Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  libata-core.c - helper library for ATA
   4 *
   5 *  Maintained by:  Tejun Heo <tj@kernel.org>
   6 *    		    Please ALWAYS copy linux-ide@vger.kernel.org
   7 *		    on emails.
   8 *
   9 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
  10 *  Copyright 2003-2004 Jeff Garzik
  11 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12 *  libata documentation is available via 'make {ps|pdf}docs',
  13 *  as Documentation/driver-api/libata.rst
  14 *
  15 *  Hardware documentation available from http://www.t13.org/ and
  16 *  http://www.sata-io.org/
  17 *
  18 *  Standards documents from:
  19 *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
  20 *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
  21 *	http://www.sata-io.org (SATA)
  22 *	http://www.compactflash.org (CF)
  23 *	http://www.qic.org (QIC157 - Tape and DSC)
  24 *	http://www.ce-ata.org (CE-ATA: not supported)
 
  25 */
  26
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/pci.h>
  30#include <linux/init.h>
  31#include <linux/list.h>
  32#include <linux/mm.h>
  33#include <linux/spinlock.h>
  34#include <linux/blkdev.h>
  35#include <linux/delay.h>
  36#include <linux/timer.h>
  37#include <linux/time.h>
  38#include <linux/interrupt.h>
  39#include <linux/completion.h>
  40#include <linux/suspend.h>
  41#include <linux/workqueue.h>
  42#include <linux/scatterlist.h>
  43#include <linux/io.h>
  44#include <linux/async.h>
  45#include <linux/log2.h>
  46#include <linux/slab.h>
  47#include <linux/glob.h>
  48#include <scsi/scsi.h>
  49#include <scsi/scsi_cmnd.h>
  50#include <scsi/scsi_host.h>
  51#include <linux/libata.h>
  52#include <asm/byteorder.h>
  53#include <asm/unaligned.h>
  54#include <linux/cdrom.h>
  55#include <linux/ratelimit.h>
  56#include <linux/leds.h>
  57#include <linux/pm_runtime.h>
  58#include <linux/platform_device.h>
  59
  60#define CREATE_TRACE_POINTS
  61#include <trace/events/libata.h>
  62
  63#include "libata.h"
  64#include "libata-transport.h"
  65
  66/* debounce timing parameters in msecs { interval, duration, timeout } */
  67const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
  68const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
  69const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
  70
  71const struct ata_port_operations ata_base_port_ops = {
  72	.prereset		= ata_std_prereset,
  73	.postreset		= ata_std_postreset,
  74	.error_handler		= ata_std_error_handler,
  75	.sched_eh		= ata_std_sched_eh,
  76	.end_eh			= ata_std_end_eh,
  77};
  78
  79const struct ata_port_operations sata_port_ops = {
  80	.inherits		= &ata_base_port_ops,
  81
  82	.qc_defer		= ata_std_qc_defer,
  83	.hardreset		= sata_std_hardreset,
  84};
  85
  86static unsigned int ata_dev_init_params(struct ata_device *dev,
  87					u16 heads, u16 sectors);
  88static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  89static void ata_dev_xfermask(struct ata_device *dev);
  90static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  91
  92atomic_t ata_print_id = ATOMIC_INIT(0);
  93
  94struct ata_force_param {
  95	const char	*name;
  96	unsigned int	cbl;
  97	int		spd_limit;
  98	unsigned long	xfer_mask;
  99	unsigned int	horkage_on;
 100	unsigned int	horkage_off;
 101	unsigned int	lflags;
 102};
 103
 104struct ata_force_ent {
 105	int			port;
 106	int			device;
 107	struct ata_force_param	param;
 108};
 109
 110static struct ata_force_ent *ata_force_tbl;
 111static int ata_force_tbl_size;
 112
 113static char ata_force_param_buf[PAGE_SIZE] __initdata;
 114/* param_buf is thrown away after initialization, disallow read */
 115module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 116MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
 117
 118static int atapi_enabled = 1;
 119module_param(atapi_enabled, int, 0444);
 120MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 121
 122static int atapi_dmadir = 0;
 123module_param(atapi_dmadir, int, 0444);
 124MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 125
 126int atapi_passthru16 = 1;
 127module_param(atapi_passthru16, int, 0444);
 128MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 129
 130int libata_fua = 0;
 131module_param_named(fua, libata_fua, int, 0444);
 132MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 133
 134static int ata_ignore_hpa;
 135module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 136MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 137
 138static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 139module_param_named(dma, libata_dma_mask, int, 0444);
 140MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 141
 142static int ata_probe_timeout;
 143module_param(ata_probe_timeout, int, 0444);
 144MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 145
 146int libata_noacpi = 0;
 147module_param_named(noacpi, libata_noacpi, int, 0444);
 148MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 149
 150int libata_allow_tpm = 0;
 151module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 152MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 153
 154static int atapi_an;
 155module_param(atapi_an, int, 0444);
 156MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 157
 158MODULE_AUTHOR("Jeff Garzik");
 159MODULE_DESCRIPTION("Library module for ATA devices");
 160MODULE_LICENSE("GPL");
 161MODULE_VERSION(DRV_VERSION);
 162
 163
 164static bool ata_sstatus_online(u32 sstatus)
 165{
 166	return (sstatus & 0xf) == 0x3;
 167}
 168
 169/**
 170 *	ata_link_next - link iteration helper
 171 *	@link: the previous link, NULL to start
 172 *	@ap: ATA port containing links to iterate
 173 *	@mode: iteration mode, one of ATA_LITER_*
 174 *
 175 *	LOCKING:
 176 *	Host lock or EH context.
 177 *
 178 *	RETURNS:
 179 *	Pointer to the next link.
 180 */
 181struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 182			       enum ata_link_iter_mode mode)
 183{
 184	BUG_ON(mode != ATA_LITER_EDGE &&
 185	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 186
 187	/* NULL link indicates start of iteration */
 188	if (!link)
 189		switch (mode) {
 190		case ATA_LITER_EDGE:
 191		case ATA_LITER_PMP_FIRST:
 192			if (sata_pmp_attached(ap))
 193				return ap->pmp_link;
 194			/* fall through */
 195		case ATA_LITER_HOST_FIRST:
 196			return &ap->link;
 197		}
 198
 199	/* we just iterated over the host link, what's next? */
 200	if (link == &ap->link)
 201		switch (mode) {
 202		case ATA_LITER_HOST_FIRST:
 203			if (sata_pmp_attached(ap))
 204				return ap->pmp_link;
 205			/* fall through */
 206		case ATA_LITER_PMP_FIRST:
 207			if (unlikely(ap->slave_link))
 208				return ap->slave_link;
 209			/* fall through */
 210		case ATA_LITER_EDGE:
 211			return NULL;
 212		}
 213
 214	/* slave_link excludes PMP */
 215	if (unlikely(link == ap->slave_link))
 216		return NULL;
 217
 218	/* we were over a PMP link */
 219	if (++link < ap->pmp_link + ap->nr_pmp_links)
 220		return link;
 221
 222	if (mode == ATA_LITER_PMP_FIRST)
 223		return &ap->link;
 224
 225	return NULL;
 226}
 227
 228/**
 229 *	ata_dev_next - device iteration helper
 230 *	@dev: the previous device, NULL to start
 231 *	@link: ATA link containing devices to iterate
 232 *	@mode: iteration mode, one of ATA_DITER_*
 233 *
 234 *	LOCKING:
 235 *	Host lock or EH context.
 236 *
 237 *	RETURNS:
 238 *	Pointer to the next device.
 239 */
 240struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 241				enum ata_dev_iter_mode mode)
 242{
 243	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 244	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 245
 246	/* NULL dev indicates start of iteration */
 247	if (!dev)
 248		switch (mode) {
 249		case ATA_DITER_ENABLED:
 250		case ATA_DITER_ALL:
 251			dev = link->device;
 252			goto check;
 253		case ATA_DITER_ENABLED_REVERSE:
 254		case ATA_DITER_ALL_REVERSE:
 255			dev = link->device + ata_link_max_devices(link) - 1;
 256			goto check;
 257		}
 258
 259 next:
 260	/* move to the next one */
 261	switch (mode) {
 262	case ATA_DITER_ENABLED:
 263	case ATA_DITER_ALL:
 264		if (++dev < link->device + ata_link_max_devices(link))
 265			goto check;
 266		return NULL;
 267	case ATA_DITER_ENABLED_REVERSE:
 268	case ATA_DITER_ALL_REVERSE:
 269		if (--dev >= link->device)
 270			goto check;
 271		return NULL;
 272	}
 273
 274 check:
 275	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 276	    !ata_dev_enabled(dev))
 277		goto next;
 278	return dev;
 279}
 280
 281/**
 282 *	ata_dev_phys_link - find physical link for a device
 283 *	@dev: ATA device to look up physical link for
 284 *
 285 *	Look up physical link which @dev is attached to.  Note that
 286 *	this is different from @dev->link only when @dev is on slave
 287 *	link.  For all other cases, it's the same as @dev->link.
 288 *
 289 *	LOCKING:
 290 *	Don't care.
 291 *
 292 *	RETURNS:
 293 *	Pointer to the found physical link.
 294 */
 295struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 296{
 297	struct ata_port *ap = dev->link->ap;
 298
 299	if (!ap->slave_link)
 300		return dev->link;
 301	if (!dev->devno)
 302		return &ap->link;
 303	return ap->slave_link;
 304}
 305
 306/**
 307 *	ata_force_cbl - force cable type according to libata.force
 308 *	@ap: ATA port of interest
 309 *
 310 *	Force cable type according to libata.force and whine about it.
 311 *	The last entry which has matching port number is used, so it
 312 *	can be specified as part of device force parameters.  For
 313 *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 314 *	same effect.
 315 *
 316 *	LOCKING:
 317 *	EH context.
 318 */
 319void ata_force_cbl(struct ata_port *ap)
 320{
 321	int i;
 322
 323	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 324		const struct ata_force_ent *fe = &ata_force_tbl[i];
 325
 326		if (fe->port != -1 && fe->port != ap->print_id)
 327			continue;
 328
 329		if (fe->param.cbl == ATA_CBL_NONE)
 330			continue;
 331
 332		ap->cbl = fe->param.cbl;
 333		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 334		return;
 335	}
 336}
 337
 338/**
 339 *	ata_force_link_limits - force link limits according to libata.force
 340 *	@link: ATA link of interest
 341 *
 342 *	Force link flags and SATA spd limit according to libata.force
 343 *	and whine about it.  When only the port part is specified
 344 *	(e.g. 1:), the limit applies to all links connected to both
 345 *	the host link and all fan-out ports connected via PMP.  If the
 346 *	device part is specified as 0 (e.g. 1.00:), it specifies the
 347 *	first fan-out link not the host link.  Device number 15 always
 348 *	points to the host link whether PMP is attached or not.  If the
 349 *	controller has slave link, device number 16 points to it.
 350 *
 351 *	LOCKING:
 352 *	EH context.
 353 */
 354static void ata_force_link_limits(struct ata_link *link)
 355{
 356	bool did_spd = false;
 357	int linkno = link->pmp;
 358	int i;
 359
 360	if (ata_is_host_link(link))
 361		linkno += 15;
 362
 363	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 364		const struct ata_force_ent *fe = &ata_force_tbl[i];
 365
 366		if (fe->port != -1 && fe->port != link->ap->print_id)
 367			continue;
 368
 369		if (fe->device != -1 && fe->device != linkno)
 370			continue;
 371
 372		/* only honor the first spd limit */
 373		if (!did_spd && fe->param.spd_limit) {
 374			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 375			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 376					fe->param.name);
 377			did_spd = true;
 378		}
 379
 380		/* let lflags stack */
 381		if (fe->param.lflags) {
 382			link->flags |= fe->param.lflags;
 383			ata_link_notice(link,
 384					"FORCE: link flag 0x%x forced -> 0x%x\n",
 385					fe->param.lflags, link->flags);
 386		}
 387	}
 388}
 389
 390/**
 391 *	ata_force_xfermask - force xfermask according to libata.force
 392 *	@dev: ATA device of interest
 393 *
 394 *	Force xfer_mask according to libata.force and whine about it.
 395 *	For consistency with link selection, device number 15 selects
 396 *	the first device connected to the host link.
 397 *
 398 *	LOCKING:
 399 *	EH context.
 400 */
 401static void ata_force_xfermask(struct ata_device *dev)
 402{
 403	int devno = dev->link->pmp + dev->devno;
 404	int alt_devno = devno;
 405	int i;
 406
 407	/* allow n.15/16 for devices attached to host port */
 408	if (ata_is_host_link(dev->link))
 409		alt_devno += 15;
 410
 411	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 412		const struct ata_force_ent *fe = &ata_force_tbl[i];
 413		unsigned long pio_mask, mwdma_mask, udma_mask;
 414
 415		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 416			continue;
 417
 418		if (fe->device != -1 && fe->device != devno &&
 419		    fe->device != alt_devno)
 420			continue;
 421
 422		if (!fe->param.xfer_mask)
 423			continue;
 424
 425		ata_unpack_xfermask(fe->param.xfer_mask,
 426				    &pio_mask, &mwdma_mask, &udma_mask);
 427		if (udma_mask)
 428			dev->udma_mask = udma_mask;
 429		else if (mwdma_mask) {
 430			dev->udma_mask = 0;
 431			dev->mwdma_mask = mwdma_mask;
 432		} else {
 433			dev->udma_mask = 0;
 434			dev->mwdma_mask = 0;
 435			dev->pio_mask = pio_mask;
 436		}
 437
 438		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 439			       fe->param.name);
 440		return;
 441	}
 442}
 443
 444/**
 445 *	ata_force_horkage - force horkage according to libata.force
 446 *	@dev: ATA device of interest
 447 *
 448 *	Force horkage according to libata.force and whine about it.
 449 *	For consistency with link selection, device number 15 selects
 450 *	the first device connected to the host link.
 451 *
 452 *	LOCKING:
 453 *	EH context.
 454 */
 455static void ata_force_horkage(struct ata_device *dev)
 456{
 457	int devno = dev->link->pmp + dev->devno;
 458	int alt_devno = devno;
 459	int i;
 460
 461	/* allow n.15/16 for devices attached to host port */
 462	if (ata_is_host_link(dev->link))
 463		alt_devno += 15;
 464
 465	for (i = 0; i < ata_force_tbl_size; i++) {
 466		const struct ata_force_ent *fe = &ata_force_tbl[i];
 467
 468		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 469			continue;
 470
 471		if (fe->device != -1 && fe->device != devno &&
 472		    fe->device != alt_devno)
 473			continue;
 474
 475		if (!(~dev->horkage & fe->param.horkage_on) &&
 476		    !(dev->horkage & fe->param.horkage_off))
 477			continue;
 478
 479		dev->horkage |= fe->param.horkage_on;
 480		dev->horkage &= ~fe->param.horkage_off;
 481
 482		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 483			       fe->param.name);
 484	}
 485}
 486
 487/**
 488 *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 489 *	@opcode: SCSI opcode
 490 *
 491 *	Determine ATAPI command type from @opcode.
 492 *
 493 *	LOCKING:
 494 *	None.
 495 *
 496 *	RETURNS:
 497 *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 498 */
 499int atapi_cmd_type(u8 opcode)
 500{
 501	switch (opcode) {
 502	case GPCMD_READ_10:
 503	case GPCMD_READ_12:
 504		return ATAPI_READ;
 505
 506	case GPCMD_WRITE_10:
 507	case GPCMD_WRITE_12:
 508	case GPCMD_WRITE_AND_VERIFY_10:
 509		return ATAPI_WRITE;
 510
 511	case GPCMD_READ_CD:
 512	case GPCMD_READ_CD_MSF:
 513		return ATAPI_READ_CD;
 514
 515	case ATA_16:
 516	case ATA_12:
 517		if (atapi_passthru16)
 518			return ATAPI_PASS_THRU;
 519		/* fall thru */
 520	default:
 521		return ATAPI_MISC;
 522	}
 523}
 524
 525/**
 526 *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 527 *	@tf: Taskfile to convert
 528 *	@pmp: Port multiplier port
 529 *	@is_cmd: This FIS is for command
 530 *	@fis: Buffer into which data will output
 531 *
 532 *	Converts a standard ATA taskfile to a Serial ATA
 533 *	FIS structure (Register - Host to Device).
 534 *
 535 *	LOCKING:
 536 *	Inherited from caller.
 537 */
 538void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 539{
 540	fis[0] = 0x27;			/* Register - Host to Device FIS */
 541	fis[1] = pmp & 0xf;		/* Port multiplier number*/
 542	if (is_cmd)
 543		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
 544
 545	fis[2] = tf->command;
 546	fis[3] = tf->feature;
 547
 548	fis[4] = tf->lbal;
 549	fis[5] = tf->lbam;
 550	fis[6] = tf->lbah;
 551	fis[7] = tf->device;
 552
 553	fis[8] = tf->hob_lbal;
 554	fis[9] = tf->hob_lbam;
 555	fis[10] = tf->hob_lbah;
 556	fis[11] = tf->hob_feature;
 557
 558	fis[12] = tf->nsect;
 559	fis[13] = tf->hob_nsect;
 560	fis[14] = 0;
 561	fis[15] = tf->ctl;
 562
 563	fis[16] = tf->auxiliary & 0xff;
 564	fis[17] = (tf->auxiliary >> 8) & 0xff;
 565	fis[18] = (tf->auxiliary >> 16) & 0xff;
 566	fis[19] = (tf->auxiliary >> 24) & 0xff;
 567}
 568
 569/**
 570 *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 571 *	@fis: Buffer from which data will be input
 572 *	@tf: Taskfile to output
 573 *
 574 *	Converts a serial ATA FIS structure to a standard ATA taskfile.
 575 *
 576 *	LOCKING:
 577 *	Inherited from caller.
 578 */
 579
 580void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 581{
 582	tf->command	= fis[2];	/* status */
 583	tf->feature	= fis[3];	/* error */
 584
 585	tf->lbal	= fis[4];
 586	tf->lbam	= fis[5];
 587	tf->lbah	= fis[6];
 588	tf->device	= fis[7];
 589
 590	tf->hob_lbal	= fis[8];
 591	tf->hob_lbam	= fis[9];
 592	tf->hob_lbah	= fis[10];
 593
 594	tf->nsect	= fis[12];
 595	tf->hob_nsect	= fis[13];
 596}
 597
 598static const u8 ata_rw_cmds[] = {
 599	/* pio multi */
 600	ATA_CMD_READ_MULTI,
 601	ATA_CMD_WRITE_MULTI,
 602	ATA_CMD_READ_MULTI_EXT,
 603	ATA_CMD_WRITE_MULTI_EXT,
 604	0,
 605	0,
 606	0,
 607	ATA_CMD_WRITE_MULTI_FUA_EXT,
 608	/* pio */
 609	ATA_CMD_PIO_READ,
 610	ATA_CMD_PIO_WRITE,
 611	ATA_CMD_PIO_READ_EXT,
 612	ATA_CMD_PIO_WRITE_EXT,
 613	0,
 614	0,
 615	0,
 616	0,
 617	/* dma */
 618	ATA_CMD_READ,
 619	ATA_CMD_WRITE,
 620	ATA_CMD_READ_EXT,
 621	ATA_CMD_WRITE_EXT,
 622	0,
 623	0,
 624	0,
 625	ATA_CMD_WRITE_FUA_EXT
 626};
 627
 628/**
 629 *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
 630 *	@tf: command to examine and configure
 631 *	@dev: device tf belongs to
 632 *
 633 *	Examine the device configuration and tf->flags to calculate
 634 *	the proper read/write commands and protocol to use.
 635 *
 636 *	LOCKING:
 637 *	caller.
 638 */
 639static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 640{
 641	u8 cmd;
 642
 643	int index, fua, lba48, write;
 644
 645	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 646	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 647	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 648
 649	if (dev->flags & ATA_DFLAG_PIO) {
 650		tf->protocol = ATA_PROT_PIO;
 651		index = dev->multi_count ? 0 : 8;
 652	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 653		/* Unable to use DMA due to host limitation */
 654		tf->protocol = ATA_PROT_PIO;
 655		index = dev->multi_count ? 0 : 8;
 656	} else {
 657		tf->protocol = ATA_PROT_DMA;
 658		index = 16;
 659	}
 660
 661	cmd = ata_rw_cmds[index + fua + lba48 + write];
 662	if (cmd) {
 663		tf->command = cmd;
 664		return 0;
 665	}
 666	return -1;
 667}
 668
 669/**
 670 *	ata_tf_read_block - Read block address from ATA taskfile
 671 *	@tf: ATA taskfile of interest
 672 *	@dev: ATA device @tf belongs to
 673 *
 674 *	LOCKING:
 675 *	None.
 676 *
 677 *	Read block address from @tf.  This function can handle all
 678 *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
 679 *	flags select the address format to use.
 680 *
 681 *	RETURNS:
 682 *	Block address read from @tf.
 683 */
 684u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
 685{
 686	u64 block = 0;
 687
 688	if (tf->flags & ATA_TFLAG_LBA) {
 689		if (tf->flags & ATA_TFLAG_LBA48) {
 690			block |= (u64)tf->hob_lbah << 40;
 691			block |= (u64)tf->hob_lbam << 32;
 692			block |= (u64)tf->hob_lbal << 24;
 693		} else
 694			block |= (tf->device & 0xf) << 24;
 695
 696		block |= tf->lbah << 16;
 697		block |= tf->lbam << 8;
 698		block |= tf->lbal;
 699	} else {
 700		u32 cyl, head, sect;
 701
 702		cyl = tf->lbam | (tf->lbah << 8);
 703		head = tf->device & 0xf;
 704		sect = tf->lbal;
 705
 706		if (!sect) {
 707			ata_dev_warn(dev,
 708				     "device reported invalid CHS sector 0\n");
 709			return U64_MAX;
 710		}
 711
 712		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 713	}
 714
 715	return block;
 716}
 717
 718/**
 719 *	ata_build_rw_tf - Build ATA taskfile for given read/write request
 720 *	@tf: Target ATA taskfile
 721 *	@dev: ATA device @tf belongs to
 722 *	@block: Block address
 723 *	@n_block: Number of blocks
 724 *	@tf_flags: RW/FUA etc...
 725 *	@tag: tag
 726 *	@class: IO priority class
 727 *
 728 *	LOCKING:
 729 *	None.
 730 *
 731 *	Build ATA taskfile @tf for read/write request described by
 732 *	@block, @n_block, @tf_flags and @tag on @dev.
 733 *
 734 *	RETURNS:
 735 *
 736 *	0 on success, -ERANGE if the request is too large for @dev,
 737 *	-EINVAL if the request is invalid.
 738 */
 739int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 740		    u64 block, u32 n_block, unsigned int tf_flags,
 741		    unsigned int tag, int class)
 742{
 743	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 744	tf->flags |= tf_flags;
 745
 746	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
 747		/* yay, NCQ */
 748		if (!lba_48_ok(block, n_block))
 749			return -ERANGE;
 750
 751		tf->protocol = ATA_PROT_NCQ;
 752		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 753
 754		if (tf->flags & ATA_TFLAG_WRITE)
 755			tf->command = ATA_CMD_FPDMA_WRITE;
 756		else
 757			tf->command = ATA_CMD_FPDMA_READ;
 758
 759		tf->nsect = tag << 3;
 760		tf->hob_feature = (n_block >> 8) & 0xff;
 761		tf->feature = n_block & 0xff;
 762
 763		tf->hob_lbah = (block >> 40) & 0xff;
 764		tf->hob_lbam = (block >> 32) & 0xff;
 765		tf->hob_lbal = (block >> 24) & 0xff;
 766		tf->lbah = (block >> 16) & 0xff;
 767		tf->lbam = (block >> 8) & 0xff;
 768		tf->lbal = block & 0xff;
 769
 770		tf->device = ATA_LBA;
 771		if (tf->flags & ATA_TFLAG_FUA)
 772			tf->device |= 1 << 7;
 773
 774		if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
 775			if (class == IOPRIO_CLASS_RT)
 776				tf->hob_nsect |= ATA_PRIO_HIGH <<
 777						 ATA_SHIFT_PRIO;
 778		}
 779	} else if (dev->flags & ATA_DFLAG_LBA) {
 780		tf->flags |= ATA_TFLAG_LBA;
 781
 782		if (lba_28_ok(block, n_block)) {
 783			/* use LBA28 */
 784			tf->device |= (block >> 24) & 0xf;
 785		} else if (lba_48_ok(block, n_block)) {
 786			if (!(dev->flags & ATA_DFLAG_LBA48))
 787				return -ERANGE;
 788
 789			/* use LBA48 */
 790			tf->flags |= ATA_TFLAG_LBA48;
 791
 792			tf->hob_nsect = (n_block >> 8) & 0xff;
 793
 794			tf->hob_lbah = (block >> 40) & 0xff;
 795			tf->hob_lbam = (block >> 32) & 0xff;
 796			tf->hob_lbal = (block >> 24) & 0xff;
 797		} else
 798			/* request too large even for LBA48 */
 799			return -ERANGE;
 800
 801		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 802			return -EINVAL;
 803
 804		tf->nsect = n_block & 0xff;
 805
 806		tf->lbah = (block >> 16) & 0xff;
 807		tf->lbam = (block >> 8) & 0xff;
 808		tf->lbal = block & 0xff;
 809
 810		tf->device |= ATA_LBA;
 811	} else {
 812		/* CHS */
 813		u32 sect, head, cyl, track;
 814
 815		/* The request -may- be too large for CHS addressing. */
 816		if (!lba_28_ok(block, n_block))
 817			return -ERANGE;
 818
 819		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 820			return -EINVAL;
 821
 822		/* Convert LBA to CHS */
 823		track = (u32)block / dev->sectors;
 824		cyl   = track / dev->heads;
 825		head  = track % dev->heads;
 826		sect  = (u32)block % dev->sectors + 1;
 827
 828		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 829			(u32)block, track, cyl, head, sect);
 830
 831		/* Check whether the converted CHS can fit.
 832		   Cylinder: 0-65535
 833		   Head: 0-15
 834		   Sector: 1-255*/
 835		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 836			return -ERANGE;
 837
 838		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 839		tf->lbal = sect;
 840		tf->lbam = cyl;
 841		tf->lbah = cyl >> 8;
 842		tf->device |= head;
 843	}
 844
 845	return 0;
 846}
 847
 848/**
 849 *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 850 *	@pio_mask: pio_mask
 851 *	@mwdma_mask: mwdma_mask
 852 *	@udma_mask: udma_mask
 853 *
 854 *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 855 *	unsigned int xfer_mask.
 856 *
 857 *	LOCKING:
 858 *	None.
 859 *
 860 *	RETURNS:
 861 *	Packed xfer_mask.
 862 */
 863unsigned long ata_pack_xfermask(unsigned long pio_mask,
 864				unsigned long mwdma_mask,
 865				unsigned long udma_mask)
 866{
 867	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 868		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 869		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 870}
 871
 872/**
 873 *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 874 *	@xfer_mask: xfer_mask to unpack
 875 *	@pio_mask: resulting pio_mask
 876 *	@mwdma_mask: resulting mwdma_mask
 877 *	@udma_mask: resulting udma_mask
 878 *
 879 *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 880 *	Any NULL destination masks will be ignored.
 881 */
 882void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 883			 unsigned long *mwdma_mask, unsigned long *udma_mask)
 884{
 885	if (pio_mask)
 886		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 887	if (mwdma_mask)
 888		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 889	if (udma_mask)
 890		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 891}
 892
 893static const struct ata_xfer_ent {
 894	int shift, bits;
 895	u8 base;
 896} ata_xfer_tbl[] = {
 897	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 898	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 899	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 900	{ -1, },
 901};
 902
 903/**
 904 *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 905 *	@xfer_mask: xfer_mask of interest
 906 *
 907 *	Return matching XFER_* value for @xfer_mask.  Only the highest
 908 *	bit of @xfer_mask is considered.
 909 *
 910 *	LOCKING:
 911 *	None.
 912 *
 913 *	RETURNS:
 914 *	Matching XFER_* value, 0xff if no match found.
 915 */
 916u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 917{
 918	int highbit = fls(xfer_mask) - 1;
 919	const struct ata_xfer_ent *ent;
 920
 921	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 922		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 923			return ent->base + highbit - ent->shift;
 924	return 0xff;
 925}
 926
 927/**
 928 *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 929 *	@xfer_mode: XFER_* of interest
 930 *
 931 *	Return matching xfer_mask for @xfer_mode.
 932 *
 933 *	LOCKING:
 934 *	None.
 935 *
 936 *	RETURNS:
 937 *	Matching xfer_mask, 0 if no match found.
 938 */
 939unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 940{
 941	const struct ata_xfer_ent *ent;
 942
 943	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 944		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 945			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 946				& ~((1 << ent->shift) - 1);
 947	return 0;
 948}
 949
 950/**
 951 *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 952 *	@xfer_mode: XFER_* of interest
 953 *
 954 *	Return matching xfer_shift for @xfer_mode.
 955 *
 956 *	LOCKING:
 957 *	None.
 958 *
 959 *	RETURNS:
 960 *	Matching xfer_shift, -1 if no match found.
 961 */
 962int ata_xfer_mode2shift(unsigned long xfer_mode)
 963{
 964	const struct ata_xfer_ent *ent;
 965
 966	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 967		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 968			return ent->shift;
 969	return -1;
 970}
 971
 972/**
 973 *	ata_mode_string - convert xfer_mask to string
 974 *	@xfer_mask: mask of bits supported; only highest bit counts.
 975 *
 976 *	Determine string which represents the highest speed
 977 *	(highest bit in @modemask).
 978 *
 979 *	LOCKING:
 980 *	None.
