Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * libata-core.c - helper library for ATA
4 *
5 * Maintained by: Tejun Heo <tj@kernel.org>
6 * Please ALWAYS copy linux-ide@vger.kernel.org
7 * on emails.
8 *
9 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
10 * Copyright 2003-2004 Jeff Garzik
11 *
12 * libata documentation is available via 'make {ps|pdf}docs',
13 * as Documentation/driver-api/libata.rst
14 *
15 * Hardware documentation available from http://www.t13.org/ and
16 * http://www.sata-io.org/
17 *
18 * Standards documents from:
19 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
20 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
21 * http://www.sata-io.org (SATA)
22 * http://www.compactflash.org (CF)
23 * http://www.qic.org (QIC157 - Tape and DSC)
24 * http://www.ce-ata.org (CE-ATA: not supported)
25 */
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/pci.h>
30#include <linux/init.h>
31#include <linux/list.h>
32#include <linux/mm.h>
33#include <linux/spinlock.h>
34#include <linux/blkdev.h>
35#include <linux/delay.h>
36#include <linux/timer.h>
37#include <linux/time.h>
38#include <linux/interrupt.h>
39#include <linux/completion.h>
40#include <linux/suspend.h>
41#include <linux/workqueue.h>
42#include <linux/scatterlist.h>
43#include <linux/io.h>
44#include <linux/async.h>
45#include <linux/log2.h>
46#include <linux/slab.h>
47#include <linux/glob.h>
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
50#include <scsi/scsi_host.h>
51#include <linux/libata.h>
52#include <asm/byteorder.h>
53#include <asm/unaligned.h>
54#include <linux/cdrom.h>
55#include <linux/ratelimit.h>
56#include <linux/leds.h>
57#include <linux/pm_runtime.h>
58#include <linux/platform_device.h>
59
60#define CREATE_TRACE_POINTS
61#include <trace/events/libata.h>
62
63#include "libata.h"
64#include "libata-transport.h"
65
66/* debounce timing parameters in msecs { interval, duration, timeout } */
67const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
68const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
69const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70
71const struct ata_port_operations ata_base_port_ops = {
72 .prereset = ata_std_prereset,
73 .postreset = ata_std_postreset,
74 .error_handler = ata_std_error_handler,
75 .sched_eh = ata_std_sched_eh,
76 .end_eh = ata_std_end_eh,
77};
78
79const struct ata_port_operations sata_port_ops = {
80 .inherits = &ata_base_port_ops,
81
82 .qc_defer = ata_std_qc_defer,
83 .hardreset = sata_std_hardreset,
84};
85
86static unsigned int ata_dev_init_params(struct ata_device *dev,
87 u16 heads, u16 sectors);
88static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
89static void ata_dev_xfermask(struct ata_device *dev);
90static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
91
92atomic_t ata_print_id = ATOMIC_INIT(0);
93
94struct ata_force_param {
95 const char *name;
96 unsigned int cbl;
97 int spd_limit;
98 unsigned long xfer_mask;
99 unsigned int horkage_on;
100 unsigned int horkage_off;
101 unsigned int lflags;
102};
103
104struct ata_force_ent {
105 int port;
106 int device;
107 struct ata_force_param param;
108};
109
110static struct ata_force_ent *ata_force_tbl;
111static int ata_force_tbl_size;
112
113static char ata_force_param_buf[PAGE_SIZE] __initdata;
114/* param_buf is thrown away after initialization, disallow read */
115module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
116MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
117
118static int atapi_enabled = 1;
119module_param(atapi_enabled, int, 0444);
120MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121
122static int atapi_dmadir = 0;
123module_param(atapi_dmadir, int, 0444);
124MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125
126int atapi_passthru16 = 1;
127module_param(atapi_passthru16, int, 0444);
128MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129
130int libata_fua = 0;
131module_param_named(fua, libata_fua, int, 0444);
132MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133
134static int ata_ignore_hpa;
135module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137
138static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139module_param_named(dma, libata_dma_mask, int, 0444);
140MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141
142static int ata_probe_timeout;
143module_param(ata_probe_timeout, int, 0444);
144MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145
146int libata_noacpi = 0;
147module_param_named(noacpi, libata_noacpi, int, 0444);
148MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149
150int libata_allow_tpm = 0;
151module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153
154static int atapi_an;
155module_param(atapi_an, int, 0444);
156MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157
158MODULE_AUTHOR("Jeff Garzik");
159MODULE_DESCRIPTION("Library module for ATA devices");
160MODULE_LICENSE("GPL");
161MODULE_VERSION(DRV_VERSION);
162
163
164static bool ata_sstatus_online(u32 sstatus)
165{
166 return (sstatus & 0xf) == 0x3;
167}
168
169/**
170 * ata_link_next - link iteration helper
171 * @link: the previous link, NULL to start
172 * @ap: ATA port containing links to iterate
173 * @mode: iteration mode, one of ATA_LITER_*
174 *
175 * LOCKING:
176 * Host lock or EH context.
177 *
178 * RETURNS:
179 * Pointer to the next link.
180 */
181struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
182 enum ata_link_iter_mode mode)
183{
184 BUG_ON(mode != ATA_LITER_EDGE &&
185 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
186
187 /* NULL link indicates start of iteration */
188 if (!link)
189 switch (mode) {
190 case ATA_LITER_EDGE:
191 case ATA_LITER_PMP_FIRST:
192 if (sata_pmp_attached(ap))
193 return ap->pmp_link;
194 /* fall through */
195 case ATA_LITER_HOST_FIRST:
196 return &ap->link;
197 }
198
199 /* we just iterated over the host link, what's next? */
200 if (link == &ap->link)
201 switch (mode) {
202 case ATA_LITER_HOST_FIRST:
203 if (sata_pmp_attached(ap))
204 return ap->pmp_link;
205 /* fall through */
206 case ATA_LITER_PMP_FIRST:
207 if (unlikely(ap->slave_link))
208 return ap->slave_link;
209 /* fall through */
210 case ATA_LITER_EDGE:
211 return NULL;
212 }
213
214 /* slave_link excludes PMP */
215 if (unlikely(link == ap->slave_link))
216 return NULL;
217
218 /* we were over a PMP link */
219 if (++link < ap->pmp_link + ap->nr_pmp_links)
220 return link;
221
222 if (mode == ATA_LITER_PMP_FIRST)
223 return &ap->link;
224
225 return NULL;
226}
227
228/**
229 * ata_dev_next - device iteration helper
230 * @dev: the previous device, NULL to start
231 * @link: ATA link containing devices to iterate
232 * @mode: iteration mode, one of ATA_DITER_*
233 *
234 * LOCKING:
235 * Host lock or EH context.
236 *
237 * RETURNS:
238 * Pointer to the next device.
239 */
240struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
241 enum ata_dev_iter_mode mode)
242{
243 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
244 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
245
246 /* NULL dev indicates start of iteration */
247 if (!dev)
248 switch (mode) {
249 case ATA_DITER_ENABLED:
250 case ATA_DITER_ALL:
251 dev = link->device;
252 goto check;
253 case ATA_DITER_ENABLED_REVERSE:
254 case ATA_DITER_ALL_REVERSE:
255 dev = link->device + ata_link_max_devices(link) - 1;
256 goto check;
257 }
258
259 next:
260 /* move to the next one */
261 switch (mode) {
262 case ATA_DITER_ENABLED:
263 case ATA_DITER_ALL:
264 if (++dev < link->device + ata_link_max_devices(link))
265 goto check;
266 return NULL;
267 case ATA_DITER_ENABLED_REVERSE:
268 case ATA_DITER_ALL_REVERSE:
269 if (--dev >= link->device)
270 goto check;
271 return NULL;
272 }
273
274 check:
275 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
276 !ata_dev_enabled(dev))
277 goto next;
278 return dev;
279}
280
281/**
282 * ata_dev_phys_link - find physical link for a device
283 * @dev: ATA device to look up physical link for
284 *
285 * Look up physical link which @dev is attached to. Note that
286 * this is different from @dev->link only when @dev is on slave
287 * link. For all other cases, it's the same as @dev->link.
288 *
289 * LOCKING:
290 * Don't care.
291 *
292 * RETURNS:
293 * Pointer to the found physical link.
294 */
295struct ata_link *ata_dev_phys_link(struct ata_device *dev)
296{
297 struct ata_port *ap = dev->link->ap;
298
299 if (!ap->slave_link)
300 return dev->link;
301 if (!dev->devno)
302 return &ap->link;
303 return ap->slave_link;
304}
305
306/**
307 * ata_force_cbl - force cable type according to libata.force
308 * @ap: ATA port of interest
309 *
310 * Force cable type according to libata.force and whine about it.
311 * The last entry which has matching port number is used, so it
312 * can be specified as part of device force parameters. For
313 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
314 * same effect.
315 *
316 * LOCKING:
317 * EH context.
318 */
319void ata_force_cbl(struct ata_port *ap)
320{
321 int i;
322
323 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
324 const struct ata_force_ent *fe = &ata_force_tbl[i];
325
326 if (fe->port != -1 && fe->port != ap->print_id)
327 continue;
328
329 if (fe->param.cbl == ATA_CBL_NONE)
330 continue;
331
332 ap->cbl = fe->param.cbl;
333 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
334 return;
335 }
336}
337
338/**
339 * ata_force_link_limits - force link limits according to libata.force
340 * @link: ATA link of interest
341 *
342 * Force link flags and SATA spd limit according to libata.force
343 * and whine about it. When only the port part is specified
344 * (e.g. 1:), the limit applies to all links connected to both
345 * the host link and all fan-out ports connected via PMP. If the
346 * device part is specified as 0 (e.g. 1.00:), it specifies the
347 * first fan-out link not the host link. Device number 15 always
348 * points to the host link whether PMP is attached or not. If the
349 * controller has slave link, device number 16 points to it.
350 *
351 * LOCKING:
352 * EH context.
353 */
354static void ata_force_link_limits(struct ata_link *link)
355{
356 bool did_spd = false;
357 int linkno = link->pmp;
358 int i;
359
360 if (ata_is_host_link(link))
361 linkno += 15;
362
363 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
364 const struct ata_force_ent *fe = &ata_force_tbl[i];
365
366 if (fe->port != -1 && fe->port != link->ap->print_id)
367 continue;
368
369 if (fe->device != -1 && fe->device != linkno)
370 continue;
371
372 /* only honor the first spd limit */
373 if (!did_spd && fe->param.spd_limit) {
374 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
375 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
376 fe->param.name);
377 did_spd = true;
378 }
379
380 /* let lflags stack */
381 if (fe->param.lflags) {
382 link->flags |= fe->param.lflags;
383 ata_link_notice(link,
384 "FORCE: link flag 0x%x forced -> 0x%x\n",
385 fe->param.lflags, link->flags);
386 }
387 }
388}
389
390/**
391 * ata_force_xfermask - force xfermask according to libata.force
392 * @dev: ATA device of interest
393 *
394 * Force xfer_mask according to libata.force and whine about it.
395 * For consistency with link selection, device number 15 selects
396 * the first device connected to the host link.
397 *
398 * LOCKING:
399 * EH context.
400 */
401static void ata_force_xfermask(struct ata_device *dev)
402{
403 int devno = dev->link->pmp + dev->devno;
404 int alt_devno = devno;
405 int i;
406
407 /* allow n.15/16 for devices attached to host port */
408 if (ata_is_host_link(dev->link))
409 alt_devno += 15;
410
411 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
412 const struct ata_force_ent *fe = &ata_force_tbl[i];
413 unsigned long pio_mask, mwdma_mask, udma_mask;
414
415 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
416 continue;
417
418 if (fe->device != -1 && fe->device != devno &&
419 fe->device != alt_devno)
420 continue;
421
422 if (!fe->param.xfer_mask)
423 continue;
424
425 ata_unpack_xfermask(fe->param.xfer_mask,
426 &pio_mask, &mwdma_mask, &udma_mask);
427 if (udma_mask)
428 dev->udma_mask = udma_mask;
429 else if (mwdma_mask) {
430 dev->udma_mask = 0;
431 dev->mwdma_mask = mwdma_mask;
432 } else {
433 dev->udma_mask = 0;
434 dev->mwdma_mask = 0;
435 dev->pio_mask = pio_mask;
436 }
437
438 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
439 fe->param.name);
440 return;
441 }
442}
443
444/**
445 * ata_force_horkage - force horkage according to libata.force
446 * @dev: ATA device of interest
447 *
448 * Force horkage according to libata.force and whine about it.
449 * For consistency with link selection, device number 15 selects
450 * the first device connected to the host link.
451 *
452 * LOCKING:
453 * EH context.
454 */
455static void ata_force_horkage(struct ata_device *dev)
456{
457 int devno = dev->link->pmp + dev->devno;
458 int alt_devno = devno;
459 int i;
460
461 /* allow n.15/16 for devices attached to host port */
462 if (ata_is_host_link(dev->link))
463 alt_devno += 15;
464
465 for (i = 0; i < ata_force_tbl_size; i++) {
466 const struct ata_force_ent *fe = &ata_force_tbl[i];
467
468 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
469 continue;
470
471 if (fe->device != -1 && fe->device != devno &&
472 fe->device != alt_devno)
473 continue;
474
475 if (!(~dev->horkage & fe->param.horkage_on) &&
476 !(dev->horkage & fe->param.horkage_off))
477 continue;
478
479 dev->horkage |= fe->param.horkage_on;
480 dev->horkage &= ~fe->param.horkage_off;
481
482 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
483 fe->param.name);
484 }
485}
486
487/**
488 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
489 * @opcode: SCSI opcode
490 *
491 * Determine ATAPI command type from @opcode.
492 *
493 * LOCKING:
494 * None.
495 *
496 * RETURNS:
497 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
498 */
499int atapi_cmd_type(u8 opcode)
500{
501 switch (opcode) {
502 case GPCMD_READ_10:
503 case GPCMD_READ_12:
504 return ATAPI_READ;
505
506 case GPCMD_WRITE_10:
507 case GPCMD_WRITE_12:
508 case GPCMD_WRITE_AND_VERIFY_10:
509 return ATAPI_WRITE;
510
511 case GPCMD_READ_CD:
512 case GPCMD_READ_CD_MSF:
513 return ATAPI_READ_CD;
514
515 case ATA_16:
516 case ATA_12:
517 if (atapi_passthru16)
518 return ATAPI_PASS_THRU;
519 /* fall thru */
520 default:
521 return ATAPI_MISC;
522 }
523}
524
525/**
526 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
527 * @tf: Taskfile to convert
528 * @pmp: Port multiplier port
529 * @is_cmd: This FIS is for command
530 * @fis: Buffer into which data will output
531 *
532 * Converts a standard ATA taskfile to a Serial ATA
533 * FIS structure (Register - Host to Device).
534 *
535 * LOCKING:
536 * Inherited from caller.
537 */
538void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
539{
540 fis[0] = 0x27; /* Register - Host to Device FIS */
541 fis[1] = pmp & 0xf; /* Port multiplier number*/
542 if (is_cmd)
543 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
544
545 fis[2] = tf->command;
546 fis[3] = tf->feature;
547
548 fis[4] = tf->lbal;
549 fis[5] = tf->lbam;
550 fis[6] = tf->lbah;
551 fis[7] = tf->device;
552
553 fis[8] = tf->hob_lbal;
554 fis[9] = tf->hob_lbam;
555 fis[10] = tf->hob_lbah;
556 fis[11] = tf->hob_feature;
557
558 fis[12] = tf->nsect;
559 fis[13] = tf->hob_nsect;
560 fis[14] = 0;
561 fis[15] = tf->ctl;
562
563 fis[16] = tf->auxiliary & 0xff;
564 fis[17] = (tf->auxiliary >> 8) & 0xff;
565 fis[18] = (tf->auxiliary >> 16) & 0xff;
566 fis[19] = (tf->auxiliary >> 24) & 0xff;
567}
568
569/**
570 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
571 * @fis: Buffer from which data will be input
572 * @tf: Taskfile to output
573 *
574 * Converts a serial ATA FIS structure to a standard ATA taskfile.
575 *
576 * LOCKING:
577 * Inherited from caller.
578 */
579
580void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
581{
582 tf->command = fis[2]; /* status */
583 tf->feature = fis[3]; /* error */
584
585 tf->lbal = fis[4];
586 tf->lbam = fis[5];
587 tf->lbah = fis[6];
588 tf->device = fis[7];
589
590 tf->hob_lbal = fis[8];
591 tf->hob_lbam = fis[9];
592 tf->hob_lbah = fis[10];
593
594 tf->nsect = fis[12];
595 tf->hob_nsect = fis[13];
596}
597
598static const u8 ata_rw_cmds[] = {
599 /* pio multi */
600 ATA_CMD_READ_MULTI,
601 ATA_CMD_WRITE_MULTI,
602 ATA_CMD_READ_MULTI_EXT,
603 ATA_CMD_WRITE_MULTI_EXT,
604 0,
605 0,
606 0,
607 ATA_CMD_WRITE_MULTI_FUA_EXT,
608 /* pio */
609 ATA_CMD_PIO_READ,
610 ATA_CMD_PIO_WRITE,
611 ATA_CMD_PIO_READ_EXT,
612 ATA_CMD_PIO_WRITE_EXT,
613 0,
614 0,
615 0,
616 0,
617 /* dma */
618 ATA_CMD_READ,
619 ATA_CMD_WRITE,
620 ATA_CMD_READ_EXT,
621 ATA_CMD_WRITE_EXT,
622 0,
623 0,
624 0,
625 ATA_CMD_WRITE_FUA_EXT
626};
627
628/**
629 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
630 * @tf: command to examine and configure
631 * @dev: device tf belongs to
632 *
633 * Examine the device configuration and tf->flags to calculate
634 * the proper read/write commands and protocol to use.
635 *
636 * LOCKING:
637 * caller.
638 */
639static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
640{
641 u8 cmd;
642
643 int index, fua, lba48, write;
644
645 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
646 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
647 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
648
649 if (dev->flags & ATA_DFLAG_PIO) {
650 tf->protocol = ATA_PROT_PIO;
651 index = dev->multi_count ? 0 : 8;
652 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
653 /* Unable to use DMA due to host limitation */
654 tf->protocol = ATA_PROT_PIO;
655 index = dev->multi_count ? 0 : 8;
656 } else {
657 tf->protocol = ATA_PROT_DMA;
658 index = 16;
659 }
660
661 cmd = ata_rw_cmds[index + fua + lba48 + write];
662 if (cmd) {
663 tf->command = cmd;
664 return 0;
665 }
666 return -1;
667}
668
669/**
670 * ata_tf_read_block - Read block address from ATA taskfile
671 * @tf: ATA taskfile of interest
672 * @dev: ATA device @tf belongs to
673 *
674 * LOCKING:
675 * None.
676 *
677 * Read block address from @tf. This function can handle all
678 * three address formats - LBA, LBA48 and CHS. tf->protocol and
679 * flags select the address format to use.
680 *
681 * RETURNS:
682 * Block address read from @tf.
683 */
684u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
685{
686 u64 block = 0;
687
688 if (tf->flags & ATA_TFLAG_LBA) {
689 if (tf->flags & ATA_TFLAG_LBA48) {
690 block |= (u64)tf->hob_lbah << 40;
691 block |= (u64)tf->hob_lbam << 32;
692 block |= (u64)tf->hob_lbal << 24;
693 } else
694 block |= (tf->device & 0xf) << 24;
695
696 block |= tf->lbah << 16;
697 block |= tf->lbam << 8;
698 block |= tf->lbal;
699 } else {
700 u32 cyl, head, sect;
701
702 cyl = tf->lbam | (tf->lbah << 8);
703 head = tf->device & 0xf;
704 sect = tf->lbal;
705
706 if (!sect) {
707 ata_dev_warn(dev,
708 "device reported invalid CHS sector 0\n");
709 return U64_MAX;
710 }
711
712 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
713 }
714
715 return block;
716}
717
718/**
719 * ata_build_rw_tf - Build ATA taskfile for given read/write request
720 * @tf: Target ATA taskfile
721 * @dev: ATA device @tf belongs to
722 * @block: Block address
723 * @n_block: Number of blocks
724 * @tf_flags: RW/FUA etc...
725 * @tag: tag
726 * @class: IO priority class
727 *
728 * LOCKING:
729 * None.
730 *
731 * Build ATA taskfile @tf for read/write request described by
732 * @block, @n_block, @tf_flags and @tag on @dev.
733 *
734 * RETURNS:
735 *
736 * 0 on success, -ERANGE if the request is too large for @dev,
737 * -EINVAL if the request is invalid.
738 */
739int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
740 u64 block, u32 n_block, unsigned int tf_flags,
741 unsigned int tag, int class)
742{
743 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
744 tf->flags |= tf_flags;
745
746 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
747 /* yay, NCQ */
748 if (!lba_48_ok(block, n_block))
749 return -ERANGE;
750
751 tf->protocol = ATA_PROT_NCQ;
752 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
753
754 if (tf->flags & ATA_TFLAG_WRITE)
755 tf->command = ATA_CMD_FPDMA_WRITE;
756 else
757 tf->command = ATA_CMD_FPDMA_READ;
758
759 tf->nsect = tag << 3;
760 tf->hob_feature = (n_block >> 8) & 0xff;
761 tf->feature = n_block & 0xff;
762
763 tf->hob_lbah = (block >> 40) & 0xff;
764 tf->hob_lbam = (block >> 32) & 0xff;
765 tf->hob_lbal = (block >> 24) & 0xff;
766 tf->lbah = (block >> 16) & 0xff;
767 tf->lbam = (block >> 8) & 0xff;
768 tf->lbal = block & 0xff;
769
770 tf->device = ATA_LBA;
771 if (tf->flags & ATA_TFLAG_FUA)
772 tf->device |= 1 << 7;
773
774 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
775 if (class == IOPRIO_CLASS_RT)
776 tf->hob_nsect |= ATA_PRIO_HIGH <<
777 ATA_SHIFT_PRIO;
778 }
779 } else if (dev->flags & ATA_DFLAG_LBA) {
780 tf->flags |= ATA_TFLAG_LBA;
781
782 if (lba_28_ok(block, n_block)) {
783 /* use LBA28 */
784 tf->device |= (block >> 24) & 0xf;
785 } else if (lba_48_ok(block, n_block)) {
786 if (!(dev->flags & ATA_DFLAG_LBA48))
787 return -ERANGE;
788
789 /* use LBA48 */
790 tf->flags |= ATA_TFLAG_LBA48;
791
792 tf->hob_nsect = (n_block >> 8) & 0xff;
793
794 tf->hob_lbah = (block >> 40) & 0xff;
795 tf->hob_lbam = (block >> 32) & 0xff;
796 tf->hob_lbal = (block >> 24) & 0xff;
797 } else
798 /* request too large even for LBA48 */
799 return -ERANGE;
800
801 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
802 return -EINVAL;
803
804 tf->nsect = n_block & 0xff;
805
806 tf->lbah = (block >> 16) & 0xff;
807 tf->lbam = (block >> 8) & 0xff;
808 tf->lbal = block & 0xff;
809
810 tf->device |= ATA_LBA;
811 } else {
812 /* CHS */
813 u32 sect, head, cyl, track;
814
815 /* The request -may- be too large for CHS addressing. */
816 if (!lba_28_ok(block, n_block))
817 return -ERANGE;
818
819 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
820 return -EINVAL;
821
822 /* Convert LBA to CHS */
823 track = (u32)block / dev->sectors;
824 cyl = track / dev->heads;
825 head = track % dev->heads;
826 sect = (u32)block % dev->sectors + 1;
827
828 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
829 (u32)block, track, cyl, head, sect);
830
831 /* Check whether the converted CHS can fit.
832 Cylinder: 0-65535
833 Head: 0-15
834 Sector: 1-255*/
835 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
836 return -ERANGE;
837
838 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
839 tf->lbal = sect;
840 tf->lbam = cyl;
841 tf->lbah = cyl >> 8;
842 tf->device |= head;
843 }
844
845 return 0;
846}
847
848/**
849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
850 * @pio_mask: pio_mask
851 * @mwdma_mask: mwdma_mask
852 * @udma_mask: udma_mask
853 *
854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
855 * unsigned int xfer_mask.
856 *
857 * LOCKING:
858 * None.
859 *
860 * RETURNS:
861 * Packed xfer_mask.
862 */
863unsigned long ata_pack_xfermask(unsigned long pio_mask,
864 unsigned long mwdma_mask,
865 unsigned long udma_mask)
866{
867 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
868 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
869 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
870}
871
872/**
873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
874 * @xfer_mask: xfer_mask to unpack
875 * @pio_mask: resulting pio_mask
876 * @mwdma_mask: resulting mwdma_mask
877 * @udma_mask: resulting udma_mask
878 *
879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
880 * Any NULL destination masks will be ignored.
881 */
882void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
883 unsigned long *mwdma_mask, unsigned long *udma_mask)
884{
885 if (pio_mask)
886 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
887 if (mwdma_mask)
888 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
889 if (udma_mask)
890 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
891}
892
893static const struct ata_xfer_ent {
894 int shift, bits;
895 u8 base;
896} ata_xfer_tbl[] = {
897 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
898 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
899 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
900 { -1, },
901};
902
903/**
904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
905 * @xfer_mask: xfer_mask of interest
906 *
907 * Return matching XFER_* value for @xfer_mask. Only the highest
908 * bit of @xfer_mask is considered.
909 *
910 * LOCKING:
911 * None.
912 *
913 * RETURNS:
914 * Matching XFER_* value, 0xff if no match found.
915 */
916u8 ata_xfer_mask2mode(unsigned long xfer_mask)
917{
918 int highbit = fls(xfer_mask) - 1;
919 const struct ata_xfer_ent *ent;
920
921 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
922 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
923 return ent->base + highbit - ent->shift;
924 return 0xff;
925}
926
927/**
928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
929 * @xfer_mode: XFER_* of interest
930 *
931 * Return matching xfer_mask for @xfer_mode.
932 *
933 * LOCKING:
934 * None.
935 *
936 * RETURNS:
937 * Matching xfer_mask, 0 if no match found.
938 */
939unsigned long ata_xfer_mode2mask(u8 xfer_mode)
940{
941 const struct ata_xfer_ent *ent;
942
943 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
944 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
945 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
946 & ~((1 << ent->shift) - 1);
947 return 0;
948}
949
950/**
951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
952 * @xfer_mode: XFER_* of interest
953 *
954 * Return matching xfer_shift for @xfer_mode.
955 *
956 * LOCKING:
957 * None.
958 *
959 * RETURNS:
960 * Matching xfer_shift, -1 if no match found.
961 */
962int ata_xfer_mode2shift(unsigned long xfer_mode)
963{
964 const struct ata_xfer_ent *ent;
965
966 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
967 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
968 return ent->shift;
969 return -1;
970}
971
972/**
973 * ata_mode_string - convert xfer_mask to string
974 * @xfer_mask: mask of bits supported; only highest bit counts.
975 *
976 * Determine string which represents the highest speed
977 * (highest bit in @modemask).
978 *
979 * LOCKING:
980 * None.
981 *
982 * RETURNS:
983 * Constant C string representing highest speed listed in
984 * @mode_mask, or the constant C string "<n/a>".
985 */
986const char *ata_mode_string(unsigned long xfer_mask)
987{
988 static const char * const xfer_mode_str[] = {
989 "PIO0",
990 "PIO1",
991 "PIO2",
992 "PIO3",
993 "PIO4",
994 "PIO5",
995 "PIO6",
996 "MWDMA0",
997 "MWDMA1",
998 "MWDMA2",
999 "MWDMA3",
1000 "MWDMA4",
1001 "UDMA/16",
1002 "UDMA/25",
1003 "UDMA/33",
1004 "UDMA/44",
1005 "UDMA/66",
1006 "UDMA/100",
1007 "UDMA/133",
1008 "UDMA7",
1009 };
1010 int highbit;
1011
1012 highbit = fls(xfer_mask) - 1;
1013 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014 return xfer_mode_str[highbit];
1015 return "<n/a>";
1016}
1017
1018const char *sata_spd_string(unsigned int spd)
1019{
1020 static const char * const spd_str[] = {
1021 "1.5 Gbps",
1022 "3.0 Gbps",
1023 "6.0 Gbps",
1024 };
1025
1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 return "<unknown>";
1028 return spd_str[spd - 1];
1029}
1030
1031/**
1032 * ata_dev_classify - determine device type based on ATA-spec signature
1033 * @tf: ATA taskfile register set for device to be identified
1034 *
1035 * Determine from taskfile register contents whether a device is
1036 * ATA or ATAPI, as per "Signature and persistence" section
1037 * of ATA/PI spec (volume 1, sect 5.14).
1038 *
1039 * LOCKING:
1040 * None.
1041 *
1042 * RETURNS:
1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045 */
1046unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047{
1048 /* Apple's open source Darwin code hints that some devices only
1049 * put a proper signature into the LBA mid/high registers,
1050 * So, we only check those. It's sufficient for uniqueness.
1051 *
1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055 * spec has never mentioned about using different signatures
1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1057 * Multiplier specification began to use 0x69/0x96 to identify
1058 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 * 0x69/0x96 shortly and described them as reserved for
1061 * SerialATA.
1062 *
1063 * We follow the current spec and consider that 0x69/0x96
1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 * SEMB signature. This is worked around in
1067 * ata_dev_read_id().
1068 */
1069 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1070 DPRINTK("found ATA device by sig\n");
1071 return ATA_DEV_ATA;
1072 }
1073
1074 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1075 DPRINTK("found ATAPI device by sig\n");
1076 return ATA_DEV_ATAPI;
1077 }
1078
1079 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1080 DPRINTK("found PMP device by sig\n");
1081 return ATA_DEV_PMP;
1082 }
1083
1084 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1085 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1086 return ATA_DEV_SEMB;
1087 }
1088
1089 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1090 DPRINTK("found ZAC device by sig\n");
1091 return ATA_DEV_ZAC;
1092 }
1093
1094 DPRINTK("unknown device\n");
1095 return ATA_DEV_UNKNOWN;
1096}
1097
1098/**
1099 * ata_id_string - Convert IDENTIFY DEVICE page into string
1100 * @id: IDENTIFY DEVICE results we will examine
1101 * @s: string into which data is output
1102 * @ofs: offset into identify device page
1103 * @len: length of string to return. must be an even number.
1104 *
1105 * The strings in the IDENTIFY DEVICE page are broken up into
1106 * 16-bit chunks. Run through the string, and output each
1107 * 8-bit chunk linearly, regardless of platform.
1108 *
1109 * LOCKING:
1110 * caller.
1111 */
1112
1113void ata_id_string(const u16 *id, unsigned char *s,
1114 unsigned int ofs, unsigned int len)
1115{
1116 unsigned int c;
1117
1118 BUG_ON(len & 1);
1119
1120 while (len > 0) {
1121 c = id[ofs] >> 8;
1122 *s = c;
1123 s++;
1124
1125 c = id[ofs] & 0xff;
1126 *s = c;
1127 s++;
1128
1129 ofs++;
1130 len -= 2;
1131 }
1132}
1133
1134/**
1135 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1136 * @id: IDENTIFY DEVICE results we will examine
1137 * @s: string into which data is output
1138 * @ofs: offset into identify device page
1139 * @len: length of string to return. must be an odd number.
1140 *
1141 * This function is identical to ata_id_string except that it
1142 * trims trailing spaces and terminates the resulting string with
1143 * null. @len must be actual maximum length (even number) + 1.
1144 *
1145 * LOCKING:
1146 * caller.
1147 */
1148void ata_id_c_string(const u16 *id, unsigned char *s,
1149 unsigned int ofs, unsigned int len)
1150{
1151 unsigned char *p;
1152
1153 ata_id_string(id, s, ofs, len - 1);
1154
1155 p = s + strnlen(s, len - 1);
1156 while (p > s && p[-1] == ' ')
1157 p--;
1158 *p = '\0';
1159}
1160
1161static u64 ata_id_n_sectors(const u16 *id)
1162{
1163 if (ata_id_has_lba(id)) {
1164 if (ata_id_has_lba48(id))
1165 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1166 else
1167 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1168 } else {
1169 if (ata_id_current_chs_valid(id))
1170 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1171 id[ATA_ID_CUR_SECTORS];
1172 else
1173 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1174 id[ATA_ID_SECTORS];
1175 }
1176}
1177
1178u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1179{
1180 u64 sectors = 0;
1181
1182 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1183 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1184 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1185 sectors |= (tf->lbah & 0xff) << 16;
1186 sectors |= (tf->lbam & 0xff) << 8;
1187 sectors |= (tf->lbal & 0xff);
1188
1189 return sectors;
1190}
1191
1192u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1193{
1194 u64 sectors = 0;
1195
1196 sectors |= (tf->device & 0x0f) << 24;
1197 sectors |= (tf->lbah & 0xff) << 16;
1198 sectors |= (tf->lbam & 0xff) << 8;
1199 sectors |= (tf->lbal & 0xff);
1200
1201 return sectors;
1202}
1203
1204/**
1205 * ata_read_native_max_address - Read native max address
1206 * @dev: target device
1207 * @max_sectors: out parameter for the result native max address
1208 *
1209 * Perform an LBA48 or LBA28 native size query upon the device in
1210 * question.
1211 *
1212 * RETURNS:
1213 * 0 on success, -EACCES if command is aborted by the drive.
1214 * -EIO on other errors.
1215 */
1216static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1217{
1218 unsigned int err_mask;
1219 struct ata_taskfile tf;
1220 int lba48 = ata_id_has_lba48(dev->id);
1221
1222 ata_tf_init(dev, &tf);
1223
1224 /* always clear all address registers */
1225 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1226
1227 if (lba48) {
1228 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1229 tf.flags |= ATA_TFLAG_LBA48;
1230 } else
1231 tf.command = ATA_CMD_READ_NATIVE_MAX;
1232
1233 tf.protocol = ATA_PROT_NODATA;
1234 tf.device |= ATA_LBA;
1235
1236 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1237 if (err_mask) {
1238 ata_dev_warn(dev,
1239 "failed to read native max address (err_mask=0x%x)\n",
1240 err_mask);
1241 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1242 return -EACCES;
1243 return -EIO;
1244 }
1245
1246 if (lba48)
1247 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1248 else
1249 *max_sectors = ata_tf_to_lba(&tf) + 1;
1250 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1251 (*max_sectors)--;
1252 return 0;
1253}
1254
1255/**
1256 * ata_set_max_sectors - Set max sectors
1257 * @dev: target device
1258 * @new_sectors: new max sectors value to set for the device
1259 *
1260 * Set max sectors of @dev to @new_sectors.
1261 *
1262 * RETURNS:
1263 * 0 on success, -EACCES if command is aborted or denied (due to
1264 * previous non-volatile SET_MAX) by the drive. -EIO on other
1265 * errors.
1266 */
1267static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1268{
1269 unsigned int err_mask;
1270 struct ata_taskfile tf;
1271 int lba48 = ata_id_has_lba48(dev->id);
1272
1273 new_sectors--;
1274
1275 ata_tf_init(dev, &tf);
1276
1277 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1278
1279 if (lba48) {
1280 tf.command = ATA_CMD_SET_MAX_EXT;
1281 tf.flags |= ATA_TFLAG_LBA48;
1282
1283 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1284 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1285 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1286 } else {
1287 tf.command = ATA_CMD_SET_MAX;
1288
1289 tf.device |= (new_sectors >> 24) & 0xf;
1290 }
1291
1292 tf.protocol = ATA_PROT_NODATA;
1293 tf.device |= ATA_LBA;
1294
1295 tf.lbal = (new_sectors >> 0) & 0xff;
1296 tf.lbam = (new_sectors >> 8) & 0xff;
1297 tf.lbah = (new_sectors >> 16) & 0xff;
1298
1299 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1300 if (err_mask) {
1301 ata_dev_warn(dev,
1302 "failed to set max address (err_mask=0x%x)\n",
1303 err_mask);
1304 if (err_mask == AC_ERR_DEV &&
1305 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1306 return -EACCES;
1307 return -EIO;
1308 }
1309
1310 return 0;
1311}
1312
1313/**
1314 * ata_hpa_resize - Resize a device with an HPA set
1315 * @dev: Device to resize
1316 *
1317 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1318 * it if required to the full size of the media. The caller must check
1319 * the drive has the HPA feature set enabled.
1320 *
1321 * RETURNS:
1322 * 0 on success, -errno on failure.
1323 */
1324static int ata_hpa_resize(struct ata_device *dev)
1325{
1326 struct ata_eh_context *ehc = &dev->link->eh_context;
1327 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1328 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1329 u64 sectors = ata_id_n_sectors(dev->id);
1330 u64 native_sectors;
1331 int rc;
1332
1333 /* do we need to do it? */
1334 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1335 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1336 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1337 return 0;
1338
1339 /* read native max address */
1340 rc = ata_read_native_max_address(dev, &native_sectors);
1341 if (rc) {
1342 /* If device aborted the command or HPA isn't going to
1343 * be unlocked, skip HPA resizing.
1344 */
1345 if (rc == -EACCES || !unlock_hpa) {
1346 ata_dev_warn(dev,
1347 "HPA support seems broken, skipping HPA handling\n");
1348 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1349
1350 /* we can continue if device aborted the command */
1351 if (rc == -EACCES)
1352 rc = 0;
1353 }
1354
1355 return rc;
1356 }
1357 dev->n_native_sectors = native_sectors;
1358
1359 /* nothing to do? */
1360 if (native_sectors <= sectors || !unlock_hpa) {
1361 if (!print_info || native_sectors == sectors)
1362 return 0;
1363
1364 if (native_sectors > sectors)
1365 ata_dev_info(dev,
1366 "HPA detected: current %llu, native %llu\n",
1367 (unsigned long long)sectors,
1368 (unsigned long long)native_sectors);
1369 else if (native_sectors < sectors)
1370 ata_dev_warn(dev,
1371 "native sectors (%llu) is smaller than sectors (%llu)\n",
1372 (unsigned long long)native_sectors,
1373 (unsigned long long)sectors);
1374 return 0;
1375 }
1376
1377 /* let's unlock HPA */
1378 rc = ata_set_max_sectors(dev, native_sectors);
1379 if (rc == -EACCES) {
1380 /* if device aborted the command, skip HPA resizing */
1381 ata_dev_warn(dev,
1382 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1386 return 0;
1387 } else if (rc)
1388 return rc;
1389
1390 /* re-read IDENTIFY data */
1391 rc = ata_dev_reread_id(dev, 0);
1392 if (rc) {
1393 ata_dev_err(dev,
1394 "failed to re-read IDENTIFY data after HPA resizing\n");
1395 return rc;
1396 }
1397
1398 if (print_info) {
1399 u64 new_sectors = ata_id_n_sectors(dev->id);
1400 ata_dev_info(dev,
1401 "HPA unlocked: %llu -> %llu, native %llu\n",
1402 (unsigned long long)sectors,
1403 (unsigned long long)new_sectors,
1404 (unsigned long long)native_sectors);
1405 }
1406
1407 return 0;
1408}
1409
1410/**
1411 * ata_dump_id - IDENTIFY DEVICE info debugging output
1412 * @id: IDENTIFY DEVICE page to dump
1413 *
1414 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1415 * page.
1416 *
1417 * LOCKING:
1418 * caller.
1419 */
1420
1421static inline void ata_dump_id(const u16 *id)
1422{
1423 DPRINTK("49==0x%04x "
1424 "53==0x%04x "
1425 "63==0x%04x "
1426 "64==0x%04x "
1427 "75==0x%04x \n",
1428 id[49],
1429 id[53],
1430 id[63],
1431 id[64],
1432 id[75]);
1433 DPRINTK("80==0x%04x "
1434 "81==0x%04x "
1435 "82==0x%04x "
1436 "83==0x%04x "
1437 "84==0x%04x \n",
1438 id[80],
1439 id[81],
1440 id[82],
1441 id[83],
1442 id[84]);
1443 DPRINTK("88==0x%04x "
1444 "93==0x%04x\n",
1445 id[88],
1446 id[93]);
1447}
1448
1449/**
1450 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1451 * @id: IDENTIFY data to compute xfer mask from
1452 *
1453 * Compute the xfermask for this device. This is not as trivial
1454 * as it seems if we must consider early devices correctly.
1455 *
1456 * FIXME: pre IDE drive timing (do we care ?).
1457 *
1458 * LOCKING:
1459 * None.
1460 *
1461 * RETURNS:
1462 * Computed xfermask
1463 */
1464unsigned long ata_id_xfermask(const u16 *id)
1465{
1466 unsigned long pio_mask, mwdma_mask, udma_mask;
1467
1468 /* Usual case. Word 53 indicates word 64 is valid */
1469 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1470 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1471 pio_mask <<= 3;
1472 pio_mask |= 0x7;
1473 } else {
1474 /* If word 64 isn't valid then Word 51 high byte holds
1475 * the PIO timing number for the maximum. Turn it into
1476 * a mask.
1477 */
1478 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1479 if (mode < 5) /* Valid PIO range */
1480 pio_mask = (2 << mode) - 1;
1481 else
1482 pio_mask = 1;
1483
1484 /* But wait.. there's more. Design your standards by
1485 * committee and you too can get a free iordy field to
1486 * process. However its the speeds not the modes that
1487 * are supported... Note drivers using the timing API
1488 * will get this right anyway
1489 */
1490 }
1491
1492 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1493
1494 if (ata_id_is_cfa(id)) {
1495 /*
1496 * Process compact flash extended modes
1497 */
1498 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1499 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1500
1501 if (pio)
1502 pio_mask |= (1 << 5);
1503 if (pio > 1)
1504 pio_mask |= (1 << 6);
1505 if (dma)
1506 mwdma_mask |= (1 << 3);
1507 if (dma > 1)
1508 mwdma_mask |= (1 << 4);
1509 }
1510
1511 udma_mask = 0;
1512 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1513 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1514
1515 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1516}
1517
1518static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1519{
1520 struct completion *waiting = qc->private_data;
1521
1522 complete(waiting);
1523}
1524
1525/**
1526 * ata_exec_internal_sg - execute libata internal command
1527 * @dev: Device to which the command is sent
1528 * @tf: Taskfile registers for the command and the result
1529 * @cdb: CDB for packet command
1530 * @dma_dir: Data transfer direction of the command
1531 * @sgl: sg list for the data buffer of the command
1532 * @n_elem: Number of sg entries
1533 * @timeout: Timeout in msecs (0 for default)
1534 *
1535 * Executes libata internal command with timeout. @tf contains
1536 * command on entry and result on return. Timeout and error
1537 * conditions are reported via return value. No recovery action
1538 * is taken after a command times out. It's caller's duty to
1539 * clean up after timeout.
1540 *
1541 * LOCKING:
1542 * None. Should be called with kernel context, might sleep.
1543 *
1544 * RETURNS:
1545 * Zero on success, AC_ERR_* mask on failure
1546 */
1547unsigned ata_exec_internal_sg(struct ata_device *dev,
1548 struct ata_taskfile *tf, const u8 *cdb,
1549 int dma_dir, struct scatterlist *sgl,
1550 unsigned int n_elem, unsigned long timeout)
1551{
1552 struct ata_link *link = dev->link;
1553 struct ata_port *ap = link->ap;
1554 u8 command = tf->command;
1555 int auto_timeout = 0;
1556 struct ata_queued_cmd *qc;
1557 unsigned int preempted_tag;
1558 u32 preempted_sactive;
1559 u64 preempted_qc_active;
1560 int preempted_nr_active_links;
1561 DECLARE_COMPLETION_ONSTACK(wait);
1562 unsigned long flags;
1563 unsigned int err_mask;
1564 int rc;
1565
1566 spin_lock_irqsave(ap->lock, flags);
1567
1568 /* no internal command while frozen */
1569 if (ap->pflags & ATA_PFLAG_FROZEN) {
1570 spin_unlock_irqrestore(ap->lock, flags);
1571 return AC_ERR_SYSTEM;
1572 }
1573
1574 /* initialize internal qc */
1575 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1576
1577 qc->tag = ATA_TAG_INTERNAL;
1578 qc->hw_tag = 0;
1579 qc->scsicmd = NULL;
1580 qc->ap = ap;
1581 qc->dev = dev;
1582 ata_qc_reinit(qc);
1583
1584 preempted_tag = link->active_tag;
1585 preempted_sactive = link->sactive;
1586 preempted_qc_active = ap->qc_active;
1587 preempted_nr_active_links = ap->nr_active_links;
1588 link->active_tag = ATA_TAG_POISON;
1589 link->sactive = 0;
1590 ap->qc_active = 0;
1591 ap->nr_active_links = 0;
1592
1593 /* prepare & issue qc */
1594 qc->tf = *tf;
1595 if (cdb)
1596 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1597
1598 /* some SATA bridges need us to indicate data xfer direction */
1599 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1600 dma_dir == DMA_FROM_DEVICE)
1601 qc->tf.feature |= ATAPI_DMADIR;
1602
1603 qc->flags |= ATA_QCFLAG_RESULT_TF;
1604 qc->dma_dir = dma_dir;
1605 if (dma_dir != DMA_NONE) {
1606 unsigned int i, buflen = 0;
1607 struct scatterlist *sg;
1608
1609 for_each_sg(sgl, sg, n_elem, i)
1610 buflen += sg->length;
1611
1612 ata_sg_init(qc, sgl, n_elem);
1613 qc->nbytes = buflen;
1614 }
1615
1616 qc->private_data = &wait;
1617 qc->complete_fn = ata_qc_complete_internal;
1618
1619 ata_qc_issue(qc);
1620
1621 spin_unlock_irqrestore(ap->lock, flags);
1622
1623 if (!timeout) {
1624 if (ata_probe_timeout)
1625 timeout = ata_probe_timeout * 1000;
1626 else {
1627 timeout = ata_internal_cmd_timeout(dev, command);
1628 auto_timeout = 1;
1629 }
1630 }
1631
1632 if (ap->ops->error_handler)
1633 ata_eh_release(ap);
1634
1635 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1636
1637 if (ap->ops->error_handler)
1638 ata_eh_acquire(ap);
1639
1640 ata_sff_flush_pio_task(ap);
1641
1642 if (!rc) {
1643 spin_lock_irqsave(ap->lock, flags);
1644
1645 /* We're racing with irq here. If we lose, the
1646 * following test prevents us from completing the qc
1647 * twice. If we win, the port is frozen and will be
1648 * cleaned up by ->post_internal_cmd().
1649 */
1650 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1651 qc->err_mask |= AC_ERR_TIMEOUT;
1652
1653 if (ap->ops->error_handler)
1654 ata_port_freeze(ap);
1655 else
1656 ata_qc_complete(qc);
1657
1658 if (ata_msg_warn(ap))
1659 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1660 command);
1661 }
1662
1663 spin_unlock_irqrestore(ap->lock, flags);
1664 }
1665
1666 /* do post_internal_cmd */
1667 if (ap->ops->post_internal_cmd)
1668 ap->ops->post_internal_cmd(qc);
1669
1670 /* perform minimal error analysis */
1671 if (qc->flags & ATA_QCFLAG_FAILED) {
1672 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1673 qc->err_mask |= AC_ERR_DEV;
1674
1675 if (!qc->err_mask)
1676 qc->err_mask |= AC_ERR_OTHER;
1677
1678 if (qc->err_mask & ~AC_ERR_OTHER)
1679 qc->err_mask &= ~AC_ERR_OTHER;
1680 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1681 qc->result_tf.command |= ATA_SENSE;
1682 }
1683
1684 /* finish up */
1685 spin_lock_irqsave(ap->lock, flags);
1686
1687 *tf = qc->result_tf;
1688 err_mask = qc->err_mask;
1689
1690 ata_qc_free(qc);
1691 link->active_tag = preempted_tag;
1692 link->sactive = preempted_sactive;
1693 ap->qc_active = preempted_qc_active;
1694 ap->nr_active_links = preempted_nr_active_links;
1695
1696 spin_unlock_irqrestore(ap->lock, flags);
1697
1698 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1699 ata_internal_cmd_timed_out(dev, command);
1700
1701 return err_mask;
1702}
1703
1704/**
1705 * ata_exec_internal - execute libata internal command
1706 * @dev: Device to which the command is sent
1707 * @tf: Taskfile registers for the command and the result
1708 * @cdb: CDB for packet command
1709 * @dma_dir: Data transfer direction of the command
1710 * @buf: Data buffer of the command
1711 * @buflen: Length of data buffer
1712 * @timeout: Timeout in msecs (0 for default)
1713 *
1714 * Wrapper around ata_exec_internal_sg() which takes simple
1715 * buffer instead of sg list.
1716 *
1717 * LOCKING:
1718 * None. Should be called with kernel context, might sleep.
1719 *
1720 * RETURNS:
1721 * Zero on success, AC_ERR_* mask on failure
1722 */
1723unsigned ata_exec_internal(struct ata_device *dev,
1724 struct ata_taskfile *tf, const u8 *cdb,
1725 int dma_dir, void *buf, unsigned int buflen,
1726 unsigned long timeout)
1727{
1728 struct scatterlist *psg = NULL, sg;
1729 unsigned int n_elem = 0;
1730
1731 if (dma_dir != DMA_NONE) {
1732 WARN_ON(!buf);
1733 sg_init_one(&sg, buf, buflen);
1734 psg = &sg;
1735 n_elem++;
1736 }
1737
1738 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1739 timeout);
1740}
1741
1742/**
1743 * ata_pio_need_iordy - check if iordy needed
1744 * @adev: ATA device
1745 *
1746 * Check if the current speed of the device requires IORDY. Used
1747 * by various controllers for chip configuration.
1748 */
1749unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1750{
1751 /* Don't set IORDY if we're preparing for reset. IORDY may
1752 * lead to controller lock up on certain controllers if the
1753 * port is not occupied. See bko#11703 for details.
