *
905 * RETURNS:
906 * Matching xfer_shift, -1 if no match found.
907 */
908int ata_xfer_mode2shift(u8 xfer_mode)
909{
910 const struct ata_xfer_ent *ent;
911
912 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
913 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
914 return ent->shift;
915 return -1;
916}
917EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
918
919/**
920 * ata_mode_string - convert xfer_mask to string
921 * @xfer_mask: mask of bits supported; only highest bit counts.
922 *
923 * Determine string which represents the highest speed
924 * (highest bit in @modemask).
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Constant C string representing highest speed listed in
931 * @mode_mask, or the constant C string "<n/a>".
932 */
933const char *ata_mode_string(unsigned int xfer_mask)
934{
935 static const char * const xfer_mode_str[] = {
936 "PIO0",
937 "PIO1",
938 "PIO2",
939 "PIO3",
940 "PIO4",
941 "PIO5",
942 "PIO6",
943 "MWDMA0",
944 "MWDMA1",
945 "MWDMA2",
946 "MWDMA3",
947 "MWDMA4",
948 "UDMA/16",
949 "UDMA/25",
950 "UDMA/33",
951 "UDMA/44",
952 "UDMA/66",
953 "UDMA/100",
954 "UDMA/133",
955 "UDMA7",
956 };
957 int highbit;
958
959 highbit = fls(xfer_mask) - 1;
960 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
961 return xfer_mode_str[highbit];
962 return "<n/a>";
963}
964EXPORT_SYMBOL_GPL(ata_mode_string);
965
966const char *sata_spd_string(unsigned int spd)
967{
968 static const char * const spd_str[] = {
969 "1.5 Gbps",
970 "3.0 Gbps",
971 "6.0 Gbps",
972 };
973
974 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
975 return "<unknown>";
976 return spd_str[spd - 1];
977}
978
979/**
980 * ata_dev_classify - determine device type based on ATA-spec signature
981 * @tf: ATA taskfile register set for device to be identified
982 *
983 * Determine from taskfile register contents whether a device is
984 * ATA or ATAPI, as per "Signature and persistence" section
985 * of ATA/PI spec (volume 1, sect 5.14).
986 *
987 * LOCKING:
988 * None.
989 *
990 * RETURNS:
991 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
992 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
993 */
994unsigned int ata_dev_classify(const struct ata_taskfile *tf)
995{
996 /* Apple's open source Darwin code hints that some devices only
997 * put a proper signature into the LBA mid/high registers,
998 * So, we only check those. It's sufficient for uniqueness.
999 *
1000 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1001 * signatures for ATA and ATAPI devices attached on SerialATA,
1002 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1003 * spec has never mentioned about using different signatures
1004 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1005 * Multiplier specification began to use 0x69/0x96 to identify
1006 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1007 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1008 * 0x69/0x96 shortly and described them as reserved for
1009 * SerialATA.
1010 *
1011 * We follow the current spec and consider that 0x69/0x96
1012 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1013 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1014 * SEMB signature. This is worked around in
1015 * ata_dev_read_id().
1016 */
1017 if (tf->lbam == 0 && tf->lbah == 0)
1018 return ATA_DEV_ATA;
1019
1020 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1021 return ATA_DEV_ATAPI;
1022
1023 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1024 return ATA_DEV_PMP;
1025
1026 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1027 return ATA_DEV_SEMB;
1028
1029 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1030 return ATA_DEV_ZAC;
1031
1032 return ATA_DEV_UNKNOWN;
1033}
1034EXPORT_SYMBOL_GPL(ata_dev_classify);
1035
1036/**
1037 * ata_id_string - Convert IDENTIFY DEVICE page into string
1038 * @id: IDENTIFY DEVICE results we will examine
1039 * @s: string into which data is output
1040 * @ofs: offset into identify device page
1041 * @len: length of string to return. must be an even number.
1042 *
1043 * The strings in the IDENTIFY DEVICE page are broken up into
1044 * 16-bit chunks. Run through the string, and output each
1045 * 8-bit chunk linearly, regardless of platform.
1046 *
1047 * LOCKING:
1048 * caller.
1049 */
1050
1051void ata_id_string(const u16 *id, unsigned char *s,
1052 unsigned int ofs, unsigned int len)
1053{
1054 unsigned int c;
1055
1056 BUG_ON(len & 1);
1057
1058 while (len > 0) {
1059 c = id[ofs] >> 8;
1060 *s = c;
1061 s++;
1062
1063 c = id[ofs] & 0xff;
1064 *s = c;
1065 s++;
1066
1067 ofs++;
1068 len -= 2;
1069 }
1070}
1071EXPORT_SYMBOL_GPL(ata_id_string);
1072
1073/**
1074 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1075 * @id: IDENTIFY DEVICE results we will examine
1076 * @s: string into which data is output
1077 * @ofs: offset into identify device page
1078 * @len: length of string to return. must be an odd number.
1079 *
1080 * This function is identical to ata_id_string except that it
1081 * trims trailing spaces and terminates the resulting string with
1082 * null. @len must be actual maximum length (even number) + 1.
1083 *
1084 * LOCKING:
1085 * caller.
1086 */
1087void ata_id_c_string(const u16 *id, unsigned char *s,
1088 unsigned int ofs, unsigned int len)
1089{
1090 unsigned char *p;
1091
1092 ata_id_string(id, s, ofs, len - 1);
1093
1094 p = s + strnlen(s, len - 1);
1095 while (p > s && p[-1] == ' ')
1096 p--;
1097 *p = '\0';
1098}
1099EXPORT_SYMBOL_GPL(ata_id_c_string);
1100
1101static u64 ata_id_n_sectors(const u16 *id)
1102{
1103 if (ata_id_has_lba(id)) {
1104 if (ata_id_has_lba48(id))
1105 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1106
1107 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1108 }
1109
1110 if (ata_id_current_chs_valid(id))
1111 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1112 (u32)id[ATA_ID_CUR_SECTORS];
1113
1114 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1115 (u32)id[ATA_ID_SECTORS];
1116}
1117
1118u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1119{
1120 u64 sectors = 0;
1121
1122 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1123 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1124 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1125 sectors |= (tf->lbah & 0xff) << 16;
1126 sectors |= (tf->lbam & 0xff) << 8;
1127 sectors |= (tf->lbal & 0xff);
1128
1129 return sectors;
1130}
1131
1132u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1133{
1134 u64 sectors = 0;
1135
1136 sectors |= (tf->device & 0x0f) << 24;
1137 sectors |= (tf->lbah & 0xff) << 16;
1138 sectors |= (tf->lbam & 0xff) << 8;
1139 sectors |= (tf->lbal & 0xff);
1140
1141 return sectors;
1142}
1143
1144/**
1145 * ata_read_native_max_address - Read native max address
1146 * @dev: target device
1147 * @max_sectors: out parameter for the result native max address
1148 *
1149 * Perform an LBA48 or LBA28 native size query upon the device in
1150 * question.
1151 *
1152 * RETURNS:
1153 * 0 on success, -EACCES if command is aborted by the drive.
1154 * -EIO on other errors.
1155 */
1156static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1157{
1158 unsigned int err_mask;
1159 struct ata_taskfile tf;
1160 int lba48 = ata_id_has_lba48(dev->id);
1161
1162 ata_tf_init(dev, &tf);
1163
1164 /* always clear all address registers */
1165 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1166
1167 if (lba48) {
1168 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1169 tf.flags |= ATA_TFLAG_LBA48;
1170 } else
1171 tf.command = ATA_CMD_READ_NATIVE_MAX;
1172
1173 tf.protocol = ATA_PROT_NODATA;
1174 tf.device |= ATA_LBA;
1175
1176 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1177 if (err_mask) {
1178 ata_dev_warn(dev,
1179 "failed to read native max address (err_mask=0x%x)\n",
1180 err_mask);
1181 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1182 return -EACCES;
1183 return -EIO;
1184 }
1185
1186 if (lba48)
1187 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1188 else
1189 *max_sectors = ata_tf_to_lba(&tf) + 1;
1190 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1191 (*max_sectors)--;
1192 return 0;
1193}
1194
1195/**
1196 * ata_set_max_sectors - Set max sectors
1197 * @dev: target device
1198 * @new_sectors: new max sectors value to set for the device
1199 *
1200 * Set max sectors of @dev to @new_sectors.
1201 *
1202 * RETURNS:
1203 * 0 on success, -EACCES if command is aborted or denied (due to
1204 * previous non-volatile SET_MAX) by the drive. -EIO on other
1205 * errors.
1206 */
1207static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1208{
1209 unsigned int err_mask;
1210 struct ata_taskfile tf;
1211 int lba48 = ata_id_has_lba48(dev->id);
1212
1213 new_sectors--;
1214
1215 ata_tf_init(dev, &tf);
1216
1217 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1218
1219 if (lba48) {
1220 tf.command = ATA_CMD_SET_MAX_EXT;
1221 tf.flags |= ATA_TFLAG_LBA48;
1222
1223 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1224 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1225 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1226 } else {
1227 tf.command = ATA_CMD_SET_MAX;
1228
1229 tf.device |= (new_sectors >> 24) & 0xf;
1230 }
1231
1232 tf.protocol = ATA_PROT_NODATA;
1233 tf.device |= ATA_LBA;
1234
1235 tf.lbal = (new_sectors >> 0) & 0xff;
1236 tf.lbam = (new_sectors >> 8) & 0xff;
1237 tf.lbah = (new_sectors >> 16) & 0xff;
1238
1239 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1240 if (err_mask) {
1241 ata_dev_warn(dev,
1242 "failed to set max address (err_mask=0x%x)\n",
1243 err_mask);
1244 if (err_mask == AC_ERR_DEV &&
1245 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1246 return -EACCES;
1247 return -EIO;
1248 }
1249
1250 return 0;
1251}
1252
1253/**
1254 * ata_hpa_resize - Resize a device with an HPA set
1255 * @dev: Device to resize
1256 *
1257 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1258 * it if required to the full size of the media. The caller must check
1259 * the drive has the HPA feature set enabled.
1260 *
1261 * RETURNS:
1262 * 0 on success, -errno on failure.
1263 */
1264static int ata_hpa_resize(struct ata_device *dev)
1265{
1266 bool print_info = ata_dev_print_info(dev);
1267 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1268 u64 sectors = ata_id_n_sectors(dev->id);
1269 u64 native_sectors;
1270 int rc;
1271
1272 /* do we need to do it? */
1273 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1274 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1275 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1276 return 0;
1277
1278 /* read native max address */
1279 rc = ata_read_native_max_address(dev, &native_sectors);
1280 if (rc) {
1281 /* If device aborted the command or HPA isn't going to
1282 * be unlocked, skip HPA resizing.
1283 */
1284 if (rc == -EACCES || !unlock_hpa) {
1285 ata_dev_warn(dev,
1286 "HPA support seems broken, skipping HPA handling\n");
1287 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1288
1289 /* we can continue if device aborted the command */
1290 if (rc == -EACCES)
1291 rc = 0;
1292 }
1293
1294 return rc;
1295 }
1296 dev->n_native_sectors = native_sectors;
1297
1298 /* nothing to do? */
1299 if (native_sectors <= sectors || !unlock_hpa) {
1300 if (!print_info || native_sectors == sectors)
1301 return 0;
1302
1303 if (native_sectors > sectors)
1304 ata_dev_info(dev,
1305 "HPA detected: current %llu, native %llu\n",
1306 (unsigned long long)sectors,
1307 (unsigned long long)native_sectors);
1308 else if (native_sectors < sectors)
1309 ata_dev_warn(dev,
1310 "native sectors (%llu) is smaller than sectors (%llu)\n",
1311 (unsigned long long)native_sectors,
1312 (unsigned long long)sectors);
1313 return 0;
1314 }
1315
1316 /* let's unlock HPA */
1317 rc = ata_set_max_sectors(dev, native_sectors);
1318 if (rc == -EACCES) {
1319 /* if device aborted the command, skip HPA resizing */
1320 ata_dev_warn(dev,
1321 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1322 (unsigned long long)sectors,
1323 (unsigned long long)native_sectors);
1324 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1325 return 0;
1326 } else if (rc)
1327 return rc;
1328
1329 /* re-read IDENTIFY data */
1330 rc = ata_dev_reread_id(dev, 0);
1331 if (rc) {
1332 ata_dev_err(dev,
1333 "failed to re-read IDENTIFY data after HPA resizing\n");
1334 return rc;
1335 }
1336
1337 if (print_info) {
1338 u64 new_sectors = ata_id_n_sectors(dev->id);
1339 ata_dev_info(dev,
1340 "HPA unlocked: %llu -> %llu, native %llu\n",
1341 (unsigned long long)sectors,
1342 (unsigned long long)new_sectors,
1343 (unsigned long long)native_sectors);
1344 }
1345
1346 return 0;
1347}
1348
1349/**
1350 * ata_dump_id - IDENTIFY DEVICE info debugging output
1351 * @dev: device from which the information is fetched
1352 * @id: IDENTIFY DEVICE page to dump
1353 *
1354 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1355 * page.
1356 *
1357 * LOCKING:
1358 * caller.
1359 */
1360
1361static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1362{
1363 ata_dev_dbg(dev,
1364 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1365 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1366 "88==0x%04x 93==0x%04x\n",
1367 id[49], id[53], id[63], id[64], id[75], id[80],
1368 id[81], id[82], id[83], id[84], id[88], id[93]);
1369}
1370
1371/**
1372 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1373 * @id: IDENTIFY data to compute xfer mask from
1374 *
1375 * Compute the xfermask for this device. This is not as trivial
1376 * as it seems if we must consider early devices correctly.
1377 *
1378 * FIXME: pre IDE drive timing (do we care ?).
1379 *
1380 * LOCKING:
1381 * None.
1382 *
1383 * RETURNS:
1384 * Computed xfermask
1385 */
1386unsigned int ata_id_xfermask(const u16 *id)
1387{
1388 unsigned int pio_mask, mwdma_mask, udma_mask;
1389
1390 /* Usual case. Word 53 indicates word 64 is valid */
1391 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1392 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1393 pio_mask <<= 3;
1394 pio_mask |= 0x7;
1395 } else {
1396 /* If word 64 isn't valid then Word 51 high byte holds
1397 * the PIO timing number for the maximum. Turn it into
1398 * a mask.
1399 */
1400 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1401 if (mode < 5) /* Valid PIO range */
1402 pio_mask = (2 << mode) - 1;
1403 else
1404 pio_mask = 1;
1405
1406 /* But wait.. there's more. Design your standards by
1407 * committee and you too can get a free iordy field to
1408 * process. However it is the speeds not the modes that
1409 * are supported... Note drivers using the timing API
1410 * will get this right anyway
1411 */
1412 }
1413
1414 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1415
1416 if (ata_id_is_cfa(id)) {
1417 /*
1418 * Process compact flash extended modes
1419 */
1420 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1421 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1422
1423 if (pio)
1424 pio_mask |= (1 << 5);
1425 if (pio > 1)
1426 pio_mask |= (1 << 6);
1427 if (dma)
1428 mwdma_mask |= (1 << 3);
1429 if (dma > 1)
1430 mwdma_mask |= (1 << 4);
1431 }
1432
1433 udma_mask = 0;
1434 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1435 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1436
1437 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1438}
1439EXPORT_SYMBOL_GPL(ata_id_xfermask);
1440
1441static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1442{
1443 struct completion *waiting = qc->private_data;
1444
1445 complete(waiting);
1446}
1447
1448/**
1449 * ata_exec_internal_sg - execute libata internal command
1450 * @dev: Device to which the command is sent
1451 * @tf: Taskfile registers for the command and the result
1452 * @cdb: CDB for packet command
1453 * @dma_dir: Data transfer direction of the command
1454 * @sgl: sg list for the data buffer of the command
1455 * @n_elem: Number of sg entries
1456 * @timeout: Timeout in msecs (0 for default)
1457 *
1458 * Executes libata internal command with timeout. @tf contains
1459 * command on entry and result on return. Timeout and error
1460 * conditions are reported via return value. No recovery action
1461 * is taken after a command times out. It's caller's duty to
1462 * clean up after timeout.
1463 *
1464 * LOCKING:
1465 * None. Should be called with kernel context, might sleep.
1466 *
1467 * RETURNS:
1468 * Zero on success, AC_ERR_* mask on failure
1469 */
1470static unsigned ata_exec_internal_sg(struct ata_device *dev,
1471 struct ata_taskfile *tf, const u8 *cdb,
1472 int dma_dir, struct scatterlist *sgl,
1473 unsigned int n_elem, unsigned int timeout)
1474{
1475 struct ata_link *link = dev->link;
1476 struct ata_port *ap = link->ap;
1477 u8 command = tf->command;
1478 int auto_timeout = 0;
1479 struct ata_queued_cmd *qc;
1480 unsigned int preempted_tag;
1481 u32 preempted_sactive;
1482 u64 preempted_qc_active;
1483 int preempted_nr_active_links;
1484 DECLARE_COMPLETION_ONSTACK(wait);
1485 unsigned long flags;
1486 unsigned int err_mask;
1487 int rc;
1488
1489 spin_lock_irqsave(ap->lock, flags);
1490
1491 /* no internal command while frozen */
1492 if (ata_port_is_frozen(ap)) {
1493 spin_unlock_irqrestore(ap->lock, flags);
1494 return AC_ERR_SYSTEM;
1495 }
1496
1497 /* initialize internal qc */
1498 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1499
1500 qc->tag = ATA_TAG_INTERNAL;
1501 qc->hw_tag = 0;
1502 qc->scsicmd = NULL;
1503 qc->ap = ap;
1504 qc->dev = dev;
1505 ata_qc_reinit(qc);
1506
1507 preempted_tag = link->active_tag;
1508 preempted_sactive = link->sactive;
1509 preempted_qc_active = ap->qc_active;
1510 preempted_nr_active_links = ap->nr_active_links;
1511 link->active_tag = ATA_TAG_POISON;
1512 link->sactive = 0;
1513 ap->qc_active = 0;
1514 ap->nr_active_links = 0;
1515
1516 /* prepare & issue qc */
1517 qc->tf = *tf;
1518 if (cdb)
1519 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1520
1521 /* some SATA bridges need us to indicate data xfer direction */
1522 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1523 dma_dir == DMA_FROM_DEVICE)
1524 qc->tf.feature |= ATAPI_DMADIR;
1525
1526 qc->flags |= ATA_QCFLAG_RESULT_TF;
1527 qc->dma_dir = dma_dir;
1528 if (dma_dir != DMA_NONE) {
1529 unsigned int i, buflen = 0;
1530 struct scatterlist *sg;
1531
1532 for_each_sg(sgl, sg, n_elem, i)
1533 buflen += sg->length;
1534
1535 ata_sg_init(qc, sgl, n_elem);
1536 qc->nbytes = buflen;
1537 }
1538
1539 qc->private_data = &wait;
1540 qc->complete_fn = ata_qc_complete_internal;
1541
1542 ata_qc_issue(qc);
1543
1544 spin_unlock_irqrestore(ap->lock, flags);
1545
1546 if (!timeout) {
1547 if (ata_probe_timeout)
1548 timeout = ata_probe_timeout * 1000;
1549 else {
1550 timeout = ata_internal_cmd_timeout(dev, command);
1551 auto_timeout = 1;
1552 }
1553 }
1554
1555 if (ap->ops->error_handler)
1556 ata_eh_release(ap);
1557
1558 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1559
1560 if (ap->ops->error_handler)
1561 ata_eh_acquire(ap);
1562
1563 ata_sff_flush_pio_task(ap);
1564
1565 if (!rc) {
1566 spin_lock_irqsave(ap->lock, flags);
1567
1568 /* We're racing with irq here. If we lose, the
1569 * following test prevents us from completing the qc
1570 * twice. If we win, the port is frozen and will be
1571 * cleaned up by ->post_internal_cmd().