 981 *
 982 *	RETURNS:
 983 *	Constant C string representing highest speed listed in
 984 *	@mode_mask, or the constant C string "<n/a>".
 985 */
 986const char *ata_mode_string(unsigned long xfer_mask)
 987{
 988	static const char * const xfer_mode_str[] = {
 989		"PIO0",
 990		"PIO1",
 991		"PIO2",
 992		"PIO3",
 993		"PIO4",
 994		"PIO5",
 995		"PIO6",
 996		"MWDMA0",
 997		"MWDMA1",
 998		"MWDMA2",
 999		"MWDMA3",
1000		"MWDMA4",
1001		"UDMA/16",
1002		"UDMA/25",
1003		"UDMA/33",
1004		"UDMA/44",
1005		"UDMA/66",
1006		"UDMA/100",
1007		"UDMA/133",
1008		"UDMA7",
1009	};
1010	int highbit;
1011
1012	highbit = fls(xfer_mask) - 1;
1013	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014		return xfer_mode_str[highbit];
1015	return "<n/a>";
1016}
1017
1018const char *sata_spd_string(unsigned int spd)
1019{
1020	static const char * const spd_str[] = {
1021		"1.5 Gbps",
1022		"3.0 Gbps",
1023		"6.0 Gbps",
1024	};
1025
1026	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027		return "<unknown>";
1028	return spd_str[spd - 1];
1029}
1030
1031/**
1032 *	ata_dev_classify - determine device type based on ATA-spec signature
1033 *	@tf: ATA taskfile register set for device to be identified
1034 *
1035 *	Determine from taskfile register contents whether a device is
1036 *	ATA or ATAPI, as per "Signature and persistence" section
1037 *	of ATA/PI spec (volume 1, sect 5.14).
1038 *
1039 *	LOCKING:
1040 *	None.
1041 *
1042 *	RETURNS:
1043 *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044 *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045 */
1046unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047{
1048	/* Apple's open source Darwin code hints that some devices only
1049	 * put a proper signature into the LBA mid/high registers,
1050	 * So, we only check those.  It's sufficient for uniqueness.
1051	 *
1052	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053	 * signatures for ATA and ATAPI devices attached on SerialATA,
1054	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1055	 * spec has never mentioned about using different signatures
1056	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1057	 * Multiplier specification began to use 0x69/0x96 to identify
1058	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060	 * 0x69/0x96 shortly and described them as reserved for
1061	 * SerialATA.
1062	 *
1063	 * We follow the current spec and consider that 0x69/0x96
1064	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066	 * SEMB signature.  This is worked around in
1067	 * ata_dev_read_id().
1068	 */
1069	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1070		DPRINTK("found ATA device by sig\n");
1071		return ATA_DEV_ATA;
1072	}
1073
1074	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1075		DPRINTK("found ATAPI device by sig\n");
1076		return ATA_DEV_ATAPI;
1077	}
1078
1079	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1080		DPRINTK("found PMP device by sig\n");
1081		return ATA_DEV_PMP;
1082	}
1083
1084	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1085		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1086		return ATA_DEV_SEMB;
1087	}
1088
1089	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1090		DPRINTK("found ZAC device by sig\n");
1091		return ATA_DEV_ZAC;
1092	}
1093
1094	DPRINTK("unknown device\n");
1095	return ATA_DEV_UNKNOWN;
1096}
1097
1098/**
1099 *	ata_id_string - Convert IDENTIFY DEVICE page into string
1100 *	@id: IDENTIFY DEVICE results we will examine
1101 *	@s: string into which data is output
1102 *	@ofs: offset into identify device page
1103 *	@len: length of string to return. must be an even number.
1104 *
1105 *	The strings in the IDENTIFY DEVICE page are broken up into
1106 *	16-bit chunks.  Run through the string, and output each
1107 *	8-bit chunk linearly, regardless of platform.
1108 *
1109 *	LOCKING:
1110 *	caller.
1111 */
1112
1113void ata_id_string(const u16 *id, unsigned char *s,
1114		   unsigned int ofs, unsigned int len)
1115{
1116	unsigned int c;
1117
1118	BUG_ON(len & 1);
1119
1120	while (len > 0) {
1121		c = id[ofs] >> 8;
1122		*s = c;
1123		s++;
1124
1125		c = id[ofs] & 0xff;
1126		*s = c;
1127		s++;
1128
1129		ofs++;
1130		len -= 2;
1131	}
1132}
1133
1134/**
1135 *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1136 *	@id: IDENTIFY DEVICE results we will examine
1137 *	@s: string into which data is output
1138 *	@ofs: offset into identify device page
1139 *	@len: length of string to return. must be an odd number.
1140 *
1141 *	This function is identical to ata_id_string except that it
1142 *	trims trailing spaces and terminates the resulting string with
1143 *	null.  @len must be actual maximum length (even number) + 1.
1144 *
1145 *	LOCKING:
1146 *	caller.
1147 */
1148void ata_id_c_string(const u16 *id, unsigned char *s,
1149		     unsigned int ofs, unsigned int len)
1150{
1151	unsigned char *p;
1152
1153	ata_id_string(id, s, ofs, len - 1);
1154
1155	p = s + strnlen(s, len - 1);
1156	while (p > s && p[-1] == ' ')
1157		p--;
1158	*p = '\0';
1159}
1160
1161static u64 ata_id_n_sectors(const u16 *id)
1162{
1163	if (ata_id_has_lba(id)) {
1164		if (ata_id_has_lba48(id))
1165			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1166		else
1167			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1168	} else {
1169		if (ata_id_current_chs_valid(id))
1170			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1171			       id[ATA_ID_CUR_SECTORS];
1172		else
1173			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1174			       id[ATA_ID_SECTORS];
1175	}
1176}
1177
1178u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1179{
1180	u64 sectors = 0;
1181
1182	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1183	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1184	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1185	sectors |= (tf->lbah & 0xff) << 16;
1186	sectors |= (tf->lbam & 0xff) << 8;
1187	sectors |= (tf->lbal & 0xff);
1188
1189	return sectors;
1190}
1191
1192u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1193{
1194	u64 sectors = 0;
1195
1196	sectors |= (tf->device & 0x0f) << 24;
1197	sectors |= (tf->lbah & 0xff) << 16;
1198	sectors |= (tf->lbam & 0xff) << 8;
1199	sectors |= (tf->lbal & 0xff);
1200
1201	return sectors;
1202}
1203
1204/**
1205 *	ata_read_native_max_address - Read native max address
1206 *	@dev: target device
1207 *	@max_sectors: out parameter for the result native max address
1208 *
1209 *	Perform an LBA48 or LBA28 native size query upon the device in
1210 *	question.
1211 *
1212 *	RETURNS:
1213 *	0 on success, -EACCES if command is aborted by the drive.
1214 *	-EIO on other errors.
1215 */
1216static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1217{
1218	unsigned int err_mask;
1219	struct ata_taskfile tf;
1220	int lba48 = ata_id_has_lba48(dev->id);
1221
1222	ata_tf_init(dev, &tf);
1223
1224	/* always clear all address registers */
1225	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1226
1227	if (lba48) {
1228		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1229		tf.flags |= ATA_TFLAG_LBA48;
1230	} else
1231		tf.command = ATA_CMD_READ_NATIVE_MAX;
1232
1233	tf.protocol = ATA_PROT_NODATA;
1234	tf.device |= ATA_LBA;
1235
1236	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1237	if (err_mask) {
1238		ata_dev_warn(dev,
1239			     "failed to read native max address (err_mask=0x%x)\n",
1240			     err_mask);
1241		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1242			return -EACCES;
1243		return -EIO;
1244	}
1245
1246	if (lba48)
1247		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1248	else
1249		*max_sectors = ata_tf_to_lba(&tf) + 1;
1250	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1251		(*max_sectors)--;
1252	return 0;
1253}
1254
1255/**
1256 *	ata_set_max_sectors - Set max sectors
1257 *	@dev: target device
1258 *	@new_sectors: new max sectors value to set for the device
1259 *
1260 *	Set max sectors of @dev to @new_sectors.
1261 *
1262 *	RETURNS:
1263 *	0 on success, -EACCES if command is aborted or denied (due to
1264 *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1265 *	errors.
1266 */
1267static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1268{
1269	unsigned int err_mask;
1270	struct ata_taskfile tf;
1271	int lba48 = ata_id_has_lba48(dev->id);
1272
1273	new_sectors--;
1274
1275	ata_tf_init(dev, &tf);
1276
1277	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1278
1279	if (lba48) {
1280		tf.command = ATA_CMD_SET_MAX_EXT;
1281		tf.flags |= ATA_TFLAG_LBA48;
1282
1283		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1284		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1285		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1286	} else {
1287		tf.command = ATA_CMD_SET_MAX;
1288
1289		tf.device |= (new_sectors >> 24) & 0xf;
1290	}
1291
1292	tf.protocol = ATA_PROT_NODATA;
1293	tf.device |= ATA_LBA;
1294
1295	tf.lbal = (new_sectors >> 0) & 0xff;
1296	tf.lbam = (new_sectors >> 8) & 0xff;
1297	tf.lbah = (new_sectors >> 16) & 0xff;
1298
1299	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1300	if (err_mask) {
1301		ata_dev_warn(dev,
1302			     "failed to set max address (err_mask=0x%x)\n",
1303			     err_mask);
1304		if (err_mask == AC_ERR_DEV &&
1305		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1306			return -EACCES;
1307		return -EIO;
1308	}
1309
1310	return 0;
1311}
1312
1313/**
1314 *	ata_hpa_resize		-	Resize a device with an HPA set
1315 *	@dev: Device to resize
1316 *
1317 *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1318 *	it if required to the full size of the media. The caller must check
1319 *	the drive has the HPA feature set enabled.
1320 *
1321 *	RETURNS:
1322 *	0 on success, -errno on failure.
1323 */
1324static int ata_hpa_resize(struct ata_device *dev)
1325{
1326	struct ata_eh_context *ehc = &dev->link->eh_context;
1327	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1328	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1329	u64 sectors = ata_id_n_sectors(dev->id);
1330	u64 native_sectors;
1331	int rc;
1332
1333	/* do we need to do it? */
1334	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1335	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1336	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1337		return 0;
1338
1339	/* read native max address */
1340	rc = ata_read_native_max_address(dev, &native_sectors);
1341	if (rc) {
1342		/* If device aborted the command or HPA isn't going to
1343		 * be unlocked, skip HPA resizing.
1344		 */
1345		if (rc == -EACCES || !unlock_hpa) {
1346			ata_dev_warn(dev,
1347				     "HPA support seems broken, skipping HPA handling\n");
1348			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1349
1350			/* we can continue if device aborted the command */
1351			if (rc == -EACCES)
1352				rc = 0;
1353		}
1354
1355		return rc;
1356	}
1357	dev->n_native_sectors = native_sectors;
1358
1359	/* nothing to do? */
1360	if (native_sectors <= sectors || !unlock_hpa) {
1361		if (!print_info || native_sectors == sectors)
1362			return 0;
1363
1364		if (native_sectors > sectors)
1365			ata_dev_info(dev,
1366				"HPA detected: current %llu, native %llu\n",
1367				(unsigned long long)sectors,
1368				(unsigned long long)native_sectors);
1369		else if (native_sectors < sectors)
1370			ata_dev_warn(dev,
1371				"native sectors (%llu) is smaller than sectors (%llu)\n",
1372				(unsigned long long)native_sectors,
1373				(unsigned long long)sectors);
1374		return 0;
1375	}
1376
1377	/* let's unlock HPA */
1378	rc = ata_set_max_sectors(dev, native_sectors);
1379	if (rc == -EACCES) {
1380		/* if device aborted the command, skip HPA resizing */
1381		ata_dev_warn(dev,
1382			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1383			     (unsigned long long)sectors,
1384			     (unsigned long long)native_sectors);
1385		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1386		return 0;
1387	} else if (rc)
1388		return rc;
1389
1390	/* re-read IDENTIFY data */
1391	rc = ata_dev_reread_id(dev, 0);
1392	if (rc) {
1393		ata_dev_err(dev,
1394			    "failed to re-read IDENTIFY data after HPA resizing\n");
1395		return rc;
1396	}
1397
1398	if (print_info) {
1399		u64 new_sectors = ata_id_n_sectors(dev->id);
1400		ata_dev_info(dev,
1401			"HPA unlocked: %llu -> %llu, native %llu\n",
1402			(unsigned long long)sectors,
1403			(unsigned long long)new_sectors,
1404			(unsigned long long)native_sectors);
1405	}
1406
1407	return 0;
1408}
1409
1410/**
1411 *	ata_dump_id - IDENTIFY DEVICE info debugging output
1412 *	@id: IDENTIFY DEVICE page to dump
1413 *
1414 *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1415 *	page.
1416 *
1417 *	LOCKING:
1418 *	caller.
1419 */
1420
1421static inline void ata_dump_id(const u16 *id)
1422{
1423	DPRINTK("49==0x%04x  "
1424		"53==0x%04x  "
1425		"63==0x%04x  "
1426		"64==0x%04x  "
1427		"75==0x%04x  \n",
1428		id[49],
1429		id[53],
1430		id[63],
1431		id[64],
1432		id[75]);
1433	DPRINTK("80==0x%04x  "
1434		"81==0x%04x  "
1435		"82==0x%04x  "
1436		"83==0x%04x  "
1437		"84==0x%04x  \n",
1438		id[80],
1439		id[81],
1440		id[82],
1441		id[83],
1442		id[84]);
1443	DPRINTK("88==0x%04x  "
1444		"93==0x%04x\n",
1445		id[88],
1446		id[93]);
1447}
1448
1449/**
1450 *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1451 *	@id: IDENTIFY data to compute xfer mask from
1452 *
1453 *	Compute the xfermask for this device. This is not as trivial
1454 *	as it seems if we must consider early devices correctly.
1455 *
1456 *	FIXME: pre IDE drive timing (do we care ?).
1457 *
1458 *	LOCKING:
1459 *	None.
1460 *
1461 *	RETURNS:
1462 *	Computed xfermask
1463 */
1464unsigned long ata_id_xfermask(const u16 *id)
1465{
1466	unsigned long pio_mask, mwdma_mask, udma_mask;
1467
1468	/* Usual case. Word 53 indicates word 64 is valid */
1469	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1470		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1471		pio_mask <<= 3;
1472		pio_mask |= 0x7;
1473	} else {
1474		/* If word 64 isn't valid then Word 51 high byte holds
1475		 * the PIO timing number for the maximum. Turn it into
1476		 * a mask.
1477		 */
1478		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1479		if (mode < 5)	/* Valid PIO range */
1480			pio_mask = (2 << mode) - 1;
1481		else
1482			pio_mask = 1;
1483
1484		/* But wait.. there's more. Design your standards by
1485		 * committee and you too can get a free iordy field to
1486		 * process. However its the speeds not the modes that
1487		 * are supported... Note drivers using the timing API
1488		 * will get this right anyway
1489		 */
1490	}
1491
1492	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1493
1494	if (ata_id_is_cfa(id)) {
1495		/*
1496		 *	Process compact flash extended modes
1497		 */
1498		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1499		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1500
1501		if (pio)
1502			pio_mask |= (1 << 5);
1503		if (pio > 1)
1504			pio_mask |= (1 << 6);
1505		if (dma)
1506			mwdma_mask |= (1 << 3);
1507		if (dma > 1)
1508			mwdma_mask |= (1 << 4);
1509	}
1510
1511	udma_mask = 0;
1512	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1513		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1514
1515	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1516}
1517
1518static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1519{
1520	struct completion *waiting = qc->private_data;
1521
1522	complete(waiting);
1523}
1524
1525/**
1526 *	ata_exec_internal_sg - execute libata internal command
1527 *	@dev: Device to which the command is sent
1528 *	@tf: Taskfile registers for the command and the result
1529 *	@cdb: CDB for packet command
1530 *	@dma_dir: Data transfer direction of the command
1531 *	@sgl: sg list for the data buffer of the command
1532 *	@n_elem: Number of sg entries
1533 *	@timeout: Timeout in msecs (0 for default)
1534 *
1535 *	Executes libata internal command with timeout.  @tf contains
1536 *	command on entry and result on return.  Timeout and error
1537 *	conditions are reported via return value.  No recovery action
1538 *	is taken after a command times out.  It's caller's duty to
1539 *	clean up after timeout.
1540 *
1541 *	LOCKING:
1542 *	None.  Should be called with kernel context, might sleep.
1543 *
1544 *	RETURNS:
1545 *	Zero on success, AC_ERR_* mask on failure
1546 */
1547unsigned ata_exec_internal_sg(struct ata_device *dev,
1548			      struct ata_taskfile *tf, const u8 *cdb,
1549			      int dma_dir, struct scatterlist *sgl,
1550			      unsigned int n_elem, unsigned long timeout)
1551{
1552	struct ata_link *link = dev->link;
1553	struct ata_port *ap = link->ap;
1554	u8 command = tf->command;
1555	int auto_timeout = 0;
1556	struct ata_queued_cmd *qc;
1557	unsigned int preempted_tag;
1558	u32 preempted_sactive;
1559	u64 preempted_qc_active;
1560	int preempted_nr_active_links;
1561	DECLARE_COMPLETION_ONSTACK(wait);
1562	unsigned long flags;
1563	unsigned int err_mask;
1564	int rc;
1565
1566	spin_lock_irqsave(ap->lock, flags);
1567
1568	/* no internal command while frozen */
1569	if (ap->pflags & ATA_PFLAG_FROZEN) {
1570		spin_unlock_irqrestore(ap->lock, flags);
1571		return AC_ERR_SYSTEM;
1572	}
1573
1574	/* initialize internal qc */
1575	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1576
1577	qc->tag = ATA_TAG_INTERNAL;
1578	qc->hw_tag = 0;
 
 
 
 
 
 
 
 
 
 
 
1579	qc->scsicmd = NULL;
1580	qc->ap = ap;
1581	qc->dev = dev;
1582	ata_qc_reinit(qc);
1583
1584	preempted_tag = link->active_tag;
1585	preempted_sactive = link->sactive;
1586	preempted_qc_active = ap->qc_active;
1587	preempted_nr_active_links = ap->nr_active_links;
1588	link->active_tag = ATA_TAG_POISON;
1589	link->sactive = 0;
1590	ap->qc_active = 0;
1591	ap->nr_active_links = 0;
1592
1593	/* prepare & issue qc */
1594	qc->tf = *tf;
1595	if (cdb)
1596		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1597
1598	/* some SATA bridges need us to indicate data xfer direction */
1599	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1600	    dma_dir == DMA_FROM_DEVICE)
1601		qc->tf.feature |= ATAPI_DMADIR;
1602
1603	qc->flags |= ATA_QCFLAG_RESULT_TF;
1604	qc->dma_dir = dma_dir;
1605	if (dma_dir != DMA_NONE) {
1606		unsigned int i, buflen = 0;
1607		struct scatterlist *sg;
1608
1609		for_each_sg(sgl, sg, n_elem, i)
1610			buflen += sg->length;
1611
1612		ata_sg_init(qc, sgl, n_elem);
1613		qc->nbytes = buflen;
1614	}
1615
1616	qc->private_data = &wait;
1617	qc->complete_fn = ata_qc_complete_internal;
1618
1619	ata_qc_issue(qc);
1620
1621	spin_unlock_irqrestore(ap->lock, flags);
1622
1623	if (!timeout) {
1624		if (ata_probe_timeout)
1625			timeout = ata_probe_timeout * 1000;
1626		else {
1627			timeout = ata_internal_cmd_timeout(dev, command);
1628			auto_timeout = 1;
1629		}
1630	}
1631
1632	if (ap->ops->error_handler)
1633		ata_eh_release(ap);
1634
1635	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1636
1637	if (ap->ops->error_handler)
1638		ata_eh_acquire(ap);
1639
1640	ata_sff_flush_pio_task(ap);
1641
1642	if (!rc) {
1643		spin_lock_irqsave(ap->lock, flags);
1644
1645		/* We're racing with irq here.  If we lose, the
1646		 * following test prevents us from completing the qc
1647		 * twice.  If we win, the port is frozen and will be
1648		 * cleaned up by ->post_internal_cmd().
1649		 */
1650		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1651			qc->err_mask |= AC_ERR_TIMEOUT;
1652
1653			if (ap->ops->error_handler)
1654				ata_port_freeze(ap);
1655			else
1656				ata_qc_complete(qc);
1657
1658			if (ata_msg_warn(ap))
1659				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1660					     command);
1661		}
1662
1663		spin_unlock_irqrestore(ap->lock, flags);
1664	}
1665
1666	/* do post_internal_cmd */
1667	if (ap->ops->post_internal_cmd)
1668		ap->ops->post_internal_cmd(qc);
1669
1670	/* perform minimal error analysis */
1671	if (qc->flags & ATA_QCFLAG_FAILED) {
1672		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1673			qc->err_mask |= AC_ERR_DEV;
1674
1675		if (!qc->err_mask)
1676			qc->err_mask |= AC_ERR_OTHER;
1677
1678		if (qc->err_mask & ~AC_ERR_OTHER)
1679			qc->err_mask &= ~AC_ERR_OTHER;
1680	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1681		qc->result_tf.command |= ATA_SENSE;
1682	}
1683
1684	/* finish up */
1685	spin_lock_irqsave(ap->lock, flags);
1686
1687	*tf = qc->result_tf;
1688	err_mask = qc->err_mask;
1689
1690	ata_qc_free(qc);
1691	link->active_tag = preempted_tag;
1692	link->sactive = preempted_sactive;
1693	ap->qc_active = preempted_qc_active;
1694	ap->nr_active_links = preempted_nr_active_links;
1695
1696	spin_unlock_irqrestore(ap->lock, flags);
1697
1698	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1699		ata_internal_cmd_timed_out(dev, command);
1700
1701	return err_mask;
1702}
1703
1704/**
1705 *	ata_exec_internal - execute libata internal command
1706 *	@dev: Device to which the command is sent
1707 *	@tf: Taskfile registers for the command and the result
1708 *	@cdb: CDB for packet command
1709 *	@dma_dir: Data transfer direction of the command
1710 *	@buf: Data buffer of the command
1711 *	@buflen: Length of data buffer
1712 *	@timeout: Timeout in msecs (0 for default)
1713 *
1714 *	Wrapper around ata_exec_internal_sg() which takes simple
1715 *	buffer instead of sg list.
1716 *
1717 *	LOCKING:
1718 *	None.  Should be called with kernel context, might sleep.
1719 *
1720 *	RETURNS:
1721 *	Zero on success, AC_ERR_* mask on failure
1722 */
1723unsigned ata_exec_internal(struct ata_device *dev,
1724			   struct ata_taskfile *tf, const u8 *cdb,
1725			   int dma_dir, void *buf, unsigned int buflen,
1726			   unsigned long timeout)
1727{
1728	struct scatterlist *psg = NULL, sg;
1729	unsigned int n_elem = 0;
1730
1731	if (dma_dir != DMA_NONE) {
1732		WARN_ON(!buf);
1733		sg_init_one(&sg, buf, buflen);
1734		psg = &sg;
1735		n_elem++;
1736	}
1737
1738	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1739				    timeout);
1740}
1741
1742/**
1743 *	ata_pio_need_iordy	-	check if iordy needed
1744 *	@adev: ATA device
1745 *
1746 *	Check if the current speed of the device requires IORDY. Used
1747 *	by various controllers for chip configuration.
1748 */
1749unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1750{
1751	/* Don't set IORDY if we're preparing for reset.  IORDY may
1752	 * lead to controller lock up on certain controllers if the
1753	 * port is not occupied.  See bko#11703 for details.
1754	 */
1755	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1756		return 0;
1757	/* Controller doesn't support IORDY.  Probably a pointless
1758	 * check as the caller should know this.
1759	 */
1760	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1761		return 0;
1762	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1763	if (ata_id_is_cfa(adev->id)
1764	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1765		return 0;
1766	/* PIO3 and higher it is mandatory */
1767	if (adev->pio_mode > XFER_PIO_2)
1768		return 1;
1769	/* We turn it on when possible */
1770	if (ata_id_has_iordy(adev->id))
1771		return 1;
1772	return 0;
1773}
1774
1775/**
1776 *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1777 *	@adev: ATA device
1778 *
1779 *	Compute the highest mode possible if we are not using iordy. Return
1780 *	-1 if no iordy mode is available.
1781 */
1782static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1783{
1784	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1785	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1786		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1787		/* Is the speed faster than the drive allows non IORDY ? */
1788		if (pio) {
1789			/* This is cycle times not frequency - watch the logic! */
1790			if (pio > 240)	/* PIO2 is 240nS per cycle */
1791				return 3 << ATA_SHIFT_PIO;
1792			return 7 << ATA_SHIFT_PIO;
1793		}
1794	}
1795	return 3 << ATA_SHIFT_PIO;
1796}
1797
1798/**
1799 *	ata_do_dev_read_id		-	default ID read method
1800 *	@dev: device
1801 *	@tf: proposed taskfile
1802 *	@id: data buffer
1803 *
1804 *	Issue the identify taskfile and hand back the buffer containing
1805 *	identify data. For some RAID controllers and for pre ATA devices
1806 *	this function is wrapped or replaced by the driver
1807 */
1808unsigned int ata_do_dev_read_id(struct ata_device *dev,
1809					struct ata_taskfile *tf, u16 *id)
1810{
1811	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1812				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1813}
1814
1815/**
1816 *	ata_dev_read_id - Read ID data from the specified device
1817 *	@dev: target device
1818 *	@p_class: pointer to class of the target device (may be changed)
1819 *	@flags: ATA_READID_* flags
1820 *	@id: buffer to read IDENTIFY data into
1821 *
1822 *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1823 *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1824 *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1825 *	for pre-ATA4 drives.
1826 *
1827 *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1828 *	now we abort if we hit that case.
1829 *
1830 *	LOCKING:
1831 *	Kernel thread context (may sleep)
1832 *
1833 *	RETURNS:
1834 *	0 on success, -errno otherwise.
1835 */
1836int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1837		    unsigned int flags, u16 *id)
1838{
1839	struct ata_port *ap = dev->link->ap;
1840	unsigned int class = *p_class;
1841	struct ata_taskfile tf;
1842	unsigned int err_mask = 0;
1843	const char *reason;
1844	bool is_semb = class == ATA_DEV_SEMB;
1845	int may_fallback = 1, tried_spinup = 0;
1846	int rc;
1847
1848	if (ata_msg_ctl(ap))
1849		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1850
1851retry:
1852	ata_tf_init(dev, &tf);
1853
1854	switch (class) {
1855	case ATA_DEV_SEMB:
1856		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1857		/* fall through */
1858	case ATA_DEV_ATA:
1859	case ATA_DEV_ZAC:
1860		tf.command = ATA_CMD_ID_ATA;
1861		break;
1862	case ATA_DEV_ATAPI:
1863		tf.command = ATA_CMD_ID_ATAPI;
1864		break;
1865	default:
1866		rc = -ENODEV;
1867		reason = "unsupported class";
1868		goto err_out;
1869	}
1870
1871	tf.protocol = ATA_PROT_PIO;
1872
1873	/* Some devices choke if TF registers contain garbage.  Make
1874	 * sure those are properly initialized.
1875	 */
1876	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1877
1878	/* Device presence detection is unreliable on some
1879	 * controllers.  Always poll IDENTIFY if available.
1880	 */
1881	tf.flags |= ATA_TFLAG_POLLING;
1882
1883	if (ap->ops->read_id)
1884		err_mask = ap->ops->read_id(dev, &tf, id);
1885	else
1886		err_mask = ata_do_dev_read_id(dev, &tf, id);
1887
1888	if (err_mask) {
1889		if (err_mask & AC_ERR_NODEV_HINT) {
1890			ata_dev_dbg(dev, "NODEV after polling detection\n");
1891			return -ENOENT;
1892		}
1893
1894		if (is_semb) {
1895			ata_dev_info(dev,
1896		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1897			/* SEMB is not supported yet */
1898			*p_class = ATA_DEV_SEMB_UNSUP;
1899			return 0;
1900		}
1901
1902		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1903			/* Device or controller might have reported
1904			 * the wrong device class.  Give a shot at the
1905			 * other IDENTIFY if the current one is
1906			 * aborted by the device.
1907			 */
1908			if (may_fallback) {
1909				may_fallback = 0;
1910
1911				if (class == ATA_DEV_ATA)
1912					class = ATA_DEV_ATAPI;
1913				else
1914					class = ATA_DEV_ATA;
1915				goto retry;
1916			}
1917
1918			/* Control reaches here iff the device aborted
1919			 * both flavors of IDENTIFYs which happens
1920			 * sometimes with phantom devices.
1921			 */
1922			ata_dev_dbg(dev,
1923				    "both IDENTIFYs aborted, assuming NODEV\n");
1924			return -ENOENT;
1925		}
1926
1927		rc = -EIO;
1928		reason = "I/O error";
1929		goto err_out;
1930	}
1931
1932	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1933		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1934			    "class=%d may_fallback=%d tried_spinup=%d\n",
1935			    class, may_fallback, tried_spinup);
1936		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1937			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1938	}
1939
1940	/* Falling back doesn't make sense if ID data was read
1941	 * successfully at least once.
1942	 */
1943	may_fallback = 0;
1944
1945	swap_buf_le16(id, ATA_ID_WORDS);
1946
1947	/* sanity check */
1948	rc = -EINVAL;
1949	reason = "device reports invalid type";
1950
1951	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1952		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1953			goto err_out;
1954		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1955							ata_id_is_ata(id)) {
1956			ata_dev_dbg(dev,
1957				"host indicates ignore ATA devices, ignored\n");
1958			return -ENOENT;
1959		}
1960	} else {
1961		if (ata_id_is_ata(id))
1962			goto err_out;
1963	}
1964
1965	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1966		tried_spinup = 1;
1967		/*
1968		 * Drive powered-up in standby mode, and requires a specific
1969		 * SET_FEATURES spin-up subcommand before it will accept
1970		 * anything other than the original IDENTIFY command.