1754 */
1755 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1756 return 0;
1757 /* Controller doesn't support IORDY. Probably a pointless
1758 * check as the caller should know this.
1759 */
1760 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1761 return 0;
1762 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1763 if (ata_id_is_cfa(adev->id)
1764 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1765 return 0;
1766 /* PIO3 and higher it is mandatory */
1767 if (adev->pio_mode > XFER_PIO_2)
1768 return 1;
1769 /* We turn it on when possible */
1770 if (ata_id_has_iordy(adev->id))
1771 return 1;
1772 return 0;
1773}
1774
1775/**
1776 * ata_pio_mask_no_iordy - Return the non IORDY mask
1777 * @adev: ATA device
1778 *
1779 * Compute the highest mode possible if we are not using iordy. Return
1780 * -1 if no iordy mode is available.
1781 */
1782static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1783{
1784 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1785 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1786 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1787 /* Is the speed faster than the drive allows non IORDY ? */
1788 if (pio) {
1789 /* This is cycle times not frequency - watch the logic! */
1790 if (pio > 240) /* PIO2 is 240nS per cycle */
1791 return 3 << ATA_SHIFT_PIO;
1792 return 7 << ATA_SHIFT_PIO;
1793 }
1794 }
1795 return 3 << ATA_SHIFT_PIO;
1796}
1797
1798/**
1799 * ata_do_dev_read_id - default ID read method
1800 * @dev: device
1801 * @tf: proposed taskfile
1802 * @id: data buffer
1803 *
1804 * Issue the identify taskfile and hand back the buffer containing
1805 * identify data. For some RAID controllers and for pre ATA devices
1806 * this function is wrapped or replaced by the driver
1807 */
1808unsigned int ata_do_dev_read_id(struct ata_device *dev,
1809 struct ata_taskfile *tf, u16 *id)
1810{
1811 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1812 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1813}
1814
1815/**
1816 * ata_dev_read_id - Read ID data from the specified device
1817 * @dev: target device
1818 * @p_class: pointer to class of the target device (may be changed)
1819 * @flags: ATA_READID_* flags
1820 * @id: buffer to read IDENTIFY data into
1821 *
1822 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1823 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1824 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1825 * for pre-ATA4 drives.
1826 *
1827 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1828 * now we abort if we hit that case.
1829 *
1830 * LOCKING:
1831 * Kernel thread context (may sleep)
1832 *
1833 * RETURNS:
1834 * 0 on success, -errno otherwise.
1835 */
1836int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1837 unsigned int flags, u16 *id)
1838{
1839 struct ata_port *ap = dev->link->ap;
1840 unsigned int class = *p_class;
1841 struct ata_taskfile tf;
1842 unsigned int err_mask = 0;
1843 const char *reason;
1844 bool is_semb = class == ATA_DEV_SEMB;
1845 int may_fallback = 1, tried_spinup = 0;
1846 int rc;
1847
1848 if (ata_msg_ctl(ap))
1849 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1850
1851retry:
1852 ata_tf_init(dev, &tf);
1853
1854 switch (class) {
1855 case ATA_DEV_SEMB:
1856 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1857 /* fall through */
1858 case ATA_DEV_ATA:
1859 case ATA_DEV_ZAC:
1860 tf.command = ATA_CMD_ID_ATA;
1861 break;
1862 case ATA_DEV_ATAPI:
1863 tf.command = ATA_CMD_ID_ATAPI;
1864 break;
1865 default:
1866 rc = -ENODEV;
1867 reason = "unsupported class";
1868 goto err_out;
1869 }
1870
1871 tf.protocol = ATA_PROT_PIO;
1872
1873 /* Some devices choke if TF registers contain garbage. Make
1874 * sure those are properly initialized.
1875 */
1876 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1877
1878 /* Device presence detection is unreliable on some
1879 * controllers. Always poll IDENTIFY if available.
1880 */
1881 tf.flags |= ATA_TFLAG_POLLING;
1882
1883 if (ap->ops->read_id)
1884 err_mask = ap->ops->read_id(dev, &tf, id);
1885 else
1886 err_mask = ata_do_dev_read_id(dev, &tf, id);
1887
1888 if (err_mask) {
1889 if (err_mask & AC_ERR_NODEV_HINT) {
1890 ata_dev_dbg(dev, "NODEV after polling detection\n");
1891 return -ENOENT;
1892 }
1893
1894 if (is_semb) {
1895 ata_dev_info(dev,
1896 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1897 /* SEMB is not supported yet */
1898 *p_class = ATA_DEV_SEMB_UNSUP;
1899 return 0;
1900 }
1901
1902 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1903 /* Device or controller might have reported
1904 * the wrong device class. Give a shot at the
1905 * other IDENTIFY if the current one is
1906 * aborted by the device.
1907 */
1908 if (may_fallback) {
1909 may_fallback = 0;
1910
1911 if (class == ATA_DEV_ATA)
1912 class = ATA_DEV_ATAPI;
1913 else
1914 class = ATA_DEV_ATA;
1915 goto retry;
1916 }
1917
1918 /* Control reaches here iff the device aborted
1919 * both flavors of IDENTIFYs which happens
1920 * sometimes with phantom devices.
1921 */
1922 ata_dev_dbg(dev,
1923 "both IDENTIFYs aborted, assuming NODEV\n");
1924 return -ENOENT;
1925 }
1926
1927 rc = -EIO;
1928 reason = "I/O error";
1929 goto err_out;
1930 }
1931
1932 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1933 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1934 "class=%d may_fallback=%d tried_spinup=%d\n",
1935 class, may_fallback, tried_spinup);
1936 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1937 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1938 }
1939
1940 /* Falling back doesn't make sense if ID data was read
1941 * successfully at least once.
1942 */
1943 may_fallback = 0;
1944
1945 swap_buf_le16(id, ATA_ID_WORDS);
1946
1947 /* sanity check */
1948 rc = -EINVAL;
1949 reason = "device reports invalid type";
1950
1951 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1952 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1953 goto err_out;
1954 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1955 ata_id_is_ata(id)) {
1956 ata_dev_dbg(dev,
1957 "host indicates ignore ATA devices, ignored\n");
1958 return -ENOENT;
1959 }
1960 } else {
1961 if (ata_id_is_ata(id))
1962 goto err_out;
1963 }
1964
1965 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1966 tried_spinup = 1;
1967 /*
1968 * Drive powered-up in standby mode, and requires a specific
1969 * SET_FEATURES spin-up subcommand before it will accept
1970 * anything other than the original IDENTIFY command.
1971 */
1972 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1973 if (err_mask && id[2] != 0x738c) {
1974 rc = -EIO;
1975 reason = "SPINUP failed";
1976 goto err_out;
1977 }
1978 /*
1979 * If the drive initially returned incomplete IDENTIFY info,
1980 * we now must reissue the IDENTIFY command.
1981 */
1982 if (id[2] == 0x37c8)
1983 goto retry;
1984 }
1985
1986 if ((flags & ATA_READID_POSTRESET) &&
1987 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1988 /*
1989 * The exact sequence expected by certain pre-ATA4 drives is:
1990 * SRST RESET
1991 * IDENTIFY (optional in early ATA)
1992 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1993 * anything else..
1994 * Some drives were very specific about that exact sequence.
1995 *
1996 * Note that ATA4 says lba is mandatory so the second check
1997 * should never trigger.
1998 */
1999 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2000 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2001 if (err_mask) {
2002 rc = -EIO;
2003 reason = "INIT_DEV_PARAMS failed";
2004 goto err_out;
2005 }
2006
2007 /* current CHS translation info (id[53-58]) might be
2008 * changed. reread the identify device info.
2009 */
2010 flags &= ~ATA_READID_POSTRESET;
2011 goto retry;
2012 }
2013 }
2014
2015 *p_class = class;
2016
2017 return 0;
2018
2019 err_out:
2020 if (ata_msg_warn(ap))
2021 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2022 reason, err_mask);
2023 return rc;
2024}
2025
2026/**
2027 * ata_read_log_page - read a specific log page
2028 * @dev: target device
2029 * @log: log to read
2030 * @page: page to read
2031 * @buf: buffer to store read page
2032 * @sectors: number of sectors to read
2033 *
2034 * Read log page using READ_LOG_EXT command.
2035 *
2036 * LOCKING:
2037 * Kernel thread context (may sleep).
2038 *
2039 * RETURNS:
2040 * 0 on success, AC_ERR_* mask otherwise.
2041 */
2042unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2043 u8 page, void *buf, unsigned int sectors)
2044{
2045 unsigned long ap_flags = dev->link->ap->flags;
2046 struct ata_taskfile tf;
2047 unsigned int err_mask;
2048 bool dma = false;
2049
2050 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2051
2052 /*
2053 * Return error without actually issuing the command on controllers
2054 * which e.g. lockup on a read log page.
2055 */
2056 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2057 return AC_ERR_DEV;
2058
2059retry:
2060 ata_tf_init(dev, &tf);
2061 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2062 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2063 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2064 tf.protocol = ATA_PROT_DMA;
2065 dma = true;
2066 } else {
2067 tf.command = ATA_CMD_READ_LOG_EXT;
2068 tf.protocol = ATA_PROT_PIO;
2069 dma = false;
2070 }
2071 tf.lbal = log;
2072 tf.lbam = page;
2073 tf.nsect = sectors;
2074 tf.hob_nsect = sectors >> 8;
2075 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2076
2077 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2078 buf, sectors * ATA_SECT_SIZE, 0);
2079
2080 if (err_mask && dma) {
2081 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2082 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2083 goto retry;
2084 }
2085
2086 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2087 return err_mask;
2088}
2089
2090static bool ata_log_supported(struct ata_device *dev, u8 log)
2091{
2092 struct ata_port *ap = dev->link->ap;
2093
2094 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2095 return false;
2096 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2097}
2098
2099static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2100{
2101 struct ata_port *ap = dev->link->ap;
2102 unsigned int err, i;
2103
2104 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2105 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2106 return false;
2107 }
2108
2109 /*
2110 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2111 * supported.
2112 */
2113 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2114 1);
2115 if (err) {
2116 ata_dev_info(dev,
2117 "failed to get Device Identify Log Emask 0x%x\n",
2118 err);
2119 return false;
2120 }
2121
2122 for (i = 0; i < ap->sector_buf[8]; i++) {
2123 if (ap->sector_buf[9 + i] == page)
2124 return true;
2125 }
2126
2127 return false;
2128}
2129
2130static int ata_do_link_spd_horkage(struct ata_device *dev)
2131{
2132 struct ata_link *plink = ata_dev_phys_link(dev);
2133 u32 target, target_limit;
2134
2135 if (!sata_scr_valid(plink))
2136 return 0;
2137
2138 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2139 target = 1;
2140 else
2141 return 0;
2142
2143 target_limit = (1 << target) - 1;
2144
2145 /* if already on stricter limit, no need to push further */
2146 if (plink->sata_spd_limit <= target_limit)
2147 return 0;
2148
2149 plink->sata_spd_limit = target_limit;
2150
2151 /* Request another EH round by returning -EAGAIN if link is
2152 * going faster than the target speed. Forward progress is
2153 * guaranteed by setting sata_spd_limit to target_limit above.
2154 */
2155 if (plink->sata_spd > target) {
2156 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2157 sata_spd_string(target));
2158 return -EAGAIN;
2159 }
2160 return 0;
2161}
2162
2163static inline u8 ata_dev_knobble(struct ata_device *dev)
2164{
2165 struct ata_port *ap = dev->link->ap;
2166
2167 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2168 return 0;
2169
2170 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2171}
2172
2173static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2174{
2175 struct ata_port *ap = dev->link->ap;
2176 unsigned int err_mask;
2177
2178 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2179 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2180 return;
2181 }
2182 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2183 0, ap->sector_buf, 1);
2184 if (err_mask) {
2185 ata_dev_dbg(dev,
2186 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2187 err_mask);
2188 } else {
2189 u8 *cmds = dev->ncq_send_recv_cmds;
2190
2191 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2192 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2193
2194 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2195 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2196 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2197 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2198 }
2199 }
2200}
2201
2202static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2203{
2204 struct ata_port *ap = dev->link->ap;
2205 unsigned int err_mask;
2206
2207 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2208 ata_dev_warn(dev,
2209 "NCQ Send/Recv Log not supported\n");
2210 return;
2211 }
2212 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2213 0, ap->sector_buf, 1);
2214 if (err_mask) {
2215 ata_dev_dbg(dev,
2216 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2217 err_mask);
2218 } else {
2219 u8 *cmds = dev->ncq_non_data_cmds;
2220
2221 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2222 }
2223}
2224
2225static void ata_dev_config_ncq_prio(struct ata_device *dev)
2226{
2227 struct ata_port *ap = dev->link->ap;
2228 unsigned int err_mask;
2229
2230 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2231 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2232 return;
2233 }
2234
2235 err_mask = ata_read_log_page(dev,
2236 ATA_LOG_IDENTIFY_DEVICE,
2237 ATA_LOG_SATA_SETTINGS,
2238 ap->sector_buf,
2239 1);
2240 if (err_mask) {
2241 ata_dev_dbg(dev,
2242 "failed to get Identify Device data, Emask 0x%x\n",
2243 err_mask);
2244 return;
2245 }
2246
2247 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2248 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2249 } else {
2250 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2251 ata_dev_dbg(dev, "SATA page does not support priority\n");
2252 }
2253
2254}
2255
2256static int ata_dev_config_ncq(struct ata_device *dev,
2257 char *desc, size_t desc_sz)
2258{
2259 struct ata_port *ap = dev->link->ap;
2260 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2261 unsigned int err_mask;
2262 char *aa_desc = "";
2263
2264 if (!ata_id_has_ncq(dev->id)) {
2265 desc[0] = '\0';
2266 return 0;
2267 }
2268 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2269 snprintf(desc, desc_sz, "NCQ (not used)");
2270 return 0;
2271 }
2272 if (ap->flags & ATA_FLAG_NCQ) {
2273 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2274 dev->flags |= ATA_DFLAG_NCQ;
2275 }
2276
2277 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2278 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2279 ata_id_has_fpdma_aa(dev->id)) {
2280 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2281 SATA_FPDMA_AA);
2282 if (err_mask) {
2283 ata_dev_err(dev,
2284 "failed to enable AA (error_mask=0x%x)\n",
2285 err_mask);
2286 if (err_mask != AC_ERR_DEV) {
2287 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2288 return -EIO;
2289 }
2290 } else
2291 aa_desc = ", AA";
2292 }
2293
2294 if (hdepth >= ddepth)
2295 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2296 else
2297 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2298 ddepth, aa_desc);
2299
2300 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2301 if (ata_id_has_ncq_send_and_recv(dev->id))
2302 ata_dev_config_ncq_send_recv(dev);
2303 if (ata_id_has_ncq_non_data(dev->id))
2304 ata_dev_config_ncq_non_data(dev);
2305 if (ata_id_has_ncq_prio(dev->id))
2306 ata_dev_config_ncq_prio(dev);
2307 }
2308
2309 return 0;
2310}
2311
2312static void ata_dev_config_sense_reporting(struct ata_device *dev)
2313{
2314 unsigned int err_mask;
2315
2316 if (!ata_id_has_sense_reporting(dev->id))
2317 return;
2318
2319 if (ata_id_sense_reporting_enabled(dev->id))
2320 return;
2321
2322 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2323 if (err_mask) {
2324 ata_dev_dbg(dev,
2325 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2326 err_mask);
2327 }
2328}
2329
2330static void ata_dev_config_zac(struct ata_device *dev)
2331{
2332 struct ata_port *ap = dev->link->ap;
2333 unsigned int err_mask;
2334 u8 *identify_buf = ap->sector_buf;
2335
2336 dev->zac_zones_optimal_open = U32_MAX;
2337 dev->zac_zones_optimal_nonseq = U32_MAX;
2338 dev->zac_zones_max_open = U32_MAX;
2339
2340 /*
2341 * Always set the 'ZAC' flag for Host-managed devices.
2342 */
2343 if (dev->class == ATA_DEV_ZAC)
2344 dev->flags |= ATA_DFLAG_ZAC;
2345 else if (ata_id_zoned_cap(dev->id) == 0x01)
2346 /*
2347 * Check for host-aware devices.
2348 */
2349 dev->flags |= ATA_DFLAG_ZAC;
2350
2351 if (!(dev->flags & ATA_DFLAG_ZAC))
2352 return;
2353
2354 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2355 ata_dev_warn(dev,
2356 "ATA Zoned Information Log not supported\n");
2357 return;
2358 }
2359
2360 /*
2361 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2362 */
2363 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2364 ATA_LOG_ZONED_INFORMATION,
2365 identify_buf, 1);
2366 if (!err_mask) {
2367 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2368
2369 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2370 if ((zoned_cap >> 63))
2371 dev->zac_zoned_cap = (zoned_cap & 1);
2372 opt_open = get_unaligned_le64(&identify_buf[24]);
2373 if ((opt_open >> 63))
2374 dev->zac_zones_optimal_open = (u32)opt_open;
2375 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2376 if ((opt_nonseq >> 63))
2377 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2378 max_open = get_unaligned_le64(&identify_buf[40]);
2379 if ((max_open >> 63))
2380 dev->zac_zones_max_open = (u32)max_open;
2381 }
2382}
2383
2384static void ata_dev_config_trusted(struct ata_device *dev)
2385{
2386 struct ata_port *ap = dev->link->ap;
2387 u64 trusted_cap;
2388 unsigned int err;
2389
2390 if (!ata_id_has_trusted(dev->id))
2391 return;
2392
2393 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2394 ata_dev_warn(dev,
2395 "Security Log not supported\n");
2396 return;
2397 }
2398
2399 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2400 ap->sector_buf, 1);
2401 if (err) {
2402 ata_dev_dbg(dev,
2403 "failed to read Security Log, Emask 0x%x\n", err);
2404 return;
2405 }
2406
2407 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2408 if (!(trusted_cap & (1ULL << 63))) {
2409 ata_dev_dbg(dev,
2410 "Trusted Computing capability qword not valid!\n");
2411 return;
2412 }
2413
2414 if (trusted_cap & (1 << 0))
2415 dev->flags |= ATA_DFLAG_TRUSTED;
2416}
2417
2418/**
2419 * ata_dev_configure - Configure the specified ATA/ATAPI device
2420 * @dev: Target device to configure
2421 *
2422 * Configure @dev according to @dev->id. Generic and low-level
2423 * driver specific fixups are also applied.
2424 *
2425 * LOCKING:
2426 * Kernel thread context (may sleep)
2427 *
2428 * RETURNS:
2429 * 0 on success, -errno otherwise
2430 */
2431int ata_dev_configure(struct ata_device *dev)
2432{
2433 struct ata_port *ap = dev->link->ap;
2434 struct ata_eh_context *ehc = &dev->link->eh_context;
2435 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2436 const u16 *id = dev->id;
2437 unsigned long xfer_mask;
2438 unsigned int err_mask;
2439 char revbuf[7]; /* XYZ-99\0 */
2440 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2441 char modelbuf[ATA_ID_PROD_LEN+1];
2442 int rc;
2443
2444 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2445 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2446 return 0;
2447 }
2448
2449 if (ata_msg_probe(ap))
2450 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2451
2452 /* set horkage */
2453 dev->horkage |= ata_dev_blacklisted(dev);
2454 ata_force_horkage(dev);
2455
2456 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2457 ata_dev_info(dev, "unsupported device, disabling\n");
2458 ata_dev_disable(dev);
2459 return 0;
2460 }
2461
2462 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2463 dev->class == ATA_DEV_ATAPI) {
2464 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2465 atapi_enabled ? "not supported with this driver"
2466 : "disabled");
2467 ata_dev_disable(dev);
2468 return 0;
2469 }
2470
2471 rc = ata_do_link_spd_horkage(dev);
2472 if (rc)
2473 return rc;
2474
2475 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2476 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2477 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2478 dev->horkage |= ATA_HORKAGE_NOLPM;
2479
2480 if (ap->flags & ATA_FLAG_NO_LPM)
2481 dev->horkage |= ATA_HORKAGE_NOLPM;
2482
2483 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2484 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2485 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2486 }
2487
2488 /* let ACPI work its magic */
2489 rc = ata_acpi_on_devcfg(dev);
2490 if (rc)
2491 return rc;
2492
2493 /* massage HPA, do it early as it might change IDENTIFY data */
2494 rc = ata_hpa_resize(dev);
2495 if (rc)
2496 return rc;
2497
2498 /* print device capabilities */
2499 if (ata_msg_probe(ap))
2500 ata_dev_dbg(dev,
2501 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2502 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2503 __func__,
2504 id[49], id[82], id[83], id[84],
2505 id[85], id[86], id[87], id[88]);
2506
2507 /* initialize to-be-configured parameters */
2508 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2509 dev->max_sectors = 0;
2510 dev->cdb_len = 0;
2511 dev->n_sectors = 0;
2512 dev->cylinders = 0;
2513 dev->heads = 0;
2514 dev->sectors = 0;
2515 dev->multi_count = 0;
2516
2517 /*
2518 * common ATA, ATAPI feature tests
2519 */
2520
2521 /* find max transfer mode; for printk only */
2522 xfer_mask = ata_id_xfermask(id);
2523
2524 if (ata_msg_probe(ap))
2525 ata_dump_id(id);
2526
2527 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2528 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2529 sizeof(fwrevbuf));
2530
2531 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2532 sizeof(modelbuf));
2533
2534 /* ATA-specific feature tests */
2535 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2536 if (ata_id_is_cfa(id)) {
2537 /* CPRM may make this media unusable */
2538 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2539 ata_dev_warn(dev,
2540 "supports DRM functions and may not be fully accessible\n");
2541 snprintf(revbuf, 7, "CFA");
2542 } else {
2543 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2544 /* Warn the user if the device has TPM extensions */
2545 if (ata_id_has_tpm(id))
2546 ata_dev_warn(dev,
2547 "supports DRM functions and may not be fully accessible\n");
2548 }
2549
2550 dev->n_sectors = ata_id_n_sectors(id);
2551
2552 /* get current R/W Multiple count setting */
2553 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2554 unsigned int max = dev->id[47] & 0xff;
2555 unsigned int cnt = dev->id[59] & 0xff;
2556 /* only recognize/allow powers of two here */
2557 if (is_power_of_2(max) && is_power_of_2(cnt))
2558 if (cnt <= max)
2559 dev->multi_count = cnt;
2560 }
2561
2562 if (ata_id_has_lba(id)) {
2563 const char *lba_desc;
2564 char ncq_desc[24];
2565
2566 lba_desc = "LBA";
2567 dev->flags |= ATA_DFLAG_LBA;
2568 if (ata_id_has_lba48(id)) {
2569 dev->flags |= ATA_DFLAG_LBA48;
2570 lba_desc = "LBA48";
2571
2572 if (dev->n_sectors >= (1UL << 28) &&
2573 ata_id_has_flush_ext(id))
2574 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2575 }
2576
2577 /* config NCQ */
2578 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2579 if (rc)
2580 return rc;
2581
2582 /* print device info to dmesg */
2583 if (ata_msg_drv(ap) && print_info) {
2584 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2585 revbuf, modelbuf, fwrevbuf,
2586 ata_mode_string(xfer_mask));
2587 ata_dev_info(dev,
2588 "%llu sectors, multi %u: %s %s\n",
2589 (unsigned long long)dev->n_sectors,
2590 dev->multi_count, lba_desc, ncq_desc);
2591 }
2592 } else {
2593 /* CHS */
2594
2595 /* Default translation */
2596 dev->cylinders = id[1];
2597 dev->heads = id[3];
2598 dev->sectors = id[6];
2599
2600 if (ata_id_current_chs_valid(id)) {
2601 /* Current CHS translation is valid. */
2602 dev->cylinders = id[54];
2603 dev->heads = id[55];
2604 dev->sectors = id[56];
2605 }
2606
2607 /* print device info to dmesg */
2608 if (ata_msg_drv(ap) && print_info) {
2609 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2610 revbuf, modelbuf, fwrevbuf,
2611 ata_mode_string(xfer_mask));
2612 ata_dev_info(dev,
2613 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2614 (unsigned long long)dev->n_sectors,
2615 dev->multi_count, dev->cylinders,
2616 dev->heads, dev->sectors);
2617 }
2618 }
2619
2620 /* Check and mark DevSlp capability. Get DevSlp timing variables
2621 * from SATA Settings page of Identify Device Data Log.
2622 */
2623 if (ata_id_has_devslp(dev->id)) {
2624 u8 *sata_setting = ap->sector_buf;
2625 int i, j;
2626
2627 dev->flags |= ATA_DFLAG_DEVSLP;
2628 err_mask = ata_read_log_page(dev,
2629 ATA_LOG_IDENTIFY_DEVICE,
2630 ATA_LOG_SATA_SETTINGS,
2631 sata_setting,
2632 1);
2633 if (err_mask)
2634 ata_dev_dbg(dev,
2635 "failed to get Identify Device Data, Emask 0x%x\n",
2636 err_mask);
2637 else
2638 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2639 j = ATA_LOG_DEVSLP_OFFSET + i;
2640 dev->devslp_timing[i] = sata_setting[j];
2641 }
2642 }
2643 ata_dev_config_sense_reporting(dev);
2644 ata_dev_config_zac(dev);
2645 ata_dev_config_trusted(dev);
2646 dev->cdb_len = 32;
2647 }
2648
2649 /* ATAPI-specific feature tests */
2650 else if (dev->class == ATA_DEV_ATAPI) {
2651 const char *cdb_intr_string = "";
2652 const char *atapi_an_string = "";
2653 const char *dma_dir_string = "";
2654 u32 sntf;
2655
2656 rc = atapi_cdb_len(id);
2657 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2658 if (ata_msg_warn(ap))
2659 ata_dev_warn(dev, "unsupported CDB len\n");
2660 rc = -EINVAL;
2661 goto err_out_nosup;
2662 }
2663 dev->cdb_len = (unsigned int) rc;
2664
2665 /* Enable ATAPI AN if both the host and device have
2666 * the support. If PMP is attached, SNTF is required
2667 * to enable ATAPI AN to discern between PHY status
2668 * changed notifications and ATAPI ANs.
2669 */
2670 if (atapi_an &&
2671 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2672 (!sata_pmp_attached(ap) ||
2673 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2674 /* issue SET feature command to turn this on */
2675 err_mask = ata_dev_set_feature(dev,
2676 SETFEATURES_SATA_ENABLE, SATA_AN);
2677 if (err_mask)
2678 ata_dev_err(dev,
2679 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2680 err_mask);
2681 else {
2682 dev->flags |= ATA_DFLAG_AN;
2683 atapi_an_string = ", ATAPI AN";
2684 }
2685 }
2686
2687 if (ata_id_cdb_intr(dev->id)) {
2688 dev->flags |= ATA_DFLAG_CDB_INTR;
2689 cdb_intr_string = ", CDB intr";
2690 }
2691
2692 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2693 dev->flags |= ATA_DFLAG_DMADIR;
2694 dma_dir_string = ", DMADIR";
2695 }
2696
2697 if (ata_id_has_da(dev->id)) {
2698 dev->flags |= ATA_DFLAG_DA;
2699 zpodd_init(dev);
2700 }
2701
2702 /* print device info to dmesg */
2703 if (ata_msg_drv(ap) && print_info)
2704 ata_dev_info(dev,
2705 "ATAPI: %s, %s, max %s%s%s%s\n",
2706 modelbuf, fwrevbuf,
2707 ata_mode_string(xfer_mask),
2708 cdb_intr_string, atapi_an_string,
2709 dma_dir_string);
2710 }
2711
2712 /* determine max_sectors */
2713 dev->max_sectors = ATA_MAX_SECTORS;
2714 if (dev->flags & ATA_DFLAG_LBA48)
2715 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2716
2717 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2718 200 sectors */
2719 if (ata_dev_knobble(dev)) {
2720 if (ata_msg_drv(ap) && print_info)
2721 ata_dev_info(dev, "applying bridge limits\n");
2722 dev->udma_mask &= ATA_UDMA5;
2723 dev->max_sectors = ATA_MAX_SECTORS;
2724 }
2725
2726 if ((dev->class == ATA_DEV_ATAPI) &&
2727 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2728 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2729 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2730 }
2731
2732 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2733 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2734 dev->max_sectors);
2735
2736 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2737 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2738 dev->max_sectors);
2739
2740 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2741 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2742
2743 if (ap->ops->dev_config)
2744 ap->ops->dev_config(dev);
2745
2746 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2747 /* Let the user know. We don't want to disallow opens for
2748 rescue purposes, or in case the vendor is just a blithering
2749 idiot. Do this after the dev_config call as some controllers
2750 with buggy firmware may want to avoid reporting false device
2751 bugs */
2752
2753 if (print_info) {
2754 ata_dev_warn(dev,
2755"Drive reports diagnostics failure. This may indicate a drive\n");
2756 ata_dev_warn(dev,
2757"fault or invalid emulation. Contact drive vendor for information.\n");
2758 }
2759 }
2760
2761 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2762 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2763 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2764 }
2765
2766 return 0;
2767
2768err_out_nosup:
2769 if (ata_msg_probe(ap))
2770 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2771 return rc;
2772}
2773
2774/**
2775 * ata_cable_40wire - return 40 wire cable type
2776 * @ap: port
2777 *
2778 * Helper method for drivers which want to hardwire 40 wire cable
2779 * detection.
2780 */
2781
2782int ata_cable_40wire(struct ata_port *ap)
2783{
2784 return ATA_CBL_PATA40;
2785}
2786
2787/**
2788 * ata_cable_80wire - return 80 wire cable type
2789 * @ap: port
2790 *
2791 * Helper method for drivers which want to hardwire 80 wire cable
2792 * detection.
2793 */
2794
2795int ata_cable_80wire(struct ata_port *ap)
2796{
2797 return ATA_CBL_PATA80;
2798}
2799
2800/**
2801 * ata_cable_unknown - return unknown PATA cable.
2802 * @ap: port
2803 *
2804 * Helper method for drivers which have no PATA cable detection.
2805 */
2806
2807int ata_cable_unknown(struct ata_port *ap)
2808{
2809 return ATA_CBL_PATA_UNK;
2810}
2811
2812/**
2813 * ata_cable_ignore - return ignored PATA cable.
2814 * @ap: port
2815 *
2816 * Helper method for drivers which don't use cable type to limit
2817 * transfer mode.
2818 */
2819int ata_cable_ignore(struct ata_port *ap)
2820{
2821 return ATA_CBL_PATA_IGN;
2822}
2823
2824/**
2825 * ata_cable_sata - return SATA cable type
2826 * @ap: port
2827 *
2828 * Helper method for drivers which have SATA cables
2829 */
2830
2831int ata_cable_sata(struct ata_port *ap)
2832{
2833 return ATA_CBL_SATA;
2834}
2835
2836/**
2837 * ata_bus_probe - Reset and probe ATA bus
2838 * @ap: Bus to probe
2839 *
2840 * Master ATA bus probing function. Initiates a hardware-dependent
2841 * bus reset, then attempts to identify any devices found on
2842 * the bus.
2843 *
2844 * LOCKING:
2845 * PCI/etc. bus probe sem.
2846 *
2847 * RETURNS:
2848 * Zero on success, negative errno otherwise.
2849 */
2850
2851int ata_bus_probe(struct ata_port *ap)
2852{
2853 unsigned int classes[ATA_MAX_DEVICES];
2854 int tries[ATA_MAX_DEVICES];
2855 int rc;
2856 struct ata_device *dev;
2857
2858 ata_for_each_dev(dev, &ap->link, ALL)
2859 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2860
2861 retry:
2862 ata_for_each_dev(dev, &ap->link, ALL) {
2863 /* If we issue an SRST then an ATA drive (not ATAPI)
2864 * may change configuration and be in PIO0 timing. If
2865 * we do a hard reset (or are coming from power on)
2866 * this is true for ATA or ATAPI. Until we've set a
2867 * suitable controller mode we should not touch the
2868 * bus as we may be talking too fast.
2869 */
2870 dev->pio_mode = XFER_PIO_0;
2871 dev->dma_mode = 0xff;
2872
2873 /* If the controller has a pio mode setup function
2874 * then use it to set the chipset to rights. Don't
2875 * touch the DMA setup as that will be dealt with when
2876 * configuring devices.
2877 */
2878 if (ap->ops->set_piomode)
2879 ap->ops->set_piomode(ap, dev);
2880 }
2881
2882 /* reset and determine device classes */
2883 ap->ops->phy_reset(ap);
2884
2885 ata_for_each_dev(dev, &ap->link, ALL) {
2886 if (dev->class != ATA_DEV_UNKNOWN)
2887 classes[dev->devno] = dev->class;
2888 else
2889 classes[dev->devno] = ATA_DEV_NONE;
2890
2891 dev->class = ATA_DEV_UNKNOWN;
2892 }
2893
2894 /* read IDENTIFY page and configure devices. We have to do the identify
2895 specific sequence bass-ackwards so that PDIAG- is released by
2896 the slave device */
2897
2898 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2899 if (tries[dev->devno])
2900 dev->class = classes[dev->devno];
2901
2902 if (!ata_dev_enabled(dev))
2903 continue;
2904
2905 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2906 dev->id);
2907 if (rc)
2908 goto fail;
2909 }
2910
2911 /* Now ask for the cable type as PDIAG- should have been released */
2912 if (ap->ops->cable_detect)
2913 ap->cbl = ap->ops->cable_detect(ap);
2914
2915 /* We may have SATA bridge glue hiding here irrespective of
2916 * the reported cable types and sensed types. When SATA
2917 * drives indicate we have a bridge, we don't know which end
2918 * of the link the bridge is which is a problem.
2919 */
2920 ata_for_each_dev(dev, &ap->link, ENABLED)
2921 if (ata_id_is_sata(dev->id))
2922 ap->cbl = ATA_CBL_SATA;
2923
2924 /* After the identify sequence we can now set up the devices. We do
2925 this in the normal order so that the user doesn't get confused */
2926
2927 ata_for_each_dev(dev, &ap->link, ENABLED) {
2928 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2929 rc = ata_dev_configure(dev);
2930 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2931 if (rc)
2932 goto fail;
2933 }
2934
2935 /* configure transfer mode */
2936 rc = ata_set_mode(&ap->link, &dev);
2937 if (rc)
2938 goto fail;
2939
2940 ata_for_each_dev(dev, &ap->link, ENABLED)
2941 return 0;
2942
2943 return -ENODEV;
2944
2945 fail:
2946 tries[dev->devno]--;
2947
2948 switch (rc) {
2949 case -EINVAL:
2950 /* eeek, something went very wrong, give up */
2951 tries[dev->devno] = 0;
2952 break;
2953
2954 case -ENODEV:
2955 /* give it just one more chance */
2956 tries[dev->devno] = min(tries[dev->devno], 1);
2957 /* fall through */
2958 case -EIO:
2959 if (tries[dev->devno] == 1) {
2960 /* This is the last chance, better to slow
2961 * down than lose it.
2962 */
2963 sata_down_spd_limit(&ap->link, 0);
2964 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2965 }
2966 }
2967
2968 if (!tries[dev->devno])
2969 ata_dev_disable(dev);
2970
2971 goto retry;
2972}
2973
2974/**
2975 * sata_print_link_status - Print SATA link status
2976 * @link: SATA link to printk link status about
2977 *
2978 * This function prints link speed and status of a SATA link.
2979 *
2980 * LOCKING:
2981 * None.
2982 */
2983static void sata_print_link_status(struct ata_link *link)
2984{
2985 u32 sstatus, scontrol, tmp;
2986
2987 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2988 return;
2989 sata_scr_read(link, SCR_CONTROL, &scontrol);
2990
2991 if (ata_phys_link_online(link)) {
2992 tmp = (sstatus >> 4) & 0xf;
2993 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2994 sata_spd_string(tmp), sstatus, scontrol);
2995 } else {
2996 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2997 sstatus, scontrol);
2998 }
2999}
3000
3001/**
3002 * ata_dev_pair - return other device on cable
3003 * @adev: device
3004 *
3005 * Obtain the other device on the same cable, or if none is
3006 * present NULL is returned
3007 */
3008
3009struct ata_device *ata_dev_pair(struct ata_device *adev)
3010{
3011 struct ata_link *link = adev->link;
3012 struct ata_device *pair = &link->device[1 - adev->devno];
3013 if (!ata_dev_enabled(pair))
3014 return NULL;
3015 return pair;
3016}
3017
3018/**
3019 * sata_down_spd_limit - adjust SATA spd limit downward
3020 * @link: Link to adjust SATA spd limit for
3021 * @spd_limit: Additional limit
3022 *
3023 * Adjust SATA spd limit of @link downward. Note that this
3024 * function only adjusts the limit. The change must be applied
3025 * using sata_set_spd().
3026 *
3027 * If @spd_limit is non-zero, the speed is limited to equal to or
3028 * lower than @spd_limit if such speed is supported. If
3029 * @spd_limit is slower than any supported speed, only the lowest
3030 * supported speed is allowed.
3031 *
3032 * LOCKING:
3033 * Inherited from caller.
3034 *
3035 * RETURNS:
3036 * 0 on success, negative errno on failure
3037 */
3038int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3039{
3040 u32 sstatus, spd, mask;
3041 int rc, bit;
3042
3043 if (!sata_scr_valid(link))
3044 return -EOPNOTSUPP;
3045
3046 /* If SCR can be read, use it to determine the current SPD.
3047 * If not, use cached value in link->sata_spd.
3048 */
3049 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3050 if (rc == 0 && ata_sstatus_online(sstatus))
3051 spd = (sstatus >> 4) & 0xf;
3052 else
3053 spd = link->sata_spd;
3054
3055 mask = link->sata_spd_limit;
3056 if (mask <= 1)
3057 return -EINVAL;
3058
3059 /* unconditionally mask off the highest bit */
3060 bit = fls(mask) - 1;
3061 mask &= ~(1 << bit);
3062
3063 /*
3064 * Mask off all speeds higher than or equal to the current one. At
3065 * this point, if current SPD is not available and we previously
3066 * recorded the link speed from SStatus, the driver has already
3067 * masked off the highest bit so mask should already be 1 or 0.
3068 * Otherwise, we should not force 1.5Gbps on a link where we have
3069 * not previously recorded speed from SStatus. Just return in this
3070 * case.
3071 */
3072 if (spd > 1)
3073 mask &= (1 << (spd - 1)) - 1;
3074 else
3075 return -EINVAL;
3076
3077 /* were we already at the bottom? */
3078 if (!mask)
3079 return -EINVAL;
3080
3081 if (spd_limit) {
3082 if (mask & ((1 << spd_limit) - 1))
3083 mask &= (1 << spd_limit) - 1;
3084 else {
3085 bit = ffs(mask) - 1;
3086 mask = 1 << bit;
3087 }
3088 }
3089
3090 link->sata_spd_limit = mask;
3091
3092 ata_link_warn(link, "limiting SATA link speed to %s\n",
3093 sata_spd_string(fls(mask)));
3094
3095 return 0;
3096}
3097
3098static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3099{
3100 struct ata_link *host_link = &link->ap->link;
3101 u32 limit, target, spd;
3102
3103 limit = link->sata_spd_limit;
3104
3105 /* Don't configure downstream link faster than upstream link.
3106 * It doesn't speed up anything and some PMPs choke on such
3107 * configuration.
3108 */
3109 if (!ata_is_host_link(link) && host_link->sata_spd)
3110 limit &= (1 << host_link->sata_spd) - 1;
3111
3112 if (limit == UINT_MAX)
3113 target = 0;
3114 else
3115 target = fls(limit);
3116
3117 spd = (*scontrol >> 4) & 0xf;
3118 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3119
3120 return spd != target;
3121}
3122
3123/**
3124 * sata_set_spd_needed - is SATA spd configuration needed
3125 * @link: Link in question
3126 *
3127 * Test whether the spd limit in SControl matches
3128 * @link->sata_spd_limit. This function is used to determine
3129 * whether hardreset is necessary to apply SATA spd
3130 * configuration.
3131 *
3132 * LOCKING:
3133 * Inherited from caller.
3134 *
3135 * RETURNS:
3136 * 1 if SATA spd configuration is needed, 0 otherwise.
3137 */
3138static int sata_set_spd_needed(struct ata_link *link)
3139{
3140 u32 scontrol;
3141
3142 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3143 return 1;
3144
3145 return __sata_set_spd_needed(link, &scontrol);
3146}
3147
3148/**
3149 * sata_set_spd - set SATA spd according to spd limit
3150 * @link: Link to set SATA spd for
3151 *
3152 * Set SATA spd of @link according to sata_spd_limit.
3153 *
3154 * LOCKING:
3155 * Inherited from caller.
3156 *
3157 * RETURNS:
3158 * 0 if spd doesn't need to be changed, 1 if spd has been
3159 * changed. Negative errno if SCR registers are inaccessible.
3160 */
3161int sata_set_spd(struct ata_link *link)
3162{
3163 u32 scontrol;
3164 int rc;
3165
3166 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3167 return rc;
3168
3169 if (!__sata_set_spd_needed(link, &scontrol))
3170 return 0;
3171
3172 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3173 return rc;
3174
3175 return 1;
3176}
3177
3178/*
3179 * This mode timing computation functionality is ported over from
3180 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3181 */
3182/*
3183 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3184 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3185 * for UDMA6, which is currently supported only by Maxtor drives.
3186 *
3187 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3188 */
3189
3190static const struct ata_timing ata_timing[] = {
3191/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3192 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3193 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3194 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3195 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3196 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3197 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3198 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3199
3200 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3201 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3202 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3203
3204 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3205 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3206 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3207 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3208 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3209
3210/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3211 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3212 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3213 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3214 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3215 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3216 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3217 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3218
3219 { 0xFF }
3220};
3221
3222#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3223#define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
3224
3225static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3226{
3227 q->setup = EZ(t->setup, T);
3228 q->act8b = EZ(t->act8b, T);
3229 q->rec8b = EZ(t->rec8b, T);
3230 q->cyc8b = EZ(t->cyc8b, T);
3231 q->active = EZ(t->active, T);
3232 q->recover = EZ(t->recover, T);
3233 q->dmack_hold = EZ(t->dmack_hold, T);
3234 q->cycle = EZ(t->cycle, T);
3235 q->udma = EZ(t->udma, UT);
3236}
3237
3238void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3239 struct ata_timing *m, unsigned int what)
3240{
3241 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3242 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3243 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3244 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3245 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3246 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3247 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3248 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3249 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3250}
3251
3252const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3253{
3254 const struct ata_timing *t = ata_timing;
3255
3256 while (xfer_mode > t->mode)
3257 t++;
3258
3259 if (xfer_mode == t->mode)
3260 return t;
3261
3262 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3263 __func__, xfer_mode);
3264
3265 return NULL;
3266}
3267
3268int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3269 struct ata_timing *t, int T, int UT)
3270{
3271 const u16 *id = adev->id;
3272 const struct ata_timing *s;
3273 struct ata_timing p;
3274
3275 /*
3276 * Find the mode.
3277 */
3278
3279 if (!(s = ata_timing_find_mode(speed)))
3280 return -EINVAL;
3281
3282 memcpy(t, s, sizeof(*s));
3283
3284 /*
3285 * If the drive is an EIDE drive, it can tell us it needs extended
3286 * PIO/MW_DMA cycle timing.
3287 */
3288
3289 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3290 memset(&p, 0, sizeof(p));
3291
3292 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3293 if (speed <= XFER_PIO_2)
3294 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3295 else if ((speed <= XFER_PIO_4) ||
3296 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3297 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3298 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3299 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3300
3301 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3302 }
3303
3304 /*
3305 * Convert the timing to bus clock counts.
3306 */
3307
3308 ata_timing_quantize(t, t, T, UT);
3309
3310 /*
3311 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3312 * S.M.A.R.T * and some other commands. We have to ensure that the
3313 * DMA cycle timing is slower/equal than the fastest PIO timing.
3314 */
3315
3316 if (speed > XFER_PIO_6) {
3317 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3318 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3319 }
3320
3321 /*
3322 * Lengthen active & recovery time so that cycle time is correct.
3323 */
3324
3325 if (t->act8b + t->rec8b < t->cyc8b) {
3326 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3327 t->rec8b = t->cyc8b - t->act8b;
3328 }
3329
3330 if (t->active + t->recover < t->cycle) {
3331 t->active += (t->cycle - (t->active + t->recover)) / 2;
3332 t->recover = t->cycle - t->active;
3333 }
3334
3335 /* In a few cases quantisation may produce enough errors to
3336 leave t->cycle too low for the sum of active and recovery
3337 if so we must correct this */
3338 if (t->active + t->recover > t->cycle)
3339 t->cycle = t->active + t->recover;
3340
3341 return 0;
3342}
3343
3344/**
3345 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3346 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3347 * @cycle: cycle duration in ns
3348 *
3349 * Return matching xfer mode for @cycle. The returned mode is of
3350 * the transfer type specified by @xfer_shift. If @cycle is too
3351 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3352 * than the fastest known mode, the fasted mode is returned.
3353 *
3354 * LOCKING:
3355 * None.
3356 *
3357 * RETURNS:
3358 * Matching xfer_mode, 0xff if no match found.
3359 */
3360u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3361{
3362 u8 base_mode = 0xff, last_mode = 0xff;
3363 const struct ata_xfer_ent *ent;
3364 const struct ata_timing *t;
3365
3366 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3367 if (ent->shift == xfer_shift)
3368 base_mode = ent->base;
3369
3370 for (t = ata_timing_find_mode(base_mode);
3371 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3372 unsigned short this_cycle;
3373
3374 switch (xfer_shift) {
3375 case ATA_SHIFT_PIO:
3376 case ATA_SHIFT_MWDMA:
3377 this_cycle = t->cycle;
3378 break;
3379 case ATA_SHIFT_UDMA:
3380 this_cycle = t->udma;
3381 break;
3382 default:
3383 return 0xff;
3384 }
3385
3386 if (cycle > this_cycle)
3387 break;
3388
3389 last_mode = t->mode;
3390 }
3391
3392 return last_mode;
3393}
3394
3395/**
3396 * ata_down_xfermask_limit - adjust dev xfer masks downward
3397 * @dev: Device to adjust xfer masks
3398 * @sel: ATA_DNXFER_* selector
3399 *
3400 * Adjust xfer masks of @dev downward. Note that this function
3401 * does not apply the change. Invoking ata_set_mode() afterwards
3402 * will apply the limit.
3403 *
3404 * LOCKING:
3405 * Inherited from caller.
3406 *
3407 * RETURNS:
3408 * 0 on success, negative errno on failure
3409 */
3410int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3411{
3412 char buf[32];
3413 unsigned long orig_mask, xfer_mask;
3414 unsigned long pio_mask, mwdma_mask, udma_mask;
3415 int quiet, highbit;
3416
3417 quiet = !!(sel & ATA_DNXFER_QUIET);
3418 sel &= ~ATA_DNXFER_QUIET;
3419
3420 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3421 dev->mwdma_mask,
3422 dev->udma_mask);
3423 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3424
3425 switch (sel) {
3426 case ATA_DNXFER_PIO:
3427 highbit = fls(pio_mask) - 1;
3428 pio_mask &= ~(1 << highbit);
3429 break;
3430
3431 case ATA_DNXFER_DMA:
3432 if (udma_mask) {
3433 highbit = fls(udma_mask) - 1;
3434 udma_mask &= ~(1 << highbit);
3435 if (!udma_mask)
3436 return -ENOENT;
3437 } else if (mwdma_mask) {
3438 highbit = fls(mwdma_mask) - 1;
3439 mwdma_mask &= ~(1 << highbit);
3440 if (!mwdma_mask)
3441 return -ENOENT;
3442 }
3443 break;
3444
3445 case ATA_DNXFER_40C:
3446 udma_mask &= ATA_UDMA_MASK_40C;
3447 break;
3448
3449 case ATA_DNXFER_FORCE_PIO0:
3450 pio_mask &= 1;
3451 /* fall through */
3452 case ATA_DNXFER_FORCE_PIO:
3453 mwdma_mask = 0;
3454 udma_mask = 0;
3455 break;
3456
3457 default:
3458 BUG();
3459 }
3460
3461 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3462
3463 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3464 return -ENOENT;
3465
3466 if (!quiet) {
3467 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3468 snprintf(buf, sizeof(buf), "%s:%s",
3469 ata_mode_string(xfer_mask),
3470 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3471 else
3472 snprintf(buf, sizeof(buf), "%s",
3473 ata_mode_string(xfer_mask));
3474
3475 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3476 }
3477
3478 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3479 &dev->udma_mask);
3480
3481 return 0;
3482}
3483
3484static int ata_dev_set_mode(struct ata_device *dev)
3485{
3486 struct ata_port *ap = dev->link->ap;
3487 struct ata_eh_context *ehc = &dev->link->eh_context;
3488 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3489 const char *dev_err_whine = "";
3490 int ign_dev_err = 0;
3491 unsigned int err_mask = 0;
3492 int rc;
3493
3494 dev->flags &= ~ATA_DFLAG_PIO;
3495 if (dev->xfer_shift == ATA_SHIFT_PIO)
3496 dev->flags |= ATA_DFLAG_PIO;
3497
3498 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3499 dev_err_whine = " (SET_XFERMODE skipped)";
3500 else {
3501 if (nosetxfer)
3502 ata_dev_warn(dev,
3503 "NOSETXFER but PATA detected - can't "
3504 "skip SETXFER, might malfunction\n");
3505 err_mask = ata_dev_set_xfermode(dev);
3506 }
3507
3508 if (err_mask & ~AC_ERR_DEV)
3509 goto fail;
3510
3511 /* revalidate */
3512 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3513 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3514 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3515 if (rc)
3516 return rc;
3517
3518 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3519 /* Old CFA may refuse this command, which is just fine */
3520 if (ata_id_is_cfa(dev->id))
3521 ign_dev_err = 1;
3522 /* Catch several broken garbage emulations plus some pre
3523 ATA devices */
3524 if (ata_id_major_version(dev->id) == 0 &&
3525 dev->pio_mode <= XFER_PIO_2)
3526 ign_dev_err = 1;
3527 /* Some very old devices and some bad newer ones fail
3528 any kind of SET_XFERMODE request but support PIO0-2
3529 timings and no IORDY */
3530 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3531 ign_dev_err = 1;
3532 }
3533 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3534 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3535 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3536 dev->dma_mode == XFER_MW_DMA_0 &&
3537 (dev->id[63] >> 8) & 1)
3538 ign_dev_err = 1;
3539
3540 /* if the device is actually configured correctly, ignore dev err */
3541 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3542 ign_dev_err = 1;
3543
3544 if (err_mask & AC_ERR_DEV) {
3545 if (!ign_dev_err)
3546 goto fail;
3547 else
3548 dev_err_whine = " (device error ignored)";
3549 }
3550
3551 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3552 dev->xfer_shift, (int)dev->xfer_mode);
3553
3554 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3555 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3556 ata_dev_info(dev, "configured for %s%s\n",
3557 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3558 dev_err_whine);
3559
3560 return 0;
3561
3562 fail:
3563 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3564 return -EIO;
3565}
3566
3567/**
3568 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3569 * @link: link on which timings will be programmed
3570 * @r_failed_dev: out parameter for failed device
3571 *
3572 * Standard implementation of the function used to tune and set
3573 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3574 * ata_dev_set_mode() fails, pointer to the failing device is
3575 * returned in @r_failed_dev.