1572 */
1573 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1574 qc->err_mask |= AC_ERR_TIMEOUT;
1575
1576 if (ap->ops->error_handler)
1577 ata_port_freeze(ap);
1578 else
1579 ata_qc_complete(qc);
1580
1581 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1582 timeout, command);
1583 }
1584
1585 spin_unlock_irqrestore(ap->lock, flags);
1586 }
1587
1588 /* do post_internal_cmd */
1589 if (ap->ops->post_internal_cmd)
1590 ap->ops->post_internal_cmd(qc);
1591
1592 /* perform minimal error analysis */
1593 if (qc->flags & ATA_QCFLAG_FAILED) {
1594 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1595 qc->err_mask |= AC_ERR_DEV;
1596
1597 if (!qc->err_mask)
1598 qc->err_mask |= AC_ERR_OTHER;
1599
1600 if (qc->err_mask & ~AC_ERR_OTHER)
1601 qc->err_mask &= ~AC_ERR_OTHER;
1602 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1603 qc->result_tf.status |= ATA_SENSE;
1604 }
1605
1606 /* finish up */
1607 spin_lock_irqsave(ap->lock, flags);
1608
1609 *tf = qc->result_tf;
1610 err_mask = qc->err_mask;
1611
1612 ata_qc_free(qc);
1613 link->active_tag = preempted_tag;
1614 link->sactive = preempted_sactive;
1615 ap->qc_active = preempted_qc_active;
1616 ap->nr_active_links = preempted_nr_active_links;
1617
1618 spin_unlock_irqrestore(ap->lock, flags);
1619
1620 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1621 ata_internal_cmd_timed_out(dev, command);
1622
1623 return err_mask;
1624}
1625
1626/**
1627 * ata_exec_internal - execute libata internal command
1628 * @dev: Device to which the command is sent
1629 * @tf: Taskfile registers for the command and the result
1630 * @cdb: CDB for packet command
1631 * @dma_dir: Data transfer direction of the command
1632 * @buf: Data buffer of the command
1633 * @buflen: Length of data buffer
1634 * @timeout: Timeout in msecs (0 for default)
1635 *
1636 * Wrapper around ata_exec_internal_sg() which takes simple
1637 * buffer instead of sg list.
1638 *
1639 * LOCKING:
1640 * None. Should be called with kernel context, might sleep.
1641 *
1642 * RETURNS:
1643 * Zero on success, AC_ERR_* mask on failure
1644 */
1645unsigned ata_exec_internal(struct ata_device *dev,
1646 struct ata_taskfile *tf, const u8 *cdb,
1647 int dma_dir, void *buf, unsigned int buflen,
1648 unsigned int timeout)
1649{
1650 struct scatterlist *psg = NULL, sg;
1651 unsigned int n_elem = 0;
1652
1653 if (dma_dir != DMA_NONE) {
1654 WARN_ON(!buf);
1655 sg_init_one(&sg, buf, buflen);
1656 psg = &sg;
1657 n_elem++;
1658 }
1659
1660 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1661 timeout);
1662}
1663
1664/**
1665 * ata_pio_need_iordy - check if iordy needed
1666 * @adev: ATA device
1667 *
1668 * Check if the current speed of the device requires IORDY. Used
1669 * by various controllers for chip configuration.
1670 */
1671unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1672{
1673 /* Don't set IORDY if we're preparing for reset. IORDY may
1674 * lead to controller lock up on certain controllers if the
1675 * port is not occupied. See bko#11703 for details.
1676 */
1677 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1678 return 0;
1679 /* Controller doesn't support IORDY. Probably a pointless
1680 * check as the caller should know this.
1681 */
1682 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1683 return 0;
1684 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1685 if (ata_id_is_cfa(adev->id)
1686 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1687 return 0;
1688 /* PIO3 and higher it is mandatory */
1689 if (adev->pio_mode > XFER_PIO_2)
1690 return 1;
1691 /* We turn it on when possible */
1692 if (ata_id_has_iordy(adev->id))
1693 return 1;
1694 return 0;
1695}
1696EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1697
1698/**
1699 * ata_pio_mask_no_iordy - Return the non IORDY mask
1700 * @adev: ATA device
1701 *
1702 * Compute the highest mode possible if we are not using iordy. Return
1703 * -1 if no iordy mode is available.
1704 */
1705static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1706{
1707 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1708 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1709 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1710 /* Is the speed faster than the drive allows non IORDY ? */
1711 if (pio) {
1712 /* This is cycle times not frequency - watch the logic! */
1713 if (pio > 240) /* PIO2 is 240nS per cycle */
1714 return 3 << ATA_SHIFT_PIO;
1715 return 7 << ATA_SHIFT_PIO;
1716 }
1717 }
1718 return 3 << ATA_SHIFT_PIO;
1719}
1720
1721/**
1722 * ata_do_dev_read_id - default ID read method
1723 * @dev: device
1724 * @tf: proposed taskfile
1725 * @id: data buffer
1726 *
1727 * Issue the identify taskfile and hand back the buffer containing
1728 * identify data. For some RAID controllers and for pre ATA devices
1729 * this function is wrapped or replaced by the driver
1730 */
1731unsigned int ata_do_dev_read_id(struct ata_device *dev,
1732 struct ata_taskfile *tf, __le16 *id)
1733{
1734 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1735 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1736}
1737EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1738
1739/**
1740 * ata_dev_read_id - Read ID data from the specified device
1741 * @dev: target device
1742 * @p_class: pointer to class of the target device (may be changed)
1743 * @flags: ATA_READID_* flags
1744 * @id: buffer to read IDENTIFY data into
1745 *
1746 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1747 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1748 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1749 * for pre-ATA4 drives.
1750 *
1751 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1752 * now we abort if we hit that case.
1753 *
1754 * LOCKING:
1755 * Kernel thread context (may sleep)
1756 *
1757 * RETURNS:
1758 * 0 on success, -errno otherwise.
1759 */
1760int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1761 unsigned int flags, u16 *id)
1762{
1763 struct ata_port *ap = dev->link->ap;
1764 unsigned int class = *p_class;
1765 struct ata_taskfile tf;
1766 unsigned int err_mask = 0;
1767 const char *reason;
1768 bool is_semb = class == ATA_DEV_SEMB;
1769 int may_fallback = 1, tried_spinup = 0;
1770 int rc;
1771
1772retry:
1773 ata_tf_init(dev, &tf);
1774
1775 switch (class) {
1776 case ATA_DEV_SEMB:
1777 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1778 fallthrough;
1779 case ATA_DEV_ATA:
1780 case ATA_DEV_ZAC:
1781 tf.command = ATA_CMD_ID_ATA;
1782 break;
1783 case ATA_DEV_ATAPI:
1784 tf.command = ATA_CMD_ID_ATAPI;
1785 break;
1786 default:
1787 rc = -ENODEV;
1788 reason = "unsupported class";
1789 goto err_out;
1790 }
1791
1792 tf.protocol = ATA_PROT_PIO;
1793
1794 /* Some devices choke if TF registers contain garbage. Make
1795 * sure those are properly initialized.
1796 */
1797 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1798
1799 /* Device presence detection is unreliable on some
1800 * controllers. Always poll IDENTIFY if available.
1801 */
1802 tf.flags |= ATA_TFLAG_POLLING;
1803
1804 if (ap->ops->read_id)
1805 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1806 else
1807 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1808
1809 if (err_mask) {
1810 if (err_mask & AC_ERR_NODEV_HINT) {
1811 ata_dev_dbg(dev, "NODEV after polling detection\n");
1812 return -ENOENT;
1813 }
1814
1815 if (is_semb) {
1816 ata_dev_info(dev,
1817 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1818 /* SEMB is not supported yet */
1819 *p_class = ATA_DEV_SEMB_UNSUP;
1820 return 0;
1821 }
1822
1823 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1824 /* Device or controller might have reported
1825 * the wrong device class. Give a shot at the
1826 * other IDENTIFY if the current one is
1827 * aborted by the device.
1828 */
1829 if (may_fallback) {
1830 may_fallback = 0;
1831
1832 if (class == ATA_DEV_ATA)
1833 class = ATA_DEV_ATAPI;
1834 else
1835 class = ATA_DEV_ATA;
1836 goto retry;
1837 }
1838
1839 /* Control reaches here iff the device aborted
1840 * both flavors of IDENTIFYs which happens
1841 * sometimes with phantom devices.
1842 */
1843 ata_dev_dbg(dev,
1844 "both IDENTIFYs aborted, assuming NODEV\n");
1845 return -ENOENT;
1846 }
1847
1848 rc = -EIO;
1849 reason = "I/O error";
1850 goto err_out;
1851 }
1852
1853 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1854 ata_dev_info(dev, "dumping IDENTIFY data, "
1855 "class=%d may_fallback=%d tried_spinup=%d\n",
1856 class, may_fallback, tried_spinup);
1857 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1858 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1859 }
1860
1861 /* Falling back doesn't make sense if ID data was read
1862 * successfully at least once.
1863 */
1864 may_fallback = 0;
1865
1866 swap_buf_le16(id, ATA_ID_WORDS);
1867
1868 /* sanity check */
1869 rc = -EINVAL;
1870 reason = "device reports invalid type";
1871
1872 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1873 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1874 goto err_out;
1875 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1876 ata_id_is_ata(id)) {
1877 ata_dev_dbg(dev,
1878 "host indicates ignore ATA devices, ignored\n");
1879 return -ENOENT;
1880 }
1881 } else {
1882 if (ata_id_is_ata(id))
1883 goto err_out;
1884 }
1885
1886 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1887 tried_spinup = 1;
1888 /*
1889 * Drive powered-up in standby mode, and requires a specific
1890 * SET_FEATURES spin-up subcommand before it will accept
1891 * anything other than the original IDENTIFY command.
1892 */
1893 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1894 if (err_mask && id[2] != 0x738c) {
1895 rc = -EIO;
1896 reason = "SPINUP failed";
1897 goto err_out;
1898 }
1899 /*
1900 * If the drive initially returned incomplete IDENTIFY info,
1901 * we now must reissue the IDENTIFY command.
1902 */
1903 if (id[2] == 0x37c8)
1904 goto retry;
1905 }
1906
1907 if ((flags & ATA_READID_POSTRESET) &&
1908 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1909 /*
1910 * The exact sequence expected by certain pre-ATA4 drives is:
1911 * SRST RESET
1912 * IDENTIFY (optional in early ATA)
1913 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1914 * anything else..
1915 * Some drives were very specific about that exact sequence.
1916 *
1917 * Note that ATA4 says lba is mandatory so the second check
1918 * should never trigger.
1919 */
1920 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1921 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1922 if (err_mask) {
1923 rc = -EIO;
1924 reason = "INIT_DEV_PARAMS failed";
1925 goto err_out;
1926 }
1927
1928 /* current CHS translation info (id[53-58]) might be
1929 * changed. reread the identify device info.
1930 */
1931 flags &= ~ATA_READID_POSTRESET;
1932 goto retry;
1933 }
1934 }
1935
1936 *p_class = class;
1937
1938 return 0;
1939
1940 err_out:
1941 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1942 reason, err_mask);
1943 return rc;
1944}
1945
1946/**
1947 * ata_read_log_page - read a specific log page
1948 * @dev: target device
1949 * @log: log to read
1950 * @page: page to read
1951 * @buf: buffer to store read page
1952 * @sectors: number of sectors to read
1953 *
1954 * Read log page using READ_LOG_EXT command.
1955 *
1956 * LOCKING:
1957 * Kernel thread context (may sleep).
1958 *
1959 * RETURNS:
1960 * 0 on success, AC_ERR_* mask otherwise.
1961 */
1962unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1963 u8 page, void *buf, unsigned int sectors)
1964{
1965 unsigned long ap_flags = dev->link->ap->flags;
1966 struct ata_taskfile tf;
1967 unsigned int err_mask;
1968 bool dma = false;
1969
1970 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
1971
1972 /*
1973 * Return error without actually issuing the command on controllers
1974 * which e.g. lockup on a read log page.
1975 */
1976 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
1977 return AC_ERR_DEV;
1978
1979retry:
1980 ata_tf_init(dev, &tf);
1981 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
1982 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
1983 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
1984 tf.protocol = ATA_PROT_DMA;
1985 dma = true;
1986 } else {
1987 tf.command = ATA_CMD_READ_LOG_EXT;
1988 tf.protocol = ATA_PROT_PIO;
1989 dma = false;
1990 }
1991 tf.lbal = log;
1992 tf.lbam = page;
1993 tf.nsect = sectors;
1994 tf.hob_nsect = sectors >> 8;
1995 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
1996
1997 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1998 buf, sectors * ATA_SECT_SIZE, 0);
1999
2000 if (err_mask) {
2001 if (dma) {
2002 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2003 if (!ata_port_is_frozen(dev->link->ap))
2004 goto retry;
2005 }
2006 ata_dev_err(dev,
2007 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2008 (unsigned int)log, (unsigned int)page, err_mask);
2009 }
2010
2011 return err_mask;
2012}
2013
2014static int ata_log_supported(struct ata_device *dev, u8 log)
2015{
2016 struct ata_port *ap = dev->link->ap;
2017
2018 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2019 return 0;
2020
2021 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2022 return 0;
2023 return get_unaligned_le16(&ap->sector_buf[log * 2]);
2024}
2025
2026static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2027{
2028 struct ata_port *ap = dev->link->ap;
2029 unsigned int err, i;
2030
2031 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2032 return false;
2033
2034 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2035 /*
2036 * IDENTIFY DEVICE data log is defined as mandatory starting
2037 * with ACS-3 (ATA version 10). Warn about the missing log
2038 * for drives which implement this ATA level or above.
2039 */
2040 if (ata_id_major_version(dev->id) >= 10)
2041 ata_dev_warn(dev,
2042 "ATA Identify Device Log not supported\n");
2043 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2044 return false;
2045 }
2046
2047 /*
2048 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2049 * supported.
2050 */
2051 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2052 1);
2053 if (err)
2054 return false;
2055
2056 for (i = 0; i < ap->sector_buf[8]; i++) {
2057 if (ap->sector_buf[9 + i] == page)
2058 return true;
2059 }
2060
2061 return false;
2062}
2063
2064static int ata_do_link_spd_horkage(struct ata_device *dev)
2065{
2066 struct ata_link *plink = ata_dev_phys_link(dev);
2067 u32 target, target_limit;
2068
2069 if (!sata_scr_valid(plink))
2070 return 0;
2071
2072 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2073 target = 1;
2074 else
2075 return 0;
2076
2077 target_limit = (1 << target) - 1;
2078
2079 /* if already on stricter limit, no need to push further */
2080 if (plink->sata_spd_limit <= target_limit)
2081 return 0;
2082
2083 plink->sata_spd_limit = target_limit;
2084
2085 /* Request another EH round by returning -EAGAIN if link is
2086 * going faster than the target speed. Forward progress is
2087 * guaranteed by setting sata_spd_limit to target_limit above.
2088 */
2089 if (plink->sata_spd > target) {
2090 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2091 sata_spd_string(target));
2092 return -EAGAIN;
2093 }
2094 return 0;
2095}
2096
2097static inline u8 ata_dev_knobble(struct ata_device *dev)
2098{
2099 struct ata_port *ap = dev->link->ap;
2100
2101 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2102 return 0;
2103
2104 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2105}
2106
2107static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2108{
2109 struct ata_port *ap = dev->link->ap;
2110 unsigned int err_mask;
2111
2112 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2113 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2114 return;
2115 }
2116 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2117 0, ap->sector_buf, 1);
2118 if (!err_mask) {
2119 u8 *cmds = dev->ncq_send_recv_cmds;
2120
2121 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2122 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2123
2124 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2125 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2126 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2127 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2128 }
2129 }
2130}
2131
2132static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2133{
2134 struct ata_port *ap = dev->link->ap;
2135 unsigned int err_mask;
2136
2137 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2138 ata_dev_warn(dev,
2139 "NCQ Send/Recv Log not supported\n");
2140 return;
2141 }
2142 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2143 0, ap->sector_buf, 1);
2144 if (!err_mask) {
2145 u8 *cmds = dev->ncq_non_data_cmds;
2146
2147 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2148 }
2149}
2150
2151static void ata_dev_config_ncq_prio(struct ata_device *dev)
2152{
2153 struct ata_port *ap = dev->link->ap;
2154 unsigned int err_mask;
2155
2156 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2157 return;
2158
2159 err_mask = ata_read_log_page(dev,
2160 ATA_LOG_IDENTIFY_DEVICE,
2161 ATA_LOG_SATA_SETTINGS,
2162 ap->sector_buf,
2163 1);
2164 if (err_mask)
2165 goto not_supported;
2166
2167 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2168 goto not_supported;
2169
2170 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2171
2172 return;
2173
2174not_supported:
2175 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2176 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2177}
2178
2179static bool ata_dev_check_adapter(struct ata_device *dev,
2180 unsigned short vendor_id)
2181{
2182 struct pci_dev *pcidev = NULL;
2183 struct device *parent_dev = NULL;
2184
2185 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2186 parent_dev = parent_dev->parent) {
2187 if (dev_is_pci(parent_dev)) {
2188 pcidev = to_pci_dev(parent_dev);
2189 if (pcidev->vendor == vendor_id)
2190 return true;
2191 break;
2192 }
2193 }
2194
2195 return false;
2196}
2197
2198static int ata_dev_config_ncq(struct ata_device *dev,
2199 char *desc, size_t desc_sz)
2200{
2201 struct ata_port *ap = dev->link->ap;
2202 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2203 unsigned int err_mask;
2204 char *aa_desc = "";
2205
2206 if (!ata_id_has_ncq(dev->id)) {
2207 desc[0] = '\0';
2208 return 0;
2209 }
2210 if (!IS_ENABLED(CONFIG_SATA_HOST))
2211 return 0;
2212 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2213 snprintf(desc, desc_sz, "NCQ (not used)");
2214 return 0;
2215 }
2216
2217 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2218 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2219 snprintf(desc, desc_sz, "NCQ (not used)");
2220 return 0;
2221 }
2222
2223 if (ap->flags & ATA_FLAG_NCQ) {
2224 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2225 dev->flags |= ATA_DFLAG_NCQ;
2226 }
2227
2228 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2229 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2230 ata_id_has_fpdma_aa(dev->id)) {
2231 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2232 SATA_FPDMA_AA);
2233 if (err_mask) {
2234 ata_dev_err(dev,
2235 "failed to enable AA (error_mask=0x%x)\n",
2236 err_mask);
2237 if (err_mask != AC_ERR_DEV) {
2238 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2239 return -EIO;
2240 }
2241 } else
2242 aa_desc = ", AA";
2243 }
2244
2245 if (hdepth >= ddepth)
2246 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2247 else
2248 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2249 ddepth, aa_desc);
2250
2251 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2252 if (ata_id_has_ncq_send_and_recv(dev->id))
2253 ata_dev_config_ncq_send_recv(dev);
2254 if (ata_id_has_ncq_non_data(dev->id))
2255 ata_dev_config_ncq_non_data(dev);
2256 if (ata_id_has_ncq_prio(dev->id))
2257 ata_dev_config_ncq_prio(dev);
2258 }
2259
2260 return 0;
2261}
2262
2263static void ata_dev_config_sense_reporting(struct ata_device *dev)
2264{
2265 unsigned int err_mask;
2266
2267 if (!ata_id_has_sense_reporting(dev->id))
2268 return;
2269
2270 if (ata_id_sense_reporting_enabled(dev->id))
2271 return;
2272
2273 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2274 if (err_mask) {
2275 ata_dev_dbg(dev,
2276 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2277 err_mask);
2278 }
2279}
2280
2281static void ata_dev_config_zac(struct ata_device *dev)
2282{
2283 struct ata_port *ap = dev->link->ap;
2284 unsigned int err_mask;
2285 u8 *identify_buf = ap->sector_buf;
2286
2287 dev->zac_zones_optimal_open = U32_MAX;
2288 dev->zac_zones_optimal_nonseq = U32_MAX;
2289 dev->zac_zones_max_open = U32_MAX;
2290
2291 /*
2292 * Always set the 'ZAC' flag for Host-managed devices.
2293 */
2294 if (dev->class == ATA_DEV_ZAC)
2295 dev->flags |= ATA_DFLAG_ZAC;
2296 else if (ata_id_zoned_cap(dev->id) == 0x01)
2297 /*
2298 * Check for host-aware devices.