1971		 */
1972		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1973		if (err_mask && id[2] != 0x738c) {
1974			rc = -EIO;
1975			reason = "SPINUP failed";
1976			goto err_out;
1977		}
1978		/*
1979		 * If the drive initially returned incomplete IDENTIFY info,
1980		 * we now must reissue the IDENTIFY command.
1981		 */
1982		if (id[2] == 0x37c8)
1983			goto retry;
1984	}
1985
1986	if ((flags & ATA_READID_POSTRESET) &&
1987	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1988		/*
1989		 * The exact sequence expected by certain pre-ATA4 drives is:
1990		 * SRST RESET
1991		 * IDENTIFY (optional in early ATA)
1992		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1993		 * anything else..
1994		 * Some drives were very specific about that exact sequence.
1995		 *
1996		 * Note that ATA4 says lba is mandatory so the second check
1997		 * should never trigger.
1998		 */
1999		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2000			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2001			if (err_mask) {
2002				rc = -EIO;
2003				reason = "INIT_DEV_PARAMS failed";
2004				goto err_out;
2005			}
2006
2007			/* current CHS translation info (id[53-58]) might be
2008			 * changed. reread the identify device info.
2009			 */
2010			flags &= ~ATA_READID_POSTRESET;
2011			goto retry;
2012		}
2013	}
2014
2015	*p_class = class;
2016
2017	return 0;
2018
2019 err_out:
2020	if (ata_msg_warn(ap))
2021		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2022			     reason, err_mask);
2023	return rc;
2024}
2025
2026/**
2027 *	ata_read_log_page - read a specific log page
2028 *	@dev: target device
2029 *	@log: log to read
2030 *	@page: page to read
2031 *	@buf: buffer to store read page
2032 *	@sectors: number of sectors to read
2033 *
2034 *	Read log page using READ_LOG_EXT command.
2035 *
2036 *	LOCKING:
2037 *	Kernel thread context (may sleep).
2038 *
2039 *	RETURNS:
2040 *	0 on success, AC_ERR_* mask otherwise.
2041 */
2042unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2043			       u8 page, void *buf, unsigned int sectors)
2044{
2045	unsigned long ap_flags = dev->link->ap->flags;
2046	struct ata_taskfile tf;
2047	unsigned int err_mask;
2048	bool dma = false;
2049
2050	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2051
2052	/*
2053	 * Return error without actually issuing the command on controllers
2054	 * which e.g. lockup on a read log page.
2055	 */
2056	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2057		return AC_ERR_DEV;
2058
2059retry:
2060	ata_tf_init(dev, &tf);
2061	if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2062	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2063		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2064		tf.protocol = ATA_PROT_DMA;
2065		dma = true;
2066	} else {
2067		tf.command = ATA_CMD_READ_LOG_EXT;
2068		tf.protocol = ATA_PROT_PIO;
2069		dma = false;
2070	}
2071	tf.lbal = log;
2072	tf.lbam = page;
2073	tf.nsect = sectors;
2074	tf.hob_nsect = sectors >> 8;
2075	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2076
2077	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2078				     buf, sectors * ATA_SECT_SIZE, 0);
2079
2080	if (err_mask && dma) {
2081		dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2082		ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2083		goto retry;
2084	}
2085
2086	DPRINTK("EXIT, err_mask=%x\n", err_mask);
2087	return err_mask;
2088}
2089
2090static bool ata_log_supported(struct ata_device *dev, u8 log)
2091{
2092	struct ata_port *ap = dev->link->ap;
2093
2094	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2095		return false;
2096	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2097}
2098
2099static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2100{
2101	struct ata_port *ap = dev->link->ap;
2102	unsigned int err, i;
2103
2104	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2105		ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2106		return false;
2107	}
2108
2109	/*
2110	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2111	 * supported.
2112	 */
2113	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2114				1);
2115	if (err) {
2116		ata_dev_info(dev,
2117			     "failed to get Device Identify Log Emask 0x%x\n",
2118			     err);
2119		return false;
2120	}
2121
2122	for (i = 0; i < ap->sector_buf[8]; i++) {
2123		if (ap->sector_buf[9 + i] == page)
2124			return true;
2125	}
2126
2127	return false;
2128}
2129
2130static int ata_do_link_spd_horkage(struct ata_device *dev)
2131{
2132	struct ata_link *plink = ata_dev_phys_link(dev);
2133	u32 target, target_limit;
2134
2135	if (!sata_scr_valid(plink))
2136		return 0;
2137
2138	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2139		target = 1;
2140	else
2141		return 0;
2142
2143	target_limit = (1 << target) - 1;
2144
2145	/* if already on stricter limit, no need to push further */
2146	if (plink->sata_spd_limit <= target_limit)
2147		return 0;
2148
2149	plink->sata_spd_limit = target_limit;
2150
2151	/* Request another EH round by returning -EAGAIN if link is
2152	 * going faster than the target speed.  Forward progress is
2153	 * guaranteed by setting sata_spd_limit to target_limit above.
2154	 */
2155	if (plink->sata_spd > target) {
2156		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2157			     sata_spd_string(target));
2158		return -EAGAIN;
2159	}
2160	return 0;
2161}
2162
2163static inline u8 ata_dev_knobble(struct ata_device *dev)
2164{
2165	struct ata_port *ap = dev->link->ap;
2166
2167	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2168		return 0;
2169
2170	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2171}
2172
2173static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2174{
2175	struct ata_port *ap = dev->link->ap;
2176	unsigned int err_mask;
2177
2178	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2179		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2180		return;
2181	}
2182	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2183				     0, ap->sector_buf, 1);
2184	if (err_mask) {
2185		ata_dev_dbg(dev,
2186			    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2187			    err_mask);
2188	} else {
2189		u8 *cmds = dev->ncq_send_recv_cmds;
2190
2191		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2192		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2193
2194		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2195			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2196			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2197				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2198		}
2199	}
2200}
2201
2202static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2203{
2204	struct ata_port *ap = dev->link->ap;
2205	unsigned int err_mask;
2206
2207	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2208		ata_dev_warn(dev,
2209			     "NCQ Send/Recv Log not supported\n");
2210		return;
2211	}
2212	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2213				     0, ap->sector_buf, 1);
2214	if (err_mask) {
2215		ata_dev_dbg(dev,
2216			    "failed to get NCQ Non-Data Log Emask 0x%x\n",
2217			    err_mask);
2218	} else {
2219		u8 *cmds = dev->ncq_non_data_cmds;
2220
2221		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2222	}
2223}
2224
2225static void ata_dev_config_ncq_prio(struct ata_device *dev)
2226{
2227	struct ata_port *ap = dev->link->ap;
2228	unsigned int err_mask;
2229
2230	if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2231		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2232		return;
2233	}
2234
2235	err_mask = ata_read_log_page(dev,
2236				     ATA_LOG_IDENTIFY_DEVICE,
2237				     ATA_LOG_SATA_SETTINGS,
2238				     ap->sector_buf,
2239				     1);
2240	if (err_mask) {
2241		ata_dev_dbg(dev,
2242			    "failed to get Identify Device data, Emask 0x%x\n",
2243			    err_mask);
2244		return;
2245	}
2246
2247	if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2248		dev->flags |= ATA_DFLAG_NCQ_PRIO;
2249	} else {
2250		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2251		ata_dev_dbg(dev, "SATA page does not support priority\n");
2252	}
2253
2254}
2255
2256static int ata_dev_config_ncq(struct ata_device *dev,
2257			       char *desc, size_t desc_sz)
2258{
2259	struct ata_port *ap = dev->link->ap;
2260	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2261	unsigned int err_mask;
2262	char *aa_desc = "";
2263
2264	if (!ata_id_has_ncq(dev->id)) {
2265		desc[0] = '\0';
2266		return 0;
2267	}
2268	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2269		snprintf(desc, desc_sz, "NCQ (not used)");
2270		return 0;
2271	}
2272	if (ap->flags & ATA_FLAG_NCQ) {
2273		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2274		dev->flags |= ATA_DFLAG_NCQ;
2275	}
2276
2277	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2278		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2279		ata_id_has_fpdma_aa(dev->id)) {
2280		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2281			SATA_FPDMA_AA);
2282		if (err_mask) {
2283			ata_dev_err(dev,
2284				    "failed to enable AA (error_mask=0x%x)\n",
2285				    err_mask);
2286			if (err_mask != AC_ERR_DEV) {
2287				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2288				return -EIO;
2289			}
2290		} else
2291			aa_desc = ", AA";
2292	}
2293
2294	if (hdepth >= ddepth)
2295		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2296	else
2297		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2298			ddepth, aa_desc);
2299
2300	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2301		if (ata_id_has_ncq_send_and_recv(dev->id))
2302			ata_dev_config_ncq_send_recv(dev);
2303		if (ata_id_has_ncq_non_data(dev->id))
2304			ata_dev_config_ncq_non_data(dev);
2305		if (ata_id_has_ncq_prio(dev->id))
2306			ata_dev_config_ncq_prio(dev);
2307	}
2308
2309	return 0;
2310}
2311
2312static void ata_dev_config_sense_reporting(struct ata_device *dev)
2313{
2314	unsigned int err_mask;
2315
2316	if (!ata_id_has_sense_reporting(dev->id))
2317		return;
2318
2319	if (ata_id_sense_reporting_enabled(dev->id))
2320		return;
2321
2322	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2323	if (err_mask) {
2324		ata_dev_dbg(dev,
2325			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2326			    err_mask);
2327	}
2328}
2329
2330static void ata_dev_config_zac(struct ata_device *dev)
2331{
2332	struct ata_port *ap = dev->link->ap;
2333	unsigned int err_mask;
2334	u8 *identify_buf = ap->sector_buf;
2335
2336	dev->zac_zones_optimal_open = U32_MAX;
2337	dev->zac_zones_optimal_nonseq = U32_MAX;
2338	dev->zac_zones_max_open = U32_MAX;
2339
2340	/*
2341	 * Always set the 'ZAC' flag for Host-managed devices.
2342	 */
2343	if (dev->class == ATA_DEV_ZAC)
2344		dev->flags |= ATA_DFLAG_ZAC;
2345	else if (ata_id_zoned_cap(dev->id) == 0x01)
2346		/*
2347		 * Check for host-aware devices.
2348		 */
2349		dev->flags |= ATA_DFLAG_ZAC;
2350
2351	if (!(dev->flags & ATA_DFLAG_ZAC))
2352		return;
2353
2354	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2355		ata_dev_warn(dev,
2356			     "ATA Zoned Information Log not supported\n");
2357		return;
2358	}
2359
2360	/*
2361	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2362	 */
2363	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2364				     ATA_LOG_ZONED_INFORMATION,
2365				     identify_buf, 1);
2366	if (!err_mask) {
2367		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2368
2369		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2370		if ((zoned_cap >> 63))
2371			dev->zac_zoned_cap = (zoned_cap & 1);
2372		opt_open = get_unaligned_le64(&identify_buf[24]);
2373		if ((opt_open >> 63))
2374			dev->zac_zones_optimal_open = (u32)opt_open;
2375		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2376		if ((opt_nonseq >> 63))
2377			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2378		max_open = get_unaligned_le64(&identify_buf[40]);
2379		if ((max_open >> 63))
2380			dev->zac_zones_max_open = (u32)max_open;
2381	}
2382}
2383
2384static void ata_dev_config_trusted(struct ata_device *dev)
2385{
2386	struct ata_port *ap = dev->link->ap;
2387	u64 trusted_cap;
2388	unsigned int err;
2389
2390	if (!ata_id_has_trusted(dev->id))
2391		return;
2392
2393	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2394		ata_dev_warn(dev,
2395			     "Security Log not supported\n");
2396		return;
2397	}
2398
2399	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2400			ap->sector_buf, 1);
2401	if (err) {
2402		ata_dev_dbg(dev,
2403			    "failed to read Security Log, Emask 0x%x\n", err);
2404		return;
2405	}
2406
2407	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2408	if (!(trusted_cap & (1ULL << 63))) {
2409		ata_dev_dbg(dev,
2410			    "Trusted Computing capability qword not valid!\n");
2411		return;
2412	}
2413
2414	if (trusted_cap & (1 << 0))
2415		dev->flags |= ATA_DFLAG_TRUSTED;
2416}
2417
2418/**
2419 *	ata_dev_configure - Configure the specified ATA/ATAPI device
2420 *	@dev: Target device to configure
2421 *
2422 *	Configure @dev according to @dev->id.  Generic and low-level
2423 *	driver specific fixups are also applied.
2424 *
2425 *	LOCKING:
2426 *	Kernel thread context (may sleep)
2427 *
2428 *	RETURNS:
2429 *	0 on success, -errno otherwise
2430 */
2431int ata_dev_configure(struct ata_device *dev)
2432{
2433	struct ata_port *ap = dev->link->ap;
2434	struct ata_eh_context *ehc = &dev->link->eh_context;
2435	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2436	const u16 *id = dev->id;
2437	unsigned long xfer_mask;
2438	unsigned int err_mask;
2439	char revbuf[7];		/* XYZ-99\0 */
2440	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2441	char modelbuf[ATA_ID_PROD_LEN+1];
2442	int rc;
2443
2444	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2445		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2446		return 0;
2447	}
2448
2449	if (ata_msg_probe(ap))
2450		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2451
2452	/* set horkage */
2453	dev->horkage |= ata_dev_blacklisted(dev);
2454	ata_force_horkage(dev);
2455
2456	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2457		ata_dev_info(dev, "unsupported device, disabling\n");
2458		ata_dev_disable(dev);
2459		return 0;
2460	}
2461
2462	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2463	    dev->class == ATA_DEV_ATAPI) {
2464		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2465			     atapi_enabled ? "not supported with this driver"
2466			     : "disabled");
2467		ata_dev_disable(dev);
2468		return 0;
2469	}
2470
2471	rc = ata_do_link_spd_horkage(dev);
2472	if (rc)
2473		return rc;
2474
2475	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2476	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2477	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2478		dev->horkage |= ATA_HORKAGE_NOLPM;
2479
2480	if (ap->flags & ATA_FLAG_NO_LPM)
2481		dev->horkage |= ATA_HORKAGE_NOLPM;
2482
2483	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2484		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2485		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2486	}
2487
2488	/* let ACPI work its magic */
2489	rc = ata_acpi_on_devcfg(dev);
2490	if (rc)
2491		return rc;
2492
2493	/* massage HPA, do it early as it might change IDENTIFY data */
2494	rc = ata_hpa_resize(dev);
2495	if (rc)
2496		return rc;
2497
2498	/* print device capabilities */
2499	if (ata_msg_probe(ap))
2500		ata_dev_dbg(dev,
2501			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2502			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2503			    __func__,
2504			    id[49], id[82], id[83], id[84],
2505			    id[85], id[86], id[87], id[88]);
2506
2507	/* initialize to-be-configured parameters */
2508	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2509	dev->max_sectors = 0;
2510	dev->cdb_len = 0;
2511	dev->n_sectors = 0;
2512	dev->cylinders = 0;
2513	dev->heads = 0;
2514	dev->sectors = 0;
2515	dev->multi_count = 0;
2516
2517	/*
2518	 * common ATA, ATAPI feature tests
2519	 */
2520
2521	/* find max transfer mode; for printk only */
2522	xfer_mask = ata_id_xfermask(id);
2523
2524	if (ata_msg_probe(ap))
2525		ata_dump_id(id);
2526
2527	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2528	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2529			sizeof(fwrevbuf));
2530
2531	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2532			sizeof(modelbuf));
2533
2534	/* ATA-specific feature tests */
2535	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2536		if (ata_id_is_cfa(id)) {
2537			/* CPRM may make this media unusable */
2538			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2539				ata_dev_warn(dev,
2540	"supports DRM functions and may not be fully accessible\n");
2541			snprintf(revbuf, 7, "CFA");
2542		} else {
2543			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2544			/* Warn the user if the device has TPM extensions */
2545			if (ata_id_has_tpm(id))
2546				ata_dev_warn(dev,
2547	"supports DRM functions and may not be fully accessible\n");
2548		}
2549
2550		dev->n_sectors = ata_id_n_sectors(id);
2551
2552		/* get current R/W Multiple count setting */
2553		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2554			unsigned int max = dev->id[47] & 0xff;
2555			unsigned int cnt = dev->id[59] & 0xff;
2556			/* only recognize/allow powers of two here */
2557			if (is_power_of_2(max) && is_power_of_2(cnt))
2558				if (cnt <= max)
2559					dev->multi_count = cnt;
2560		}
2561
2562		if (ata_id_has_lba(id)) {
2563			const char *lba_desc;
2564			char ncq_desc[24];
2565
2566			lba_desc = "LBA";
2567			dev->flags |= ATA_DFLAG_LBA;
2568			if (ata_id_has_lba48(id)) {
2569				dev->flags |= ATA_DFLAG_LBA48;
2570				lba_desc = "LBA48";
2571
2572				if (dev->n_sectors >= (1UL << 28) &&
2573				    ata_id_has_flush_ext(id))
2574					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2575			}
2576
2577			/* config NCQ */
2578			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2579			if (rc)
2580				return rc;
2581
2582			/* print device info to dmesg */
2583			if (ata_msg_drv(ap) && print_info) {
2584				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2585					     revbuf, modelbuf, fwrevbuf,
2586					     ata_mode_string(xfer_mask));
2587				ata_dev_info(dev,
2588					     "%llu sectors, multi %u: %s %s\n",
2589					(unsigned long long)dev->n_sectors,
2590					dev->multi_count, lba_desc, ncq_desc);
2591			}
2592		} else {
2593			/* CHS */
2594
2595			/* Default translation */
2596			dev->cylinders	= id[1];
2597			dev->heads	= id[3];
2598			dev->sectors	= id[6];
2599
2600			if (ata_id_current_chs_valid(id)) {
2601				/* Current CHS translation is valid. */
2602				dev->cylinders = id[54];
2603				dev->heads     = id[55];
2604				dev->sectors   = id[56];
2605			}
2606
2607			/* print device info to dmesg */
2608			if (ata_msg_drv(ap) && print_info) {
2609				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2610					     revbuf,	modelbuf, fwrevbuf,
2611					     ata_mode_string(xfer_mask));
2612				ata_dev_info(dev,
2613					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2614					     (unsigned long long)dev->n_sectors,
2615					     dev->multi_count, dev->cylinders,
2616					     dev->heads, dev->sectors);
2617			}
2618		}
2619
2620		/* Check and mark DevSlp capability. Get DevSlp timing variables
2621		 * from SATA Settings page of Identify Device Data Log.
2622		 */
2623		if (ata_id_has_devslp(dev->id)) {
2624			u8 *sata_setting = ap->sector_buf;
2625			int i, j;
2626
2627			dev->flags |= ATA_DFLAG_DEVSLP;
2628			err_mask = ata_read_log_page(dev,
2629						     ATA_LOG_IDENTIFY_DEVICE,
2630						     ATA_LOG_SATA_SETTINGS,
2631						     sata_setting,
2632						     1);
2633			if (err_mask)
2634				ata_dev_dbg(dev,
2635					    "failed to get Identify Device Data, Emask 0x%x\n",
2636					    err_mask);
2637			else
2638				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2639					j = ATA_LOG_DEVSLP_OFFSET + i;
2640					dev->devslp_timing[i] = sata_setting[j];
2641				}
2642		}
2643		ata_dev_config_sense_reporting(dev);
2644		ata_dev_config_zac(dev);
2645		ata_dev_config_trusted(dev);
2646		dev->cdb_len = 32;
2647	}
2648
2649	/* ATAPI-specific feature tests */
2650	else if (dev->class == ATA_DEV_ATAPI) {
2651		const char *cdb_intr_string = "";
2652		const char *atapi_an_string = "";
2653		const char *dma_dir_string = "";
2654		u32 sntf;
2655
2656		rc = atapi_cdb_len(id);
2657		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2658			if (ata_msg_warn(ap))
2659				ata_dev_warn(dev, "unsupported CDB len\n");
2660			rc = -EINVAL;
2661			goto err_out_nosup;
2662		}
2663		dev->cdb_len = (unsigned int) rc;
2664
2665		/* Enable ATAPI AN if both the host and device have
2666		 * the support.  If PMP is attached, SNTF is required
2667		 * to enable ATAPI AN to discern between PHY status
2668		 * changed notifications and ATAPI ANs.
2669		 */
2670		if (atapi_an &&
2671		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2672		    (!sata_pmp_attached(ap) ||
2673		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2674			/* issue SET feature command to turn this on */
2675			err_mask = ata_dev_set_feature(dev,
2676					SETFEATURES_SATA_ENABLE, SATA_AN);
2677			if (err_mask)
2678				ata_dev_err(dev,
2679					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2680					    err_mask);
2681			else {
2682				dev->flags |= ATA_DFLAG_AN;
2683				atapi_an_string = ", ATAPI AN";
2684			}
2685		}
2686
2687		if (ata_id_cdb_intr(dev->id)) {
2688			dev->flags |= ATA_DFLAG_CDB_INTR;
2689			cdb_intr_string = ", CDB intr";
2690		}
2691
2692		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2693			dev->flags |= ATA_DFLAG_DMADIR;
2694			dma_dir_string = ", DMADIR";
2695		}
2696
2697		if (ata_id_has_da(dev->id)) {
2698			dev->flags |= ATA_DFLAG_DA;
2699			zpodd_init(dev);
2700		}
2701
2702		/* print device info to dmesg */
2703		if (ata_msg_drv(ap) && print_info)
2704			ata_dev_info(dev,
2705				     "ATAPI: %s, %s, max %s%s%s%s\n",
2706				     modelbuf, fwrevbuf,
2707				     ata_mode_string(xfer_mask),
2708				     cdb_intr_string, atapi_an_string,
2709				     dma_dir_string);
2710	}
2711
2712	/* determine max_sectors */
2713	dev->max_sectors = ATA_MAX_SECTORS;
2714	if (dev->flags & ATA_DFLAG_LBA48)
2715		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2716
2717	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2718	   200 sectors */
2719	if (ata_dev_knobble(dev)) {
2720		if (ata_msg_drv(ap) && print_info)
2721			ata_dev_info(dev, "applying bridge limits\n");
2722		dev->udma_mask &= ATA_UDMA5;
2723		dev->max_sectors = ATA_MAX_SECTORS;
2724	}
2725
2726	if ((dev->class == ATA_DEV_ATAPI) &&
2727	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2728		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2729		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2730	}
2731
2732	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2733		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2734					 dev->max_sectors);
2735
2736	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2737		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2738					 dev->max_sectors);
2739
2740	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2741		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2742
2743	if (ap->ops->dev_config)
2744		ap->ops->dev_config(dev);
2745
2746	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2747		/* Let the user know. We don't want to disallow opens for
2748		   rescue purposes, or in case the vendor is just a blithering
2749		   idiot. Do this after the dev_config call as some controllers
2750		   with buggy firmware may want to avoid reporting false device
2751		   bugs */
2752
2753		if (print_info) {
2754			ata_dev_warn(dev,
2755"Drive reports diagnostics failure. This may indicate a drive\n");
2756			ata_dev_warn(dev,
2757"fault or invalid emulation. Contact drive vendor for information.\n");
2758		}
2759	}
2760
2761	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2762		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2763		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2764	}
2765
2766	return 0;
2767
2768err_out_nosup:
2769	if (ata_msg_probe(ap))
2770		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2771	return rc;
2772}
2773
2774/**
2775 *	ata_cable_40wire	-	return 40 wire cable type
2776 *	@ap: port
2777 *
2778 *	Helper method for drivers which want to hardwire 40 wire cable
2779 *	detection.
2780 */
2781
2782int ata_cable_40wire(struct ata_port *ap)
2783{
2784	return ATA_CBL_PATA40;
2785}
2786
2787/**
2788 *	ata_cable_80wire	-	return 80 wire cable type
2789 *	@ap: port
2790 *
2791 *	Helper method for drivers which want to hardwire 80 wire cable
2792 *	detection.
2793 */
2794
2795int ata_cable_80wire(struct ata_port *ap)
2796{
2797	return ATA_CBL_PATA80;
2798}
2799
2800/**
2801 *	ata_cable_unknown	-	return unknown PATA cable.
2802 *	@ap: port
2803 *
2804 *	Helper method for drivers which have no PATA cable detection.
2805 */
2806
2807int ata_cable_unknown(struct ata_port *ap)
2808{
2809	return ATA_CBL_PATA_UNK;
2810}
2811
2812/**
2813 *	ata_cable_ignore	-	return ignored PATA cable.
2814 *	@ap: port
2815 *
2816 *	Helper method for drivers which don't use cable type to limit
2817 *	transfer mode.
2818 */
2819int ata_cable_ignore(struct ata_port *ap)
2820{
2821	return ATA_CBL_PATA_IGN;
2822}
2823
2824/**
2825 *	ata_cable_sata	-	return SATA cable type
2826 *	@ap: port
2827 *
2828 *	Helper method for drivers which have SATA cables
2829 */
2830
2831int ata_cable_sata(struct ata_port *ap)
2832{
2833	return ATA_CBL_SATA;
2834}
2835
2836/**
2837 *	ata_bus_probe - Reset and probe ATA bus
2838 *	@ap: Bus to probe
2839 *
2840 *	Master ATA bus probing function.  Initiates a hardware-dependent
2841 *	bus reset, then attempts to identify any devices found on
2842 *	the bus.
2843 *
2844 *	LOCKING:
2845 *	PCI/etc. bus probe sem.
2846 *
2847 *	RETURNS:
2848 *	Zero on success, negative errno otherwise.
2849 */
2850
2851int ata_bus_probe(struct ata_port *ap)
2852{
2853	unsigned int classes[ATA_MAX_DEVICES];
2854	int tries[ATA_MAX_DEVICES];
2855	int rc;
2856	struct ata_device *dev;
2857
2858	ata_for_each_dev(dev, &ap->link, ALL)
2859		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2860
2861 retry:
2862	ata_for_each_dev(dev, &ap->link, ALL) {
2863		/* If we issue an SRST then an ATA drive (not ATAPI)
2864		 * may change configuration and be in PIO0 timing. If
2865		 * we do a hard reset (or are coming from power on)
2866		 * this is true for ATA or ATAPI. Until we've set a
2867		 * suitable controller mode we should not touch the
2868		 * bus as we may be talking too fast.
2869		 */
2870		dev->pio_mode = XFER_PIO_0;
2871		dev->dma_mode = 0xff;
2872
2873		/* If the controller has a pio mode setup function
2874		 * then use it to set the chipset to rights. Don't
2875		 * touch the DMA setup as that will be dealt with when
2876		 * configuring devices.
2877		 */
2878		if (ap->ops->set_piomode)
2879			ap->ops->set_piomode(ap, dev);
2880	}
2881
2882	/* reset and determine device classes */
2883	ap->ops->phy_reset(ap);
2884
2885	ata_for_each_dev(dev, &ap->link, ALL) {
2886		if (dev->class != ATA_DEV_UNKNOWN)
2887			classes[dev->devno] = dev->class;
2888		else
2889			classes[dev->devno] = ATA_DEV_NONE;
2890
2891		dev->class = ATA_DEV_UNKNOWN;
2892	}
2893
2894	/* read IDENTIFY page and configure devices. We have to do the identify
2895	   specific sequence bass-ackwards so that PDIAG- is released by
2896	   the slave device */
2897
2898	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2899		if (tries[dev->devno])
2900			dev->class = classes[dev->devno];
2901
2902		if (!ata_dev_enabled(dev))
2903			continue;
2904
2905		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2906				     dev->id);
2907		if (rc)
2908			goto fail;
2909	}
2910
2911	/* Now ask for the cable type as PDIAG- should have been released */
2912	if (ap->ops->cable_detect)
2913		ap->cbl = ap->ops->cable_detect(ap);
2914
2915	/* We may have SATA bridge glue hiding here irrespective of
2916	 * the reported cable types and sensed types.  When SATA
2917	 * drives indicate we have a bridge, we don't know which end
2918	 * of the link the bridge is which is a problem.
2919	 */
2920	ata_for_each_dev(dev, &ap->link, ENABLED)
2921		if (ata_id_is_sata(dev->id))
2922			ap->cbl = ATA_CBL_SATA;
2923
2924	/* After the identify sequence we can now set up the devices. We do
2925	   this in the normal order so that the user doesn't get confused */
2926
2927	ata_for_each_dev(dev, &ap->link, ENABLED) {
2928		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2929		rc = ata_dev_configure(dev);
2930		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2931		if (rc)
2932			goto fail;
2933	}
2934
2935	/* configure transfer mode */
2936	rc = ata_set_mode(&ap->link, &dev);
2937	if (rc)
2938		goto fail;
2939
2940	ata_for_each_dev(dev, &ap->link, ENABLED)
2941		return 0;
2942
2943	return -ENODEV;
2944
2945 fail:
2946	tries[dev->devno]--;
2947
2948	switch (rc) {
2949	case -EINVAL:
2950		/* eeek, something went very wrong, give up */
2951		tries[dev->devno] = 0;
2952		break;
2953
2954	case -ENODEV:
2955		/* give it just one more chance */
2956		tries[dev->devno] = min(tries[dev->devno], 1);
2957		/* fall through */
2958	case -EIO:
2959		if (tries[dev->devno] == 1) {
2960			/* This is the last chance, better to slow
2961			 * down than lose it.