3576 *
3577 * LOCKING:
3578 * PCI/etc. bus probe sem.
3579 *
3580 * RETURNS:
3581 * 0 on success, negative errno otherwise
3582 */
3583
3584int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3585{
3586 struct ata_port *ap = link->ap;
3587 struct ata_device *dev;
3588 int rc = 0, used_dma = 0, found = 0;
3589
3590 /* step 1: calculate xfer_mask */
3591 ata_for_each_dev(dev, link, ENABLED) {
3592 unsigned long pio_mask, dma_mask;
3593 unsigned int mode_mask;
3594
3595 mode_mask = ATA_DMA_MASK_ATA;
3596 if (dev->class == ATA_DEV_ATAPI)
3597 mode_mask = ATA_DMA_MASK_ATAPI;
3598 else if (ata_id_is_cfa(dev->id))
3599 mode_mask = ATA_DMA_MASK_CFA;
3600
3601 ata_dev_xfermask(dev);
3602 ata_force_xfermask(dev);
3603
3604 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3605
3606 if (libata_dma_mask & mode_mask)
3607 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3608 dev->udma_mask);
3609 else
3610 dma_mask = 0;
3611
3612 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3613 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3614
3615 found = 1;
3616 if (ata_dma_enabled(dev))
3617 used_dma = 1;
3618 }
3619 if (!found)
3620 goto out;
3621
3622 /* step 2: always set host PIO timings */
3623 ata_for_each_dev(dev, link, ENABLED) {
3624 if (dev->pio_mode == 0xff) {
3625 ata_dev_warn(dev, "no PIO support\n");
3626 rc = -EINVAL;
3627 goto out;
3628 }
3629
3630 dev->xfer_mode = dev->pio_mode;
3631 dev->xfer_shift = ATA_SHIFT_PIO;
3632 if (ap->ops->set_piomode)
3633 ap->ops->set_piomode(ap, dev);
3634 }
3635
3636 /* step 3: set host DMA timings */
3637 ata_for_each_dev(dev, link, ENABLED) {
3638 if (!ata_dma_enabled(dev))
3639 continue;
3640
3641 dev->xfer_mode = dev->dma_mode;
3642 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3643 if (ap->ops->set_dmamode)
3644 ap->ops->set_dmamode(ap, dev);
3645 }
3646
3647 /* step 4: update devices' xfer mode */
3648 ata_for_each_dev(dev, link, ENABLED) {
3649 rc = ata_dev_set_mode(dev);
3650 if (rc)
3651 goto out;
3652 }
3653
3654 /* Record simplex status. If we selected DMA then the other
3655 * host channels are not permitted to do so.
3656 */
3657 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3658 ap->host->simplex_claimed = ap;
3659
3660 out:
3661 if (rc)
3662 *r_failed_dev = dev;
3663 return rc;
3664}
3665
3666/**
3667 * ata_wait_ready - wait for link to become ready
3668 * @link: link to be waited on
3669 * @deadline: deadline jiffies for the operation
3670 * @check_ready: callback to check link readiness
3671 *
3672 * Wait for @link to become ready. @check_ready should return
3673 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3674 * link doesn't seem to be occupied, other errno for other error
3675 * conditions.
3676 *
3677 * Transient -ENODEV conditions are allowed for
3678 * ATA_TMOUT_FF_WAIT.
3679 *
3680 * LOCKING:
3681 * EH context.
3682 *
3683 * RETURNS:
3684 * 0 if @link is ready before @deadline; otherwise, -errno.
3685 */
3686int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3687 int (*check_ready)(struct ata_link *link))
3688{
3689 unsigned long start = jiffies;
3690 unsigned long nodev_deadline;
3691 int warned = 0;
3692
3693 /* choose which 0xff timeout to use, read comment in libata.h */
3694 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3695 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3696 else
3697 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3698
3699 /* Slave readiness can't be tested separately from master. On
3700 * M/S emulation configuration, this function should be called
3701 * only on the master and it will handle both master and slave.
3702 */
3703 WARN_ON(link == link->ap->slave_link);
3704
3705 if (time_after(nodev_deadline, deadline))
3706 nodev_deadline = deadline;
3707
3708 while (1) {
3709 unsigned long now = jiffies;
3710 int ready, tmp;
3711
3712 ready = tmp = check_ready(link);
3713 if (ready > 0)
3714 return 0;
3715
3716 /*
3717 * -ENODEV could be transient. Ignore -ENODEV if link
3718 * is online. Also, some SATA devices take a long
3719 * time to clear 0xff after reset. Wait for
3720 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3721 * offline.
3722 *
3723 * Note that some PATA controllers (pata_ali) explode
3724 * if status register is read more than once when
3725 * there's no device attached.
3726 */
3727 if (ready == -ENODEV) {
3728 if (ata_link_online(link))
3729 ready = 0;
3730 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3731 !ata_link_offline(link) &&
3732 time_before(now, nodev_deadline))
3733 ready = 0;
3734 }
3735
3736 if (ready)
3737 return ready;
3738 if (time_after(now, deadline))
3739 return -EBUSY;
3740
3741 if (!warned && time_after(now, start + 5 * HZ) &&
3742 (deadline - now > 3 * HZ)) {
3743 ata_link_warn(link,
3744 "link is slow to respond, please be patient "
3745 "(ready=%d)\n", tmp);
3746 warned = 1;
3747 }
3748
3749 ata_msleep(link->ap, 50);
3750 }
3751}
3752
3753/**
3754 * ata_wait_after_reset - wait for link to become ready after reset
3755 * @link: link to be waited on
3756 * @deadline: deadline jiffies for the operation
3757 * @check_ready: callback to check link readiness
3758 *
3759 * Wait for @link to become ready after reset.
3760 *
3761 * LOCKING:
3762 * EH context.
3763 *
3764 * RETURNS:
3765 * 0 if @link is ready before @deadline; otherwise, -errno.
3766 */
3767int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3768 int (*check_ready)(struct ata_link *link))
3769{
3770 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3771
3772 return ata_wait_ready(link, deadline, check_ready);
3773}
3774
3775/**
3776 * sata_link_debounce - debounce SATA phy status
3777 * @link: ATA link to debounce SATA phy status for
3778 * @params: timing parameters { interval, duration, timeout } in msec
3779 * @deadline: deadline jiffies for the operation
3780 *
3781 * Make sure SStatus of @link reaches stable state, determined by
3782 * holding the same value where DET is not 1 for @duration polled
3783 * every @interval, before @timeout. Timeout constraints the
3784 * beginning of the stable state. Because DET gets stuck at 1 on
3785 * some controllers after hot unplugging, this functions waits
3786 * until timeout then returns 0 if DET is stable at 1.
3787 *
3788 * @timeout is further limited by @deadline. The sooner of the
3789 * two is used.
3790 *
3791 * LOCKING:
3792 * Kernel thread context (may sleep)
3793 *
3794 * RETURNS:
3795 * 0 on success, -errno on failure.
3796 */
3797int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3798 unsigned long deadline)
3799{
3800 unsigned long interval = params[0];
3801 unsigned long duration = params[1];
3802 unsigned long last_jiffies, t;
3803 u32 last, cur;
3804 int rc;
3805
3806 t = ata_deadline(jiffies, params[2]);
3807 if (time_before(t, deadline))
3808 deadline = t;
3809
3810 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3811 return rc;
3812 cur &= 0xf;
3813
3814 last = cur;
3815 last_jiffies = jiffies;
3816
3817 while (1) {
3818 ata_msleep(link->ap, interval);
3819 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3820 return rc;
3821 cur &= 0xf;
3822
3823 /* DET stable? */
3824 if (cur == last) {
3825 if (cur == 1 && time_before(jiffies, deadline))
3826 continue;
3827 if (time_after(jiffies,
3828 ata_deadline(last_jiffies, duration)))
3829 return 0;
3830 continue;
3831 }
3832
3833 /* unstable, start over */
3834 last = cur;
3835 last_jiffies = jiffies;
3836
3837 /* Check deadline. If debouncing failed, return
3838 * -EPIPE to tell upper layer to lower link speed.
3839 */
3840 if (time_after(jiffies, deadline))
3841 return -EPIPE;
3842 }
3843}
3844
3845/**
3846 * sata_link_resume - resume SATA link
3847 * @link: ATA link to resume SATA
3848 * @params: timing parameters { interval, duration, timeout } in msec
3849 * @deadline: deadline jiffies for the operation
3850 *
3851 * Resume SATA phy @link and debounce it.
3852 *
3853 * LOCKING:
3854 * Kernel thread context (may sleep)
3855 *
3856 * RETURNS:
3857 * 0 on success, -errno on failure.
3858 */
3859int sata_link_resume(struct ata_link *link, const unsigned long *params,
3860 unsigned long deadline)
3861{
3862 int tries = ATA_LINK_RESUME_TRIES;
3863 u32 scontrol, serror;
3864 int rc;
3865
3866 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3867 return rc;
3868
3869 /*
3870 * Writes to SControl sometimes get ignored under certain
3871 * controllers (ata_piix SIDPR). Make sure DET actually is
3872 * cleared.
3873 */
3874 do {
3875 scontrol = (scontrol & 0x0f0) | 0x300;
3876 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3877 return rc;
3878 /*
3879 * Some PHYs react badly if SStatus is pounded
3880 * immediately after resuming. Delay 200ms before
3881 * debouncing.
3882 */
3883 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3884 ata_msleep(link->ap, 200);
3885
3886 /* is SControl restored correctly? */
3887 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3888 return rc;
3889 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3890
3891 if ((scontrol & 0xf0f) != 0x300) {
3892 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3893 scontrol);
3894 return 0;
3895 }
3896
3897 if (tries < ATA_LINK_RESUME_TRIES)
3898 ata_link_warn(link, "link resume succeeded after %d retries\n",
3899 ATA_LINK_RESUME_TRIES - tries);
3900
3901 if ((rc = sata_link_debounce(link, params, deadline)))
3902 return rc;
3903
3904 /* clear SError, some PHYs require this even for SRST to work */
3905 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3906 rc = sata_scr_write(link, SCR_ERROR, serror);
3907
3908 return rc != -EINVAL ? rc : 0;
3909}
3910
3911/**
3912 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3913 * @link: ATA link to manipulate SControl for
3914 * @policy: LPM policy to configure
3915 * @spm_wakeup: initiate LPM transition to active state
3916 *
3917 * Manipulate the IPM field of the SControl register of @link
3918 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3919 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3920 * the link. This function also clears PHYRDY_CHG before
3921 * returning.
3922 *
3923 * LOCKING:
3924 * EH context.
3925 *
3926 * RETURNS:
3927 * 0 on success, -errno otherwise.
3928 */
3929int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3930 bool spm_wakeup)
3931{
3932 struct ata_eh_context *ehc = &link->eh_context;
3933 bool woken_up = false;
3934 u32 scontrol;
3935 int rc;
3936
3937 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3938 if (rc)
3939 return rc;
3940
3941 switch (policy) {
3942 case ATA_LPM_MAX_POWER:
3943 /* disable all LPM transitions */
3944 scontrol |= (0x7 << 8);
3945 /* initiate transition to active state */
3946 if (spm_wakeup) {
3947 scontrol |= (0x4 << 12);
3948 woken_up = true;
3949 }
3950 break;
3951 case ATA_LPM_MED_POWER:
3952 /* allow LPM to PARTIAL */
3953 scontrol &= ~(0x1 << 8);
3954 scontrol |= (0x6 << 8);
3955 break;
3956 case ATA_LPM_MED_POWER_WITH_DIPM:
3957 case ATA_LPM_MIN_POWER_WITH_PARTIAL:
3958 case ATA_LPM_MIN_POWER:
3959 if (ata_link_nr_enabled(link) > 0)
3960 /* no restrictions on LPM transitions */
3961 scontrol &= ~(0x7 << 8);
3962 else {
3963 /* empty port, power off */
3964 scontrol &= ~0xf;
3965 scontrol |= (0x1 << 2);
3966 }
3967 break;
3968 default:
3969 WARN_ON(1);
3970 }
3971
3972 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3973 if (rc)
3974 return rc;
3975
3976 /* give the link time to transit out of LPM state */
3977 if (woken_up)
3978 msleep(10);
3979
3980 /* clear PHYRDY_CHG from SError */
3981 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3982 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3983}
3984
3985/**
3986 * ata_std_prereset - prepare for reset
3987 * @link: ATA link to be reset
3988 * @deadline: deadline jiffies for the operation
3989 *
3990 * @link is about to be reset. Initialize it. Failure from
3991 * prereset makes libata abort whole reset sequence and give up
3992 * that port, so prereset should be best-effort. It does its
3993 * best to prepare for reset sequence but if things go wrong, it
3994 * should just whine, not fail.
3995 *
3996 * LOCKING:
3997 * Kernel thread context (may sleep)
3998 *
3999 * RETURNS:
4000 * 0 on success, -errno otherwise.
4001 */
4002int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4003{
4004 struct ata_port *ap = link->ap;
4005 struct ata_eh_context *ehc = &link->eh_context;
4006 const unsigned long *timing = sata_ehc_deb_timing(ehc);
4007 int rc;
4008
4009 /* if we're about to do hardreset, nothing more to do */
4010 if (ehc->i.action & ATA_EH_HARDRESET)
4011 return 0;
4012
4013 /* if SATA, resume link */
4014 if (ap->flags & ATA_FLAG_SATA) {
4015 rc = sata_link_resume(link, timing, deadline);
4016 /* whine about phy resume failure but proceed */
4017 if (rc && rc != -EOPNOTSUPP)
4018 ata_link_warn(link,
4019 "failed to resume link for reset (errno=%d)\n",
4020 rc);
4021 }
4022
4023 /* no point in trying softreset on offline link */
4024 if (ata_phys_link_offline(link))
4025 ehc->i.action &= ~ATA_EH_SOFTRESET;
4026
4027 return 0;
4028}
4029
4030/**
4031 * sata_link_hardreset - reset link via SATA phy reset
4032 * @link: link to reset
4033 * @timing: timing parameters { interval, duration, timeout } in msec
4034 * @deadline: deadline jiffies for the operation
4035 * @online: optional out parameter indicating link onlineness
4036 * @check_ready: optional callback to check link readiness
4037 *
4038 * SATA phy-reset @link using DET bits of SControl register.
4039 * After hardreset, link readiness is waited upon using
4040 * ata_wait_ready() if @check_ready is specified. LLDs are
4041 * allowed to not specify @check_ready and wait itself after this
4042 * function returns. Device classification is LLD's
4043 * responsibility.
4044 *
4045 * *@online is set to one iff reset succeeded and @link is online
4046 * after reset.
4047 *
4048 * LOCKING:
4049 * Kernel thread context (may sleep)
4050 *
4051 * RETURNS:
4052 * 0 on success, -errno otherwise.
4053 */
4054int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4055 unsigned long deadline,
4056 bool *online, int (*check_ready)(struct ata_link *))
4057{
4058 u32 scontrol;
4059 int rc;
4060
4061 DPRINTK("ENTER\n");
4062
4063 if (online)
4064 *online = false;
4065
4066 if (sata_set_spd_needed(link)) {
4067 /* SATA spec says nothing about how to reconfigure
4068 * spd. To be on the safe side, turn off phy during
4069 * reconfiguration. This works for at least ICH7 AHCI
4070 * and Sil3124.
4071 */
4072 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4073 goto out;
4074
4075 scontrol = (scontrol & 0x0f0) | 0x304;
4076
4077 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4078 goto out;
4079
4080 sata_set_spd(link);
4081 }
4082
4083 /* issue phy wake/reset */
4084 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4085 goto out;
4086
4087 scontrol = (scontrol & 0x0f0) | 0x301;
4088
4089 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4090 goto out;
4091
4092 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4093 * 10.4.2 says at least 1 ms.
4094 */
4095 ata_msleep(link->ap, 1);
4096
4097 /* bring link back */
4098 rc = sata_link_resume(link, timing, deadline);
4099 if (rc)
4100 goto out;
4101 /* if link is offline nothing more to do */
4102 if (ata_phys_link_offline(link))
4103 goto out;
4104
4105 /* Link is online. From this point, -ENODEV too is an error. */
4106 if (online)
4107 *online = true;
4108
4109 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4110 /* If PMP is supported, we have to do follow-up SRST.
4111 * Some PMPs don't send D2H Reg FIS after hardreset if
4112 * the first port is empty. Wait only for
4113 * ATA_TMOUT_PMP_SRST_WAIT.
4114 */
4115 if (check_ready) {
4116 unsigned long pmp_deadline;
4117
4118 pmp_deadline = ata_deadline(jiffies,
4119 ATA_TMOUT_PMP_SRST_WAIT);
4120 if (time_after(pmp_deadline, deadline))
4121 pmp_deadline = deadline;
4122 ata_wait_ready(link, pmp_deadline, check_ready);
4123 }
4124 rc = -EAGAIN;
4125 goto out;
4126 }
4127
4128 rc = 0;
4129 if (check_ready)
4130 rc = ata_wait_ready(link, deadline, check_ready);
4131 out:
4132 if (rc && rc != -EAGAIN) {
4133 /* online is set iff link is online && reset succeeded */
4134 if (online)
4135 *online = false;
4136 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4137 }
4138 DPRINTK("EXIT, rc=%d\n", rc);
4139 return rc;
4140}
4141
4142/**
4143 * sata_std_hardreset - COMRESET w/o waiting or classification
4144 * @link: link to reset
4145 * @class: resulting class of attached device
4146 * @deadline: deadline jiffies for the operation
4147 *
4148 * Standard SATA COMRESET w/o waiting or classification.
4149 *
4150 * LOCKING:
4151 * Kernel thread context (may sleep)
4152 *
4153 * RETURNS:
4154 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4155 */
4156int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4157 unsigned long deadline)
4158{
4159 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4160 bool online;
4161 int rc;
4162
4163 /* do hardreset */
4164 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4165 return online ? -EAGAIN : rc;
4166}
4167
4168/**
4169 * ata_std_postreset - standard postreset callback
4170 * @link: the target ata_link
4171 * @classes: classes of attached devices
4172 *
4173 * This function is invoked after a successful reset. Note that
4174 * the device might have been reset more than once using
4175 * different reset methods before postreset is invoked.
4176 *
4177 * LOCKING:
4178 * Kernel thread context (may sleep)
4179 */
4180void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4181{
4182 u32 serror;
4183
4184 DPRINTK("ENTER\n");
4185
4186 /* reset complete, clear SError */
4187 if (!sata_scr_read(link, SCR_ERROR, &serror))
4188 sata_scr_write(link, SCR_ERROR, serror);
4189
4190 /* print link status */
4191 sata_print_link_status(link);
4192
4193 DPRINTK("EXIT\n");
4194}
4195
4196/**
4197 * ata_dev_same_device - Determine whether new ID matches configured device
4198 * @dev: device to compare against
4199 * @new_class: class of the new device
4200 * @new_id: IDENTIFY page of the new device
4201 *
4202 * Compare @new_class and @new_id against @dev and determine
4203 * whether @dev is the device indicated by @new_class and
4204 * @new_id.
4205 *
4206 * LOCKING:
4207 * None.
4208 *
4209 * RETURNS:
4210 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4211 */
4212static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4213 const u16 *new_id)
4214{
4215 const u16 *old_id = dev->id;
4216 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4217 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4218
4219 if (dev->class != new_class) {
4220 ata_dev_info(dev, "class mismatch %d != %d\n",
4221 dev->class, new_class);
4222 return 0;
4223 }
4224
4225 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4226 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4227 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4228 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4229
4230 if (strcmp(model[0], model[1])) {
4231 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4232 model[0], model[1]);
4233 return 0;
4234 }
4235
4236 if (strcmp(serial[0], serial[1])) {
4237 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4238 serial[0], serial[1]);
4239 return 0;
4240 }
4241
4242 return 1;
4243}
4244
4245/**
4246 * ata_dev_reread_id - Re-read IDENTIFY data
4247 * @dev: target ATA device
4248 * @readid_flags: read ID flags
4249 *
4250 * Re-read IDENTIFY page and make sure @dev is still attached to
4251 * the port.
4252 *
4253 * LOCKING:
4254 * Kernel thread context (may sleep)
4255 *
4256 * RETURNS:
4257 * 0 on success, negative errno otherwise
4258 */
4259int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4260{
4261 unsigned int class = dev->class;
4262 u16 *id = (void *)dev->link->ap->sector_buf;
4263 int rc;
4264
4265 /* read ID data */
4266 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4267 if (rc)
4268 return rc;
4269
4270 /* is the device still there? */
4271 if (!ata_dev_same_device(dev, class, id))
4272 return -ENODEV;
4273
4274 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4275 return 0;
4276}
4277
4278/**
4279 * ata_dev_revalidate - Revalidate ATA device
4280 * @dev: device to revalidate
4281 * @new_class: new class code
4282 * @readid_flags: read ID flags
4283 *
4284 * Re-read IDENTIFY page, make sure @dev is still attached to the
4285 * port and reconfigure it according to the new IDENTIFY page.
4286 *
4287 * LOCKING:
4288 * Kernel thread context (may sleep)
4289 *
4290 * RETURNS:
4291 * 0 on success, negative errno otherwise
4292 */
4293int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4294 unsigned int readid_flags)
4295{
4296 u64 n_sectors = dev->n_sectors;
4297 u64 n_native_sectors = dev->n_native_sectors;
4298 int rc;
4299
4300 if (!ata_dev_enabled(dev))
4301 return -ENODEV;
4302
4303 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4304 if (ata_class_enabled(new_class) &&
4305 new_class != ATA_DEV_ATA &&
4306 new_class != ATA_DEV_ATAPI &&
4307 new_class != ATA_DEV_ZAC &&
4308 new_class != ATA_DEV_SEMB) {
4309 ata_dev_info(dev, "class mismatch %u != %u\n",
4310 dev->class, new_class);
4311 rc = -ENODEV;
4312 goto fail;
4313 }
4314
4315 /* re-read ID */
4316 rc = ata_dev_reread_id(dev, readid_flags);
4317 if (rc)
4318 goto fail;
4319
4320 /* configure device according to the new ID */
4321 rc = ata_dev_configure(dev);
4322 if (rc)
4323 goto fail;
4324
4325 /* verify n_sectors hasn't changed */
4326 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4327 dev->n_sectors == n_sectors)
4328 return 0;
4329
4330 /* n_sectors has changed */
4331 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4332 (unsigned long long)n_sectors,
4333 (unsigned long long)dev->n_sectors);
4334
4335 /*
4336 * Something could have caused HPA to be unlocked
4337 * involuntarily. If n_native_sectors hasn't changed and the
4338 * new size matches it, keep the device.
4339 */
4340 if (dev->n_native_sectors == n_native_sectors &&
4341 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4342 ata_dev_warn(dev,
4343 "new n_sectors matches native, probably "
4344 "late HPA unlock, n_sectors updated\n");
4345 /* use the larger n_sectors */
4346 return 0;
4347 }
4348
4349 /*
4350 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4351 * unlocking HPA in those cases.
4352 *
4353 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4354 */
4355 if (dev->n_native_sectors == n_native_sectors &&
4356 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4357 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4358 ata_dev_warn(dev,
4359 "old n_sectors matches native, probably "
4360 "late HPA lock, will try to unlock HPA\n");
4361 /* try unlocking HPA */
4362 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4363 rc = -EIO;
4364 } else
4365 rc = -ENODEV;
4366
4367 /* restore original n_[native_]sectors and fail */
4368 dev->n_native_sectors = n_native_sectors;
4369 dev->n_sectors = n_sectors;
4370 fail:
4371 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4372 return rc;
4373}
4374
4375struct ata_blacklist_entry {
4376 const char *model_num;
4377 const char *model_rev;
4378 unsigned long horkage;
4379};
4380
4381static const struct ata_blacklist_entry ata_device_blacklist [] = {
4382 /* Devices with DMA related problems under Linux */
4383 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4384 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4385 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4386 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4387 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4388 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4389 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4390 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4391 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4392 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4393 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4394 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4395 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4396 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4397 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4398 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4399 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4400 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4401 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4402 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4403 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4404 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4405 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4406 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4407 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4408 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4409 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4410 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4411 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4412 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4413 /* Odd clown on sil3726/4726 PMPs */
4414 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4415
4416 /* Weird ATAPI devices */
4417 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4418 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4419 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4420 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4421
4422 /*
4423 * Causes silent data corruption with higher max sects.
4424 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4425 */
4426 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4427
4428 /*
4429 * These devices time out with higher max sects.
4430 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4431 */
4432 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4433 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4434
4435 /* Devices we expect to fail diagnostics */
4436
4437 /* Devices where NCQ should be avoided */
4438 /* NCQ is slow */
4439 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4440 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4441 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4442 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4443 /* NCQ is broken */
4444 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4445 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4446 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4447 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4448 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4449
4450 /* Seagate NCQ + FLUSH CACHE firmware bug */
4451 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4452 ATA_HORKAGE_FIRMWARE_WARN },
4453
4454 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4455 ATA_HORKAGE_FIRMWARE_WARN },
4456
4457 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4458 ATA_HORKAGE_FIRMWARE_WARN },
4459
4460 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4461 ATA_HORKAGE_FIRMWARE_WARN },
4462
4463 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4464 the ST disks also have LPM issues */
4465 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
4466 ATA_HORKAGE_NOLPM, },
4467 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4468
4469 /* Blacklist entries taken from Silicon Image 3124/3132
4470 Windows driver .inf file - also several Linux problem reports */
4471 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4472 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4473 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4474
4475 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4476 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4477
4478 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4479 SD7SN6S256G and SD8SN8U256G */
4480 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, },
4481
4482 /* devices which puke on READ_NATIVE_MAX */
4483 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4484 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4485 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4486 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4487
4488 /* this one allows HPA unlocking but fails IOs on the area */
4489 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4490
4491 /* Devices which report 1 sector over size HPA */
4492 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4493 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4494 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4495
4496 /* Devices which get the IVB wrong */
4497 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4498 /* Maybe we should just blacklist TSSTcorp... */
4499 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4500
4501 /* Devices that do not need bridging limits applied */
4502 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4503 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4504
4505 /* Devices which aren't very happy with higher link speeds */
4506 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4507 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4508
4509 /*
4510 * Devices which choke on SETXFER. Applies only if both the
4511 * device and controller are SATA.
4512 */
4513 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4514 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4515 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4516 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4517 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4518
4519 /* Crucial BX100 SSD 500GB has broken LPM support */
4520 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4521
4522 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4523 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4524 ATA_HORKAGE_ZERO_AFTER_TRIM |
4525 ATA_HORKAGE_NOLPM, },
4526 /* 512GB MX100 with newer firmware has only LPM issues */
4527 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4528 ATA_HORKAGE_NOLPM, },
4529
4530 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4531 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4532 ATA_HORKAGE_ZERO_AFTER_TRIM |
4533 ATA_HORKAGE_NOLPM, },
4534 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4535 ATA_HORKAGE_ZERO_AFTER_TRIM |
4536 ATA_HORKAGE_NOLPM, },
4537
4538 /* These specific Samsung models/firmware-revs do not handle LPM well */
4539 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4540 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4541 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, },
4542 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
4543
4544 /* devices that don't properly handle queued TRIM commands */
4545 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4546 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4547 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4548 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4549 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4550 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4551 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4552 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4553 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4554 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4555 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4556 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4557 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4558 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4559 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4560 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4561 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4562 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4563
4564 /* devices that don't properly handle TRIM commands */
4565 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4566
4567 /*
4568 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4569 * (Return Zero After Trim) flags in the ATA Command Set are
4570 * unreliable in the sense that they only define what happens if
4571 * the device successfully executed the DSM TRIM command. TRIM
4572 * is only advisory, however, and the device is free to silently
4573 * ignore all or parts of the request.
4574 *
4575 * Whitelist drives that are known to reliably return zeroes
4576 * after TRIM.
4577 */
4578
4579 /*
4580 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4581 * that model before whitelisting all other intel SSDs.
4582 */
4583 { "INTEL*SSDSC2MH*", NULL, 0, },
4584
4585 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4586 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4587 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4588 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4589 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4590 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4591 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4592 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4593
4594 /*
4595 * Some WD SATA-I drives spin up and down erratically when the link
4596 * is put into the slumber mode. We don't have full list of the
4597 * affected devices. Disable LPM if the device matches one of the
4598 * known prefixes and is SATA-1. As a side effect LPM partial is
4599 * lost too.
4600 *
4601 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4602 */
4603 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4604 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4605 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4606 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4607 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4608 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4609 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4610
4611 /* End Marker */
4612 { }
4613};
4614
4615static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4616{
4617 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4618 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4619 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4620
4621 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4622 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4623
4624 while (ad->model_num) {
4625 if (glob_match(ad->model_num, model_num)) {
4626 if (ad->model_rev == NULL)
4627 return ad->horkage;
4628 if (glob_match(ad->model_rev, model_rev))
4629 return ad->horkage;
4630 }
4631 ad++;
4632 }
4633 return 0;
4634}
4635
4636static int ata_dma_blacklisted(const struct ata_device *dev)
4637{
4638 /* We don't support polling DMA.
4639 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4640 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4641 */
4642 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4643 (dev->flags & ATA_DFLAG_CDB_INTR))
4644 return 1;
4645 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4646}
4647
4648/**
4649 * ata_is_40wire - check drive side detection
4650 * @dev: device
4651 *
4652 * Perform drive side detection decoding, allowing for device vendors
4653 * who can't follow the documentation.
4654 */
4655
4656static int ata_is_40wire(struct ata_device *dev)
4657{
4658 if (dev->horkage & ATA_HORKAGE_IVB)
4659 return ata_drive_40wire_relaxed(dev->id);
4660 return ata_drive_40wire(dev->id);
4661}
4662
4663/**
4664 * cable_is_40wire - 40/80/SATA decider
4665 * @ap: port to consider
4666 *
4667 * This function encapsulates the policy for speed management
4668 * in one place. At the moment we don't cache the result but
4669 * there is a good case for setting ap->cbl to the result when
4670 * we are called with unknown cables (and figuring out if it
4671 * impacts hotplug at all).
4672 *
4673 * Return 1 if the cable appears to be 40 wire.
4674 */
4675
4676static int cable_is_40wire(struct ata_port *ap)
4677{
4678 struct ata_link *link;
4679 struct ata_device *dev;
4680
4681 /* If the controller thinks we are 40 wire, we are. */
4682 if (ap->cbl == ATA_CBL_PATA40)
4683 return 1;
4684
4685 /* If the controller thinks we are 80 wire, we are. */
4686 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4687 return 0;
4688
4689 /* If the system is known to be 40 wire short cable (eg
4690 * laptop), then we allow 80 wire modes even if the drive
4691 * isn't sure.
4692 */
4693 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4694 return 0;
4695
4696 /* If the controller doesn't know, we scan.
4697 *
4698 * Note: We look for all 40 wire detects at this point. Any
4699 * 80 wire detect is taken to be 80 wire cable because
4700 * - in many setups only the one drive (slave if present) will
4701 * give a valid detect
4702 * - if you have a non detect capable drive you don't want it
4703 * to colour the choice
4704 */
4705 ata_for_each_link(link, ap, EDGE) {
4706 ata_for_each_dev(dev, link, ENABLED) {
4707 if (!ata_is_40wire(dev))
4708 return 0;
4709 }
4710 }
4711 return 1;
4712}
4713
4714/**
4715 * ata_dev_xfermask - Compute supported xfermask of the given device
4716 * @dev: Device to compute xfermask for
4717 *
4718 * Compute supported xfermask of @dev and store it in
4719 * dev->*_mask. This function is responsible for applying all
4720 * known limits including host controller limits, device
4721 * blacklist, etc...
4722 *
4723 * LOCKING:
4724 * None.
4725 */
4726static void ata_dev_xfermask(struct ata_device *dev)
4727{
4728 struct ata_link *link = dev->link;
4729 struct ata_port *ap = link->ap;
4730 struct ata_host *host = ap->host;
4731 unsigned long xfer_mask;
4732
4733 /* controller modes available */
4734 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4735 ap->mwdma_mask, ap->udma_mask);
4736
4737 /* drive modes available */
4738 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4739 dev->mwdma_mask, dev->udma_mask);
4740 xfer_mask &= ata_id_xfermask(dev->id);
4741
4742 /*
4743 * CFA Advanced TrueIDE timings are not allowed on a shared
4744 * cable
4745 */
4746 if (ata_dev_pair(dev)) {
4747 /* No PIO5 or PIO6 */
4748 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4749 /* No MWDMA3 or MWDMA 4 */
4750 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4751 }
4752
4753 if (ata_dma_blacklisted(dev)) {
4754 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4755 ata_dev_warn(dev,
4756 "device is on DMA blacklist, disabling DMA\n");
4757 }
4758
4759 if ((host->flags & ATA_HOST_SIMPLEX) &&
4760 host->simplex_claimed && host->simplex_claimed != ap) {
4761 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4762 ata_dev_warn(dev,
4763 "simplex DMA is claimed by other device, disabling DMA\n");
4764 }
4765
4766 if (ap->flags & ATA_FLAG_NO_IORDY)
4767 xfer_mask &= ata_pio_mask_no_iordy(dev);
4768
4769 if (ap->ops->mode_filter)
4770 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4771
4772 /* Apply cable rule here. Don't apply it early because when
4773 * we handle hot plug the cable type can itself change.
4774 * Check this last so that we know if the transfer rate was
4775 * solely limited by the cable.
4776 * Unknown or 80 wire cables reported host side are checked
4777 * drive side as well. Cases where we know a 40wire cable
4778 * is used safely for 80 are not checked here.
4779 */
4780 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4781 /* UDMA/44 or higher would be available */
4782 if (cable_is_40wire(ap)) {
4783 ata_dev_warn(dev,
4784 "limited to UDMA/33 due to 40-wire cable\n");
4785 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4786 }
4787
4788 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4789 &dev->mwdma_mask, &dev->udma_mask);
4790}
4791
4792/**
4793 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4794 * @dev: Device to which command will be sent
4795 *
4796 * Issue SET FEATURES - XFER MODE command to device @dev
4797 * on port @ap.
4798 *
4799 * LOCKING:
4800 * PCI/etc. bus probe sem.
4801 *
4802 * RETURNS:
4803 * 0 on success, AC_ERR_* mask otherwise.
4804 */
4805
4806static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4807{
4808 struct ata_taskfile tf;
4809 unsigned int err_mask;
4810
4811 /* set up set-features taskfile */
4812 DPRINTK("set features - xfer mode\n");
4813
4814 /* Some controllers and ATAPI devices show flaky interrupt
4815 * behavior after setting xfer mode. Use polling instead.
4816 */
4817 ata_tf_init(dev, &tf);
4818 tf.command = ATA_CMD_SET_FEATURES;
4819 tf.feature = SETFEATURES_XFER;
4820 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4821 tf.protocol = ATA_PROT_NODATA;
4822 /* If we are using IORDY we must send the mode setting command */
4823 if (ata_pio_need_iordy(dev))
4824 tf.nsect = dev->xfer_mode;
4825 /* If the device has IORDY and the controller does not - turn it off */
4826 else if (ata_id_has_iordy(dev->id))
4827 tf.nsect = 0x01;
4828 else /* In the ancient relic department - skip all of this */
4829 return 0;
4830
4831 /* On some disks, this command causes spin-up, so we need longer timeout */
4832 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4833
4834 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4835 return err_mask;
4836}
4837
4838/**
4839 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4840 * @dev: Device to which command will be sent
4841 * @enable: Whether to enable or disable the feature
4842 * @feature: The sector count represents the feature to set
4843 *
4844 * Issue SET FEATURES - SATA FEATURES command to device @dev
4845 * on port @ap with sector count
4846 *
4847 * LOCKING:
4848 * PCI/etc. bus probe sem.
4849 *
4850 * RETURNS:
4851 * 0 on success, AC_ERR_* mask otherwise.
4852 */
4853unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4854{
4855 struct ata_taskfile tf;
4856 unsigned int err_mask;
4857 unsigned long timeout = 0;
4858
4859 /* set up set-features taskfile */
4860 DPRINTK("set features - SATA features\n");
4861
4862 ata_tf_init(dev, &tf);
4863 tf.command = ATA_CMD_SET_FEATURES;
4864 tf.feature = enable;
4865 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4866 tf.protocol = ATA_PROT_NODATA;
4867 tf.nsect = feature;
4868
4869 if (enable == SETFEATURES_SPINUP)
4870 timeout = ata_probe_timeout ?
4871 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4872 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4873
4874 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4875 return err_mask;
4876}
4877EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4878
4879/**
4880 * ata_dev_init_params - Issue INIT DEV PARAMS command
4881 * @dev: Device to which command will be sent
4882 * @heads: Number of heads (taskfile parameter)
4883 * @sectors: Number of sectors (taskfile parameter)
4884 *
4885 * LOCKING:
4886 * Kernel thread context (may sleep)
4887 *
4888 * RETURNS:
4889 * 0 on success, AC_ERR_* mask otherwise.
4890 */
4891static unsigned int ata_dev_init_params(struct ata_device *dev,
4892 u16 heads, u16 sectors)
4893{
4894 struct ata_taskfile tf;
4895 unsigned int err_mask;
4896
4897 /* Number of sectors per track 1-255. Number of heads 1-16 */
4898 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4899 return AC_ERR_INVALID;
4900
4901 /* set up init dev params taskfile */
4902 DPRINTK("init dev params \n");
4903
4904 ata_tf_init(dev, &tf);
4905 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4906 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4907 tf.protocol = ATA_PROT_NODATA;
4908 tf.nsect = sectors;
4909 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4910
4911 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4912 /* A clean abort indicates an original or just out of spec drive
4913 and we should continue as we issue the setup based on the
4914 drive reported working geometry */
4915 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4916 err_mask = 0;
4917
4918 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4919 return err_mask;
4920}
4921
4922/**
4923 * atapi_check_dma - Check whether ATAPI DMA can be supported
4924 * @qc: Metadata associated with taskfile to check
4925 *
4926 * Allow low-level driver to filter ATA PACKET commands, returning
4927 * a status indicating whether or not it is OK to use DMA for the
4928 * supplied PACKET command.
4929 *
4930 * LOCKING:
4931 * spin_lock_irqsave(host lock)
4932 *
4933 * RETURNS: 0 when ATAPI DMA can be used
4934 * nonzero otherwise
4935 */
4936int atapi_check_dma(struct ata_queued_cmd *qc)
4937{
4938 struct ata_port *ap = qc->ap;
4939
4940 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4941 * few ATAPI devices choke on such DMA requests.
4942 */
4943 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4944 unlikely(qc->nbytes & 15))
4945 return 1;
4946
4947 if (ap->ops->check_atapi_dma)
4948 return ap->ops->check_atapi_dma(qc);
4949
4950 return 0;
4951}
4952
4953/**
4954 * ata_std_qc_defer - Check whether a qc needs to be deferred
4955 * @qc: ATA command in question
4956 *
4957 * Non-NCQ commands cannot run with any other command, NCQ or
4958 * not. As upper layer only knows the queue depth, we are
4959 * responsible for maintaining exclusion. This function checks
4960 * whether a new command @qc can be issued.
4961 *
4962 * LOCKING:
4963 * spin_lock_irqsave(host lock)
4964 *
4965 * RETURNS:
4966 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4967 */
4968int ata_std_qc_defer(struct ata_queued_cmd *qc)
4969{
4970 struct ata_link *link = qc->dev->link;
4971
4972 if (ata_is_ncq(qc->tf.protocol)) {
4973 if (!ata_tag_valid(link->active_tag))
4974 return 0;
4975 } else {
4976 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4977 return 0;
4978 }
4979
4980 return ATA_DEFER_LINK;
4981}
4982
4983void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4984
4985/**
4986 * ata_sg_init - Associate command with scatter-gather table.
4987 * @qc: Command to be associated
4988 * @sg: Scatter-gather table.
4989 * @n_elem: Number of elements in s/g table.
4990 *
4991 * Initialize the data-related elements of queued_cmd @qc
4992 * to point to a scatter-gather table @sg, containing @n_elem
4993 * elements.
4994 *
4995 * LOCKING:
4996 * spin_lock_irqsave(host lock)
4997 */
4998void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4999 unsigned int n_elem)
5000{
5001 qc->sg = sg;
5002 qc->n_elem = n_elem;
5003 qc->cursg = qc->sg;
5004}
5005
5006#ifdef CONFIG_HAS_DMA
5007
5008/**
5009 * ata_sg_clean - Unmap DMA memory associated with command
5010 * @qc: Command containing DMA memory to be released
5011 *
5012 * Unmap all mapped DMA memory associated with this command.
5013 *
5014 * LOCKING:
5015 * spin_lock_irqsave(host lock)
5016 */
5017static void ata_sg_clean(struct ata_queued_cmd *qc)
5018{
5019 struct ata_port *ap = qc->ap;
5020 struct scatterlist *sg = qc->sg;
5021 int dir = qc->dma_dir;
5022
5023 WARN_ON_ONCE(sg == NULL);
5024
5025 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5026
5027 if (qc->n_elem)
5028 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5029
5030 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5031 qc->sg = NULL;
5032}
5033
5034/**
5035 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5036 * @qc: Command with scatter-gather table to be mapped.
5037 *
5038 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5039 *
5040 * LOCKING:
5041 * spin_lock_irqsave(host lock)
5042 *
5043 * RETURNS:
5044 * Zero on success, negative on error.
5045 *
5046 */
5047static int ata_sg_setup(struct ata_queued_cmd *qc)
5048{
5049 struct ata_port *ap = qc->ap;
5050 unsigned int n_elem;
5051
5052 VPRINTK("ENTER, ata%u\n", ap->print_id);
5053
5054 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5055 if (n_elem < 1)
5056 return -1;
5057
5058 VPRINTK("%d sg elements mapped\n", n_elem);
5059 qc->orig_n_elem = qc->n_elem;
5060 qc->n_elem = n_elem;
5061 qc->flags |= ATA_QCFLAG_DMAMAP;
5062
5063 return 0;
5064}
5065
5066#else /* !CONFIG_HAS_DMA */
5067
5068static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5069static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5070
5071#endif /* !CONFIG_HAS_DMA */
5072
5073/**
5074 * swap_buf_le16 - swap halves of 16-bit words in place
5075 * @buf: Buffer to swap
5076 * @buf_words: Number of 16-bit words in buffer.
5077 *
5078 * Swap halves of 16-bit words if needed to convert from
5079 * little-endian byte order to native cpu byte order, or
5080 * vice-versa.
5081 *
5082 * LOCKING:
5083 * Inherited from caller.
5084 */
5085void swap_buf_le16(u16 *buf, unsigned int buf_words)
5086{
5087#ifdef __BIG_ENDIAN
5088 unsigned int i;
5089
5090 for (i = 0; i < buf_words; i++)
5091 buf[i] = le16_to_cpu(buf[i]);
5092#endif /* __BIG_ENDIAN */
5093}
5094
5095/**
5096 * ata_qc_new_init - Request an available ATA command, and initialize it
5097 * @dev: Device from whom we request an available command structure
5098 * @tag: tag
5099 *
5100 * LOCKING:
5101 * None.
5102 */
5103
5104struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5105{
5106 struct ata_port *ap = dev->link->ap;
5107 struct ata_queued_cmd *qc;
5108
5109 /* no command while frozen */
5110 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5111 return NULL;
5112
5113 /* libsas case */
5114 if (ap->flags & ATA_FLAG_SAS_HOST) {
5115 tag = ata_sas_allocate_tag(ap);
5116 if (tag < 0)
5117 return NULL;
5118 }
5119
5120 qc = __ata_qc_from_tag(ap, tag);
5121 qc->tag = qc->hw_tag = tag;
5122 qc->scsicmd = NULL;
5123 qc->ap = ap;
5124 qc->dev = dev;
5125
5126 ata_qc_reinit(qc);
5127
5128 return qc;
5129}
5130
5131/**
5132 * ata_qc_free - free unused ata_queued_cmd
5133 * @qc: Command to complete
5134 *
5135 * Designed to free unused ata_queued_cmd object
5136 * in case something prevents using it.
5137 *
5138 * LOCKING:
5139 * spin_lock_irqsave(host lock)
5140 */
5141void ata_qc_free(struct ata_queued_cmd *qc)
5142{
5143 struct ata_port *ap;
5144 unsigned int tag;
5145
5146 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5147 ap = qc->ap;
5148
5149 qc->flags = 0;
5150 tag = qc->tag;
5151 if (ata_tag_valid(tag)) {
5152 qc->tag = ATA_TAG_POISON;
5153 if (ap->flags & ATA_FLAG_SAS_HOST)
5154 ata_sas_free_tag(tag, ap);
5155 }
5156}
5157
5158void __ata_qc_complete(struct ata_queued_cmd *qc)
5159{
5160 struct ata_port *ap;
5161 struct ata_link *link;
5162
5163 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5164 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5165 ap = qc->ap;
5166 link = qc->dev->link;
5167
5168 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5169 ata_sg_clean(qc);
5170
5171 /* command should be marked inactive atomically with qc completion */
5172 if (ata_is_ncq(qc->tf.protocol)) {
5173 link->sactive &= ~(1 << qc->hw_tag);
5174 if (!link->sactive)
5175 ap->nr_active_links--;
5176 } else {
5177 link->active_tag = ATA_TAG_POISON;
5178 ap->nr_active_links--;
5179 }
5180
5181 /* clear exclusive status */
5182 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5183 ap->excl_link == link))
5184 ap->excl_link = NULL;
5185
5186 /* atapi: mark qc as inactive to prevent the interrupt handler
5187 * from completing the command twice later, before the error handler
5188 * is called. (when rc != 0 and atapi request sense is needed)
5189 */
5190 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5191 ap->qc_active &= ~(1ULL << qc->tag);
5192
5193 /* call completion callback */
5194 qc->complete_fn(qc);
5195}
5196
5197static void fill_result_tf(struct ata_queued_cmd *qc)
5198{
5199 struct ata_port *ap = qc->ap;
5200
5201 qc->result_tf.flags = qc->tf.flags;
5202 ap->ops->qc_fill_rtf(qc);
5203}
5204
5205static void ata_verify_xfer(struct ata_queued_cmd *qc)
5206{
5207 struct ata_device *dev = qc->dev;
5208
5209 if (!ata_is_data(qc->tf.protocol))
5210 return;
5211
5212 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5213 return;
5214
5215 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5216}
5217
5218/**
5219 * ata_qc_complete - Complete an active ATA command
5220 * @qc: Command to complete
5221 *
5222 * Indicate to the mid and upper layers that an ATA command has
5223 * completed, with either an ok or not-ok status.
5224 *
5225 * Refrain from calling this function multiple times when
5226 * successfully completing multiple NCQ commands.
5227 * ata_qc_complete_multiple() should be used instead, which will
5228 * properly update IRQ expect state.
5229 *
5230 * LOCKING:
5231 * spin_lock_irqsave(host lock)
5232 */
5233void ata_qc_complete(struct ata_queued_cmd *qc)
5234{
5235 struct ata_port *ap = qc->ap;
5236
5237 /* Trigger the LED (if available) */
5238 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
5239
5240 /* XXX: New EH and old EH use different mechanisms to
5241 * synchronize EH with regular execution path.
5242 *
5243 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5244 * Normal execution path is responsible for not accessing a
5245 * failed qc. libata core enforces the rule by returning NULL
5246 * from ata_qc_from_tag() for failed qcs.
5247 *
5248 * Old EH depends on ata_qc_complete() nullifying completion
5249 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5250 * not synchronize with interrupt handler. Only PIO task is
5251 * taken care of.
5252 */
5253 if (ap->ops->error_handler) {
5254 struct ata_device *dev = qc->dev;
5255 struct ata_eh_info *ehi = &dev->link->eh_info;
5256
5257 if (unlikely(qc->err_mask))
5258 qc->flags |= ATA_QCFLAG_FAILED;
5259
5260 /*
5261 * Finish internal commands without any further processing
5262 * and always with the result TF filled.