2299 */
2300 dev->flags |= ATA_DFLAG_ZAC;
2301
2302 if (!(dev->flags & ATA_DFLAG_ZAC))
2303 return;
2304
2305 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2306 ata_dev_warn(dev,
2307 "ATA Zoned Information Log not supported\n");
2308 return;
2309 }
2310
2311 /*
2312 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2313 */
2314 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2315 ATA_LOG_ZONED_INFORMATION,
2316 identify_buf, 1);
2317 if (!err_mask) {
2318 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2319
2320 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2321 if ((zoned_cap >> 63))
2322 dev->zac_zoned_cap = (zoned_cap & 1);
2323 opt_open = get_unaligned_le64(&identify_buf[24]);
2324 if ((opt_open >> 63))
2325 dev->zac_zones_optimal_open = (u32)opt_open;
2326 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2327 if ((opt_nonseq >> 63))
2328 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2329 max_open = get_unaligned_le64(&identify_buf[40]);
2330 if ((max_open >> 63))
2331 dev->zac_zones_max_open = (u32)max_open;
2332 }
2333}
2334
2335static void ata_dev_config_trusted(struct ata_device *dev)
2336{
2337 struct ata_port *ap = dev->link->ap;
2338 u64 trusted_cap;
2339 unsigned int err;
2340
2341 if (!ata_id_has_trusted(dev->id))
2342 return;
2343
2344 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2345 ata_dev_warn(dev,
2346 "Security Log not supported\n");
2347 return;
2348 }
2349
2350 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2351 ap->sector_buf, 1);
2352 if (err)
2353 return;
2354
2355 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2356 if (!(trusted_cap & (1ULL << 63))) {
2357 ata_dev_dbg(dev,
2358 "Trusted Computing capability qword not valid!\n");
2359 return;
2360 }
2361
2362 if (trusted_cap & (1 << 0))
2363 dev->flags |= ATA_DFLAG_TRUSTED;
2364}
2365
2366static int ata_dev_config_lba(struct ata_device *dev)
2367{
2368 const u16 *id = dev->id;
2369 const char *lba_desc;
2370 char ncq_desc[24];
2371 int ret;
2372
2373 dev->flags |= ATA_DFLAG_LBA;
2374
2375 if (ata_id_has_lba48(id)) {
2376 lba_desc = "LBA48";
2377 dev->flags |= ATA_DFLAG_LBA48;
2378 if (dev->n_sectors >= (1UL << 28) &&
2379 ata_id_has_flush_ext(id))
2380 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2381 } else {
2382 lba_desc = "LBA";
2383 }
2384
2385 /* config NCQ */
2386 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2387
2388 /* print device info to dmesg */
2389 if (ata_dev_print_info(dev))
2390 ata_dev_info(dev,
2391 "%llu sectors, multi %u: %s %s\n",
2392 (unsigned long long)dev->n_sectors,
2393 dev->multi_count, lba_desc, ncq_desc);
2394
2395 return ret;
2396}
2397
2398static void ata_dev_config_chs(struct ata_device *dev)
2399{
2400 const u16 *id = dev->id;
2401
2402 if (ata_id_current_chs_valid(id)) {
2403 /* Current CHS translation is valid. */
2404 dev->cylinders = id[54];
2405 dev->heads = id[55];
2406 dev->sectors = id[56];
2407 } else {
2408 /* Default translation */
2409 dev->cylinders = id[1];
2410 dev->heads = id[3];
2411 dev->sectors = id[6];
2412 }
2413
2414 /* print device info to dmesg */
2415 if (ata_dev_print_info(dev))
2416 ata_dev_info(dev,
2417 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2418 (unsigned long long)dev->n_sectors,
2419 dev->multi_count, dev->cylinders,
2420 dev->heads, dev->sectors);
2421}
2422
2423static void ata_dev_config_devslp(struct ata_device *dev)
2424{
2425 u8 *sata_setting = dev->link->ap->sector_buf;
2426 unsigned int err_mask;
2427 int i, j;
2428
2429 /*
2430 * Check device sleep capability. Get DevSlp timing variables
2431 * from SATA Settings page of Identify Device Data Log.
2432 */
2433 if (!ata_id_has_devslp(dev->id) ||
2434 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2435 return;
2436
2437 err_mask = ata_read_log_page(dev,
2438 ATA_LOG_IDENTIFY_DEVICE,
2439 ATA_LOG_SATA_SETTINGS,
2440 sata_setting, 1);
2441 if (err_mask)
2442 return;
2443
2444 dev->flags |= ATA_DFLAG_DEVSLP;
2445 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2446 j = ATA_LOG_DEVSLP_OFFSET + i;
2447 dev->devslp_timing[i] = sata_setting[j];
2448 }
2449}
2450
2451static void ata_dev_config_cpr(struct ata_device *dev)
2452{
2453 unsigned int err_mask;
2454 size_t buf_len;
2455 int i, nr_cpr = 0;
2456 struct ata_cpr_log *cpr_log = NULL;
2457 u8 *desc, *buf = NULL;
2458
2459 if (ata_id_major_version(dev->id) < 11)
2460 goto out;
2461
2462 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2463 if (buf_len == 0)
2464 goto out;
2465
2466 /*
2467 * Read the concurrent positioning ranges log (0x47). We can have at
2468 * most 255 32B range descriptors plus a 64B header. This log varies in
2469 * size, so use the size reported in the GPL directory. Reading beyond
2470 * the supported length will result in an error.
2471 */
2472 buf_len <<= 9;
2473 buf = kzalloc(buf_len, GFP_KERNEL);
2474 if (!buf)
2475 goto out;
2476
2477 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2478 0, buf, buf_len >> 9);
2479 if (err_mask)
2480 goto out;
2481
2482 nr_cpr = buf[0];
2483 if (!nr_cpr)
2484 goto out;
2485
2486 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2487 if (!cpr_log)
2488 goto out;
2489
2490 cpr_log->nr_cpr = nr_cpr;
2491 desc = &buf[64];
2492 for (i = 0; i < nr_cpr; i++, desc += 32) {
2493 cpr_log->cpr[i].num = desc[0];
2494 cpr_log->cpr[i].num_storage_elements = desc[1];
2495 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2496 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2497 }
2498
2499out:
2500 swap(dev->cpr_log, cpr_log);
2501 kfree(cpr_log);
2502 kfree(buf);
2503}
2504
2505static void ata_dev_print_features(struct ata_device *dev)
2506{
2507 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2508 return;
2509
2510 ata_dev_info(dev,
2511 "Features:%s%s%s%s%s%s\n",
2512 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2513 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2514 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2515 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2516 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2517 dev->cpr_log ? " CPR" : "");
2518}
2519
2520/**
2521 * ata_dev_configure - Configure the specified ATA/ATAPI device
2522 * @dev: Target device to configure
2523 *
2524 * Configure @dev according to @dev->id. Generic and low-level
2525 * driver specific fixups are also applied.
2526 *
2527 * LOCKING:
2528 * Kernel thread context (may sleep)
2529 *
2530 * RETURNS:
2531 * 0 on success, -errno otherwise
2532 */
2533int ata_dev_configure(struct ata_device *dev)
2534{
2535 struct ata_port *ap = dev->link->ap;
2536 bool print_info = ata_dev_print_info(dev);
2537 const u16 *id = dev->id;
2538 unsigned int xfer_mask;
2539 unsigned int err_mask;
2540 char revbuf[7]; /* XYZ-99\0 */
2541 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2542 char modelbuf[ATA_ID_PROD_LEN+1];
2543 int rc;
2544
2545 if (!ata_dev_enabled(dev)) {
2546 ata_dev_dbg(dev, "no device\n");
2547 return 0;
2548 }
2549
2550 /* set horkage */
2551 dev->horkage |= ata_dev_blacklisted(dev);
2552 ata_force_horkage(dev);
2553
2554 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2555 ata_dev_info(dev, "unsupported device, disabling\n");
2556 ata_dev_disable(dev);
2557 return 0;
2558 }
2559
2560 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2561 dev->class == ATA_DEV_ATAPI) {
2562 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2563 atapi_enabled ? "not supported with this driver"
2564 : "disabled");
2565 ata_dev_disable(dev);
2566 return 0;
2567 }
2568
2569 rc = ata_do_link_spd_horkage(dev);
2570 if (rc)
2571 return rc;
2572
2573 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2574 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2575 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2576 dev->horkage |= ATA_HORKAGE_NOLPM;
2577
2578 if (ap->flags & ATA_FLAG_NO_LPM)
2579 dev->horkage |= ATA_HORKAGE_NOLPM;
2580
2581 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2582 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2583 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2584 }
2585
2586 /* let ACPI work its magic */
2587 rc = ata_acpi_on_devcfg(dev);
2588 if (rc)
2589 return rc;
2590
2591 /* massage HPA, do it early as it might change IDENTIFY data */
2592 rc = ata_hpa_resize(dev);
2593 if (rc)
2594 return rc;
2595
2596 /* print device capabilities */
2597 ata_dev_dbg(dev,
2598 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2599 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2600 __func__,
2601 id[49], id[82], id[83], id[84],
2602 id[85], id[86], id[87], id[88]);
2603
2604 /* initialize to-be-configured parameters */
2605 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2606 dev->max_sectors = 0;
2607 dev->cdb_len = 0;
2608 dev->n_sectors = 0;
2609 dev->cylinders = 0;
2610 dev->heads = 0;
2611 dev->sectors = 0;
2612 dev->multi_count = 0;
2613
2614 /*
2615 * common ATA, ATAPI feature tests
2616 */
2617
2618 /* find max transfer mode; for printk only */
2619 xfer_mask = ata_id_xfermask(id);
2620
2621 ata_dump_id(dev, id);
2622
2623 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2624 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2625 sizeof(fwrevbuf));
2626
2627 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2628 sizeof(modelbuf));
2629
2630 /* ATA-specific feature tests */
2631 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2632 if (ata_id_is_cfa(id)) {
2633 /* CPRM may make this media unusable */
2634 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2635 ata_dev_warn(dev,
2636 "supports DRM functions and may not be fully accessible\n");
2637 snprintf(revbuf, 7, "CFA");
2638 } else {
2639 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2640 /* Warn the user if the device has TPM extensions */
2641 if (ata_id_has_tpm(id))
2642 ata_dev_warn(dev,
2643 "supports DRM functions and may not be fully accessible\n");
2644 }
2645
2646 dev->n_sectors = ata_id_n_sectors(id);
2647
2648 /* get current R/W Multiple count setting */
2649 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2650 unsigned int max = dev->id[47] & 0xff;
2651 unsigned int cnt = dev->id[59] & 0xff;
2652 /* only recognize/allow powers of two here */
2653 if (is_power_of_2(max) && is_power_of_2(cnt))
2654 if (cnt <= max)
2655 dev->multi_count = cnt;
2656 }
2657
2658 /* print device info to dmesg */
2659 if (print_info)
2660 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2661 revbuf, modelbuf, fwrevbuf,
2662 ata_mode_string(xfer_mask));
2663
2664 if (ata_id_has_lba(id)) {
2665 rc = ata_dev_config_lba(dev);
2666 if (rc)
2667 return rc;
2668 } else {
2669 ata_dev_config_chs(dev);
2670 }
2671
2672 ata_dev_config_devslp(dev);
2673 ata_dev_config_sense_reporting(dev);
2674 ata_dev_config_zac(dev);
2675 ata_dev_config_trusted(dev);
2676 ata_dev_config_cpr(dev);
2677 dev->cdb_len = 32;
2678
2679 if (print_info)
2680 ata_dev_print_features(dev);
2681 }
2682
2683 /* ATAPI-specific feature tests */
2684 else if (dev->class == ATA_DEV_ATAPI) {
2685 const char *cdb_intr_string = "";
2686 const char *atapi_an_string = "";
2687 const char *dma_dir_string = "";
2688 u32 sntf;
2689
2690 rc = atapi_cdb_len(id);
2691 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2692 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2693 rc = -EINVAL;
2694 goto err_out_nosup;
2695 }
2696 dev->cdb_len = (unsigned int) rc;
2697
2698 /* Enable ATAPI AN if both the host and device have
2699 * the support. If PMP is attached, SNTF is required
2700 * to enable ATAPI AN to discern between PHY status
2701 * changed notifications and ATAPI ANs.
2702 */
2703 if (atapi_an &&
2704 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2705 (!sata_pmp_attached(ap) ||
2706 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2707 /* issue SET feature command to turn this on */
2708 err_mask = ata_dev_set_feature(dev,
2709 SETFEATURES_SATA_ENABLE, SATA_AN);
2710 if (err_mask)
2711 ata_dev_err(dev,
2712 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2713 err_mask);
2714 else {
2715 dev->flags |= ATA_DFLAG_AN;
2716 atapi_an_string = ", ATAPI AN";
2717 }
2718 }
2719
2720 if (ata_id_cdb_intr(dev->id)) {
2721 dev->flags |= ATA_DFLAG_CDB_INTR;
2722 cdb_intr_string = ", CDB intr";
2723 }
2724
2725 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2726 dev->flags |= ATA_DFLAG_DMADIR;
2727 dma_dir_string = ", DMADIR";
2728 }
2729
2730 if (ata_id_has_da(dev->id)) {
2731 dev->flags |= ATA_DFLAG_DA;
2732 zpodd_init(dev);
2733 }
2734
2735 /* print device info to dmesg */
2736 if (print_info)
2737 ata_dev_info(dev,
2738 "ATAPI: %s, %s, max %s%s%s%s\n",
2739 modelbuf, fwrevbuf,
2740 ata_mode_string(xfer_mask),
2741 cdb_intr_string, atapi_an_string,
2742 dma_dir_string);
2743 }
2744
2745 /* determine max_sectors */
2746 dev->max_sectors = ATA_MAX_SECTORS;
2747 if (dev->flags & ATA_DFLAG_LBA48)
2748 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2749
2750 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2751 200 sectors */
2752 if (ata_dev_knobble(dev)) {
2753 if (print_info)
2754 ata_dev_info(dev, "applying bridge limits\n");
2755 dev->udma_mask &= ATA_UDMA5;
2756 dev->max_sectors = ATA_MAX_SECTORS;
2757 }
2758
2759 if ((dev->class == ATA_DEV_ATAPI) &&
2760 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2761 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2762 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2763 }
2764
2765 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2766 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2767 dev->max_sectors);
2768
2769 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2770 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2771 dev->max_sectors);
2772
2773 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2774 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2775
2776 if (ap->ops->dev_config)
2777 ap->ops->dev_config(dev);
2778
2779 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2780 /* Let the user know. We don't want to disallow opens for
2781 rescue purposes, or in case the vendor is just a blithering
2782 idiot. Do this after the dev_config call as some controllers
2783 with buggy firmware may want to avoid reporting false device
2784 bugs */
2785
2786 if (print_info) {
2787 ata_dev_warn(dev,
2788"Drive reports diagnostics failure. This may indicate a drive\n");
2789 ata_dev_warn(dev,
2790"fault or invalid emulation. Contact drive vendor for information.\n");
2791 }
2792 }
2793
2794 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2795 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2796 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2797 }
2798
2799 return 0;
2800
2801err_out_nosup:
2802 return rc;
2803}
2804
2805/**
2806 * ata_cable_40wire - return 40 wire cable type
2807 * @ap: port
2808 *
2809 * Helper method for drivers which want to hardwire 40 wire cable
2810 * detection.
2811 */
2812
2813int ata_cable_40wire(struct ata_port *ap)
2814{
2815 return ATA_CBL_PATA40;
2816}
2817EXPORT_SYMBOL_GPL(ata_cable_40wire);
2818
2819/**
2820 * ata_cable_80wire - return 80 wire cable type
2821 * @ap: port
2822 *
2823 * Helper method for drivers which want to hardwire 80 wire cable
2824 * detection.
2825 */
2826
2827int ata_cable_80wire(struct ata_port *ap)
2828{
2829 return ATA_CBL_PATA80;
2830}
2831EXPORT_SYMBOL_GPL(ata_cable_80wire);
2832
2833/**
2834 * ata_cable_unknown - return unknown PATA cable.
2835 * @ap: port
2836 *
2837 * Helper method for drivers which have no PATA cable detection.
2838 */
2839
2840int ata_cable_unknown(struct ata_port *ap)
2841{
2842 return ATA_CBL_PATA_UNK;
2843}
2844EXPORT_SYMBOL_GPL(ata_cable_unknown);
2845
2846/**
2847 * ata_cable_ignore - return ignored PATA cable.
2848 * @ap: port
2849 *
2850 * Helper method for drivers which don't use cable type to limit
2851 * transfer mode.
2852 */
2853int ata_cable_ignore(struct ata_port *ap)
2854{
2855 return ATA_CBL_PATA_IGN;
2856}
2857EXPORT_SYMBOL_GPL(ata_cable_ignore);
2858
2859/**
2860 * ata_cable_sata - return SATA cable type
2861 * @ap: port
2862 *
2863 * Helper method for drivers which have SATA cables
2864 */
2865
2866int ata_cable_sata(struct ata_port *ap)
2867{
2868 return ATA_CBL_SATA;
2869}
2870EXPORT_SYMBOL_GPL(ata_cable_sata);
2871
2872/**
2873 * ata_bus_probe - Reset and probe ATA bus
2874 * @ap: Bus to probe
2875 *
2876 * Master ATA bus probing function. Initiates a hardware-dependent
2877 * bus reset, then attempts to identify any devices found on
2878 * the bus.
2879 *
2880 * LOCKING:
2881 * PCI/etc. bus probe sem.
2882 *
2883 * RETURNS:
2884 * Zero on success, negative errno otherwise.
2885 */
2886
2887int ata_bus_probe(struct ata_port *ap)
2888{
2889 unsigned int classes[ATA_MAX_DEVICES];
2890 int tries[ATA_MAX_DEVICES];
2891 int rc;
2892 struct ata_device *dev;
2893
2894 ata_for_each_dev(dev, &ap->link, ALL)
2895 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2896
2897 retry:
2898 ata_for_each_dev(dev, &ap->link, ALL) {
2899 /* If we issue an SRST then an ATA drive (not ATAPI)
2900 * may change configuration and be in PIO0 timing. If
2901 * we do a hard reset (or are coming from power on)
2902 * this is true for ATA or ATAPI. Until we've set a
2903 * suitable controller mode we should not touch the
2904 * bus as we may be talking too fast.
2905 */
2906 dev->pio_mode = XFER_PIO_0;
2907 dev->dma_mode = 0xff;
2908
2909 /* If the controller has a pio mode setup function
2910 * then use it to set the chipset to rights. Don't
2911 * touch the DMA setup as that will be dealt with when
2912 * configuring devices.
2913 */
2914 if (ap->ops->set_piomode)
2915 ap->ops->set_piomode(ap, dev);
2916 }
2917
2918 /* reset and determine device classes */
2919 ap->ops->phy_reset(ap);
2920
2921 ata_for_each_dev(dev, &ap->link, ALL) {
2922 if (dev->class != ATA_DEV_UNKNOWN)
2923 classes[dev->devno] = dev->class;
2924 else
2925 classes[dev->devno] = ATA_DEV_NONE;
2926
2927 dev->class = ATA_DEV_UNKNOWN;
2928 }
2929
2930 /* read IDENTIFY page and configure devices. We have to do the identify
2931 specific sequence bass-ackwards so that PDIAG- is released by
2932 the slave device */
2933
2934 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2935 if (tries[dev->devno])
2936 dev->class = classes[dev->devno];
2937
2938 if (!ata_dev_enabled(dev))
2939 continue;
2940
2941 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2942 dev->id);
2943 if (rc)
2944 goto fail;
2945 }
2946
2947 /* Now ask for the cable type as PDIAG- should have been released */
2948 if (ap->ops->cable_detect)
2949 ap->cbl = ap->ops->cable_detect(ap);
2950
2951 /* We may have SATA bridge glue hiding here irrespective of
2952 * the reported cable types and sensed types. When SATA
2953 * drives indicate we have a bridge, we don't know which end
2954 * of the link the bridge is which is a problem.
2955 */
2956 ata_for_each_dev(dev, &ap->link, ENABLED)
2957 if (ata_id_is_sata(dev->id))
2958 ap->cbl = ATA_CBL_SATA;
2959
2960 /* After the identify sequence we can now set up the devices. We do
2961 this in the normal order so that the user doesn't get confused */
2962
2963 ata_for_each_dev(dev, &ap->link, ENABLED) {
2964 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2965 rc = ata_dev_configure(dev);
2966 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2967 if (rc)
2968 goto fail;
2969 }
2970
2971 /* configure transfer mode */
2972 rc = ata_set_mode(&ap->link, &dev);
2973 if (rc)
2974 goto fail;
2975
2976 ata_for_each_dev(dev, &ap->link, ENABLED)
2977 return 0;
2978
2979 return -ENODEV;
2980
2981 fail:
2982 tries[dev->devno]--;
2983
2984 switch (rc) {
2985 case -EINVAL:
2986 /* eeek, something went very wrong, give up */
2987 tries[dev->devno] = 0;
2988 break;
2989
2990 case -ENODEV:
2991 /* give it just one more chance */
2992 tries[dev->devno] = min(tries[dev->devno], 1);
2993 fallthrough;
2994 case -EIO:
2995 if (tries[dev->devno] == 1) {
2996 /* This is the last chance, better to slow
2997 * down than lose it.