2962			 */
2963			sata_down_spd_limit(&ap->link, 0);
2964			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2965		}
2966	}
2967
2968	if (!tries[dev->devno])
2969		ata_dev_disable(dev);
2970
2971	goto retry;
2972}
2973
2974/**
2975 *	sata_print_link_status - Print SATA link status
2976 *	@link: SATA link to printk link status about
2977 *
2978 *	This function prints link speed and status of a SATA link.
2979 *
2980 *	LOCKING:
2981 *	None.
2982 */
2983static void sata_print_link_status(struct ata_link *link)
2984{
2985	u32 sstatus, scontrol, tmp;
2986
2987	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2988		return;
2989	sata_scr_read(link, SCR_CONTROL, &scontrol);
2990
2991	if (ata_phys_link_online(link)) {
2992		tmp = (sstatus >> 4) & 0xf;
2993		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2994			      sata_spd_string(tmp), sstatus, scontrol);
2995	} else {
2996		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2997			      sstatus, scontrol);
2998	}
2999}
3000
3001/**
3002 *	ata_dev_pair		-	return other device on cable
3003 *	@adev: device
3004 *
3005 *	Obtain the other device on the same cable, or if none is
3006 *	present NULL is returned
3007 */
3008
3009struct ata_device *ata_dev_pair(struct ata_device *adev)
3010{
3011	struct ata_link *link = adev->link;
3012	struct ata_device *pair = &link->device[1 - adev->devno];
3013	if (!ata_dev_enabled(pair))
3014		return NULL;
3015	return pair;
3016}
3017
3018/**
3019 *	sata_down_spd_limit - adjust SATA spd limit downward
3020 *	@link: Link to adjust SATA spd limit for
3021 *	@spd_limit: Additional limit
3022 *
3023 *	Adjust SATA spd limit of @link downward.  Note that this
3024 *	function only adjusts the limit.  The change must be applied
3025 *	using sata_set_spd().
3026 *
3027 *	If @spd_limit is non-zero, the speed is limited to equal to or
3028 *	lower than @spd_limit if such speed is supported.  If
3029 *	@spd_limit is slower than any supported speed, only the lowest
3030 *	supported speed is allowed.
3031 *
3032 *	LOCKING:
3033 *	Inherited from caller.
3034 *
3035 *	RETURNS:
3036 *	0 on success, negative errno on failure
3037 */
3038int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3039{
3040	u32 sstatus, spd, mask;
3041	int rc, bit;
3042
3043	if (!sata_scr_valid(link))
3044		return -EOPNOTSUPP;
3045
3046	/* If SCR can be read, use it to determine the current SPD.
3047	 * If not, use cached value in link->sata_spd.
3048	 */
3049	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3050	if (rc == 0 && ata_sstatus_online(sstatus))
3051		spd = (sstatus >> 4) & 0xf;
3052	else
3053		spd = link->sata_spd;
3054
3055	mask = link->sata_spd_limit;
3056	if (mask <= 1)
3057		return -EINVAL;
3058
3059	/* unconditionally mask off the highest bit */
3060	bit = fls(mask) - 1;
3061	mask &= ~(1 << bit);
3062
3063	/*
3064	 * Mask off all speeds higher than or equal to the current one.  At
3065	 * this point, if current SPD is not available and we previously
3066	 * recorded the link speed from SStatus, the driver has already
3067	 * masked off the highest bit so mask should already be 1 or 0.
3068	 * Otherwise, we should not force 1.5Gbps on a link where we have
3069	 * not previously recorded speed from SStatus.  Just return in this
3070	 * case.
3071	 */
3072	if (spd > 1)
3073		mask &= (1 << (spd - 1)) - 1;
3074	else
3075		return -EINVAL;
3076
3077	/* were we already at the bottom? */
3078	if (!mask)
3079		return -EINVAL;
3080
3081	if (spd_limit) {
3082		if (mask & ((1 << spd_limit) - 1))
3083			mask &= (1 << spd_limit) - 1;
3084		else {
3085			bit = ffs(mask) - 1;
3086			mask = 1 << bit;
3087		}
3088	}
3089
3090	link->sata_spd_limit = mask;
3091
3092	ata_link_warn(link, "limiting SATA link speed to %s\n",
3093		      sata_spd_string(fls(mask)));
3094
3095	return 0;
3096}
3097
3098static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3099{
3100	struct ata_link *host_link = &link->ap->link;
3101	u32 limit, target, spd;
3102
3103	limit = link->sata_spd_limit;
3104
3105	/* Don't configure downstream link faster than upstream link.
3106	 * It doesn't speed up anything and some PMPs choke on such
3107	 * configuration.
3108	 */
3109	if (!ata_is_host_link(link) && host_link->sata_spd)
3110		limit &= (1 << host_link->sata_spd) - 1;
3111
3112	if (limit == UINT_MAX)
3113		target = 0;
3114	else
3115		target = fls(limit);
3116
3117	spd = (*scontrol >> 4) & 0xf;
3118	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3119
3120	return spd != target;
3121}
3122
3123/**
3124 *	sata_set_spd_needed - is SATA spd configuration needed
3125 *	@link: Link in question
3126 *
3127 *	Test whether the spd limit in SControl matches
3128 *	@link->sata_spd_limit.  This function is used to determine
3129 *	whether hardreset is necessary to apply SATA spd
3130 *	configuration.
3131 *
3132 *	LOCKING:
3133 *	Inherited from caller.
3134 *
3135 *	RETURNS:
3136 *	1 if SATA spd configuration is needed, 0 otherwise.
3137 */
3138static int sata_set_spd_needed(struct ata_link *link)
3139{
3140	u32 scontrol;
3141
3142	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3143		return 1;
3144
3145	return __sata_set_spd_needed(link, &scontrol);
3146}
3147
3148/**
3149 *	sata_set_spd - set SATA spd according to spd limit
3150 *	@link: Link to set SATA spd for
3151 *
3152 *	Set SATA spd of @link according to sata_spd_limit.
3153 *
3154 *	LOCKING:
3155 *	Inherited from caller.
3156 *
3157 *	RETURNS:
3158 *	0 if spd doesn't need to be changed, 1 if spd has been
3159 *	changed.  Negative errno if SCR registers are inaccessible.
3160 */
3161int sata_set_spd(struct ata_link *link)
3162{
3163	u32 scontrol;
3164	int rc;
3165
3166	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3167		return rc;
3168
3169	if (!__sata_set_spd_needed(link, &scontrol))
3170		return 0;
3171
3172	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3173		return rc;
3174
3175	return 1;
3176}
3177
3178/*
3179 * This mode timing computation functionality is ported over from
3180 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3181 */
3182/*
3183 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3184 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3185 * for UDMA6, which is currently supported only by Maxtor drives.
3186 *
3187 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3188 */
3189
3190static const struct ata_timing ata_timing[] = {
3191/*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3192	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3193	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3194	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3195	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3196	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3197	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3198	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3199
3200	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3201	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3202	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3203
3204	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3205	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3206	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3207	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3208	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3209
3210/*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3211	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3212	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3213	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3214	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3215	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3216	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3217	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3218
3219	{ 0xFF }
3220};
3221
3222#define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3223#define EZ(v, unit)		((v)?ENOUGH(((v) * 1000), unit):0)
3224
3225static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3226{
3227	q->setup	= EZ(t->setup,       T);
3228	q->act8b	= EZ(t->act8b,       T);
3229	q->rec8b	= EZ(t->rec8b,       T);
3230	q->cyc8b	= EZ(t->cyc8b,       T);
3231	q->active	= EZ(t->active,      T);
3232	q->recover	= EZ(t->recover,     T);
3233	q->dmack_hold	= EZ(t->dmack_hold,  T);
3234	q->cycle	= EZ(t->cycle,       T);
3235	q->udma		= EZ(t->udma,       UT);
3236}
3237
3238void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3239		      struct ata_timing *m, unsigned int what)
3240{
3241	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3242	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3243	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3244	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3245	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3246	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3247	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3248	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3249	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3250}
3251
3252const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3253{
3254	const struct ata_timing *t = ata_timing;
3255
3256	while (xfer_mode > t->mode)
3257		t++;
3258
3259	if (xfer_mode == t->mode)
3260		return t;
3261
3262	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3263			__func__, xfer_mode);
3264
3265	return NULL;
3266}
3267
3268int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3269		       struct ata_timing *t, int T, int UT)
3270{
3271	const u16 *id = adev->id;
3272	const struct ata_timing *s;
3273	struct ata_timing p;
3274
3275	/*
3276	 * Find the mode.
3277	 */
3278
3279	if (!(s = ata_timing_find_mode(speed)))
3280		return -EINVAL;
3281
3282	memcpy(t, s, sizeof(*s));
3283
3284	/*
3285	 * If the drive is an EIDE drive, it can tell us it needs extended
3286	 * PIO/MW_DMA cycle timing.
3287	 */
3288
3289	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3290		memset(&p, 0, sizeof(p));
3291
3292		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3293			if (speed <= XFER_PIO_2)
3294				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3295			else if ((speed <= XFER_PIO_4) ||
3296				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3297				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3298		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3299			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3300
3301		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3302	}
3303
3304	/*
3305	 * Convert the timing to bus clock counts.
3306	 */
3307
3308	ata_timing_quantize(t, t, T, UT);
3309
3310	/*
3311	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3312	 * S.M.A.R.T * and some other commands. We have to ensure that the
3313	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3314	 */
3315
3316	if (speed > XFER_PIO_6) {
3317		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3318		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3319	}
3320
3321	/*
3322	 * Lengthen active & recovery time so that cycle time is correct.
3323	 */
3324
3325	if (t->act8b + t->rec8b < t->cyc8b) {
3326		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3327		t->rec8b = t->cyc8b - t->act8b;
3328	}
3329
3330	if (t->active + t->recover < t->cycle) {
3331		t->active += (t->cycle - (t->active + t->recover)) / 2;
3332		t->recover = t->cycle - t->active;
3333	}
3334
3335	/* In a few cases quantisation may produce enough errors to
3336	   leave t->cycle too low for the sum of active and recovery
3337	   if so we must correct this */
3338	if (t->active + t->recover > t->cycle)
3339		t->cycle = t->active + t->recover;
3340
3341	return 0;
3342}
3343
3344/**
3345 *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3346 *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3347 *	@cycle: cycle duration in ns
3348 *
3349 *	Return matching xfer mode for @cycle.  The returned mode is of
3350 *	the transfer type specified by @xfer_shift.  If @cycle is too
3351 *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3352 *	than the fastest known mode, the fasted mode is returned.
3353 *
3354 *	LOCKING:
3355 *	None.
3356 *
3357 *	RETURNS:
3358 *	Matching xfer_mode, 0xff if no match found.
3359 */
3360u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3361{
3362	u8 base_mode = 0xff, last_mode = 0xff;
3363	const struct ata_xfer_ent *ent;
3364	const struct ata_timing *t;
3365
3366	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3367		if (ent->shift == xfer_shift)
3368			base_mode = ent->base;
3369
3370	for (t = ata_timing_find_mode(base_mode);
3371	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3372		unsigned short this_cycle;
3373
3374		switch (xfer_shift) {
3375		case ATA_SHIFT_PIO:
3376		case ATA_SHIFT_MWDMA:
3377			this_cycle = t->cycle;
3378			break;
3379		case ATA_SHIFT_UDMA:
3380			this_cycle = t->udma;
3381			break;
3382		default:
3383			return 0xff;
3384		}
3385
3386		if (cycle > this_cycle)
3387			break;
3388
3389		last_mode = t->mode;
3390	}
3391
3392	return last_mode;
3393}
3394
3395/**
3396 *	ata_down_xfermask_limit - adjust dev xfer masks downward
3397 *	@dev: Device to adjust xfer masks
3398 *	@sel: ATA_DNXFER_* selector
3399 *
3400 *	Adjust xfer masks of @dev downward.  Note that this function
3401 *	does not apply the change.  Invoking ata_set_mode() afterwards
3402 *	will apply the limit.
3403 *
3404 *	LOCKING:
3405 *	Inherited from caller.
3406 *
3407 *	RETURNS:
3408 *	0 on success, negative errno on failure
3409 */
3410int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3411{
3412	char buf[32];
3413	unsigned long orig_mask, xfer_mask;
3414	unsigned long pio_mask, mwdma_mask, udma_mask;
3415	int quiet, highbit;
3416
3417	quiet = !!(sel & ATA_DNXFER_QUIET);
3418	sel &= ~ATA_DNXFER_QUIET;
3419
3420	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3421						  dev->mwdma_mask,
3422						  dev->udma_mask);
3423	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3424
3425	switch (sel) {
3426	case ATA_DNXFER_PIO:
3427		highbit = fls(pio_mask) - 1;
3428		pio_mask &= ~(1 << highbit);
3429		break;
3430
3431	case ATA_DNXFER_DMA:
3432		if (udma_mask) {
3433			highbit = fls(udma_mask) - 1;
3434			udma_mask &= ~(1 << highbit);
3435			if (!udma_mask)
3436				return -ENOENT;
3437		} else if (mwdma_mask) {
3438			highbit = fls(mwdma_mask) - 1;
3439			mwdma_mask &= ~(1 << highbit);
3440			if (!mwdma_mask)
3441				return -ENOENT;
3442		}
3443		break;
3444
3445	case ATA_DNXFER_40C:
3446		udma_mask &= ATA_UDMA_MASK_40C;
3447		break;
3448
3449	case ATA_DNXFER_FORCE_PIO0:
3450		pio_mask &= 1;
3451		/* fall through */
3452	case ATA_DNXFER_FORCE_PIO:
3453		mwdma_mask = 0;
3454		udma_mask = 0;
3455		break;
3456
3457	default:
3458		BUG();
3459	}
3460
3461	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3462
3463	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3464		return -ENOENT;
3465
3466	if (!quiet) {
3467		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3468			snprintf(buf, sizeof(buf), "%s:%s",
3469				 ata_mode_string(xfer_mask),
3470				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3471		else
3472			snprintf(buf, sizeof(buf), "%s",
3473				 ata_mode_string(xfer_mask));
3474
3475		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3476	}
3477
3478	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3479			    &dev->udma_mask);
3480
3481	return 0;
3482}
3483
3484static int ata_dev_set_mode(struct ata_device *dev)
3485{
3486	struct ata_port *ap = dev->link->ap;
3487	struct ata_eh_context *ehc = &dev->link->eh_context;
3488	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3489	const char *dev_err_whine = "";
3490	int ign_dev_err = 0;
3491	unsigned int err_mask = 0;
3492	int rc;
3493
3494	dev->flags &= ~ATA_DFLAG_PIO;
3495	if (dev->xfer_shift == ATA_SHIFT_PIO)
3496		dev->flags |= ATA_DFLAG_PIO;
3497
3498	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3499		dev_err_whine = " (SET_XFERMODE skipped)";
3500	else {
3501		if (nosetxfer)
3502			ata_dev_warn(dev,
3503				     "NOSETXFER but PATA detected - can't "
3504				     "skip SETXFER, might malfunction\n");
3505		err_mask = ata_dev_set_xfermode(dev);
3506	}
3507
3508	if (err_mask & ~AC_ERR_DEV)
3509		goto fail;
3510
3511	/* revalidate */
3512	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3513	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3514	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3515	if (rc)
3516		return rc;
3517
3518	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3519		/* Old CFA may refuse this command, which is just fine */
3520		if (ata_id_is_cfa(dev->id))
3521			ign_dev_err = 1;
3522		/* Catch several broken garbage emulations plus some pre
3523		   ATA devices */
3524		if (ata_id_major_version(dev->id) == 0 &&
3525					dev->pio_mode <= XFER_PIO_2)
3526			ign_dev_err = 1;
3527		/* Some very old devices and some bad newer ones fail
3528		   any kind of SET_XFERMODE request but support PIO0-2
3529		   timings and no IORDY */
3530		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3531			ign_dev_err = 1;
3532	}
3533	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3534	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3535	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3536	    dev->dma_mode == XFER_MW_DMA_0 &&
3537	    (dev->id[63] >> 8) & 1)
3538		ign_dev_err = 1;
3539
3540	/* if the device is actually configured correctly, ignore dev err */
3541	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3542		ign_dev_err = 1;
3543
3544	if (err_mask & AC_ERR_DEV) {
3545		if (!ign_dev_err)
3546			goto fail;
3547		else
3548			dev_err_whine = " (device error ignored)";
3549	}
3550
3551	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3552		dev->xfer_shift, (int)dev->xfer_mode);
3553
3554	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3555	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3556		ata_dev_info(dev, "configured for %s%s\n",
3557			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3558			     dev_err_whine);
3559
3560	return 0;
3561
3562 fail:
3563	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3564	return -EIO;
3565}
3566
3567/**
3568 *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3569 *	@link: link on which timings will be programmed
3570 *	@r_failed_dev: out parameter for failed device
3571 *
3572 *	Standard implementation of the function used to tune and set
3573 *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3574 *	ata_dev_set_mode() fails, pointer to the failing device is
3575 *	returned in @r_failed_dev.
3576 *
3577 *	LOCKING:
3578 *	PCI/etc. bus probe sem.
3579 *
3580 *	RETURNS:
3581 *	0 on success, negative errno otherwise
3582 */
3583
3584int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3585{
3586	struct ata_port *ap = link->ap;
3587	struct ata_device *dev;
3588	int rc = 0, used_dma = 0, found = 0;
3589
3590	/* step 1: calculate xfer_mask */
3591	ata_for_each_dev(dev, link, ENABLED) {
3592		unsigned long pio_mask, dma_mask;
3593		unsigned int mode_mask;
3594
3595		mode_mask = ATA_DMA_MASK_ATA;
3596		if (dev->class == ATA_DEV_ATAPI)
3597			mode_mask = ATA_DMA_MASK_ATAPI;
3598		else if (ata_id_is_cfa(dev->id))
3599			mode_mask = ATA_DMA_MASK_CFA;
3600
3601		ata_dev_xfermask(dev);
3602		ata_force_xfermask(dev);
3603
3604		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3605
3606		if (libata_dma_mask & mode_mask)
3607			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3608						     dev->udma_mask);
3609		else
3610			dma_mask = 0;
3611
3612		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3613		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3614
3615		found = 1;
3616		if (ata_dma_enabled(dev))
3617			used_dma = 1;
3618	}
3619	if (!found)
3620		goto out;
3621
3622	/* step 2: always set host PIO timings */
3623	ata_for_each_dev(dev, link, ENABLED) {
3624		if (dev->pio_mode == 0xff) {
3625			ata_dev_warn(dev, "no PIO support\n");
3626			rc = -EINVAL;
3627			goto out;
3628		}
3629
3630		dev->xfer_mode = dev->pio_mode;
3631		dev->xfer_shift = ATA_SHIFT_PIO;
3632		if (ap->ops->set_piomode)
3633			ap->ops->set_piomode(ap, dev);
3634	}
3635
3636	/* step 3: set host DMA timings */
3637	ata_for_each_dev(dev, link, ENABLED) {
3638		if (!ata_dma_enabled(dev))
3639			continue;
3640
3641		dev->xfer_mode = dev->dma_mode;
3642		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3643		if (ap->ops->set_dmamode)
3644			ap->ops->set_dmamode(ap, dev);
3645	}
3646
3647	/* step 4: update devices' xfer mode */
3648	ata_for_each_dev(dev, link, ENABLED) {
3649		rc = ata_dev_set_mode(dev);
3650		if (rc)
3651			goto out;
3652	}
3653
3654	/* Record simplex status. If we selected DMA then the other
3655	 * host channels are not permitted to do so.
3656	 */
3657	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3658		ap->host->simplex_claimed = ap;
3659
3660 out:
3661	if (rc)
3662		*r_failed_dev = dev;
3663	return rc;
3664}
3665
3666/**
3667 *	ata_wait_ready - wait for link to become ready
3668 *	@link: link to be waited on
3669 *	@deadline: deadline jiffies for the operation
3670 *	@check_ready: callback to check link readiness
3671 *
3672 *	Wait for @link to become ready.  @check_ready should return
3673 *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3674 *	link doesn't seem to be occupied, other errno for other error
3675 *	conditions.
3676 *
3677 *	Transient -ENODEV conditions are allowed for
3678 *	ATA_TMOUT_FF_WAIT.
3679 *
3680 *	LOCKING:
3681 *	EH context.
3682 *
3683 *	RETURNS:
3684 *	0 if @link is ready before @deadline; otherwise, -errno.
3685 */
3686int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3687		   int (*check_ready)(struct ata_link *link))
3688{
3689	unsigned long start = jiffies;
3690	unsigned long nodev_deadline;
3691	int warned = 0;
3692
3693	/* choose which 0xff timeout to use, read comment in libata.h */
3694	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3695		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3696	else
3697		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3698
3699	/* Slave readiness can't be tested separately from master.  On
3700	 * M/S emulation configuration, this function should be called
3701	 * only on the master and it will handle both master and slave.
3702	 */
3703	WARN_ON(link == link->ap->slave_link);
3704
3705	if (time_after(nodev_deadline, deadline))
3706		nodev_deadline = deadline;
3707
3708	while (1) {
3709		unsigned long now = jiffies;
3710		int ready, tmp;
3711
3712		ready = tmp = check_ready(link);
3713		if (ready > 0)
3714			return 0;
3715
3716		/*
3717		 * -ENODEV could be transient.  Ignore -ENODEV if link
3718		 * is online.  Also, some SATA devices take a long
3719		 * time to clear 0xff after reset.  Wait for
3720		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3721		 * offline.
3722		 *
3723		 * Note that some PATA controllers (pata_ali) explode
3724		 * if status register is read more than once when
3725		 * there's no device attached.
3726		 */
3727		if (ready == -ENODEV) {
3728			if (ata_link_online(link))
3729				ready = 0;
3730			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3731				 !ata_link_offline(link) &&
3732				 time_before(now, nodev_deadline))
3733				ready = 0;
3734		}
3735
3736		if (ready)
3737			return ready;
3738		if (time_after(now, deadline))
3739			return -EBUSY;
3740
3741		if (!warned && time_after(now, start + 5 * HZ) &&
3742		    (deadline - now > 3 * HZ)) {
3743			ata_link_warn(link,
3744				"link is slow to respond, please be patient "
3745				"(ready=%d)\n", tmp);
3746			warned = 1;
3747		}
3748
3749		ata_msleep(link->ap, 50);
3750	}
3751}
3752
3753/**
3754 *	ata_wait_after_reset - wait for link to become ready after reset
3755 *	@link: link to be waited on
3756 *	@deadline: deadline jiffies for the operation
3757 *	@check_ready: callback to check link readiness
3758 *
3759 *	Wait for @link to become ready after reset.
3760 *
3761 *	LOCKING:
3762 *	EH context.
3763 *
3764 *	RETURNS:
3765 *	0 if @link is ready before @deadline; otherwise, -errno.
3766 */
3767int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3768				int (*check_ready)(struct ata_link *link))
3769{
3770	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3771
3772	return ata_wait_ready(link, deadline, check_ready);
3773}
3774
3775/**
3776 *	sata_link_debounce - debounce SATA phy status
3777 *	@link: ATA link to debounce SATA phy status for
3778 *	@params: timing parameters { interval, duration, timeout } in msec
3779 *	@deadline: deadline jiffies for the operation
3780 *
3781 *	Make sure SStatus of @link reaches stable state, determined by
3782 *	holding the same value where DET is not 1 for @duration polled
3783 *	every @interval, before @timeout.  Timeout constraints the
3784 *	beginning of the stable state.  Because DET gets stuck at 1 on
3785 *	some controllers after hot unplugging, this functions waits
3786 *	until timeout then returns 0 if DET is stable at 1.
3787 *
3788 *	@timeout is further limited by @deadline.  The sooner of the
3789 *	two is used.
3790 *
3791 *	LOCKING:
3792 *	Kernel thread context (may sleep)
3793 *
3794 *	RETURNS:
3795 *	0 on success, -errno on failure.
3796 */
3797int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3798		       unsigned long deadline)
3799{
3800	unsigned long interval = params[0];
3801	unsigned long duration = params[1];
3802	unsigned long last_jiffies, t;
3803	u32 last, cur;
3804	int rc;
3805
3806	t = ata_deadline(jiffies, params[2]);
3807	if (time_before(t, deadline))
3808		deadline = t;
3809
3810	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3811		return rc;
3812	cur &= 0xf;
3813
3814	last = cur;
3815	last_jiffies = jiffies;
3816
3817	while (1) {
3818		ata_msleep(link->ap, interval);
3819		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3820			return rc;
3821		cur &= 0xf;
3822
3823		/* DET stable? */
3824		if (cur == last) {
3825			if (cur == 1 && time_before(jiffies, deadline))
3826				continue;
3827			if (time_after(jiffies,
3828				       ata_deadline(last_jiffies, duration)))
3829				return 0;
3830			continue;
3831		}
3832
3833		/* unstable, start over */
3834		last = cur;
3835		last_jiffies = jiffies;
3836
3837		/* Check deadline.  If debouncing failed, return
3838		 * -EPIPE to tell upper layer to lower link speed.
3839		 */
3840		if (time_after(jiffies, deadline))
3841			return -EPIPE;
3842	}
3843}
3844
3845/**
3846 *	sata_link_resume - resume SATA link
3847 *	@link: ATA link to resume SATA
3848 *	@params: timing parameters { interval, duration, timeout } in msec
3849 *	@deadline: deadline jiffies for the operation
3850 *
3851 *	Resume SATA phy @link and debounce it.
3852 *
3853 *	LOCKING:
3854 *	Kernel thread context (may sleep)
3855 *
3856 *	RETURNS:
3857 *	0 on success, -errno on failure.
3858 */
3859int sata_link_resume(struct ata_link *link, const unsigned long *params,
3860		     unsigned long deadline)
3861{
3862	int tries = ATA_LINK_RESUME_TRIES;
3863	u32 scontrol, serror;
3864	int rc;
3865
3866	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3867		return rc;
3868
3869	/*
3870	 * Writes to SControl sometimes get ignored under certain
3871	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3872	 * cleared.
3873	 */
3874	do {
3875		scontrol = (scontrol & 0x0f0) | 0x300;
3876		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3877			return rc;
3878		/*
3879		 * Some PHYs react badly if SStatus is pounded
3880		 * immediately after resuming.  Delay 200ms before
3881		 * debouncing.
3882		 */
3883		if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3884			ata_msleep(link->ap, 200);
3885
3886		/* is SControl restored correctly? */
3887		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3888			return rc;
3889	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3890
3891	if ((scontrol & 0xf0f) != 0x300) {
3892		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3893			     scontrol);
3894		return 0;
3895	}
3896
3897	if (tries < ATA_LINK_RESUME_TRIES)
3898		ata_link_warn(link, "link resume succeeded after %d retries\n",
3899			      ATA_LINK_RESUME_TRIES - tries);
3900
3901	if ((rc = sata_link_debounce(link, params, deadline)))
3902		return rc;
3903
3904	/* clear SError, some PHYs require this even for SRST to work */
3905	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3906		rc = sata_scr_write(link, SCR_ERROR, serror);
3907
3908	return rc != -EINVAL ? rc : 0;
3909}
3910
3911/**
3912 *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3913 *	@link: ATA link to manipulate SControl for
3914 *	@policy: LPM policy to configure
3915 *	@spm_wakeup: initiate LPM transition to active state
3916 *
3917 *	Manipulate the IPM field of the SControl register of @link
3918 *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3919 *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3920 *	the link.  This function also clears PHYRDY_CHG before
3921 *	returning.
3922 *
3923 *	LOCKING:
3924 *	EH context.
3925 *
3926 *	RETURNS:
3927 *	0 on success, -errno otherwise.
3928 */
3929int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3930		      bool spm_wakeup)
3931{
3932	struct ata_eh_context *ehc = &link->eh_context;
3933	bool woken_up = false;
3934	u32 scontrol;
3935	int rc;
3936
3937	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3938	if (rc)
3939		return rc;
3940
3941	switch (policy) {
3942	case ATA_LPM_MAX_POWER:
3943		/* disable all LPM transitions */
3944		scontrol |= (0x7 << 8);
3945		/* initiate transition to active state */
3946		if (spm_wakeup) {
3947			scontrol |= (0x4 << 12);
3948			woken_up = true;
3949		}
3950		break;
3951	case ATA_LPM_MED_POWER:
3952		/* allow LPM to PARTIAL */
3953		scontrol &= ~(0x1 << 8);
3954		scontrol |= (0x6 << 8);
3955		break;
3956	case ATA_LPM_MED_POWER_WITH_DIPM:
3957	case ATA_LPM_MIN_POWER_WITH_PARTIAL:
3958	case ATA_LPM_MIN_POWER:
3959		if (ata_link_nr_enabled(link) > 0)
3960			/* no restrictions on LPM transitions */
3961			scontrol &= ~(0x7 << 8);
3962		else {
3963			/* empty port, power off */
3964			scontrol &= ~0xf;
3965			scontrol |= (0x1 << 2);
3966		}
3967		break;
3968	default:
3969		WARN_ON(1);
3970	}
3971
3972	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3973	if (rc)
3974		return rc;
3975
3976	/* give the link time to transit out of LPM state */
3977	if (woken_up)
3978		msleep(10);
3979
3980	/* clear PHYRDY_CHG from SError */
3981	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3982	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3983}
3984
3985/**
3986 *	ata_std_prereset - prepare for reset
3987 *	@link: ATA link to be reset
3988 *	@deadline: deadline jiffies for the operation
3989 *
3990 *	@link is about to be reset.  Initialize it.  Failure from
3991 *	prereset makes libata abort whole reset sequence and give up
3992 *	that port, so prereset should be best-effort.  It does its
3993 *	best to prepare for reset sequence but if things go wrong, it
3994 *	should just whine, not fail.