5263 */
5264 if (unlikely(ata_tag_internal(qc->tag))) {
5265 fill_result_tf(qc);
5266 trace_ata_qc_complete_internal(qc);
5267 __ata_qc_complete(qc);
5268 return;
5269 }
5270
5271 /*
5272 * Non-internal qc has failed. Fill the result TF and
5273 * summon EH.
5274 */
5275 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5276 fill_result_tf(qc);
5277 trace_ata_qc_complete_failed(qc);
5278 ata_qc_schedule_eh(qc);
5279 return;
5280 }
5281
5282 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5283
5284 /* read result TF if requested */
5285 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5286 fill_result_tf(qc);
5287
5288 trace_ata_qc_complete_done(qc);
5289 /* Some commands need post-processing after successful
5290 * completion.
5291 */
5292 switch (qc->tf.command) {
5293 case ATA_CMD_SET_FEATURES:
5294 if (qc->tf.feature != SETFEATURES_WC_ON &&
5295 qc->tf.feature != SETFEATURES_WC_OFF &&
5296 qc->tf.feature != SETFEATURES_RA_ON &&
5297 qc->tf.feature != SETFEATURES_RA_OFF)
5298 break;
5299 /* fall through */
5300 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5301 case ATA_CMD_SET_MULTI: /* multi_count changed */
5302 /* revalidate device */
5303 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5304 ata_port_schedule_eh(ap);
5305 break;
5306
5307 case ATA_CMD_SLEEP:
5308 dev->flags |= ATA_DFLAG_SLEEPING;
5309 break;
5310 }
5311
5312 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5313 ata_verify_xfer(qc);
5314
5315 __ata_qc_complete(qc);
5316 } else {
5317 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5318 return;
5319
5320 /* read result TF if failed or requested */
5321 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5322 fill_result_tf(qc);
5323
5324 __ata_qc_complete(qc);
5325 }
5326}
5327
5328/**
5329 * ata_qc_complete_multiple - Complete multiple qcs successfully
5330 * @ap: port in question
5331 * @qc_active: new qc_active mask
5332 *
5333 * Complete in-flight commands. This functions is meant to be
5334 * called from low-level driver's interrupt routine to complete
5335 * requests normally. ap->qc_active and @qc_active is compared
5336 * and commands are completed accordingly.
5337 *
5338 * Always use this function when completing multiple NCQ commands
5339 * from IRQ handlers instead of calling ata_qc_complete()
5340 * multiple times to keep IRQ expect status properly in sync.
5341 *
5342 * LOCKING:
5343 * spin_lock_irqsave(host lock)
5344 *
5345 * RETURNS:
5346 * Number of completed commands on success, -errno otherwise.
5347 */
5348int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
5349{
5350 u64 done_mask, ap_qc_active = ap->qc_active;
5351 int nr_done = 0;
5352
5353 /*
5354 * If the internal tag is set on ap->qc_active, then we care about
5355 * bit0 on the passed in qc_active mask. Move that bit up to match
5356 * the internal tag.
5357 */
5358 if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5359 qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL;
5360 qc_active ^= qc_active & 0x01;
5361 }
5362
5363 done_mask = ap_qc_active ^ qc_active;
5364
5365 if (unlikely(done_mask & qc_active)) {
5366 ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
5367 ap->qc_active, qc_active);
5368 return -EINVAL;
5369 }
5370
5371 while (done_mask) {
5372 struct ata_queued_cmd *qc;
5373 unsigned int tag = __ffs64(done_mask);
5374
5375 qc = ata_qc_from_tag(ap, tag);
5376 if (qc) {
5377 ata_qc_complete(qc);
5378 nr_done++;
5379 }
5380 done_mask &= ~(1ULL << tag);
5381 }
5382
5383 return nr_done;
5384}
5385
5386/**
5387 * ata_qc_issue - issue taskfile to device
5388 * @qc: command to issue to device
5389 *
5390 * Prepare an ATA command to submission to device.
5391 * This includes mapping the data into a DMA-able
5392 * area, filling in the S/G table, and finally
5393 * writing the taskfile to hardware, starting the command.
5394 *
5395 * LOCKING:
5396 * spin_lock_irqsave(host lock)
5397 */
5398void ata_qc_issue(struct ata_queued_cmd *qc)
5399{
5400 struct ata_port *ap = qc->ap;
5401 struct ata_link *link = qc->dev->link;
5402 u8 prot = qc->tf.protocol;
5403
5404 /* Make sure only one non-NCQ command is outstanding. The
5405 * check is skipped for old EH because it reuses active qc to
5406 * request ATAPI sense.
5407 */
5408 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5409
5410 if (ata_is_ncq(prot)) {
5411 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5412
5413 if (!link->sactive)
5414 ap->nr_active_links++;
5415 link->sactive |= 1 << qc->hw_tag;
5416 } else {
5417 WARN_ON_ONCE(link->sactive);
5418
5419 ap->nr_active_links++;
5420 link->active_tag = qc->tag;
5421 }
5422
5423 qc->flags |= ATA_QCFLAG_ACTIVE;
5424 ap->qc_active |= 1ULL << qc->tag;
5425
5426 /*
5427 * We guarantee to LLDs that they will have at least one
5428 * non-zero sg if the command is a data command.
5429 */
5430 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5431 goto sys_err;
5432
5433 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5434 (ap->flags & ATA_FLAG_PIO_DMA)))
5435 if (ata_sg_setup(qc))
5436 goto sys_err;
5437
5438 /* if device is sleeping, schedule reset and abort the link */
5439 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5440 link->eh_info.action |= ATA_EH_RESET;
5441 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5442 ata_link_abort(link);
5443 return;
5444 }
5445
5446 ap->ops->qc_prep(qc);
5447 trace_ata_qc_issue(qc);
5448 qc->err_mask |= ap->ops->qc_issue(qc);
5449 if (unlikely(qc->err_mask))
5450 goto err;
5451 return;
5452
5453sys_err:
5454 qc->err_mask |= AC_ERR_SYSTEM;
5455err:
5456 ata_qc_complete(qc);
5457}
5458
5459/**
5460 * sata_scr_valid - test whether SCRs are accessible
5461 * @link: ATA link to test SCR accessibility for
5462 *
5463 * Test whether SCRs are accessible for @link.
5464 *
5465 * LOCKING:
5466 * None.
5467 *
5468 * RETURNS:
5469 * 1 if SCRs are accessible, 0 otherwise.
5470 */
5471int sata_scr_valid(struct ata_link *link)
5472{
5473 struct ata_port *ap = link->ap;
5474
5475 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5476}
5477
5478/**
5479 * sata_scr_read - read SCR register of the specified port
5480 * @link: ATA link to read SCR for
5481 * @reg: SCR to read
5482 * @val: Place to store read value
5483 *
5484 * Read SCR register @reg of @link into *@val. This function is
5485 * guaranteed to succeed if @link is ap->link, the cable type of
5486 * the port is SATA and the port implements ->scr_read.
5487 *
5488 * LOCKING:
5489 * None if @link is ap->link. Kernel thread context otherwise.
5490 *
5491 * RETURNS:
5492 * 0 on success, negative errno on failure.
5493 */
5494int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5495{
5496 if (ata_is_host_link(link)) {
5497 if (sata_scr_valid(link))
5498 return link->ap->ops->scr_read(link, reg, val);
5499 return -EOPNOTSUPP;
5500 }
5501
5502 return sata_pmp_scr_read(link, reg, val);
5503}
5504
5505/**
5506 * sata_scr_write - write SCR register of the specified port
5507 * @link: ATA link to write SCR for
5508 * @reg: SCR to write
5509 * @val: value to write
5510 *
5511 * Write @val to SCR register @reg of @link. This function is
5512 * guaranteed to succeed if @link is ap->link, the cable type of
5513 * the port is SATA and the port implements ->scr_read.
5514 *
5515 * LOCKING:
5516 * None if @link is ap->link. Kernel thread context otherwise.
5517 *
5518 * RETURNS:
5519 * 0 on success, negative errno on failure.
5520 */
5521int sata_scr_write(struct ata_link *link, int reg, u32 val)
5522{
5523 if (ata_is_host_link(link)) {
5524 if (sata_scr_valid(link))
5525 return link->ap->ops->scr_write(link, reg, val);
5526 return -EOPNOTSUPP;
5527 }
5528
5529 return sata_pmp_scr_write(link, reg, val);
5530}
5531
5532/**
5533 * sata_scr_write_flush - write SCR register of the specified port and flush
5534 * @link: ATA link to write SCR for
5535 * @reg: SCR to write
5536 * @val: value to write
5537 *
5538 * This function is identical to sata_scr_write() except that this
5539 * function performs flush after writing to the register.
5540 *
5541 * LOCKING:
5542 * None if @link is ap->link. Kernel thread context otherwise.
5543 *
5544 * RETURNS:
5545 * 0 on success, negative errno on failure.
5546 */
5547int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5548{
5549 if (ata_is_host_link(link)) {
5550 int rc;
5551
5552 if (sata_scr_valid(link)) {
5553 rc = link->ap->ops->scr_write(link, reg, val);
5554 if (rc == 0)
5555 rc = link->ap->ops->scr_read(link, reg, &val);
5556 return rc;
5557 }
5558 return -EOPNOTSUPP;
5559 }
5560
5561 return sata_pmp_scr_write(link, reg, val);
5562}
5563
5564/**
5565 * ata_phys_link_online - test whether the given link is online
5566 * @link: ATA link to test
5567 *
5568 * Test whether @link is online. Note that this function returns
5569 * 0 if online status of @link cannot be obtained, so
5570 * ata_link_online(link) != !ata_link_offline(link).
5571 *
5572 * LOCKING:
5573 * None.
5574 *
5575 * RETURNS:
5576 * True if the port online status is available and online.
5577 */
5578bool ata_phys_link_online(struct ata_link *link)
5579{
5580 u32 sstatus;
5581
5582 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5583 ata_sstatus_online(sstatus))
5584 return true;
5585 return false;
5586}
5587
5588/**
5589 * ata_phys_link_offline - test whether the given link is offline
5590 * @link: ATA link to test
5591 *
5592 * Test whether @link is offline. Note that this function
5593 * returns 0 if offline status of @link cannot be obtained, so
5594 * ata_link_online(link) != !ata_link_offline(link).
5595 *
5596 * LOCKING:
5597 * None.
5598 *
5599 * RETURNS:
5600 * True if the port offline status is available and offline.
5601 */
5602bool ata_phys_link_offline(struct ata_link *link)
5603{
5604 u32 sstatus;
5605
5606 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5607 !ata_sstatus_online(sstatus))
5608 return true;
5609 return false;
5610}
5611
5612/**
5613 * ata_link_online - test whether the given link is online
5614 * @link: ATA link to test
5615 *
5616 * Test whether @link is online. This is identical to
5617 * ata_phys_link_online() when there's no slave link. When
5618 * there's a slave link, this function should only be called on
5619 * the master link and will return true if any of M/S links is
5620 * online.
5621 *
5622 * LOCKING:
5623 * None.
5624 *
5625 * RETURNS:
5626 * True if the port online status is available and online.
5627 */
5628bool ata_link_online(struct ata_link *link)
5629{
5630 struct ata_link *slave = link->ap->slave_link;
5631
5632 WARN_ON(link == slave); /* shouldn't be called on slave link */
5633
5634 return ata_phys_link_online(link) ||
5635 (slave && ata_phys_link_online(slave));
5636}
5637
5638/**
5639 * ata_link_offline - test whether the given link is offline
5640 * @link: ATA link to test
5641 *
5642 * Test whether @link is offline. This is identical to
5643 * ata_phys_link_offline() when there's no slave link. When
5644 * there's a slave link, this function should only be called on
5645 * the master link and will return true if both M/S links are
5646 * offline.
5647 *
5648 * LOCKING:
5649 * None.
5650 *
5651 * RETURNS:
5652 * True if the port offline status is available and offline.
5653 */
5654bool ata_link_offline(struct ata_link *link)
5655{
5656 struct ata_link *slave = link->ap->slave_link;
5657
5658 WARN_ON(link == slave); /* shouldn't be called on slave link */
5659
5660 return ata_phys_link_offline(link) &&
5661 (!slave || ata_phys_link_offline(slave));
5662}
5663
5664#ifdef CONFIG_PM
5665static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5666 unsigned int action, unsigned int ehi_flags,
5667 bool async)
5668{
5669 struct ata_link *link;
5670 unsigned long flags;
5671
5672 /* Previous resume operation might still be in
5673 * progress. Wait for PM_PENDING to clear.
5674 */
5675 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5676 ata_port_wait_eh(ap);
5677 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5678 }
5679
5680 /* request PM ops to EH */
5681 spin_lock_irqsave(ap->lock, flags);
5682
5683 ap->pm_mesg = mesg;
5684 ap->pflags |= ATA_PFLAG_PM_PENDING;
5685 ata_for_each_link(link, ap, HOST_FIRST) {
5686 link->eh_info.action |= action;
5687 link->eh_info.flags |= ehi_flags;
5688 }
5689
5690 ata_port_schedule_eh(ap);
5691
5692 spin_unlock_irqrestore(ap->lock, flags);
5693
5694 if (!async) {
5695 ata_port_wait_eh(ap);
5696 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5697 }
5698}
5699
5700/*
5701 * On some hardware, device fails to respond after spun down for suspend. As
5702 * the device won't be used before being resumed, we don't need to touch the
5703 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5704 *
5705 * http://thread.gmane.org/gmane.linux.ide/46764
5706 */
5707static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5708 | ATA_EHI_NO_AUTOPSY
5709 | ATA_EHI_NO_RECOVERY;
5710
5711static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5712{
5713 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5714}
5715
5716static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5717{
5718 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5719}
5720
5721static int ata_port_pm_suspend(struct device *dev)
5722{
5723 struct ata_port *ap = to_ata_port(dev);
5724
5725 if (pm_runtime_suspended(dev))
5726 return 0;
5727
5728 ata_port_suspend(ap, PMSG_SUSPEND);
5729 return 0;
5730}
5731
5732static int ata_port_pm_freeze(struct device *dev)
5733{
5734 struct ata_port *ap = to_ata_port(dev);
5735
5736 if (pm_runtime_suspended(dev))
5737 return 0;
5738
5739 ata_port_suspend(ap, PMSG_FREEZE);
5740 return 0;
5741}
5742
5743static int ata_port_pm_poweroff(struct device *dev)
5744{
5745 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5746 return 0;
5747}
5748
5749static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5750 | ATA_EHI_QUIET;
5751
5752static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5753{
5754 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5755}
5756
5757static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5758{
5759 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5760}
5761
5762static int ata_port_pm_resume(struct device *dev)
5763{
5764 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5765 pm_runtime_disable(dev);
5766 pm_runtime_set_active(dev);
5767 pm_runtime_enable(dev);
5768 return 0;
5769}
5770
5771/*
5772 * For ODDs, the upper layer will poll for media change every few seconds,
5773 * which will make it enter and leave suspend state every few seconds. And
5774 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5775 * is very little and the ODD may malfunction after constantly being reset.
5776 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5777 * ODD is attached to the port.
5778 */
5779static int ata_port_runtime_idle(struct device *dev)
5780{
5781 struct ata_port *ap = to_ata_port(dev);
5782 struct ata_link *link;
5783 struct ata_device *adev;
5784
5785 ata_for_each_link(link, ap, HOST_FIRST) {
5786 ata_for_each_dev(adev, link, ENABLED)
5787 if (adev->class == ATA_DEV_ATAPI &&
5788 !zpodd_dev_enabled(adev))
5789 return -EBUSY;
5790 }
5791
5792 return 0;
5793}
5794
5795static int ata_port_runtime_suspend(struct device *dev)
5796{
5797 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5798 return 0;
5799}
5800
5801static int ata_port_runtime_resume(struct device *dev)
5802{
5803 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5804 return 0;
5805}
5806
5807static const struct dev_pm_ops ata_port_pm_ops = {
5808 .suspend = ata_port_pm_suspend,
5809 .resume = ata_port_pm_resume,
5810 .freeze = ata_port_pm_freeze,
5811 .thaw = ata_port_pm_resume,
5812 .poweroff = ata_port_pm_poweroff,
5813 .restore = ata_port_pm_resume,
5814
5815 .runtime_suspend = ata_port_runtime_suspend,
5816 .runtime_resume = ata_port_runtime_resume,
5817 .runtime_idle = ata_port_runtime_idle,
5818};
5819
5820/* sas ports don't participate in pm runtime management of ata_ports,
5821 * and need to resume ata devices at the domain level, not the per-port
5822 * level. sas suspend/resume is async to allow parallel port recovery
5823 * since sas has multiple ata_port instances per Scsi_Host.
5824 */
5825void ata_sas_port_suspend(struct ata_port *ap)
5826{
5827 ata_port_suspend_async(ap, PMSG_SUSPEND);
5828}
5829EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5830
5831void ata_sas_port_resume(struct ata_port *ap)
5832{
5833 ata_port_resume_async(ap, PMSG_RESUME);
5834}
5835EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5836
5837/**
5838 * ata_host_suspend - suspend host
5839 * @host: host to suspend
5840 * @mesg: PM message
5841 *
5842 * Suspend @host. Actual operation is performed by port suspend.
5843 */
5844int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5845{
5846 host->dev->power.power_state = mesg;
5847 return 0;
5848}
5849
5850/**
5851 * ata_host_resume - resume host
5852 * @host: host to resume
5853 *
5854 * Resume @host. Actual operation is performed by port resume.
5855 */
5856void ata_host_resume(struct ata_host *host)
5857{
5858 host->dev->power.power_state = PMSG_ON;
5859}
5860#endif
5861
5862const struct device_type ata_port_type = {
5863 .name = "ata_port",
5864#ifdef CONFIG_PM
5865 .pm = &ata_port_pm_ops,
5866#endif
5867};
5868
5869/**
5870 * ata_dev_init - Initialize an ata_device structure
5871 * @dev: Device structure to initialize
5872 *
5873 * Initialize @dev in preparation for probing.
5874 *
5875 * LOCKING:
5876 * Inherited from caller.
5877 */
5878void ata_dev_init(struct ata_device *dev)
5879{
5880 struct ata_link *link = ata_dev_phys_link(dev);
5881 struct ata_port *ap = link->ap;
5882 unsigned long flags;
5883
5884 /* SATA spd limit is bound to the attached device, reset together */
5885 link->sata_spd_limit = link->hw_sata_spd_limit;
5886 link->sata_spd = 0;
5887
5888 /* High bits of dev->flags are used to record warm plug
5889 * requests which occur asynchronously. Synchronize using
5890 * host lock.
5891 */
5892 spin_lock_irqsave(ap->lock, flags);
5893 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5894 dev->horkage = 0;
5895 spin_unlock_irqrestore(ap->lock, flags);
5896
5897 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5898 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5899 dev->pio_mask = UINT_MAX;
5900 dev->mwdma_mask = UINT_MAX;
5901 dev->udma_mask = UINT_MAX;
5902}
5903
5904/**
5905 * ata_link_init - Initialize an ata_link structure
5906 * @ap: ATA port link is attached to
5907 * @link: Link structure to initialize
5908 * @pmp: Port multiplier port number
5909 *
5910 * Initialize @link.
5911 *
5912 * LOCKING:
5913 * Kernel thread context (may sleep)
5914 */
5915void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5916{
5917 int i;
5918
5919 /* clear everything except for devices */
5920 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5921 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5922
5923 link->ap = ap;
5924 link->pmp = pmp;
5925 link->active_tag = ATA_TAG_POISON;
5926 link->hw_sata_spd_limit = UINT_MAX;
5927
5928 /* can't use iterator, ap isn't initialized yet */
5929 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5930 struct ata_device *dev = &link->device[i];
5931
5932 dev->link = link;
5933 dev->devno = dev - link->device;
5934#ifdef CONFIG_ATA_ACPI
5935 dev->gtf_filter = ata_acpi_gtf_filter;
5936#endif
5937 ata_dev_init(dev);
5938 }
5939}
5940
5941/**
5942 * sata_link_init_spd - Initialize link->sata_spd_limit
5943 * @link: Link to configure sata_spd_limit for
5944 *
5945 * Initialize @link->[hw_]sata_spd_limit to the currently
5946 * configured value.
5947 *
5948 * LOCKING:
5949 * Kernel thread context (may sleep).
5950 *
5951 * RETURNS:
5952 * 0 on success, -errno on failure.
5953 */
5954int sata_link_init_spd(struct ata_link *link)
5955{
5956 u8 spd;
5957 int rc;
5958
5959 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5960 if (rc)
5961 return rc;
5962
5963 spd = (link->saved_scontrol >> 4) & 0xf;
5964 if (spd)
5965 link->hw_sata_spd_limit &= (1 << spd) - 1;
5966
5967 ata_force_link_limits(link);
5968
5969 link->sata_spd_limit = link->hw_sata_spd_limit;
5970
5971 return 0;
5972}
5973
5974/**
5975 * ata_port_alloc - allocate and initialize basic ATA port resources
5976 * @host: ATA host this allocated port belongs to
5977 *
5978 * Allocate and initialize basic ATA port resources.
5979 *
5980 * RETURNS:
5981 * Allocate ATA port on success, NULL on failure.
5982 *
5983 * LOCKING:
5984 * Inherited from calling layer (may sleep).
5985 */
5986struct ata_port *ata_port_alloc(struct ata_host *host)
5987{
5988 struct ata_port *ap;
5989
5990 DPRINTK("ENTER\n");
5991
5992 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5993 if (!ap)
5994 return NULL;
5995
5996 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5997 ap->lock = &host->lock;
5998 ap->print_id = -1;
5999 ap->local_port_no = -1;
6000 ap->host = host;
6001 ap->dev = host->dev;
6002
6003#if defined(ATA_VERBOSE_DEBUG)
6004 /* turn on all debugging levels */
6005 ap->msg_enable = 0x00FF;
6006#elif defined(ATA_DEBUG)
6007 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6008#else
6009 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6010#endif
6011
6012 mutex_init(&ap->scsi_scan_mutex);
6013 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6014 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6015 INIT_LIST_HEAD(&ap->eh_done_q);
6016 init_waitqueue_head(&ap->eh_wait_q);
6017 init_completion(&ap->park_req_pending);
6018 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6019 TIMER_DEFERRABLE);
6020
6021 ap->cbl = ATA_CBL_NONE;
6022
6023 ata_link_init(ap, &ap->link, 0);
6024
6025#ifdef ATA_IRQ_TRAP
6026 ap->stats.unhandled_irq = 1;
6027 ap->stats.idle_irq = 1;
6028#endif
6029 ata_sff_port_init(ap);
6030
6031 return ap;
6032}
6033
6034static void ata_devres_release(struct device *gendev, void *res)
6035{
6036 struct ata_host *host = dev_get_drvdata(gendev);
6037 int i;
6038
6039 for (i = 0; i < host->n_ports; i++) {
6040 struct ata_port *ap = host->ports[i];
6041
6042 if (!ap)
6043 continue;
6044
6045 if (ap->scsi_host)
6046 scsi_host_put(ap->scsi_host);
6047
6048 }
6049
6050 dev_set_drvdata(gendev, NULL);
6051 ata_host_put(host);
6052}
6053
6054static void ata_host_release(struct kref *kref)
6055{
6056 struct ata_host *host = container_of(kref, struct ata_host, kref);
6057 int i;
6058
6059 for (i = 0; i < host->n_ports; i++) {
6060 struct ata_port *ap = host->ports[i];
6061
6062 kfree(ap->pmp_link);
6063 kfree(ap->slave_link);
6064 kfree(ap);
6065 host->ports[i] = NULL;
6066 }
6067 kfree(host);
6068}
6069
6070void ata_host_get(struct ata_host *host)
6071{
6072 kref_get(&host->kref);
6073}
6074
6075void ata_host_put(struct ata_host *host)
6076{
6077 kref_put(&host->kref, ata_host_release);
6078}
6079
6080/**
6081 * ata_host_alloc - allocate and init basic ATA host resources
6082 * @dev: generic device this host is associated with
6083 * @max_ports: maximum number of ATA ports associated with this host
6084 *
6085 * Allocate and initialize basic ATA host resources. LLD calls
6086 * this function to allocate a host, initializes it fully and
6087 * attaches it using ata_host_register().
6088 *
6089 * @max_ports ports are allocated and host->n_ports is
6090 * initialized to @max_ports. The caller is allowed to decrease
6091 * host->n_ports before calling ata_host_register(). The unused
6092 * ports will be automatically freed on registration.
6093 *
6094 * RETURNS:
6095 * Allocate ATA host on success, NULL on failure.
6096 *
6097 * LOCKING:
6098 * Inherited from calling layer (may sleep).
6099 */
6100struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6101{
6102 struct ata_host *host;
6103 size_t sz;
6104 int i;
6105 void *dr;
6106
6107 DPRINTK("ENTER\n");
6108
6109 /* alloc a container for our list of ATA ports (buses) */
6110 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6111 host = kzalloc(sz, GFP_KERNEL);
6112 if (!host)
6113 return NULL;
6114
6115 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6116 goto err_free;
6117
6118 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
6119 if (!dr)
6120 goto err_out;
6121
6122 devres_add(dev, dr);
6123 dev_set_drvdata(dev, host);
6124
6125 spin_lock_init(&host->lock);
6126 mutex_init(&host->eh_mutex);
6127 host->dev = dev;
6128 host->n_ports = max_ports;
6129 kref_init(&host->kref);
6130
6131 /* allocate ports bound to this host */
6132 for (i = 0; i < max_ports; i++) {
6133 struct ata_port *ap;
6134
6135 ap = ata_port_alloc(host);
6136 if (!ap)
6137 goto err_out;
6138
6139 ap->port_no = i;
6140 host->ports[i] = ap;
6141 }
6142
6143 devres_remove_group(dev, NULL);
6144 return host;
6145
6146 err_out:
6147 devres_release_group(dev, NULL);
6148 err_free:
6149 kfree(host);
6150 return NULL;
6151}
6152
6153/**
6154 * ata_host_alloc_pinfo - alloc host and init with port_info array
6155 * @dev: generic device this host is associated with
6156 * @ppi: array of ATA port_info to initialize host with
6157 * @n_ports: number of ATA ports attached to this host
6158 *
6159 * Allocate ATA host and initialize with info from @ppi. If NULL
6160 * terminated, @ppi may contain fewer entries than @n_ports. The
6161 * last entry will be used for the remaining ports.
6162 *
6163 * RETURNS:
6164 * Allocate ATA host on success, NULL on failure.
6165 *
6166 * LOCKING:
6167 * Inherited from calling layer (may sleep).
6168 */
6169struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6170 const struct ata_port_info * const * ppi,
6171 int n_ports)
6172{
6173 const struct ata_port_info *pi;
6174 struct ata_host *host;
6175 int i, j;
6176
6177 host = ata_host_alloc(dev, n_ports);
6178 if (!host)
6179 return NULL;
6180
6181 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6182 struct ata_port *ap = host->ports[i];
6183
6184 if (ppi[j])
6185 pi = ppi[j++];
6186
6187 ap->pio_mask = pi->pio_mask;
6188 ap->mwdma_mask = pi->mwdma_mask;
6189 ap->udma_mask = pi->udma_mask;
6190 ap->flags |= pi->flags;
6191 ap->link.flags |= pi->link_flags;
6192 ap->ops = pi->port_ops;
6193
6194 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6195 host->ops = pi->port_ops;
6196 }
6197
6198 return host;
6199}
6200
6201/**
6202 * ata_slave_link_init - initialize slave link
6203 * @ap: port to initialize slave link for
6204 *
6205 * Create and initialize slave link for @ap. This enables slave
6206 * link handling on the port.
6207 *
6208 * In libata, a port contains links and a link contains devices.
6209 * There is single host link but if a PMP is attached to it,
6210 * there can be multiple fan-out links. On SATA, there's usually
6211 * a single device connected to a link but PATA and SATA
6212 * controllers emulating TF based interface can have two - master
6213 * and slave.
6214 *
6215 * However, there are a few controllers which don't fit into this
6216 * abstraction too well - SATA controllers which emulate TF
6217 * interface with both master and slave devices but also have
6218 * separate SCR register sets for each device. These controllers
6219 * need separate links for physical link handling
6220 * (e.g. onlineness, link speed) but should be treated like a
6221 * traditional M/S controller for everything else (e.g. command
6222 * issue, softreset).
6223 *
6224 * slave_link is libata's way of handling this class of
6225 * controllers without impacting core layer too much. For
6226 * anything other than physical link handling, the default host
6227 * link is used for both master and slave. For physical link
6228 * handling, separate @ap->slave_link is used. All dirty details
6229 * are implemented inside libata core layer. From LLD's POV, the
6230 * only difference is that prereset, hardreset and postreset are
6231 * called once more for the slave link, so the reset sequence
6232 * looks like the following.
6233 *
6234 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6235 * softreset(M) -> postreset(M) -> postreset(S)
6236 *
6237 * Note that softreset is called only for the master. Softreset
6238 * resets both M/S by definition, so SRST on master should handle
6239 * both (the standard method will work just fine).
6240 *
6241 * LOCKING:
6242 * Should be called before host is registered.
6243 *
6244 * RETURNS:
6245 * 0 on success, -errno on failure.
6246 */
6247int ata_slave_link_init(struct ata_port *ap)
6248{
6249 struct ata_link *link;
6250
6251 WARN_ON(ap->slave_link);
6252 WARN_ON(ap->flags & ATA_FLAG_PMP);
6253
6254 link = kzalloc(sizeof(*link), GFP_KERNEL);
6255 if (!link)
6256 return -ENOMEM;
6257
6258 ata_link_init(ap, link, 1);
6259 ap->slave_link = link;
6260 return 0;
6261}
6262
6263static void ata_host_stop(struct device *gendev, void *res)
6264{
6265 struct ata_host *host = dev_get_drvdata(gendev);
6266 int i;
6267
6268 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6269
6270 for (i = 0; i < host->n_ports; i++) {
6271 struct ata_port *ap = host->ports[i];
6272
6273 if (ap->ops->port_stop)
6274 ap->ops->port_stop(ap);
6275 }
6276
6277 if (host->ops->host_stop)
6278 host->ops->host_stop(host);
6279}
6280
6281/**
6282 * ata_finalize_port_ops - finalize ata_port_operations
6283 * @ops: ata_port_operations to finalize
6284 *
6285 * An ata_port_operations can inherit from another ops and that
6286 * ops can again inherit from another. This can go on as many
6287 * times as necessary as long as there is no loop in the
6288 * inheritance chain.
6289 *
6290 * Ops tables are finalized when the host is started. NULL or
6291 * unspecified entries are inherited from the closet ancestor
6292 * which has the method and the entry is populated with it.
6293 * After finalization, the ops table directly points to all the
6294 * methods and ->inherits is no longer necessary and cleared.
6295 *
6296 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6297 *
6298 * LOCKING:
6299 * None.
6300 */
6301static void ata_finalize_port_ops(struct ata_port_operations *ops)
6302{
6303 static DEFINE_SPINLOCK(lock);
6304 const struct ata_port_operations *cur;
6305 void **begin = (void **)ops;
6306 void **end = (void **)&ops->inherits;
6307 void **pp;
6308
6309 if (!ops || !ops->inherits)
6310 return;
6311
6312 spin_lock(&lock);
6313
6314 for (cur = ops->inherits; cur; cur = cur->inherits) {
6315 void **inherit = (void **)cur;
6316
6317 for (pp = begin; pp < end; pp++, inherit++)
6318 if (!*pp)
6319 *pp = *inherit;
6320 }
6321
6322 for (pp = begin; pp < end; pp++)
6323 if (IS_ERR(*pp))
6324 *pp = NULL;
6325
6326 ops->inherits = NULL;
6327
6328 spin_unlock(&lock);
6329}
6330
6331/**
6332 * ata_host_start - start and freeze ports of an ATA host
6333 * @host: ATA host to start ports for
6334 *
6335 * Start and then freeze ports of @host. Started status is
6336 * recorded in host->flags, so this function can be called
6337 * multiple times. Ports are guaranteed to get started only
6338 * once. If host->ops isn't initialized yet, its set to the
6339 * first non-dummy port ops.
6340 *
6341 * LOCKING:
6342 * Inherited from calling layer (may sleep).
6343 *
6344 * RETURNS:
6345 * 0 if all ports are started successfully, -errno otherwise.
6346 */
6347int ata_host_start(struct ata_host *host)
6348{
6349 int have_stop = 0;
6350 void *start_dr = NULL;
6351 int i, rc;
6352
6353 if (host->flags & ATA_HOST_STARTED)
6354 return 0;
6355
6356 ata_finalize_port_ops(host->ops);
6357
6358 for (i = 0; i < host->n_ports; i++) {
6359 struct ata_port *ap = host->ports[i];
6360
6361 ata_finalize_port_ops(ap->ops);
6362
6363 if (!host->ops && !ata_port_is_dummy(ap))
6364 host->ops = ap->ops;
6365
6366 if (ap->ops->port_stop)
6367 have_stop = 1;
6368 }
6369
6370 if (host->ops->host_stop)
6371 have_stop = 1;
6372
6373 if (have_stop) {
6374 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6375 if (!start_dr)
6376 return -ENOMEM;
6377 }
6378
6379 for (i = 0; i < host->n_ports; i++) {
6380 struct ata_port *ap = host->ports[i];
6381
6382 if (ap->ops->port_start) {
6383 rc = ap->ops->port_start(ap);
6384 if (rc) {
6385 if (rc != -ENODEV)
6386 dev_err(host->dev,
6387 "failed to start port %d (errno=%d)\n",
6388 i, rc);
6389 goto err_out;
6390 }
6391 }
6392 ata_eh_freeze_port(ap);
6393 }
6394
6395 if (start_dr)
6396 devres_add(host->dev, start_dr);
6397 host->flags |= ATA_HOST_STARTED;
6398 return 0;
6399
6400 err_out:
6401 while (--i >= 0) {
6402 struct ata_port *ap = host->ports[i];
6403
6404 if (ap->ops->port_stop)
6405 ap->ops->port_stop(ap);
6406 }
6407 devres_free(start_dr);
6408 return rc;
6409}
6410
6411/**
6412 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6413 * @host: host to initialize
6414 * @dev: device host is attached to
6415 * @ops: port_ops
6416 *
6417 */
6418void ata_host_init(struct ata_host *host, struct device *dev,
6419 struct ata_port_operations *ops)
6420{
6421 spin_lock_init(&host->lock);
6422 mutex_init(&host->eh_mutex);
6423 host->n_tags = ATA_MAX_QUEUE;
6424 host->dev = dev;
6425 host->ops = ops;
6426 kref_init(&host->kref);
6427}
6428
6429void __ata_port_probe(struct ata_port *ap)
6430{
6431 struct ata_eh_info *ehi = &ap->link.eh_info;
6432 unsigned long flags;
6433
6434 /* kick EH for boot probing */
6435 spin_lock_irqsave(ap->lock, flags);
6436
6437 ehi->probe_mask |= ATA_ALL_DEVICES;
6438 ehi->action |= ATA_EH_RESET;
6439 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6440
6441 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6442 ap->pflags |= ATA_PFLAG_LOADING;
6443 ata_port_schedule_eh(ap);
6444
6445 spin_unlock_irqrestore(ap->lock, flags);
6446}
6447
6448int ata_port_probe(struct ata_port *ap)
6449{
6450 int rc = 0;
6451
6452 if (ap->ops->error_handler) {
6453 __ata_port_probe(ap);
6454 ata_port_wait_eh(ap);
6455 } else {
6456 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6457 rc = ata_bus_probe(ap);
6458 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6459 }
6460 return rc;
6461}
6462
6463
6464static void async_port_probe(void *data, async_cookie_t cookie)
6465{
6466 struct ata_port *ap = data;
6467
6468 /*
6469 * If we're not allowed to scan this host in parallel,
6470 * we need to wait until all previous scans have completed
6471 * before going further.
6472 * Jeff Garzik says this is only within a controller, so we
6473 * don't need to wait for port 0, only for later ports.
6474 */
6475 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6476 async_synchronize_cookie(cookie);
6477
6478 (void)ata_port_probe(ap);
6479
6480 /* in order to keep device order, we need to synchronize at this point */
6481 async_synchronize_cookie(cookie);
6482
6483 ata_scsi_scan_host(ap, 1);
6484}
6485
6486/**
6487 * ata_host_register - register initialized ATA host
6488 * @host: ATA host to register
6489 * @sht: template for SCSI host
6490 *
6491 * Register initialized ATA host. @host is allocated using
6492 * ata_host_alloc() and fully initialized by LLD. This function
6493 * starts ports, registers @host with ATA and SCSI layers and
6494 * probe registered devices.
6495 *
6496 * LOCKING:
6497 * Inherited from calling layer (may sleep).
6498 *
6499 * RETURNS:
6500 * 0 on success, -errno otherwise.
6501 */
6502int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6503{
6504 int i, rc;
6505
6506 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
6507
6508 /* host must have been started */
6509 if (!(host->flags & ATA_HOST_STARTED)) {
6510 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6511 WARN_ON(1);
6512 return -EINVAL;
6513 }
6514
6515 /* Blow away unused ports. This happens when LLD can't
6516 * determine the exact number of ports to allocate at
6517 * allocation time.
6518 */
6519 for (i = host->n_ports; host->ports[i]; i++)
6520 kfree(host->ports[i]);
6521
6522 /* give ports names and add SCSI hosts */
6523 for (i = 0; i < host->n_ports; i++) {
6524 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6525 host->ports[i]->local_port_no = i + 1;
6526 }
6527
6528 /* Create associated sysfs transport objects */
6529 for (i = 0; i < host->n_ports; i++) {
6530 rc = ata_tport_add(host->dev,host->ports[i]);
6531 if (rc) {
6532 goto err_tadd;
6533 }
6534 }
6535
6536 rc = ata_scsi_add_hosts(host, sht);
6537 if (rc)
6538 goto err_tadd;
6539
6540 /* set cable, sata_spd_limit and report */
6541 for (i = 0; i < host->n_ports; i++) {
6542 struct ata_port *ap = host->ports[i];
6543 unsigned long xfer_mask;
6544
6545 /* set SATA cable type if still unset */
6546 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6547 ap->cbl = ATA_CBL_SATA;
6548
6549 /* init sata_spd_limit to the current value */
6550 sata_link_init_spd(&ap->link);
6551 if (ap->slave_link)
6552 sata_link_init_spd(ap->slave_link);
6553
6554 /* print per-port info to dmesg */
6555 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6556 ap->udma_mask);
6557
6558 if (!ata_port_is_dummy(ap)) {
6559 ata_port_info(ap, "%cATA max %s %s\n",
6560 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6561 ata_mode_string(xfer_mask),
6562 ap->link.eh_info.desc);
6563 ata_ehi_clear_desc(&ap->link.eh_info);
6564 } else
6565 ata_port_info(ap, "DUMMY\n");
6566 }
6567
6568 /* perform each probe asynchronously */
6569 for (i = 0; i < host->n_ports; i++) {
6570 struct ata_port *ap = host->ports[i];
6571 async_schedule(async_port_probe, ap);
6572 }
6573
6574 return 0;
6575
6576 err_tadd:
6577 while (--i >= 0) {
6578 ata_tport_delete(host->ports[i]);
6579 }
6580 return rc;
6581
6582}
6583
6584/**
6585 * ata_host_activate - start host, request IRQ and register it
6586 * @host: target ATA host
6587 * @irq: IRQ to request
6588 * @irq_handler: irq_handler used when requesting IRQ
6589 * @irq_flags: irq_flags used when requesting IRQ
6590 * @sht: scsi_host_template to use when registering the host
6591 *
6592 * After allocating an ATA host and initializing it, most libata
6593 * LLDs perform three steps to activate the host - start host,
6594 * request IRQ and register it. This helper takes necessary
6595 * arguments and performs the three steps in one go.
6596 *
6597 * An invalid IRQ skips the IRQ registration and expects the host to
6598 * have set polling mode on the port. In this case, @irq_handler
6599 * should be NULL.
6600 *
6601 * LOCKING:
6602 * Inherited from calling layer (may sleep).
6603 *
6604 * RETURNS:
6605 * 0 on success, -errno otherwise.
6606 */
6607int ata_host_activate(struct ata_host *host, int irq,
6608 irq_handler_t irq_handler, unsigned long irq_flags,
6609 struct scsi_host_template *sht)
6610{
6611 int i, rc;
6612 char *irq_desc;
6613
6614 rc = ata_host_start(host);
6615 if (rc)
6616 return rc;
6617
6618 /* Special case for polling mode */
6619 if (!irq) {
6620 WARN_ON(irq_handler);
6621 return ata_host_register(host, sht);
6622 }
6623
6624 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6625 dev_driver_string(host->dev),
6626 dev_name(host->dev));
6627 if (!irq_desc)
6628 return -ENOMEM;
6629
6630 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6631 irq_desc, host);
6632 if (rc)
6633 return rc;
6634
6635 for (i = 0; i < host->n_ports; i++)
6636 ata_port_desc(host->ports[i], "irq %d", irq);
6637
6638 rc = ata_host_register(host, sht);
6639 /* if failed, just free the IRQ and leave ports alone */
6640 if (rc)
6641 devm_free_irq(host->dev, irq, host);
6642
6643 return rc;
6644}
6645
6646/**
6647 * ata_port_detach - Detach ATA port in preparation of device removal
6648 * @ap: ATA port to be detached
6649 *
6650 * Detach all ATA devices and the associated SCSI devices of @ap;
6651 * then, remove the associated SCSI host. @ap is guaranteed to
6652 * be quiescent on return from this function.
6653 *
6654 * LOCKING:
6655 * Kernel thread context (may sleep).
6656 */
6657static void ata_port_detach(struct ata_port *ap)
6658{
6659 unsigned long flags;
6660 struct ata_link *link;
6661 struct ata_device *dev;
6662
6663 if (!ap->ops->error_handler)
6664 goto skip_eh;
6665
6666 /* tell EH we're leaving & flush EH */
6667 spin_lock_irqsave(ap->lock, flags);
6668 ap->pflags |= ATA_PFLAG_UNLOADING;
6669 ata_port_schedule_eh(ap);
6670 spin_unlock_irqrestore(ap->lock, flags);
6671
6672 /* wait till EH commits suicide */
6673 ata_port_wait_eh(ap);
6674
6675 /* it better be dead now */
6676 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6677
6678 cancel_delayed_work_sync(&ap->hotplug_task);
6679
6680 skip_eh:
6681 /* clean up zpodd on port removal */
6682 ata_for_each_link(link, ap, HOST_FIRST) {
6683 ata_for_each_dev(dev, link, ALL) {
6684 if (zpodd_dev_enabled(dev))
6685 zpodd_exit(dev);
6686 }
6687 }
6688 if (ap->pmp_link) {
6689 int i;
6690 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6691 ata_tlink_delete(&ap->pmp_link[i]);
6692 }
6693 /* remove the associated SCSI host */
6694 scsi_remove_host(ap->scsi_host);
6695 ata_tport_delete(ap);
6696}
6697
6698/**
6699 * ata_host_detach - Detach all ports of an ATA host
6700 * @host: Host to detach
6701 *
6702 * Detach all ports of @host.
6703 *
6704 * LOCKING:
6705 * Kernel thread context (may sleep).
6706 */
6707void ata_host_detach(struct ata_host *host)
6708{
6709 int i;
6710
6711 for (i = 0; i < host->n_ports; i++)
6712 ata_port_detach(host->ports[i]);
6713
6714 /* the host is dead now, dissociate ACPI */
6715 ata_acpi_dissociate(host);
6716}
6717
6718#ifdef CONFIG_PCI
6719
6720/**
6721 * ata_pci_remove_one - PCI layer callback for device removal
6722 * @pdev: PCI device that was removed
6723 *
6724 * PCI layer indicates to libata via this hook that hot-unplug or
6725 * module unload event has occurred. Detach all ports. Resource
6726 * release is handled via devres.
6727 *
6728 * LOCKING:
6729 * Inherited from PCI layer (may sleep).
6730 */
6731void ata_pci_remove_one(struct pci_dev *pdev)
6732{
6733 struct ata_host *host = pci_get_drvdata(pdev);
6734
6735 ata_host_detach(host);
6736}
6737
6738/* move to PCI subsystem */
6739int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6740{
6741 unsigned long tmp = 0;
6742
6743 switch (bits->width) {
6744 case 1: {
6745 u8 tmp8 = 0;
6746 pci_read_config_byte(pdev, bits->reg, &tmp8);
6747 tmp = tmp8;
6748 break;
6749 }
6750 case 2: {
6751 u16 tmp16 = 0;
6752 pci_read_config_word(pdev, bits->reg, &tmp16);
6753 tmp = tmp16;
6754 break;
6755 }
6756 case 4: {
6757 u32 tmp32 = 0;
6758 pci_read_config_dword(pdev, bits->reg, &tmp32);
6759 tmp = tmp32;
6760 break;
6761 }
6762
6763 default:
6764 return -EINVAL;
6765 }
6766
6767 tmp &= bits->mask;
6768
6769 return (tmp == bits->val) ? 1 : 0;
6770}
6771
6772#ifdef CONFIG_PM
6773void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6774{
6775 pci_save_state(pdev);
6776 pci_disable_device(pdev);
6777
6778 if (mesg.event & PM_EVENT_SLEEP)
6779 pci_set_power_state(pdev, PCI_D3hot);
6780}
6781
6782int ata_pci_device_do_resume(struct pci_dev *pdev)
6783{
6784 int rc;
6785
6786 pci_set_power_state(pdev, PCI_D0);
6787 pci_restore_state(pdev);
6788
6789 rc = pcim_enable_device(pdev);
6790 if (rc) {
6791 dev_err(&pdev->dev,
6792 "failed to enable device after resume (%d)\n", rc);
6793 return rc;
6794 }
6795
6796 pci_set_master(pdev);
6797 return 0;
6798}
6799
6800int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6801{
6802 struct ata_host *host = pci_get_drvdata(pdev);
6803 int rc = 0;
6804
6805 rc = ata_host_suspend(host, mesg);
6806 if (rc)
6807 return rc;
6808
6809 ata_pci_device_do_suspend(pdev, mesg);
6810
6811 return 0;
6812}
6813
6814int ata_pci_device_resume(struct pci_dev *pdev)
6815{
6816 struct ata_host *host = pci_get_drvdata(pdev);
6817 int rc;
6818
6819 rc = ata_pci_device_do_resume(pdev);
6820 if (rc == 0)
6821 ata_host_resume(host);
6822 return rc;
6823}
6824#endif /* CONFIG_PM */
6825
6826#endif /* CONFIG_PCI */
6827
6828/**
6829 * ata_platform_remove_one - Platform layer callback for device removal
6830 * @pdev: Platform device that was removed
6831 *
6832 * Platform layer indicates to libata via this hook that hot-unplug or
6833 * module unload event has occurred. Detach all ports. Resource
6834 * release is handled via devres.
6835 *
6836 * LOCKING:
6837 * Inherited from platform layer (may sleep).