2998 */
2999 sata_down_spd_limit(&ap->link, 0);
3000 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
3001 }
3002 }
3003
3004 if (!tries[dev->devno])
3005 ata_dev_disable(dev);
3006
3007 goto retry;
3008}
3009
3010/**
3011 * sata_print_link_status - Print SATA link status
3012 * @link: SATA link to printk link status about
3013 *
3014 * This function prints link speed and status of a SATA link.
3015 *
3016 * LOCKING:
3017 * None.
3018 */
3019static void sata_print_link_status(struct ata_link *link)
3020{
3021 u32 sstatus, scontrol, tmp;
3022
3023 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3024 return;
3025 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3026 return;
3027
3028 if (ata_phys_link_online(link)) {
3029 tmp = (sstatus >> 4) & 0xf;
3030 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3031 sata_spd_string(tmp), sstatus, scontrol);
3032 } else {
3033 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3034 sstatus, scontrol);
3035 }
3036}
3037
3038/**
3039 * ata_dev_pair - return other device on cable
3040 * @adev: device
3041 *
3042 * Obtain the other device on the same cable, or if none is
3043 * present NULL is returned
3044 */
3045
3046struct ata_device *ata_dev_pair(struct ata_device *adev)
3047{
3048 struct ata_link *link = adev->link;
3049 struct ata_device *pair = &link->device[1 - adev->devno];
3050 if (!ata_dev_enabled(pair))
3051 return NULL;
3052 return pair;
3053}
3054EXPORT_SYMBOL_GPL(ata_dev_pair);
3055
3056/**
3057 * sata_down_spd_limit - adjust SATA spd limit downward
3058 * @link: Link to adjust SATA spd limit for
3059 * @spd_limit: Additional limit
3060 *
3061 * Adjust SATA spd limit of @link downward. Note that this
3062 * function only adjusts the limit. The change must be applied
3063 * using sata_set_spd().
3064 *
3065 * If @spd_limit is non-zero, the speed is limited to equal to or
3066 * lower than @spd_limit if such speed is supported. If
3067 * @spd_limit is slower than any supported speed, only the lowest
3068 * supported speed is allowed.
3069 *
3070 * LOCKING:
3071 * Inherited from caller.
3072 *
3073 * RETURNS:
3074 * 0 on success, negative errno on failure
3075 */
3076int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3077{
3078 u32 sstatus, spd, mask;
3079 int rc, bit;
3080
3081 if (!sata_scr_valid(link))
3082 return -EOPNOTSUPP;
3083
3084 /* If SCR can be read, use it to determine the current SPD.
3085 * If not, use cached value in link->sata_spd.
3086 */
3087 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3088 if (rc == 0 && ata_sstatus_online(sstatus))
3089 spd = (sstatus >> 4) & 0xf;
3090 else
3091 spd = link->sata_spd;
3092
3093 mask = link->sata_spd_limit;
3094 if (mask <= 1)
3095 return -EINVAL;
3096
3097 /* unconditionally mask off the highest bit */
3098 bit = fls(mask) - 1;
3099 mask &= ~(1 << bit);
3100
3101 /*
3102 * Mask off all speeds higher than or equal to the current one. At
3103 * this point, if current SPD is not available and we previously
3104 * recorded the link speed from SStatus, the driver has already
3105 * masked off the highest bit so mask should already be 1 or 0.
3106 * Otherwise, we should not force 1.5Gbps on a link where we have
3107 * not previously recorded speed from SStatus. Just return in this
3108 * case.
3109 */
3110 if (spd > 1)
3111 mask &= (1 << (spd - 1)) - 1;
3112 else if (link->sata_spd)
3113 return -EINVAL;
3114
3115 /* were we already at the bottom? */
3116 if (!mask)
3117 return -EINVAL;
3118
3119 if (spd_limit) {
3120 if (mask & ((1 << spd_limit) - 1))
3121 mask &= (1 << spd_limit) - 1;
3122 else {
3123 bit = ffs(mask) - 1;
3124 mask = 1 << bit;
3125 }
3126 }
3127
3128 link->sata_spd_limit = mask;
3129
3130 ata_link_warn(link, "limiting SATA link speed to %s\n",
3131 sata_spd_string(fls(mask)));
3132
3133 return 0;
3134}
3135
3136#ifdef CONFIG_ATA_ACPI
3137/**
3138 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3139 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3140 * @cycle: cycle duration in ns
3141 *
3142 * Return matching xfer mode for @cycle. The returned mode is of
3143 * the transfer type specified by @xfer_shift. If @cycle is too
3144 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3145 * than the fastest known mode, the fasted mode is returned.
3146 *
3147 * LOCKING:
3148 * None.
3149 *
3150 * RETURNS:
3151 * Matching xfer_mode, 0xff if no match found.
3152 */
3153u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3154{
3155 u8 base_mode = 0xff, last_mode = 0xff;
3156 const struct ata_xfer_ent *ent;
3157 const struct ata_timing *t;
3158
3159 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3160 if (ent->shift == xfer_shift)
3161 base_mode = ent->base;
3162
3163 for (t = ata_timing_find_mode(base_mode);
3164 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3165 unsigned short this_cycle;
3166
3167 switch (xfer_shift) {
3168 case ATA_SHIFT_PIO:
3169 case ATA_SHIFT_MWDMA:
3170 this_cycle = t->cycle;
3171 break;
3172 case ATA_SHIFT_UDMA:
3173 this_cycle = t->udma;
3174 break;
3175 default:
3176 return 0xff;
3177 }
3178
3179 if (cycle > this_cycle)
3180 break;
3181
3182 last_mode = t->mode;
3183 }
3184
3185 return last_mode;
3186}
3187#endif
3188
3189/**
3190 * ata_down_xfermask_limit - adjust dev xfer masks downward
3191 * @dev: Device to adjust xfer masks
3192 * @sel: ATA_DNXFER_* selector
3193 *
3194 * Adjust xfer masks of @dev downward. Note that this function
3195 * does not apply the change. Invoking ata_set_mode() afterwards
3196 * will apply the limit.
3197 *
3198 * LOCKING:
3199 * Inherited from caller.
3200 *
3201 * RETURNS:
3202 * 0 on success, negative errno on failure
3203 */
3204int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3205{
3206 char buf[32];
3207 unsigned int orig_mask, xfer_mask;
3208 unsigned int pio_mask, mwdma_mask, udma_mask;
3209 int quiet, highbit;
3210
3211 quiet = !!(sel & ATA_DNXFER_QUIET);
3212 sel &= ~ATA_DNXFER_QUIET;
3213
3214 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3215 dev->mwdma_mask,
3216 dev->udma_mask);
3217 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3218
3219 switch (sel) {
3220 case ATA_DNXFER_PIO:
3221 highbit = fls(pio_mask) - 1;
3222 pio_mask &= ~(1 << highbit);
3223 break;
3224
3225 case ATA_DNXFER_DMA:
3226 if (udma_mask) {
3227 highbit = fls(udma_mask) - 1;
3228 udma_mask &= ~(1 << highbit);
3229 if (!udma_mask)
3230 return -ENOENT;
3231 } else if (mwdma_mask) {
3232 highbit = fls(mwdma_mask) - 1;
3233 mwdma_mask &= ~(1 << highbit);
3234 if (!mwdma_mask)
3235 return -ENOENT;
3236 }
3237 break;
3238
3239 case ATA_DNXFER_40C:
3240 udma_mask &= ATA_UDMA_MASK_40C;
3241 break;
3242
3243 case ATA_DNXFER_FORCE_PIO0:
3244 pio_mask &= 1;
3245 fallthrough;
3246 case ATA_DNXFER_FORCE_PIO:
3247 mwdma_mask = 0;
3248 udma_mask = 0;
3249 break;
3250
3251 default:
3252 BUG();
3253 }
3254
3255 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3256
3257 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3258 return -ENOENT;
3259
3260 if (!quiet) {
3261 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3262 snprintf(buf, sizeof(buf), "%s:%s",
3263 ata_mode_string(xfer_mask),
3264 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3265 else
3266 snprintf(buf, sizeof(buf), "%s",
3267 ata_mode_string(xfer_mask));
3268
3269 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3270 }
3271
3272 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3273 &dev->udma_mask);
3274
3275 return 0;
3276}
3277
3278static int ata_dev_set_mode(struct ata_device *dev)
3279{
3280 struct ata_port *ap = dev->link->ap;
3281 struct ata_eh_context *ehc = &dev->link->eh_context;
3282 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3283 const char *dev_err_whine = "";
3284 int ign_dev_err = 0;
3285 unsigned int err_mask = 0;
3286 int rc;
3287
3288 dev->flags &= ~ATA_DFLAG_PIO;
3289 if (dev->xfer_shift == ATA_SHIFT_PIO)
3290 dev->flags |= ATA_DFLAG_PIO;
3291
3292 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3293 dev_err_whine = " (SET_XFERMODE skipped)";
3294 else {
3295 if (nosetxfer)
3296 ata_dev_warn(dev,
3297 "NOSETXFER but PATA detected - can't "
3298 "skip SETXFER, might malfunction\n");
3299 err_mask = ata_dev_set_xfermode(dev);
3300 }
3301
3302 if (err_mask & ~AC_ERR_DEV)
3303 goto fail;
3304
3305 /* revalidate */
3306 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3307 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3308 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3309 if (rc)
3310 return rc;
3311
3312 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3313 /* Old CFA may refuse this command, which is just fine */
3314 if (ata_id_is_cfa(dev->id))
3315 ign_dev_err = 1;
3316 /* Catch several broken garbage emulations plus some pre
3317 ATA devices */
3318 if (ata_id_major_version(dev->id) == 0 &&
3319 dev->pio_mode <= XFER_PIO_2)
3320 ign_dev_err = 1;
3321 /* Some very old devices and some bad newer ones fail
3322 any kind of SET_XFERMODE request but support PIO0-2
3323 timings and no IORDY */
3324 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3325 ign_dev_err = 1;
3326 }
3327 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3328 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3329 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3330 dev->dma_mode == XFER_MW_DMA_0 &&
3331 (dev->id[63] >> 8) & 1)
3332 ign_dev_err = 1;
3333
3334 /* if the device is actually configured correctly, ignore dev err */
3335 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3336 ign_dev_err = 1;
3337
3338 if (err_mask & AC_ERR_DEV) {
3339 if (!ign_dev_err)
3340 goto fail;
3341 else
3342 dev_err_whine = " (device error ignored)";
3343 }
3344
3345 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3346 dev->xfer_shift, (int)dev->xfer_mode);
3347
3348 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3349 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3350 ata_dev_info(dev, "configured for %s%s\n",
3351 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3352 dev_err_whine);
3353
3354 return 0;
3355
3356 fail:
3357 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3358 return -EIO;
3359}
3360
3361/**
3362 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3363 * @link: link on which timings will be programmed
3364 * @r_failed_dev: out parameter for failed device
3365 *
3366 * Standard implementation of the function used to tune and set
3367 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3368 * ata_dev_set_mode() fails, pointer to the failing device is
3369 * returned in @r_failed_dev.
3370 *
3371 * LOCKING:
3372 * PCI/etc. bus probe sem.
3373 *
3374 * RETURNS:
3375 * 0 on success, negative errno otherwise
3376 */
3377
3378int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3379{
3380 struct ata_port *ap = link->ap;
3381 struct ata_device *dev;
3382 int rc = 0, used_dma = 0, found = 0;
3383
3384 /* step 1: calculate xfer_mask */
3385 ata_for_each_dev(dev, link, ENABLED) {
3386 unsigned int pio_mask, dma_mask;
3387 unsigned int mode_mask;
3388
3389 mode_mask = ATA_DMA_MASK_ATA;
3390 if (dev->class == ATA_DEV_ATAPI)
3391 mode_mask = ATA_DMA_MASK_ATAPI;
3392 else if (ata_id_is_cfa(dev->id))
3393 mode_mask = ATA_DMA_MASK_CFA;
3394
3395 ata_dev_xfermask(dev);
3396 ata_force_xfermask(dev);
3397
3398 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3399
3400 if (libata_dma_mask & mode_mask)
3401 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3402 dev->udma_mask);
3403 else
3404 dma_mask = 0;
3405
3406 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3407 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3408
3409 found = 1;
3410 if (ata_dma_enabled(dev))
3411 used_dma = 1;
3412 }
3413 if (!found)
3414 goto out;
3415
3416 /* step 2: always set host PIO timings */
3417 ata_for_each_dev(dev, link, ENABLED) {
3418 if (dev->pio_mode == 0xff) {
3419 ata_dev_warn(dev, "no PIO support\n");
3420 rc = -EINVAL;
3421 goto out;
3422 }
3423
3424 dev->xfer_mode = dev->pio_mode;
3425 dev->xfer_shift = ATA_SHIFT_PIO;
3426 if (ap->ops->set_piomode)
3427 ap->ops->set_piomode(ap, dev);
3428 }
3429
3430 /* step 3: set host DMA timings */
3431 ata_for_each_dev(dev, link, ENABLED) {
3432 if (!ata_dma_enabled(dev))
3433 continue;
3434
3435 dev->xfer_mode = dev->dma_mode;
3436 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3437 if (ap->ops->set_dmamode)
3438 ap->ops->set_dmamode(ap, dev);
3439 }
3440
3441 /* step 4: update devices' xfer mode */
3442 ata_for_each_dev(dev, link, ENABLED) {
3443 rc = ata_dev_set_mode(dev);
3444 if (rc)
3445 goto out;
3446 }
3447
3448 /* Record simplex status. If we selected DMA then the other
3449 * host channels are not permitted to do so.
3450 */
3451 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3452 ap->host->simplex_claimed = ap;
3453
3454 out:
3455 if (rc)
3456 *r_failed_dev = dev;
3457 return rc;
3458}
3459EXPORT_SYMBOL_GPL(ata_do_set_mode);
3460
3461/**
3462 * ata_wait_ready - wait for link to become ready
3463 * @link: link to be waited on
3464 * @deadline: deadline jiffies for the operation
3465 * @check_ready: callback to check link readiness
3466 *
3467 * Wait for @link to become ready. @check_ready should return
3468 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3469 * link doesn't seem to be occupied, other errno for other error
3470 * conditions.
3471 *
3472 * Transient -ENODEV conditions are allowed for
3473 * ATA_TMOUT_FF_WAIT.
3474 *
3475 * LOCKING:
3476 * EH context.
3477 *
3478 * RETURNS:
3479 * 0 if @link is ready before @deadline; otherwise, -errno.
3480 */
3481int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3482 int (*check_ready)(struct ata_link *link))
3483{
3484 unsigned long start = jiffies;
3485 unsigned long nodev_deadline;
3486 int warned = 0;
3487
3488 /* choose which 0xff timeout to use, read comment in libata.h */
3489 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3490 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3491 else
3492 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3493
3494 /* Slave readiness can't be tested separately from master. On
3495 * M/S emulation configuration, this function should be called
3496 * only on the master and it will handle both master and slave.
3497 */
3498 WARN_ON(link == link->ap->slave_link);
3499
3500 if (time_after(nodev_deadline, deadline))
3501 nodev_deadline = deadline;
3502
3503 while (1) {
3504 unsigned long now = jiffies;
3505 int ready, tmp;
3506
3507 ready = tmp = check_ready(link);
3508 if (ready > 0)
3509 return 0;
3510
3511 /*
3512 * -ENODEV could be transient. Ignore -ENODEV if link
3513 * is online. Also, some SATA devices take a long
3514 * time to clear 0xff after reset. Wait for
3515 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3516 * offline.
3517 *
3518 * Note that some PATA controllers (pata_ali) explode
3519 * if status register is read more than once when
3520 * there's no device attached.
3521 */
3522 if (ready == -ENODEV) {
3523 if (ata_link_online(link))
3524 ready = 0;
3525 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3526 !ata_link_offline(link) &&
3527 time_before(now, nodev_deadline))
3528 ready = 0;
3529 }
3530
3531 if (ready)
3532 return ready;
3533 if (time_after(now, deadline))
3534 return -EBUSY;
3535
3536 if (!warned && time_after(now, start + 5 * HZ) &&
3537 (deadline - now > 3 * HZ)) {
3538 ata_link_warn(link,
3539 "link is slow to respond, please be patient "
3540 "(ready=%d)\n", tmp);
3541 warned = 1;
3542 }
3543
3544 ata_msleep(link->ap, 50);
3545 }
3546}
3547
3548/**
3549 * ata_wait_after_reset - wait for link to become ready after reset
3550 * @link: link to be waited on
3551 * @deadline: deadline jiffies for the operation
3552 * @check_ready: callback to check link readiness
3553 *
3554 * Wait for @link to become ready after reset.
3555 *
3556 * LOCKING:
3557 * EH context.
3558 *
3559 * RETURNS:
3560 * 0 if @link is ready before @deadline; otherwise, -errno.
3561 */
3562int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3563 int (*check_ready)(struct ata_link *link))
3564{
3565 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3566
3567 return ata_wait_ready(link, deadline, check_ready);
3568}
3569EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3570
3571/**
3572 * ata_std_prereset - prepare for reset
3573 * @link: ATA link to be reset
3574 * @deadline: deadline jiffies for the operation
3575 *
3576 * @link is about to be reset. Initialize it. Failure from
3577 * prereset makes libata abort whole reset sequence and give up
3578 * that port, so prereset should be best-effort. It does its
3579 * best to prepare for reset sequence but if things go wrong, it
3580 * should just whine, not fail.
3581 *
3582 * LOCKING:
3583 * Kernel thread context (may sleep)
3584 *
3585 * RETURNS:
3586 * Always 0.
3587 */
3588int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3589{
3590 struct ata_port *ap = link->ap;
3591 struct ata_eh_context *ehc = &link->eh_context;
3592 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3593 int rc;
3594
3595 /* if we're about to do hardreset, nothing more to do */
3596 if (ehc->i.action & ATA_EH_HARDRESET)
3597 return 0;
3598
3599 /* if SATA, resume link */
3600 if (ap->flags & ATA_FLAG_SATA) {
3601 rc = sata_link_resume(link, timing, deadline);
3602 /* whine about phy resume failure but proceed */
3603 if (rc && rc != -EOPNOTSUPP)
3604 ata_link_warn(link,
3605 "failed to resume link for reset (errno=%d)\n",
3606 rc);
3607 }
3608
3609 /* no point in trying softreset on offline link */
3610 if (ata_phys_link_offline(link))
3611 ehc->i.action &= ~ATA_EH_SOFTRESET;
3612
3613 return 0;
3614}
3615EXPORT_SYMBOL_GPL(ata_std_prereset);
3616
3617/**
3618 * sata_std_hardreset - COMRESET w/o waiting or classification
3619 * @link: link to reset
3620 * @class: resulting class of attached device
3621 * @deadline: deadline jiffies for the operation
3622 *
3623 * Standard SATA COMRESET w/o waiting or classification.
3624 *
3625 * LOCKING:
3626 * Kernel thread context (may sleep)
3627 *
3628 * RETURNS:
3629 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3630 */
3631int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3632 unsigned long deadline)
3633{
3634 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3635 bool online;
3636 int rc;
3637
3638 /* do hardreset */
3639 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3640 return online ? -EAGAIN : rc;
3641}
3642EXPORT_SYMBOL_GPL(sata_std_hardreset);
3643
3644/**
3645 * ata_std_postreset - standard postreset callback
3646 * @link: the target ata_link
3647 * @classes: classes of attached devices
3648 *
3649 * This function is invoked after a successful reset. Note that
3650 * the device might have been reset more than once using
3651 * different reset methods before postreset is invoked.
3652 *
3653 * LOCKING:
3654 * Kernel thread context (may sleep)
3655 */
3656void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3657{
3658 u32 serror;
3659
3660 /* reset complete, clear SError */
3661 if (!sata_scr_read(link, SCR_ERROR, &serror))
3662 sata_scr_write(link, SCR_ERROR, serror);
3663
3664 /* print link status */
3665 sata_print_link_status(link);
3666}
3667EXPORT_SYMBOL_GPL(ata_std_postreset);
3668
3669/**
3670 * ata_dev_same_device - Determine whether new ID matches configured device
3671 * @dev: device to compare against
3672 * @new_class: class of the new device
3673 * @new_id: IDENTIFY page of the new device
3674 *
3675 * Compare @new_class and @new_id against @dev and determine
3676 * whether @dev is the device indicated by @new_class and
3677 * @new_id.
3678 *
3679 * LOCKING:
3680 * None.