3995 *
3996 *	LOCKING:
3997 *	Kernel thread context (may sleep)
3998 *
3999 *	RETURNS:
4000 *	0 on success, -errno otherwise.
4001 */
4002int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4003{
4004	struct ata_port *ap = link->ap;
4005	struct ata_eh_context *ehc = &link->eh_context;
4006	const unsigned long *timing = sata_ehc_deb_timing(ehc);
4007	int rc;
4008
4009	/* if we're about to do hardreset, nothing more to do */
4010	if (ehc->i.action & ATA_EH_HARDRESET)
4011		return 0;
4012
4013	/* if SATA, resume link */
4014	if (ap->flags & ATA_FLAG_SATA) {
4015		rc = sata_link_resume(link, timing, deadline);
4016		/* whine about phy resume failure but proceed */
4017		if (rc && rc != -EOPNOTSUPP)
4018			ata_link_warn(link,
4019				      "failed to resume link for reset (errno=%d)\n",
4020				      rc);
4021	}
4022
4023	/* no point in trying softreset on offline link */
4024	if (ata_phys_link_offline(link))
4025		ehc->i.action &= ~ATA_EH_SOFTRESET;
4026
4027	return 0;
4028}
4029
4030/**
4031 *	sata_link_hardreset - reset link via SATA phy reset
4032 *	@link: link to reset
4033 *	@timing: timing parameters { interval, duration, timeout } in msec
4034 *	@deadline: deadline jiffies for the operation
4035 *	@online: optional out parameter indicating link onlineness
4036 *	@check_ready: optional callback to check link readiness
4037 *
4038 *	SATA phy-reset @link using DET bits of SControl register.
4039 *	After hardreset, link readiness is waited upon using
4040 *	ata_wait_ready() if @check_ready is specified.  LLDs are
4041 *	allowed to not specify @check_ready and wait itself after this
4042 *	function returns.  Device classification is LLD's
4043 *	responsibility.
4044 *
4045 *	*@online is set to one iff reset succeeded and @link is online
4046 *	after reset.
4047 *
4048 *	LOCKING:
4049 *	Kernel thread context (may sleep)
4050 *
4051 *	RETURNS:
4052 *	0 on success, -errno otherwise.
4053 */
4054int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4055			unsigned long deadline,
4056			bool *online, int (*check_ready)(struct ata_link *))
4057{
4058	u32 scontrol;
4059	int rc;
4060
4061	DPRINTK("ENTER\n");
4062
4063	if (online)
4064		*online = false;
4065
4066	if (sata_set_spd_needed(link)) {
4067		/* SATA spec says nothing about how to reconfigure
4068		 * spd.  To be on the safe side, turn off phy during
4069		 * reconfiguration.  This works for at least ICH7 AHCI
4070		 * and Sil3124.
4071		 */
4072		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4073			goto out;
4074
4075		scontrol = (scontrol & 0x0f0) | 0x304;
4076
4077		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4078			goto out;
4079
4080		sata_set_spd(link);
4081	}
4082
4083	/* issue phy wake/reset */
4084	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4085		goto out;
4086
4087	scontrol = (scontrol & 0x0f0) | 0x301;
4088
4089	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4090		goto out;
4091
4092	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4093	 * 10.4.2 says at least 1 ms.
4094	 */
4095	ata_msleep(link->ap, 1);
4096
4097	/* bring link back */
4098	rc = sata_link_resume(link, timing, deadline);
4099	if (rc)
4100		goto out;
4101	/* if link is offline nothing more to do */
4102	if (ata_phys_link_offline(link))
4103		goto out;
4104
4105	/* Link is online.  From this point, -ENODEV too is an error. */
4106	if (online)
4107		*online = true;
4108
4109	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4110		/* If PMP is supported, we have to do follow-up SRST.
4111		 * Some PMPs don't send D2H Reg FIS after hardreset if
4112		 * the first port is empty.  Wait only for
4113		 * ATA_TMOUT_PMP_SRST_WAIT.
4114		 */
4115		if (check_ready) {
4116			unsigned long pmp_deadline;
4117
4118			pmp_deadline = ata_deadline(jiffies,
4119						    ATA_TMOUT_PMP_SRST_WAIT);
4120			if (time_after(pmp_deadline, deadline))
4121				pmp_deadline = deadline;
4122			ata_wait_ready(link, pmp_deadline, check_ready);
4123		}
4124		rc = -EAGAIN;
4125		goto out;
4126	}
4127
4128	rc = 0;
4129	if (check_ready)
4130		rc = ata_wait_ready(link, deadline, check_ready);
4131 out:
4132	if (rc && rc != -EAGAIN) {
4133		/* online is set iff link is online && reset succeeded */
4134		if (online)
4135			*online = false;
4136		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4137	}
4138	DPRINTK("EXIT, rc=%d\n", rc);
4139	return rc;
4140}
4141
4142/**
4143 *	sata_std_hardreset - COMRESET w/o waiting or classification
4144 *	@link: link to reset
4145 *	@class: resulting class of attached device
4146 *	@deadline: deadline jiffies for the operation
4147 *
4148 *	Standard SATA COMRESET w/o waiting or classification.
4149 *
4150 *	LOCKING:
4151 *	Kernel thread context (may sleep)
4152 *
4153 *	RETURNS:
4154 *	0 if link offline, -EAGAIN if link online, -errno on errors.
4155 */
4156int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4157		       unsigned long deadline)
4158{
4159	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4160	bool online;
4161	int rc;
4162
4163	/* do hardreset */
4164	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4165	return online ? -EAGAIN : rc;
4166}
4167
4168/**
4169 *	ata_std_postreset - standard postreset callback
4170 *	@link: the target ata_link
4171 *	@classes: classes of attached devices
4172 *
4173 *	This function is invoked after a successful reset.  Note that
4174 *	the device might have been reset more than once using
4175 *	different reset methods before postreset is invoked.
4176 *
4177 *	LOCKING:
4178 *	Kernel thread context (may sleep)
4179 */
4180void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4181{
4182	u32 serror;
4183
4184	DPRINTK("ENTER\n");
4185
4186	/* reset complete, clear SError */
4187	if (!sata_scr_read(link, SCR_ERROR, &serror))
4188		sata_scr_write(link, SCR_ERROR, serror);
4189
4190	/* print link status */
4191	sata_print_link_status(link);
4192
4193	DPRINTK("EXIT\n");
4194}
4195
4196/**
4197 *	ata_dev_same_device - Determine whether new ID matches configured device
4198 *	@dev: device to compare against
4199 *	@new_class: class of the new device
4200 *	@new_id: IDENTIFY page of the new device
4201 *
4202 *	Compare @new_class and @new_id against @dev and determine
4203 *	whether @dev is the device indicated by @new_class and
4204 *	@new_id.
4205 *
4206 *	LOCKING:
4207 *	None.
4208 *
4209 *	RETURNS:
4210 *	1 if @dev matches @new_class and @new_id, 0 otherwise.
4211 */
4212static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4213			       const u16 *new_id)
4214{
4215	const u16 *old_id = dev->id;
4216	unsigned char model[2][ATA_ID_PROD_LEN + 1];
4217	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4218
4219	if (dev->class != new_class) {
4220		ata_dev_info(dev, "class mismatch %d != %d\n",
4221			     dev->class, new_class);
4222		return 0;
4223	}
4224
4225	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4226	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4227	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4228	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4229
4230	if (strcmp(model[0], model[1])) {
4231		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4232			     model[0], model[1]);
4233		return 0;
4234	}
4235
4236	if (strcmp(serial[0], serial[1])) {
4237		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4238			     serial[0], serial[1]);
4239		return 0;
4240	}
4241
4242	return 1;
4243}
4244
4245/**
4246 *	ata_dev_reread_id - Re-read IDENTIFY data
4247 *	@dev: target ATA device
4248 *	@readid_flags: read ID flags
4249 *
4250 *	Re-read IDENTIFY page and make sure @dev is still attached to
4251 *	the port.
4252 *
4253 *	LOCKING:
4254 *	Kernel thread context (may sleep)
4255 *
4256 *	RETURNS:
4257 *	0 on success, negative errno otherwise
4258 */
4259int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4260{
4261	unsigned int class = dev->class;
4262	u16 *id = (void *)dev->link->ap->sector_buf;
4263	int rc;
4264
4265	/* read ID data */
4266	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4267	if (rc)
4268		return rc;
4269
4270	/* is the device still there? */
4271	if (!ata_dev_same_device(dev, class, id))
4272		return -ENODEV;
4273
4274	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4275	return 0;
4276}
4277
4278/**
4279 *	ata_dev_revalidate - Revalidate ATA device
4280 *	@dev: device to revalidate
4281 *	@new_class: new class code
4282 *	@readid_flags: read ID flags
4283 *
4284 *	Re-read IDENTIFY page, make sure @dev is still attached to the
4285 *	port and reconfigure it according to the new IDENTIFY page.
4286 *
4287 *	LOCKING:
4288 *	Kernel thread context (may sleep)
4289 *
4290 *	RETURNS:
4291 *	0 on success, negative errno otherwise
4292 */
4293int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4294		       unsigned int readid_flags)
4295{
4296	u64 n_sectors = dev->n_sectors;
4297	u64 n_native_sectors = dev->n_native_sectors;
4298	int rc;
4299
4300	if (!ata_dev_enabled(dev))
4301		return -ENODEV;
4302
4303	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4304	if (ata_class_enabled(new_class) &&
4305	    new_class != ATA_DEV_ATA &&
4306	    new_class != ATA_DEV_ATAPI &&
4307	    new_class != ATA_DEV_ZAC &&
4308	    new_class != ATA_DEV_SEMB) {
4309		ata_dev_info(dev, "class mismatch %u != %u\n",
4310			     dev->class, new_class);
4311		rc = -ENODEV;
4312		goto fail;
4313	}
4314
4315	/* re-read ID */
4316	rc = ata_dev_reread_id(dev, readid_flags);
4317	if (rc)
4318		goto fail;
4319
4320	/* configure device according to the new ID */
4321	rc = ata_dev_configure(dev);
4322	if (rc)
4323		goto fail;
4324
4325	/* verify n_sectors hasn't changed */
4326	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4327	    dev->n_sectors == n_sectors)
4328		return 0;
4329
4330	/* n_sectors has changed */
4331	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4332		     (unsigned long long)n_sectors,
4333		     (unsigned long long)dev->n_sectors);
4334
4335	/*
4336	 * Something could have caused HPA to be unlocked
4337	 * involuntarily.  If n_native_sectors hasn't changed and the
4338	 * new size matches it, keep the device.
4339	 */
4340	if (dev->n_native_sectors == n_native_sectors &&
4341	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4342		ata_dev_warn(dev,
4343			     "new n_sectors matches native, probably "
4344			     "late HPA unlock, n_sectors updated\n");
4345		/* use the larger n_sectors */
4346		return 0;
4347	}
4348
4349	/*
4350	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4351	 * unlocking HPA in those cases.
4352	 *
4353	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4354	 */
4355	if (dev->n_native_sectors == n_native_sectors &&
4356	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4357	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4358		ata_dev_warn(dev,
4359			     "old n_sectors matches native, probably "
4360			     "late HPA lock, will try to unlock HPA\n");
4361		/* try unlocking HPA */
4362		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4363		rc = -EIO;
4364	} else
4365		rc = -ENODEV;
4366
4367	/* restore original n_[native_]sectors and fail */
4368	dev->n_native_sectors = n_native_sectors;
4369	dev->n_sectors = n_sectors;
4370 fail:
4371	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4372	return rc;
4373}
4374
4375struct ata_blacklist_entry {
4376	const char *model_num;
4377	const char *model_rev;
4378	unsigned long horkage;
4379};
4380
4381static const struct ata_blacklist_entry ata_device_blacklist [] = {
4382	/* Devices with DMA related problems under Linux */
4383	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4384	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4385	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4386	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4387	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4388	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4389	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4390	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4391	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4392	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4393	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4394	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4395	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4396	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4397	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4398	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4399	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4400	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4401	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4402	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4403	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4404	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4405	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4406	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4407	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4408	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4409	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4410	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4411	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4412	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4413	/* Odd clown on sil3726/4726 PMPs */
4414	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4415
4416	/* Weird ATAPI devices */
4417	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4418	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4419	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4420	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4421
4422	/*
4423	 * Causes silent data corruption with higher max sects.
4424	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4425	 */
4426	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4427
4428	/*
4429	 * These devices time out with higher max sects.
4430	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4431	 */
4432	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4433	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4434
4435	/* Devices we expect to fail diagnostics */
4436
4437	/* Devices where NCQ should be avoided */
4438	/* NCQ is slow */
4439	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4440	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4441	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4442	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4443	/* NCQ is broken */
4444	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4445	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4446	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4447	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4448	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4449
4450	/* Seagate NCQ + FLUSH CACHE firmware bug */
4451	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4452						ATA_HORKAGE_FIRMWARE_WARN },
4453
4454	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4455						ATA_HORKAGE_FIRMWARE_WARN },
4456
4457	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4458						ATA_HORKAGE_FIRMWARE_WARN },
4459
4460	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4461						ATA_HORKAGE_FIRMWARE_WARN },
4462
4463	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4464	   the ST disks also have LPM issues */
4465	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
4466						ATA_HORKAGE_NOLPM, },
4467	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4468
4469	/* Blacklist entries taken from Silicon Image 3124/3132
4470	   Windows driver .inf file - also several Linux problem reports */
4471	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4472	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4473	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4474
4475	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4476	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4477
4478	/* Some Sandisk SSDs lock up hard with NCQ enabled.  Reported on
4479	   SD7SN6S256G and SD8SN8U256G */
4480	{ "SanDisk SD[78]SN*G",	NULL,		ATA_HORKAGE_NONCQ, },
4481
4482	/* devices which puke on READ_NATIVE_MAX */
4483	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4484	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4485	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4486	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4487
4488	/* this one allows HPA unlocking but fails IOs on the area */
4489	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4490
4491	/* Devices which report 1 sector over size HPA */
4492	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4493	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4494	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4495
4496	/* Devices which get the IVB wrong */
4497	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4498	/* Maybe we should just blacklist TSSTcorp... */
4499	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4500
4501	/* Devices that do not need bridging limits applied */
4502	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4503	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4504
4505	/* Devices which aren't very happy with higher link speeds */
4506	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4507	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4508
4509	/*
4510	 * Devices which choke on SETXFER.  Applies only if both the
4511	 * device and controller are SATA.
4512	 */
4513	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4514	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4515	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4516	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4517	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4518
4519	/* Crucial BX100 SSD 500GB has broken LPM support */
4520	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4521
4522	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4523	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4524						ATA_HORKAGE_ZERO_AFTER_TRIM |
4525						ATA_HORKAGE_NOLPM, },
4526	/* 512GB MX100 with newer firmware has only LPM issues */
4527	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4528						ATA_HORKAGE_NOLPM, },
4529
4530	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4531	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4532						ATA_HORKAGE_ZERO_AFTER_TRIM |
4533						ATA_HORKAGE_NOLPM, },
4534	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4535						ATA_HORKAGE_ZERO_AFTER_TRIM |
4536						ATA_HORKAGE_NOLPM, },
4537
4538	/* These specific Samsung models/firmware-revs do not handle LPM well */
4539	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4540	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4541	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
4542	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
 
4543
4544	/* devices that don't properly handle queued TRIM commands */
4545	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4546						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4547	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4548						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4549	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4550						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4551	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4552						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4553	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4554						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4555	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4556						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4557	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4558						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4559	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4560						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4561	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4562						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4563
4564	/* devices that don't properly handle TRIM commands */
4565	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4566
4567	/*
4568	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4569	 * (Return Zero After Trim) flags in the ATA Command Set are
4570	 * unreliable in the sense that they only define what happens if
4571	 * the device successfully executed the DSM TRIM command. TRIM
4572	 * is only advisory, however, and the device is free to silently
4573	 * ignore all or parts of the request.
4574	 *
4575	 * Whitelist drives that are known to reliably return zeroes
4576	 * after TRIM.
4577	 */
4578
4579	/*
4580	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4581	 * that model before whitelisting all other intel SSDs.
4582	 */
4583	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4584
4585	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4586	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4587	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4588	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4589	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4590	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4591	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4592	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4593
4594	/*
4595	 * Some WD SATA-I drives spin up and down erratically when the link
4596	 * is put into the slumber mode.  We don't have full list of the
4597	 * affected devices.  Disable LPM if the device matches one of the
4598	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4599	 * lost too.
4600	 *
4601	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4602	 */
4603	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4604	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4605	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4606	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4607	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4608	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4609	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4610
4611	/* End Marker */
4612	{ }
4613};
4614
4615static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4616{
4617	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4618	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4619	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4620
4621	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4622	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4623
4624	while (ad->model_num) {
4625		if (glob_match(ad->model_num, model_num)) {
4626			if (ad->model_rev == NULL)
4627				return ad->horkage;
4628			if (glob_match(ad->model_rev, model_rev))
4629				return ad->horkage;
4630		}
4631		ad++;
4632	}
4633	return 0;
4634}
4635
4636static int ata_dma_blacklisted(const struct ata_device *dev)
4637{
4638	/* We don't support polling DMA.
4639	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4640	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4641	 */
4642	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4643	    (dev->flags & ATA_DFLAG_CDB_INTR))
4644		return 1;
4645	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4646}
4647
4648/**
4649 *	ata_is_40wire		-	check drive side detection
4650 *	@dev: device
4651 *
4652 *	Perform drive side detection decoding, allowing for device vendors
4653 *	who can't follow the documentation.
4654 */
4655
4656static int ata_is_40wire(struct ata_device *dev)
4657{
4658	if (dev->horkage & ATA_HORKAGE_IVB)
4659		return ata_drive_40wire_relaxed(dev->id);
4660	return ata_drive_40wire(dev->id);
4661}
4662
4663/**
4664 *	cable_is_40wire		-	40/80/SATA decider
4665 *	@ap: port to consider
4666 *
4667 *	This function encapsulates the policy for speed management
4668 *	in one place. At the moment we don't cache the result but
4669 *	there is a good case for setting ap->cbl to the result when
4670 *	we are called with unknown cables (and figuring out if it
4671 *	impacts hotplug at all).
4672 *
4673 *	Return 1 if the cable appears to be 40 wire.
4674 */
4675
4676static int cable_is_40wire(struct ata_port *ap)
4677{
4678	struct ata_link *link;
4679	struct ata_device *dev;
4680
4681	/* If the controller thinks we are 40 wire, we are. */
4682	if (ap->cbl == ATA_CBL_PATA40)
4683		return 1;
4684
4685	/* If the controller thinks we are 80 wire, we are. */
4686	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4687		return 0;
4688
4689	/* If the system is known to be 40 wire short cable (eg
4690	 * laptop), then we allow 80 wire modes even if the drive
4691	 * isn't sure.
4692	 */
4693	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4694		return 0;
4695
4696	/* If the controller doesn't know, we scan.
4697	 *
4698	 * Note: We look for all 40 wire detects at this point.  Any
4699	 *       80 wire detect is taken to be 80 wire cable because
4700	 * - in many setups only the one drive (slave if present) will
4701	 *   give a valid detect
4702	 * - if you have a non detect capable drive you don't want it
4703	 *   to colour the choice
4704	 */
4705	ata_for_each_link(link, ap, EDGE) {
4706		ata_for_each_dev(dev, link, ENABLED) {
4707			if (!ata_is_40wire(dev))
4708				return 0;
4709		}
4710	}
4711	return 1;
4712}
4713
4714/**
4715 *	ata_dev_xfermask - Compute supported xfermask of the given device
4716 *	@dev: Device to compute xfermask for
4717 *
4718 *	Compute supported xfermask of @dev and store it in
4719 *	dev->*_mask.  This function is responsible for applying all
4720 *	known limits including host controller limits, device
4721 *	blacklist, etc...
4722 *
4723 *	LOCKING:
4724 *	None.
4725 */
4726static void ata_dev_xfermask(struct ata_device *dev)
4727{
4728	struct ata_link *link = dev->link;
4729	struct ata_port *ap = link->ap;
4730	struct ata_host *host = ap->host;
4731	unsigned long xfer_mask;
4732
4733	/* controller modes available */
4734	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4735				      ap->mwdma_mask, ap->udma_mask);
4736
4737	/* drive modes available */
4738	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4739				       dev->mwdma_mask, dev->udma_mask);
4740	xfer_mask &= ata_id_xfermask(dev->id);
4741
4742	/*
4743	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4744	 *	cable
4745	 */
4746	if (ata_dev_pair(dev)) {
4747		/* No PIO5 or PIO6 */
4748		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4749		/* No MWDMA3 or MWDMA 4 */
4750		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4751	}
4752
4753	if (ata_dma_blacklisted(dev)) {
4754		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4755		ata_dev_warn(dev,
4756			     "device is on DMA blacklist, disabling DMA\n");
4757	}
4758
4759	if ((host->flags & ATA_HOST_SIMPLEX) &&
4760	    host->simplex_claimed && host->simplex_claimed != ap) {
4761		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4762		ata_dev_warn(dev,
4763			     "simplex DMA is claimed by other device, disabling DMA\n");
4764	}
4765
4766	if (ap->flags & ATA_FLAG_NO_IORDY)
4767		xfer_mask &= ata_pio_mask_no_iordy(dev);
4768
4769	if (ap->ops->mode_filter)
4770		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4771
4772	/* Apply cable rule here.  Don't apply it early because when
4773	 * we handle hot plug the cable type can itself change.
4774	 * Check this last so that we know if the transfer rate was
4775	 * solely limited by the cable.
4776	 * Unknown or 80 wire cables reported host side are checked
4777	 * drive side as well. Cases where we know a 40wire cable
4778	 * is used safely for 80 are not checked here.
4779	 */
4780	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4781		/* UDMA/44 or higher would be available */
4782		if (cable_is_40wire(ap)) {
4783			ata_dev_warn(dev,
4784				     "limited to UDMA/33 due to 40-wire cable\n");
4785			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4786		}
4787
4788	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4789			    &dev->mwdma_mask, &dev->udma_mask);
4790}
4791
4792/**
4793 *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4794 *	@dev: Device to which command will be sent
4795 *
4796 *	Issue SET FEATURES - XFER MODE command to device @dev
4797 *	on port @ap.
4798 *
4799 *	LOCKING:
4800 *	PCI/etc. bus probe sem.
4801 *
4802 *	RETURNS:
4803 *	0 on success, AC_ERR_* mask otherwise.
4804 */
4805
4806static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4807{
4808	struct ata_taskfile tf;
4809	unsigned int err_mask;
4810
4811	/* set up set-features taskfile */
4812	DPRINTK("set features - xfer mode\n");
4813
4814	/* Some controllers and ATAPI devices show flaky interrupt
4815	 * behavior after setting xfer mode.  Use polling instead.
4816	 */
4817	ata_tf_init(dev, &tf);
4818	tf.command = ATA_CMD_SET_FEATURES;
4819	tf.feature = SETFEATURES_XFER;
4820	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4821	tf.protocol = ATA_PROT_NODATA;
4822	/* If we are using IORDY we must send the mode setting command */
4823	if (ata_pio_need_iordy(dev))
4824		tf.nsect = dev->xfer_mode;
4825	/* If the device has IORDY and the controller does not - turn it off */
4826 	else if (ata_id_has_iordy(dev->id))
4827		tf.nsect = 0x01;
4828	else /* In the ancient relic department - skip all of this */
4829		return 0;
4830
4831	/* On some disks, this command causes spin-up, so we need longer timeout */
4832	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4833
4834	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4835	return err_mask;
4836}
4837
4838/**
4839 *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4840 *	@dev: Device to which command will be sent
4841 *	@enable: Whether to enable or disable the feature
4842 *	@feature: The sector count represents the feature to set
4843 *
4844 *	Issue SET FEATURES - SATA FEATURES command to device @dev
4845 *	on port @ap with sector count
4846 *
4847 *	LOCKING:
4848 *	PCI/etc. bus probe sem.
4849 *
4850 *	RETURNS:
4851 *	0 on success, AC_ERR_* mask otherwise.
4852 */
4853unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4854{
4855	struct ata_taskfile tf;
4856	unsigned int err_mask;
4857	unsigned long timeout = 0;
4858
4859	/* set up set-features taskfile */
4860	DPRINTK("set features - SATA features\n");
4861
4862	ata_tf_init(dev, &tf);
4863	tf.command = ATA_CMD_SET_FEATURES;
4864	tf.feature = enable;
4865	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4866	tf.protocol = ATA_PROT_NODATA;
4867	tf.nsect = feature;
4868
4869	if (enable == SETFEATURES_SPINUP)
4870		timeout = ata_probe_timeout ?
4871			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4872	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4873
4874	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4875	return err_mask;
4876}
4877EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4878
4879/**
4880 *	ata_dev_init_params - Issue INIT DEV PARAMS command
4881 *	@dev: Device to which command will be sent
4882 *	@heads: Number of heads (taskfile parameter)
4883 *	@sectors: Number of sectors (taskfile parameter)
4884 *
4885 *	LOCKING:
4886 *	Kernel thread context (may sleep)
4887 *
4888 *	RETURNS:
4889 *	0 on success, AC_ERR_* mask otherwise.
4890 */
4891static unsigned int ata_dev_init_params(struct ata_device *dev,
4892					u16 heads, u16 sectors)
4893{
4894	struct ata_taskfile tf;
4895	unsigned int err_mask;
4896
4897	/* Number of sectors per track 1-255. Number of heads 1-16 */
4898	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4899		return AC_ERR_INVALID;
4900
4901	/* set up init dev params taskfile */
4902	DPRINTK("init dev params \n");
4903
4904	ata_tf_init(dev, &tf);
4905	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4906	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4907	tf.protocol = ATA_PROT_NODATA;
4908	tf.nsect = sectors;
4909	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4910
4911	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4912	/* A clean abort indicates an original or just out of spec drive
4913	   and we should continue as we issue the setup based on the
4914	   drive reported working geometry */
4915	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4916		err_mask = 0;
4917
4918	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4919	return err_mask;
4920}
4921
4922/**
4923 *	atapi_check_dma - Check whether ATAPI DMA can be supported
4924 *	@qc: Metadata associated with taskfile to check
4925 *
4926 *	Allow low-level driver to filter ATA PACKET commands, returning
4927 *	a status indicating whether or not it is OK to use DMA for the
4928 *	supplied PACKET command.
4929 *
4930 *	LOCKING:
4931 *	spin_lock_irqsave(host lock)
4932 *
4933 *	RETURNS: 0 when ATAPI DMA can be used
4934 *               nonzero otherwise
4935 */
4936int atapi_check_dma(struct ata_queued_cmd *qc)
4937{
4938	struct ata_port *ap = qc->ap;
4939
4940	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4941	 * few ATAPI devices choke on such DMA requests.
4942	 */
4943	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4944	    unlikely(qc->nbytes & 15))
4945		return 1;
4946
4947	if (ap->ops->check_atapi_dma)
4948		return ap->ops->check_atapi_dma(qc);
4949
4950	return 0;
4951}
4952
4953/**
4954 *	ata_std_qc_defer - Check whether a qc needs to be deferred
4955 *	@qc: ATA command in question
4956 *
4957 *	Non-NCQ commands cannot run with any other command, NCQ or
4958 *	not.  As upper layer only knows the queue depth, we are
4959 *	responsible for maintaining exclusion.  This function checks
4960 *	whether a new command @qc can be issued.
4961 *
4962 *	LOCKING:
4963 *	spin_lock_irqsave(host lock)
4964 *
4965 *	RETURNS:
4966 *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4967 */
4968int ata_std_qc_defer(struct ata_queued_cmd *qc)
4969{
4970	struct ata_link *link = qc->dev->link;
4971
4972	if (ata_is_ncq(qc->tf.protocol)) {
4973		if (!ata_tag_valid(link->active_tag))
4974			return 0;
4975	} else {
4976		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4977			return 0;
4978	}
4979
4980	return ATA_DEFER_LINK;
4981}
4982
4983void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4984
4985/**
4986 *	ata_sg_init - Associate command with scatter-gather table.
4987 *	@qc: Command to be associated
4988 *	@sg: Scatter-gather table.
4989 *	@n_elem: Number of elements in s/g table.
4990 *
4991 *	Initialize the data-related elements of queued_cmd @qc
4992 *	to point to a scatter-gather table @sg, containing @n_elem
4993 *	elements.
4994 *
4995 *	LOCKING:
4996 *	spin_lock_irqsave(host lock)
4997 */
4998void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4999		 unsigned int n_elem)
5000{
5001	qc->sg = sg;
5002	qc->n_elem = n_elem;
5003	qc->cursg = qc->sg;
5004}
5005
5006#ifdef CONFIG_HAS_DMA
5007
5008/**
5009 *	ata_sg_clean - Unmap DMA memory associated with command
5010 *	@qc: Command containing DMA memory to be released
5011 *
5012 *	Unmap all mapped DMA memory associated with this command.
5013 *
5014 *	LOCKING:
5015 *	spin_lock_irqsave(host lock)
5016 */
5017static void ata_sg_clean(struct ata_queued_cmd *qc)
5018{
5019	struct ata_port *ap = qc->ap;
5020	struct scatterlist *sg = qc->sg;
5021	int dir = qc->dma_dir;
5022
5023	WARN_ON_ONCE(sg == NULL);
5024
5025	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5026
5027	if (qc->n_elem)
5028		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5029
5030	qc->flags &= ~ATA_QCFLAG_DMAMAP;
5031	qc->sg = NULL;
5032}
5033
5034/**
5035 *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5036 *	@qc: Command with scatter-gather table to be mapped.
5037 *
5038 *	DMA-map the scatter-gather table associated with queued_cmd @qc.