6838 */
6839int ata_platform_remove_one(struct platform_device *pdev)
6840{
6841 struct ata_host *host = platform_get_drvdata(pdev);
6842
6843 ata_host_detach(host);
6844
6845 return 0;
6846}
6847
6848static int __init ata_parse_force_one(char **cur,
6849 struct ata_force_ent *force_ent,
6850 const char **reason)
6851{
6852 static const struct ata_force_param force_tbl[] __initconst = {
6853 { "40c", .cbl = ATA_CBL_PATA40 },
6854 { "80c", .cbl = ATA_CBL_PATA80 },
6855 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6856 { "unk", .cbl = ATA_CBL_PATA_UNK },
6857 { "ign", .cbl = ATA_CBL_PATA_IGN },
6858 { "sata", .cbl = ATA_CBL_SATA },
6859 { "1.5Gbps", .spd_limit = 1 },
6860 { "3.0Gbps", .spd_limit = 2 },
6861 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6862 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6863 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6864 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6865 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6866 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6867 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6868 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6869 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6870 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6871 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6872 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6873 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6874 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6875 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6876 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6877 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6878 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6879 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6880 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6881 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6882 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6883 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6884 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6885 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6886 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6887 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6888 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6889 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6890 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6891 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6892 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6893 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6894 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6895 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6896 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6897 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6898 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6899 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6900 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6901 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6902 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6903 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6904 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6905 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6906 };
6907 char *start = *cur, *p = *cur;
6908 char *id, *val, *endp;
6909 const struct ata_force_param *match_fp = NULL;
6910 int nr_matches = 0, i;
6911
6912 /* find where this param ends and update *cur */
6913 while (*p != '\0' && *p != ',')
6914 p++;
6915
6916 if (*p == '\0')
6917 *cur = p;
6918 else
6919 *cur = p + 1;
6920
6921 *p = '\0';
6922
6923 /* parse */
6924 p = strchr(start, ':');
6925 if (!p) {
6926 val = strstrip(start);
6927 goto parse_val;
6928 }
6929 *p = '\0';
6930
6931 id = strstrip(start);
6932 val = strstrip(p + 1);
6933
6934 /* parse id */
6935 p = strchr(id, '.');
6936 if (p) {
6937 *p++ = '\0';
6938 force_ent->device = simple_strtoul(p, &endp, 10);
6939 if (p == endp || *endp != '\0') {
6940 *reason = "invalid device";
6941 return -EINVAL;
6942 }
6943 }
6944
6945 force_ent->port = simple_strtoul(id, &endp, 10);
6946 if (id == endp || *endp != '\0') {
6947 *reason = "invalid port/link";
6948 return -EINVAL;
6949 }
6950
6951 parse_val:
6952 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6953 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6954 const struct ata_force_param *fp = &force_tbl[i];
6955
6956 if (strncasecmp(val, fp->name, strlen(val)))
6957 continue;
6958
6959 nr_matches++;
6960 match_fp = fp;
6961
6962 if (strcasecmp(val, fp->name) == 0) {
6963 nr_matches = 1;
6964 break;
6965 }
6966 }
6967
6968 if (!nr_matches) {
6969 *reason = "unknown value";
6970 return -EINVAL;
6971 }
6972 if (nr_matches > 1) {
6973 *reason = "ambiguous value";
6974 return -EINVAL;
6975 }
6976
6977 force_ent->param = *match_fp;
6978
6979 return 0;
6980}
6981
6982static void __init ata_parse_force_param(void)
6983{
6984 int idx = 0, size = 1;
6985 int last_port = -1, last_device = -1;
6986 char *p, *cur, *next;
6987
6988 /* calculate maximum number of params and allocate force_tbl */
6989 for (p = ata_force_param_buf; *p; p++)
6990 if (*p == ',')
6991 size++;
6992
6993 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6994 if (!ata_force_tbl) {
6995 printk(KERN_WARNING "ata: failed to extend force table, "
6996 "libata.force ignored\n");
6997 return;
6998 }
6999
7000 /* parse and populate the table */
7001 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7002 const char *reason = "";
7003 struct ata_force_ent te = { .port = -1, .device = -1 };
7004
7005 next = cur;
7006 if (ata_parse_force_one(&next, &te, &reason)) {
7007 printk(KERN_WARNING "ata: failed to parse force "
7008 "parameter \"%s\" (%s)\n",
7009 cur, reason);
7010 continue;
7011 }
7012
7013 if (te.port == -1) {
7014 te.port = last_port;
7015 te.device = last_device;
7016 }
7017
7018 ata_force_tbl[idx++] = te;
7019
7020 last_port = te.port;
7021 last_device = te.device;
7022 }
7023
7024 ata_force_tbl_size = idx;
7025}
7026
7027static int __init ata_init(void)
7028{
7029 int rc;
7030
7031 ata_parse_force_param();
7032
7033 rc = ata_sff_init();
7034 if (rc) {
7035 kfree(ata_force_tbl);
7036 return rc;
7037 }
7038
7039 libata_transport_init();
7040 ata_scsi_transport_template = ata_attach_transport();
7041 if (!ata_scsi_transport_template) {
7042 ata_sff_exit();
7043 rc = -ENOMEM;
7044 goto err_out;
7045 }
7046
7047 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7048 return 0;
7049
7050err_out:
7051 return rc;
7052}
7053
7054static void __exit ata_exit(void)
7055{
7056 ata_release_transport(ata_scsi_transport_template);
7057 libata_transport_exit();
7058 ata_sff_exit();
7059 kfree(ata_force_tbl);
7060}
7061
7062subsys_initcall(ata_init);
7063module_exit(ata_exit);
7064
7065static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7066
7067int ata_ratelimit(void)
7068{
7069 return __ratelimit(&ratelimit);
7070}
7071
7072/**
7073 * ata_msleep - ATA EH owner aware msleep
7074 * @ap: ATA port to attribute the sleep to
7075 * @msecs: duration to sleep in milliseconds
7076 *
7077 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7078 * ownership is released before going to sleep and reacquired
7079 * after the sleep is complete. IOW, other ports sharing the
7080 * @ap->host will be allowed to own the EH while this task is
7081 * sleeping.
7082 *
7083 * LOCKING:
7084 * Might sleep.
7085 */
7086void ata_msleep(struct ata_port *ap, unsigned int msecs)
7087{
7088 bool owns_eh = ap && ap->host->eh_owner == current;
7089
7090 if (owns_eh)
7091 ata_eh_release(ap);
7092
7093 if (msecs < 20) {
7094 unsigned long usecs = msecs * USEC_PER_MSEC;
7095 usleep_range(usecs, usecs + 50);
7096 } else {
7097 msleep(msecs);
7098 }
7099
7100 if (owns_eh)
7101 ata_eh_acquire(ap);
7102}
7103
7104/**
7105 * ata_wait_register - wait until register value changes
7106 * @ap: ATA port to wait register for, can be NULL
7107 * @reg: IO-mapped register
7108 * @mask: Mask to apply to read register value
7109 * @val: Wait condition
7110 * @interval: polling interval in milliseconds
7111 * @timeout: timeout in milliseconds
7112 *
7113 * Waiting for some bits of register to change is a common
7114 * operation for ATA controllers. This function reads 32bit LE
7115 * IO-mapped register @reg and tests for the following condition.
7116 *
7117 * (*@reg & mask) != val
7118 *
7119 * If the condition is met, it returns; otherwise, the process is
7120 * repeated after @interval_msec until timeout.
7121 *
7122 * LOCKING:
7123 * Kernel thread context (may sleep)
7124 *
7125 * RETURNS:
7126 * The final register value.
7127 */
7128u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7129 unsigned long interval, unsigned long timeout)
7130{
7131 unsigned long deadline;
7132 u32 tmp;
7133
7134 tmp = ioread32(reg);
7135
7136 /* Calculate timeout _after_ the first read to make sure
7137 * preceding writes reach the controller before starting to
7138 * eat away the timeout.
7139 */
7140 deadline = ata_deadline(jiffies, timeout);
7141
7142 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7143 ata_msleep(ap, interval);
7144 tmp = ioread32(reg);
7145 }
7146
7147 return tmp;
7148}
7149
7150/**
7151 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7152 * @link: Link receiving the event
7153 *
7154 * Test whether the received PHY event has to be ignored or not.
7155 *
7156 * LOCKING:
7157 * None:
7158 *
7159 * RETURNS:
7160 * True if the event has to be ignored.
7161 */
7162bool sata_lpm_ignore_phy_events(struct ata_link *link)
7163{
7164 unsigned long lpm_timeout = link->last_lpm_change +
7165 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7166
7167 /* if LPM is enabled, PHYRDY doesn't mean anything */
7168 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7169 return true;
7170
7171 /* ignore the first PHY event after the LPM policy changed
7172 * as it is might be spurious
7173 */
7174 if ((link->flags & ATA_LFLAG_CHANGED) &&
7175 time_before(jiffies, lpm_timeout))
7176 return true;
7177
7178 return false;
7179}
7180EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7181
7182/*
7183 * Dummy port_ops
7184 */
7185static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7186{
7187 return AC_ERR_SYSTEM;
7188}
7189
7190static void ata_dummy_error_handler(struct ata_port *ap)
7191{
7192 /* truly dummy */
7193}
7194
7195struct ata_port_operations ata_dummy_port_ops = {
7196 .qc_prep = ata_noop_qc_prep,
7197 .qc_issue = ata_dummy_qc_issue,
7198 .error_handler = ata_dummy_error_handler,
7199 .sched_eh = ata_std_sched_eh,
7200 .end_eh = ata_std_end_eh,
7201};
7202
7203const struct ata_port_info ata_dummy_port_info = {
7204 .port_ops = &ata_dummy_port_ops,
7205};
7206
7207/*
7208 * Utility print functions
7209 */
7210void ata_port_printk(const struct ata_port *ap, const char *level,
7211 const char *fmt, ...)
7212{
7213 struct va_format vaf;
7214 va_list args;
7215
7216 va_start(args, fmt);
7217
7218 vaf.fmt = fmt;
7219 vaf.va = &args;
7220
7221 printk("%sata%u: %pV", level, ap->print_id, &vaf);
7222
7223 va_end(args);
7224}
7225EXPORT_SYMBOL(ata_port_printk);
7226
7227void ata_link_printk(const struct ata_link *link, const char *level,
7228 const char *fmt, ...)
7229{
7230 struct va_format vaf;
7231 va_list args;
7232
7233 va_start(args, fmt);
7234
7235 vaf.fmt = fmt;
7236 vaf.va = &args;
7237
7238 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7239 printk("%sata%u.%02u: %pV",
7240 level, link->ap->print_id, link->pmp, &vaf);
7241 else
7242 printk("%sata%u: %pV",
7243 level, link->ap->print_id, &vaf);
7244
7245 va_end(args);
7246}
7247EXPORT_SYMBOL(ata_link_printk);
7248
7249void ata_dev_printk(const struct ata_device *dev, const char *level,
7250 const char *fmt, ...)
7251{
7252 struct va_format vaf;
7253 va_list args;
7254
7255 va_start(args, fmt);
7256
7257 vaf.fmt = fmt;
7258 vaf.va = &args;
7259
7260 printk("%sata%u.%02u: %pV",
7261 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7262 &vaf);
7263
7264 va_end(args);
7265}
7266EXPORT_SYMBOL(ata_dev_printk);
7267
7268void ata_print_version(const struct device *dev, const char *version)
7269{
7270 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7271}
7272EXPORT_SYMBOL(ata_print_version);
7273
7274/*
7275 * libata is essentially a library of internal helper functions for
7276 * low-level ATA host controller drivers. As such, the API/ABI is
7277 * likely to change as new drivers are added and updated.
7278 * Do not depend on ABI/API stability.
7279 */
7280EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7281EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7282EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7283EXPORT_SYMBOL_GPL(ata_base_port_ops);
7284EXPORT_SYMBOL_GPL(sata_port_ops);
7285EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7286EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7287EXPORT_SYMBOL_GPL(ata_link_next);
7288EXPORT_SYMBOL_GPL(ata_dev_next);
7289EXPORT_SYMBOL_GPL(ata_std_bios_param);
7290EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7291EXPORT_SYMBOL_GPL(ata_host_init);
7292EXPORT_SYMBOL_GPL(ata_host_alloc);
7293EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7294EXPORT_SYMBOL_GPL(ata_slave_link_init);
7295EXPORT_SYMBOL_GPL(ata_host_start);
7296EXPORT_SYMBOL_GPL(ata_host_register);
7297EXPORT_SYMBOL_GPL(ata_host_activate);
7298EXPORT_SYMBOL_GPL(ata_host_detach);
7299EXPORT_SYMBOL_GPL(ata_sg_init);
7300EXPORT_SYMBOL_GPL(ata_qc_complete);
7301EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7302EXPORT_SYMBOL_GPL(atapi_cmd_type);
7303EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7304EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7305EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7306EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7307EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7308EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7309EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7310EXPORT_SYMBOL_GPL(ata_mode_string);
7311EXPORT_SYMBOL_GPL(ata_id_xfermask);
7312EXPORT_SYMBOL_GPL(ata_do_set_mode);
7313EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7314EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7315EXPORT_SYMBOL_GPL(ata_dev_disable);
7316EXPORT_SYMBOL_GPL(sata_set_spd);
7317EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7318EXPORT_SYMBOL_GPL(sata_link_debounce);
7319EXPORT_SYMBOL_GPL(sata_link_resume);
7320EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7321EXPORT_SYMBOL_GPL(ata_std_prereset);
7322EXPORT_SYMBOL_GPL(sata_link_hardreset);
7323EXPORT_SYMBOL_GPL(sata_std_hardreset);
7324EXPORT_SYMBOL_GPL(ata_std_postreset);
7325EXPORT_SYMBOL_GPL(ata_dev_classify);
7326EXPORT_SYMBOL_GPL(ata_dev_pair);
7327EXPORT_SYMBOL_GPL(ata_ratelimit);
7328EXPORT_SYMBOL_GPL(ata_msleep);
7329EXPORT_SYMBOL_GPL(ata_wait_register);
7330EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7331EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7332EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7333EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7334EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7335EXPORT_SYMBOL_GPL(sata_scr_valid);
7336EXPORT_SYMBOL_GPL(sata_scr_read);
7337EXPORT_SYMBOL_GPL(sata_scr_write);
7338EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7339EXPORT_SYMBOL_GPL(ata_link_online);
7340EXPORT_SYMBOL_GPL(ata_link_offline);
7341#ifdef CONFIG_PM
7342EXPORT_SYMBOL_GPL(ata_host_suspend);
7343EXPORT_SYMBOL_GPL(ata_host_resume);
7344#endif /* CONFIG_PM */
7345EXPORT_SYMBOL_GPL(ata_id_string);
7346EXPORT_SYMBOL_GPL(ata_id_c_string);
7347EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7348EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7349
7350EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7351EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7352EXPORT_SYMBOL_GPL(ata_timing_compute);
7353EXPORT_SYMBOL_GPL(ata_timing_merge);
7354EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7355
7356#ifdef CONFIG_PCI
7357EXPORT_SYMBOL_GPL(pci_test_config_bits);
7358EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7359#ifdef CONFIG_PM
7360EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7361EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7362EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7363EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7364#endif /* CONFIG_PM */
7365#endif /* CONFIG_PCI */
7366
7367EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7368
7369EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7370EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7371EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7372EXPORT_SYMBOL_GPL(ata_port_desc);
7373#ifdef CONFIG_PCI
7374EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7375#endif /* CONFIG_PCI */
7376EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7377EXPORT_SYMBOL_GPL(ata_link_abort);
7378EXPORT_SYMBOL_GPL(ata_port_abort);
7379EXPORT_SYMBOL_GPL(ata_port_freeze);
7380EXPORT_SYMBOL_GPL(sata_async_notification);
7381EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7382EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7383EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7384EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7385EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7386EXPORT_SYMBOL_GPL(ata_do_eh);
7387EXPORT_SYMBOL_GPL(ata_std_error_handler);
7388
7389EXPORT_SYMBOL_GPL(ata_cable_40wire);
7390EXPORT_SYMBOL_GPL(ata_cable_80wire);
7391EXPORT_SYMBOL_GPL(ata_cable_unknown);
7392EXPORT_SYMBOL_GPL(ata_cable_ignore);
7393EXPORT_SYMBOL_GPL(ata_cable_sata);
7394EXPORT_SYMBOL_GPL(ata_host_get);
7395EXPORT_SYMBOL_GPL(ata_host_put);
1/*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/time.h>
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
58#include <linux/scatterlist.h>
59#include <linux/io.h>
60#include <linux/async.h>
61#include <linux/log2.h>
62#include <linux/slab.h>
63#include <linux/glob.h>
64#include <scsi/scsi.h>
65#include <scsi/scsi_cmnd.h>
66#include <scsi/scsi_host.h>
67#include <linux/libata.h>
68#include <asm/byteorder.h>
69#include <asm/unaligned.h>
70#include <linux/cdrom.h>
71#include <linux/ratelimit.h>
72#include <linux/leds.h>
73#include <linux/pm_runtime.h>
74#include <linux/platform_device.h>
75
76#define CREATE_TRACE_POINTS
77#include <trace/events/libata.h>
78
79#include "libata.h"
80#include "libata-transport.h"
81
82/* debounce timing parameters in msecs { interval, duration, timeout } */
83const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
86
87const struct ata_port_operations ata_base_port_ops = {
88 .prereset = ata_std_prereset,
89 .postreset = ata_std_postreset,
90 .error_handler = ata_std_error_handler,
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
93};
94
95const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
99 .hardreset = sata_std_hardreset,
100};
101
102static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105static void ata_dev_xfermask(struct ata_device *dev);
106static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107
108atomic_t ata_print_id = ATOMIC_INIT(0);
109
110struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
117 unsigned int lflags;
118};
119
120struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124};
125
126static struct ata_force_ent *ata_force_tbl;
127static int ata_force_tbl_size;
128
129static char ata_force_param_buf[PAGE_SIZE] __initdata;
130/* param_buf is thrown away after initialization, disallow read */
131module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
133
134static int atapi_enabled = 1;
135module_param(atapi_enabled, int, 0444);
136MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137
138static int atapi_dmadir = 0;
139module_param(atapi_dmadir, int, 0444);
140MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141
142int atapi_passthru16 = 1;
143module_param(atapi_passthru16, int, 0444);
144MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145
146int libata_fua = 0;
147module_param_named(fua, libata_fua, int, 0444);
148MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149
150static int ata_ignore_hpa;
151module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
154static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155module_param_named(dma, libata_dma_mask, int, 0444);
156MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
158static int ata_probe_timeout;
159module_param(ata_probe_timeout, int, 0444);
160MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
162int libata_noacpi = 0;
163module_param_named(noacpi, libata_noacpi, int, 0444);
164MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165
166int libata_allow_tpm = 0;
167module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169
170static int atapi_an;
171module_param(atapi_an, int, 0444);
172MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
174MODULE_AUTHOR("Jeff Garzik");
175MODULE_DESCRIPTION("Library module for ATA devices");
176MODULE_LICENSE("GPL");
177MODULE_VERSION(DRV_VERSION);
178
179
180static bool ata_sstatus_online(u32 sstatus)
181{
182 return (sstatus & 0xf) == 0x3;
183}
184
185/**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
193 *
194 * RETURNS:
195 * Pointer to the next link.
196 */
197struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
199{
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
203 /* NULL link indicates start of iteration */
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
214
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
224 return ap->slave_link;
225 /* fall through */
226 case ATA_LITER_EDGE:
227 return NULL;
228 }
229
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
234 /* we were over a PMP link */
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
241 return NULL;
242}
243
244/**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
256struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258{
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295}
296
297/**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
311struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312{
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320}
321
322/**
323 * ata_force_cbl - force cable type according to libata.force
324 * @ap: ATA port of interest
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
335void ata_force_cbl(struct ata_port *ap)
336{
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 return;
351 }
352}
353
354/**
355 * ata_force_link_limits - force link limits according to libata.force
356 * @link: ATA link of interest
357 *
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
366 *
367 * LOCKING:
368 * EH context.
369 */
370static void ata_force_link_limits(struct ata_link *link)
371{
372 bool did_spd = false;
373 int linkno = link->pmp;
374 int i;
375
376 if (ata_is_host_link(link))
377 linkno += 15;
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 fe->param.name);
393 did_spd = true;
394 }
395
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
399 ata_link_notice(link,
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
403 }
404}
405
406/**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
417static void ata_force_xfermask(struct ata_device *dev)
418{
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
456 return;
457 }
458}
459
460/**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
471static void ata_force_horkage(struct ata_device *dev)
472{
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
500 }
501}
502
503/**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
515int atapi_cmd_type(u8 opcode)
516{
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
536 default:
537 return ATAPI_MISC;
538 }
539}
540
541/**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
544 * @pmp: Port multiplier port
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
554void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555{
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
583}
584
585/**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
596void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597{
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612}
613
614static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
629 0,
630 0,
631 0,
632 0,
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
642};
643
644/**
645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
648 *
649 * Examine the device configuration and tf->flags to calculate
650 * the proper read/write commands and protocol to use.
651 *
652 * LOCKING:
653 * caller.
654 */
655static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656{
657 u8 cmd;
658
659 int index, fua, lba48, write;
660
661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
667 index = dev->multi_count ? 0 : 8;
668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
671 index = dev->multi_count ? 0 : 8;
672 } else {
673 tf->protocol = ATA_PROT_DMA;
674 index = 16;
675 }
676
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
683}
684
685/**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
700u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701{
702 u64 block = 0;
703
704 if (tf->flags & ATA_TFLAG_LBA) {
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
708 block |= (u64)tf->hob_lbal << 24;
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
722 if (!sect) {
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
725 return U64_MAX;
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 }
730
731 return block;
732}
733
734/**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
742 * @class: IO priority class
743 *
744 * LOCKING:
745 * None.
746 *
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
749 *
750 * RETURNS:
751 *
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
754 */
755int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
757 unsigned int tag, int class)
758{
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
761
762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
763 /* yay, NCQ */
764 if (!lba_48_ok(block, n_block))
765 return -ERANGE;
766
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
772 else
773 tf->command = ATA_CMD_FPDMA_READ;
774
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
778
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
785
786 tf->device = ATA_LBA;
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
789
790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
793 ATA_SHIFT_PRIO;
794 }
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
797
798 if (lba_28_ok(block, n_block)) {
799 /* use LBA28 */
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
803 return -ERANGE;
804
805 /* use LBA48 */
806 tf->flags |= ATA_TFLAG_LBA48;
807
808 tf->hob_nsect = (n_block >> 8) & 0xff;
809
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
813 } else
814 /* request too large even for LBA48 */
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 tf->nsect = n_block & 0xff;
821
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
825
826 tf->device |= ATA_LBA;
827 } else {
828 /* CHS */
829 u32 sect, head, cyl, track;
830
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
833 return -ERANGE;
834
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 return -EINVAL;
837
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
843
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
846
847 /* Check whether the converted CHS can fit.
848 Cylinder: 0-65535
849 Head: 0-15
850 Sector: 1-255*/
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 return -ERANGE;
853
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 tf->lbal = sect;
856 tf->lbam = cyl;
857 tf->lbah = cyl >> 8;
858 tf->device |= head;
859 }
860
861 return 0;
862}
863
864/**
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
869 *
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
872 *
873 * LOCKING:
874 * None.
875 *
876 * RETURNS:
877 * Packed xfer_mask.
878 */
879unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
882{
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886}
887
888/**
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
894 *
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896 * Any NULL destination masks will be ignored.
897 */
898void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
900{
901 if (pio_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 if (mwdma_mask)
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 if (udma_mask)
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907}
908
909static const struct ata_xfer_ent {
910 int shift, bits;
911 u8 base;
912} ata_xfer_tbl[] = {
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
916 { -1, },
917};
918
919/**
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
922 *
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Matching XFER_* value, 0xff if no match found.
931 */
932u8 ata_xfer_mask2mode(unsigned long xfer_mask)
933{
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
936
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
940 return 0xff;
941}
942
943/**
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_mask for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_mask, 0 if no match found.
954 */
955unsigned long ata_xfer_mode2mask(u8 xfer_mode)
956{
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
963 return 0;
964}
965
966/**
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
969 *
970 * Return matching xfer_shift for @xfer_mode.
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Matching xfer_shift, -1 if no match found.
977 */
978int ata_xfer_mode2shift(unsigned long xfer_mode)
979{
980 const struct ata_xfer_ent *ent;
981
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 return ent->shift;
985 return -1;
986}
987
988/**
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
991 *
992 * Determine string which represents the highest speed
993 * (highest bit in @modemask).
994 *
995 * LOCKING:
996 * None.
997 *
998 * RETURNS:
999 * Constant C string representing highest speed listed in
1000 * @mode_mask, or the constant C string "<n/a>".
1001 */
1002const char *ata_mode_string(unsigned long xfer_mask)
1003{
1004 static const char * const xfer_mode_str[] = {
1005 "PIO0",
1006 "PIO1",
1007 "PIO2",
1008 "PIO3",
1009 "PIO4",
1010 "PIO5",
1011 "PIO6",
1012 "MWDMA0",
1013 "MWDMA1",
1014 "MWDMA2",
1015 "MWDMA3",
1016 "MWDMA4",
1017 "UDMA/16",
1018 "UDMA/25",
1019 "UDMA/33",
1020 "UDMA/44",
1021 "UDMA/66",
1022 "UDMA/100",
1023 "UDMA/133",
1024 "UDMA7",
1025 };
1026 int highbit;
1027
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1031 return "<n/a>";
1032}
1033
1034const char *sata_spd_string(unsigned int spd)
1035{
1036 static const char * const spd_str[] = {
1037 "1.5 Gbps",
1038 "3.0 Gbps",
1039 "6.0 Gbps",
1040 };
1041
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 return "<unknown>";
1044 return spd_str[spd - 1];
1045}
1046
1047/**
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1050 *
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 * LOCKING:
1056 * None.
1057 *
1058 * RETURNS:
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061 */
1062unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063{
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
1067 *
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1077 * SerialATA.
1078 *
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1084 */
1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 DPRINTK("found ATA device by sig\n");
1087 return ATA_DEV_ATA;
1088 }
1089
1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1093 }
1094
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1097 return ATA_DEV_PMP;
1098 }
1099
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
1103 }
1104
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1107 return ATA_DEV_ZAC;
1108 }
1109
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1112}
1113
1114/**
1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1120 *
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1124 *
1125 * LOCKING:
1126 * caller.
1127 */
1128
1129void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1131{
1132 unsigned int c;
1133
1134 BUG_ON(len & 1);
1135
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1140
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1144
1145 ofs++;
1146 len -= 2;
1147 }
1148}
1149
1150/**
1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1156 *
1157 * This function is identical to ata_id_string except that it
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
1164void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
1166{
1167 unsigned char *p;
1168
1169 ata_id_string(id, s, ofs, len - 1);
1170
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1173 p--;
1174 *p = '\0';
1175}
1176
1177static u64 ata_id_n_sectors(const u16 *id)
1178{
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182 else
1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184 } else {
1185 if (ata_id_current_chs_valid(id))
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
1188 else
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 id[ATA_ID_SECTORS];
1191 }
1192}
1193
1194u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195{
1196 u64 sectors = 0;
1197
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1204
1205 return sectors;
1206}
1207
1208u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209{
1210 u64 sectors = 0;
1211
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1216
1217 return sectors;
1218}
1219
1220/**
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1224 *
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1227 *
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1231 */
1232static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233{
1234 unsigned int err_mask;
1235 struct ata_taskfile tf;
1236 int lba48 = ata_id_has_lba48(dev->id);
1237
1238 ata_tf_init(dev, &tf);
1239
1240 /* always clear all address registers */
1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1248
1249 tf.protocol = ATA_PROT_NODATA;
1250 tf.device |= ATA_LBA;
1251
1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 if (err_mask) {
1254 ata_dev_warn(dev,
1255 "failed to read native max address (err_mask=0x%x)\n",
1256 err_mask);
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1261
1262 if (lba48)
1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 else
1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 (*max_sectors)--;
1268 return 0;
1269}
1270
1271/**
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
1274 * @new_sectors: new max sectors value to set for the device
1275 *
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1282 */
1283static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284{
1285 unsigned int err_mask;
1286 struct ata_taskfile tf;
1287 int lba48 = ata_id_has_lba48(dev->id);
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 } else {
1303 tf.command = ATA_CMD_SET_MAX;
1304
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
1308 tf.protocol = ATA_PROT_NODATA;
1309 tf.device |= ATA_LBA;
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1314
1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 if (err_mask) {
1317 ata_dev_warn(dev,
1318 "failed to set max address (err_mask=0x%x)\n",
1319 err_mask);
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 return -EACCES;
1323 return -EIO;
1324 }
1325
1326 return 0;
1327}
1328
1329/**
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1332 *
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1339 */
1340static int ata_hpa_resize(struct ata_device *dev)
1341{
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 u64 sectors = ata_id_n_sectors(dev->id);
1346 u64 native_sectors;
1347 int rc;
1348
1349 /* do we need to do it? */
1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353 return 0;
1354
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1357 if (rc) {
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
1360 */
1361 if (rc == -EACCES || !unlock_hpa) {
1362 ata_dev_warn(dev,
1363 "HPA support seems broken, skipping HPA handling\n");
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366 /* we can continue if device aborted the command */
1367 if (rc == -EACCES)
1368 rc = 0;
1369 }
1370
1371 return rc;
1372 }
1373 dev->n_native_sectors = native_sectors;
1374
1375 /* nothing to do? */
1376 if (native_sectors <= sectors || !unlock_hpa) {
1377 if (!print_info || native_sectors == sectors)
1378 return 0;
1379
1380 if (native_sectors > sectors)
1381 ata_dev_info(dev,
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
1386 ata_dev_warn(dev,
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1390 return 0;
1391 }
1392
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
1397 ata_dev_warn(dev,
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 return 0;
1403 } else if (rc)
1404 return rc;
1405
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1408 if (rc) {
1409 ata_dev_err(dev,
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
1411 return rc;
1412 }
1413
1414 if (print_info) {
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
1416 ata_dev_info(dev,
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1421 }
1422
1423 return 0;
1424}
1425
1426/**
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
1428 * @id: IDENTIFY DEVICE page to dump
1429 *
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 * page.
1432 *
1433 * LOCKING:
1434 * caller.
1435 */
1436
1437static inline void ata_dump_id(const u16 *id)
1438{
1439 DPRINTK("49==0x%04x "
1440 "53==0x%04x "
1441 "63==0x%04x "
1442 "64==0x%04x "
1443 "75==0x%04x \n",
1444 id[49],
1445 id[53],
1446 id[63],
1447 id[64],
1448 id[75]);
1449 DPRINTK("80==0x%04x "
1450 "81==0x%04x "
1451 "82==0x%04x "
1452 "83==0x%04x "
1453 "84==0x%04x \n",
1454 id[80],
1455 id[81],
1456 id[82],
1457 id[83],
1458 id[84]);
1459 DPRINTK("88==0x%04x "
1460 "93==0x%04x\n",
1461 id[88],
1462 id[93]);
1463}
1464
1465/**
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1468 *
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1471 *
1472 * FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 * LOCKING:
1475 * None.
1476 *
1477 * RETURNS:
1478 * Computed xfermask
1479 */
1480unsigned long ata_id_xfermask(const u16 *id)
1481{
1482 unsigned long pio_mask, mwdma_mask, udma_mask;
1483
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 pio_mask <<= 3;
1488 pio_mask |= 0x7;
1489 } else {
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1492 * a mask.
1493 */
1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 if (mode < 5) /* Valid PIO range */
1496 pio_mask = (2 << mode) - 1;
1497 else
1498 pio_mask = 1;
1499
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1505 */
1506 }
1507
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509
1510 if (ata_id_is_cfa(id)) {
1511 /*
1512 * Process compact flash extended modes
1513 */
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516
1517 if (pio)
1518 pio_mask |= (1 << 5);
1519 if (pio > 1)
1520 pio_mask |= (1 << 6);
1521 if (dma)
1522 mwdma_mask |= (1 << 3);
1523 if (dma > 1)
1524 mwdma_mask |= (1 << 4);
1525 }
1526
1527 udma_mask = 0;
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532}
1533
1534static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535{
1536 struct completion *waiting = qc->private_data;
1537
1538 complete(waiting);
1539}
1540
1541/**
1542 * ata_exec_internal_sg - execute libata internal command
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
1545 * @cdb: CDB for packet command
1546 * @dma_dir: Data transfer direction of the command
1547 * @sgl: sg list for the data buffer of the command
1548 * @n_elem: Number of sg entries
1549 * @timeout: Timeout in msecs (0 for default)
1550 *
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1556 *
1557 * LOCKING:
1558 * None. Should be called with kernel context, might sleep.
1559 *
1560 * RETURNS:
1561 * Zero on success, AC_ERR_* mask on failure
1562 */
1563unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
1565 int dma_dir, struct scatterlist *sgl,
1566 unsigned int n_elem, unsigned long timeout)
1567{
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
1570 u8 command = tf->command;
1571 int auto_timeout = 0;
1572 struct ata_queued_cmd *qc;
1573 unsigned int tag, preempted_tag;
1574 u32 preempted_sactive, preempted_qc_active;
1575 int preempted_nr_active_links;
1576 DECLARE_COMPLETION_ONSTACK(wait);
1577 unsigned long flags;
1578 unsigned int err_mask;
1579 int rc;
1580
1581 spin_lock_irqsave(ap->lock, flags);
1582
1583 /* no internal command while frozen */
1584 if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 spin_unlock_irqrestore(ap->lock, flags);
1586 return AC_ERR_SYSTEM;
1587 }
1588
1589 /* initialize internal qc */
1590
1591 /* XXX: Tag 0 is used for drivers with legacy EH as some
1592 * drivers choke if any other tag is given. This breaks
1593 * ata_tag_internal() test for those drivers. Don't use new
1594 * EH stuff without converting to it.
1595 */
1596 if (ap->ops->error_handler)
1597 tag = ATA_TAG_INTERNAL;
1598 else
1599 tag = 0;
1600
1601 qc = __ata_qc_from_tag(ap, tag);
1602
1603 qc->tag = tag;
1604 qc->scsicmd = NULL;
1605 qc->ap = ap;
1606 qc->dev = dev;
1607 ata_qc_reinit(qc);
1608
1609 preempted_tag = link->active_tag;
1610 preempted_sactive = link->sactive;
1611 preempted_qc_active = ap->qc_active;
1612 preempted_nr_active_links = ap->nr_active_links;
1613 link->active_tag = ATA_TAG_POISON;
1614 link->sactive = 0;
1615 ap->qc_active = 0;
1616 ap->nr_active_links = 0;
1617
1618 /* prepare & issue qc */
1619 qc->tf = *tf;
1620 if (cdb)
1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622
1623 /* some SATA bridges need us to indicate data xfer direction */
1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 dma_dir == DMA_FROM_DEVICE)
1626 qc->tf.feature |= ATAPI_DMADIR;
1627
1628 qc->flags |= ATA_QCFLAG_RESULT_TF;
1629 qc->dma_dir = dma_dir;
1630 if (dma_dir != DMA_NONE) {
1631 unsigned int i, buflen = 0;
1632 struct scatterlist *sg;
1633
1634 for_each_sg(sgl, sg, n_elem, i)
1635 buflen += sg->length;
1636
1637 ata_sg_init(qc, sgl, n_elem);
1638 qc->nbytes = buflen;
1639 }
1640
1641 qc->private_data = &wait;
1642 qc->complete_fn = ata_qc_complete_internal;
1643
1644 ata_qc_issue(qc);
1645
1646 spin_unlock_irqrestore(ap->lock, flags);
1647
1648 if (!timeout) {
1649 if (ata_probe_timeout)
1650 timeout = ata_probe_timeout * 1000;
1651 else {
1652 timeout = ata_internal_cmd_timeout(dev, command);
1653 auto_timeout = 1;
1654 }
1655 }
1656
1657 if (ap->ops->error_handler)
1658 ata_eh_release(ap);
1659
1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661
1662 if (ap->ops->error_handler)
1663 ata_eh_acquire(ap);
1664
1665 ata_sff_flush_pio_task(ap);
1666
1667 if (!rc) {
1668 spin_lock_irqsave(ap->lock, flags);
1669
1670 /* We're racing with irq here. If we lose, the
1671 * following test prevents us from completing the qc
1672 * twice. If we win, the port is frozen and will be
1673 * cleaned up by ->post_internal_cmd().
1674 */
1675 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676 qc->err_mask |= AC_ERR_TIMEOUT;
1677
1678 if (ap->ops->error_handler)
1679 ata_port_freeze(ap);
1680 else
1681 ata_qc_complete(qc);
1682
1683 if (ata_msg_warn(ap))
1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 command);
1686 }
1687
1688 spin_unlock_irqrestore(ap->lock, flags);
1689 }
1690
1691 /* do post_internal_cmd */
1692 if (ap->ops->post_internal_cmd)
1693 ap->ops->post_internal_cmd(qc);
1694
1695 /* perform minimal error analysis */
1696 if (qc->flags & ATA_QCFLAG_FAILED) {
1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 qc->err_mask |= AC_ERR_DEV;
1699
1700 if (!qc->err_mask)
1701 qc->err_mask |= AC_ERR_OTHER;
1702
1703 if (qc->err_mask & ~AC_ERR_OTHER)
1704 qc->err_mask &= ~AC_ERR_OTHER;
1705 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 qc->result_tf.command |= ATA_SENSE;
1707 }
1708
1709 /* finish up */
1710 spin_lock_irqsave(ap->lock, flags);
1711
1712 *tf = qc->result_tf;
1713 err_mask = qc->err_mask;
1714
1715 ata_qc_free(qc);
1716 link->active_tag = preempted_tag;
1717 link->sactive = preempted_sactive;
1718 ap->qc_active = preempted_qc_active;
1719 ap->nr_active_links = preempted_nr_active_links;
1720
1721 spin_unlock_irqrestore(ap->lock, flags);
1722
1723 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 ata_internal_cmd_timed_out(dev, command);
1725
1726 return err_mask;
1727}
1728
1729/**
1730 * ata_exec_internal - execute libata internal command
1731 * @dev: Device to which the command is sent
1732 * @tf: Taskfile registers for the command and the result
1733 * @cdb: CDB for packet command
1734 * @dma_dir: Data transfer direction of the command
1735 * @buf: Data buffer of the command
1736 * @buflen: Length of data buffer
1737 * @timeout: Timeout in msecs (0 for default)
1738 *
1739 * Wrapper around ata_exec_internal_sg() which takes simple
1740 * buffer instead of sg list.
1741 *
1742 * LOCKING:
1743 * None. Should be called with kernel context, might sleep.
1744 *
1745 * RETURNS:
1746 * Zero on success, AC_ERR_* mask on failure
1747 */
1748unsigned ata_exec_internal(struct ata_device *dev,
1749 struct ata_taskfile *tf, const u8 *cdb,
1750 int dma_dir, void *buf, unsigned int buflen,
1751 unsigned long timeout)
1752{
1753 struct scatterlist *psg = NULL, sg;
1754 unsigned int n_elem = 0;
1755
1756 if (dma_dir != DMA_NONE) {
1757 WARN_ON(!buf);
1758 sg_init_one(&sg, buf, buflen);
1759 psg = &sg;
1760 n_elem++;
1761 }
1762
1763 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764 timeout);
1765}
1766
1767/**
1768 * ata_pio_need_iordy - check if iordy needed
1769 * @adev: ATA device
1770 *
1771 * Check if the current speed of the device requires IORDY. Used
1772 * by various controllers for chip configuration.
1773 */
1774unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775{
1776 /* Don't set IORDY if we're preparing for reset. IORDY may
1777 * lead to controller lock up on certain controllers if the
1778 * port is not occupied. See bko#11703 for details.
1779 */
1780 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781 return 0;
1782 /* Controller doesn't support IORDY. Probably a pointless
1783 * check as the caller should know this.
1784 */
1785 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1786 return 0;
1787 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1788 if (ata_id_is_cfa(adev->id)
1789 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790 return 0;
1791 /* PIO3 and higher it is mandatory */
1792 if (adev->pio_mode > XFER_PIO_2)
1793 return 1;
1794 /* We turn it on when possible */
1795 if (ata_id_has_iordy(adev->id))
1796 return 1;
1797 return 0;
1798}
1799
1800/**
1801 * ata_pio_mask_no_iordy - Return the non IORDY mask
1802 * @adev: ATA device
1803 *
1804 * Compute the highest mode possible if we are not using iordy. Return
1805 * -1 if no iordy mode is available.
1806 */
1807static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808{
1809 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1810 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1811 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1812 /* Is the speed faster than the drive allows non IORDY ? */
1813 if (pio) {
1814 /* This is cycle times not frequency - watch the logic! */
1815 if (pio > 240) /* PIO2 is 240nS per cycle */
1816 return 3 << ATA_SHIFT_PIO;
1817 return 7 << ATA_SHIFT_PIO;
1818 }
1819 }
1820 return 3 << ATA_SHIFT_PIO;
1821}
1822
1823/**
1824 * ata_do_dev_read_id - default ID read method
1825 * @dev: device
1826 * @tf: proposed taskfile
1827 * @id: data buffer
1828 *
1829 * Issue the identify taskfile and hand back the buffer containing
1830 * identify data. For some RAID controllers and for pre ATA devices
1831 * this function is wrapped or replaced by the driver
1832 */
1833unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 struct ata_taskfile *tf, u16 *id)
1835{
1836 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838}
1839
1840/**
1841 * ata_dev_read_id - Read ID data from the specified device
1842 * @dev: target device
1843 * @p_class: pointer to class of the target device (may be changed)
1844 * @flags: ATA_READID_* flags
1845 * @id: buffer to read IDENTIFY data into
1846 *
1847 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1848 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1849 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1850 * for pre-ATA4 drives.
1851 *
1852 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1853 * now we abort if we hit that case.
1854 *
1855 * LOCKING:
1856 * Kernel thread context (may sleep)
1857 *
1858 * RETURNS:
1859 * 0 on success, -errno otherwise.
1860 */
1861int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1862 unsigned int flags, u16 *id)
1863{
1864 struct ata_port *ap = dev->link->ap;
1865 unsigned int class = *p_class;
1866 struct ata_taskfile tf;
1867 unsigned int err_mask = 0;
1868 const char *reason;
1869 bool is_semb = class == ATA_DEV_SEMB;
1870 int may_fallback = 1, tried_spinup = 0;
1871 int rc;
1872
1873 if (ata_msg_ctl(ap))
1874 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1875
1876retry:
1877 ata_tf_init(dev, &tf);
1878
1879 switch (class) {
1880 case ATA_DEV_SEMB:
1881 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1882 /* fall through */
1883 case ATA_DEV_ATA:
1884 case ATA_DEV_ZAC:
1885 tf.command = ATA_CMD_ID_ATA;
1886 break;
1887 case ATA_DEV_ATAPI:
1888 tf.command = ATA_CMD_ID_ATAPI;
1889 break;
1890 default:
1891 rc = -ENODEV;
1892 reason = "unsupported class";
1893 goto err_out;
1894 }
1895
1896 tf.protocol = ATA_PROT_PIO;
1897
1898 /* Some devices choke if TF registers contain garbage. Make
1899 * sure those are properly initialized.
1900 */
1901 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1902
1903 /* Device presence detection is unreliable on some
1904 * controllers. Always poll IDENTIFY if available.
1905 */
1906 tf.flags |= ATA_TFLAG_POLLING;
1907
1908 if (ap->ops->read_id)
1909 err_mask = ap->ops->read_id(dev, &tf, id);
1910 else
1911 err_mask = ata_do_dev_read_id(dev, &tf, id);
1912
1913 if (err_mask) {
1914 if (err_mask & AC_ERR_NODEV_HINT) {
1915 ata_dev_dbg(dev, "NODEV after polling detection\n");
1916 return -ENOENT;
1917 }
1918
1919 if (is_semb) {
1920 ata_dev_info(dev,
1921 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1922 /* SEMB is not supported yet */
1923 *p_class = ATA_DEV_SEMB_UNSUP;
1924 return 0;
1925 }
1926
1927 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928 /* Device or controller might have reported
1929 * the wrong device class. Give a shot at the
1930 * other IDENTIFY if the current one is
1931 * aborted by the device.
1932 */
1933 if (may_fallback) {
1934 may_fallback = 0;
1935
1936 if (class == ATA_DEV_ATA)
1937 class = ATA_DEV_ATAPI;
1938 else
1939 class = ATA_DEV_ATA;
1940 goto retry;
1941 }
1942
1943 /* Control reaches here iff the device aborted
1944 * both flavors of IDENTIFYs which happens
1945 * sometimes with phantom devices.
1946 */
1947 ata_dev_dbg(dev,
1948 "both IDENTIFYs aborted, assuming NODEV\n");
1949 return -ENOENT;
1950 }
1951
1952 rc = -EIO;
1953 reason = "I/O error";
1954 goto err_out;
1955 }
1956
1957 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1958 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959 "class=%d may_fallback=%d tried_spinup=%d\n",
1960 class, may_fallback, tried_spinup);
1961 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1963 }
1964
1965 /* Falling back doesn't make sense if ID data was read
1966 * successfully at least once.
1967 */
1968 may_fallback = 0;
1969
1970 swap_buf_le16(id, ATA_ID_WORDS);
1971
1972 /* sanity check */
1973 rc = -EINVAL;
1974 reason = "device reports invalid type";
1975
1976 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1977 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1978 goto err_out;
1979 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980 ata_id_is_ata(id)) {
1981 ata_dev_dbg(dev,
1982 "host indicates ignore ATA devices, ignored\n");
1983 return -ENOENT;
1984 }
1985 } else {
1986 if (ata_id_is_ata(id))
1987 goto err_out;
1988 }
1989
1990 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1991 tried_spinup = 1;
1992 /*
1993 * Drive powered-up in standby mode, and requires a specific
1994 * SET_FEATURES spin-up subcommand before it will accept
1995 * anything other than the original IDENTIFY command.
1996 */
1997 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1998 if (err_mask && id[2] != 0x738c) {
1999 rc = -EIO;
2000 reason = "SPINUP failed";
2001 goto err_out;
2002 }
2003 /*
2004 * If the drive initially returned incomplete IDENTIFY info,
2005 * we now must reissue the IDENTIFY command.
2006 */
2007 if (id[2] == 0x37c8)
2008 goto retry;
2009 }
2010
2011 if ((flags & ATA_READID_POSTRESET) &&
2012 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2013 /*
2014 * The exact sequence expected by certain pre-ATA4 drives is:
2015 * SRST RESET
2016 * IDENTIFY (optional in early ATA)
2017 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2018 * anything else..
2019 * Some drives were very specific about that exact sequence.
2020 *
2021 * Note that ATA4 says lba is mandatory so the second check
2022 * should never trigger.
2023 */
2024 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2025 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2026 if (err_mask) {
2027 rc = -EIO;
2028 reason = "INIT_DEV_PARAMS failed";
2029 goto err_out;
2030 }
2031
2032 /* current CHS translation info (id[53-58]) might be
2033 * changed. reread the identify device info.
2034 */
2035 flags &= ~ATA_READID_POSTRESET;
2036 goto retry;
2037 }
2038 }
2039
2040 *p_class = class;
2041
2042 return 0;
2043
2044 err_out:
2045 if (ata_msg_warn(ap))
2046 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2047 reason, err_mask);
2048 return rc;
2049}
2050
2051/**
2052 * ata_read_log_page - read a specific log page
2053 * @dev: target device
2054 * @log: log to read
2055 * @page: page to read
2056 * @buf: buffer to store read page
2057 * @sectors: number of sectors to read
2058 *
2059 * Read log page using READ_LOG_EXT command.
2060 *
2061 * LOCKING:
2062 * Kernel thread context (may sleep).
2063 *
2064 * RETURNS:
2065 * 0 on success, AC_ERR_* mask otherwise.
2066 */
2067unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2068 u8 page, void *buf, unsigned int sectors)
2069{
2070 unsigned long ap_flags = dev->link->ap->flags;
2071 struct ata_taskfile tf;
2072 unsigned int err_mask;
2073 bool dma = false;
2074
2075 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2076
2077 /*
2078 * Return error without actually issuing the command on controllers
2079 * which e.g. lockup on a read log page.
2080 */
2081 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2082 return AC_ERR_DEV;
2083
2084retry:
2085 ata_tf_init(dev, &tf);
2086 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2087 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2088 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2089 tf.protocol = ATA_PROT_DMA;
2090 dma = true;
2091 } else {
2092 tf.command = ATA_CMD_READ_LOG_EXT;
2093 tf.protocol = ATA_PROT_PIO;
2094 dma = false;
2095 }
2096 tf.lbal = log;
2097 tf.lbam = page;
2098 tf.nsect = sectors;
2099 tf.hob_nsect = sectors >> 8;
2100 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2101
2102 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2103 buf, sectors * ATA_SECT_SIZE, 0);
2104
2105 if (err_mask && dma) {
2106 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2107 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2108 goto retry;
2109 }
2110
2111 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2112 return err_mask;
2113}
2114
2115static bool ata_log_supported(struct ata_device *dev, u8 log)
2116{
2117 struct ata_port *ap = dev->link->ap;
2118
2119 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2120 return false;
2121 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2122}
2123
2124static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2125{
2126 struct ata_port *ap = dev->link->ap;
2127 unsigned int err, i;
2128
2129 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2130 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2131 return false;
2132 }
2133
2134 /*
2135 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2136 * supported.
2137 */
2138 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2139 1);
2140 if (err) {
2141 ata_dev_info(dev,
2142 "failed to get Device Identify Log Emask 0x%x\n",
2143 err);
2144 return false;
2145 }
2146
2147 for (i = 0; i < ap->sector_buf[8]; i++) {
2148 if (ap->sector_buf[9 + i] == page)
2149 return true;
2150 }
2151
2152 return false;
2153}
2154
2155static int ata_do_link_spd_horkage(struct ata_device *dev)
2156{
2157 struct ata_link *plink = ata_dev_phys_link(dev);
2158 u32 target, target_limit;
2159
2160 if (!sata_scr_valid(plink))
2161 return 0;
2162
2163 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2164 target = 1;
2165 else
2166 return 0;
2167
2168 target_limit = (1 << target) - 1;
2169
2170 /* if already on stricter limit, no need to push further */
2171 if (plink->sata_spd_limit <= target_limit)
2172 return 0;
2173
2174 plink->sata_spd_limit = target_limit;
2175
2176 /* Request another EH round by returning -EAGAIN if link is
2177 * going faster than the target speed. Forward progress is
2178 * guaranteed by setting sata_spd_limit to target_limit above.