3681 *
3682 * RETURNS:
3683 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3684 */
3685static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3686 const u16 *new_id)
3687{
3688 const u16 *old_id = dev->id;
3689 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3690 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3691
3692 if (dev->class != new_class) {
3693 ata_dev_info(dev, "class mismatch %d != %d\n",
3694 dev->class, new_class);
3695 return 0;
3696 }
3697
3698 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3699 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3700 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3701 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3702
3703 if (strcmp(model[0], model[1])) {
3704 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3705 model[0], model[1]);
3706 return 0;
3707 }
3708
3709 if (strcmp(serial[0], serial[1])) {
3710 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3711 serial[0], serial[1]);
3712 return 0;
3713 }
3714
3715 return 1;
3716}
3717
3718/**
3719 * ata_dev_reread_id - Re-read IDENTIFY data
3720 * @dev: target ATA device
3721 * @readid_flags: read ID flags
3722 *
3723 * Re-read IDENTIFY page and make sure @dev is still attached to
3724 * the port.
3725 *
3726 * LOCKING:
3727 * Kernel thread context (may sleep)
3728 *
3729 * RETURNS:
3730 * 0 on success, negative errno otherwise
3731 */
3732int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3733{
3734 unsigned int class = dev->class;
3735 u16 *id = (void *)dev->link->ap->sector_buf;
3736 int rc;
3737
3738 /* read ID data */
3739 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3740 if (rc)
3741 return rc;
3742
3743 /* is the device still there? */
3744 if (!ata_dev_same_device(dev, class, id))
3745 return -ENODEV;
3746
3747 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3748 return 0;
3749}
3750
3751/**
3752 * ata_dev_revalidate - Revalidate ATA device
3753 * @dev: device to revalidate
3754 * @new_class: new class code
3755 * @readid_flags: read ID flags
3756 *
3757 * Re-read IDENTIFY page, make sure @dev is still attached to the
3758 * port and reconfigure it according to the new IDENTIFY page.
3759 *
3760 * LOCKING:
3761 * Kernel thread context (may sleep)
3762 *
3763 * RETURNS:
3764 * 0 on success, negative errno otherwise
3765 */
3766int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3767 unsigned int readid_flags)
3768{
3769 u64 n_sectors = dev->n_sectors;
3770 u64 n_native_sectors = dev->n_native_sectors;
3771 int rc;
3772
3773 if (!ata_dev_enabled(dev))
3774 return -ENODEV;
3775
3776 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3777 if (ata_class_enabled(new_class) &&
3778 new_class != ATA_DEV_ATA &&
3779 new_class != ATA_DEV_ATAPI &&
3780 new_class != ATA_DEV_ZAC &&
3781 new_class != ATA_DEV_SEMB) {
3782 ata_dev_info(dev, "class mismatch %u != %u\n",
3783 dev->class, new_class);
3784 rc = -ENODEV;
3785 goto fail;
3786 }
3787
3788 /* re-read ID */
3789 rc = ata_dev_reread_id(dev, readid_flags);
3790 if (rc)
3791 goto fail;
3792
3793 /* configure device according to the new ID */
3794 rc = ata_dev_configure(dev);
3795 if (rc)
3796 goto fail;
3797
3798 /* verify n_sectors hasn't changed */
3799 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3800 dev->n_sectors == n_sectors)
3801 return 0;
3802
3803 /* n_sectors has changed */
3804 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3805 (unsigned long long)n_sectors,
3806 (unsigned long long)dev->n_sectors);
3807
3808 /*
3809 * Something could have caused HPA to be unlocked
3810 * involuntarily. If n_native_sectors hasn't changed and the
3811 * new size matches it, keep the device.
3812 */
3813 if (dev->n_native_sectors == n_native_sectors &&
3814 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3815 ata_dev_warn(dev,
3816 "new n_sectors matches native, probably "
3817 "late HPA unlock, n_sectors updated\n");
3818 /* use the larger n_sectors */
3819 return 0;
3820 }
3821
3822 /*
3823 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3824 * unlocking HPA in those cases.
3825 *
3826 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3827 */
3828 if (dev->n_native_sectors == n_native_sectors &&
3829 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3830 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3831 ata_dev_warn(dev,
3832 "old n_sectors matches native, probably "
3833 "late HPA lock, will try to unlock HPA\n");
3834 /* try unlocking HPA */
3835 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3836 rc = -EIO;
3837 } else
3838 rc = -ENODEV;
3839
3840 /* restore original n_[native_]sectors and fail */
3841 dev->n_native_sectors = n_native_sectors;
3842 dev->n_sectors = n_sectors;
3843 fail:
3844 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3845 return rc;
3846}
3847
3848struct ata_blacklist_entry {
3849 const char *model_num;
3850 const char *model_rev;
3851 unsigned long horkage;
3852};
3853
3854static const struct ata_blacklist_entry ata_device_blacklist [] = {
3855 /* Devices with DMA related problems under Linux */
3856 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3857 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3858 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3859 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3860 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3861 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3862 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3863 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3864 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3865 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
3866 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3867 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3868 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3869 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3870 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3871 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
3872 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3873 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3874 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3875 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3876 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3877 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3878 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3879 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3880 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3881 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3882 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3883 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3884 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
3885 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3886 /* Odd clown on sil3726/4726 PMPs */
3887 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
3888 /* Similar story with ASMedia 1092 */
3889 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE },
3890
3891 /* Weird ATAPI devices */
3892 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3893 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
3894 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3895 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3896
3897 /*
3898 * Causes silent data corruption with higher max sects.
3899 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3900 */
3901 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
3902
3903 /*
3904 * These devices time out with higher max sects.
3905 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3906 */
3907 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3908 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3909
3910 /* Devices we expect to fail diagnostics */
3911
3912 /* Devices where NCQ should be avoided */
3913 /* NCQ is slow */
3914 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3915 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ },
3916 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3917 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3918 /* NCQ is broken */
3919 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3920 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3921 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3922 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3923 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
3924
3925 /* Seagate NCQ + FLUSH CACHE firmware bug */
3926 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3927 ATA_HORKAGE_FIRMWARE_WARN },
3928
3929 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3930 ATA_HORKAGE_FIRMWARE_WARN },
3931
3932 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3933 ATA_HORKAGE_FIRMWARE_WARN },
3934
3935 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3936 ATA_HORKAGE_FIRMWARE_WARN },
3937
3938 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
3939 the ST disks also have LPM issues */
3940 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
3941 ATA_HORKAGE_NOLPM },
3942 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
3943
3944 /* Blacklist entries taken from Silicon Image 3124/3132
3945 Windows driver .inf file - also several Linux problem reports */
3946 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ },
3947 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ },
3948 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ },
3949
3950 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3951 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ },
3952
3953 /* Sandisk SD7/8/9s lock up hard on large trims */
3954 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M },
3955
3956 /* devices which puke on READ_NATIVE_MAX */
3957 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA },
3958 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3959 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3960 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3961
3962 /* this one allows HPA unlocking but fails IOs on the area */
3963 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
3964
3965 /* Devices which report 1 sector over size HPA */
3966 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE },
3967 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE },
3968 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE },
3969
3970 /* Devices which get the IVB wrong */
3971 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
3972 /* Maybe we should just blacklist TSSTcorp... */
3973 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB },
3974
3975 /* Devices that do not need bridging limits applied */
3976 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK },
3977 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK },
3978
3979 /* Devices which aren't very happy with higher link speeds */
3980 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS },
3981 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS },
3982
3983 /*
3984 * Devices which choke on SETXFER. Applies only if both the
3985 * device and controller are SATA.
3986 */
3987 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3988 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
3989 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
3990 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
3991 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
3992
3993 /* These specific Pioneer models have LPM issues */
3994 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM },
3995 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM },
3996
3997 /* Crucial BX100 SSD 500GB has broken LPM support */
3998 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
3999
4000 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4001 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4002 ATA_HORKAGE_ZERO_AFTER_TRIM |
4003 ATA_HORKAGE_NOLPM },
4004 /* 512GB MX100 with newer firmware has only LPM issues */
4005 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4006 ATA_HORKAGE_NOLPM },
4007
4008 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4009 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4010 ATA_HORKAGE_ZERO_AFTER_TRIM |
4011 ATA_HORKAGE_NOLPM },
4012 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4013 ATA_HORKAGE_ZERO_AFTER_TRIM |
4014 ATA_HORKAGE_NOLPM },
4015
4016 /* These specific Samsung models/firmware-revs do not handle LPM well */
4017 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4018 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM },
4019 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM },
4020 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4021
4022 /* devices that don't properly handle queued TRIM commands */
4023 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4024 ATA_HORKAGE_ZERO_AFTER_TRIM },
4025 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4026 ATA_HORKAGE_ZERO_AFTER_TRIM },
4027 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4028 ATA_HORKAGE_ZERO_AFTER_TRIM },
4029 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4030 ATA_HORKAGE_ZERO_AFTER_TRIM },
4031 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4032 ATA_HORKAGE_ZERO_AFTER_TRIM },
4033 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4034 ATA_HORKAGE_ZERO_AFTER_TRIM },
4035 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4036 ATA_HORKAGE_NO_DMA_LOG |
4037 ATA_HORKAGE_ZERO_AFTER_TRIM },
4038 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4039 ATA_HORKAGE_ZERO_AFTER_TRIM },
4040 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4041 ATA_HORKAGE_ZERO_AFTER_TRIM },
4042 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4043 ATA_HORKAGE_ZERO_AFTER_TRIM |
4044 ATA_HORKAGE_NO_NCQ_ON_ATI },
4045 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4046 ATA_HORKAGE_ZERO_AFTER_TRIM |
4047 ATA_HORKAGE_NO_NCQ_ON_ATI },
4048 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4049 ATA_HORKAGE_ZERO_AFTER_TRIM |
4050 ATA_HORKAGE_NO_NCQ_ON_ATI, },
4051 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4052 ATA_HORKAGE_ZERO_AFTER_TRIM },
4053
4054 /* devices that don't properly handle TRIM commands */
4055 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM },
4056 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM },
4057
4058 /*
4059 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4060 * (Return Zero After Trim) flags in the ATA Command Set are
4061 * unreliable in the sense that they only define what happens if
4062 * the device successfully executed the DSM TRIM command. TRIM
4063 * is only advisory, however, and the device is free to silently
4064 * ignore all or parts of the request.
4065 *
4066 * Whitelist drives that are known to reliably return zeroes
4067 * after TRIM.
4068 */
4069
4070 /*
4071 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4072 * that model before whitelisting all other intel SSDs.
4073 */
4074 { "INTEL*SSDSC2MH*", NULL, 0 },
4075
4076 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4077 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4078 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4079 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4080 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4081 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4082 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4083 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4084
4085 /*
4086 * Some WD SATA-I drives spin up and down erratically when the link
4087 * is put into the slumber mode. We don't have full list of the
4088 * affected devices. Disable LPM if the device matches one of the
4089 * known prefixes and is SATA-1. As a side effect LPM partial is
4090 * lost too.
4091 *
4092 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4093 */
4094 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4095 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4096 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4097 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4098 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4099 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4100 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4101
4102 /*
4103 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4104 * log page is accessed. Ensure we never ask for this log page with
4105 * these devices.
4106 */
4107 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR },
4108
4109 /* End Marker */
4110 { }
4111};
4112
4113static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4114{
4115 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4116 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4117 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4118
4119 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4120 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4121
4122 while (ad->model_num) {
4123 if (glob_match(ad->model_num, model_num)) {
4124 if (ad->model_rev == NULL)
4125 return ad->horkage;
4126 if (glob_match(ad->model_rev, model_rev))
4127 return ad->horkage;
4128 }
4129 ad++;
4130 }
4131 return 0;
4132}
4133
4134static int ata_dma_blacklisted(const struct ata_device *dev)
4135{
4136 /* We don't support polling DMA.
4137 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4138 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4139 */
4140 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4141 (dev->flags & ATA_DFLAG_CDB_INTR))
4142 return 1;
4143 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4144}
4145
4146/**
4147 * ata_is_40wire - check drive side detection
4148 * @dev: device
4149 *
4150 * Perform drive side detection decoding, allowing for device vendors
4151 * who can't follow the documentation.
4152 */
4153
4154static int ata_is_40wire(struct ata_device *dev)
4155{
4156 if (dev->horkage & ATA_HORKAGE_IVB)
4157 return ata_drive_40wire_relaxed(dev->id);
4158 return ata_drive_40wire(dev->id);
4159}
4160
4161/**
4162 * cable_is_40wire - 40/80/SATA decider
4163 * @ap: port to consider
4164 *
4165 * This function encapsulates the policy for speed management
4166 * in one place. At the moment we don't cache the result but
4167 * there is a good case for setting ap->cbl to the result when
4168 * we are called with unknown cables (and figuring out if it
4169 * impacts hotplug at all).
4170 *
4171 * Return 1 if the cable appears to be 40 wire.
4172 */
4173
4174static int cable_is_40wire(struct ata_port *ap)
4175{
4176 struct ata_link *link;
4177 struct ata_device *dev;
4178
4179 /* If the controller thinks we are 40 wire, we are. */
4180 if (ap->cbl == ATA_CBL_PATA40)
4181 return 1;
4182
4183 /* If the controller thinks we are 80 wire, we are. */
4184 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4185 return 0;
4186
4187 /* If the system is known to be 40 wire short cable (eg
4188 * laptop), then we allow 80 wire modes even if the drive
4189 * isn't sure.
4190 */
4191 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4192 return 0;
4193
4194 /* If the controller doesn't know, we scan.
4195 *
4196 * Note: We look for all 40 wire detects at this point. Any
4197 * 80 wire detect is taken to be 80 wire cable because
4198 * - in many setups only the one drive (slave if present) will
4199 * give a valid detect
4200 * - if you have a non detect capable drive you don't want it
4201 * to colour the choice
4202 */
4203 ata_for_each_link(link, ap, EDGE) {
4204 ata_for_each_dev(dev, link, ENABLED) {
4205 if (!ata_is_40wire(dev))
4206 return 0;
4207 }
4208 }
4209 return 1;
4210}
4211
4212/**
4213 * ata_dev_xfermask - Compute supported xfermask of the given device
4214 * @dev: Device to compute xfermask for
4215 *
4216 * Compute supported xfermask of @dev and store it in
4217 * dev->*_mask. This function is responsible for applying all
4218 * known limits including host controller limits, device
4219 * blacklist, etc...
4220 *
4221 * LOCKING:
4222 * None.
4223 */
4224static void ata_dev_xfermask(struct ata_device *dev)
4225{
4226 struct ata_link *link = dev->link;
4227 struct ata_port *ap = link->ap;
4228 struct ata_host *host = ap->host;
4229 unsigned int xfer_mask;
4230
4231 /* controller modes available */
4232 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4233 ap->mwdma_mask, ap->udma_mask);
4234
4235 /* drive modes available */
4236 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4237 dev->mwdma_mask, dev->udma_mask);
4238 xfer_mask &= ata_id_xfermask(dev->id);
4239
4240 /*
4241 * CFA Advanced TrueIDE timings are not allowed on a shared
4242 * cable
4243 */
4244 if (ata_dev_pair(dev)) {
4245 /* No PIO5 or PIO6 */
4246 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4247 /* No MWDMA3 or MWDMA 4 */
4248 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4249 }
4250
4251 if (ata_dma_blacklisted(dev)) {
4252 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4253 ata_dev_warn(dev,
4254 "device is on DMA blacklist, disabling DMA\n");
4255 }
4256
4257 if ((host->flags & ATA_HOST_SIMPLEX) &&
4258 host->simplex_claimed && host->simplex_claimed != ap) {
4259 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4260 ata_dev_warn(dev,
4261 "simplex DMA is claimed by other device, disabling DMA\n");
4262 }
4263
4264 if (ap->flags & ATA_FLAG_NO_IORDY)
4265 xfer_mask &= ata_pio_mask_no_iordy(dev);
4266
4267 if (ap->ops->mode_filter)
4268 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4269
4270 /* Apply cable rule here. Don't apply it early because when
4271 * we handle hot plug the cable type can itself change.
4272 * Check this last so that we know if the transfer rate was
4273 * solely limited by the cable.
4274 * Unknown or 80 wire cables reported host side are checked
4275 * drive side as well. Cases where we know a 40wire cable
4276 * is used safely for 80 are not checked here.
4277 */
4278 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4279 /* UDMA/44 or higher would be available */
4280 if (cable_is_40wire(ap)) {
4281 ata_dev_warn(dev,
4282 "limited to UDMA/33 due to 40-wire cable\n");
4283 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4284 }
4285
4286 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4287 &dev->mwdma_mask, &dev->udma_mask);
4288}
4289
4290/**
4291 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4292 * @dev: Device to which command will be sent
4293 *
4294 * Issue SET FEATURES - XFER MODE command to device @dev
4295 * on port @ap.
4296 *
4297 * LOCKING:
4298 * PCI/etc. bus probe sem.
4299 *
4300 * RETURNS:
4301 * 0 on success, AC_ERR_* mask otherwise.
4302 */
4303
4304static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4305{
4306 struct ata_taskfile tf;
4307
4308 /* set up set-features taskfile */
4309 ata_dev_dbg(dev, "set features - xfer mode\n");
4310
4311 /* Some controllers and ATAPI devices show flaky interrupt
4312 * behavior after setting xfer mode. Use polling instead.
4313 */
4314 ata_tf_init(dev, &tf);
4315 tf.command = ATA_CMD_SET_FEATURES;
4316 tf.feature = SETFEATURES_XFER;
4317 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4318 tf.protocol = ATA_PROT_NODATA;
4319 /* If we are using IORDY we must send the mode setting command */
4320 if (ata_pio_need_iordy(dev))
4321 tf.nsect = dev->xfer_mode;
4322 /* If the device has IORDY and the controller does not - turn it off */
4323 else if (ata_id_has_iordy(dev->id))
4324 tf.nsect = 0x01;
4325 else /* In the ancient relic department - skip all of this */
4326 return 0;
4327
4328 /*
4329 * On some disks, this command causes spin-up, so we need longer
4330 * timeout.
4331 */
4332 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4333}
4334
4335/**
4336 * ata_dev_set_feature - Issue SET FEATURES
4337 * @dev: Device to which command will be sent
4338 * @subcmd: The SET FEATURES subcommand to be sent
4339 * @action: The sector count represents a subcommand specific action
4340 *
4341 * Issue SET FEATURES command to device @dev on port @ap with sector count
4342 *
4343 * LOCKING:
4344 * PCI/etc. bus probe sem.
4345 *
4346 * RETURNS:
4347 * 0 on success, AC_ERR_* mask otherwise.
4348 */
4349unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4350{
4351 struct ata_taskfile tf;
4352 unsigned int timeout = 0;
4353
4354 /* set up set-features taskfile */
4355 ata_dev_dbg(dev, "set features\n");
4356
4357 ata_tf_init(dev, &tf);
4358 tf.command = ATA_CMD_SET_FEATURES;
4359 tf.feature = subcmd;
4360 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4361 tf.protocol = ATA_PROT_NODATA;
4362 tf.nsect = action;
4363
4364 if (subcmd == SETFEATURES_SPINUP)
4365 timeout = ata_probe_timeout ?
4366 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4367
4368 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4369}
4370EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4371
4372/**
4373 * ata_dev_init_params - Issue INIT DEV PARAMS command
4374 * @dev: Device to which command will be sent
4375 * @heads: Number of heads (taskfile parameter)
4376 * @sectors: Number of sectors (taskfile parameter)
4377 *
4378 * LOCKING:
4379 * Kernel thread context (may sleep)
4380 *
4381 * RETURNS:
4382 * 0 on success, AC_ERR_* mask otherwise.
4383 */
4384static unsigned int ata_dev_init_params(struct ata_device *dev,
4385 u16 heads, u16 sectors)
4386{
4387 struct ata_taskfile tf;
4388 unsigned int err_mask;
4389
4390 /* Number of sectors per track 1-255. Number of heads 1-16 */
4391 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4392 return AC_ERR_INVALID;
4393
4394 /* set up init dev params taskfile */
4395 ata_dev_dbg(dev, "init dev params \n");
4396
4397 ata_tf_init(dev, &tf);
4398 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4399 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4400 tf.protocol = ATA_PROT_NODATA;
4401 tf.nsect = sectors;
4402 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4403
4404 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4405 /* A clean abort indicates an original or just out of spec drive
4406 and we should continue as we issue the setup based on the
4407 drive reported working geometry */
4408 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4409 err_mask = 0;
4410
4411 return err_mask;
4412}
4413
4414/**
4415 * atapi_check_dma - Check whether ATAPI DMA can be supported
4416 * @qc: Metadata associated with taskfile to check
4417 *
4418 * Allow low-level driver to filter ATA PACKET commands, returning
4419 * a status indicating whether or not it is OK to use DMA for the
4420 * supplied PACKET command.