5039 *
5040 *	LOCKING:
5041 *	spin_lock_irqsave(host lock)
5042 *
5043 *	RETURNS:
5044 *	Zero on success, negative on error.
5045 *
5046 */
5047static int ata_sg_setup(struct ata_queued_cmd *qc)
5048{
5049	struct ata_port *ap = qc->ap;
5050	unsigned int n_elem;
5051
5052	VPRINTK("ENTER, ata%u\n", ap->print_id);
5053
5054	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5055	if (n_elem < 1)
5056		return -1;
5057
5058	VPRINTK("%d sg elements mapped\n", n_elem);
5059	qc->orig_n_elem = qc->n_elem;
5060	qc->n_elem = n_elem;
5061	qc->flags |= ATA_QCFLAG_DMAMAP;
5062
5063	return 0;
5064}
5065
5066#else /* !CONFIG_HAS_DMA */
5067
5068static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5069static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5070
5071#endif /* !CONFIG_HAS_DMA */
5072
5073/**
5074 *	swap_buf_le16 - swap halves of 16-bit words in place
5075 *	@buf:  Buffer to swap
5076 *	@buf_words:  Number of 16-bit words in buffer.
5077 *
5078 *	Swap halves of 16-bit words if needed to convert from
5079 *	little-endian byte order to native cpu byte order, or
5080 *	vice-versa.
5081 *
5082 *	LOCKING:
5083 *	Inherited from caller.
5084 */
5085void swap_buf_le16(u16 *buf, unsigned int buf_words)
5086{
5087#ifdef __BIG_ENDIAN
5088	unsigned int i;
5089
5090	for (i = 0; i < buf_words; i++)
5091		buf[i] = le16_to_cpu(buf[i]);
5092#endif /* __BIG_ENDIAN */
5093}
5094
5095/**
5096 *	ata_qc_new_init - Request an available ATA command, and initialize it
5097 *	@dev: Device from whom we request an available command structure
5098 *	@tag: tag
5099 *
5100 *	LOCKING:
5101 *	None.
5102 */
5103
5104struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5105{
5106	struct ata_port *ap = dev->link->ap;
5107	struct ata_queued_cmd *qc;
5108
5109	/* no command while frozen */
5110	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5111		return NULL;
5112
5113	/* libsas case */
5114	if (ap->flags & ATA_FLAG_SAS_HOST) {
5115		tag = ata_sas_allocate_tag(ap);
5116		if (tag < 0)
5117			return NULL;
5118	}
5119
5120	qc = __ata_qc_from_tag(ap, tag);
5121	qc->tag = qc->hw_tag = tag;
5122	qc->scsicmd = NULL;
5123	qc->ap = ap;
5124	qc->dev = dev;
5125
5126	ata_qc_reinit(qc);
5127
5128	return qc;
5129}
5130
5131/**
5132 *	ata_qc_free - free unused ata_queued_cmd
5133 *	@qc: Command to complete
5134 *
5135 *	Designed to free unused ata_queued_cmd object
5136 *	in case something prevents using it.
5137 *
5138 *	LOCKING:
5139 *	spin_lock_irqsave(host lock)
5140 */
5141void ata_qc_free(struct ata_queued_cmd *qc)
5142{
5143	struct ata_port *ap;
5144	unsigned int tag;
5145
5146	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5147	ap = qc->ap;
5148
5149	qc->flags = 0;
5150	tag = qc->tag;
5151	if (ata_tag_valid(tag)) {
5152		qc->tag = ATA_TAG_POISON;
5153		if (ap->flags & ATA_FLAG_SAS_HOST)
5154			ata_sas_free_tag(tag, ap);
5155	}
5156}
5157
5158void __ata_qc_complete(struct ata_queued_cmd *qc)
5159{
5160	struct ata_port *ap;
5161	struct ata_link *link;
5162
5163	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5164	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5165	ap = qc->ap;
5166	link = qc->dev->link;
5167
5168	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5169		ata_sg_clean(qc);
5170
5171	/* command should be marked inactive atomically with qc completion */
5172	if (ata_is_ncq(qc->tf.protocol)) {
5173		link->sactive &= ~(1 << qc->hw_tag);
5174		if (!link->sactive)
5175			ap->nr_active_links--;
5176	} else {
5177		link->active_tag = ATA_TAG_POISON;
5178		ap->nr_active_links--;
5179	}
5180
5181	/* clear exclusive status */
5182	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5183		     ap->excl_link == link))
5184		ap->excl_link = NULL;
5185
5186	/* atapi: mark qc as inactive to prevent the interrupt handler
5187	 * from completing the command twice later, before the error handler
5188	 * is called. (when rc != 0 and atapi request sense is needed)
5189	 */
5190	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5191	ap->qc_active &= ~(1ULL << qc->tag);
5192
5193	/* call completion callback */
5194	qc->complete_fn(qc);
5195}
5196
5197static void fill_result_tf(struct ata_queued_cmd *qc)
5198{
5199	struct ata_port *ap = qc->ap;
5200
5201	qc->result_tf.flags = qc->tf.flags;
5202	ap->ops->qc_fill_rtf(qc);
5203}
5204
5205static void ata_verify_xfer(struct ata_queued_cmd *qc)
5206{
5207	struct ata_device *dev = qc->dev;
5208
5209	if (!ata_is_data(qc->tf.protocol))
5210		return;
5211
5212	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5213		return;
5214
5215	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5216}
5217
5218/**
5219 *	ata_qc_complete - Complete an active ATA command
5220 *	@qc: Command to complete
5221 *
5222 *	Indicate to the mid and upper layers that an ATA command has
5223 *	completed, with either an ok or not-ok status.
5224 *
5225 *	Refrain from calling this function multiple times when
5226 *	successfully completing multiple NCQ commands.
5227 *	ata_qc_complete_multiple() should be used instead, which will
5228 *	properly update IRQ expect state.
5229 *
5230 *	LOCKING:
5231 *	spin_lock_irqsave(host lock)
5232 */
5233void ata_qc_complete(struct ata_queued_cmd *qc)
5234{
5235	struct ata_port *ap = qc->ap;
5236
5237	/* Trigger the LED (if available) */
5238	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
5239
5240	/* XXX: New EH and old EH use different mechanisms to
5241	 * synchronize EH with regular execution path.
5242	 *
5243	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5244	 * Normal execution path is responsible for not accessing a
5245	 * failed qc.  libata core enforces the rule by returning NULL
5246	 * from ata_qc_from_tag() for failed qcs.
5247	 *
5248	 * Old EH depends on ata_qc_complete() nullifying completion
5249	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5250	 * not synchronize with interrupt handler.  Only PIO task is
5251	 * taken care of.
5252	 */
5253	if (ap->ops->error_handler) {
5254		struct ata_device *dev = qc->dev;
5255		struct ata_eh_info *ehi = &dev->link->eh_info;
5256
5257		if (unlikely(qc->err_mask))
5258			qc->flags |= ATA_QCFLAG_FAILED;
5259
5260		/*
5261		 * Finish internal commands without any further processing
5262		 * and always with the result TF filled.
5263		 */
5264		if (unlikely(ata_tag_internal(qc->tag))) {
5265			fill_result_tf(qc);
5266			trace_ata_qc_complete_internal(qc);
5267			__ata_qc_complete(qc);
5268			return;
5269		}
5270
5271		/*
5272		 * Non-internal qc has failed.  Fill the result TF and
5273		 * summon EH.
5274		 */
5275		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5276			fill_result_tf(qc);
5277			trace_ata_qc_complete_failed(qc);
5278			ata_qc_schedule_eh(qc);
5279			return;
5280		}
5281
5282		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5283
5284		/* read result TF if requested */
5285		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5286			fill_result_tf(qc);
5287
5288		trace_ata_qc_complete_done(qc);
5289		/* Some commands need post-processing after successful
5290		 * completion.
5291		 */
5292		switch (qc->tf.command) {
5293		case ATA_CMD_SET_FEATURES:
5294			if (qc->tf.feature != SETFEATURES_WC_ON &&
5295			    qc->tf.feature != SETFEATURES_WC_OFF &&
5296			    qc->tf.feature != SETFEATURES_RA_ON &&
5297			    qc->tf.feature != SETFEATURES_RA_OFF)
5298				break;
5299			/* fall through */
5300		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5301		case ATA_CMD_SET_MULTI: /* multi_count changed */
5302			/* revalidate device */
5303			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5304			ata_port_schedule_eh(ap);
5305			break;
5306
5307		case ATA_CMD_SLEEP:
5308			dev->flags |= ATA_DFLAG_SLEEPING;
5309			break;
5310		}
5311
5312		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5313			ata_verify_xfer(qc);
5314
5315		__ata_qc_complete(qc);
5316	} else {
5317		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5318			return;
5319
5320		/* read result TF if failed or requested */
5321		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5322			fill_result_tf(qc);
5323
5324		__ata_qc_complete(qc);
5325	}
5326}
5327
5328/**
5329 *	ata_qc_complete_multiple - Complete multiple qcs successfully
5330 *	@ap: port in question
5331 *	@qc_active: new qc_active mask
5332 *
5333 *	Complete in-flight commands.  This functions is meant to be
5334 *	called from low-level driver's interrupt routine to complete
5335 *	requests normally.  ap->qc_active and @qc_active is compared
5336 *	and commands are completed accordingly.
5337 *
5338 *	Always use this function when completing multiple NCQ commands
5339 *	from IRQ handlers instead of calling ata_qc_complete()
5340 *	multiple times to keep IRQ expect status properly in sync.
5341 *
5342 *	LOCKING:
5343 *	spin_lock_irqsave(host lock)
5344 *
5345 *	RETURNS:
5346 *	Number of completed commands on success, -errno otherwise.
5347 */
5348int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
5349{
5350	u64 done_mask, ap_qc_active = ap->qc_active;
5351	int nr_done = 0;
 
5352
5353	/*
5354	 * If the internal tag is set on ap->qc_active, then we care about
5355	 * bit0 on the passed in qc_active mask. Move that bit up to match
5356	 * the internal tag.
5357	 */
5358	if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5359		qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL;
5360		qc_active ^= qc_active & 0x01;
5361	}
5362
5363	done_mask = ap_qc_active ^ qc_active;
5364
5365	if (unlikely(done_mask & qc_active)) {
5366		ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
5367			     ap->qc_active, qc_active);
5368		return -EINVAL;
5369	}
5370
5371	while (done_mask) {
5372		struct ata_queued_cmd *qc;
5373		unsigned int tag = __ffs64(done_mask);
5374
5375		qc = ata_qc_from_tag(ap, tag);
5376		if (qc) {
5377			ata_qc_complete(qc);
5378			nr_done++;
5379		}
5380		done_mask &= ~(1ULL << tag);
5381	}
5382
5383	return nr_done;
5384}
5385
5386/**
5387 *	ata_qc_issue - issue taskfile to device
5388 *	@qc: command to issue to device
5389 *
5390 *	Prepare an ATA command to submission to device.
5391 *	This includes mapping the data into a DMA-able
5392 *	area, filling in the S/G table, and finally
5393 *	writing the taskfile to hardware, starting the command.
5394 *
5395 *	LOCKING:
5396 *	spin_lock_irqsave(host lock)
5397 */
5398void ata_qc_issue(struct ata_queued_cmd *qc)
5399{
5400	struct ata_port *ap = qc->ap;
5401	struct ata_link *link = qc->dev->link;
5402	u8 prot = qc->tf.protocol;
5403
5404	/* Make sure only one non-NCQ command is outstanding.  The
5405	 * check is skipped for old EH because it reuses active qc to
5406	 * request ATAPI sense.
5407	 */
5408	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5409
5410	if (ata_is_ncq(prot)) {
5411		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5412
5413		if (!link->sactive)
5414			ap->nr_active_links++;
5415		link->sactive |= 1 << qc->hw_tag;
5416	} else {
5417		WARN_ON_ONCE(link->sactive);
5418
5419		ap->nr_active_links++;
5420		link->active_tag = qc->tag;
5421	}
5422
5423	qc->flags |= ATA_QCFLAG_ACTIVE;
5424	ap->qc_active |= 1ULL << qc->tag;
5425
5426	/*
5427	 * We guarantee to LLDs that they will have at least one
5428	 * non-zero sg if the command is a data command.
5429	 */
5430	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5431		goto sys_err;
5432
5433	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5434				 (ap->flags & ATA_FLAG_PIO_DMA)))
5435		if (ata_sg_setup(qc))
5436			goto sys_err;
5437
5438	/* if device is sleeping, schedule reset and abort the link */
5439	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5440		link->eh_info.action |= ATA_EH_RESET;
5441		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5442		ata_link_abort(link);
5443		return;
5444	}
5445
5446	ap->ops->qc_prep(qc);
5447	trace_ata_qc_issue(qc);
5448	qc->err_mask |= ap->ops->qc_issue(qc);
5449	if (unlikely(qc->err_mask))
5450		goto err;
5451	return;
5452
5453sys_err:
5454	qc->err_mask |= AC_ERR_SYSTEM;
5455err:
5456	ata_qc_complete(qc);
5457}
5458
5459/**
5460 *	sata_scr_valid - test whether SCRs are accessible
5461 *	@link: ATA link to test SCR accessibility for
5462 *
5463 *	Test whether SCRs are accessible for @link.
5464 *
5465 *	LOCKING:
5466 *	None.
5467 *
5468 *	RETURNS:
5469 *	1 if SCRs are accessible, 0 otherwise.
5470 */
5471int sata_scr_valid(struct ata_link *link)
5472{
5473	struct ata_port *ap = link->ap;
5474
5475	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5476}
5477
5478/**
5479 *	sata_scr_read - read SCR register of the specified port
5480 *	@link: ATA link to read SCR for
5481 *	@reg: SCR to read
5482 *	@val: Place to store read value
5483 *
5484 *	Read SCR register @reg of @link into *@val.  This function is
5485 *	guaranteed to succeed if @link is ap->link, the cable type of
5486 *	the port is SATA and the port implements ->scr_read.
5487 *
5488 *	LOCKING:
5489 *	None if @link is ap->link.  Kernel thread context otherwise.
5490 *
5491 *	RETURNS:
5492 *	0 on success, negative errno on failure.
5493 */
5494int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5495{
5496	if (ata_is_host_link(link)) {
5497		if (sata_scr_valid(link))
5498			return link->ap->ops->scr_read(link, reg, val);
5499		return -EOPNOTSUPP;
5500	}
5501
5502	return sata_pmp_scr_read(link, reg, val);
5503}
5504
5505/**
5506 *	sata_scr_write - write SCR register of the specified port
5507 *	@link: ATA link to write SCR for
5508 *	@reg: SCR to write
5509 *	@val: value to write
5510 *
5511 *	Write @val to SCR register @reg of @link.  This function is
5512 *	guaranteed to succeed if @link is ap->link, the cable type of
5513 *	the port is SATA and the port implements ->scr_read.
5514 *
5515 *	LOCKING:
5516 *	None if @link is ap->link.  Kernel thread context otherwise.
5517 *
5518 *	RETURNS:
5519 *	0 on success, negative errno on failure.
5520 */
5521int sata_scr_write(struct ata_link *link, int reg, u32 val)
5522{
5523	if (ata_is_host_link(link)) {
5524		if (sata_scr_valid(link))
5525			return link->ap->ops->scr_write(link, reg, val);
5526		return -EOPNOTSUPP;
5527	}
5528
5529	return sata_pmp_scr_write(link, reg, val);
5530}
5531
5532/**
5533 *	sata_scr_write_flush - write SCR register of the specified port and flush
5534 *	@link: ATA link to write SCR for
5535 *	@reg: SCR to write
5536 *	@val: value to write
5537 *
5538 *	This function is identical to sata_scr_write() except that this
5539 *	function performs flush after writing to the register.
5540 *
5541 *	LOCKING:
5542 *	None if @link is ap->link.  Kernel thread context otherwise.
5543 *
5544 *	RETURNS:
5545 *	0 on success, negative errno on failure.
5546 */
5547int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5548{
5549	if (ata_is_host_link(link)) {
5550		int rc;
5551
5552		if (sata_scr_valid(link)) {
5553			rc = link->ap->ops->scr_write(link, reg, val);
5554			if (rc == 0)
5555				rc = link->ap->ops->scr_read(link, reg, &val);
5556			return rc;
5557		}
5558		return -EOPNOTSUPP;
5559	}
5560
5561	return sata_pmp_scr_write(link, reg, val);
5562}
5563
5564/**
5565 *	ata_phys_link_online - test whether the given link is online
5566 *	@link: ATA link to test
5567 *
5568 *	Test whether @link is online.  Note that this function returns
5569 *	0 if online status of @link cannot be obtained, so
5570 *	ata_link_online(link) != !ata_link_offline(link).
5571 *
5572 *	LOCKING:
5573 *	None.
5574 *
5575 *	RETURNS:
5576 *	True if the port online status is available and online.
5577 */
5578bool ata_phys_link_online(struct ata_link *link)
5579{
5580	u32 sstatus;
5581
5582	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5583	    ata_sstatus_online(sstatus))
5584		return true;
5585	return false;
5586}
5587
5588/**
5589 *	ata_phys_link_offline - test whether the given link is offline
5590 *	@link: ATA link to test
5591 *
5592 *	Test whether @link is offline.  Note that this function
5593 *	returns 0 if offline status of @link cannot be obtained, so
5594 *	ata_link_online(link) != !ata_link_offline(link).
5595 *
5596 *	LOCKING:
5597 *	None.
5598 *
5599 *	RETURNS:
5600 *	True if the port offline status is available and offline.
5601 */
5602bool ata_phys_link_offline(struct ata_link *link)
5603{
5604	u32 sstatus;
5605
5606	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5607	    !ata_sstatus_online(sstatus))
5608		return true;
5609	return false;
5610}
5611
5612/**
5613 *	ata_link_online - test whether the given link is online
5614 *	@link: ATA link to test
5615 *
5616 *	Test whether @link is online.  This is identical to
5617 *	ata_phys_link_online() when there's no slave link.  When
5618 *	there's a slave link, this function should only be called on
5619 *	the master link and will return true if any of M/S links is
5620 *	online.
5621 *
5622 *	LOCKING:
5623 *	None.
5624 *
5625 *	RETURNS:
5626 *	True if the port online status is available and online.
5627 */
5628bool ata_link_online(struct ata_link *link)
5629{
5630	struct ata_link *slave = link->ap->slave_link;
5631
5632	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5633
5634	return ata_phys_link_online(link) ||
5635		(slave && ata_phys_link_online(slave));
5636}
5637
5638/**
5639 *	ata_link_offline - test whether the given link is offline
5640 *	@link: ATA link to test
5641 *
5642 *	Test whether @link is offline.  This is identical to
5643 *	ata_phys_link_offline() when there's no slave link.  When
5644 *	there's a slave link, this function should only be called on
5645 *	the master link and will return true if both M/S links are
5646 *	offline.
5647 *
5648 *	LOCKING:
5649 *	None.
5650 *
5651 *	RETURNS:
5652 *	True if the port offline status is available and offline.
5653 */
5654bool ata_link_offline(struct ata_link *link)
5655{
5656	struct ata_link *slave = link->ap->slave_link;
5657
5658	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5659
5660	return ata_phys_link_offline(link) &&
5661		(!slave || ata_phys_link_offline(slave));
5662}
5663
5664#ifdef CONFIG_PM
5665static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5666				unsigned int action, unsigned int ehi_flags,
5667				bool async)
5668{
5669	struct ata_link *link;
5670	unsigned long flags;
5671
5672	/* Previous resume operation might still be in
5673	 * progress.  Wait for PM_PENDING to clear.
5674	 */
5675	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5676		ata_port_wait_eh(ap);
5677		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5678	}
5679
5680	/* request PM ops to EH */
5681	spin_lock_irqsave(ap->lock, flags);
5682
5683	ap->pm_mesg = mesg;
5684	ap->pflags |= ATA_PFLAG_PM_PENDING;
5685	ata_for_each_link(link, ap, HOST_FIRST) {
5686		link->eh_info.action |= action;
5687		link->eh_info.flags |= ehi_flags;
5688	}
5689
5690	ata_port_schedule_eh(ap);
5691
5692	spin_unlock_irqrestore(ap->lock, flags);
5693
5694	if (!async) {
5695		ata_port_wait_eh(ap);
5696		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5697	}
5698}
5699
5700/*
5701 * On some hardware, device fails to respond after spun down for suspend.  As
5702 * the device won't be used before being resumed, we don't need to touch the
5703 * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5704 *
5705 * http://thread.gmane.org/gmane.linux.ide/46764
5706 */
5707static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5708						 | ATA_EHI_NO_AUTOPSY
5709						 | ATA_EHI_NO_RECOVERY;
5710
5711static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5712{
5713	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5714}
5715
5716static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5717{
5718	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5719}
5720
5721static int ata_port_pm_suspend(struct device *dev)
5722{
5723	struct ata_port *ap = to_ata_port(dev);
5724
5725	if (pm_runtime_suspended(dev))
5726		return 0;
5727
5728	ata_port_suspend(ap, PMSG_SUSPEND);
5729	return 0;
5730}
5731
5732static int ata_port_pm_freeze(struct device *dev)
5733{
5734	struct ata_port *ap = to_ata_port(dev);
5735
5736	if (pm_runtime_suspended(dev))
5737		return 0;
5738
5739	ata_port_suspend(ap, PMSG_FREEZE);
5740	return 0;
5741}
5742
5743static int ata_port_pm_poweroff(struct device *dev)
5744{
5745	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5746	return 0;
5747}
5748
5749static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5750						| ATA_EHI_QUIET;
5751
5752static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5753{
5754	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5755}
5756
5757static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5758{
5759	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5760}
5761
5762static int ata_port_pm_resume(struct device *dev)
5763{
5764	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5765	pm_runtime_disable(dev);
5766	pm_runtime_set_active(dev);
5767	pm_runtime_enable(dev);
5768	return 0;
5769}
5770
5771/*
5772 * For ODDs, the upper layer will poll for media change every few seconds,
5773 * which will make it enter and leave suspend state every few seconds. And
5774 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5775 * is very little and the ODD may malfunction after constantly being reset.
5776 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5777 * ODD is attached to the port.
5778 */
5779static int ata_port_runtime_idle(struct device *dev)
5780{
5781	struct ata_port *ap = to_ata_port(dev);
5782	struct ata_link *link;
5783	struct ata_device *adev;
5784
5785	ata_for_each_link(link, ap, HOST_FIRST) {
5786		ata_for_each_dev(adev, link, ENABLED)
5787			if (adev->class == ATA_DEV_ATAPI &&
5788			    !zpodd_dev_enabled(adev))
5789				return -EBUSY;
5790	}
5791
5792	return 0;
5793}
5794
5795static int ata_port_runtime_suspend(struct device *dev)
5796{
5797	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5798	return 0;
5799}
5800
5801static int ata_port_runtime_resume(struct device *dev)
5802{
5803	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5804	return 0;
5805}
5806
5807static const struct dev_pm_ops ata_port_pm_ops = {
5808	.suspend = ata_port_pm_suspend,
5809	.resume = ata_port_pm_resume,
5810	.freeze = ata_port_pm_freeze,
5811	.thaw = ata_port_pm_resume,
5812	.poweroff = ata_port_pm_poweroff,
5813	.restore = ata_port_pm_resume,
5814
5815	.runtime_suspend = ata_port_runtime_suspend,
5816	.runtime_resume = ata_port_runtime_resume,
5817	.runtime_idle = ata_port_runtime_idle,
5818};
5819
5820/* sas ports don't participate in pm runtime management of ata_ports,
5821 * and need to resume ata devices at the domain level, not the per-port
5822 * level. sas suspend/resume is async to allow parallel port recovery
5823 * since sas has multiple ata_port instances per Scsi_Host.
5824 */
5825void ata_sas_port_suspend(struct ata_port *ap)
5826{
5827	ata_port_suspend_async(ap, PMSG_SUSPEND);
5828}
5829EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5830
5831void ata_sas_port_resume(struct ata_port *ap)
5832{
5833	ata_port_resume_async(ap, PMSG_RESUME);
5834}
5835EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5836
5837/**
5838 *	ata_host_suspend - suspend host
5839 *	@host: host to suspend
5840 *	@mesg: PM message
5841 *
5842 *	Suspend @host.  Actual operation is performed by port suspend.
5843 */
5844int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5845{
5846	host->dev->power.power_state = mesg;
5847	return 0;
5848}
5849
5850/**
5851 *	ata_host_resume - resume host
5852 *	@host: host to resume
5853 *
5854 *	Resume @host.  Actual operation is performed by port resume.
5855 */
5856void ata_host_resume(struct ata_host *host)
5857{
5858	host->dev->power.power_state = PMSG_ON;
5859}
5860#endif
5861
5862const struct device_type ata_port_type = {
5863	.name = "ata_port",
5864#ifdef CONFIG_PM
5865	.pm = &ata_port_pm_ops,
5866#endif
5867};
5868
5869/**
5870 *	ata_dev_init - Initialize an ata_device structure
5871 *	@dev: Device structure to initialize
5872 *
5873 *	Initialize @dev in preparation for probing.
5874 *
5875 *	LOCKING:
5876 *	Inherited from caller.
5877 */
5878void ata_dev_init(struct ata_device *dev)
5879{
5880	struct ata_link *link = ata_dev_phys_link(dev);
5881	struct ata_port *ap = link->ap;
5882	unsigned long flags;
5883
5884	/* SATA spd limit is bound to the attached device, reset together */
5885	link->sata_spd_limit = link->hw_sata_spd_limit;
5886	link->sata_spd = 0;
5887
5888	/* High bits of dev->flags are used to record warm plug
5889	 * requests which occur asynchronously.  Synchronize using
5890	 * host lock.
5891	 */
5892	spin_lock_irqsave(ap->lock, flags);
5893	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5894	dev->horkage = 0;
5895	spin_unlock_irqrestore(ap->lock, flags);
5896
5897	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5898	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5899	dev->pio_mask = UINT_MAX;
5900	dev->mwdma_mask = UINT_MAX;
5901	dev->udma_mask = UINT_MAX;
5902}
5903
5904/**
5905 *	ata_link_init - Initialize an ata_link structure
5906 *	@ap: ATA port link is attached to
5907 *	@link: Link structure to initialize
5908 *	@pmp: Port multiplier port number
5909 *
5910 *	Initialize @link.
5911 *
5912 *	LOCKING:
5913 *	Kernel thread context (may sleep)
5914 */
5915void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5916{
5917	int i;
5918
5919	/* clear everything except for devices */
5920	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5921	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5922
5923	link->ap = ap;
5924	link->pmp = pmp;
5925	link->active_tag = ATA_TAG_POISON;
5926	link->hw_sata_spd_limit = UINT_MAX;
5927
5928	/* can't use iterator, ap isn't initialized yet */
5929	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5930		struct ata_device *dev = &link->device[i];
5931
5932		dev->link = link;
5933		dev->devno = dev - link->device;
5934#ifdef CONFIG_ATA_ACPI
5935		dev->gtf_filter = ata_acpi_gtf_filter;
5936#endif
5937		ata_dev_init(dev);
5938	}
5939}
5940
5941/**
5942 *	sata_link_init_spd - Initialize link->sata_spd_limit
5943 *	@link: Link to configure sata_spd_limit for
5944 *
5945 *	Initialize @link->[hw_]sata_spd_limit to the currently
5946 *	configured value.
5947 *
5948 *	LOCKING:
5949 *	Kernel thread context (may sleep).
5950 *
5951 *	RETURNS:
5952 *	0 on success, -errno on failure.
5953 */
5954int sata_link_init_spd(struct ata_link *link)
5955{
5956	u8 spd;
5957	int rc;
5958
5959	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5960	if (rc)
5961		return rc;
5962
5963	spd = (link->saved_scontrol >> 4) & 0xf;
5964	if (spd)
5965		link->hw_sata_spd_limit &= (1 << spd) - 1;
5966
5967	ata_force_link_limits(link);
5968
5969	link->sata_spd_limit = link->hw_sata_spd_limit;
5970
5971	return 0;
5972}
5973
5974/**
5975 *	ata_port_alloc - allocate and initialize basic ATA port resources
5976 *	@host: ATA host this allocated port belongs to
5977 *
5978 *	Allocate and initialize basic ATA port resources.
5979 *
5980 *	RETURNS:
5981 *	Allocate ATA port on success, NULL on failure.
5982 *
5983 *	LOCKING:
5984 *	Inherited from calling layer (may sleep).