2179 */
2180 if (plink->sata_spd > target) {
2181 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2182 sata_spd_string(target));
2183 return -EAGAIN;
2184 }
2185 return 0;
2186}
2187
2188static inline u8 ata_dev_knobble(struct ata_device *dev)
2189{
2190 struct ata_port *ap = dev->link->ap;
2191
2192 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2193 return 0;
2194
2195 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2196}
2197
2198static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2199{
2200 struct ata_port *ap = dev->link->ap;
2201 unsigned int err_mask;
2202
2203 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2204 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2205 return;
2206 }
2207 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2208 0, ap->sector_buf, 1);
2209 if (err_mask) {
2210 ata_dev_dbg(dev,
2211 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2212 err_mask);
2213 } else {
2214 u8 *cmds = dev->ncq_send_recv_cmds;
2215
2216 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2217 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2218
2219 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2220 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2221 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2222 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2223 }
2224 }
2225}
2226
2227static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2228{
2229 struct ata_port *ap = dev->link->ap;
2230 unsigned int err_mask;
2231
2232 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2233 ata_dev_warn(dev,
2234 "NCQ Send/Recv Log not supported\n");
2235 return;
2236 }
2237 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2238 0, ap->sector_buf, 1);
2239 if (err_mask) {
2240 ata_dev_dbg(dev,
2241 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2242 err_mask);
2243 } else {
2244 u8 *cmds = dev->ncq_non_data_cmds;
2245
2246 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2247 }
2248}
2249
2250static void ata_dev_config_ncq_prio(struct ata_device *dev)
2251{
2252 struct ata_port *ap = dev->link->ap;
2253 unsigned int err_mask;
2254
2255 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2256 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2257 return;
2258 }
2259
2260 err_mask = ata_read_log_page(dev,
2261 ATA_LOG_IDENTIFY_DEVICE,
2262 ATA_LOG_SATA_SETTINGS,
2263 ap->sector_buf,
2264 1);
2265 if (err_mask) {
2266 ata_dev_dbg(dev,
2267 "failed to get Identify Device data, Emask 0x%x\n",
2268 err_mask);
2269 return;
2270 }
2271
2272 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2273 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2274 } else {
2275 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2276 ata_dev_dbg(dev, "SATA page does not support priority\n");
2277 }
2278
2279}
2280
2281static int ata_dev_config_ncq(struct ata_device *dev,
2282 char *desc, size_t desc_sz)
2283{
2284 struct ata_port *ap = dev->link->ap;
2285 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2286 unsigned int err_mask;
2287 char *aa_desc = "";
2288
2289 if (!ata_id_has_ncq(dev->id)) {
2290 desc[0] = '\0';
2291 return 0;
2292 }
2293 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2294 snprintf(desc, desc_sz, "NCQ (not used)");
2295 return 0;
2296 }
2297 if (ap->flags & ATA_FLAG_NCQ) {
2298 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2299 dev->flags |= ATA_DFLAG_NCQ;
2300 }
2301
2302 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2303 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2304 ata_id_has_fpdma_aa(dev->id)) {
2305 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2306 SATA_FPDMA_AA);
2307 if (err_mask) {
2308 ata_dev_err(dev,
2309 "failed to enable AA (error_mask=0x%x)\n",
2310 err_mask);
2311 if (err_mask != AC_ERR_DEV) {
2312 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2313 return -EIO;
2314 }
2315 } else
2316 aa_desc = ", AA";
2317 }
2318
2319 if (hdepth >= ddepth)
2320 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2321 else
2322 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2323 ddepth, aa_desc);
2324
2325 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2326 if (ata_id_has_ncq_send_and_recv(dev->id))
2327 ata_dev_config_ncq_send_recv(dev);
2328 if (ata_id_has_ncq_non_data(dev->id))
2329 ata_dev_config_ncq_non_data(dev);
2330 if (ata_id_has_ncq_prio(dev->id))
2331 ata_dev_config_ncq_prio(dev);
2332 }
2333
2334 return 0;
2335}
2336
2337static void ata_dev_config_sense_reporting(struct ata_device *dev)
2338{
2339 unsigned int err_mask;
2340
2341 if (!ata_id_has_sense_reporting(dev->id))
2342 return;
2343
2344 if (ata_id_sense_reporting_enabled(dev->id))
2345 return;
2346
2347 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2348 if (err_mask) {
2349 ata_dev_dbg(dev,
2350 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2351 err_mask);
2352 }
2353}
2354
2355static void ata_dev_config_zac(struct ata_device *dev)
2356{
2357 struct ata_port *ap = dev->link->ap;
2358 unsigned int err_mask;
2359 u8 *identify_buf = ap->sector_buf;
2360
2361 dev->zac_zones_optimal_open = U32_MAX;
2362 dev->zac_zones_optimal_nonseq = U32_MAX;
2363 dev->zac_zones_max_open = U32_MAX;
2364
2365 /*
2366 * Always set the 'ZAC' flag for Host-managed devices.
2367 */
2368 if (dev->class == ATA_DEV_ZAC)
2369 dev->flags |= ATA_DFLAG_ZAC;
2370 else if (ata_id_zoned_cap(dev->id) == 0x01)
2371 /*
2372 * Check for host-aware devices.
2373 */
2374 dev->flags |= ATA_DFLAG_ZAC;
2375
2376 if (!(dev->flags & ATA_DFLAG_ZAC))
2377 return;
2378
2379 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2380 ata_dev_warn(dev,
2381 "ATA Zoned Information Log not supported\n");
2382 return;
2383 }
2384
2385 /*
2386 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2387 */
2388 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2389 ATA_LOG_ZONED_INFORMATION,
2390 identify_buf, 1);
2391 if (!err_mask) {
2392 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2393
2394 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2395 if ((zoned_cap >> 63))
2396 dev->zac_zoned_cap = (zoned_cap & 1);
2397 opt_open = get_unaligned_le64(&identify_buf[24]);
2398 if ((opt_open >> 63))
2399 dev->zac_zones_optimal_open = (u32)opt_open;
2400 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2401 if ((opt_nonseq >> 63))
2402 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2403 max_open = get_unaligned_le64(&identify_buf[40]);
2404 if ((max_open >> 63))
2405 dev->zac_zones_max_open = (u32)max_open;
2406 }
2407}
2408
2409static void ata_dev_config_trusted(struct ata_device *dev)
2410{
2411 struct ata_port *ap = dev->link->ap;
2412 u64 trusted_cap;
2413 unsigned int err;
2414
2415 if (!ata_id_has_trusted(dev->id))
2416 return;
2417
2418 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2419 ata_dev_warn(dev,
2420 "Security Log not supported\n");
2421 return;
2422 }
2423
2424 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2425 ap->sector_buf, 1);
2426 if (err) {
2427 ata_dev_dbg(dev,
2428 "failed to read Security Log, Emask 0x%x\n", err);
2429 return;
2430 }
2431
2432 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2433 if (!(trusted_cap & (1ULL << 63))) {
2434 ata_dev_dbg(dev,
2435 "Trusted Computing capability qword not valid!\n");
2436 return;
2437 }
2438
2439 if (trusted_cap & (1 << 0))
2440 dev->flags |= ATA_DFLAG_TRUSTED;
2441}
2442
2443/**
2444 * ata_dev_configure - Configure the specified ATA/ATAPI device
2445 * @dev: Target device to configure
2446 *
2447 * Configure @dev according to @dev->id. Generic and low-level
2448 * driver specific fixups are also applied.
2449 *
2450 * LOCKING:
2451 * Kernel thread context (may sleep)
2452 *
2453 * RETURNS:
2454 * 0 on success, -errno otherwise
2455 */
2456int ata_dev_configure(struct ata_device *dev)
2457{
2458 struct ata_port *ap = dev->link->ap;
2459 struct ata_eh_context *ehc = &dev->link->eh_context;
2460 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2461 const u16 *id = dev->id;
2462 unsigned long xfer_mask;
2463 unsigned int err_mask;
2464 char revbuf[7]; /* XYZ-99\0 */
2465 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2466 char modelbuf[ATA_ID_PROD_LEN+1];
2467 int rc;
2468
2469 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2470 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2471 return 0;
2472 }
2473
2474 if (ata_msg_probe(ap))
2475 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2476
2477 /* set horkage */
2478 dev->horkage |= ata_dev_blacklisted(dev);
2479 ata_force_horkage(dev);
2480
2481 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2482 ata_dev_info(dev, "unsupported device, disabling\n");
2483 ata_dev_disable(dev);
2484 return 0;
2485 }
2486
2487 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2488 dev->class == ATA_DEV_ATAPI) {
2489 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2490 atapi_enabled ? "not supported with this driver"
2491 : "disabled");
2492 ata_dev_disable(dev);
2493 return 0;
2494 }
2495
2496 rc = ata_do_link_spd_horkage(dev);
2497 if (rc)
2498 return rc;
2499
2500 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2501 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2502 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2503 dev->horkage |= ATA_HORKAGE_NOLPM;
2504
2505 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2506 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2507 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2508 }
2509
2510 /* let ACPI work its magic */
2511 rc = ata_acpi_on_devcfg(dev);
2512 if (rc)
2513 return rc;
2514
2515 /* massage HPA, do it early as it might change IDENTIFY data */
2516 rc = ata_hpa_resize(dev);
2517 if (rc)
2518 return rc;
2519
2520 /* print device capabilities */
2521 if (ata_msg_probe(ap))
2522 ata_dev_dbg(dev,
2523 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2524 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2525 __func__,
2526 id[49], id[82], id[83], id[84],
2527 id[85], id[86], id[87], id[88]);
2528
2529 /* initialize to-be-configured parameters */
2530 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2531 dev->max_sectors = 0;
2532 dev->cdb_len = 0;
2533 dev->n_sectors = 0;
2534 dev->cylinders = 0;
2535 dev->heads = 0;
2536 dev->sectors = 0;
2537 dev->multi_count = 0;
2538
2539 /*
2540 * common ATA, ATAPI feature tests
2541 */
2542
2543 /* find max transfer mode; for printk only */
2544 xfer_mask = ata_id_xfermask(id);
2545
2546 if (ata_msg_probe(ap))
2547 ata_dump_id(id);
2548
2549 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2550 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2551 sizeof(fwrevbuf));
2552
2553 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2554 sizeof(modelbuf));
2555
2556 /* ATA-specific feature tests */
2557 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2558 if (ata_id_is_cfa(id)) {
2559 /* CPRM may make this media unusable */
2560 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2561 ata_dev_warn(dev,
2562 "supports DRM functions and may not be fully accessible\n");
2563 snprintf(revbuf, 7, "CFA");
2564 } else {
2565 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2566 /* Warn the user if the device has TPM extensions */
2567 if (ata_id_has_tpm(id))
2568 ata_dev_warn(dev,
2569 "supports DRM functions and may not be fully accessible\n");
2570 }
2571
2572 dev->n_sectors = ata_id_n_sectors(id);
2573
2574 /* get current R/W Multiple count setting */
2575 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2576 unsigned int max = dev->id[47] & 0xff;
2577 unsigned int cnt = dev->id[59] & 0xff;
2578 /* only recognize/allow powers of two here */
2579 if (is_power_of_2(max) && is_power_of_2(cnt))
2580 if (cnt <= max)
2581 dev->multi_count = cnt;
2582 }
2583
2584 if (ata_id_has_lba(id)) {
2585 const char *lba_desc;
2586 char ncq_desc[24];
2587
2588 lba_desc = "LBA";
2589 dev->flags |= ATA_DFLAG_LBA;
2590 if (ata_id_has_lba48(id)) {
2591 dev->flags |= ATA_DFLAG_LBA48;
2592 lba_desc = "LBA48";
2593
2594 if (dev->n_sectors >= (1UL << 28) &&
2595 ata_id_has_flush_ext(id))
2596 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2597 }
2598
2599 /* config NCQ */
2600 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2601 if (rc)
2602 return rc;
2603
2604 /* print device info to dmesg */
2605 if (ata_msg_drv(ap) && print_info) {
2606 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2607 revbuf, modelbuf, fwrevbuf,
2608 ata_mode_string(xfer_mask));
2609 ata_dev_info(dev,
2610 "%llu sectors, multi %u: %s %s\n",
2611 (unsigned long long)dev->n_sectors,
2612 dev->multi_count, lba_desc, ncq_desc);
2613 }
2614 } else {
2615 /* CHS */
2616
2617 /* Default translation */
2618 dev->cylinders = id[1];
2619 dev->heads = id[3];
2620 dev->sectors = id[6];
2621
2622 if (ata_id_current_chs_valid(id)) {
2623 /* Current CHS translation is valid. */
2624 dev->cylinders = id[54];
2625 dev->heads = id[55];
2626 dev->sectors = id[56];
2627 }
2628
2629 /* print device info to dmesg */
2630 if (ata_msg_drv(ap) && print_info) {
2631 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2632 revbuf, modelbuf, fwrevbuf,
2633 ata_mode_string(xfer_mask));
2634 ata_dev_info(dev,
2635 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2636 (unsigned long long)dev->n_sectors,
2637 dev->multi_count, dev->cylinders,
2638 dev->heads, dev->sectors);
2639 }
2640 }
2641
2642 /* Check and mark DevSlp capability. Get DevSlp timing variables
2643 * from SATA Settings page of Identify Device Data Log.
2644 */
2645 if (ata_id_has_devslp(dev->id)) {
2646 u8 *sata_setting = ap->sector_buf;
2647 int i, j;
2648
2649 dev->flags |= ATA_DFLAG_DEVSLP;
2650 err_mask = ata_read_log_page(dev,
2651 ATA_LOG_IDENTIFY_DEVICE,
2652 ATA_LOG_SATA_SETTINGS,
2653 sata_setting,
2654 1);
2655 if (err_mask)
2656 ata_dev_dbg(dev,
2657 "failed to get Identify Device Data, Emask 0x%x\n",
2658 err_mask);
2659 else
2660 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2661 j = ATA_LOG_DEVSLP_OFFSET + i;
2662 dev->devslp_timing[i] = sata_setting[j];
2663 }
2664 }
2665 ata_dev_config_sense_reporting(dev);
2666 ata_dev_config_zac(dev);
2667 ata_dev_config_trusted(dev);
2668 dev->cdb_len = 32;
2669 }
2670
2671 /* ATAPI-specific feature tests */
2672 else if (dev->class == ATA_DEV_ATAPI) {
2673 const char *cdb_intr_string = "";
2674 const char *atapi_an_string = "";
2675 const char *dma_dir_string = "";
2676 u32 sntf;
2677
2678 rc = atapi_cdb_len(id);
2679 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2680 if (ata_msg_warn(ap))
2681 ata_dev_warn(dev, "unsupported CDB len\n");
2682 rc = -EINVAL;
2683 goto err_out_nosup;
2684 }
2685 dev->cdb_len = (unsigned int) rc;
2686
2687 /* Enable ATAPI AN if both the host and device have
2688 * the support. If PMP is attached, SNTF is required
2689 * to enable ATAPI AN to discern between PHY status
2690 * changed notifications and ATAPI ANs.
2691 */
2692 if (atapi_an &&
2693 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2694 (!sata_pmp_attached(ap) ||
2695 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2696 /* issue SET feature command to turn this on */
2697 err_mask = ata_dev_set_feature(dev,
2698 SETFEATURES_SATA_ENABLE, SATA_AN);
2699 if (err_mask)
2700 ata_dev_err(dev,
2701 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2702 err_mask);
2703 else {
2704 dev->flags |= ATA_DFLAG_AN;
2705 atapi_an_string = ", ATAPI AN";
2706 }
2707 }
2708
2709 if (ata_id_cdb_intr(dev->id)) {
2710 dev->flags |= ATA_DFLAG_CDB_INTR;
2711 cdb_intr_string = ", CDB intr";
2712 }
2713
2714 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2715 dev->flags |= ATA_DFLAG_DMADIR;
2716 dma_dir_string = ", DMADIR";
2717 }
2718
2719 if (ata_id_has_da(dev->id)) {
2720 dev->flags |= ATA_DFLAG_DA;
2721 zpodd_init(dev);
2722 }
2723
2724 /* print device info to dmesg */
2725 if (ata_msg_drv(ap) && print_info)
2726 ata_dev_info(dev,
2727 "ATAPI: %s, %s, max %s%s%s%s\n",
2728 modelbuf, fwrevbuf,
2729 ata_mode_string(xfer_mask),
2730 cdb_intr_string, atapi_an_string,
2731 dma_dir_string);
2732 }
2733
2734 /* determine max_sectors */
2735 dev->max_sectors = ATA_MAX_SECTORS;
2736 if (dev->flags & ATA_DFLAG_LBA48)
2737 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2738
2739 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2740 200 sectors */
2741 if (ata_dev_knobble(dev)) {
2742 if (ata_msg_drv(ap) && print_info)
2743 ata_dev_info(dev, "applying bridge limits\n");
2744 dev->udma_mask &= ATA_UDMA5;
2745 dev->max_sectors = ATA_MAX_SECTORS;
2746 }
2747
2748 if ((dev->class == ATA_DEV_ATAPI) &&
2749 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2750 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2751 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2752 }
2753
2754 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2755 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2756 dev->max_sectors);
2757
2758 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2759 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2760 dev->max_sectors);
2761
2762 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2763 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2764
2765 if (ap->ops->dev_config)
2766 ap->ops->dev_config(dev);
2767
2768 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2769 /* Let the user know. We don't want to disallow opens for
2770 rescue purposes, or in case the vendor is just a blithering
2771 idiot. Do this after the dev_config call as some controllers
2772 with buggy firmware may want to avoid reporting false device
2773 bugs */
2774
2775 if (print_info) {
2776 ata_dev_warn(dev,
2777"Drive reports diagnostics failure. This may indicate a drive\n");
2778 ata_dev_warn(dev,
2779"fault or invalid emulation. Contact drive vendor for information.\n");
2780 }
2781 }
2782
2783 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2784 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2785 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2786 }
2787
2788 return 0;
2789
2790err_out_nosup:
2791 if (ata_msg_probe(ap))
2792 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2793 return rc;
2794}
2795
2796/**
2797 * ata_cable_40wire - return 40 wire cable type
2798 * @ap: port
2799 *
2800 * Helper method for drivers which want to hardwire 40 wire cable
2801 * detection.
2802 */
2803
2804int ata_cable_40wire(struct ata_port *ap)
2805{
2806 return ATA_CBL_PATA40;
2807}
2808
2809/**
2810 * ata_cable_80wire - return 80 wire cable type
2811 * @ap: port
2812 *
2813 * Helper method for drivers which want to hardwire 80 wire cable
2814 * detection.
2815 */
2816
2817int ata_cable_80wire(struct ata_port *ap)
2818{
2819 return ATA_CBL_PATA80;
2820}
2821
2822/**
2823 * ata_cable_unknown - return unknown PATA cable.
2824 * @ap: port
2825 *
2826 * Helper method for drivers which have no PATA cable detection.
2827 */
2828
2829int ata_cable_unknown(struct ata_port *ap)
2830{
2831 return ATA_CBL_PATA_UNK;
2832}
2833
2834/**
2835 * ata_cable_ignore - return ignored PATA cable.
2836 * @ap: port
2837 *
2838 * Helper method for drivers which don't use cable type to limit
2839 * transfer mode.
2840 */
2841int ata_cable_ignore(struct ata_port *ap)
2842{
2843 return ATA_CBL_PATA_IGN;
2844}
2845
2846/**
2847 * ata_cable_sata - return SATA cable type
2848 * @ap: port
2849 *
2850 * Helper method for drivers which have SATA cables
2851 */
2852
2853int ata_cable_sata(struct ata_port *ap)
2854{
2855 return ATA_CBL_SATA;
2856}
2857
2858/**
2859 * ata_bus_probe - Reset and probe ATA bus
2860 * @ap: Bus to probe
2861 *
2862 * Master ATA bus probing function. Initiates a hardware-dependent
2863 * bus reset, then attempts to identify any devices found on
2864 * the bus.
2865 *
2866 * LOCKING:
2867 * PCI/etc. bus probe sem.
2868 *
2869 * RETURNS:
2870 * Zero on success, negative errno otherwise.
2871 */
2872
2873int ata_bus_probe(struct ata_port *ap)
2874{
2875 unsigned int classes[ATA_MAX_DEVICES];
2876 int tries[ATA_MAX_DEVICES];
2877 int rc;
2878 struct ata_device *dev;
2879
2880 ata_for_each_dev(dev, &ap->link, ALL)
2881 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2882
2883 retry:
2884 ata_for_each_dev(dev, &ap->link, ALL) {
2885 /* If we issue an SRST then an ATA drive (not ATAPI)
2886 * may change configuration and be in PIO0 timing. If
2887 * we do a hard reset (or are coming from power on)
2888 * this is true for ATA or ATAPI. Until we've set a
2889 * suitable controller mode we should not touch the
2890 * bus as we may be talking too fast.
2891 */
2892 dev->pio_mode = XFER_PIO_0;
2893 dev->dma_mode = 0xff;
2894
2895 /* If the controller has a pio mode setup function
2896 * then use it to set the chipset to rights. Don't
2897 * touch the DMA setup as that will be dealt with when
2898 * configuring devices.
2899 */
2900 if (ap->ops->set_piomode)
2901 ap->ops->set_piomode(ap, dev);
2902 }
2903
2904 /* reset and determine device classes */
2905 ap->ops->phy_reset(ap);
2906
2907 ata_for_each_dev(dev, &ap->link, ALL) {
2908 if (dev->class != ATA_DEV_UNKNOWN)
2909 classes[dev->devno] = dev->class;
2910 else
2911 classes[dev->devno] = ATA_DEV_NONE;
2912
2913 dev->class = ATA_DEV_UNKNOWN;
2914 }
2915
2916 /* read IDENTIFY page and configure devices. We have to do the identify
2917 specific sequence bass-ackwards so that PDIAG- is released by
2918 the slave device */
2919
2920 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2921 if (tries[dev->devno])
2922 dev->class = classes[dev->devno];
2923
2924 if (!ata_dev_enabled(dev))
2925 continue;
2926
2927 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2928 dev->id);
2929 if (rc)
2930 goto fail;
2931 }
2932
2933 /* Now ask for the cable type as PDIAG- should have been released */
2934 if (ap->ops->cable_detect)
2935 ap->cbl = ap->ops->cable_detect(ap);
2936
2937 /* We may have SATA bridge glue hiding here irrespective of
2938 * the reported cable types and sensed types. When SATA
2939 * drives indicate we have a bridge, we don't know which end
2940 * of the link the bridge is which is a problem.
2941 */
2942 ata_for_each_dev(dev, &ap->link, ENABLED)
2943 if (ata_id_is_sata(dev->id))
2944 ap->cbl = ATA_CBL_SATA;
2945
2946 /* After the identify sequence we can now set up the devices. We do
2947 this in the normal order so that the user doesn't get confused */
2948
2949 ata_for_each_dev(dev, &ap->link, ENABLED) {
2950 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2951 rc = ata_dev_configure(dev);
2952 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2953 if (rc)
2954 goto fail;
2955 }
2956
2957 /* configure transfer mode */
2958 rc = ata_set_mode(&ap->link, &dev);
2959 if (rc)
2960 goto fail;
2961
2962 ata_for_each_dev(dev, &ap->link, ENABLED)
2963 return 0;
2964
2965 return -ENODEV;
2966
2967 fail:
2968 tries[dev->devno]--;
2969
2970 switch (rc) {
2971 case -EINVAL:
2972 /* eeek, something went very wrong, give up */
2973 tries[dev->devno] = 0;
2974 break;
2975
2976 case -ENODEV:
2977 /* give it just one more chance */
2978 tries[dev->devno] = min(tries[dev->devno], 1);
2979 /* fall through */
2980 case -EIO:
2981 if (tries[dev->devno] == 1) {
2982 /* This is the last chance, better to slow
2983 * down than lose it.
2984 */
2985 sata_down_spd_limit(&ap->link, 0);
2986 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2987 }
2988 }
2989
2990 if (!tries[dev->devno])
2991 ata_dev_disable(dev);
2992
2993 goto retry;
2994}
2995
2996/**
2997 * sata_print_link_status - Print SATA link status
2998 * @link: SATA link to printk link status about
2999 *
3000 * This function prints link speed and status of a SATA link.
3001 *
3002 * LOCKING:
3003 * None.
3004 */
3005static void sata_print_link_status(struct ata_link *link)
3006{
3007 u32 sstatus, scontrol, tmp;
3008
3009 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3010 return;
3011 sata_scr_read(link, SCR_CONTROL, &scontrol);
3012
3013 if (ata_phys_link_online(link)) {
3014 tmp = (sstatus >> 4) & 0xf;
3015 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3016 sata_spd_string(tmp), sstatus, scontrol);
3017 } else {
3018 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3019 sstatus, scontrol);
3020 }
3021}
3022
3023/**
3024 * ata_dev_pair - return other device on cable
3025 * @adev: device
3026 *
3027 * Obtain the other device on the same cable, or if none is
3028 * present NULL is returned
3029 */
3030
3031struct ata_device *ata_dev_pair(struct ata_device *adev)
3032{
3033 struct ata_link *link = adev->link;
3034 struct ata_device *pair = &link->device[1 - adev->devno];
3035 if (!ata_dev_enabled(pair))
3036 return NULL;
3037 return pair;
3038}
3039
3040/**
3041 * sata_down_spd_limit - adjust SATA spd limit downward
3042 * @link: Link to adjust SATA spd limit for
3043 * @spd_limit: Additional limit
3044 *
3045 * Adjust SATA spd limit of @link downward. Note that this
3046 * function only adjusts the limit. The change must be applied
3047 * using sata_set_spd().
3048 *
3049 * If @spd_limit is non-zero, the speed is limited to equal to or
3050 * lower than @spd_limit if such speed is supported. If
3051 * @spd_limit is slower than any supported speed, only the lowest
3052 * supported speed is allowed.
3053 *
3054 * LOCKING:
3055 * Inherited from caller.
3056 *
3057 * RETURNS:
3058 * 0 on success, negative errno on failure
3059 */
3060int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3061{
3062 u32 sstatus, spd, mask;
3063 int rc, bit;
3064
3065 if (!sata_scr_valid(link))
3066 return -EOPNOTSUPP;
3067
3068 /* If SCR can be read, use it to determine the current SPD.
3069 * If not, use cached value in link->sata_spd.
3070 */
3071 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3072 if (rc == 0 && ata_sstatus_online(sstatus))
3073 spd = (sstatus >> 4) & 0xf;
3074 else
3075 spd = link->sata_spd;
3076
3077 mask = link->sata_spd_limit;
3078 if (mask <= 1)
3079 return -EINVAL;
3080
3081 /* unconditionally mask off the highest bit */
3082 bit = fls(mask) - 1;
3083 mask &= ~(1 << bit);
3084
3085 /*
3086 * Mask off all speeds higher than or equal to the current one. At
3087 * this point, if current SPD is not available and we previously
3088 * recorded the link speed from SStatus, the driver has already
3089 * masked off the highest bit so mask should already be 1 or 0.
3090 * Otherwise, we should not force 1.5Gbps on a link where we have
3091 * not previously recorded speed from SStatus. Just return in this
3092 * case.
3093 */
3094 if (spd > 1)
3095 mask &= (1 << (spd - 1)) - 1;
3096 else
3097 return -EINVAL;
3098
3099 /* were we already at the bottom? */
3100 if (!mask)
3101 return -EINVAL;
3102
3103 if (spd_limit) {
3104 if (mask & ((1 << spd_limit) - 1))
3105 mask &= (1 << spd_limit) - 1;
3106 else {
3107 bit = ffs(mask) - 1;
3108 mask = 1 << bit;
3109 }
3110 }
3111
3112 link->sata_spd_limit = mask;
3113
3114 ata_link_warn(link, "limiting SATA link speed to %s\n",
3115 sata_spd_string(fls(mask)));
3116
3117 return 0;
3118}
3119
3120static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3121{
3122 struct ata_link *host_link = &link->ap->link;
3123 u32 limit, target, spd;
3124
3125 limit = link->sata_spd_limit;
3126
3127 /* Don't configure downstream link faster than upstream link.
3128 * It doesn't speed up anything and some PMPs choke on such
3129 * configuration.
3130 */
3131 if (!ata_is_host_link(link) && host_link->sata_spd)
3132 limit &= (1 << host_link->sata_spd) - 1;
3133
3134 if (limit == UINT_MAX)
3135 target = 0;
3136 else
3137 target = fls(limit);
3138
3139 spd = (*scontrol >> 4) & 0xf;
3140 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3141
3142 return spd != target;
3143}
3144
3145/**
3146 * sata_set_spd_needed - is SATA spd configuration needed
3147 * @link: Link in question
3148 *
3149 * Test whether the spd limit in SControl matches
3150 * @link->sata_spd_limit. This function is used to determine
3151 * whether hardreset is necessary to apply SATA spd
3152 * configuration.
3153 *
3154 * LOCKING:
3155 * Inherited from caller.
3156 *
3157 * RETURNS:
3158 * 1 if SATA spd configuration is needed, 0 otherwise.
3159 */
3160static int sata_set_spd_needed(struct ata_link *link)
3161{
3162 u32 scontrol;
3163
3164 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3165 return 1;
3166
3167 return __sata_set_spd_needed(link, &scontrol);
3168}
3169
3170/**
3171 * sata_set_spd - set SATA spd according to spd limit
3172 * @link: Link to set SATA spd for
3173 *
3174 * Set SATA spd of @link according to sata_spd_limit.
3175 *
3176 * LOCKING:
3177 * Inherited from caller.
3178 *
3179 * RETURNS:
3180 * 0 if spd doesn't need to be changed, 1 if spd has been
3181 * changed. Negative errno if SCR registers are inaccessible.
3182 */
3183int sata_set_spd(struct ata_link *link)
3184{
3185 u32 scontrol;
3186 int rc;
3187
3188 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3189 return rc;
3190
3191 if (!__sata_set_spd_needed(link, &scontrol))
3192 return 0;
3193
3194 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3195 return rc;
3196
3197 return 1;
3198}
3199
3200/*
3201 * This mode timing computation functionality is ported over from
3202 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3203 */
3204/*
3205 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3206 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3207 * for UDMA6, which is currently supported only by Maxtor drives.
3208 *
3209 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3210 */
3211
3212static const struct ata_timing ata_timing[] = {
3213/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3214 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3215 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3216 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3217 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3218 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3219 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3220 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3221
3222 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3223 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3224 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3225
3226 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3227 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3228 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3229 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3230 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3231
3232/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3233 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3234 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3235 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3236 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3237 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3238 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3239 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3240
3241 { 0xFF }
3242};
3243
3244#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3245#define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
3246
3247static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3248{
3249 q->setup = EZ(t->setup, T);
3250 q->act8b = EZ(t->act8b, T);
3251 q->rec8b = EZ(t->rec8b, T);
3252 q->cyc8b = EZ(t->cyc8b, T);
3253 q->active = EZ(t->active, T);
3254 q->recover = EZ(t->recover, T);
3255 q->dmack_hold = EZ(t->dmack_hold, T);
3256 q->cycle = EZ(t->cycle, T);
3257 q->udma = EZ(t->udma, UT);
3258}
3259
3260void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3261 struct ata_timing *m, unsigned int what)
3262{
3263 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3264 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3265 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3266 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3267 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3268 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3269 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3270 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3271 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3272}
3273
3274const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3275{
3276 const struct ata_timing *t = ata_timing;
3277
3278 while (xfer_mode > t->mode)
3279 t++;
3280
3281 if (xfer_mode == t->mode)
3282 return t;
3283
3284 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3285 __func__, xfer_mode);
3286
3287 return NULL;
3288}
3289
3290int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3291 struct ata_timing *t, int T, int UT)
3292{
3293 const u16 *id = adev->id;
3294 const struct ata_timing *s;
3295 struct ata_timing p;
3296
3297 /*
3298 * Find the mode.
3299 */
3300
3301 if (!(s = ata_timing_find_mode(speed)))
3302 return -EINVAL;
3303
3304 memcpy(t, s, sizeof(*s));
3305
3306 /*
3307 * If the drive is an EIDE drive, it can tell us it needs extended
3308 * PIO/MW_DMA cycle timing.
3309 */
3310
3311 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3312 memset(&p, 0, sizeof(p));
3313
3314 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3315 if (speed <= XFER_PIO_2)
3316 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3317 else if ((speed <= XFER_PIO_4) ||
3318 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3319 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3320 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3321 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3322
3323 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3324 }
3325
3326 /*
3327 * Convert the timing to bus clock counts.
3328 */
3329
3330 ata_timing_quantize(t, t, T, UT);
3331
3332 /*
3333 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3334 * S.M.A.R.T * and some other commands. We have to ensure that the
3335 * DMA cycle timing is slower/equal than the fastest PIO timing.
3336 */
3337
3338 if (speed > XFER_PIO_6) {
3339 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3340 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3341 }
3342
3343 /*
3344 * Lengthen active & recovery time so that cycle time is correct.
3345 */
3346
3347 if (t->act8b + t->rec8b < t->cyc8b) {
3348 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3349 t->rec8b = t->cyc8b - t->act8b;
3350 }
3351
3352 if (t->active + t->recover < t->cycle) {
3353 t->active += (t->cycle - (t->active + t->recover)) / 2;
3354 t->recover = t->cycle - t->active;
3355 }
3356
3357 /* In a few cases quantisation may produce enough errors to
3358 leave t->cycle too low for the sum of active and recovery
3359 if so we must correct this */
3360 if (t->active + t->recover > t->cycle)
3361 t->cycle = t->active + t->recover;
3362
3363 return 0;
3364}
3365
3366/**
3367 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3368 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3369 * @cycle: cycle duration in ns
3370 *
3371 * Return matching xfer mode for @cycle. The returned mode is of
3372 * the transfer type specified by @xfer_shift. If @cycle is too
3373 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3374 * than the fastest known mode, the fasted mode is returned.
3375 *
3376 * LOCKING:
3377 * None.
3378 *
3379 * RETURNS:
3380 * Matching xfer_mode, 0xff if no match found.
3381 */
3382u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3383{
3384 u8 base_mode = 0xff, last_mode = 0xff;
3385 const struct ata_xfer_ent *ent;
3386 const struct ata_timing *t;
3387
3388 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3389 if (ent->shift == xfer_shift)
3390 base_mode = ent->base;
3391
3392 for (t = ata_timing_find_mode(base_mode);
3393 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3394 unsigned short this_cycle;
3395
3396 switch (xfer_shift) {
3397 case ATA_SHIFT_PIO:
3398 case ATA_SHIFT_MWDMA:
3399 this_cycle = t->cycle;
3400 break;
3401 case ATA_SHIFT_UDMA:
3402 this_cycle = t->udma;
3403 break;
3404 default:
3405 return 0xff;
3406 }
3407
3408 if (cycle > this_cycle)
3409 break;
3410
3411 last_mode = t->mode;
3412 }
3413
3414 return last_mode;
3415}
3416
3417/**
3418 * ata_down_xfermask_limit - adjust dev xfer masks downward
3419 * @dev: Device to adjust xfer masks
3420 * @sel: ATA_DNXFER_* selector
3421 *
3422 * Adjust xfer masks of @dev downward. Note that this function
3423 * does not apply the change. Invoking ata_set_mode() afterwards
3424 * will apply the limit.
3425 *
3426 * LOCKING:
3427 * Inherited from caller.
3428 *
3429 * RETURNS:
3430 * 0 on success, negative errno on failure
3431 */
3432int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3433{
3434 char buf[32];
3435 unsigned long orig_mask, xfer_mask;
3436 unsigned long pio_mask, mwdma_mask, udma_mask;
3437 int quiet, highbit;
3438
3439 quiet = !!(sel & ATA_DNXFER_QUIET);
3440 sel &= ~ATA_DNXFER_QUIET;
3441
3442 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3443 dev->mwdma_mask,
3444 dev->udma_mask);
3445 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3446
3447 switch (sel) {
3448 case ATA_DNXFER_PIO:
3449 highbit = fls(pio_mask) - 1;
3450 pio_mask &= ~(1 << highbit);
3451 break;
3452
3453 case ATA_DNXFER_DMA:
3454 if (udma_mask) {
3455 highbit = fls(udma_mask) - 1;
3456 udma_mask &= ~(1 << highbit);
3457 if (!udma_mask)
3458 return -ENOENT;
3459 } else if (mwdma_mask) {
3460 highbit = fls(mwdma_mask) - 1;
3461 mwdma_mask &= ~(1 << highbit);
3462 if (!mwdma_mask)
3463 return -ENOENT;
3464 }
3465 break;
3466
3467 case ATA_DNXFER_40C:
3468 udma_mask &= ATA_UDMA_MASK_40C;
3469 break;
3470
3471 case ATA_DNXFER_FORCE_PIO0:
3472 pio_mask &= 1;
3473 /* fall through */
3474 case ATA_DNXFER_FORCE_PIO:
3475 mwdma_mask = 0;
3476 udma_mask = 0;
3477 break;
3478
3479 default:
3480 BUG();
3481 }
3482
3483 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3484
3485 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3486 return -ENOENT;
3487
3488 if (!quiet) {
3489 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3490 snprintf(buf, sizeof(buf), "%s:%s",
3491 ata_mode_string(xfer_mask),
3492 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3493 else
3494 snprintf(buf, sizeof(buf), "%s",
3495 ata_mode_string(xfer_mask));
3496
3497 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3498 }
3499
3500 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3501 &dev->udma_mask);
3502
3503 return 0;
3504}
3505
3506static int ata_dev_set_mode(struct ata_device *dev)
3507{
3508 struct ata_port *ap = dev->link->ap;
3509 struct ata_eh_context *ehc = &dev->link->eh_context;
3510 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3511 const char *dev_err_whine = "";
3512 int ign_dev_err = 0;
3513 unsigned int err_mask = 0;
3514 int rc;
3515
3516 dev->flags &= ~ATA_DFLAG_PIO;
3517 if (dev->xfer_shift == ATA_SHIFT_PIO)
3518 dev->flags |= ATA_DFLAG_PIO;
3519
3520 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3521 dev_err_whine = " (SET_XFERMODE skipped)";
3522 else {
3523 if (nosetxfer)
3524 ata_dev_warn(dev,
3525 "NOSETXFER but PATA detected - can't "
3526 "skip SETXFER, might malfunction\n");
3527 err_mask = ata_dev_set_xfermode(dev);
3528 }
3529
3530 if (err_mask & ~AC_ERR_DEV)
3531 goto fail;
3532
3533 /* revalidate */
3534 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3535 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3536 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3537 if (rc)
3538 return rc;
3539
3540 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3541 /* Old CFA may refuse this command, which is just fine */
3542 if (ata_id_is_cfa(dev->id))
3543 ign_dev_err = 1;
3544 /* Catch several broken garbage emulations plus some pre
3545 ATA devices */
3546 if (ata_id_major_version(dev->id) == 0 &&
3547 dev->pio_mode <= XFER_PIO_2)
3548 ign_dev_err = 1;
3549 /* Some very old devices and some bad newer ones fail
3550 any kind of SET_XFERMODE request but support PIO0-2
3551 timings and no IORDY */
3552 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3553 ign_dev_err = 1;
3554 }
3555 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3556 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3557 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3558 dev->dma_mode == XFER_MW_DMA_0 &&
3559 (dev->id[63] >> 8) & 1)
3560 ign_dev_err = 1;
3561
3562 /* if the device is actually configured correctly, ignore dev err */
3563 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3564 ign_dev_err = 1;
3565
3566 if (err_mask & AC_ERR_DEV) {
3567 if (!ign_dev_err)
3568 goto fail;
3569 else
3570 dev_err_whine = " (device error ignored)";
3571 }
3572
3573 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3574 dev->xfer_shift, (int)dev->xfer_mode);
3575
3576 ata_dev_info(dev, "configured for %s%s\n",
3577 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3578 dev_err_whine);
3579
3580 return 0;
3581
3582 fail:
3583 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3584 return -EIO;
3585}
3586
3587/**
3588 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3589 * @link: link on which timings will be programmed
3590 * @r_failed_dev: out parameter for failed device
3591 *
3592 * Standard implementation of the function used to tune and set
3593 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3594 * ata_dev_set_mode() fails, pointer to the failing device is
3595 * returned in @r_failed_dev.
3596 *
3597 * LOCKING:
3598 * PCI/etc. bus probe sem.
3599 *
3600 * RETURNS:
3601 * 0 on success, negative errno otherwise
3602 */
3603
3604int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3605{
3606 struct ata_port *ap = link->ap;
3607 struct ata_device *dev;
3608 int rc = 0, used_dma = 0, found = 0;
3609
3610 /* step 1: calculate xfer_mask */
3611 ata_for_each_dev(dev, link, ENABLED) {
3612 unsigned long pio_mask, dma_mask;
3613 unsigned int mode_mask;
3614
3615 mode_mask = ATA_DMA_MASK_ATA;
3616 if (dev->class == ATA_DEV_ATAPI)
3617 mode_mask = ATA_DMA_MASK_ATAPI;
3618 else if (ata_id_is_cfa(dev->id))
3619 mode_mask = ATA_DMA_MASK_CFA;
3620
3621 ata_dev_xfermask(dev);
3622 ata_force_xfermask(dev);
3623
3624 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3625
3626 if (libata_dma_mask & mode_mask)
3627 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3628 dev->udma_mask);
3629 else
3630 dma_mask = 0;
3631
3632 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3633 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3634
3635 found = 1;
3636 if (ata_dma_enabled(dev))
3637 used_dma = 1;
3638 }
3639 if (!found)
3640 goto out;
3641
3642 /* step 2: always set host PIO timings */
3643 ata_for_each_dev(dev, link, ENABLED) {
3644 if (dev->pio_mode == 0xff) {
3645 ata_dev_warn(dev, "no PIO support\n");
3646 rc = -EINVAL;
3647 goto out;
3648 }
3649
3650 dev->xfer_mode = dev->pio_mode;
3651 dev->xfer_shift = ATA_SHIFT_PIO;
3652 if (ap->ops->set_piomode)
3653 ap->ops->set_piomode(ap, dev);
3654 }
3655
3656 /* step 3: set host DMA timings */
3657 ata_for_each_dev(dev, link, ENABLED) {
3658 if (!ata_dma_enabled(dev))
3659 continue;
3660
3661 dev->xfer_mode = dev->dma_mode;
3662 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3663 if (ap->ops->set_dmamode)
3664 ap->ops->set_dmamode(ap, dev);
3665 }
3666
3667 /* step 4: update devices' xfer mode */
3668 ata_for_each_dev(dev, link, ENABLED) {
3669 rc = ata_dev_set_mode(dev);
3670 if (rc)
3671 goto out;
3672 }
3673
3674 /* Record simplex status. If we selected DMA then the other
3675 * host channels are not permitted to do so.
3676 */
3677 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3678 ap->host->simplex_claimed = ap;
3679
3680 out:
3681 if (rc)
3682 *r_failed_dev = dev;
3683 return rc;
3684}
3685
3686/**
3687 * ata_wait_ready - wait for link to become ready
3688 * @link: link to be waited on
3689 * @deadline: deadline jiffies for the operation
3690 * @check_ready: callback to check link readiness
3691 *
3692 * Wait for @link to become ready. @check_ready should return
3693 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3694 * link doesn't seem to be occupied, other errno for other error
3695 * conditions.
3696 *
3697 * Transient -ENODEV conditions are allowed for
3698 * ATA_TMOUT_FF_WAIT.
3699 *
3700 * LOCKING:
3701 * EH context.
3702 *
3703 * RETURNS:
3704 * 0 if @link is ready before @deadline; otherwise, -errno.
3705 */
3706int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3707 int (*check_ready)(struct ata_link *link))
3708{
3709 unsigned long start = jiffies;
3710 unsigned long nodev_deadline;
3711 int warned = 0;
3712
3713 /* choose which 0xff timeout to use, read comment in libata.h */
3714 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3715 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3716 else
3717 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3718
3719 /* Slave readiness can't be tested separately from master. On
3720 * M/S emulation configuration, this function should be called
3721 * only on the master and it will handle both master and slave.
3722 */
3723 WARN_ON(link == link->ap->slave_link);
3724
3725 if (time_after(nodev_deadline, deadline))
3726 nodev_deadline = deadline;
3727
3728 while (1) {
3729 unsigned long now = jiffies;
3730 int ready, tmp;
3731
3732 ready = tmp = check_ready(link);
3733 if (ready > 0)
3734 return 0;
3735
3736 /*
3737 * -ENODEV could be transient. Ignore -ENODEV if link
3738 * is online. Also, some SATA devices take a long
3739 * time to clear 0xff after reset. Wait for
3740 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3741 * offline.
3742 *
3743 * Note that some PATA controllers (pata_ali) explode
3744 * if status register is read more than once when
3745 * there's no device attached.
3746 */
3747 if (ready == -ENODEV) {
3748 if (ata_link_online(link))
3749 ready = 0;
3750 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3751 !ata_link_offline(link) &&
3752 time_before(now, nodev_deadline))
3753 ready = 0;
3754 }
3755
3756 if (ready)
3757 return ready;
3758 if (time_after(now, deadline))
3759 return -EBUSY;
3760
3761 if (!warned && time_after(now, start + 5 * HZ) &&
3762 (deadline - now > 3 * HZ)) {
3763 ata_link_warn(link,
3764 "link is slow to respond, please be patient "
3765 "(ready=%d)\n", tmp);
3766 warned = 1;
3767 }
3768
3769 ata_msleep(link->ap, 50);
3770 }
3771}
3772
3773/**
3774 * ata_wait_after_reset - wait for link to become ready after reset
3775 * @link: link to be waited on
3776 * @deadline: deadline jiffies for the operation
3777 * @check_ready: callback to check link readiness
3778 *
3779 * Wait for @link to become ready after reset.
3780 *
3781 * LOCKING:
3782 * EH context.
3783 *
3784 * RETURNS:
3785 * 0 if @link is ready before @deadline; otherwise, -errno.
3786 */
3787int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3788 int (*check_ready)(struct ata_link *link))
3789{
3790 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3791
3792 return ata_wait_ready(link, deadline, check_ready);
3793}
3794
3795/**
3796 * sata_link_debounce - debounce SATA phy status
3797 * @link: ATA link to debounce SATA phy status for
3798 * @params: timing parameters { interval, duration, timeout } in msec
3799 * @deadline: deadline jiffies for the operation
3800 *
3801 * Make sure SStatus of @link reaches stable state, determined by
3802 * holding the same value where DET is not 1 for @duration polled
3803 * every @interval, before @timeout. Timeout constraints the
3804 * beginning of the stable state. Because DET gets stuck at 1 on
3805 * some controllers after hot unplugging, this functions waits
3806 * until timeout then returns 0 if DET is stable at 1.
3807 *
3808 * @timeout is further limited by @deadline. The sooner of the
3809 * two is used.
3810 *
3811 * LOCKING:
3812 * Kernel thread context (may sleep)
3813 *
3814 * RETURNS:
3815 * 0 on success, -errno on failure.
3816 */
3817int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3818 unsigned long deadline)
3819{
3820 unsigned long interval = params[0];
3821 unsigned long duration = params[1];
3822 unsigned long last_jiffies, t;
3823 u32 last, cur;
3824 int rc;
3825
3826 t = ata_deadline(jiffies, params[2]);
3827 if (time_before(t, deadline))
3828 deadline = t;
3829
3830 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3831 return rc;
3832 cur &= 0xf;
3833
3834 last = cur;
3835 last_jiffies = jiffies;
3836
3837 while (1) {
3838 ata_msleep(link->ap, interval);
3839 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3840 return rc;
3841 cur &= 0xf;
3842
3843 /* DET stable? */
3844 if (cur == last) {
3845 if (cur == 1 && time_before(jiffies, deadline))
3846 continue;
3847 if (time_after(jiffies,
3848 ata_deadline(last_jiffies, duration)))
3849 return 0;
3850 continue;
3851 }
3852
3853 /* unstable, start over */
3854 last = cur;
3855 last_jiffies = jiffies;
3856
3857 /* Check deadline. If debouncing failed, return
3858 * -EPIPE to tell upper layer to lower link speed.
3859 */
3860 if (time_after(jiffies, deadline))
3861 return -EPIPE;
3862 }
3863}
3864
3865/**
3866 * sata_link_resume - resume SATA link
3867 * @link: ATA link to resume SATA
3868 * @params: timing parameters { interval, duration, timeout } in msec
3869 * @deadline: deadline jiffies for the operation
3870 *
3871 * Resume SATA phy @link and debounce it.
3872 *
3873 * LOCKING:
3874 * Kernel thread context (may sleep)
3875 *
3876 * RETURNS:
3877 * 0 on success, -errno on failure.
3878 */
3879int sata_link_resume(struct ata_link *link, const unsigned long *params,
3880 unsigned long deadline)
3881{
3882 int tries = ATA_LINK_RESUME_TRIES;
3883 u32 scontrol, serror;
3884 int rc;
3885
3886 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3887 return rc;
3888
3889 /*
3890 * Writes to SControl sometimes get ignored under certain
3891 * controllers (ata_piix SIDPR). Make sure DET actually is
3892 * cleared.
3893 */
3894 do {
3895 scontrol = (scontrol & 0x0f0) | 0x300;
3896 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3897 return rc;
3898 /*
3899 * Some PHYs react badly if SStatus is pounded
3900 * immediately after resuming. Delay 200ms before
3901 * debouncing.
3902 */
3903 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3904 ata_msleep(link->ap, 200);
3905
3906 /* is SControl restored correctly? */
3907 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3908 return rc;
3909 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3910
3911 if ((scontrol & 0xf0f) != 0x300) {
3912 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3913 scontrol);
3914 return 0;
3915 }
3916
3917 if (tries < ATA_LINK_RESUME_TRIES)
3918 ata_link_warn(link, "link resume succeeded after %d retries\n",
3919 ATA_LINK_RESUME_TRIES - tries);
3920
3921 if ((rc = sata_link_debounce(link, params, deadline)))
3922 return rc;
3923
3924 /* clear SError, some PHYs require this even for SRST to work */
3925 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3926 rc = sata_scr_write(link, SCR_ERROR, serror);
3927
3928 return rc != -EINVAL ? rc : 0;
3929}
3930
3931/**
3932 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3933 * @link: ATA link to manipulate SControl for
3934 * @policy: LPM policy to configure
3935 * @spm_wakeup: initiate LPM transition to active state
3936 *
3937 * Manipulate the IPM field of the SControl register of @link
3938 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3939 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3940 * the link. This function also clears PHYRDY_CHG before
3941 * returning.
3942 *
3943 * LOCKING:
3944 * EH context.
3945 *
3946 * RETURNS:
3947 * 0 on success, -errno otherwise.