4421 *
4422 * LOCKING:
4423 * spin_lock_irqsave(host lock)
4424 *
4425 * RETURNS: 0 when ATAPI DMA can be used
4426 * nonzero otherwise
4427 */
4428int atapi_check_dma(struct ata_queued_cmd *qc)
4429{
4430 struct ata_port *ap = qc->ap;
4431
4432 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4433 * few ATAPI devices choke on such DMA requests.
4434 */
4435 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4436 unlikely(qc->nbytes & 15))
4437 return 1;
4438
4439 if (ap->ops->check_atapi_dma)
4440 return ap->ops->check_atapi_dma(qc);
4441
4442 return 0;
4443}
4444
4445/**
4446 * ata_std_qc_defer - Check whether a qc needs to be deferred
4447 * @qc: ATA command in question
4448 *
4449 * Non-NCQ commands cannot run with any other command, NCQ or
4450 * not. As upper layer only knows the queue depth, we are
4451 * responsible for maintaining exclusion. This function checks
4452 * whether a new command @qc can be issued.
4453 *
4454 * LOCKING:
4455 * spin_lock_irqsave(host lock)
4456 *
4457 * RETURNS:
4458 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4459 */
4460int ata_std_qc_defer(struct ata_queued_cmd *qc)
4461{
4462 struct ata_link *link = qc->dev->link;
4463
4464 if (ata_is_ncq(qc->tf.protocol)) {
4465 if (!ata_tag_valid(link->active_tag))
4466 return 0;
4467 } else {
4468 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4469 return 0;
4470 }
4471
4472 return ATA_DEFER_LINK;
4473}
4474EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4475
4476enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4477{
4478 return AC_ERR_OK;
4479}
4480EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4481
4482/**
4483 * ata_sg_init - Associate command with scatter-gather table.
4484 * @qc: Command to be associated
4485 * @sg: Scatter-gather table.
4486 * @n_elem: Number of elements in s/g table.
4487 *
4488 * Initialize the data-related elements of queued_cmd @qc
4489 * to point to a scatter-gather table @sg, containing @n_elem
4490 * elements.
4491 *
4492 * LOCKING:
4493 * spin_lock_irqsave(host lock)
4494 */
4495void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4496 unsigned int n_elem)
4497{
4498 qc->sg = sg;
4499 qc->n_elem = n_elem;
4500 qc->cursg = qc->sg;
4501}
4502
4503#ifdef CONFIG_HAS_DMA
4504
4505/**
4506 * ata_sg_clean - Unmap DMA memory associated with command
4507 * @qc: Command containing DMA memory to be released
4508 *
4509 * Unmap all mapped DMA memory associated with this command.
4510 *
4511 * LOCKING:
4512 * spin_lock_irqsave(host lock)
4513 */
4514static void ata_sg_clean(struct ata_queued_cmd *qc)
4515{
4516 struct ata_port *ap = qc->ap;
4517 struct scatterlist *sg = qc->sg;
4518 int dir = qc->dma_dir;
4519
4520 WARN_ON_ONCE(sg == NULL);
4521
4522 if (qc->n_elem)
4523 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4524
4525 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4526 qc->sg = NULL;
4527}
4528
4529/**
4530 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4531 * @qc: Command with scatter-gather table to be mapped.
4532 *
4533 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4534 *
4535 * LOCKING:
4536 * spin_lock_irqsave(host lock)
4537 *
4538 * RETURNS:
4539 * Zero on success, negative on error.
4540 *
4541 */
4542static int ata_sg_setup(struct ata_queued_cmd *qc)
4543{
4544 struct ata_port *ap = qc->ap;
4545 unsigned int n_elem;
4546
4547 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4548 if (n_elem < 1)
4549 return -1;
4550
4551 qc->orig_n_elem = qc->n_elem;
4552 qc->n_elem = n_elem;
4553 qc->flags |= ATA_QCFLAG_DMAMAP;
4554
4555 return 0;
4556}
4557
4558#else /* !CONFIG_HAS_DMA */
4559
4560static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4561static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4562
4563#endif /* !CONFIG_HAS_DMA */
4564
4565/**
4566 * swap_buf_le16 - swap halves of 16-bit words in place
4567 * @buf: Buffer to swap
4568 * @buf_words: Number of 16-bit words in buffer.
4569 *
4570 * Swap halves of 16-bit words if needed to convert from
4571 * little-endian byte order to native cpu byte order, or
4572 * vice-versa.
4573 *
4574 * LOCKING:
4575 * Inherited from caller.
4576 */
4577void swap_buf_le16(u16 *buf, unsigned int buf_words)
4578{
4579#ifdef __BIG_ENDIAN
4580 unsigned int i;
4581
4582 for (i = 0; i < buf_words; i++)
4583 buf[i] = le16_to_cpu(buf[i]);
4584#endif /* __BIG_ENDIAN */
4585}
4586
4587/**
4588 * ata_qc_free - free unused ata_queued_cmd
4589 * @qc: Command to complete
4590 *
4591 * Designed to free unused ata_queued_cmd object
4592 * in case something prevents using it.
4593 *
4594 * LOCKING:
4595 * spin_lock_irqsave(host lock)
4596 */
4597void ata_qc_free(struct ata_queued_cmd *qc)
4598{
4599 qc->flags = 0;
4600 if (ata_tag_valid(qc->tag))
4601 qc->tag = ATA_TAG_POISON;
4602}
4603
4604void __ata_qc_complete(struct ata_queued_cmd *qc)
4605{
4606 struct ata_port *ap;
4607 struct ata_link *link;
4608
4609 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4610 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4611 ap = qc->ap;
4612 link = qc->dev->link;
4613
4614 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4615 ata_sg_clean(qc);
4616
4617 /* command should be marked inactive atomically with qc completion */
4618 if (ata_is_ncq(qc->tf.protocol)) {
4619 link->sactive &= ~(1 << qc->hw_tag);
4620 if (!link->sactive)
4621 ap->nr_active_links--;
4622 } else {
4623 link->active_tag = ATA_TAG_POISON;
4624 ap->nr_active_links--;
4625 }
4626
4627 /* clear exclusive status */
4628 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4629 ap->excl_link == link))
4630 ap->excl_link = NULL;
4631
4632 /* atapi: mark qc as inactive to prevent the interrupt handler
4633 * from completing the command twice later, before the error handler
4634 * is called. (when rc != 0 and atapi request sense is needed)
4635 */
4636 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4637 ap->qc_active &= ~(1ULL << qc->tag);
4638
4639 /* call completion callback */
4640 qc->complete_fn(qc);
4641}
4642
4643static void fill_result_tf(struct ata_queued_cmd *qc)
4644{
4645 struct ata_port *ap = qc->ap;
4646
4647 qc->result_tf.flags = qc->tf.flags;
4648 ap->ops->qc_fill_rtf(qc);
4649}
4650
4651static void ata_verify_xfer(struct ata_queued_cmd *qc)
4652{
4653 struct ata_device *dev = qc->dev;
4654
4655 if (!ata_is_data(qc->tf.protocol))
4656 return;
4657
4658 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4659 return;
4660
4661 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4662}
4663
4664/**
4665 * ata_qc_complete - Complete an active ATA command
4666 * @qc: Command to complete
4667 *
4668 * Indicate to the mid and upper layers that an ATA command has
4669 * completed, with either an ok or not-ok status.
4670 *
4671 * Refrain from calling this function multiple times when
4672 * successfully completing multiple NCQ commands.
4673 * ata_qc_complete_multiple() should be used instead, which will
4674 * properly update IRQ expect state.
4675 *
4676 * LOCKING:
4677 * spin_lock_irqsave(host lock)
4678 */
4679void ata_qc_complete(struct ata_queued_cmd *qc)
4680{
4681 struct ata_port *ap = qc->ap;
4682
4683 /* Trigger the LED (if available) */
4684 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4685
4686 /* XXX: New EH and old EH use different mechanisms to
4687 * synchronize EH with regular execution path.
4688 *
4689 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4690 * Normal execution path is responsible for not accessing a
4691 * failed qc. libata core enforces the rule by returning NULL
4692 * from ata_qc_from_tag() for failed qcs.
4693 *
4694 * Old EH depends on ata_qc_complete() nullifying completion
4695 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4696 * not synchronize with interrupt handler. Only PIO task is
4697 * taken care of.
4698 */
4699 if (ap->ops->error_handler) {
4700 struct ata_device *dev = qc->dev;
4701 struct ata_eh_info *ehi = &dev->link->eh_info;
4702
4703 if (unlikely(qc->err_mask))
4704 qc->flags |= ATA_QCFLAG_FAILED;
4705
4706 /*
4707 * Finish internal commands without any further processing
4708 * and always with the result TF filled.
4709 */
4710 if (unlikely(ata_tag_internal(qc->tag))) {
4711 fill_result_tf(qc);
4712 trace_ata_qc_complete_internal(qc);
4713 __ata_qc_complete(qc);
4714 return;
4715 }
4716
4717 /*
4718 * Non-internal qc has failed. Fill the result TF and
4719 * summon EH.
4720 */
4721 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4722 fill_result_tf(qc);
4723 trace_ata_qc_complete_failed(qc);
4724 ata_qc_schedule_eh(qc);
4725 return;
4726 }
4727
4728 WARN_ON_ONCE(ata_port_is_frozen(ap));
4729
4730 /* read result TF if requested */
4731 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4732 fill_result_tf(qc);
4733
4734 trace_ata_qc_complete_done(qc);
4735 /* Some commands need post-processing after successful
4736 * completion.
4737 */
4738 switch (qc->tf.command) {
4739 case ATA_CMD_SET_FEATURES:
4740 if (qc->tf.feature != SETFEATURES_WC_ON &&
4741 qc->tf.feature != SETFEATURES_WC_OFF &&
4742 qc->tf.feature != SETFEATURES_RA_ON &&
4743 qc->tf.feature != SETFEATURES_RA_OFF)
4744 break;
4745 fallthrough;
4746 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4747 case ATA_CMD_SET_MULTI: /* multi_count changed */
4748 /* revalidate device */
4749 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4750 ata_port_schedule_eh(ap);
4751 break;
4752
4753 case ATA_CMD_SLEEP:
4754 dev->flags |= ATA_DFLAG_SLEEPING;
4755 break;
4756 }
4757
4758 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4759 ata_verify_xfer(qc);
4760
4761 __ata_qc_complete(qc);
4762 } else {
4763 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4764 return;
4765
4766 /* read result TF if failed or requested */
4767 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4768 fill_result_tf(qc);
4769
4770 __ata_qc_complete(qc);
4771 }
4772}
4773EXPORT_SYMBOL_GPL(ata_qc_complete);
4774
4775/**
4776 * ata_qc_get_active - get bitmask of active qcs
4777 * @ap: port in question
4778 *
4779 * LOCKING:
4780 * spin_lock_irqsave(host lock)
4781 *
4782 * RETURNS:
4783 * Bitmask of active qcs
4784 */
4785u64 ata_qc_get_active(struct ata_port *ap)
4786{
4787 u64 qc_active = ap->qc_active;
4788
4789 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4790 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4791 qc_active |= (1 << 0);
4792 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4793 }
4794
4795 return qc_active;
4796}
4797EXPORT_SYMBOL_GPL(ata_qc_get_active);
4798
4799/**
4800 * ata_qc_issue - issue taskfile to device
4801 * @qc: command to issue to device
4802 *
4803 * Prepare an ATA command to submission to device.
4804 * This includes mapping the data into a DMA-able
4805 * area, filling in the S/G table, and finally
4806 * writing the taskfile to hardware, starting the command.
4807 *
4808 * LOCKING:
4809 * spin_lock_irqsave(host lock)
4810 */
4811void ata_qc_issue(struct ata_queued_cmd *qc)
4812{
4813 struct ata_port *ap = qc->ap;
4814 struct ata_link *link = qc->dev->link;
4815 u8 prot = qc->tf.protocol;
4816
4817 /* Make sure only one non-NCQ command is outstanding. The
4818 * check is skipped for old EH because it reuses active qc to
4819 * request ATAPI sense.
4820 */
4821 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4822
4823 if (ata_is_ncq(prot)) {
4824 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4825
4826 if (!link->sactive)
4827 ap->nr_active_links++;
4828 link->sactive |= 1 << qc->hw_tag;
4829 } else {
4830 WARN_ON_ONCE(link->sactive);
4831
4832 ap->nr_active_links++;
4833 link->active_tag = qc->tag;
4834 }
4835
4836 qc->flags |= ATA_QCFLAG_ACTIVE;
4837 ap->qc_active |= 1ULL << qc->tag;
4838
4839 /*
4840 * We guarantee to LLDs that they will have at least one
4841 * non-zero sg if the command is a data command.
4842 */
4843 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4844 goto sys_err;
4845
4846 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4847 (ap->flags & ATA_FLAG_PIO_DMA)))
4848 if (ata_sg_setup(qc))
4849 goto sys_err;
4850
4851 /* if device is sleeping, schedule reset and abort the link */
4852 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4853 link->eh_info.action |= ATA_EH_RESET;
4854 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4855 ata_link_abort(link);
4856 return;
4857 }
4858
4859 trace_ata_qc_prep(qc);
4860 qc->err_mask |= ap->ops->qc_prep(qc);
4861 if (unlikely(qc->err_mask))
4862 goto err;
4863 trace_ata_qc_issue(qc);
4864 qc->err_mask |= ap->ops->qc_issue(qc);
4865 if (unlikely(qc->err_mask))
4866 goto err;
4867 return;
4868
4869sys_err:
4870 qc->err_mask |= AC_ERR_SYSTEM;
4871err:
4872 ata_qc_complete(qc);
4873}
4874
4875/**
4876 * ata_phys_link_online - test whether the given link is online
4877 * @link: ATA link to test
4878 *
4879 * Test whether @link is online. Note that this function returns
4880 * 0 if online status of @link cannot be obtained, so
4881 * ata_link_online(link) != !ata_link_offline(link).
4882 *
4883 * LOCKING:
4884 * None.
4885 *
4886 * RETURNS:
4887 * True if the port online status is available and online.
4888 */
4889bool ata_phys_link_online(struct ata_link *link)
4890{
4891 u32 sstatus;
4892
4893 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4894 ata_sstatus_online(sstatus))
4895 return true;
4896 return false;
4897}
4898
4899/**
4900 * ata_phys_link_offline - test whether the given link is offline
4901 * @link: ATA link to test
4902 *
4903 * Test whether @link is offline. Note that this function
4904 * returns 0 if offline status of @link cannot be obtained, so
4905 * ata_link_online(link) != !ata_link_offline(link).
4906 *
4907 * LOCKING:
4908 * None.
4909 *
4910 * RETURNS:
4911 * True if the port offline status is available and offline.
4912 */
4913bool ata_phys_link_offline(struct ata_link *link)
4914{
4915 u32 sstatus;
4916
4917 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4918 !ata_sstatus_online(sstatus))
4919 return true;
4920 return false;
4921}
4922
4923/**
4924 * ata_link_online - test whether the given link is online
4925 * @link: ATA link to test
4926 *
4927 * Test whether @link is online. This is identical to
4928 * ata_phys_link_online() when there's no slave link. When
4929 * there's a slave link, this function should only be called on
4930 * the master link and will return true if any of M/S links is
4931 * online.
4932 *
4933 * LOCKING:
4934 * None.
4935 *
4936 * RETURNS:
4937 * True if the port online status is available and online.
4938 */
4939bool ata_link_online(struct ata_link *link)
4940{
4941 struct ata_link *slave = link->ap->slave_link;
4942
4943 WARN_ON(link == slave); /* shouldn't be called on slave link */
4944
4945 return ata_phys_link_online(link) ||
4946 (slave && ata_phys_link_online(slave));
4947}
4948EXPORT_SYMBOL_GPL(ata_link_online);
4949
4950/**
4951 * ata_link_offline - test whether the given link is offline
4952 * @link: ATA link to test
4953 *
4954 * Test whether @link is offline. This is identical to
4955 * ata_phys_link_offline() when there's no slave link. When
4956 * there's a slave link, this function should only be called on
4957 * the master link and will return true if both M/S links are
4958 * offline.
4959 *
4960 * LOCKING:
4961 * None.
4962 *
4963 * RETURNS:
4964 * True if the port offline status is available and offline.
4965 */
4966bool ata_link_offline(struct ata_link *link)
4967{
4968 struct ata_link *slave = link->ap->slave_link;
4969
4970 WARN_ON(link == slave); /* shouldn't be called on slave link */
4971
4972 return ata_phys_link_offline(link) &&
4973 (!slave || ata_phys_link_offline(slave));
4974}
4975EXPORT_SYMBOL_GPL(ata_link_offline);
4976
4977#ifdef CONFIG_PM
4978static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4979 unsigned int action, unsigned int ehi_flags,
4980 bool async)
4981{
4982 struct ata_link *link;
4983 unsigned long flags;
4984
4985 /* Previous resume operation might still be in
4986 * progress. Wait for PM_PENDING to clear.
4987 */
4988 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4989 ata_port_wait_eh(ap);
4990 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4991 }
4992
4993 /* request PM ops to EH */
4994 spin_lock_irqsave(ap->lock, flags);
4995
4996 ap->pm_mesg = mesg;
4997 ap->pflags |= ATA_PFLAG_PM_PENDING;
4998 ata_for_each_link(link, ap, HOST_FIRST) {
4999 link->eh_info.action |= action;
5000 link->eh_info.flags |= ehi_flags;
5001 }
5002
5003 ata_port_schedule_eh(ap);
5004
5005 spin_unlock_irqrestore(ap->lock, flags);
5006
5007 if (!async) {
5008 ata_port_wait_eh(ap);
5009 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5010 }
5011}
5012
5013/*
5014 * On some hardware, device fails to respond after spun down for suspend. As
5015 * the device won't be used before being resumed, we don't need to touch the
5016 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5017 *
5018 * http://thread.gmane.org/gmane.linux.ide/46764
5019 */
5020static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5021 | ATA_EHI_NO_AUTOPSY
5022 | ATA_EHI_NO_RECOVERY;
5023
5024static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5025{
5026 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5027}
5028
5029static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5030{
5031 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5032}
5033
5034static int ata_port_pm_suspend(struct device *dev)
5035{
5036 struct ata_port *ap = to_ata_port(dev);
5037
5038 if (pm_runtime_suspended(dev))
5039 return 0;
5040
5041 ata_port_suspend(ap, PMSG_SUSPEND);
5042 return 0;
5043}
5044
5045static int ata_port_pm_freeze(struct device *dev)
5046{
5047 struct ata_port *ap = to_ata_port(dev);
5048
5049 if (pm_runtime_suspended(dev))
5050 return 0;
5051
5052 ata_port_suspend(ap, PMSG_FREEZE);
5053 return 0;
5054}
5055
5056static int ata_port_pm_poweroff(struct device *dev)
5057{
5058 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5059 return 0;
5060}
5061
5062static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5063 | ATA_EHI_QUIET;
5064
5065static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5066{
5067 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5068}
5069
5070static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5071{
5072 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5073}
5074
5075static int ata_port_pm_resume(struct device *dev)
5076{
5077 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5078 pm_runtime_disable(dev);
5079 pm_runtime_set_active(dev);
5080 pm_runtime_enable(dev);
5081 return 0;
5082}
5083
5084/*
5085 * For ODDs, the upper layer will poll for media change every few seconds,
5086 * which will make it enter and leave suspend state every few seconds. And
5087 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5088 * is very little and the ODD may malfunction after constantly being reset.
5089 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5090 * ODD is attached to the port.
5091 */
5092static int ata_port_runtime_idle(struct device *dev)
5093{
5094 struct ata_port *ap = to_ata_port(dev);
5095 struct ata_link *link;
5096 struct ata_device *adev;
5097
5098 ata_for_each_link(link, ap, HOST_FIRST) {
5099 ata_for_each_dev(adev, link, ENABLED)
5100 if (adev->class == ATA_DEV_ATAPI &&
5101 !zpodd_dev_enabled(adev))
5102 return -EBUSY;
5103 }
5104
5105 return 0;
5106}
5107
5108static int ata_port_runtime_suspend(struct device *dev)
5109{
5110 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5111 return 0;
5112}
5113
5114static int ata_port_runtime_resume(struct device *dev)
5115{
5116 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5117 return 0;
5118}
5119
5120static const struct dev_pm_ops ata_port_pm_ops = {
5121 .suspend = ata_port_pm_suspend,
5122 .resume = ata_port_pm_resume,
5123 .freeze = ata_port_pm_freeze,
5124 .thaw = ata_port_pm_resume,
5125 .poweroff = ata_port_pm_poweroff,
5126 .restore = ata_port_pm_resume,
5127
5128 .runtime_suspend = ata_port_runtime_suspend,
5129 .runtime_resume = ata_port_runtime_resume,
5130 .runtime_idle = ata_port_runtime_idle,
5131};
5132
5133/* sas ports don't participate in pm runtime management of ata_ports,
5134 * and need to resume ata devices at the domain level, not the per-port
5135 * level. sas suspend/resume is async to allow parallel port recovery
5136 * since sas has multiple ata_port instances per Scsi_Host.