5985 */
5986struct ata_port *ata_port_alloc(struct ata_host *host)
5987{
5988	struct ata_port *ap;
5989
5990	DPRINTK("ENTER\n");
5991
5992	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5993	if (!ap)
5994		return NULL;
5995
5996	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5997	ap->lock = &host->lock;
5998	ap->print_id = -1;
5999	ap->local_port_no = -1;
6000	ap->host = host;
6001	ap->dev = host->dev;
6002
6003#if defined(ATA_VERBOSE_DEBUG)
6004	/* turn on all debugging levels */
6005	ap->msg_enable = 0x00FF;
6006#elif defined(ATA_DEBUG)
6007	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6008#else
6009	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6010#endif
6011
6012	mutex_init(&ap->scsi_scan_mutex);
6013	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6014	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6015	INIT_LIST_HEAD(&ap->eh_done_q);
6016	init_waitqueue_head(&ap->eh_wait_q);
6017	init_completion(&ap->park_req_pending);
6018	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6019		    TIMER_DEFERRABLE);
6020
6021	ap->cbl = ATA_CBL_NONE;
6022
6023	ata_link_init(ap, &ap->link, 0);
6024
6025#ifdef ATA_IRQ_TRAP
6026	ap->stats.unhandled_irq = 1;
6027	ap->stats.idle_irq = 1;
6028#endif
6029	ata_sff_port_init(ap);
6030
6031	return ap;
6032}
6033
6034static void ata_devres_release(struct device *gendev, void *res)
6035{
6036	struct ata_host *host = dev_get_drvdata(gendev);
6037	int i;
6038
6039	for (i = 0; i < host->n_ports; i++) {
6040		struct ata_port *ap = host->ports[i];
6041
6042		if (!ap)
6043			continue;
6044
6045		if (ap->scsi_host)
6046			scsi_host_put(ap->scsi_host);
6047
6048	}
6049
6050	dev_set_drvdata(gendev, NULL);
6051	ata_host_put(host);
6052}
6053
6054static void ata_host_release(struct kref *kref)
6055{
6056	struct ata_host *host = container_of(kref, struct ata_host, kref);
6057	int i;
6058
6059	for (i = 0; i < host->n_ports; i++) {
6060		struct ata_port *ap = host->ports[i];
6061
6062		kfree(ap->pmp_link);
6063		kfree(ap->slave_link);
6064		kfree(ap);
6065		host->ports[i] = NULL;
6066	}
6067	kfree(host);
6068}
6069
6070void ata_host_get(struct ata_host *host)
6071{
6072	kref_get(&host->kref);
6073}
6074
6075void ata_host_put(struct ata_host *host)
6076{
6077	kref_put(&host->kref, ata_host_release);
6078}
6079
6080/**
6081 *	ata_host_alloc - allocate and init basic ATA host resources
6082 *	@dev: generic device this host is associated with
6083 *	@max_ports: maximum number of ATA ports associated with this host
6084 *
6085 *	Allocate and initialize basic ATA host resources.  LLD calls
6086 *	this function to allocate a host, initializes it fully and
6087 *	attaches it using ata_host_register().
6088 *
6089 *	@max_ports ports are allocated and host->n_ports is
6090 *	initialized to @max_ports.  The caller is allowed to decrease
6091 *	host->n_ports before calling ata_host_register().  The unused
6092 *	ports will be automatically freed on registration.
6093 *
6094 *	RETURNS:
6095 *	Allocate ATA host on success, NULL on failure.
6096 *
6097 *	LOCKING:
6098 *	Inherited from calling layer (may sleep).
6099 */
6100struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6101{
6102	struct ata_host *host;
6103	size_t sz;
6104	int i;
6105	void *dr;
6106
6107	DPRINTK("ENTER\n");
6108
6109	/* alloc a container for our list of ATA ports (buses) */
6110	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6111	host = kzalloc(sz, GFP_KERNEL);
6112	if (!host)
6113		return NULL;
6114
6115	if (!devres_open_group(dev, NULL, GFP_KERNEL))
6116		goto err_free;
6117
6118	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
6119	if (!dr)
6120		goto err_out;
6121
6122	devres_add(dev, dr);
6123	dev_set_drvdata(dev, host);
6124
6125	spin_lock_init(&host->lock);
6126	mutex_init(&host->eh_mutex);
6127	host->dev = dev;
6128	host->n_ports = max_ports;
6129	kref_init(&host->kref);
6130
6131	/* allocate ports bound to this host */
6132	for (i = 0; i < max_ports; i++) {
6133		struct ata_port *ap;
6134
6135		ap = ata_port_alloc(host);
6136		if (!ap)
6137			goto err_out;
6138
6139		ap->port_no = i;
6140		host->ports[i] = ap;
6141	}
6142
6143	devres_remove_group(dev, NULL);
6144	return host;
6145
6146 err_out:
6147	devres_release_group(dev, NULL);
6148 err_free:
6149	kfree(host);
6150	return NULL;
6151}
6152
6153/**
6154 *	ata_host_alloc_pinfo - alloc host and init with port_info array
6155 *	@dev: generic device this host is associated with
6156 *	@ppi: array of ATA port_info to initialize host with
6157 *	@n_ports: number of ATA ports attached to this host
6158 *
6159 *	Allocate ATA host and initialize with info from @ppi.  If NULL
6160 *	terminated, @ppi may contain fewer entries than @n_ports.  The
6161 *	last entry will be used for the remaining ports.
6162 *
6163 *	RETURNS:
6164 *	Allocate ATA host on success, NULL on failure.
6165 *
6166 *	LOCKING:
6167 *	Inherited from calling layer (may sleep).
6168 */
6169struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6170				      const struct ata_port_info * const * ppi,
6171				      int n_ports)
6172{
6173	const struct ata_port_info *pi;
6174	struct ata_host *host;
6175	int i, j;
6176
6177	host = ata_host_alloc(dev, n_ports);
6178	if (!host)
6179		return NULL;
6180
6181	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6182		struct ata_port *ap = host->ports[i];
6183
6184		if (ppi[j])
6185			pi = ppi[j++];
6186
6187		ap->pio_mask = pi->pio_mask;
6188		ap->mwdma_mask = pi->mwdma_mask;
6189		ap->udma_mask = pi->udma_mask;
6190		ap->flags |= pi->flags;
6191		ap->link.flags |= pi->link_flags;
6192		ap->ops = pi->port_ops;
6193
6194		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6195			host->ops = pi->port_ops;
6196	}
6197
6198	return host;
6199}
6200
6201/**
6202 *	ata_slave_link_init - initialize slave link
6203 *	@ap: port to initialize slave link for
6204 *
6205 *	Create and initialize slave link for @ap.  This enables slave
6206 *	link handling on the port.
6207 *
6208 *	In libata, a port contains links and a link contains devices.
6209 *	There is single host link but if a PMP is attached to it,
6210 *	there can be multiple fan-out links.  On SATA, there's usually
6211 *	a single device connected to a link but PATA and SATA
6212 *	controllers emulating TF based interface can have two - master
6213 *	and slave.
6214 *
6215 *	However, there are a few controllers which don't fit into this
6216 *	abstraction too well - SATA controllers which emulate TF
6217 *	interface with both master and slave devices but also have
6218 *	separate SCR register sets for each device.  These controllers
6219 *	need separate links for physical link handling
6220 *	(e.g. onlineness, link speed) but should be treated like a
6221 *	traditional M/S controller for everything else (e.g. command
6222 *	issue, softreset).
6223 *
6224 *	slave_link is libata's way of handling this class of
6225 *	controllers without impacting core layer too much.  For
6226 *	anything other than physical link handling, the default host
6227 *	link is used for both master and slave.  For physical link
6228 *	handling, separate @ap->slave_link is used.  All dirty details
6229 *	are implemented inside libata core layer.  From LLD's POV, the
6230 *	only difference is that prereset, hardreset and postreset are
6231 *	called once more for the slave link, so the reset sequence
6232 *	looks like the following.
6233 *
6234 *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6235 *	softreset(M) -> postreset(M) -> postreset(S)
6236 *
6237 *	Note that softreset is called only for the master.  Softreset
6238 *	resets both M/S by definition, so SRST on master should handle
6239 *	both (the standard method will work just fine).
6240 *
6241 *	LOCKING:
6242 *	Should be called before host is registered.
6243 *
6244 *	RETURNS:
6245 *	0 on success, -errno on failure.
6246 */
6247int ata_slave_link_init(struct ata_port *ap)
6248{
6249	struct ata_link *link;
6250
6251	WARN_ON(ap->slave_link);
6252	WARN_ON(ap->flags & ATA_FLAG_PMP);
6253
6254	link = kzalloc(sizeof(*link), GFP_KERNEL);
6255	if (!link)
6256		return -ENOMEM;
6257
6258	ata_link_init(ap, link, 1);
6259	ap->slave_link = link;
6260	return 0;
6261}
6262
6263static void ata_host_stop(struct device *gendev, void *res)
6264{
6265	struct ata_host *host = dev_get_drvdata(gendev);
6266	int i;
6267
6268	WARN_ON(!(host->flags & ATA_HOST_STARTED));
6269
6270	for (i = 0; i < host->n_ports; i++) {
6271		struct ata_port *ap = host->ports[i];
6272
6273		if (ap->ops->port_stop)
6274			ap->ops->port_stop(ap);
6275	}
6276
6277	if (host->ops->host_stop)
6278		host->ops->host_stop(host);
6279}
6280
6281/**
6282 *	ata_finalize_port_ops - finalize ata_port_operations
6283 *	@ops: ata_port_operations to finalize
6284 *
6285 *	An ata_port_operations can inherit from another ops and that
6286 *	ops can again inherit from another.  This can go on as many
6287 *	times as necessary as long as there is no loop in the
6288 *	inheritance chain.
6289 *
6290 *	Ops tables are finalized when the host is started.  NULL or
6291 *	unspecified entries are inherited from the closet ancestor
6292 *	which has the method and the entry is populated with it.
6293 *	After finalization, the ops table directly points to all the
6294 *	methods and ->inherits is no longer necessary and cleared.
6295 *
6296 *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6297 *
6298 *	LOCKING:
6299 *	None.
6300 */
6301static void ata_finalize_port_ops(struct ata_port_operations *ops)
6302{
6303	static DEFINE_SPINLOCK(lock);
6304	const struct ata_port_operations *cur;
6305	void **begin = (void **)ops;
6306	void **end = (void **)&ops->inherits;
6307	void **pp;
6308
6309	if (!ops || !ops->inherits)
6310		return;
6311
6312	spin_lock(&lock);
6313
6314	for (cur = ops->inherits; cur; cur = cur->inherits) {
6315		void **inherit = (void **)cur;
6316
6317		for (pp = begin; pp < end; pp++, inherit++)
6318			if (!*pp)
6319				*pp = *inherit;
6320	}
6321
6322	for (pp = begin; pp < end; pp++)
6323		if (IS_ERR(*pp))
6324			*pp = NULL;
6325
6326	ops->inherits = NULL;
6327
6328	spin_unlock(&lock);
6329}
6330
6331/**
6332 *	ata_host_start - start and freeze ports of an ATA host
6333 *	@host: ATA host to start ports for
6334 *
6335 *	Start and then freeze ports of @host.  Started status is
6336 *	recorded in host->flags, so this function can be called
6337 *	multiple times.  Ports are guaranteed to get started only
6338 *	once.  If host->ops isn't initialized yet, its set to the
6339 *	first non-dummy port ops.
6340 *
6341 *	LOCKING:
6342 *	Inherited from calling layer (may sleep).
6343 *
6344 *	RETURNS:
6345 *	0 if all ports are started successfully, -errno otherwise.
6346 */
6347int ata_host_start(struct ata_host *host)
6348{
6349	int have_stop = 0;
6350	void *start_dr = NULL;
6351	int i, rc;
6352
6353	if (host->flags & ATA_HOST_STARTED)
6354		return 0;
6355
6356	ata_finalize_port_ops(host->ops);
6357
6358	for (i = 0; i < host->n_ports; i++) {
6359		struct ata_port *ap = host->ports[i];
6360
6361		ata_finalize_port_ops(ap->ops);
6362
6363		if (!host->ops && !ata_port_is_dummy(ap))
6364			host->ops = ap->ops;
6365
6366		if (ap->ops->port_stop)
6367			have_stop = 1;
6368	}
6369
6370	if (host->ops->host_stop)
6371		have_stop = 1;
6372
6373	if (have_stop) {
6374		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6375		if (!start_dr)
6376			return -ENOMEM;
6377	}
6378
6379	for (i = 0; i < host->n_ports; i++) {
6380		struct ata_port *ap = host->ports[i];
6381
6382		if (ap->ops->port_start) {
6383			rc = ap->ops->port_start(ap);
6384			if (rc) {
6385				if (rc != -ENODEV)
6386					dev_err(host->dev,
6387						"failed to start port %d (errno=%d)\n",
6388						i, rc);
6389				goto err_out;
6390			}
6391		}
6392		ata_eh_freeze_port(ap);
6393	}
6394
6395	if (start_dr)
6396		devres_add(host->dev, start_dr);
6397	host->flags |= ATA_HOST_STARTED;
6398	return 0;
6399
6400 err_out:
6401	while (--i >= 0) {
6402		struct ata_port *ap = host->ports[i];
6403
6404		if (ap->ops->port_stop)
6405			ap->ops->port_stop(ap);
6406	}
6407	devres_free(start_dr);
6408	return rc;
6409}
6410
6411/**
6412 *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6413 *	@host:	host to initialize
6414 *	@dev:	device host is attached to
6415 *	@ops:	port_ops
6416 *
6417 */
6418void ata_host_init(struct ata_host *host, struct device *dev,
6419		   struct ata_port_operations *ops)
6420{
6421	spin_lock_init(&host->lock);
6422	mutex_init(&host->eh_mutex);
6423	host->n_tags = ATA_MAX_QUEUE;
6424	host->dev = dev;
6425	host->ops = ops;
6426	kref_init(&host->kref);
6427}
6428
6429void __ata_port_probe(struct ata_port *ap)
6430{
6431	struct ata_eh_info *ehi = &ap->link.eh_info;
6432	unsigned long flags;
6433
6434	/* kick EH for boot probing */
6435	spin_lock_irqsave(ap->lock, flags);
6436
6437	ehi->probe_mask |= ATA_ALL_DEVICES;
6438	ehi->action |= ATA_EH_RESET;
6439	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6440
6441	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6442	ap->pflags |= ATA_PFLAG_LOADING;
6443	ata_port_schedule_eh(ap);
6444
6445	spin_unlock_irqrestore(ap->lock, flags);
6446}
6447
6448int ata_port_probe(struct ata_port *ap)
6449{
6450	int rc = 0;
6451
6452	if (ap->ops->error_handler) {
6453		__ata_port_probe(ap);
6454		ata_port_wait_eh(ap);
6455	} else {
6456		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6457		rc = ata_bus_probe(ap);
6458		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6459	}
6460	return rc;
6461}
6462
6463
6464static void async_port_probe(void *data, async_cookie_t cookie)
6465{
6466	struct ata_port *ap = data;
6467
6468	/*
6469	 * If we're not allowed to scan this host in parallel,
6470	 * we need to wait until all previous scans have completed
6471	 * before going further.
6472	 * Jeff Garzik says this is only within a controller, so we
6473	 * don't need to wait for port 0, only for later ports.
6474	 */
6475	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6476		async_synchronize_cookie(cookie);
6477
6478	(void)ata_port_probe(ap);
6479
6480	/* in order to keep device order, we need to synchronize at this point */
6481	async_synchronize_cookie(cookie);
6482
6483	ata_scsi_scan_host(ap, 1);
6484}
6485
6486/**
6487 *	ata_host_register - register initialized ATA host
6488 *	@host: ATA host to register
6489 *	@sht: template for SCSI host
6490 *
6491 *	Register initialized ATA host.  @host is allocated using
6492 *	ata_host_alloc() and fully initialized by LLD.  This function
6493 *	starts ports, registers @host with ATA and SCSI layers and
6494 *	probe registered devices.
6495 *
6496 *	LOCKING:
6497 *	Inherited from calling layer (may sleep).
6498 *
6499 *	RETURNS:
6500 *	0 on success, -errno otherwise.
6501 */
6502int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6503{
6504	int i, rc;
6505
6506	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
6507
6508	/* host must have been started */
6509	if (!(host->flags & ATA_HOST_STARTED)) {
6510		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6511		WARN_ON(1);
6512		return -EINVAL;
6513	}
6514
6515	/* Blow away unused ports.  This happens when LLD can't
6516	 * determine the exact number of ports to allocate at
6517	 * allocation time.
6518	 */
6519	for (i = host->n_ports; host->ports[i]; i++)
6520		kfree(host->ports[i]);
6521
6522	/* give ports names and add SCSI hosts */
6523	for (i = 0; i < host->n_ports; i++) {
6524		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6525		host->ports[i]->local_port_no = i + 1;
6526	}
6527
6528	/* Create associated sysfs transport objects  */
6529	for (i = 0; i < host->n_ports; i++) {
6530		rc = ata_tport_add(host->dev,host->ports[i]);
6531		if (rc) {
6532			goto err_tadd;
6533		}
6534	}
6535
6536	rc = ata_scsi_add_hosts(host, sht);
6537	if (rc)
6538		goto err_tadd;
6539
6540	/* set cable, sata_spd_limit and report */
6541	for (i = 0; i < host->n_ports; i++) {
6542		struct ata_port *ap = host->ports[i];
6543		unsigned long xfer_mask;
6544
6545		/* set SATA cable type if still unset */
6546		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6547			ap->cbl = ATA_CBL_SATA;
6548
6549		/* init sata_spd_limit to the current value */
6550		sata_link_init_spd(&ap->link);
6551		if (ap->slave_link)
6552			sata_link_init_spd(ap->slave_link);
6553
6554		/* print per-port info to dmesg */
6555		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6556					      ap->udma_mask);
6557
6558		if (!ata_port_is_dummy(ap)) {
6559			ata_port_info(ap, "%cATA max %s %s\n",
6560				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6561				      ata_mode_string(xfer_mask),
6562				      ap->link.eh_info.desc);
6563			ata_ehi_clear_desc(&ap->link.eh_info);
6564		} else
6565			ata_port_info(ap, "DUMMY\n");
6566	}
6567
6568	/* perform each probe asynchronously */
6569	for (i = 0; i < host->n_ports; i++) {
6570		struct ata_port *ap = host->ports[i];
6571		async_schedule(async_port_probe, ap);
6572	}
6573
6574	return 0;
6575
6576 err_tadd:
6577	while (--i >= 0) {
6578		ata_tport_delete(host->ports[i]);
6579	}
6580	return rc;
6581
6582}
6583
6584/**
6585 *	ata_host_activate - start host, request IRQ and register it
6586 *	@host: target ATA host
6587 *	@irq: IRQ to request
6588 *	@irq_handler: irq_handler used when requesting IRQ
6589 *	@irq_flags: irq_flags used when requesting IRQ
6590 *	@sht: scsi_host_template to use when registering the host
6591 *
6592 *	After allocating an ATA host and initializing it, most libata
6593 *	LLDs perform three steps to activate the host - start host,
6594 *	request IRQ and register it.  This helper takes necessary
6595 *	arguments and performs the three steps in one go.
6596 *
6597 *	An invalid IRQ skips the IRQ registration and expects the host to
6598 *	have set polling mode on the port. In this case, @irq_handler
6599 *	should be NULL.
6600 *
6601 *	LOCKING:
6602 *	Inherited from calling layer (may sleep).
6603 *
6604 *	RETURNS:
6605 *	0 on success, -errno otherwise.
6606 */
6607int ata_host_activate(struct ata_host *host, int irq,
6608		      irq_handler_t irq_handler, unsigned long irq_flags,
6609		      struct scsi_host_template *sht)
6610{
6611	int i, rc;
6612	char *irq_desc;
6613
6614	rc = ata_host_start(host);
6615	if (rc)
6616		return rc;
6617
6618	/* Special case for polling mode */
6619	if (!irq) {
6620		WARN_ON(irq_handler);
6621		return ata_host_register(host, sht);
6622	}
6623
6624	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6625				  dev_driver_string(host->dev),
6626				  dev_name(host->dev));
6627	if (!irq_desc)
6628		return -ENOMEM;
6629
6630	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6631			      irq_desc, host);
6632	if (rc)
6633		return rc;
6634
6635	for (i = 0; i < host->n_ports; i++)
6636		ata_port_desc(host->ports[i], "irq %d", irq);
6637
6638	rc = ata_host_register(host, sht);
6639	/* if failed, just free the IRQ and leave ports alone */
6640	if (rc)
6641		devm_free_irq(host->dev, irq, host);
6642
6643	return rc;
6644}
6645
6646/**
6647 *	ata_port_detach - Detach ATA port in preparation of device removal
6648 *	@ap: ATA port to be detached
6649 *
6650 *	Detach all ATA devices and the associated SCSI devices of @ap;
6651 *	then, remove the associated SCSI host.  @ap is guaranteed to
6652 *	be quiescent on return from this function.
6653 *
6654 *	LOCKING:
6655 *	Kernel thread context (may sleep).
6656 */
6657static void ata_port_detach(struct ata_port *ap)
6658{
6659	unsigned long flags;
6660	struct ata_link *link;
6661	struct ata_device *dev;
6662
6663	if (!ap->ops->error_handler)
6664		goto skip_eh;
6665
6666	/* tell EH we're leaving & flush EH */
6667	spin_lock_irqsave(ap->lock, flags);
6668	ap->pflags |= ATA_PFLAG_UNLOADING;
6669	ata_port_schedule_eh(ap);
6670	spin_unlock_irqrestore(ap->lock, flags);
6671
6672	/* wait till EH commits suicide */
6673	ata_port_wait_eh(ap);
6674
6675	/* it better be dead now */
6676	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6677
6678	cancel_delayed_work_sync(&ap->hotplug_task);
6679
6680 skip_eh:
6681	/* clean up zpodd on port removal */
6682	ata_for_each_link(link, ap, HOST_FIRST) {
6683		ata_for_each_dev(dev, link, ALL) {
6684			if (zpodd_dev_enabled(dev))
6685				zpodd_exit(dev);
6686		}
6687	}
6688	if (ap->pmp_link) {
6689		int i;
6690		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6691			ata_tlink_delete(&ap->pmp_link[i]);
6692	}
6693	/* remove the associated SCSI host */
6694	scsi_remove_host(ap->scsi_host);
6695	ata_tport_delete(ap);
6696}
6697
6698/**
6699 *	ata_host_detach - Detach all ports of an ATA host
6700 *	@host: Host to detach
6701 *
6702 *	Detach all ports of @host.
6703 *
6704 *	LOCKING:
6705 *	Kernel thread context (may sleep).
6706 */
6707void ata_host_detach(struct ata_host *host)
6708{
6709	int i;
6710
6711	for (i = 0; i < host->n_ports; i++)
6712		ata_port_detach(host->ports[i]);
6713
6714	/* the host is dead now, dissociate ACPI */
6715	ata_acpi_dissociate(host);
6716}
6717
6718#ifdef CONFIG_PCI
6719
6720/**
6721 *	ata_pci_remove_one - PCI layer callback for device removal
6722 *	@pdev: PCI device that was removed
6723 *
6724 *	PCI layer indicates to libata via this hook that hot-unplug or
6725 *	module unload event has occurred.  Detach all ports.  Resource
6726 *	release is handled via devres.
6727 *
6728 *	LOCKING:
6729 *	Inherited from PCI layer (may sleep).
6730 */
6731void ata_pci_remove_one(struct pci_dev *pdev)
6732{
6733	struct ata_host *host = pci_get_drvdata(pdev);
6734
6735	ata_host_detach(host);
6736}
6737
6738/* move to PCI subsystem */
6739int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6740{
6741	unsigned long tmp = 0;
6742
6743	switch (bits->width) {
6744	case 1: {
6745		u8 tmp8 = 0;
6746		pci_read_config_byte(pdev, bits->reg, &tmp8);
6747		tmp = tmp8;
6748		break;
6749	}
6750	case 2: {
6751		u16 tmp16 = 0;
6752		pci_read_config_word(pdev, bits->reg, &tmp16);
6753		tmp = tmp16;
6754		break;
6755	}
6756	case 4: {
6757		u32 tmp32 = 0;
6758		pci_read_config_dword(pdev, bits->reg, &tmp32);
6759		tmp = tmp32;
6760		break;
6761	}
6762
6763	default:
6764		return -EINVAL;
6765	}
6766
6767	tmp &= bits->mask;
6768
6769	return (tmp == bits->val) ? 1 : 0;
6770}
6771
6772#ifdef CONFIG_PM
6773void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6774{
6775	pci_save_state(pdev);
6776	pci_disable_device(pdev);
6777
6778	if (mesg.event & PM_EVENT_SLEEP)
6779		pci_set_power_state(pdev, PCI_D3hot);
6780}
6781
6782int ata_pci_device_do_resume(struct pci_dev *pdev)
6783{
6784	int rc;
6785
6786	pci_set_power_state(pdev, PCI_D0);
6787	pci_restore_state(pdev);
6788
6789	rc = pcim_enable_device(pdev);
6790	if (rc) {
6791		dev_err(&pdev->dev,
6792			"failed to enable device after resume (%d)\n", rc);
6793		return rc;
6794	}
6795
6796	pci_set_master(pdev);
6797	return 0;
6798}
6799
6800int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6801{
6802	struct ata_host *host = pci_get_drvdata(pdev);
6803	int rc = 0;
6804
6805	rc = ata_host_suspend(host, mesg);
6806	if (rc)
6807		return rc;
6808
6809	ata_pci_device_do_suspend(pdev, mesg);
6810
6811	return 0;
6812}
6813
6814int ata_pci_device_resume(struct pci_dev *pdev)
6815{
6816	struct ata_host *host = pci_get_drvdata(pdev);
6817	int rc;
6818
6819	rc = ata_pci_device_do_resume(pdev);
6820	if (rc == 0)
6821		ata_host_resume(host);
6822	return rc;
6823}
6824#endif /* CONFIG_PM */
6825
6826#endif /* CONFIG_PCI */
6827
6828/**
6829 *	ata_platform_remove_one - Platform layer callback for device removal
6830 *	@pdev: Platform device that was removed
6831 *
6832 *	Platform layer indicates to libata via this hook that hot-unplug or
6833 *	module unload event has occurred.  Detach all ports.  Resource
6834 *	release is handled via devres.
6835 *
6836 *	LOCKING:
6837 *	Inherited from platform layer (may sleep).
6838 */
6839int ata_platform_remove_one(struct platform_device *pdev)
6840{
6841	struct ata_host *host = platform_get_drvdata(pdev);
6842
6843	ata_host_detach(host);
6844
6845	return 0;
6846}
6847
6848static int __init ata_parse_force_one(char **cur,
6849				      struct ata_force_ent *force_ent,
6850				      const char **reason)
6851{
6852	static const struct ata_force_param force_tbl[] __initconst = {
6853		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6854		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6855		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6856		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6857		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6858		{ "sata",	.cbl		= ATA_CBL_SATA },
6859		{ "1.5Gbps",	.spd_limit	= 1 },
6860		{ "3.0Gbps",	.spd_limit	= 2 },
6861		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6862		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6863		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6864		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6865		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6866		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6867		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6868		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6869		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6870		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6871		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6872		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6873		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6874		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6875		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6876		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6877		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6878		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6879		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6880		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6881		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6882		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6883		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6884		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6885		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6886		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6887		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6888		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6889		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6890		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6891		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6892		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6893		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6894		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6895		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6896		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6897		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6898		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6899		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6900		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6901		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6902		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6903		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6904		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6905		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6906	};
6907	char *start = *cur, *p = *cur;
6908	char *id, *val, *endp;
6909	const struct ata_force_param *match_fp = NULL;
6910	int nr_matches = 0, i;
6911
6912	/* find where this param ends and update *cur */
6913	while (*p != '\0' && *p != ',')
6914		p++;
6915
6916	if (*p == '\0')
6917		*cur = p;
6918	else
6919		*cur = p + 1;
6920
6921	*p = '\0';
6922
6923	/* parse */
6924	p = strchr(start, ':');
6925	if (!p) {
6926		val = strstrip(start);
6927		goto parse_val;
6928	}
6929	*p = '\0';
6930
6931	id = strstrip(start);
6932	val = strstrip(p + 1);
6933
6934	/* parse id */
6935	p = strchr(id, '.');
6936	if (p) {
6937		*p++ = '\0';
6938		force_ent->device = simple_strtoul(p, &endp, 10);
6939		if (p == endp || *endp != '\0') {
6940			*reason = "invalid device";
6941			return -EINVAL;
6942		}
6943	}
6944
6945	force_ent->port = simple_strtoul(id, &endp, 10);
6946	if (id == endp || *endp != '\0') {
6947		*reason = "invalid port/link";
6948		return -EINVAL;
6949	}
6950
6951 parse_val:
6952	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6953	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6954		const struct ata_force_param *fp = &force_tbl[i];
6955
6956		if (strncasecmp(val, fp->name, strlen(val)))
6957			continue;
6958
6959		nr_matches++;
6960		match_fp = fp;
6961
6962		if (strcasecmp(val, fp->name) == 0) {
6963			nr_matches = 1;
6964			break;
6965		}
6966	}
6967
6968	if (!nr_matches) {
6969		*reason = "unknown value";
6970		return -EINVAL;
6971	}
6972	if (nr_matches > 1) {
6973		*reason = "ambiguous value";
6974		return -EINVAL;
6975	}
6976
6977	force_ent->param = *match_fp;
6978
6979	return 0;
6980}
6981
6982static void __init ata_parse_force_param(void)
6983{
6984	int idx = 0, size = 1;
6985	int last_port = -1, last_device = -1;
6986	char *p, *cur, *next;
6987
6988	/* calculate maximum number of params and allocate force_tbl */
6989	for (p = ata_force_param_buf; *p; p++)
6990		if (*p == ',')
6991			size++;
6992
6993	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6994	if (!ata_force_tbl) {
6995		printk(KERN_WARNING "ata: failed to extend force table, "
6996		       "libata.force ignored\n");
6997		return;
6998	}
6999
7000	/* parse and populate the table */
7001	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7002		const char *reason = "";
7003		struct ata_force_ent te = { .port = -1, .device = -1 };
7004
7005		next = cur;
7006		if (ata_parse_force_one(&next, &te, &reason)) {
7007			printk(KERN_WARNING "ata: failed to parse force "
7008			       "parameter \"%s\" (%s)\n",
7009			       cur, reason);
7010			continue;
7011		}
7012
7013		if (te.port == -1) {
7014			te.port = last_port;
7015			te.device = last_device;
7016		}
7017
7018		ata_force_tbl[idx++] = te;
7019
7020		last_port = te.port;
7021		last_device = te.device;
7022	}
7023
7024	ata_force_tbl_size = idx;
7025}
7026
7027static int __init ata_init(void)
7028{
7029	int rc;
7030
7031	ata_parse_force_param();
7032
7033	rc = ata_sff_init();
7034	if (rc) {
7035		kfree(ata_force_tbl);
7036		return rc;
7037	}
7038
7039	libata_transport_init();
7040	ata_scsi_transport_template = ata_attach_transport();
7041	if (!ata_scsi_transport_template) {
7042		ata_sff_exit();
7043		rc = -ENOMEM;
7044		goto err_out;
7045	}
7046
7047	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7048	return 0;
7049
7050err_out:
7051	return rc;
7052}
7053
7054static void __exit ata_exit(void)
7055{
7056	ata_release_transport(ata_scsi_transport_template);
7057	libata_transport_exit();
7058	ata_sff_exit();
7059	kfree(ata_force_tbl);
7060}
7061
7062subsys_initcall(ata_init);
7063module_exit(ata_exit);
7064
7065static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7066
7067int ata_ratelimit(void)
7068{
7069	return __ratelimit(&ratelimit);
7070}
7071
7072/**
7073 *	ata_msleep - ATA EH owner aware msleep
7074 *	@ap: ATA port to attribute the sleep to
7075 *	@msecs: duration to sleep in milliseconds
7076 *
7077 *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
7078 *	ownership is released before going to sleep and reacquired
7079 *	after the sleep is complete.  IOW, other ports sharing the
7080 *	@ap->host will be allowed to own the EH while this task is
7081 *	sleeping.