3948 */
3949int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3950 bool spm_wakeup)
3951{
3952 struct ata_eh_context *ehc = &link->eh_context;
3953 bool woken_up = false;
3954 u32 scontrol;
3955 int rc;
3956
3957 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3958 if (rc)
3959 return rc;
3960
3961 switch (policy) {
3962 case ATA_LPM_MAX_POWER:
3963 /* disable all LPM transitions */
3964 scontrol |= (0x7 << 8);
3965 /* initiate transition to active state */
3966 if (spm_wakeup) {
3967 scontrol |= (0x4 << 12);
3968 woken_up = true;
3969 }
3970 break;
3971 case ATA_LPM_MED_POWER:
3972 /* allow LPM to PARTIAL */
3973 scontrol &= ~(0x1 << 8);
3974 scontrol |= (0x6 << 8);
3975 break;
3976 case ATA_LPM_MED_POWER_WITH_DIPM:
3977 case ATA_LPM_MIN_POWER:
3978 if (ata_link_nr_enabled(link) > 0)
3979 /* no restrictions on LPM transitions */
3980 scontrol &= ~(0x7 << 8);
3981 else {
3982 /* empty port, power off */
3983 scontrol &= ~0xf;
3984 scontrol |= (0x1 << 2);
3985 }
3986 break;
3987 default:
3988 WARN_ON(1);
3989 }
3990
3991 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3992 if (rc)
3993 return rc;
3994
3995 /* give the link time to transit out of LPM state */
3996 if (woken_up)
3997 msleep(10);
3998
3999 /* clear PHYRDY_CHG from SError */
4000 ehc->i.serror &= ~SERR_PHYRDY_CHG;
4001 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
4002}
4003
4004/**
4005 * ata_std_prereset - prepare for reset
4006 * @link: ATA link to be reset
4007 * @deadline: deadline jiffies for the operation
4008 *
4009 * @link is about to be reset. Initialize it. Failure from
4010 * prereset makes libata abort whole reset sequence and give up
4011 * that port, so prereset should be best-effort. It does its
4012 * best to prepare for reset sequence but if things go wrong, it
4013 * should just whine, not fail.
4014 *
4015 * LOCKING:
4016 * Kernel thread context (may sleep)
4017 *
4018 * RETURNS:
4019 * 0 on success, -errno otherwise.
4020 */
4021int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4022{
4023 struct ata_port *ap = link->ap;
4024 struct ata_eh_context *ehc = &link->eh_context;
4025 const unsigned long *timing = sata_ehc_deb_timing(ehc);
4026 int rc;
4027
4028 /* if we're about to do hardreset, nothing more to do */
4029 if (ehc->i.action & ATA_EH_HARDRESET)
4030 return 0;
4031
4032 /* if SATA, resume link */
4033 if (ap->flags & ATA_FLAG_SATA) {
4034 rc = sata_link_resume(link, timing, deadline);
4035 /* whine about phy resume failure but proceed */
4036 if (rc && rc != -EOPNOTSUPP)
4037 ata_link_warn(link,
4038 "failed to resume link for reset (errno=%d)\n",
4039 rc);
4040 }
4041
4042 /* no point in trying softreset on offline link */
4043 if (ata_phys_link_offline(link))
4044 ehc->i.action &= ~ATA_EH_SOFTRESET;
4045
4046 return 0;
4047}
4048
4049/**
4050 * sata_link_hardreset - reset link via SATA phy reset
4051 * @link: link to reset
4052 * @timing: timing parameters { interval, duration, timeout } in msec
4053 * @deadline: deadline jiffies for the operation
4054 * @online: optional out parameter indicating link onlineness
4055 * @check_ready: optional callback to check link readiness
4056 *
4057 * SATA phy-reset @link using DET bits of SControl register.
4058 * After hardreset, link readiness is waited upon using
4059 * ata_wait_ready() if @check_ready is specified. LLDs are
4060 * allowed to not specify @check_ready and wait itself after this
4061 * function returns. Device classification is LLD's
4062 * responsibility.
4063 *
4064 * *@online is set to one iff reset succeeded and @link is online
4065 * after reset.
4066 *
4067 * LOCKING:
4068 * Kernel thread context (may sleep)
4069 *
4070 * RETURNS:
4071 * 0 on success, -errno otherwise.
4072 */
4073int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4074 unsigned long deadline,
4075 bool *online, int (*check_ready)(struct ata_link *))
4076{
4077 u32 scontrol;
4078 int rc;
4079
4080 DPRINTK("ENTER\n");
4081
4082 if (online)
4083 *online = false;
4084
4085 if (sata_set_spd_needed(link)) {
4086 /* SATA spec says nothing about how to reconfigure
4087 * spd. To be on the safe side, turn off phy during
4088 * reconfiguration. This works for at least ICH7 AHCI
4089 * and Sil3124.
4090 */
4091 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4092 goto out;
4093
4094 scontrol = (scontrol & 0x0f0) | 0x304;
4095
4096 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4097 goto out;
4098
4099 sata_set_spd(link);
4100 }
4101
4102 /* issue phy wake/reset */
4103 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4104 goto out;
4105
4106 scontrol = (scontrol & 0x0f0) | 0x301;
4107
4108 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4109 goto out;
4110
4111 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4112 * 10.4.2 says at least 1 ms.
4113 */
4114 ata_msleep(link->ap, 1);
4115
4116 /* bring link back */
4117 rc = sata_link_resume(link, timing, deadline);
4118 if (rc)
4119 goto out;
4120 /* if link is offline nothing more to do */
4121 if (ata_phys_link_offline(link))
4122 goto out;
4123
4124 /* Link is online. From this point, -ENODEV too is an error. */
4125 if (online)
4126 *online = true;
4127
4128 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4129 /* If PMP is supported, we have to do follow-up SRST.
4130 * Some PMPs don't send D2H Reg FIS after hardreset if
4131 * the first port is empty. Wait only for
4132 * ATA_TMOUT_PMP_SRST_WAIT.
4133 */
4134 if (check_ready) {
4135 unsigned long pmp_deadline;
4136
4137 pmp_deadline = ata_deadline(jiffies,
4138 ATA_TMOUT_PMP_SRST_WAIT);
4139 if (time_after(pmp_deadline, deadline))
4140 pmp_deadline = deadline;
4141 ata_wait_ready(link, pmp_deadline, check_ready);
4142 }
4143 rc = -EAGAIN;
4144 goto out;
4145 }
4146
4147 rc = 0;
4148 if (check_ready)
4149 rc = ata_wait_ready(link, deadline, check_ready);
4150 out:
4151 if (rc && rc != -EAGAIN) {
4152 /* online is set iff link is online && reset succeeded */
4153 if (online)
4154 *online = false;
4155 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4156 }
4157 DPRINTK("EXIT, rc=%d\n", rc);
4158 return rc;
4159}
4160
4161/**
4162 * sata_std_hardreset - COMRESET w/o waiting or classification
4163 * @link: link to reset
4164 * @class: resulting class of attached device
4165 * @deadline: deadline jiffies for the operation
4166 *
4167 * Standard SATA COMRESET w/o waiting or classification.
4168 *
4169 * LOCKING:
4170 * Kernel thread context (may sleep)
4171 *
4172 * RETURNS:
4173 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4174 */
4175int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4176 unsigned long deadline)
4177{
4178 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4179 bool online;
4180 int rc;
4181
4182 /* do hardreset */
4183 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4184 return online ? -EAGAIN : rc;
4185}
4186
4187/**
4188 * ata_std_postreset - standard postreset callback
4189 * @link: the target ata_link
4190 * @classes: classes of attached devices
4191 *
4192 * This function is invoked after a successful reset. Note that
4193 * the device might have been reset more than once using
4194 * different reset methods before postreset is invoked.
4195 *
4196 * LOCKING:
4197 * Kernel thread context (may sleep)
4198 */
4199void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4200{
4201 u32 serror;
4202
4203 DPRINTK("ENTER\n");
4204
4205 /* reset complete, clear SError */
4206 if (!sata_scr_read(link, SCR_ERROR, &serror))
4207 sata_scr_write(link, SCR_ERROR, serror);
4208
4209 /* print link status */
4210 sata_print_link_status(link);
4211
4212 DPRINTK("EXIT\n");
4213}
4214
4215/**
4216 * ata_dev_same_device - Determine whether new ID matches configured device
4217 * @dev: device to compare against
4218 * @new_class: class of the new device
4219 * @new_id: IDENTIFY page of the new device
4220 *
4221 * Compare @new_class and @new_id against @dev and determine
4222 * whether @dev is the device indicated by @new_class and
4223 * @new_id.
4224 *
4225 * LOCKING:
4226 * None.
4227 *
4228 * RETURNS:
4229 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4230 */
4231static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4232 const u16 *new_id)
4233{
4234 const u16 *old_id = dev->id;
4235 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4236 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4237
4238 if (dev->class != new_class) {
4239 ata_dev_info(dev, "class mismatch %d != %d\n",
4240 dev->class, new_class);
4241 return 0;
4242 }
4243
4244 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4245 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4246 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4247 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4248
4249 if (strcmp(model[0], model[1])) {
4250 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4251 model[0], model[1]);
4252 return 0;
4253 }
4254
4255 if (strcmp(serial[0], serial[1])) {
4256 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4257 serial[0], serial[1]);
4258 return 0;
4259 }
4260
4261 return 1;
4262}
4263
4264/**
4265 * ata_dev_reread_id - Re-read IDENTIFY data
4266 * @dev: target ATA device
4267 * @readid_flags: read ID flags
4268 *
4269 * Re-read IDENTIFY page and make sure @dev is still attached to
4270 * the port.
4271 *
4272 * LOCKING:
4273 * Kernel thread context (may sleep)
4274 *
4275 * RETURNS:
4276 * 0 on success, negative errno otherwise
4277 */
4278int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4279{
4280 unsigned int class = dev->class;
4281 u16 *id = (void *)dev->link->ap->sector_buf;
4282 int rc;
4283
4284 /* read ID data */
4285 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4286 if (rc)
4287 return rc;
4288
4289 /* is the device still there? */
4290 if (!ata_dev_same_device(dev, class, id))
4291 return -ENODEV;
4292
4293 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4294 return 0;
4295}
4296
4297/**
4298 * ata_dev_revalidate - Revalidate ATA device
4299 * @dev: device to revalidate
4300 * @new_class: new class code
4301 * @readid_flags: read ID flags
4302 *
4303 * Re-read IDENTIFY page, make sure @dev is still attached to the
4304 * port and reconfigure it according to the new IDENTIFY page.
4305 *
4306 * LOCKING:
4307 * Kernel thread context (may sleep)
4308 *
4309 * RETURNS:
4310 * 0 on success, negative errno otherwise
4311 */
4312int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4313 unsigned int readid_flags)
4314{
4315 u64 n_sectors = dev->n_sectors;
4316 u64 n_native_sectors = dev->n_native_sectors;
4317 int rc;
4318
4319 if (!ata_dev_enabled(dev))
4320 return -ENODEV;
4321
4322 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4323 if (ata_class_enabled(new_class) &&
4324 new_class != ATA_DEV_ATA &&
4325 new_class != ATA_DEV_ATAPI &&
4326 new_class != ATA_DEV_ZAC &&
4327 new_class != ATA_DEV_SEMB) {
4328 ata_dev_info(dev, "class mismatch %u != %u\n",
4329 dev->class, new_class);
4330 rc = -ENODEV;
4331 goto fail;
4332 }
4333
4334 /* re-read ID */
4335 rc = ata_dev_reread_id(dev, readid_flags);
4336 if (rc)
4337 goto fail;
4338
4339 /* configure device according to the new ID */
4340 rc = ata_dev_configure(dev);
4341 if (rc)
4342 goto fail;
4343
4344 /* verify n_sectors hasn't changed */
4345 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4346 dev->n_sectors == n_sectors)
4347 return 0;
4348
4349 /* n_sectors has changed */
4350 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4351 (unsigned long long)n_sectors,
4352 (unsigned long long)dev->n_sectors);
4353
4354 /*
4355 * Something could have caused HPA to be unlocked
4356 * involuntarily. If n_native_sectors hasn't changed and the
4357 * new size matches it, keep the device.
4358 */
4359 if (dev->n_native_sectors == n_native_sectors &&
4360 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4361 ata_dev_warn(dev,
4362 "new n_sectors matches native, probably "
4363 "late HPA unlock, n_sectors updated\n");
4364 /* use the larger n_sectors */
4365 return 0;
4366 }
4367
4368 /*
4369 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4370 * unlocking HPA in those cases.
4371 *
4372 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4373 */
4374 if (dev->n_native_sectors == n_native_sectors &&
4375 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4376 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4377 ata_dev_warn(dev,
4378 "old n_sectors matches native, probably "
4379 "late HPA lock, will try to unlock HPA\n");
4380 /* try unlocking HPA */
4381 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4382 rc = -EIO;
4383 } else
4384 rc = -ENODEV;
4385
4386 /* restore original n_[native_]sectors and fail */
4387 dev->n_native_sectors = n_native_sectors;
4388 dev->n_sectors = n_sectors;
4389 fail:
4390 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4391 return rc;
4392}
4393
4394struct ata_blacklist_entry {
4395 const char *model_num;
4396 const char *model_rev;
4397 unsigned long horkage;
4398};
4399
4400static const struct ata_blacklist_entry ata_device_blacklist [] = {
4401 /* Devices with DMA related problems under Linux */
4402 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4403 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4404 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4405 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4406 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4407 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4408 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4409 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4410 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4411 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4412 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4413 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4414 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4415 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4416 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4417 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4418 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4419 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4420 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4421 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4422 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4423 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4424 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4425 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4426 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4427 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4428 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4429 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4430 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4431 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4432 /* Odd clown on sil3726/4726 PMPs */
4433 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4434
4435 /* Weird ATAPI devices */
4436 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4437 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4438 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4439 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4440
4441 /*
4442 * Causes silent data corruption with higher max sects.
4443 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4444 */
4445 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4446
4447 /*
4448 * These devices time out with higher max sects.
4449 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4450 */
4451 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4452 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4453
4454 /* Devices we expect to fail diagnostics */
4455
4456 /* Devices where NCQ should be avoided */
4457 /* NCQ is slow */
4458 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4459 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4460 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4461 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4462 /* NCQ is broken */
4463 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4464 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4465 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4466 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4467 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4468
4469 /* Seagate NCQ + FLUSH CACHE firmware bug */
4470 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4471 ATA_HORKAGE_FIRMWARE_WARN },
4472
4473 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4474 ATA_HORKAGE_FIRMWARE_WARN },
4475
4476 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4477 ATA_HORKAGE_FIRMWARE_WARN },
4478
4479 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4480 ATA_HORKAGE_FIRMWARE_WARN },
4481
4482 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4483 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4484 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4485 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4486
4487 /* Blacklist entries taken from Silicon Image 3124/3132
4488 Windows driver .inf file - also several Linux problem reports */
4489 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4490 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4491 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4492
4493 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4494 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4495
4496 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4497 SD7SN6S256G and SD8SN8U256G */
4498 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, },
4499
4500 /* devices which puke on READ_NATIVE_MAX */
4501 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4502 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4503 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4504 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4505
4506 /* this one allows HPA unlocking but fails IOs on the area */
4507 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4508
4509 /* Devices which report 1 sector over size HPA */
4510 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4511 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4512 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4513
4514 /* Devices which get the IVB wrong */
4515 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4516 /* Maybe we should just blacklist TSSTcorp... */
4517 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4518
4519 /* Devices that do not need bridging limits applied */
4520 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4521 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4522
4523 /* Devices which aren't very happy with higher link speeds */
4524 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4525 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4526
4527 /*
4528 * Devices which choke on SETXFER. Applies only if both the
4529 * device and controller are SATA.
4530 */
4531 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4532 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4533 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4534 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4535 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4536
4537 /* Crucial BX100 SSD 500GB has broken LPM support */
4538 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4539
4540 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4541 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4542 ATA_HORKAGE_ZERO_AFTER_TRIM |
4543 ATA_HORKAGE_NOLPM, },
4544 /* 512GB MX100 with newer firmware has only LPM issues */
4545 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4546 ATA_HORKAGE_NOLPM, },
4547
4548 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4549 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4550 ATA_HORKAGE_ZERO_AFTER_TRIM |
4551 ATA_HORKAGE_NOLPM, },
4552 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4553 ATA_HORKAGE_ZERO_AFTER_TRIM |
4554 ATA_HORKAGE_NOLPM, },
4555
4556 /* These specific Samsung models/firmware-revs do not handle LPM well */
4557 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4558 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4559
4560 /* Sandisk devices which are known to not handle LPM well */
4561 { "SanDisk SD7UB3Q*G1001", NULL, ATA_HORKAGE_NOLPM, },
4562
4563 /* devices that don't properly handle queued TRIM commands */
4564 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4565 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4566 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4567 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4568 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4569 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4570 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4571 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4572 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4573 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4574 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4575 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4576 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4577 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4578 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4579 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4580 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4581 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4582
4583 /* devices that don't properly handle TRIM commands */
4584 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4585
4586 /*
4587 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4588 * (Return Zero After Trim) flags in the ATA Command Set are
4589 * unreliable in the sense that they only define what happens if
4590 * the device successfully executed the DSM TRIM command. TRIM
4591 * is only advisory, however, and the device is free to silently
4592 * ignore all or parts of the request.
4593 *
4594 * Whitelist drives that are known to reliably return zeroes
4595 * after TRIM.
4596 */
4597
4598 /*
4599 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4600 * that model before whitelisting all other intel SSDs.
4601 */
4602 { "INTEL*SSDSC2MH*", NULL, 0, },
4603
4604 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4605 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4606 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4607 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4608 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4609 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4610 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4611
4612 /*
4613 * Some WD SATA-I drives spin up and down erratically when the link
4614 * is put into the slumber mode. We don't have full list of the
4615 * affected devices. Disable LPM if the device matches one of the
4616 * known prefixes and is SATA-1. As a side effect LPM partial is
4617 * lost too.
4618 *
4619 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4620 */
4621 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4622 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4623 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4624 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4625 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4626 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4627 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4628
4629 /* End Marker */
4630 { }
4631};
4632
4633static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4634{
4635 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4636 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4637 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4638
4639 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4640 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4641
4642 while (ad->model_num) {
4643 if (glob_match(ad->model_num, model_num)) {
4644 if (ad->model_rev == NULL)
4645 return ad->horkage;
4646 if (glob_match(ad->model_rev, model_rev))
4647 return ad->horkage;
4648 }
4649 ad++;
4650 }
4651 return 0;
4652}
4653
4654static int ata_dma_blacklisted(const struct ata_device *dev)
4655{
4656 /* We don't support polling DMA.
4657 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4658 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4659 */
4660 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4661 (dev->flags & ATA_DFLAG_CDB_INTR))
4662 return 1;
4663 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4664}
4665
4666/**
4667 * ata_is_40wire - check drive side detection
4668 * @dev: device
4669 *
4670 * Perform drive side detection decoding, allowing for device vendors
4671 * who can't follow the documentation.
4672 */
4673
4674static int ata_is_40wire(struct ata_device *dev)
4675{
4676 if (dev->horkage & ATA_HORKAGE_IVB)
4677 return ata_drive_40wire_relaxed(dev->id);
4678 return ata_drive_40wire(dev->id);
4679}
4680
4681/**
4682 * cable_is_40wire - 40/80/SATA decider
4683 * @ap: port to consider
4684 *
4685 * This function encapsulates the policy for speed management
4686 * in one place. At the moment we don't cache the result but
4687 * there is a good case for setting ap->cbl to the result when
4688 * we are called with unknown cables (and figuring out if it
4689 * impacts hotplug at all).
4690 *
4691 * Return 1 if the cable appears to be 40 wire.
4692 */
4693
4694static int cable_is_40wire(struct ata_port *ap)
4695{
4696 struct ata_link *link;
4697 struct ata_device *dev;
4698
4699 /* If the controller thinks we are 40 wire, we are. */
4700 if (ap->cbl == ATA_CBL_PATA40)
4701 return 1;
4702
4703 /* If the controller thinks we are 80 wire, we are. */
4704 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4705 return 0;
4706
4707 /* If the system is known to be 40 wire short cable (eg
4708 * laptop), then we allow 80 wire modes even if the drive
4709 * isn't sure.
4710 */
4711 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4712 return 0;
4713
4714 /* If the controller doesn't know, we scan.
4715 *
4716 * Note: We look for all 40 wire detects at this point. Any
4717 * 80 wire detect is taken to be 80 wire cable because
4718 * - in many setups only the one drive (slave if present) will
4719 * give a valid detect
4720 * - if you have a non detect capable drive you don't want it
4721 * to colour the choice
4722 */
4723 ata_for_each_link(link, ap, EDGE) {
4724 ata_for_each_dev(dev, link, ENABLED) {
4725 if (!ata_is_40wire(dev))
4726 return 0;
4727 }
4728 }
4729 return 1;
4730}
4731
4732/**
4733 * ata_dev_xfermask - Compute supported xfermask of the given device
4734 * @dev: Device to compute xfermask for
4735 *
4736 * Compute supported xfermask of @dev and store it in
4737 * dev->*_mask. This function is responsible for applying all
4738 * known limits including host controller limits, device
4739 * blacklist, etc...
4740 *
4741 * LOCKING:
4742 * None.
4743 */
4744static void ata_dev_xfermask(struct ata_device *dev)
4745{
4746 struct ata_link *link = dev->link;
4747 struct ata_port *ap = link->ap;
4748 struct ata_host *host = ap->host;
4749 unsigned long xfer_mask;
4750
4751 /* controller modes available */
4752 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4753 ap->mwdma_mask, ap->udma_mask);
4754
4755 /* drive modes available */
4756 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4757 dev->mwdma_mask, dev->udma_mask);
4758 xfer_mask &= ata_id_xfermask(dev->id);
4759
4760 /*
4761 * CFA Advanced TrueIDE timings are not allowed on a shared
4762 * cable
4763 */
4764 if (ata_dev_pair(dev)) {
4765 /* No PIO5 or PIO6 */
4766 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4767 /* No MWDMA3 or MWDMA 4 */
4768 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4769 }
4770
4771 if (ata_dma_blacklisted(dev)) {
4772 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4773 ata_dev_warn(dev,
4774 "device is on DMA blacklist, disabling DMA\n");
4775 }
4776
4777 if ((host->flags & ATA_HOST_SIMPLEX) &&
4778 host->simplex_claimed && host->simplex_claimed != ap) {
4779 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4780 ata_dev_warn(dev,
4781 "simplex DMA is claimed by other device, disabling DMA\n");
4782 }
4783
4784 if (ap->flags & ATA_FLAG_NO_IORDY)
4785 xfer_mask &= ata_pio_mask_no_iordy(dev);
4786
4787 if (ap->ops->mode_filter)
4788 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4789
4790 /* Apply cable rule here. Don't apply it early because when
4791 * we handle hot plug the cable type can itself change.
4792 * Check this last so that we know if the transfer rate was
4793 * solely limited by the cable.
4794 * Unknown or 80 wire cables reported host side are checked
4795 * drive side as well. Cases where we know a 40wire cable
4796 * is used safely for 80 are not checked here.
4797 */
4798 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4799 /* UDMA/44 or higher would be available */
4800 if (cable_is_40wire(ap)) {
4801 ata_dev_warn(dev,
4802 "limited to UDMA/33 due to 40-wire cable\n");
4803 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4804 }
4805
4806 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4807 &dev->mwdma_mask, &dev->udma_mask);
4808}
4809
4810/**
4811 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4812 * @dev: Device to which command will be sent
4813 *
4814 * Issue SET FEATURES - XFER MODE command to device @dev
4815 * on port @ap.
4816 *
4817 * LOCKING:
4818 * PCI/etc. bus probe sem.
4819 *
4820 * RETURNS:
4821 * 0 on success, AC_ERR_* mask otherwise.
4822 */
4823
4824static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4825{
4826 struct ata_taskfile tf;
4827 unsigned int err_mask;
4828
4829 /* set up set-features taskfile */
4830 DPRINTK("set features - xfer mode\n");
4831
4832 /* Some controllers and ATAPI devices show flaky interrupt
4833 * behavior after setting xfer mode. Use polling instead.
4834 */
4835 ata_tf_init(dev, &tf);
4836 tf.command = ATA_CMD_SET_FEATURES;
4837 tf.feature = SETFEATURES_XFER;
4838 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4839 tf.protocol = ATA_PROT_NODATA;
4840 /* If we are using IORDY we must send the mode setting command */
4841 if (ata_pio_need_iordy(dev))
4842 tf.nsect = dev->xfer_mode;
4843 /* If the device has IORDY and the controller does not - turn it off */
4844 else if (ata_id_has_iordy(dev->id))
4845 tf.nsect = 0x01;
4846 else /* In the ancient relic department - skip all of this */
4847 return 0;
4848
4849 /* On some disks, this command causes spin-up, so we need longer timeout */
4850 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4851
4852 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4853 return err_mask;
4854}
4855
4856/**
4857 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4858 * @dev: Device to which command will be sent
4859 * @enable: Whether to enable or disable the feature
4860 * @feature: The sector count represents the feature to set
4861 *
4862 * Issue SET FEATURES - SATA FEATURES command to device @dev
4863 * on port @ap with sector count
4864 *
4865 * LOCKING:
4866 * PCI/etc. bus probe sem.
4867 *
4868 * RETURNS:
4869 * 0 on success, AC_ERR_* mask otherwise.
4870 */
4871unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4872{
4873 struct ata_taskfile tf;
4874 unsigned int err_mask;
4875 unsigned long timeout = 0;
4876
4877 /* set up set-features taskfile */
4878 DPRINTK("set features - SATA features\n");
4879
4880 ata_tf_init(dev, &tf);
4881 tf.command = ATA_CMD_SET_FEATURES;
4882 tf.feature = enable;
4883 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4884 tf.protocol = ATA_PROT_NODATA;
4885 tf.nsect = feature;
4886
4887 if (enable == SETFEATURES_SPINUP)
4888 timeout = ata_probe_timeout ?
4889 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4890 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4891
4892 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4893 return err_mask;
4894}
4895EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4896
4897/**
4898 * ata_dev_init_params - Issue INIT DEV PARAMS command
4899 * @dev: Device to which command will be sent
4900 * @heads: Number of heads (taskfile parameter)
4901 * @sectors: Number of sectors (taskfile parameter)
4902 *
4903 * LOCKING:
4904 * Kernel thread context (may sleep)
4905 *
4906 * RETURNS:
4907 * 0 on success, AC_ERR_* mask otherwise.
4908 */
4909static unsigned int ata_dev_init_params(struct ata_device *dev,
4910 u16 heads, u16 sectors)
4911{
4912 struct ata_taskfile tf;
4913 unsigned int err_mask;
4914
4915 /* Number of sectors per track 1-255. Number of heads 1-16 */
4916 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4917 return AC_ERR_INVALID;
4918
4919 /* set up init dev params taskfile */
4920 DPRINTK("init dev params \n");
4921
4922 ata_tf_init(dev, &tf);
4923 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4924 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4925 tf.protocol = ATA_PROT_NODATA;
4926 tf.nsect = sectors;
4927 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4928
4929 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4930 /* A clean abort indicates an original or just out of spec drive
4931 and we should continue as we issue the setup based on the
4932 drive reported working geometry */
4933 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4934 err_mask = 0;
4935
4936 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4937 return err_mask;
4938}
4939
4940/**
4941 * atapi_check_dma - Check whether ATAPI DMA can be supported
4942 * @qc: Metadata associated with taskfile to check
4943 *
4944 * Allow low-level driver to filter ATA PACKET commands, returning
4945 * a status indicating whether or not it is OK to use DMA for the
4946 * supplied PACKET command.
4947 *
4948 * LOCKING:
4949 * spin_lock_irqsave(host lock)
4950 *
4951 * RETURNS: 0 when ATAPI DMA can be used
4952 * nonzero otherwise
4953 */
4954int atapi_check_dma(struct ata_queued_cmd *qc)
4955{
4956 struct ata_port *ap = qc->ap;
4957
4958 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4959 * few ATAPI devices choke on such DMA requests.
4960 */
4961 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4962 unlikely(qc->nbytes & 15))
4963 return 1;
4964
4965 if (ap->ops->check_atapi_dma)
4966 return ap->ops->check_atapi_dma(qc);
4967
4968 return 0;
4969}
4970
4971/**
4972 * ata_std_qc_defer - Check whether a qc needs to be deferred
4973 * @qc: ATA command in question
4974 *
4975 * Non-NCQ commands cannot run with any other command, NCQ or
4976 * not. As upper layer only knows the queue depth, we are
4977 * responsible for maintaining exclusion. This function checks
4978 * whether a new command @qc can be issued.
4979 *
4980 * LOCKING:
4981 * spin_lock_irqsave(host lock)
4982 *
4983 * RETURNS:
4984 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4985 */
4986int ata_std_qc_defer(struct ata_queued_cmd *qc)
4987{
4988 struct ata_link *link = qc->dev->link;
4989
4990 if (ata_is_ncq(qc->tf.protocol)) {
4991 if (!ata_tag_valid(link->active_tag))
4992 return 0;
4993 } else {
4994 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4995 return 0;
4996 }
4997
4998 return ATA_DEFER_LINK;
4999}
5000
5001void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
5002
5003/**
5004 * ata_sg_init - Associate command with scatter-gather table.
5005 * @qc: Command to be associated
5006 * @sg: Scatter-gather table.
5007 * @n_elem: Number of elements in s/g table.
5008 *
5009 * Initialize the data-related elements of queued_cmd @qc
5010 * to point to a scatter-gather table @sg, containing @n_elem
5011 * elements.
5012 *
5013 * LOCKING:
5014 * spin_lock_irqsave(host lock)
5015 */
5016void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
5017 unsigned int n_elem)
5018{
5019 qc->sg = sg;
5020 qc->n_elem = n_elem;
5021 qc->cursg = qc->sg;
5022}
5023
5024#ifdef CONFIG_HAS_DMA
5025
5026/**
5027 * ata_sg_clean - Unmap DMA memory associated with command
5028 * @qc: Command containing DMA memory to be released
5029 *
5030 * Unmap all mapped DMA memory associated with this command.
5031 *
5032 * LOCKING:
5033 * spin_lock_irqsave(host lock)
5034 */
5035static void ata_sg_clean(struct ata_queued_cmd *qc)
5036{
5037 struct ata_port *ap = qc->ap;
5038 struct scatterlist *sg = qc->sg;
5039 int dir = qc->dma_dir;
5040
5041 WARN_ON_ONCE(sg == NULL);
5042
5043 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5044
5045 if (qc->n_elem)
5046 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5047
5048 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5049 qc->sg = NULL;
5050}
5051
5052/**
5053 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5054 * @qc: Command with scatter-gather table to be mapped.
5055 *
5056 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5057 *
5058 * LOCKING:
5059 * spin_lock_irqsave(host lock)
5060 *
5061 * RETURNS:
5062 * Zero on success, negative on error.
5063 *
5064 */
5065static int ata_sg_setup(struct ata_queued_cmd *qc)
5066{
5067 struct ata_port *ap = qc->ap;
5068 unsigned int n_elem;
5069
5070 VPRINTK("ENTER, ata%u\n", ap->print_id);
5071
5072 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5073 if (n_elem < 1)
5074 return -1;
5075
5076 DPRINTK("%d sg elements mapped\n", n_elem);
5077 qc->orig_n_elem = qc->n_elem;
5078 qc->n_elem = n_elem;
5079 qc->flags |= ATA_QCFLAG_DMAMAP;
5080
5081 return 0;
5082}
5083
5084#else /* !CONFIG_HAS_DMA */
5085
5086static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5087static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5088
5089#endif /* !CONFIG_HAS_DMA */
5090
5091/**
5092 * swap_buf_le16 - swap halves of 16-bit words in place
5093 * @buf: Buffer to swap
5094 * @buf_words: Number of 16-bit words in buffer.
5095 *
5096 * Swap halves of 16-bit words if needed to convert from
5097 * little-endian byte order to native cpu byte order, or
5098 * vice-versa.
5099 *
5100 * LOCKING:
5101 * Inherited from caller.
5102 */
5103void swap_buf_le16(u16 *buf, unsigned int buf_words)
5104{
5105#ifdef __BIG_ENDIAN
5106 unsigned int i;
5107
5108 for (i = 0; i < buf_words; i++)
5109 buf[i] = le16_to_cpu(buf[i]);
5110#endif /* __BIG_ENDIAN */
5111}
5112
5113/**
5114 * ata_qc_new_init - Request an available ATA command, and initialize it
5115 * @dev: Device from whom we request an available command structure
5116 * @tag: tag
5117 *
5118 * LOCKING:
5119 * None.
5120 */
5121
5122struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5123{
5124 struct ata_port *ap = dev->link->ap;
5125 struct ata_queued_cmd *qc;
5126
5127 /* no command while frozen */
5128 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5129 return NULL;
5130
5131 /* libsas case */
5132 if (ap->flags & ATA_FLAG_SAS_HOST) {
5133 tag = ata_sas_allocate_tag(ap);
5134 if (tag < 0)
5135 return NULL;
5136 }
5137
5138 qc = __ata_qc_from_tag(ap, tag);
5139 qc->tag = tag;
5140 qc->scsicmd = NULL;
5141 qc->ap = ap;
5142 qc->dev = dev;
5143
5144 ata_qc_reinit(qc);
5145
5146 return qc;
5147}
5148
5149/**
5150 * ata_qc_free - free unused ata_queued_cmd
5151 * @qc: Command to complete
5152 *
5153 * Designed to free unused ata_queued_cmd object
5154 * in case something prevents using it.
5155 *
5156 * LOCKING:
5157 * spin_lock_irqsave(host lock)
5158 */
5159void ata_qc_free(struct ata_queued_cmd *qc)
5160{
5161 struct ata_port *ap;
5162 unsigned int tag;
5163
5164 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5165 ap = qc->ap;
5166
5167 qc->flags = 0;
5168 tag = qc->tag;
5169 if (likely(ata_tag_valid(tag))) {
5170 qc->tag = ATA_TAG_POISON;
5171 if (ap->flags & ATA_FLAG_SAS_HOST)
5172 ata_sas_free_tag(tag, ap);
5173 }
5174}
5175
5176void __ata_qc_complete(struct ata_queued_cmd *qc)
5177{
5178 struct ata_port *ap;
5179 struct ata_link *link;
5180
5181 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5182 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5183 ap = qc->ap;
5184 link = qc->dev->link;
5185
5186 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5187 ata_sg_clean(qc);
5188
5189 /* command should be marked inactive atomically with qc completion */
5190 if (ata_is_ncq(qc->tf.protocol)) {
5191 link->sactive &= ~(1 << qc->tag);
5192 if (!link->sactive)
5193 ap->nr_active_links--;
5194 } else {
5195 link->active_tag = ATA_TAG_POISON;
5196 ap->nr_active_links--;
5197 }
5198
5199 /* clear exclusive status */
5200 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5201 ap->excl_link == link))
5202 ap->excl_link = NULL;
5203
5204 /* atapi: mark qc as inactive to prevent the interrupt handler
5205 * from completing the command twice later, before the error handler
5206 * is called. (when rc != 0 and atapi request sense is needed)
5207 */
5208 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5209 ap->qc_active &= ~(1 << qc->tag);
5210
5211 /* call completion callback */
5212 qc->complete_fn(qc);
5213}
5214
5215static void fill_result_tf(struct ata_queued_cmd *qc)
5216{
5217 struct ata_port *ap = qc->ap;
5218
5219 qc->result_tf.flags = qc->tf.flags;
5220 ap->ops->qc_fill_rtf(qc);
5221}
5222
5223static void ata_verify_xfer(struct ata_queued_cmd *qc)
5224{
5225 struct ata_device *dev = qc->dev;
5226
5227 if (!ata_is_data(qc->tf.protocol))
5228 return;
5229
5230 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5231 return;
5232
5233 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5234}
5235
5236/**
5237 * ata_qc_complete - Complete an active ATA command
5238 * @qc: Command to complete
5239 *
5240 * Indicate to the mid and upper layers that an ATA command has
5241 * completed, with either an ok or not-ok status.
5242 *
5243 * Refrain from calling this function multiple times when
5244 * successfully completing multiple NCQ commands.
5245 * ata_qc_complete_multiple() should be used instead, which will
5246 * properly update IRQ expect state.
5247 *
5248 * LOCKING:
5249 * spin_lock_irqsave(host lock)
5250 */
5251void ata_qc_complete(struct ata_queued_cmd *qc)
5252{
5253 struct ata_port *ap = qc->ap;
5254
5255 /* Trigger the LED (if available) */
5256 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
5257
5258 /* XXX: New EH and old EH use different mechanisms to
5259 * synchronize EH with regular execution path.
5260 *
5261 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5262 * Normal execution path is responsible for not accessing a
5263 * failed qc. libata core enforces the rule by returning NULL
5264 * from ata_qc_from_tag() for failed qcs.
5265 *
5266 * Old EH depends on ata_qc_complete() nullifying completion
5267 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5268 * not synchronize with interrupt handler. Only PIO task is
5269 * taken care of.
5270 */
5271 if (ap->ops->error_handler) {
5272 struct ata_device *dev = qc->dev;
5273 struct ata_eh_info *ehi = &dev->link->eh_info;
5274
5275 if (unlikely(qc->err_mask))
5276 qc->flags |= ATA_QCFLAG_FAILED;
5277
5278 /*
5279 * Finish internal commands without any further processing
5280 * and always with the result TF filled.
5281 */
5282 if (unlikely(ata_tag_internal(qc->tag))) {
5283 fill_result_tf(qc);
5284 trace_ata_qc_complete_internal(qc);
5285 __ata_qc_complete(qc);
5286 return;
5287 }
5288
5289 /*
5290 * Non-internal qc has failed. Fill the result TF and
5291 * summon EH.
5292 */
5293 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5294 fill_result_tf(qc);
5295 trace_ata_qc_complete_failed(qc);
5296 ata_qc_schedule_eh(qc);
5297 return;
5298 }
5299
5300 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5301
5302 /* read result TF if requested */
5303 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5304 fill_result_tf(qc);
5305
5306 trace_ata_qc_complete_done(qc);
5307 /* Some commands need post-processing after successful
5308 * completion.
5309 */
5310 switch (qc->tf.command) {
5311 case ATA_CMD_SET_FEATURES:
5312 if (qc->tf.feature != SETFEATURES_WC_ON &&
5313 qc->tf.feature != SETFEATURES_WC_OFF &&
5314 qc->tf.feature != SETFEATURES_RA_ON &&
5315 qc->tf.feature != SETFEATURES_RA_OFF)
5316 break;
5317 /* fall through */
5318 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5319 case ATA_CMD_SET_MULTI: /* multi_count changed */
5320 /* revalidate device */
5321 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5322 ata_port_schedule_eh(ap);
5323 break;
5324
5325 case ATA_CMD_SLEEP:
5326 dev->flags |= ATA_DFLAG_SLEEPING;
5327 break;
5328 }
5329
5330 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5331 ata_verify_xfer(qc);
5332
5333 __ata_qc_complete(qc);
5334 } else {
5335 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5336 return;
5337
5338 /* read result TF if failed or requested */
5339 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5340 fill_result_tf(qc);
5341
5342 __ata_qc_complete(qc);
5343 }
5344}
5345
5346/**
5347 * ata_qc_complete_multiple - Complete multiple qcs successfully
5348 * @ap: port in question
5349 * @qc_active: new qc_active mask
5350 *
5351 * Complete in-flight commands. This functions is meant to be
5352 * called from low-level driver's interrupt routine to complete
5353 * requests normally. ap->qc_active and @qc_active is compared
5354 * and commands are completed accordingly.
5355 *
5356 * Always use this function when completing multiple NCQ commands
5357 * from IRQ handlers instead of calling ata_qc_complete()
5358 * multiple times to keep IRQ expect status properly in sync.
5359 *
5360 * LOCKING:
5361 * spin_lock_irqsave(host lock)
5362 *
5363 * RETURNS:
5364 * Number of completed commands on success, -errno otherwise.
5365 */
5366int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5367{
5368 int nr_done = 0;
5369 u32 done_mask;
5370
5371 done_mask = ap->qc_active ^ qc_active;
5372
5373 if (unlikely(done_mask & qc_active)) {
5374 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5375 ap->qc_active, qc_active);
5376 return -EINVAL;
5377 }
5378
5379 while (done_mask) {
5380 struct ata_queued_cmd *qc;
5381 unsigned int tag = __ffs(done_mask);
5382
5383 qc = ata_qc_from_tag(ap, tag);
5384 if (qc) {
5385 ata_qc_complete(qc);
5386 nr_done++;
5387 }
5388 done_mask &= ~(1 << tag);
5389 }
5390
5391 return nr_done;
5392}
5393
5394/**
5395 * ata_qc_issue - issue taskfile to device
5396 * @qc: command to issue to device
5397 *
5398 * Prepare an ATA command to submission to device.
5399 * This includes mapping the data into a DMA-able
5400 * area, filling in the S/G table, and finally
5401 * writing the taskfile to hardware, starting the command.
5402 *
5403 * LOCKING:
5404 * spin_lock_irqsave(host lock)
5405 */
5406void ata_qc_issue(struct ata_queued_cmd *qc)
5407{
5408 struct ata_port *ap = qc->ap;
5409 struct ata_link *link = qc->dev->link;
5410 u8 prot = qc->tf.protocol;
5411
5412 /* Make sure only one non-NCQ command is outstanding. The
5413 * check is skipped for old EH because it reuses active qc to
5414 * request ATAPI sense.
5415 */
5416 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5417
5418 if (ata_is_ncq(prot)) {
5419 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5420
5421 if (!link->sactive)
5422 ap->nr_active_links++;
5423 link->sactive |= 1 << qc->tag;
5424 } else {
5425 WARN_ON_ONCE(link->sactive);
5426
5427 ap->nr_active_links++;
5428 link->active_tag = qc->tag;
5429 }
5430
5431 qc->flags |= ATA_QCFLAG_ACTIVE;
5432 ap->qc_active |= 1 << qc->tag;
5433
5434 /*
5435 * We guarantee to LLDs that they will have at least one
5436 * non-zero sg if the command is a data command.
5437 */
5438 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5439 goto sys_err;
5440
5441 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5442 (ap->flags & ATA_FLAG_PIO_DMA)))
5443 if (ata_sg_setup(qc))
5444 goto sys_err;
5445
5446 /* if device is sleeping, schedule reset and abort the link */
5447 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5448 link->eh_info.action |= ATA_EH_RESET;
5449 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5450 ata_link_abort(link);
5451 return;
5452 }
5453
5454 ap->ops->qc_prep(qc);
5455 trace_ata_qc_issue(qc);
5456 qc->err_mask |= ap->ops->qc_issue(qc);
5457 if (unlikely(qc->err_mask))
5458 goto err;
5459 return;
5460
5461sys_err:
5462 qc->err_mask |= AC_ERR_SYSTEM;
5463err:
5464 ata_qc_complete(qc);
5465}
5466
5467/**
5468 * sata_scr_valid - test whether SCRs are accessible
5469 * @link: ATA link to test SCR accessibility for
5470 *
5471 * Test whether SCRs are accessible for @link.
5472 *
5473 * LOCKING:
5474 * None.
5475 *
5476 * RETURNS:
5477 * 1 if SCRs are accessible, 0 otherwise.
5478 */
5479int sata_scr_valid(struct ata_link *link)
5480{
5481 struct ata_port *ap = link->ap;
5482
5483 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5484}
5485
5486/**
5487 * sata_scr_read - read SCR register of the specified port
5488 * @link: ATA link to read SCR for
5489 * @reg: SCR to read
5490 * @val: Place to store read value
5491 *
5492 * Read SCR register @reg of @link into *@val. This function is
5493 * guaranteed to succeed if @link is ap->link, the cable type of
5494 * the port is SATA and the port implements ->scr_read.
5495 *
5496 * LOCKING:
5497 * None if @link is ap->link. Kernel thread context otherwise.
5498 *
5499 * RETURNS:
5500 * 0 on success, negative errno on failure.
5501 */
5502int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5503{
5504 if (ata_is_host_link(link)) {
5505 if (sata_scr_valid(link))
5506 return link->ap->ops->scr_read(link, reg, val);
5507 return -EOPNOTSUPP;
5508 }
5509
5510 return sata_pmp_scr_read(link, reg, val);
5511}
5512
5513/**
5514 * sata_scr_write - write SCR register of the specified port
5515 * @link: ATA link to write SCR for
5516 * @reg: SCR to write
5517 * @val: value to write
5518 *
5519 * Write @val to SCR register @reg of @link. This function is
5520 * guaranteed to succeed if @link is ap->link, the cable type of
5521 * the port is SATA and the port implements ->scr_read.
5522 *
5523 * LOCKING:
5524 * None if @link is ap->link. Kernel thread context otherwise.
5525 *
5526 * RETURNS:
5527 * 0 on success, negative errno on failure.
5528 */
5529int sata_scr_write(struct ata_link *link, int reg, u32 val)
5530{
5531 if (ata_is_host_link(link)) {
5532 if (sata_scr_valid(link))
5533 return link->ap->ops->scr_write(link, reg, val);
5534 return -EOPNOTSUPP;
5535 }
5536
5537 return sata_pmp_scr_write(link, reg, val);
5538}
5539
5540/**
5541 * sata_scr_write_flush - write SCR register of the specified port and flush
5542 * @link: ATA link to write SCR for
5543 * @reg: SCR to write
5544 * @val: value to write
5545 *
5546 * This function is identical to sata_scr_write() except that this
5547 * function performs flush after writing to the register.
5548 *
5549 * LOCKING:
5550 * None if @link is ap->link. Kernel thread context otherwise.
5551 *
5552 * RETURNS:
5553 * 0 on success, negative errno on failure.
5554 */
5555int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5556{
5557 if (ata_is_host_link(link)) {
5558 int rc;
5559
5560 if (sata_scr_valid(link)) {
5561 rc = link->ap->ops->scr_write(link, reg, val);
5562 if (rc == 0)
5563 rc = link->ap->ops->scr_read(link, reg, &val);
5564 return rc;
5565 }
5566 return -EOPNOTSUPP;
5567 }
5568
5569 return sata_pmp_scr_write(link, reg, val);
5570}
5571
5572/**
5573 * ata_phys_link_online - test whether the given link is online
5574 * @link: ATA link to test
5575 *
5576 * Test whether @link is online. Note that this function returns
5577 * 0 if online status of @link cannot be obtained, so
5578 * ata_link_online(link) != !ata_link_offline(link).
5579 *
5580 * LOCKING:
5581 * None.
5582 *
5583 * RETURNS:
5584 * True if the port online status is available and online.
5585 */
5586bool ata_phys_link_online(struct ata_link *link)
5587{
5588 u32 sstatus;
5589
5590 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5591 ata_sstatus_online(sstatus))
5592 return true;
5593 return false;
5594}
5595
5596/**
5597 * ata_phys_link_offline - test whether the given link is offline
5598 * @link: ATA link to test
5599 *
5600 * Test whether @link is offline. Note that this function
5601 * returns 0 if offline status of @link cannot be obtained, so
5602 * ata_link_online(link) != !ata_link_offline(link).
5603 *
5604 * LOCKING:
5605 * None.
5606 *
5607 * RETURNS:
5608 * True if the port offline status is available and offline.
5609 */
5610bool ata_phys_link_offline(struct ata_link *link)
5611{
5612 u32 sstatus;
5613
5614 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5615 !ata_sstatus_online(sstatus))
5616 return true;
5617 return false;
5618}
5619
5620/**
5621 * ata_link_online - test whether the given link is online
5622 * @link: ATA link to test
5623 *
5624 * Test whether @link is online. This is identical to
5625 * ata_phys_link_online() when there's no slave link. When
5626 * there's a slave link, this function should only be called on
5627 * the master link and will return true if any of M/S links is
5628 * online.
5629 *
5630 * LOCKING:
5631 * None.
5632 *
5633 * RETURNS:
5634 * True if the port online status is available and online.
5635 */
5636bool ata_link_online(struct ata_link *link)
5637{
5638 struct ata_link *slave = link->ap->slave_link;
5639
5640 WARN_ON(link == slave); /* shouldn't be called on slave link */
5641
5642 return ata_phys_link_online(link) ||
5643 (slave && ata_phys_link_online(slave));
5644}
5645
5646/**
5647 * ata_link_offline - test whether the given link is offline
5648 * @link: ATA link to test
5649 *
5650 * Test whether @link is offline. This is identical to
5651 * ata_phys_link_offline() when there's no slave link. When
5652 * there's a slave link, this function should only be called on
5653 * the master link and will return true if both M/S links are
5654 * offline.
5655 *
5656 * LOCKING:
5657 * None.
5658 *
5659 * RETURNS:
5660 * True if the port offline status is available and offline.
5661 */
5662bool ata_link_offline(struct ata_link *link)
5663{
5664 struct ata_link *slave = link->ap->slave_link;
5665
5666 WARN_ON(link == slave); /* shouldn't be called on slave link */
5667
5668 return ata_phys_link_offline(link) &&
5669 (!slave || ata_phys_link_offline(slave));
5670}
5671
5672#ifdef CONFIG_PM
5673static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5674 unsigned int action, unsigned int ehi_flags,
5675 bool async)
5676{
5677 struct ata_link *link;
5678 unsigned long flags;
5679
5680 /* Previous resume operation might still be in
5681 * progress. Wait for PM_PENDING to clear.