5137 */
5138void ata_sas_port_suspend(struct ata_port *ap)
5139{
5140 ata_port_suspend_async(ap, PMSG_SUSPEND);
5141}
5142EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5143
5144void ata_sas_port_resume(struct ata_port *ap)
5145{
5146 ata_port_resume_async(ap, PMSG_RESUME);
5147}
5148EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5149
5150/**
5151 * ata_host_suspend - suspend host
5152 * @host: host to suspend
5153 * @mesg: PM message
5154 *
5155 * Suspend @host. Actual operation is performed by port suspend.
5156 */
5157void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5158{
5159 host->dev->power.power_state = mesg;
5160}
5161EXPORT_SYMBOL_GPL(ata_host_suspend);
5162
5163/**
5164 * ata_host_resume - resume host
5165 * @host: host to resume
5166 *
5167 * Resume @host. Actual operation is performed by port resume.
5168 */
5169void ata_host_resume(struct ata_host *host)
5170{
5171 host->dev->power.power_state = PMSG_ON;
5172}
5173EXPORT_SYMBOL_GPL(ata_host_resume);
5174#endif
5175
5176const struct device_type ata_port_type = {
5177 .name = "ata_port",
5178#ifdef CONFIG_PM
5179 .pm = &ata_port_pm_ops,
5180#endif
5181};
5182
5183/**
5184 * ata_dev_init - Initialize an ata_device structure
5185 * @dev: Device structure to initialize
5186 *
5187 * Initialize @dev in preparation for probing.
5188 *
5189 * LOCKING:
5190 * Inherited from caller.
5191 */
5192void ata_dev_init(struct ata_device *dev)
5193{
5194 struct ata_link *link = ata_dev_phys_link(dev);
5195 struct ata_port *ap = link->ap;
5196 unsigned long flags;
5197
5198 /* SATA spd limit is bound to the attached device, reset together */
5199 link->sata_spd_limit = link->hw_sata_spd_limit;
5200 link->sata_spd = 0;
5201
5202 /* High bits of dev->flags are used to record warm plug
5203 * requests which occur asynchronously. Synchronize using
5204 * host lock.
5205 */
5206 spin_lock_irqsave(ap->lock, flags);
5207 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5208 dev->horkage = 0;
5209 spin_unlock_irqrestore(ap->lock, flags);
5210
5211 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5212 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5213 dev->pio_mask = UINT_MAX;
5214 dev->mwdma_mask = UINT_MAX;
5215 dev->udma_mask = UINT_MAX;
5216}
5217
5218/**
5219 * ata_link_init - Initialize an ata_link structure
5220 * @ap: ATA port link is attached to
5221 * @link: Link structure to initialize
5222 * @pmp: Port multiplier port number
5223 *
5224 * Initialize @link.
5225 *
5226 * LOCKING:
5227 * Kernel thread context (may sleep)
5228 */
5229void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5230{
5231 int i;
5232
5233 /* clear everything except for devices */
5234 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5235 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5236
5237 link->ap = ap;
5238 link->pmp = pmp;
5239 link->active_tag = ATA_TAG_POISON;
5240 link->hw_sata_spd_limit = UINT_MAX;
5241
5242 /* can't use iterator, ap isn't initialized yet */
5243 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5244 struct ata_device *dev = &link->device[i];
5245
5246 dev->link = link;
5247 dev->devno = dev - link->device;
5248#ifdef CONFIG_ATA_ACPI
5249 dev->gtf_filter = ata_acpi_gtf_filter;
5250#endif
5251 ata_dev_init(dev);
5252 }
5253}
5254
5255/**
5256 * sata_link_init_spd - Initialize link->sata_spd_limit
5257 * @link: Link to configure sata_spd_limit for
5258 *
5259 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5260 * configured value.
5261 *
5262 * LOCKING:
5263 * Kernel thread context (may sleep).
5264 *
5265 * RETURNS:
5266 * 0 on success, -errno on failure.
5267 */
5268int sata_link_init_spd(struct ata_link *link)
5269{
5270 u8 spd;
5271 int rc;
5272
5273 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5274 if (rc)
5275 return rc;
5276
5277 spd = (link->saved_scontrol >> 4) & 0xf;
5278 if (spd)
5279 link->hw_sata_spd_limit &= (1 << spd) - 1;
5280
5281 ata_force_link_limits(link);
5282
5283 link->sata_spd_limit = link->hw_sata_spd_limit;
5284
5285 return 0;
5286}
5287
5288/**
5289 * ata_port_alloc - allocate and initialize basic ATA port resources
5290 * @host: ATA host this allocated port belongs to
5291 *
5292 * Allocate and initialize basic ATA port resources.
5293 *
5294 * RETURNS:
5295 * Allocate ATA port on success, NULL on failure.
5296 *
5297 * LOCKING:
5298 * Inherited from calling layer (may sleep).
5299 */
5300struct ata_port *ata_port_alloc(struct ata_host *host)
5301{
5302 struct ata_port *ap;
5303
5304 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5305 if (!ap)
5306 return NULL;
5307
5308 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5309 ap->lock = &host->lock;
5310 ap->print_id = -1;
5311 ap->local_port_no = -1;
5312 ap->host = host;
5313 ap->dev = host->dev;
5314
5315 mutex_init(&ap->scsi_scan_mutex);
5316 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5317 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5318 INIT_LIST_HEAD(&ap->eh_done_q);
5319 init_waitqueue_head(&ap->eh_wait_q);
5320 init_completion(&ap->park_req_pending);
5321 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5322 TIMER_DEFERRABLE);
5323
5324 ap->cbl = ATA_CBL_NONE;
5325
5326 ata_link_init(ap, &ap->link, 0);
5327
5328#ifdef ATA_IRQ_TRAP
5329 ap->stats.unhandled_irq = 1;
5330 ap->stats.idle_irq = 1;
5331#endif
5332 ata_sff_port_init(ap);
5333
5334 return ap;
5335}
5336
5337static void ata_devres_release(struct device *gendev, void *res)
5338{
5339 struct ata_host *host = dev_get_drvdata(gendev);
5340 int i;
5341
5342 for (i = 0; i < host->n_ports; i++) {
5343 struct ata_port *ap = host->ports[i];
5344
5345 if (!ap)
5346 continue;
5347
5348 if (ap->scsi_host)
5349 scsi_host_put(ap->scsi_host);
5350
5351 }
5352
5353 dev_set_drvdata(gendev, NULL);
5354 ata_host_put(host);
5355}
5356
5357static void ata_host_release(struct kref *kref)
5358{
5359 struct ata_host *host = container_of(kref, struct ata_host, kref);
5360 int i;
5361
5362 for (i = 0; i < host->n_ports; i++) {
5363 struct ata_port *ap = host->ports[i];
5364
5365 kfree(ap->pmp_link);
5366 kfree(ap->slave_link);
5367 kfree(ap);
5368 host->ports[i] = NULL;
5369 }
5370 kfree(host);
5371}
5372
5373void ata_host_get(struct ata_host *host)
5374{
5375 kref_get(&host->kref);
5376}
5377
5378void ata_host_put(struct ata_host *host)
5379{
5380 kref_put(&host->kref, ata_host_release);
5381}
5382EXPORT_SYMBOL_GPL(ata_host_put);
5383
5384/**
5385 * ata_host_alloc - allocate and init basic ATA host resources
5386 * @dev: generic device this host is associated with
5387 * @max_ports: maximum number of ATA ports associated with this host
5388 *
5389 * Allocate and initialize basic ATA host resources. LLD calls
5390 * this function to allocate a host, initializes it fully and
5391 * attaches it using ata_host_register().
5392 *
5393 * @max_ports ports are allocated and host->n_ports is
5394 * initialized to @max_ports. The caller is allowed to decrease
5395 * host->n_ports before calling ata_host_register(). The unused
5396 * ports will be automatically freed on registration.
5397 *
5398 * RETURNS:
5399 * Allocate ATA host on success, NULL on failure.
5400 *
5401 * LOCKING:
5402 * Inherited from calling layer (may sleep).
5403 */
5404struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5405{
5406 struct ata_host *host;
5407 size_t sz;
5408 int i;
5409 void *dr;
5410
5411 /* alloc a container for our list of ATA ports (buses) */
5412 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5413 host = kzalloc(sz, GFP_KERNEL);
5414 if (!host)
5415 return NULL;
5416
5417 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5418 goto err_free;
5419
5420 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5421 if (!dr)
5422 goto err_out;
5423
5424 devres_add(dev, dr);
5425 dev_set_drvdata(dev, host);
5426
5427 spin_lock_init(&host->lock);
5428 mutex_init(&host->eh_mutex);
5429 host->dev = dev;
5430 host->n_ports = max_ports;
5431 kref_init(&host->kref);
5432
5433 /* allocate ports bound to this host */
5434 for (i = 0; i < max_ports; i++) {
5435 struct ata_port *ap;
5436
5437 ap = ata_port_alloc(host);
5438 if (!ap)
5439 goto err_out;
5440
5441 ap->port_no = i;
5442 host->ports[i] = ap;
5443 }
5444
5445 devres_remove_group(dev, NULL);
5446 return host;
5447
5448 err_out:
5449 devres_release_group(dev, NULL);
5450 err_free:
5451 kfree(host);
5452 return NULL;
5453}
5454EXPORT_SYMBOL_GPL(ata_host_alloc);
5455
5456/**
5457 * ata_host_alloc_pinfo - alloc host and init with port_info array
5458 * @dev: generic device this host is associated with
5459 * @ppi: array of ATA port_info to initialize host with
5460 * @n_ports: number of ATA ports attached to this host
5461 *
5462 * Allocate ATA host and initialize with info from @ppi. If NULL
5463 * terminated, @ppi may contain fewer entries than @n_ports. The
5464 * last entry will be used for the remaining ports.
5465 *
5466 * RETURNS:
5467 * Allocate ATA host on success, NULL on failure.
5468 *
5469 * LOCKING:
5470 * Inherited from calling layer (may sleep).
5471 */
5472struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5473 const struct ata_port_info * const * ppi,
5474 int n_ports)
5475{
5476 const struct ata_port_info *pi = &ata_dummy_port_info;
5477 struct ata_host *host;
5478 int i, j;
5479
5480 host = ata_host_alloc(dev, n_ports);
5481 if (!host)
5482 return NULL;
5483
5484 for (i = 0, j = 0; i < host->n_ports; i++) {
5485 struct ata_port *ap = host->ports[i];
5486
5487 if (ppi[j])
5488 pi = ppi[j++];
5489
5490 ap->pio_mask = pi->pio_mask;
5491 ap->mwdma_mask = pi->mwdma_mask;
5492 ap->udma_mask = pi->udma_mask;
5493 ap->flags |= pi->flags;
5494 ap->link.flags |= pi->link_flags;
5495 ap->ops = pi->port_ops;
5496
5497 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5498 host->ops = pi->port_ops;
5499 }
5500
5501 return host;
5502}
5503EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5504
5505static void ata_host_stop(struct device *gendev, void *res)
5506{
5507 struct ata_host *host = dev_get_drvdata(gendev);
5508 int i;
5509
5510 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5511
5512 for (i = 0; i < host->n_ports; i++) {
5513 struct ata_port *ap = host->ports[i];
5514
5515 if (ap->ops->port_stop)
5516 ap->ops->port_stop(ap);
5517 }
5518
5519 if (host->ops->host_stop)
5520 host->ops->host_stop(host);
5521}
5522
5523/**
5524 * ata_finalize_port_ops - finalize ata_port_operations
5525 * @ops: ata_port_operations to finalize
5526 *
5527 * An ata_port_operations can inherit from another ops and that
5528 * ops can again inherit from another. This can go on as many
5529 * times as necessary as long as there is no loop in the
5530 * inheritance chain.
5531 *
5532 * Ops tables are finalized when the host is started. NULL or
5533 * unspecified entries are inherited from the closet ancestor
5534 * which has the method and the entry is populated with it.
5535 * After finalization, the ops table directly points to all the
5536 * methods and ->inherits is no longer necessary and cleared.
5537 *
5538 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5539 *
5540 * LOCKING:
5541 * None.
5542 */
5543static void ata_finalize_port_ops(struct ata_port_operations *ops)
5544{
5545 static DEFINE_SPINLOCK(lock);
5546 const struct ata_port_operations *cur;
5547 void **begin = (void **)ops;
5548 void **end = (void **)&ops->inherits;
5549 void **pp;
5550
5551 if (!ops || !ops->inherits)
5552 return;
5553
5554 spin_lock(&lock);
5555
5556 for (cur = ops->inherits; cur; cur = cur->inherits) {
5557 void **inherit = (void **)cur;
5558
5559 for (pp = begin; pp < end; pp++, inherit++)
5560 if (!*pp)
5561 *pp = *inherit;
5562 }
5563
5564 for (pp = begin; pp < end; pp++)
5565 if (IS_ERR(*pp))
5566 *pp = NULL;
5567
5568 ops->inherits = NULL;
5569
5570 spin_unlock(&lock);
5571}
5572
5573/**
5574 * ata_host_start - start and freeze ports of an ATA host
5575 * @host: ATA host to start ports for
5576 *
5577 * Start and then freeze ports of @host. Started status is
5578 * recorded in host->flags, so this function can be called
5579 * multiple times. Ports are guaranteed to get started only
5580 * once. If host->ops is not initialized yet, it is set to the
5581 * first non-dummy port ops.
5582 *
5583 * LOCKING:
5584 * Inherited from calling layer (may sleep).
5585 *
5586 * RETURNS:
5587 * 0 if all ports are started successfully, -errno otherwise.
5588 */
5589int ata_host_start(struct ata_host *host)
5590{
5591 int have_stop = 0;
5592 void *start_dr = NULL;
5593 int i, rc;
5594
5595 if (host->flags & ATA_HOST_STARTED)
5596 return 0;
5597
5598 ata_finalize_port_ops(host->ops);
5599
5600 for (i = 0; i < host->n_ports; i++) {
5601 struct ata_port *ap = host->ports[i];
5602
5603 ata_finalize_port_ops(ap->ops);
5604
5605 if (!host->ops && !ata_port_is_dummy(ap))
5606 host->ops = ap->ops;
5607
5608 if (ap->ops->port_stop)
5609 have_stop = 1;
5610 }
5611
5612 if (host->ops && host->ops->host_stop)
5613 have_stop = 1;
5614
5615 if (have_stop) {
5616 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5617 if (!start_dr)
5618 return -ENOMEM;
5619 }
5620
5621 for (i = 0; i < host->n_ports; i++) {
5622 struct ata_port *ap = host->ports[i];
5623
5624 if (ap->ops->port_start) {
5625 rc = ap->ops->port_start(ap);
5626 if (rc) {
5627 if (rc != -ENODEV)
5628 dev_err(host->dev,
5629 "failed to start port %d (errno=%d)\n",
5630 i, rc);
5631 goto err_out;
5632 }
5633 }
5634 ata_eh_freeze_port(ap);
5635 }
5636
5637 if (start_dr)
5638 devres_add(host->dev, start_dr);
5639 host->flags |= ATA_HOST_STARTED;
5640 return 0;
5641
5642 err_out:
5643 while (--i >= 0) {
5644 struct ata_port *ap = host->ports[i];
5645
5646 if (ap->ops->port_stop)
5647 ap->ops->port_stop(ap);
5648 }
5649 devres_free(start_dr);
5650 return rc;
5651}
5652EXPORT_SYMBOL_GPL(ata_host_start);
5653
5654/**
5655 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5656 * @host: host to initialize
5657 * @dev: device host is attached to
5658 * @ops: port_ops
5659 *
5660 */
5661void ata_host_init(struct ata_host *host, struct device *dev,
5662 struct ata_port_operations *ops)
5663{
5664 spin_lock_init(&host->lock);
5665 mutex_init(&host->eh_mutex);
5666 host->n_tags = ATA_MAX_QUEUE;
5667 host->dev = dev;
5668 host->ops = ops;
5669 kref_init(&host->kref);
5670}
5671EXPORT_SYMBOL_GPL(ata_host_init);
5672
5673void __ata_port_probe(struct ata_port *ap)
5674{
5675 struct ata_eh_info *ehi = &ap->link.eh_info;
5676 unsigned long flags;
5677
5678 /* kick EH for boot probing */
5679 spin_lock_irqsave(ap->lock, flags);
5680
5681 ehi->probe_mask |= ATA_ALL_DEVICES;
5682 ehi->action |= ATA_EH_RESET;
5683 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5684
5685 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5686 ap->pflags |= ATA_PFLAG_LOADING;
5687 ata_port_schedule_eh(ap);
5688
5689 spin_unlock_irqrestore(ap->lock, flags);
5690}
5691
5692int ata_port_probe(struct ata_port *ap)
5693{
5694 int rc = 0;
5695
5696 if (ap->ops->error_handler) {
5697 __ata_port_probe(ap);
5698 ata_port_wait_eh(ap);
5699 } else {
5700 rc = ata_bus_probe(ap);
5701 }
5702 return rc;
5703}
5704
5705
5706static void async_port_probe(void *data, async_cookie_t cookie)
5707{
5708 struct ata_port *ap = data;
5709
5710 /*
5711 * If we're not allowed to scan this host in parallel,
5712 * we need to wait until all previous scans have completed
5713 * before going further.
5714 * Jeff Garzik says this is only within a controller, so we
5715 * don't need to wait for port 0, only for later ports.
5716 */
5717 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5718 async_synchronize_cookie(cookie);
5719
5720 (void)ata_port_probe(ap);
5721
5722 /* in order to keep device order, we need to synchronize at this point */
5723 async_synchronize_cookie(cookie);
5724
5725 ata_scsi_scan_host(ap, 1);
5726}
5727
5728/**
5729 * ata_host_register - register initialized ATA host
5730 * @host: ATA host to register
5731 * @sht: template for SCSI host
5732 *
5733 * Register initialized ATA host. @host is allocated using
5734 * ata_host_alloc() and fully initialized by LLD. This function
5735 * starts ports, registers @host with ATA and SCSI layers and
5736 * probe registered devices.
5737 *
5738 * LOCKING:
5739 * Inherited from calling layer (may sleep).
5740 *
5741 * RETURNS:
5742 * 0 on success, -errno otherwise.
5743 */
5744int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5745{
5746 int i, rc;
5747
5748 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5749
5750 /* host must have been started */
5751 if (!(host->flags & ATA_HOST_STARTED)) {
5752 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5753 WARN_ON(1);
5754 return -EINVAL;
5755 }
5756
5757 /* Blow away unused ports. This happens when LLD can't
5758 * determine the exact number of ports to allocate at
5759 * allocation time.
5760 */
5761 for (i = host->n_ports; host->ports[i]; i++)
5762 kfree(host->ports[i]);
5763
5764 /* give ports names and add SCSI hosts */
5765 for (i = 0; i < host->n_ports; i++) {
5766 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5767 host->ports[i]->local_port_no = i + 1;
5768 }
5769
5770 /* Create associated sysfs transport objects */
5771 for (i = 0; i < host->n_ports; i++) {
5772 rc = ata_tport_add(host->dev,host->ports[i]);
5773 if (rc) {
5774 goto err_tadd;
5775 }
5776 }
5777
5778 rc = ata_scsi_add_hosts(host, sht);
5779 if (rc)
5780 goto err_tadd;
5781
5782 /* set cable, sata_spd_limit and report */
5783 for (i = 0; i < host->n_ports; i++) {
5784 struct ata_port *ap = host->ports[i];
5785 unsigned int xfer_mask;
5786
5787 /* set SATA cable type if still unset */
5788 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5789 ap->cbl = ATA_CBL_SATA;
5790
5791 /* init sata_spd_limit to the current value */
5792 sata_link_init_spd(&ap->link);
5793 if (ap->slave_link)
5794 sata_link_init_spd(ap->slave_link);
5795
5796 /* print per-port info to dmesg */
5797 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5798 ap->udma_mask);
5799
5800 if (!ata_port_is_dummy(ap)) {
5801 ata_port_info(ap, "%cATA max %s %s\n",
5802 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5803 ata_mode_string(xfer_mask),
5804 ap->link.eh_info.desc);
5805 ata_ehi_clear_desc(&ap->link.eh_info);
5806 } else
5807 ata_port_info(ap, "DUMMY\n");
5808 }
5809
5810 /* perform each probe asynchronously */
5811 for (i = 0; i < host->n_ports; i++) {
5812 struct ata_port *ap = host->ports[i];
5813 ap->cookie = async_schedule(async_port_probe, ap);
5814 }
5815
5816 return 0;
5817
5818 err_tadd:
5819 while (--i >= 0) {
5820 ata_tport_delete(host->ports[i]);
5821 }
5822 return rc;
5823
5824}
5825EXPORT_SYMBOL_GPL(ata_host_register);
5826
5827/**
5828 * ata_host_activate - start host, request IRQ and register it
5829 * @host: target ATA host
5830 * @irq: IRQ to request
5831 * @irq_handler: irq_handler used when requesting IRQ
5832 * @irq_flags: irq_flags used when requesting IRQ
5833 * @sht: scsi_host_template to use when registering the host
5834 *
5835 * After allocating an ATA host and initializing it, most libata
5836 * LLDs perform three steps to activate the host - start host,
5837 * request IRQ and register it. This helper takes necessary
5838 * arguments and performs the three steps in one go.
5839 *
5840 * An invalid IRQ skips the IRQ registration and expects the host to
5841 * have set polling mode on the port. In this case, @irq_handler
5842 * should be NULL.
5843 *
5844 * LOCKING:
5845 * Inherited from calling layer (may sleep).
5846 *
5847 * RETURNS:
5848 * 0 on success, -errno otherwise.
5849 */
5850int ata_host_activate(struct ata_host *host, int irq,
5851 irq_handler_t irq_handler, unsigned long irq_flags,
5852 struct scsi_host_template *sht)
5853{
5854 int i, rc;
5855 char *irq_desc;
5856
5857 rc = ata_host_start(host);
5858 if (rc)
5859 return rc;
5860
5861 /* Special case for polling mode */
5862 if (!irq) {
5863 WARN_ON(irq_handler);
5864 return ata_host_register(host, sht);
5865 }
5866
5867 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5868 dev_driver_string(host->dev),
5869 dev_name(host->dev));
5870 if (!irq_desc)
5871 return -ENOMEM;
5872
5873 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5874 irq_desc, host);
5875 if (rc)
5876 return rc;
5877
5878 for (i = 0; i < host->n_ports; i++)
5879 ata_port_desc(host->ports[i], "irq %d", irq);
5880
5881 rc = ata_host_register(host, sht);
5882 /* if failed, just free the IRQ and leave ports alone */
5883 if (rc)
5884 devm_free_irq(host->dev, irq, host);
5885
5886 return rc;
5887}
5888EXPORT_SYMBOL_GPL(ata_host_activate);
5889
5890/**
5891 * ata_port_detach - Detach ATA port in preparation of device removal
5892 * @ap: ATA port to be detached
5893 *
5894 * Detach all ATA devices and the associated SCSI devices of @ap;
5895 * then, remove the associated SCSI host. @ap is guaranteed to
5896 * be quiescent on return from this function.
5897 *
5898 * LOCKING:
5899 * Kernel thread context (may sleep).
5900 */
5901static void ata_port_detach(struct ata_port *ap)
5902{
5903 unsigned long flags;
5904 struct ata_link *link;
5905 struct ata_device *dev;
5906
5907 if (!ap->ops->error_handler)
5908 goto skip_eh;
5909
5910 /* tell EH we're leaving & flush EH */
5911 spin_lock_irqsave(ap->lock, flags);
5912 ap->pflags |= ATA_PFLAG_UNLOADING;
5913 ata_port_schedule_eh(ap);
5914 spin_unlock_irqrestore(ap->lock, flags);
5915
5916 /* wait till EH commits suicide */
5917 ata_port_wait_eh(ap);
5918
5919 /* it better be dead now */
5920 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5921
5922 cancel_delayed_work_sync(&ap->hotplug_task);
5923
5924 skip_eh:
5925 /* clean up zpodd on port removal */
5926 ata_for_each_link(link, ap, HOST_FIRST) {
5927 ata_for_each_dev(dev, link, ALL) {
5928 if (zpodd_dev_enabled(dev))
5929 zpodd_exit(dev);
5930 }
5931 }
5932 if (ap->pmp_link) {
5933 int i;
5934 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5935 ata_tlink_delete(&ap->pmp_link[i]);
5936 }
5937 /* remove the associated SCSI host */
5938 scsi_remove_host(ap->scsi_host);
5939 ata_tport_delete(ap);
5940}
5941
5942/**
5943 * ata_host_detach - Detach all ports of an ATA host
5944 * @host: Host to detach
5945 *
5946 * Detach all ports of @host.
5947 *
5948 * LOCKING:
5949 * Kernel thread context (may sleep).
5950 */
5951void ata_host_detach(struct ata_host *host)
5952{
5953 int i;
5954
5955 for (i = 0; i < host->n_ports; i++) {
5956 /* Ensure ata_port probe has completed */
5957 async_synchronize_cookie(host->ports[i]->cookie + 1);
5958 ata_port_detach(host->ports[i]);
5959 }
5960
5961 /* the host is dead now, dissociate ACPI */
5962 ata_acpi_dissociate(host);
5963}
5964EXPORT_SYMBOL_GPL(ata_host_detach);
5965
5966#ifdef CONFIG_PCI
5967
5968/**
5969 * ata_pci_remove_one - PCI layer callback for device removal
5970 * @pdev: PCI device that was removed
5971 *
5972 * PCI layer indicates to libata via this hook that hot-unplug or
5973 * module unload event has occurred. Detach all ports. Resource
5974 * release is handled via devres.
5975 *
5976 * LOCKING:
5977 * Inherited from PCI layer (may sleep).
5978 */
5979void ata_pci_remove_one(struct pci_dev *pdev)
5980{
5981 struct ata_host *host = pci_get_drvdata(pdev);
5982
5983 ata_host_detach(host);
5984}
5985EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5986
5987void ata_pci_shutdown_one(struct pci_dev *pdev)
5988{
5989 struct ata_host *host = pci_get_drvdata(pdev);
5990 int i;
5991
5992 for (i = 0; i < host->n_ports; i++) {
5993 struct ata_port *ap = host->ports[i];
5994
5995 ap->pflags |= ATA_PFLAG_FROZEN;
5996
5997 /* Disable port interrupts */
5998 if (ap->ops->freeze)
5999 ap->ops->freeze(ap);
6000
6001 /* Stop the port DMA engines */
6002 if (ap->ops->port_stop)
6003 ap->ops->port_stop(ap);
6004 }
6005}
6006EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6007
6008/* move to PCI subsystem */
6009int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6010{
6011 unsigned long tmp = 0;
6012
6013 switch (bits->width) {
6014 case 1: {
6015 u8 tmp8 = 0;
6016 pci_read_config_byte(pdev, bits->reg, &tmp8);
6017 tmp = tmp8;
6018 break;
6019 }
6020 case 2: {
6021 u16 tmp16 = 0;
6022 pci_read_config_word(pdev, bits->reg, &tmp16);
6023 tmp = tmp16;
6024 break;
6025 }
6026 case 4: {
6027 u32 tmp32 = 0;
6028 pci_read_config_dword(pdev, bits->reg, &tmp32);
6029 tmp = tmp32;
6030 break;
6031 }
6032
6033 default:
6034 return -EINVAL;
6035 }
6036
6037 tmp &= bits->mask;
6038
6039 return (tmp == bits->val) ? 1 : 0;
6040}
6041EXPORT_SYMBOL_GPL(pci_test_config_bits);
6042
6043#ifdef CONFIG_PM
6044void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6045{
6046 pci_save_state(pdev);
6047 pci_disable_device(pdev);
6048
6049 if (mesg.event & PM_EVENT_SLEEP)
6050 pci_set_power_state(pdev, PCI_D3hot);
6051}
6052EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6053
6054int ata_pci_device_do_resume(struct pci_dev *pdev)
6055{
6056 int rc;
6057
6058 pci_set_power_state(pdev, PCI_D0);
6059 pci_restore_state(pdev);
6060
6061 rc = pcim_enable_device(pdev);
6062 if (rc) {
6063 dev_err(&pdev->dev,
6064 "failed to enable device after resume (%d)\n", rc);
6065 return rc;
6066 }
6067
6068 pci_set_master(pdev);
6069 return 0;
6070}
6071EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6072
6073int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6074{
6075 struct ata_host *host = pci_get_drvdata(pdev);
6076
6077 ata_host_suspend(host, mesg);
6078
6079 ata_pci_device_do_suspend(pdev, mesg);
6080
6081 return 0;
6082}
6083EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6084
6085int ata_pci_device_resume(struct pci_dev *pdev)
6086{
6087 struct ata_host *host = pci_get_drvdata(pdev);
6088 int rc;
6089
6090 rc = ata_pci_device_do_resume(pdev);
6091 if (rc == 0)
6092 ata_host_resume(host);
6093 return rc;
6094}
6095EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6096#endif /* CONFIG_PM */
6097#endif /* CONFIG_PCI */
6098
6099/**
6100 * ata_platform_remove_one - Platform layer callback for device removal
6101 * @pdev: Platform device that was removed
6102 *
6103 * Platform layer indicates to libata via this hook that hot-unplug or
6104 * module unload event has occurred. Detach all ports. Resource
6105 * release is handled via devres.
6106 *
6107 * LOCKING:
6108 * Inherited from platform layer (may sleep).
6109 */
6110int ata_platform_remove_one(struct platform_device *pdev)
6111{
6112 struct ata_host *host = platform_get_drvdata(pdev);
6113
6114 ata_host_detach(host);
6115
6116 return 0;
6117}
6118EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6119
6120#ifdef CONFIG_ATA_FORCE
6121
6122#define force_cbl(name, flag) \
6123 { #name, .cbl = (flag) }
6124
6125#define force_spd_limit(spd, val) \
6126 { #spd, .spd_limit = (val) }
6127
6128#define force_xfer(mode, shift) \
6129 { #mode, .xfer_mask = (1UL << (shift)) }
6130
6131#define force_lflag_on(name, flags) \
6132 { #name, .lflags_on = (flags) }
6133
6134#define force_lflag_onoff(name, flags) \
6135 { "no" #name, .lflags_on = (flags) }, \
6136 { #name, .lflags_off = (flags) }
6137
6138#define force_horkage_on(name, flag) \
6139 { #name, .horkage_on = (flag) }
6140
6141#define force_horkage_onoff(name, flag) \
6142 { "no" #name, .horkage_on = (flag) }, \
6143 { #name, .horkage_off = (flag) }
6144
6145static const struct ata_force_param force_tbl[] __initconst = {
6146 force_cbl(40c, ATA_CBL_PATA40),
6147 force_cbl(80c, ATA_CBL_PATA80),
6148 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6149 force_cbl(unk, ATA_CBL_PATA_UNK),
6150 force_cbl(ign, ATA_CBL_PATA_IGN),
6151 force_cbl(sata, ATA_CBL_SATA),
6152
6153 force_spd_limit(1.5Gbps, 1),
6154 force_spd_limit(3.0Gbps, 2),
6155
6156 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6157 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6158 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6159 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6160 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6161 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6162 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6163 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6164 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6165 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6166 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6167 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6168 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6169 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6170 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6171 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6172 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6173 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6174 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6175 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6176 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6177 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6178 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6179 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6180 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6181 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6182 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6183 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6184 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6185 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6186 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6187 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6188 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6189 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6190
6191 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6192 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6193 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6194 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6195 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6196
6197 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ),
6198 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM),
6199 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI),
6200
6201 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM),
6202 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM),
6203 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6204
6205 force_horkage_onoff(dma, ATA_HORKAGE_NODMA),
6206 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR),
6207 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6208
6209 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG),
6210 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG),
6211 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR),
6212
6213 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128),
6214 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024),
6215 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48),
6216
6217 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM),
6218 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER),
6219 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID),
6220
6221 force_horkage_on(disable, ATA_HORKAGE_DISABLE),
6222};
6223
6224static int __init ata_parse_force_one(char **cur,
6225 struct ata_force_ent *force_ent,
6226 const char **reason)
6227{
6228 char *start = *cur, *p = *cur;
6229 char *id, *val, *endp;
6230 const struct ata_force_param *match_fp = NULL;
6231 int nr_matches = 0, i;
6232
6233 /* find where this param ends and update *cur */
6234 while (*p != '\0' && *p != ',')
6235 p++;
6236
6237 if (*p == '\0')
6238 *cur = p;
6239 else
6240 *cur = p + 1;
6241
6242 *p = '\0';
6243
6244 /* parse */
6245 p = strchr(start, ':');
6246 if (!p) {
6247 val = strstrip(start);
6248 goto parse_val;
6249 }
6250 *p = '\0';
6251
6252 id = strstrip(start);
6253 val = strstrip(p + 1);
6254
6255 /* parse id */
6256 p = strchr(id, '.');
6257 if (p) {
6258 *p++ = '\0';
6259 force_ent->device = simple_strtoul(p, &endp, 10);
6260 if (p == endp || *endp != '\0') {
6261 *reason = "invalid device";
6262 return -EINVAL;
6263 }
6264 }
6265
6266 force_ent->port = simple_strtoul(id, &endp, 10);
6267 if (id == endp || *endp != '\0') {
6268 *reason = "invalid port/link";
6269 return -EINVAL;
6270 }
6271
6272 parse_val:
6273 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6274 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6275 const struct ata_force_param *fp = &force_tbl[i];
6276
6277 if (strncasecmp(val, fp->name, strlen(val)))
6278 continue;
6279
6280 nr_matches++;
6281 match_fp = fp;
6282
6283 if (strcasecmp(val, fp->name) == 0) {
6284 nr_matches = 1;
6285 break;
6286 }
6287 }
6288
6289 if (!nr_matches) {
6290 *reason = "unknown value";
6291 return -EINVAL;
6292 }
6293 if (nr_matches > 1) {
6294 *reason = "ambiguous value";
6295 return -EINVAL;
6296 }
6297
6298 force_ent->param = *match_fp;
6299
6300 return 0;
6301}
6302
6303static void __init ata_parse_force_param(void)
6304{
6305 int idx = 0, size = 1;
6306 int last_port = -1, last_device = -1;
6307 char *p, *cur, *next;
6308
6309 /* Calculate maximum number of params and allocate ata_force_tbl */
6310 for (p = ata_force_param_buf; *p; p++)
6311 if (*p == ',')
6312 size++;
6313
6314 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6315 if (!ata_force_tbl) {
6316 printk(KERN_WARNING "ata: failed to extend force table, "
6317 "libata.force ignored\n");
6318 return;
6319 }
6320
6321 /* parse and populate the table */
6322 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6323 const char *reason = "";
6324 struct ata_force_ent te = { .port = -1, .device = -1 };
6325
6326 next = cur;
6327 if (ata_parse_force_one(&next, &te, &reason)) {
6328 printk(KERN_WARNING "ata: failed to parse force "
6329 "parameter \"%s\" (%s)\n",
6330 cur, reason);
6331 continue;
6332 }
6333
6334 if (te.port == -1) {
6335 te.port = last_port;
6336 te.device = last_device;
6337 }
6338
6339 ata_force_tbl[idx++] = te;
6340
6341 last_port = te.port;
6342 last_device = te.device;
6343 }
6344
6345 ata_force_tbl_size = idx;
6346}
6347
6348static void ata_free_force_param(void)
6349{
6350 kfree(ata_force_tbl);
6351}
6352#else
6353static inline void ata_parse_force_param(void) { }
6354static inline void ata_free_force_param(void) { }
6355#endif
6356
6357static int __init ata_init(void)
6358{
6359 int rc;
6360
6361 ata_parse_force_param();
6362
6363 rc = ata_sff_init();
6364 if (rc) {
6365 ata_free_force_param();
6366 return rc;
6367 }
6368
6369 libata_transport_init();
6370 ata_scsi_transport_template = ata_attach_transport();
6371 if (!ata_scsi_transport_template) {
6372 ata_sff_exit();
6373 rc = -ENOMEM;
6374 goto err_out;
6375 }
6376
6377 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6378 return 0;
6379
6380err_out:
6381 return rc;
6382}
6383
6384static void __exit ata_exit(void)
6385{
6386 ata_release_transport(ata_scsi_transport_template);
6387 libata_transport_exit();
6388 ata_sff_exit();
6389 ata_free_force_param();
6390}
6391
6392subsys_initcall(ata_init);
6393module_exit(ata_exit);
6394
6395static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6396
6397int ata_ratelimit(void)
6398{
6399 return __ratelimit(&ratelimit);
6400}
6401EXPORT_SYMBOL_GPL(ata_ratelimit);
6402
6403/**
6404 * ata_msleep - ATA EH owner aware msleep
6405 * @ap: ATA port to attribute the sleep to
6406 * @msecs: duration to sleep in milliseconds
6407 *
6408 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6409 * ownership is released before going to sleep and reacquired
6410 * after the sleep is complete. IOW, other ports sharing the
6411 * @ap->host will be allowed to own the EH while this task is
6412 * sleeping.
6413 *
6414 * LOCKING:
6415 * Might sleep.
6416 */
6417void ata_msleep(struct ata_port *ap, unsigned int msecs)
6418{
6419 bool owns_eh = ap && ap->host->eh_owner == current;
6420
6421 if (owns_eh)
6422 ata_eh_release(ap);
6423
6424 if (msecs < 20) {
6425 unsigned long usecs = msecs * USEC_PER_MSEC;
6426 usleep_range(usecs, usecs + 50);
6427 } else {
6428 msleep(msecs);
6429 }
6430
6431 if (owns_eh)
6432 ata_eh_acquire(ap);
6433}
6434EXPORT_SYMBOL_GPL(ata_msleep);
6435
6436/**
6437 * ata_wait_register - wait until register value changes
6438 * @ap: ATA port to wait register for, can be NULL
6439 * @reg: IO-mapped register
6440 * @mask: Mask to apply to read register value
6441 * @val: Wait condition
6442 * @interval: polling interval in milliseconds
6443 * @timeout: timeout in milliseconds
6444 *
6445 * Waiting for some bits of register to change is a common
6446 * operation for ATA controllers. This function reads 32bit LE
6447 * IO-mapped register @reg and tests for the following condition.
6448 *
6449 * (*@reg & mask) != val
6450 *
6451 * If the condition is met, it returns; otherwise, the process is
6452 * repeated after @interval_msec until timeout.
6453 *
6454 * LOCKING:
6455 * Kernel thread context (may sleep)
6456 *
6457 * RETURNS:
6458 * The final register value.
6459 */
6460u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6461 unsigned long interval, unsigned long timeout)
6462{
6463 unsigned long deadline;
6464 u32 tmp;
6465
6466 tmp = ioread32(reg);
6467
6468 /* Calculate timeout _after_ the first read to make sure
6469 * preceding writes reach the controller before starting to
6470 * eat away the timeout.
6471 */
6472 deadline = ata_deadline(jiffies, timeout);
6473
6474 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6475 ata_msleep(ap, interval);
6476 tmp = ioread32(reg);
6477 }
6478
6479 return tmp;
6480}
6481EXPORT_SYMBOL_GPL(ata_wait_register);
6482
6483/*
6484 * Dummy port_ops
6485 */
6486static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6487{
6488 return AC_ERR_SYSTEM;
6489}
6490
6491static void ata_dummy_error_handler(struct ata_port *ap)
6492{
6493 /* truly dummy */
6494}
6495
6496struct ata_port_operations ata_dummy_port_ops = {
6497 .qc_prep = ata_noop_qc_prep,
6498 .qc_issue = ata_dummy_qc_issue,
6499 .error_handler = ata_dummy_error_handler,
6500 .sched_eh = ata_std_sched_eh,
6501 .end_eh = ata_std_end_eh,
6502};
6503EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6504
6505const struct ata_port_info ata_dummy_port_info = {
6506 .port_ops = &ata_dummy_port_ops,
6507};
6508EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6509
6510void ata_print_version(const struct device *dev, const char *version)
6511{
6512 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6513}
6514EXPORT_SYMBOL(ata_print_version);
6515
6516EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6517EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6518EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6519EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6520EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);