5682 */
5683 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5684 ata_port_wait_eh(ap);
5685 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5686 }
5687
5688 /* request PM ops to EH */
5689 spin_lock_irqsave(ap->lock, flags);
5690
5691 ap->pm_mesg = mesg;
5692 ap->pflags |= ATA_PFLAG_PM_PENDING;
5693 ata_for_each_link(link, ap, HOST_FIRST) {
5694 link->eh_info.action |= action;
5695 link->eh_info.flags |= ehi_flags;
5696 }
5697
5698 ata_port_schedule_eh(ap);
5699
5700 spin_unlock_irqrestore(ap->lock, flags);
5701
5702 if (!async) {
5703 ata_port_wait_eh(ap);
5704 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5705 }
5706}
5707
5708/*
5709 * On some hardware, device fails to respond after spun down for suspend. As
5710 * the device won't be used before being resumed, we don't need to touch the
5711 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5712 *
5713 * http://thread.gmane.org/gmane.linux.ide/46764
5714 */
5715static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5716 | ATA_EHI_NO_AUTOPSY
5717 | ATA_EHI_NO_RECOVERY;
5718
5719static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5720{
5721 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5722}
5723
5724static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5725{
5726 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5727}
5728
5729static int ata_port_pm_suspend(struct device *dev)
5730{
5731 struct ata_port *ap = to_ata_port(dev);
5732
5733 if (pm_runtime_suspended(dev))
5734 return 0;
5735
5736 ata_port_suspend(ap, PMSG_SUSPEND);
5737 return 0;
5738}
5739
5740static int ata_port_pm_freeze(struct device *dev)
5741{
5742 struct ata_port *ap = to_ata_port(dev);
5743
5744 if (pm_runtime_suspended(dev))
5745 return 0;
5746
5747 ata_port_suspend(ap, PMSG_FREEZE);
5748 return 0;
5749}
5750
5751static int ata_port_pm_poweroff(struct device *dev)
5752{
5753 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5754 return 0;
5755}
5756
5757static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5758 | ATA_EHI_QUIET;
5759
5760static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5761{
5762 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5763}
5764
5765static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5766{
5767 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5768}
5769
5770static int ata_port_pm_resume(struct device *dev)
5771{
5772 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5773 pm_runtime_disable(dev);
5774 pm_runtime_set_active(dev);
5775 pm_runtime_enable(dev);
5776 return 0;
5777}
5778
5779/*
5780 * For ODDs, the upper layer will poll for media change every few seconds,
5781 * which will make it enter and leave suspend state every few seconds. And
5782 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5783 * is very little and the ODD may malfunction after constantly being reset.
5784 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5785 * ODD is attached to the port.
5786 */
5787static int ata_port_runtime_idle(struct device *dev)
5788{
5789 struct ata_port *ap = to_ata_port(dev);
5790 struct ata_link *link;
5791 struct ata_device *adev;
5792
5793 ata_for_each_link(link, ap, HOST_FIRST) {
5794 ata_for_each_dev(adev, link, ENABLED)
5795 if (adev->class == ATA_DEV_ATAPI &&
5796 !zpodd_dev_enabled(adev))
5797 return -EBUSY;
5798 }
5799
5800 return 0;
5801}
5802
5803static int ata_port_runtime_suspend(struct device *dev)
5804{
5805 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5806 return 0;
5807}
5808
5809static int ata_port_runtime_resume(struct device *dev)
5810{
5811 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5812 return 0;
5813}
5814
5815static const struct dev_pm_ops ata_port_pm_ops = {
5816 .suspend = ata_port_pm_suspend,
5817 .resume = ata_port_pm_resume,
5818 .freeze = ata_port_pm_freeze,
5819 .thaw = ata_port_pm_resume,
5820 .poweroff = ata_port_pm_poweroff,
5821 .restore = ata_port_pm_resume,
5822
5823 .runtime_suspend = ata_port_runtime_suspend,
5824 .runtime_resume = ata_port_runtime_resume,
5825 .runtime_idle = ata_port_runtime_idle,
5826};
5827
5828/* sas ports don't participate in pm runtime management of ata_ports,
5829 * and need to resume ata devices at the domain level, not the per-port
5830 * level. sas suspend/resume is async to allow parallel port recovery
5831 * since sas has multiple ata_port instances per Scsi_Host.
5832 */
5833void ata_sas_port_suspend(struct ata_port *ap)
5834{
5835 ata_port_suspend_async(ap, PMSG_SUSPEND);
5836}
5837EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5838
5839void ata_sas_port_resume(struct ata_port *ap)
5840{
5841 ata_port_resume_async(ap, PMSG_RESUME);
5842}
5843EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5844
5845/**
5846 * ata_host_suspend - suspend host
5847 * @host: host to suspend
5848 * @mesg: PM message
5849 *
5850 * Suspend @host. Actual operation is performed by port suspend.
5851 */
5852int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5853{
5854 host->dev->power.power_state = mesg;
5855 return 0;
5856}
5857
5858/**
5859 * ata_host_resume - resume host
5860 * @host: host to resume
5861 *
5862 * Resume @host. Actual operation is performed by port resume.
5863 */
5864void ata_host_resume(struct ata_host *host)
5865{
5866 host->dev->power.power_state = PMSG_ON;
5867}
5868#endif
5869
5870const struct device_type ata_port_type = {
5871 .name = "ata_port",
5872#ifdef CONFIG_PM
5873 .pm = &ata_port_pm_ops,
5874#endif
5875};
5876
5877/**
5878 * ata_dev_init - Initialize an ata_device structure
5879 * @dev: Device structure to initialize
5880 *
5881 * Initialize @dev in preparation for probing.
5882 *
5883 * LOCKING:
5884 * Inherited from caller.
5885 */
5886void ata_dev_init(struct ata_device *dev)
5887{
5888 struct ata_link *link = ata_dev_phys_link(dev);
5889 struct ata_port *ap = link->ap;
5890 unsigned long flags;
5891
5892 /* SATA spd limit is bound to the attached device, reset together */
5893 link->sata_spd_limit = link->hw_sata_spd_limit;
5894 link->sata_spd = 0;
5895
5896 /* High bits of dev->flags are used to record warm plug
5897 * requests which occur asynchronously. Synchronize using
5898 * host lock.
5899 */
5900 spin_lock_irqsave(ap->lock, flags);
5901 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5902 dev->horkage = 0;
5903 spin_unlock_irqrestore(ap->lock, flags);
5904
5905 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5906 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5907 dev->pio_mask = UINT_MAX;
5908 dev->mwdma_mask = UINT_MAX;
5909 dev->udma_mask = UINT_MAX;
5910}
5911
5912/**
5913 * ata_link_init - Initialize an ata_link structure
5914 * @ap: ATA port link is attached to
5915 * @link: Link structure to initialize
5916 * @pmp: Port multiplier port number
5917 *
5918 * Initialize @link.
5919 *
5920 * LOCKING:
5921 * Kernel thread context (may sleep)
5922 */
5923void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5924{
5925 int i;
5926
5927 /* clear everything except for devices */
5928 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5929 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5930
5931 link->ap = ap;
5932 link->pmp = pmp;
5933 link->active_tag = ATA_TAG_POISON;
5934 link->hw_sata_spd_limit = UINT_MAX;
5935
5936 /* can't use iterator, ap isn't initialized yet */
5937 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5938 struct ata_device *dev = &link->device[i];
5939
5940 dev->link = link;
5941 dev->devno = dev - link->device;
5942#ifdef CONFIG_ATA_ACPI
5943 dev->gtf_filter = ata_acpi_gtf_filter;
5944#endif
5945 ata_dev_init(dev);
5946 }
5947}
5948
5949/**
5950 * sata_link_init_spd - Initialize link->sata_spd_limit
5951 * @link: Link to configure sata_spd_limit for
5952 *
5953 * Initialize @link->[hw_]sata_spd_limit to the currently
5954 * configured value.
5955 *
5956 * LOCKING:
5957 * Kernel thread context (may sleep).
5958 *
5959 * RETURNS:
5960 * 0 on success, -errno on failure.
5961 */
5962int sata_link_init_spd(struct ata_link *link)
5963{
5964 u8 spd;
5965 int rc;
5966
5967 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5968 if (rc)
5969 return rc;
5970
5971 spd = (link->saved_scontrol >> 4) & 0xf;
5972 if (spd)
5973 link->hw_sata_spd_limit &= (1 << spd) - 1;
5974
5975 ata_force_link_limits(link);
5976
5977 link->sata_spd_limit = link->hw_sata_spd_limit;
5978
5979 return 0;
5980}
5981
5982/**
5983 * ata_port_alloc - allocate and initialize basic ATA port resources
5984 * @host: ATA host this allocated port belongs to
5985 *
5986 * Allocate and initialize basic ATA port resources.
5987 *
5988 * RETURNS:
5989 * Allocate ATA port on success, NULL on failure.
5990 *
5991 * LOCKING:
5992 * Inherited from calling layer (may sleep).
5993 */
5994struct ata_port *ata_port_alloc(struct ata_host *host)
5995{
5996 struct ata_port *ap;
5997
5998 DPRINTK("ENTER\n");
5999
6000 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6001 if (!ap)
6002 return NULL;
6003
6004 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
6005 ap->lock = &host->lock;
6006 ap->print_id = -1;
6007 ap->local_port_no = -1;
6008 ap->host = host;
6009 ap->dev = host->dev;
6010
6011#if defined(ATA_VERBOSE_DEBUG)
6012 /* turn on all debugging levels */
6013 ap->msg_enable = 0x00FF;
6014#elif defined(ATA_DEBUG)
6015 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6016#else
6017 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6018#endif
6019
6020 mutex_init(&ap->scsi_scan_mutex);
6021 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6022 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6023 INIT_LIST_HEAD(&ap->eh_done_q);
6024 init_waitqueue_head(&ap->eh_wait_q);
6025 init_completion(&ap->park_req_pending);
6026 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6027 TIMER_DEFERRABLE);
6028
6029 ap->cbl = ATA_CBL_NONE;
6030
6031 ata_link_init(ap, &ap->link, 0);
6032
6033#ifdef ATA_IRQ_TRAP
6034 ap->stats.unhandled_irq = 1;
6035 ap->stats.idle_irq = 1;
6036#endif
6037 ata_sff_port_init(ap);
6038
6039 return ap;
6040}
6041
6042static void ata_devres_release(struct device *gendev, void *res)
6043{
6044 struct ata_host *host = dev_get_drvdata(gendev);
6045 int i;
6046
6047 for (i = 0; i < host->n_ports; i++) {
6048 struct ata_port *ap = host->ports[i];
6049
6050 if (!ap)
6051 continue;
6052
6053 if (ap->scsi_host)
6054 scsi_host_put(ap->scsi_host);
6055
6056 }
6057
6058 dev_set_drvdata(gendev, NULL);
6059 ata_host_put(host);
6060}
6061
6062static void ata_host_release(struct kref *kref)
6063{
6064 struct ata_host *host = container_of(kref, struct ata_host, kref);
6065 int i;
6066
6067 for (i = 0; i < host->n_ports; i++) {
6068 struct ata_port *ap = host->ports[i];
6069
6070 kfree(ap->pmp_link);
6071 kfree(ap->slave_link);
6072 kfree(ap);
6073 host->ports[i] = NULL;
6074 }
6075 kfree(host);
6076}
6077
6078void ata_host_get(struct ata_host *host)
6079{
6080 kref_get(&host->kref);
6081}
6082
6083void ata_host_put(struct ata_host *host)
6084{
6085 kref_put(&host->kref, ata_host_release);
6086}
6087
6088/**
6089 * ata_host_alloc - allocate and init basic ATA host resources
6090 * @dev: generic device this host is associated with
6091 * @max_ports: maximum number of ATA ports associated with this host
6092 *
6093 * Allocate and initialize basic ATA host resources. LLD calls
6094 * this function to allocate a host, initializes it fully and
6095 * attaches it using ata_host_register().
6096 *
6097 * @max_ports ports are allocated and host->n_ports is
6098 * initialized to @max_ports. The caller is allowed to decrease
6099 * host->n_ports before calling ata_host_register(). The unused
6100 * ports will be automatically freed on registration.
6101 *
6102 * RETURNS:
6103 * Allocate ATA host on success, NULL on failure.
6104 *
6105 * LOCKING:
6106 * Inherited from calling layer (may sleep).
6107 */
6108struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6109{
6110 struct ata_host *host;
6111 size_t sz;
6112 int i;
6113 void *dr;
6114
6115 DPRINTK("ENTER\n");
6116
6117 /* alloc a container for our list of ATA ports (buses) */
6118 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6119 host = kzalloc(sz, GFP_KERNEL);
6120 if (!host)
6121 return NULL;
6122
6123 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6124 goto err_free;
6125
6126 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
6127 if (!dr)
6128 goto err_out;
6129
6130 devres_add(dev, dr);
6131 dev_set_drvdata(dev, host);
6132
6133 spin_lock_init(&host->lock);
6134 mutex_init(&host->eh_mutex);
6135 host->dev = dev;
6136 host->n_ports = max_ports;
6137 kref_init(&host->kref);
6138
6139 /* allocate ports bound to this host */
6140 for (i = 0; i < max_ports; i++) {
6141 struct ata_port *ap;
6142
6143 ap = ata_port_alloc(host);
6144 if (!ap)
6145 goto err_out;
6146
6147 ap->port_no = i;
6148 host->ports[i] = ap;
6149 }
6150
6151 devres_remove_group(dev, NULL);
6152 return host;
6153
6154 err_out:
6155 devres_release_group(dev, NULL);
6156 err_free:
6157 kfree(host);
6158 return NULL;
6159}
6160
6161/**
6162 * ata_host_alloc_pinfo - alloc host and init with port_info array
6163 * @dev: generic device this host is associated with
6164 * @ppi: array of ATA port_info to initialize host with
6165 * @n_ports: number of ATA ports attached to this host
6166 *
6167 * Allocate ATA host and initialize with info from @ppi. If NULL
6168 * terminated, @ppi may contain fewer entries than @n_ports. The
6169 * last entry will be used for the remaining ports.
6170 *
6171 * RETURNS:
6172 * Allocate ATA host on success, NULL on failure.
6173 *
6174 * LOCKING:
6175 * Inherited from calling layer (may sleep).
6176 */
6177struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6178 const struct ata_port_info * const * ppi,
6179 int n_ports)
6180{
6181 const struct ata_port_info *pi;
6182 struct ata_host *host;
6183 int i, j;
6184
6185 host = ata_host_alloc(dev, n_ports);
6186 if (!host)
6187 return NULL;
6188
6189 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6190 struct ata_port *ap = host->ports[i];
6191
6192 if (ppi[j])
6193 pi = ppi[j++];
6194
6195 ap->pio_mask = pi->pio_mask;
6196 ap->mwdma_mask = pi->mwdma_mask;
6197 ap->udma_mask = pi->udma_mask;
6198 ap->flags |= pi->flags;
6199 ap->link.flags |= pi->link_flags;
6200 ap->ops = pi->port_ops;
6201
6202 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6203 host->ops = pi->port_ops;
6204 }
6205
6206 return host;
6207}
6208
6209/**
6210 * ata_slave_link_init - initialize slave link
6211 * @ap: port to initialize slave link for
6212 *
6213 * Create and initialize slave link for @ap. This enables slave
6214 * link handling on the port.
6215 *
6216 * In libata, a port contains links and a link contains devices.
6217 * There is single host link but if a PMP is attached to it,
6218 * there can be multiple fan-out links. On SATA, there's usually
6219 * a single device connected to a link but PATA and SATA
6220 * controllers emulating TF based interface can have two - master
6221 * and slave.
6222 *
6223 * However, there are a few controllers which don't fit into this
6224 * abstraction too well - SATA controllers which emulate TF
6225 * interface with both master and slave devices but also have
6226 * separate SCR register sets for each device. These controllers
6227 * need separate links for physical link handling
6228 * (e.g. onlineness, link speed) but should be treated like a
6229 * traditional M/S controller for everything else (e.g. command
6230 * issue, softreset).
6231 *
6232 * slave_link is libata's way of handling this class of
6233 * controllers without impacting core layer too much. For
6234 * anything other than physical link handling, the default host
6235 * link is used for both master and slave. For physical link
6236 * handling, separate @ap->slave_link is used. All dirty details
6237 * are implemented inside libata core layer. From LLD's POV, the
6238 * only difference is that prereset, hardreset and postreset are
6239 * called once more for the slave link, so the reset sequence
6240 * looks like the following.
6241 *
6242 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6243 * softreset(M) -> postreset(M) -> postreset(S)
6244 *
6245 * Note that softreset is called only for the master. Softreset
6246 * resets both M/S by definition, so SRST on master should handle
6247 * both (the standard method will work just fine).
6248 *
6249 * LOCKING:
6250 * Should be called before host is registered.
6251 *
6252 * RETURNS:
6253 * 0 on success, -errno on failure.
6254 */
6255int ata_slave_link_init(struct ata_port *ap)
6256{
6257 struct ata_link *link;
6258
6259 WARN_ON(ap->slave_link);
6260 WARN_ON(ap->flags & ATA_FLAG_PMP);
6261
6262 link = kzalloc(sizeof(*link), GFP_KERNEL);
6263 if (!link)
6264 return -ENOMEM;
6265
6266 ata_link_init(ap, link, 1);
6267 ap->slave_link = link;
6268 return 0;
6269}
6270
6271static void ata_host_stop(struct device *gendev, void *res)
6272{
6273 struct ata_host *host = dev_get_drvdata(gendev);
6274 int i;
6275
6276 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6277
6278 for (i = 0; i < host->n_ports; i++) {
6279 struct ata_port *ap = host->ports[i];
6280
6281 if (ap->ops->port_stop)
6282 ap->ops->port_stop(ap);
6283 }
6284
6285 if (host->ops->host_stop)
6286 host->ops->host_stop(host);
6287}
6288
6289/**
6290 * ata_finalize_port_ops - finalize ata_port_operations
6291 * @ops: ata_port_operations to finalize
6292 *
6293 * An ata_port_operations can inherit from another ops and that
6294 * ops can again inherit from another. This can go on as many
6295 * times as necessary as long as there is no loop in the
6296 * inheritance chain.
6297 *
6298 * Ops tables are finalized when the host is started. NULL or
6299 * unspecified entries are inherited from the closet ancestor
6300 * which has the method and the entry is populated with it.
6301 * After finalization, the ops table directly points to all the
6302 * methods and ->inherits is no longer necessary and cleared.
6303 *
6304 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6305 *
6306 * LOCKING:
6307 * None.
6308 */
6309static void ata_finalize_port_ops(struct ata_port_operations *ops)
6310{
6311 static DEFINE_SPINLOCK(lock);
6312 const struct ata_port_operations *cur;
6313 void **begin = (void **)ops;
6314 void **end = (void **)&ops->inherits;
6315 void **pp;
6316
6317 if (!ops || !ops->inherits)
6318 return;
6319
6320 spin_lock(&lock);
6321
6322 for (cur = ops->inherits; cur; cur = cur->inherits) {
6323 void **inherit = (void **)cur;
6324
6325 for (pp = begin; pp < end; pp++, inherit++)
6326 if (!*pp)
6327 *pp = *inherit;
6328 }
6329
6330 for (pp = begin; pp < end; pp++)
6331 if (IS_ERR(*pp))
6332 *pp = NULL;
6333
6334 ops->inherits = NULL;
6335
6336 spin_unlock(&lock);
6337}
6338
6339/**
6340 * ata_host_start - start and freeze ports of an ATA host
6341 * @host: ATA host to start ports for
6342 *
6343 * Start and then freeze ports of @host. Started status is
6344 * recorded in host->flags, so this function can be called
6345 * multiple times. Ports are guaranteed to get started only
6346 * once. If host->ops isn't initialized yet, its set to the
6347 * first non-dummy port ops.
6348 *
6349 * LOCKING:
6350 * Inherited from calling layer (may sleep).
6351 *
6352 * RETURNS:
6353 * 0 if all ports are started successfully, -errno otherwise.
6354 */
6355int ata_host_start(struct ata_host *host)
6356{
6357 int have_stop = 0;
6358 void *start_dr = NULL;
6359 int i, rc;
6360
6361 if (host->flags & ATA_HOST_STARTED)
6362 return 0;
6363
6364 ata_finalize_port_ops(host->ops);
6365
6366 for (i = 0; i < host->n_ports; i++) {
6367 struct ata_port *ap = host->ports[i];
6368
6369 ata_finalize_port_ops(ap->ops);
6370
6371 if (!host->ops && !ata_port_is_dummy(ap))
6372 host->ops = ap->ops;
6373
6374 if (ap->ops->port_stop)
6375 have_stop = 1;
6376 }
6377
6378 if (host->ops->host_stop)
6379 have_stop = 1;
6380
6381 if (have_stop) {
6382 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6383 if (!start_dr)
6384 return -ENOMEM;
6385 }
6386
6387 for (i = 0; i < host->n_ports; i++) {
6388 struct ata_port *ap = host->ports[i];
6389
6390 if (ap->ops->port_start) {
6391 rc = ap->ops->port_start(ap);
6392 if (rc) {
6393 if (rc != -ENODEV)
6394 dev_err(host->dev,
6395 "failed to start port %d (errno=%d)\n",
6396 i, rc);
6397 goto err_out;
6398 }
6399 }
6400 ata_eh_freeze_port(ap);
6401 }
6402
6403 if (start_dr)
6404 devres_add(host->dev, start_dr);
6405 host->flags |= ATA_HOST_STARTED;
6406 return 0;
6407
6408 err_out:
6409 while (--i >= 0) {
6410 struct ata_port *ap = host->ports[i];
6411
6412 if (ap->ops->port_stop)
6413 ap->ops->port_stop(ap);
6414 }
6415 devres_free(start_dr);
6416 return rc;
6417}
6418
6419/**
6420 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6421 * @host: host to initialize
6422 * @dev: device host is attached to
6423 * @ops: port_ops
6424 *
6425 */
6426void ata_host_init(struct ata_host *host, struct device *dev,
6427 struct ata_port_operations *ops)
6428{
6429 spin_lock_init(&host->lock);
6430 mutex_init(&host->eh_mutex);
6431 host->n_tags = ATA_MAX_QUEUE - 1;
6432 host->dev = dev;
6433 host->ops = ops;
6434}
6435
6436void __ata_port_probe(struct ata_port *ap)
6437{
6438 struct ata_eh_info *ehi = &ap->link.eh_info;
6439 unsigned long flags;
6440
6441 /* kick EH for boot probing */
6442 spin_lock_irqsave(ap->lock, flags);
6443
6444 ehi->probe_mask |= ATA_ALL_DEVICES;
6445 ehi->action |= ATA_EH_RESET;
6446 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6447
6448 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6449 ap->pflags |= ATA_PFLAG_LOADING;
6450 ata_port_schedule_eh(ap);
6451
6452 spin_unlock_irqrestore(ap->lock, flags);
6453}
6454
6455int ata_port_probe(struct ata_port *ap)
6456{
6457 int rc = 0;
6458
6459 if (ap->ops->error_handler) {
6460 __ata_port_probe(ap);
6461 ata_port_wait_eh(ap);
6462 } else {
6463 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6464 rc = ata_bus_probe(ap);
6465 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6466 }
6467 return rc;
6468}
6469
6470
6471static void async_port_probe(void *data, async_cookie_t cookie)
6472{
6473 struct ata_port *ap = data;
6474
6475 /*
6476 * If we're not allowed to scan this host in parallel,
6477 * we need to wait until all previous scans have completed
6478 * before going further.
6479 * Jeff Garzik says this is only within a controller, so we
6480 * don't need to wait for port 0, only for later ports.
6481 */
6482 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6483 async_synchronize_cookie(cookie);
6484
6485 (void)ata_port_probe(ap);
6486
6487 /* in order to keep device order, we need to synchronize at this point */
6488 async_synchronize_cookie(cookie);
6489
6490 ata_scsi_scan_host(ap, 1);
6491}
6492
6493/**
6494 * ata_host_register - register initialized ATA host
6495 * @host: ATA host to register
6496 * @sht: template for SCSI host
6497 *
6498 * Register initialized ATA host. @host is allocated using
6499 * ata_host_alloc() and fully initialized by LLD. This function
6500 * starts ports, registers @host with ATA and SCSI layers and
6501 * probe registered devices.
6502 *
6503 * LOCKING:
6504 * Inherited from calling layer (may sleep).
6505 *
6506 * RETURNS:
6507 * 0 on success, -errno otherwise.
6508 */
6509int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6510{
6511 int i, rc;
6512
6513 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6514
6515 /* host must have been started */
6516 if (!(host->flags & ATA_HOST_STARTED)) {
6517 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6518 WARN_ON(1);
6519 return -EINVAL;
6520 }
6521
6522 /* Blow away unused ports. This happens when LLD can't
6523 * determine the exact number of ports to allocate at
6524 * allocation time.
6525 */
6526 for (i = host->n_ports; host->ports[i]; i++)
6527 kfree(host->ports[i]);
6528
6529 /* give ports names and add SCSI hosts */
6530 for (i = 0; i < host->n_ports; i++) {
6531 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6532 host->ports[i]->local_port_no = i + 1;
6533 }
6534
6535 /* Create associated sysfs transport objects */
6536 for (i = 0; i < host->n_ports; i++) {
6537 rc = ata_tport_add(host->dev,host->ports[i]);
6538 if (rc) {
6539 goto err_tadd;
6540 }
6541 }
6542
6543 rc = ata_scsi_add_hosts(host, sht);
6544 if (rc)
6545 goto err_tadd;
6546
6547 /* set cable, sata_spd_limit and report */
6548 for (i = 0; i < host->n_ports; i++) {
6549 struct ata_port *ap = host->ports[i];
6550 unsigned long xfer_mask;
6551
6552 /* set SATA cable type if still unset */
6553 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6554 ap->cbl = ATA_CBL_SATA;
6555
6556 /* init sata_spd_limit to the current value */
6557 sata_link_init_spd(&ap->link);
6558 if (ap->slave_link)
6559 sata_link_init_spd(ap->slave_link);
6560
6561 /* print per-port info to dmesg */
6562 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6563 ap->udma_mask);
6564
6565 if (!ata_port_is_dummy(ap)) {
6566 ata_port_info(ap, "%cATA max %s %s\n",
6567 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6568 ata_mode_string(xfer_mask),
6569 ap->link.eh_info.desc);
6570 ata_ehi_clear_desc(&ap->link.eh_info);
6571 } else
6572 ata_port_info(ap, "DUMMY\n");
6573 }
6574
6575 /* perform each probe asynchronously */
6576 for (i = 0; i < host->n_ports; i++) {
6577 struct ata_port *ap = host->ports[i];
6578 async_schedule(async_port_probe, ap);
6579 }
6580
6581 return 0;
6582
6583 err_tadd:
6584 while (--i >= 0) {
6585 ata_tport_delete(host->ports[i]);
6586 }
6587 return rc;
6588
6589}
6590
6591/**
6592 * ata_host_activate - start host, request IRQ and register it
6593 * @host: target ATA host
6594 * @irq: IRQ to request
6595 * @irq_handler: irq_handler used when requesting IRQ
6596 * @irq_flags: irq_flags used when requesting IRQ
6597 * @sht: scsi_host_template to use when registering the host
6598 *
6599 * After allocating an ATA host and initializing it, most libata
6600 * LLDs perform three steps to activate the host - start host,
6601 * request IRQ and register it. This helper takes necessary
6602 * arguments and performs the three steps in one go.
6603 *
6604 * An invalid IRQ skips the IRQ registration and expects the host to
6605 * have set polling mode on the port. In this case, @irq_handler
6606 * should be NULL.
6607 *
6608 * LOCKING:
6609 * Inherited from calling layer (may sleep).
6610 *
6611 * RETURNS:
6612 * 0 on success, -errno otherwise.
6613 */
6614int ata_host_activate(struct ata_host *host, int irq,
6615 irq_handler_t irq_handler, unsigned long irq_flags,
6616 struct scsi_host_template *sht)
6617{
6618 int i, rc;
6619 char *irq_desc;
6620
6621 rc = ata_host_start(host);
6622 if (rc)
6623 return rc;
6624
6625 /* Special case for polling mode */
6626 if (!irq) {
6627 WARN_ON(irq_handler);
6628 return ata_host_register(host, sht);
6629 }
6630
6631 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6632 dev_driver_string(host->dev),
6633 dev_name(host->dev));
6634 if (!irq_desc)
6635 return -ENOMEM;
6636
6637 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6638 irq_desc, host);
6639 if (rc)
6640 return rc;
6641
6642 for (i = 0; i < host->n_ports; i++)
6643 ata_port_desc(host->ports[i], "irq %d", irq);
6644
6645 rc = ata_host_register(host, sht);
6646 /* if failed, just free the IRQ and leave ports alone */
6647 if (rc)
6648 devm_free_irq(host->dev, irq, host);
6649
6650 return rc;
6651}
6652
6653/**
6654 * ata_port_detach - Detach ATA port in preparation of device removal
6655 * @ap: ATA port to be detached
6656 *
6657 * Detach all ATA devices and the associated SCSI devices of @ap;
6658 * then, remove the associated SCSI host. @ap is guaranteed to
6659 * be quiescent on return from this function.
6660 *
6661 * LOCKING:
6662 * Kernel thread context (may sleep).
6663 */
6664static void ata_port_detach(struct ata_port *ap)
6665{
6666 unsigned long flags;
6667 struct ata_link *link;
6668 struct ata_device *dev;
6669
6670 if (!ap->ops->error_handler)
6671 goto skip_eh;
6672
6673 /* tell EH we're leaving & flush EH */
6674 spin_lock_irqsave(ap->lock, flags);
6675 ap->pflags |= ATA_PFLAG_UNLOADING;
6676 ata_port_schedule_eh(ap);
6677 spin_unlock_irqrestore(ap->lock, flags);
6678
6679 /* wait till EH commits suicide */
6680 ata_port_wait_eh(ap);
6681
6682 /* it better be dead now */
6683 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6684
6685 cancel_delayed_work_sync(&ap->hotplug_task);
6686
6687 skip_eh:
6688 /* clean up zpodd on port removal */
6689 ata_for_each_link(link, ap, HOST_FIRST) {
6690 ata_for_each_dev(dev, link, ALL) {
6691 if (zpodd_dev_enabled(dev))
6692 zpodd_exit(dev);
6693 }
6694 }
6695 if (ap->pmp_link) {
6696 int i;
6697 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6698 ata_tlink_delete(&ap->pmp_link[i]);
6699 }
6700 /* remove the associated SCSI host */
6701 scsi_remove_host(ap->scsi_host);
6702 ata_tport_delete(ap);
6703}
6704
6705/**
6706 * ata_host_detach - Detach all ports of an ATA host
6707 * @host: Host to detach
6708 *
6709 * Detach all ports of @host.
6710 *
6711 * LOCKING:
6712 * Kernel thread context (may sleep).
6713 */
6714void ata_host_detach(struct ata_host *host)
6715{
6716 int i;
6717
6718 for (i = 0; i < host->n_ports; i++)
6719 ata_port_detach(host->ports[i]);
6720
6721 /* the host is dead now, dissociate ACPI */
6722 ata_acpi_dissociate(host);
6723}
6724
6725#ifdef CONFIG_PCI
6726
6727/**
6728 * ata_pci_remove_one - PCI layer callback for device removal
6729 * @pdev: PCI device that was removed
6730 *
6731 * PCI layer indicates to libata via this hook that hot-unplug or
6732 * module unload event has occurred. Detach all ports. Resource
6733 * release is handled via devres.
6734 *
6735 * LOCKING:
6736 * Inherited from PCI layer (may sleep).
6737 */
6738void ata_pci_remove_one(struct pci_dev *pdev)
6739{
6740 struct ata_host *host = pci_get_drvdata(pdev);
6741
6742 ata_host_detach(host);
6743}
6744
6745/* move to PCI subsystem */
6746int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6747{
6748 unsigned long tmp = 0;
6749
6750 switch (bits->width) {
6751 case 1: {
6752 u8 tmp8 = 0;
6753 pci_read_config_byte(pdev, bits->reg, &tmp8);
6754 tmp = tmp8;
6755 break;
6756 }
6757 case 2: {
6758 u16 tmp16 = 0;
6759 pci_read_config_word(pdev, bits->reg, &tmp16);
6760 tmp = tmp16;
6761 break;
6762 }
6763 case 4: {
6764 u32 tmp32 = 0;
6765 pci_read_config_dword(pdev, bits->reg, &tmp32);
6766 tmp = tmp32;
6767 break;
6768 }
6769
6770 default:
6771 return -EINVAL;
6772 }
6773
6774 tmp &= bits->mask;
6775
6776 return (tmp == bits->val) ? 1 : 0;
6777}
6778
6779#ifdef CONFIG_PM
6780void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6781{
6782 pci_save_state(pdev);
6783 pci_disable_device(pdev);
6784
6785 if (mesg.event & PM_EVENT_SLEEP)
6786 pci_set_power_state(pdev, PCI_D3hot);
6787}
6788
6789int ata_pci_device_do_resume(struct pci_dev *pdev)
6790{
6791 int rc;
6792
6793 pci_set_power_state(pdev, PCI_D0);
6794 pci_restore_state(pdev);
6795
6796 rc = pcim_enable_device(pdev);
6797 if (rc) {
6798 dev_err(&pdev->dev,
6799 "failed to enable device after resume (%d)\n", rc);
6800 return rc;
6801 }
6802
6803 pci_set_master(pdev);
6804 return 0;
6805}
6806
6807int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6808{
6809 struct ata_host *host = pci_get_drvdata(pdev);
6810 int rc = 0;
6811
6812 rc = ata_host_suspend(host, mesg);
6813 if (rc)
6814 return rc;
6815
6816 ata_pci_device_do_suspend(pdev, mesg);
6817
6818 return 0;
6819}
6820
6821int ata_pci_device_resume(struct pci_dev *pdev)
6822{
6823 struct ata_host *host = pci_get_drvdata(pdev);
6824 int rc;
6825
6826 rc = ata_pci_device_do_resume(pdev);
6827 if (rc == 0)
6828 ata_host_resume(host);
6829 return rc;
6830}
6831#endif /* CONFIG_PM */
6832
6833#endif /* CONFIG_PCI */
6834
6835/**
6836 * ata_platform_remove_one - Platform layer callback for device removal
6837 * @pdev: Platform device that was removed
6838 *
6839 * Platform layer indicates to libata via this hook that hot-unplug or
6840 * module unload event has occurred. Detach all ports. Resource
6841 * release is handled via devres.
6842 *
6843 * LOCKING:
6844 * Inherited from platform layer (may sleep).
6845 */
6846int ata_platform_remove_one(struct platform_device *pdev)
6847{
6848 struct ata_host *host = platform_get_drvdata(pdev);
6849
6850 ata_host_detach(host);
6851
6852 return 0;
6853}
6854
6855static int __init ata_parse_force_one(char **cur,
6856 struct ata_force_ent *force_ent,
6857 const char **reason)
6858{
6859 static const struct ata_force_param force_tbl[] __initconst = {
6860 { "40c", .cbl = ATA_CBL_PATA40 },
6861 { "80c", .cbl = ATA_CBL_PATA80 },
6862 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6863 { "unk", .cbl = ATA_CBL_PATA_UNK },
6864 { "ign", .cbl = ATA_CBL_PATA_IGN },
6865 { "sata", .cbl = ATA_CBL_SATA },
6866 { "1.5Gbps", .spd_limit = 1 },
6867 { "3.0Gbps", .spd_limit = 2 },
6868 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6869 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6870 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6871 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6872 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6873 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6874 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6875 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6876 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6877 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6878 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6879 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6880 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6881 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6882 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6883 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6884 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6885 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6886 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6887 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6888 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6889 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6890 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6891 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6892 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6893 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6894 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6895 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6896 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6897 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6898 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6899 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6900 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6901 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6902 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6903 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6904 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6905 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6906 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6907 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6908 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6909 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6910 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6911 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6912 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6913 };
6914 char *start = *cur, *p = *cur;
6915 char *id, *val, *endp;
6916 const struct ata_force_param *match_fp = NULL;
6917 int nr_matches = 0, i;
6918
6919 /* find where this param ends and update *cur */
6920 while (*p != '\0' && *p != ',')
6921 p++;
6922
6923 if (*p == '\0')
6924 *cur = p;
6925 else
6926 *cur = p + 1;
6927
6928 *p = '\0';
6929
6930 /* parse */
6931 p = strchr(start, ':');
6932 if (!p) {
6933 val = strstrip(start);
6934 goto parse_val;
6935 }
6936 *p = '\0';
6937
6938 id = strstrip(start);
6939 val = strstrip(p + 1);
6940
6941 /* parse id */
6942 p = strchr(id, '.');
6943 if (p) {
6944 *p++ = '\0';
6945 force_ent->device = simple_strtoul(p, &endp, 10);
6946 if (p == endp || *endp != '\0') {
6947 *reason = "invalid device";
6948 return -EINVAL;
6949 }
6950 }
6951
6952 force_ent->port = simple_strtoul(id, &endp, 10);
6953 if (id == endp || *endp != '\0') {
6954 *reason = "invalid port/link";
6955 return -EINVAL;
6956 }
6957
6958 parse_val:
6959 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6960 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6961 const struct ata_force_param *fp = &force_tbl[i];
6962
6963 if (strncasecmp(val, fp->name, strlen(val)))
6964 continue;
6965
6966 nr_matches++;
6967 match_fp = fp;
6968
6969 if (strcasecmp(val, fp->name) == 0) {
6970 nr_matches = 1;
6971 break;
6972 }
6973 }
6974
6975 if (!nr_matches) {
6976 *reason = "unknown value";
6977 return -EINVAL;
6978 }
6979 if (nr_matches > 1) {
6980 *reason = "ambiguous value";
6981 return -EINVAL;
6982 }
6983
6984 force_ent->param = *match_fp;
6985
6986 return 0;
6987}
6988
6989static void __init ata_parse_force_param(void)
6990{
6991 int idx = 0, size = 1;
6992 int last_port = -1, last_device = -1;
6993 char *p, *cur, *next;
6994
6995 /* calculate maximum number of params and allocate force_tbl */
6996 for (p = ata_force_param_buf; *p; p++)
6997 if (*p == ',')
6998 size++;
6999
7000 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
7001 if (!ata_force_tbl) {
7002 printk(KERN_WARNING "ata: failed to extend force table, "
7003 "libata.force ignored\n");
7004 return;
7005 }
7006
7007 /* parse and populate the table */
7008 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7009 const char *reason = "";
7010 struct ata_force_ent te = { .port = -1, .device = -1 };
7011
7012 next = cur;
7013 if (ata_parse_force_one(&next, &te, &reason)) {
7014 printk(KERN_WARNING "ata: failed to parse force "
7015 "parameter \"%s\" (%s)\n",
7016 cur, reason);
7017 continue;
7018 }
7019
7020 if (te.port == -1) {
7021 te.port = last_port;
7022 te.device = last_device;
7023 }
7024
7025 ata_force_tbl[idx++] = te;
7026
7027 last_port = te.port;
7028 last_device = te.device;
7029 }
7030
7031 ata_force_tbl_size = idx;
7032}
7033
7034static int __init ata_init(void)
7035{
7036 int rc;
7037
7038 ata_parse_force_param();
7039
7040 rc = ata_sff_init();
7041 if (rc) {
7042 kfree(ata_force_tbl);
7043 return rc;
7044 }
7045
7046 libata_transport_init();
7047 ata_scsi_transport_template = ata_attach_transport();
7048 if (!ata_scsi_transport_template) {
7049 ata_sff_exit();
7050 rc = -ENOMEM;
7051 goto err_out;
7052 }
7053
7054 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7055 return 0;
7056
7057err_out:
7058 return rc;
7059}
7060
7061static void __exit ata_exit(void)
7062{
7063 ata_release_transport(ata_scsi_transport_template);
7064 libata_transport_exit();
7065 ata_sff_exit();
7066 kfree(ata_force_tbl);
7067}
7068
7069subsys_initcall(ata_init);
7070module_exit(ata_exit);
7071
7072static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7073
7074int ata_ratelimit(void)
7075{
7076 return __ratelimit(&ratelimit);
7077}
7078
7079/**
7080 * ata_msleep - ATA EH owner aware msleep
7081 * @ap: ATA port to attribute the sleep to
7082 * @msecs: duration to sleep in milliseconds
7083 *
7084 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7085 * ownership is released before going to sleep and reacquired
7086 * after the sleep is complete. IOW, other ports sharing the
7087 * @ap->host will be allowed to own the EH while this task is
7088 * sleeping.
7089 *
7090 * LOCKING:
7091 * Might sleep.
7092 */
7093void ata_msleep(struct ata_port *ap, unsigned int msecs)
7094{
7095 bool owns_eh = ap && ap->host->eh_owner == current;
7096
7097 if (owns_eh)
7098 ata_eh_release(ap);
7099
7100 if (msecs < 20) {
7101 unsigned long usecs = msecs * USEC_PER_MSEC;
7102 usleep_range(usecs, usecs + 50);
7103 } else {
7104 msleep(msecs);
7105 }
7106
7107 if (owns_eh)
7108 ata_eh_acquire(ap);
7109}
7110
7111/**
7112 * ata_wait_register - wait until register value changes
7113 * @ap: ATA port to wait register for, can be NULL
7114 * @reg: IO-mapped register
7115 * @mask: Mask to apply to read register value
7116 * @val: Wait condition
7117 * @interval: polling interval in milliseconds
7118 * @timeout: timeout in milliseconds
7119 *
7120 * Waiting for some bits of register to change is a common
7121 * operation for ATA controllers. This function reads 32bit LE
7122 * IO-mapped register @reg and tests for the following condition.
7123 *
7124 * (*@reg & mask) != val
7125 *
7126 * If the condition is met, it returns; otherwise, the process is
7127 * repeated after @interval_msec until timeout.
7128 *
7129 * LOCKING:
7130 * Kernel thread context (may sleep)
7131 *
7132 * RETURNS:
7133 * The final register value.
7134 */
7135u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7136 unsigned long interval, unsigned long timeout)
7137{
7138 unsigned long deadline;
7139 u32 tmp;
7140
7141 tmp = ioread32(reg);
7142
7143 /* Calculate timeout _after_ the first read to make sure
7144 * preceding writes reach the controller before starting to
7145 * eat away the timeout.
7146 */
7147 deadline = ata_deadline(jiffies, timeout);
7148
7149 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7150 ata_msleep(ap, interval);
7151 tmp = ioread32(reg);
7152 }
7153
7154 return tmp;
7155}
7156
7157/**
7158 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7159 * @link: Link receiving the event
7160 *
7161 * Test whether the received PHY event has to be ignored or not.
7162 *
7163 * LOCKING:
7164 * None:
7165 *
7166 * RETURNS:
7167 * True if the event has to be ignored.
7168 */
7169bool sata_lpm_ignore_phy_events(struct ata_link *link)
7170{
7171 unsigned long lpm_timeout = link->last_lpm_change +
7172 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7173
7174 /* if LPM is enabled, PHYRDY doesn't mean anything */
7175 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7176 return true;
7177
7178 /* ignore the first PHY event after the LPM policy changed
7179 * as it is might be spurious
7180 */
7181 if ((link->flags & ATA_LFLAG_CHANGED) &&
7182 time_before(jiffies, lpm_timeout))
7183 return true;
7184
7185 return false;
7186}
7187EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7188
7189/*
7190 * Dummy port_ops
7191 */
7192static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7193{
7194 return AC_ERR_SYSTEM;
7195}
7196
7197static void ata_dummy_error_handler(struct ata_port *ap)
7198{
7199 /* truly dummy */
7200}
7201
7202struct ata_port_operations ata_dummy_port_ops = {
7203 .qc_prep = ata_noop_qc_prep,
7204 .qc_issue = ata_dummy_qc_issue,
7205 .error_handler = ata_dummy_error_handler,
7206 .sched_eh = ata_std_sched_eh,
7207 .end_eh = ata_std_end_eh,
7208};
7209
7210const struct ata_port_info ata_dummy_port_info = {
7211 .port_ops = &ata_dummy_port_ops,
7212};
7213
7214/*
7215 * Utility print functions
7216 */
7217void ata_port_printk(const struct ata_port *ap, const char *level,
7218 const char *fmt, ...)
7219{
7220 struct va_format vaf;
7221 va_list args;
7222
7223 va_start(args, fmt);
7224
7225 vaf.fmt = fmt;
7226 vaf.va = &args;
7227
7228 printk("%sata%u: %pV", level, ap->print_id, &vaf);
7229
7230 va_end(args);
7231}
7232EXPORT_SYMBOL(ata_port_printk);
7233
7234void ata_link_printk(const struct ata_link *link, const char *level,
7235 const char *fmt, ...)
7236{
7237 struct va_format vaf;
7238 va_list args;
7239
7240 va_start(args, fmt);
7241
7242 vaf.fmt = fmt;
7243 vaf.va = &args;
7244
7245 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7246 printk("%sata%u.%02u: %pV",
7247 level, link->ap->print_id, link->pmp, &vaf);
7248 else
7249 printk("%sata%u: %pV",
7250 level, link->ap->print_id, &vaf);
7251
7252 va_end(args);
7253}
7254EXPORT_SYMBOL(ata_link_printk);
7255
7256void ata_dev_printk(const struct ata_device *dev, const char *level,
7257 const char *fmt, ...)
7258{
7259 struct va_format vaf;
7260 va_list args;
7261
7262 va_start(args, fmt);
7263
7264 vaf.fmt = fmt;
7265 vaf.va = &args;
7266
7267 printk("%sata%u.%02u: %pV",
7268 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7269 &vaf);
7270
7271 va_end(args);
7272}
7273EXPORT_SYMBOL(ata_dev_printk);
7274
7275void ata_print_version(const struct device *dev, const char *version)
7276{
7277 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7278}
7279EXPORT_SYMBOL(ata_print_version);
7280
7281/*
7282 * libata is essentially a library of internal helper functions for
7283 * low-level ATA host controller drivers. As such, the API/ABI is
7284 * likely to change as new drivers are added and updated.
7285 * Do not depend on ABI/API stability.
7286 */
7287EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7288EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7289EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7290EXPORT_SYMBOL_GPL(ata_base_port_ops);
7291EXPORT_SYMBOL_GPL(sata_port_ops);
7292EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7293EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7294EXPORT_SYMBOL_GPL(ata_link_next);
7295EXPORT_SYMBOL_GPL(ata_dev_next);
7296EXPORT_SYMBOL_GPL(ata_std_bios_param);
7297EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7298EXPORT_SYMBOL_GPL(ata_host_init);
7299EXPORT_SYMBOL_GPL(ata_host_alloc);
7300EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7301EXPORT_SYMBOL_GPL(ata_slave_link_init);
7302EXPORT_SYMBOL_GPL(ata_host_start);
7303EXPORT_SYMBOL_GPL(ata_host_register);
7304EXPORT_SYMBOL_GPL(ata_host_activate);
7305EXPORT_SYMBOL_GPL(ata_host_detach);
7306EXPORT_SYMBOL_GPL(ata_sg_init);
7307EXPORT_SYMBOL_GPL(ata_qc_complete);
7308EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7309EXPORT_SYMBOL_GPL(atapi_cmd_type);
7310EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7311EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7312EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7313EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7314EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7315EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7316EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7317EXPORT_SYMBOL_GPL(ata_mode_string);
7318EXPORT_SYMBOL_GPL(ata_id_xfermask);
7319EXPORT_SYMBOL_GPL(ata_do_set_mode);
7320EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7321EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7322EXPORT_SYMBOL_GPL(ata_dev_disable);
7323EXPORT_SYMBOL_GPL(sata_set_spd);
7324EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7325EXPORT_SYMBOL_GPL(sata_link_debounce);
7326EXPORT_SYMBOL_GPL(sata_link_resume);
7327EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7328EXPORT_SYMBOL_GPL(ata_std_prereset);
7329EXPORT_SYMBOL_GPL(sata_link_hardreset);
7330EXPORT_SYMBOL_GPL(sata_std_hardreset);
7331EXPORT_SYMBOL_GPL(ata_std_postreset);
7332EXPORT_SYMBOL_GPL(ata_dev_classify);
7333EXPORT_SYMBOL_GPL(ata_dev_pair);
7334EXPORT_SYMBOL_GPL(ata_ratelimit);
7335EXPORT_SYMBOL_GPL(ata_msleep);
7336EXPORT_SYMBOL_GPL(ata_wait_register);
7337EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7338EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7339EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7340EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7341EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7342EXPORT_SYMBOL_GPL(sata_scr_valid);
7343EXPORT_SYMBOL_GPL(sata_scr_read);
7344EXPORT_SYMBOL_GPL(sata_scr_write);
7345EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7346EXPORT_SYMBOL_GPL(ata_link_online);
7347EXPORT_SYMBOL_GPL(ata_link_offline);
7348#ifdef CONFIG_PM
7349EXPORT_SYMBOL_GPL(ata_host_suspend);
7350EXPORT_SYMBOL_GPL(ata_host_resume);
7351#endif /* CONFIG_PM */
7352EXPORT_SYMBOL_GPL(ata_id_string);
7353EXPORT_SYMBOL_GPL(ata_id_c_string);
7354EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7355EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7356
7357EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7358EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7359EXPORT_SYMBOL_GPL(ata_timing_compute);
7360EXPORT_SYMBOL_GPL(ata_timing_merge);
7361EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7362
7363#ifdef CONFIG_PCI
7364EXPORT_SYMBOL_GPL(pci_test_config_bits);
7365EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7366#ifdef CONFIG_PM
7367EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7368EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7369EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7370EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7371#endif /* CONFIG_PM */
7372#endif /* CONFIG_PCI */
7373
7374EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7375
7376EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7377EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7378EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7379EXPORT_SYMBOL_GPL(ata_port_desc);
7380#ifdef CONFIG_PCI
7381EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7382#endif /* CONFIG_PCI */
7383EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7384EXPORT_SYMBOL_GPL(ata_link_abort);
7385EXPORT_SYMBOL_GPL(ata_port_abort);
7386EXPORT_SYMBOL_GPL(ata_port_freeze);
7387EXPORT_SYMBOL_GPL(sata_async_notification);
7388EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7389EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7390EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7391EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7392EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7393EXPORT_SYMBOL_GPL(ata_do_eh);
7394EXPORT_SYMBOL_GPL(ata_std_error_handler);
7395
7396EXPORT_SYMBOL_GPL(ata_cable_40wire);
7397EXPORT_SYMBOL_GPL(ata_cable_80wire);
7398EXPORT_SYMBOL_GPL(ata_cable_unknown);
7399EXPORT_SYMBOL_GPL(ata_cable_ignore);
7400EXPORT_SYMBOL_GPL(ata_cable_sata);