7082 *
7083 *	LOCKING:
7084 *	Might sleep.
7085 */
7086void ata_msleep(struct ata_port *ap, unsigned int msecs)
7087{
7088	bool owns_eh = ap && ap->host->eh_owner == current;
7089
7090	if (owns_eh)
7091		ata_eh_release(ap);
7092
7093	if (msecs < 20) {
7094		unsigned long usecs = msecs * USEC_PER_MSEC;
7095		usleep_range(usecs, usecs + 50);
7096	} else {
7097		msleep(msecs);
7098	}
7099
7100	if (owns_eh)
7101		ata_eh_acquire(ap);
7102}
7103
7104/**
7105 *	ata_wait_register - wait until register value changes
7106 *	@ap: ATA port to wait register for, can be NULL
7107 *	@reg: IO-mapped register
7108 *	@mask: Mask to apply to read register value
7109 *	@val: Wait condition
7110 *	@interval: polling interval in milliseconds
7111 *	@timeout: timeout in milliseconds
7112 *
7113 *	Waiting for some bits of register to change is a common
7114 *	operation for ATA controllers.  This function reads 32bit LE
7115 *	IO-mapped register @reg and tests for the following condition.
7116 *
7117 *	(*@reg & mask) != val
7118 *
7119 *	If the condition is met, it returns; otherwise, the process is
7120 *	repeated after @interval_msec until timeout.
7121 *
7122 *	LOCKING:
7123 *	Kernel thread context (may sleep)
7124 *
7125 *	RETURNS:
7126 *	The final register value.
7127 */
7128u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7129		      unsigned long interval, unsigned long timeout)
7130{
7131	unsigned long deadline;
7132	u32 tmp;
7133
7134	tmp = ioread32(reg);
7135
7136	/* Calculate timeout _after_ the first read to make sure
7137	 * preceding writes reach the controller before starting to
7138	 * eat away the timeout.
7139	 */
7140	deadline = ata_deadline(jiffies, timeout);
7141
7142	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7143		ata_msleep(ap, interval);
7144		tmp = ioread32(reg);
7145	}
7146
7147	return tmp;
7148}
7149
7150/**
7151 *	sata_lpm_ignore_phy_events - test if PHY event should be ignored
7152 *	@link: Link receiving the event
7153 *
7154 *	Test whether the received PHY event has to be ignored or not.
7155 *
7156 *	LOCKING:
7157 *	None:
7158 *
7159 *	RETURNS:
7160 *	True if the event has to be ignored.
7161 */
7162bool sata_lpm_ignore_phy_events(struct ata_link *link)
7163{
7164	unsigned long lpm_timeout = link->last_lpm_change +
7165				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7166
7167	/* if LPM is enabled, PHYRDY doesn't mean anything */
7168	if (link->lpm_policy > ATA_LPM_MAX_POWER)
7169		return true;
7170
7171	/* ignore the first PHY event after the LPM policy changed
7172	 * as it is might be spurious
7173	 */
7174	if ((link->flags & ATA_LFLAG_CHANGED) &&
7175	    time_before(jiffies, lpm_timeout))
7176		return true;
7177
7178	return false;
7179}
7180EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7181
7182/*
7183 * Dummy port_ops
7184 */
7185static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7186{
7187	return AC_ERR_SYSTEM;
7188}
7189
7190static void ata_dummy_error_handler(struct ata_port *ap)
7191{
7192	/* truly dummy */
7193}
7194
7195struct ata_port_operations ata_dummy_port_ops = {
7196	.qc_prep		= ata_noop_qc_prep,
7197	.qc_issue		= ata_dummy_qc_issue,
7198	.error_handler		= ata_dummy_error_handler,
7199	.sched_eh		= ata_std_sched_eh,
7200	.end_eh			= ata_std_end_eh,
7201};
7202
7203const struct ata_port_info ata_dummy_port_info = {
7204	.port_ops		= &ata_dummy_port_ops,
7205};
7206
7207/*
7208 * Utility print functions
7209 */
7210void ata_port_printk(const struct ata_port *ap, const char *level,
7211		     const char *fmt, ...)
7212{
7213	struct va_format vaf;
7214	va_list args;
7215
7216	va_start(args, fmt);
7217
7218	vaf.fmt = fmt;
7219	vaf.va = &args;
7220
7221	printk("%sata%u: %pV", level, ap->print_id, &vaf);
7222
7223	va_end(args);
7224}
7225EXPORT_SYMBOL(ata_port_printk);
7226
7227void ata_link_printk(const struct ata_link *link, const char *level,
7228		     const char *fmt, ...)
7229{
7230	struct va_format vaf;
7231	va_list args;
7232
7233	va_start(args, fmt);
7234
7235	vaf.fmt = fmt;
7236	vaf.va = &args;
7237
7238	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7239		printk("%sata%u.%02u: %pV",
7240		       level, link->ap->print_id, link->pmp, &vaf);
7241	else
7242		printk("%sata%u: %pV",
7243		       level, link->ap->print_id, &vaf);
7244
7245	va_end(args);
7246}
7247EXPORT_SYMBOL(ata_link_printk);
7248
7249void ata_dev_printk(const struct ata_device *dev, const char *level,
7250		    const char *fmt, ...)
7251{
7252	struct va_format vaf;
7253	va_list args;
7254
7255	va_start(args, fmt);
7256
7257	vaf.fmt = fmt;
7258	vaf.va = &args;
7259
7260	printk("%sata%u.%02u: %pV",
7261	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7262	       &vaf);
7263
7264	va_end(args);
7265}
7266EXPORT_SYMBOL(ata_dev_printk);
7267
7268void ata_print_version(const struct device *dev, const char *version)
7269{
7270	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7271}
7272EXPORT_SYMBOL(ata_print_version);
7273
7274/*
7275 * libata is essentially a library of internal helper functions for
7276 * low-level ATA host controller drivers.  As such, the API/ABI is
7277 * likely to change as new drivers are added and updated.
7278 * Do not depend on ABI/API stability.
7279 */
7280EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7281EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7282EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7283EXPORT_SYMBOL_GPL(ata_base_port_ops);
7284EXPORT_SYMBOL_GPL(sata_port_ops);
7285EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7286EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7287EXPORT_SYMBOL_GPL(ata_link_next);
7288EXPORT_SYMBOL_GPL(ata_dev_next);
7289EXPORT_SYMBOL_GPL(ata_std_bios_param);
7290EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7291EXPORT_SYMBOL_GPL(ata_host_init);
7292EXPORT_SYMBOL_GPL(ata_host_alloc);
7293EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7294EXPORT_SYMBOL_GPL(ata_slave_link_init);
7295EXPORT_SYMBOL_GPL(ata_host_start);
7296EXPORT_SYMBOL_GPL(ata_host_register);
7297EXPORT_SYMBOL_GPL(ata_host_activate);
7298EXPORT_SYMBOL_GPL(ata_host_detach);
7299EXPORT_SYMBOL_GPL(ata_sg_init);
7300EXPORT_SYMBOL_GPL(ata_qc_complete);
7301EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7302EXPORT_SYMBOL_GPL(atapi_cmd_type);
7303EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7304EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7305EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7306EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7307EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7308EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7309EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7310EXPORT_SYMBOL_GPL(ata_mode_string);
7311EXPORT_SYMBOL_GPL(ata_id_xfermask);
7312EXPORT_SYMBOL_GPL(ata_do_set_mode);
7313EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7314EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7315EXPORT_SYMBOL_GPL(ata_dev_disable);
7316EXPORT_SYMBOL_GPL(sata_set_spd);
7317EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7318EXPORT_SYMBOL_GPL(sata_link_debounce);
7319EXPORT_SYMBOL_GPL(sata_link_resume);
7320EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7321EXPORT_SYMBOL_GPL(ata_std_prereset);
7322EXPORT_SYMBOL_GPL(sata_link_hardreset);
7323EXPORT_SYMBOL_GPL(sata_std_hardreset);
7324EXPORT_SYMBOL_GPL(ata_std_postreset);
7325EXPORT_SYMBOL_GPL(ata_dev_classify);
7326EXPORT_SYMBOL_GPL(ata_dev_pair);
7327EXPORT_SYMBOL_GPL(ata_ratelimit);
7328EXPORT_SYMBOL_GPL(ata_msleep);
7329EXPORT_SYMBOL_GPL(ata_wait_register);
7330EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7331EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7332EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7333EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7334EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7335EXPORT_SYMBOL_GPL(sata_scr_valid);
7336EXPORT_SYMBOL_GPL(sata_scr_read);
7337EXPORT_SYMBOL_GPL(sata_scr_write);
7338EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7339EXPORT_SYMBOL_GPL(ata_link_online);
7340EXPORT_SYMBOL_GPL(ata_link_offline);
7341#ifdef CONFIG_PM
7342EXPORT_SYMBOL_GPL(ata_host_suspend);
7343EXPORT_SYMBOL_GPL(ata_host_resume);
7344#endif /* CONFIG_PM */
7345EXPORT_SYMBOL_GPL(ata_id_string);
7346EXPORT_SYMBOL_GPL(ata_id_c_string);
7347EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7348EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7349
7350EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7351EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7352EXPORT_SYMBOL_GPL(ata_timing_compute);
7353EXPORT_SYMBOL_GPL(ata_timing_merge);
7354EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7355
7356#ifdef CONFIG_PCI
7357EXPORT_SYMBOL_GPL(pci_test_config_bits);
7358EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7359#ifdef CONFIG_PM
7360EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7361EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7362EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7363EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7364#endif /* CONFIG_PM */
7365#endif /* CONFIG_PCI */
7366
7367EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7368
7369EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7370EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7371EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7372EXPORT_SYMBOL_GPL(ata_port_desc);
7373#ifdef CONFIG_PCI
7374EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7375#endif /* CONFIG_PCI */
7376EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7377EXPORT_SYMBOL_GPL(ata_link_abort);
7378EXPORT_SYMBOL_GPL(ata_port_abort);
7379EXPORT_SYMBOL_GPL(ata_port_freeze);
7380EXPORT_SYMBOL_GPL(sata_async_notification);
7381EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7382EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7383EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7384EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7385EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7386EXPORT_SYMBOL_GPL(ata_do_eh);
7387EXPORT_SYMBOL_GPL(ata_std_error_handler);
7388
7389EXPORT_SYMBOL_GPL(ata_cable_40wire);
7390EXPORT_SYMBOL_GPL(ata_cable_80wire);
7391EXPORT_SYMBOL_GPL(ata_cable_unknown);
7392EXPORT_SYMBOL_GPL(ata_cable_ignore);
7393EXPORT_SYMBOL_GPL(ata_cable_sata);
7394EXPORT_SYMBOL_GPL(ata_host_get);
7395EXPORT_SYMBOL_GPL(ata_host_put);
v4.17
 
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Tejun Heo <tj@kernel.org>
   5 *    		    Please ALWAYS copy linux-ide@vger.kernel.org
   6 *		    on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/driver-api/libata.rst
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *	http://www.sata-io.org (SATA)
  37 *	http://www.compactflash.org (CF)
  38 *	http://www.qic.org (QIC157 - Tape and DSC)
  39 *	http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/time.h>
  54#include <linux/interrupt.h>
  55#include <linux/completion.h>
  56#include <linux/suspend.h>
  57#include <linux/workqueue.h>
  58#include <linux/scatterlist.h>
  59#include <linux/io.h>
  60#include <linux/async.h>
  61#include <linux/log2.h>
  62#include <linux/slab.h>
  63#include <linux/glob.h>
  64#include <scsi/scsi.h>
  65#include <scsi/scsi_cmnd.h>
  66#include <scsi/scsi_host.h>
  67#include <linux/libata.h>
  68#include <asm/byteorder.h>
  69#include <asm/unaligned.h>
  70#include <linux/cdrom.h>
  71#include <linux/ratelimit.h>
  72#include <linux/leds.h>
  73#include <linux/pm_runtime.h>
  74#include <linux/platform_device.h>
  75
  76#define CREATE_TRACE_POINTS
  77#include <trace/events/libata.h>
  78
  79#include "libata.h"
  80#include "libata-transport.h"
  81
  82/* debounce timing parameters in msecs { interval, duration, timeout } */
  83const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
  84const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
  85const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
  86
  87const struct ata_port_operations ata_base_port_ops = {
  88	.prereset		= ata_std_prereset,
  89	.postreset		= ata_std_postreset,
  90	.error_handler		= ata_std_error_handler,
  91	.sched_eh		= ata_std_sched_eh,
  92	.end_eh			= ata_std_end_eh,
  93};
  94
  95const struct ata_port_operations sata_port_ops = {
  96	.inherits		= &ata_base_port_ops,
  97
  98	.qc_defer		= ata_std_qc_defer,
  99	.hardreset		= sata_std_hardreset,
 100};
 101
 102static unsigned int ata_dev_init_params(struct ata_device *dev,
 103					u16 heads, u16 sectors);
 104static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
 105static void ata_dev_xfermask(struct ata_device *dev);
 106static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
 107
 108atomic_t ata_print_id = ATOMIC_INIT(0);
 109
 110struct ata_force_param {
 111	const char	*name;
 112	unsigned int	cbl;
 113	int		spd_limit;
 114	unsigned long	xfer_mask;
 115	unsigned int	horkage_on;
 116	unsigned int	horkage_off;
 117	unsigned int	lflags;
 118};
 119
 120struct ata_force_ent {
 121	int			port;
 122	int			device;
 123	struct ata_force_param	param;
 124};
 125
 126static struct ata_force_ent *ata_force_tbl;
 127static int ata_force_tbl_size;
 128
 129static char ata_force_param_buf[PAGE_SIZE] __initdata;
 130/* param_buf is thrown away after initialization, disallow read */
 131module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 132MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
 133
 134static int atapi_enabled = 1;
 135module_param(atapi_enabled, int, 0444);
 136MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 137
 138static int atapi_dmadir = 0;
 139module_param(atapi_dmadir, int, 0444);
 140MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 141
 142int atapi_passthru16 = 1;
 143module_param(atapi_passthru16, int, 0444);
 144MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 145
 146int libata_fua = 0;
 147module_param_named(fua, libata_fua, int, 0444);
 148MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 149
 150static int ata_ignore_hpa;
 151module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 152MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 153
 154static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 155module_param_named(dma, libata_dma_mask, int, 0444);
 156MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 157
 158static int ata_probe_timeout;
 159module_param(ata_probe_timeout, int, 0444);
 160MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 161
 162int libata_noacpi = 0;
 163module_param_named(noacpi, libata_noacpi, int, 0444);
 164MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 165
 166int libata_allow_tpm = 0;
 167module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 168MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 169
 170static int atapi_an;
 171module_param(atapi_an, int, 0444);
 172MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 173
 174MODULE_AUTHOR("Jeff Garzik");
 175MODULE_DESCRIPTION("Library module for ATA devices");
 176MODULE_LICENSE("GPL");
 177MODULE_VERSION(DRV_VERSION);
 178
 179
 180static bool ata_sstatus_online(u32 sstatus)
 181{
 182	return (sstatus & 0xf) == 0x3;
 183}
 184
 185/**
 186 *	ata_link_next - link iteration helper
 187 *	@link: the previous link, NULL to start
 188 *	@ap: ATA port containing links to iterate
 189 *	@mode: iteration mode, one of ATA_LITER_*
 190 *
 191 *	LOCKING:
 192 *	Host lock or EH context.
 193 *
 194 *	RETURNS:
 195 *	Pointer to the next link.
 196 */
 197struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 198			       enum ata_link_iter_mode mode)
 199{
 200	BUG_ON(mode != ATA_LITER_EDGE &&
 201	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 202
 203	/* NULL link indicates start of iteration */
 204	if (!link)
 205		switch (mode) {
 206		case ATA_LITER_EDGE:
 207		case ATA_LITER_PMP_FIRST:
 208			if (sata_pmp_attached(ap))
 209				return ap->pmp_link;
 210			/* fall through */
 211		case ATA_LITER_HOST_FIRST:
 212			return &ap->link;
 213		}
 214
 215	/* we just iterated over the host link, what's next? */
 216	if (link == &ap->link)
 217		switch (mode) {
 218		case ATA_LITER_HOST_FIRST:
 219			if (sata_pmp_attached(ap))
 220				return ap->pmp_link;
 221			/* fall through */
 222		case ATA_LITER_PMP_FIRST:
 223			if (unlikely(ap->slave_link))
 224				return ap->slave_link;
 225			/* fall through */
 226		case ATA_LITER_EDGE:
 227			return NULL;
 228		}
 229
 230	/* slave_link excludes PMP */
 231	if (unlikely(link == ap->slave_link))
 232		return NULL;
 233
 234	/* we were over a PMP link */
 235	if (++link < ap->pmp_link + ap->nr_pmp_links)
 236		return link;
 237
 238	if (mode == ATA_LITER_PMP_FIRST)
 239		return &ap->link;
 240
 241	return NULL;
 242}
 243
 244/**
 245 *	ata_dev_next - device iteration helper
 246 *	@dev: the previous device, NULL to start
 247 *	@link: ATA link containing devices to iterate
 248 *	@mode: iteration mode, one of ATA_DITER_*
 249 *
 250 *	LOCKING:
 251 *	Host lock or EH context.
 252 *
 253 *	RETURNS:
 254 *	Pointer to the next device.
 255 */
 256struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 257				enum ata_dev_iter_mode mode)
 258{
 259	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 260	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 261
 262	/* NULL dev indicates start of iteration */
 263	if (!dev)
 264		switch (mode) {
 265		case ATA_DITER_ENABLED:
 266		case ATA_DITER_ALL:
 267			dev = link->device;
 268			goto check;
 269		case ATA_DITER_ENABLED_REVERSE:
 270		case ATA_DITER_ALL_REVERSE:
 271			dev = link->device + ata_link_max_devices(link) - 1;
 272			goto check;
 273		}
 274
 275 next:
 276	/* move to the next one */
 277	switch (mode) {
 278	case ATA_DITER_ENABLED:
 279	case ATA_DITER_ALL:
 280		if (++dev < link->device + ata_link_max_devices(link))
 281			goto check;
 282		return NULL;
 283	case ATA_DITER_ENABLED_REVERSE:
 284	case ATA_DITER_ALL_REVERSE:
 285		if (--dev >= link->device)
 286			goto check;
 287		return NULL;
 288	}
 289
 290 check:
 291	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 292	    !ata_dev_enabled(dev))
 293		goto next;
 294	return dev;
 295}
 296
 297/**
 298 *	ata_dev_phys_link - find physical link for a device
 299 *	@dev: ATA device to look up physical link for
 300 *
 301 *	Look up physical link which @dev is attached to.  Note that
 302 *	this is different from @dev->link only when @dev is on slave
 303 *	link.  For all other cases, it's the same as @dev->link.
 304 *
 305 *	LOCKING:
 306 *	Don't care.
 307 *
 308 *	RETURNS:
 309 *	Pointer to the found physical link.
 310 */
 311struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 312{
 313	struct ata_port *ap = dev->link->ap;
 314
 315	if (!ap->slave_link)
 316		return dev->link;
 317	if (!dev->devno)
 318		return &ap->link;
 319	return ap->slave_link;
 320}
 321
 322/**
 323 *	ata_force_cbl - force cable type according to libata.force
 324 *	@ap: ATA port of interest
 325 *
 326 *	Force cable type according to libata.force and whine about it.
 327 *	The last entry which has matching port number is used, so it
 328 *	can be specified as part of device force parameters.  For
 329 *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 330 *	same effect.
 331 *
 332 *	LOCKING:
 333 *	EH context.
 334 */
 335void ata_force_cbl(struct ata_port *ap)
 336{
 337	int i;
 338
 339	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 340		const struct ata_force_ent *fe = &ata_force_tbl[i];
 341
 342		if (fe->port != -1 && fe->port != ap->print_id)
 343			continue;
 344
 345		if (fe->param.cbl == ATA_CBL_NONE)
 346			continue;
 347
 348		ap->cbl = fe->param.cbl;
 349		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 350		return;
 351	}
 352}
 353
 354/**
 355 *	ata_force_link_limits - force link limits according to libata.force
 356 *	@link: ATA link of interest
 357 *
 358 *	Force link flags and SATA spd limit according to libata.force
 359 *	and whine about it.  When only the port part is specified
 360 *	(e.g. 1:), the limit applies to all links connected to both
 361 *	the host link and all fan-out ports connected via PMP.  If the
 362 *	device part is specified as 0 (e.g. 1.00:), it specifies the
 363 *	first fan-out link not the host link.  Device number 15 always
 364 *	points to the host link whether PMP is attached or not.  If the
 365 *	controller has slave link, device number 16 points to it.
 366 *
 367 *	LOCKING:
 368 *	EH context.
 369 */
 370static void ata_force_link_limits(struct ata_link *link)
 371{
 372	bool did_spd = false;
 373	int linkno = link->pmp;
 374	int i;
 375
 376	if (ata_is_host_link(link))
 377		linkno += 15;
 378
 379	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 380		const struct ata_force_ent *fe = &ata_force_tbl[i];
 381
 382		if (fe->port != -1 && fe->port != link->ap->print_id)
 383			continue;
 384
 385		if (fe->device != -1 && fe->device != linkno)
 386			continue;
 387
 388		/* only honor the first spd limit */
 389		if (!did_spd && fe->param.spd_limit) {
 390			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 391			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 392					fe->param.name);
 393			did_spd = true;
 394		}
 395
 396		/* let lflags stack */
 397		if (fe->param.lflags) {
 398			link->flags |= fe->param.lflags;
 399			ata_link_notice(link,
 400					"FORCE: link flag 0x%x forced -> 0x%x\n",
 401					fe->param.lflags, link->flags);
 402		}
 403	}
 404}
 405
 406/**
 407 *	ata_force_xfermask - force xfermask according to libata.force
 408 *	@dev: ATA device of interest
 409 *
 410 *	Force xfer_mask according to libata.force and whine about it.
 411 *	For consistency with link selection, device number 15 selects
 412 *	the first device connected to the host link.
 413 *
 414 *	LOCKING:
 415 *	EH context.
 416 */
 417static void ata_force_xfermask(struct ata_device *dev)
 418{
 419	int devno = dev->link->pmp + dev->devno;
 420	int alt_devno = devno;
 421	int i;
 422
 423	/* allow n.15/16 for devices attached to host port */
 424	if (ata_is_host_link(dev->link))
 425		alt_devno += 15;
 426
 427	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 428		const struct ata_force_ent *fe = &ata_force_tbl[i];
 429		unsigned long pio_mask, mwdma_mask, udma_mask;
 430
 431		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 432			continue;
 433
 434		if (fe->device != -1 && fe->device != devno &&
 435		    fe->device != alt_devno)
 436			continue;
 437
 438		if (!fe->param.xfer_mask)
 439			continue;
 440
 441		ata_unpack_xfermask(fe->param.xfer_mask,
 442				    &pio_mask, &mwdma_mask, &udma_mask);
 443		if (udma_mask)
 444			dev->udma_mask = udma_mask;
 445		else if (mwdma_mask) {
 446			dev->udma_mask = 0;
 447			dev->mwdma_mask = mwdma_mask;
 448		} else {
 449			dev->udma_mask = 0;
 450			dev->mwdma_mask = 0;
 451			dev->pio_mask = pio_mask;
 452		}
 453
 454		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 455			       fe->param.name);
 456		return;
 457	}
 458}
 459
 460/**
 461 *	ata_force_horkage - force horkage according to libata.force
 462 *	@dev: ATA device of interest
 463 *
 464 *	Force horkage according to libata.force and whine about it.
 465 *	For consistency with link selection, device number 15 selects
 466 *	the first device connected to the host link.
 467 *
 468 *	LOCKING:
 469 *	EH context.
 470 */
 471static void ata_force_horkage(struct ata_device *dev)
 472{
 473	int devno = dev->link->pmp + dev->devno;
 474	int alt_devno = devno;
 475	int i;
 476
 477	/* allow n.15/16 for devices attached to host port */
 478	if (ata_is_host_link(dev->link))
 479		alt_devno += 15;
 480
 481	for (i = 0; i < ata_force_tbl_size; i++) {
 482		const struct ata_force_ent *fe = &ata_force_tbl[i];
 483
 484		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 485			continue;
 486
 487		if (fe->device != -1 && fe->device != devno &&
 488		    fe->device != alt_devno)
 489			continue;
 490
 491		if (!(~dev->horkage & fe->param.horkage_on) &&
 492		    !(dev->horkage & fe->param.horkage_off))
 493			continue;
 494
 495		dev->horkage |= fe->param.horkage_on;
 496		dev->horkage &= ~fe->param.horkage_off;
 497
 498		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 499			       fe->param.name);
 500	}
 501}
 502
 503/**
 504 *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 505 *	@opcode: SCSI opcode
 506 *
 507 *	Determine ATAPI command type from @opcode.
 508 *
 509 *	LOCKING:
 510 *	None.
 511 *
 512 *	RETURNS:
 513 *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 514 */
 515int atapi_cmd_type(u8 opcode)
 516{
 517	switch (opcode) {
 518	case GPCMD_READ_10:
 519	case GPCMD_READ_12:
 520		return ATAPI_READ;
 521
 522	case GPCMD_WRITE_10:
 523	case GPCMD_WRITE_12:
 524	case GPCMD_WRITE_AND_VERIFY_10:
 525		return ATAPI_WRITE;
 526
 527	case GPCMD_READ_CD:
 528	case GPCMD_READ_CD_MSF:
 529		return ATAPI_READ_CD;
 530
 531	case ATA_16:
 532	case ATA_12:
 533		if (atapi_passthru16)
 534			return ATAPI_PASS_THRU;
 535		/* fall thru */
 536	default:
 537		return ATAPI_MISC;
 538	}
 539}
 540
 541/**
 542 *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 543 *	@tf: Taskfile to convert
 544 *	@pmp: Port multiplier port
 545 *	@is_cmd: This FIS is for command
 546 *	@fis: Buffer into which data will output
 547 *
 548 *	Converts a standard ATA taskfile to a Serial ATA
 549 *	FIS structure (Register - Host to Device).
 550 *
 551 *	LOCKING:
 552 *	Inherited from caller.
 553 */
 554void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 555{
 556	fis[0] = 0x27;			/* Register - Host to Device FIS */
 557	fis[1] = pmp & 0xf;		/* Port multiplier number*/
 558	if (is_cmd)
 559		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
 560
 561	fis[2] = tf->command;
 562	fis[3] = tf->feature;
 563
 564	fis[4] = tf->lbal;
 565	fis[5] = tf->lbam;
 566	fis[6] = tf->lbah;
 567	fis[7] = tf->device;
 568
 569	fis[8] = tf->hob_lbal;
 570	fis[9] = tf->hob_lbam;
 571	fis[10] = tf->hob_lbah;
 572	fis[11] = tf->hob_feature;
 573
 574	fis[12] = tf->nsect;
 575	fis[13] = tf->hob_nsect;
 576	fis[14] = 0;
 577	fis[15] = tf->ctl;
 578
 579	fis[16] = tf->auxiliary & 0xff;
 580	fis[17] = (tf->auxiliary >> 8) & 0xff;
 581	fis[18] = (tf->auxiliary >> 16) & 0xff;
 582	fis[19] = (tf->auxiliary >> 24) & 0xff;
 583}
 584
 585/**
 586 *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 587 *	@fis: Buffer from which data will be input
 588 *	@tf: Taskfile to output
 589 *
 590 *	Converts a serial ATA FIS structure to a standard ATA taskfile.
 591 *
 592 *	LOCKING:
 593 *	Inherited from caller.
 594 */
 595
 596void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 597{
 598	tf->command	= fis[2];	/* status */
 599	tf->feature	= fis[3];	/* error */
 600
 601	tf->lbal	= fis[4];
 602	tf->lbam	= fis[5];
 603	tf->lbah	= fis[6];
 604	tf->device	= fis[7];
 605
 606	tf->hob_lbal	= fis[8];
 607	tf->hob_lbam	= fis[9];
 608	tf->hob_lbah	= fis[10];
 609
 610	tf->nsect	= fis[12];
 611	tf->hob_nsect	= fis[13];
 612}
 613
 614static const u8 ata_rw_cmds[] = {
 615	/* pio multi */
 616	ATA_CMD_READ_MULTI,
 617	ATA_CMD_WRITE_MULTI,
 618	ATA_CMD_READ_MULTI_EXT,
 619	ATA_CMD_WRITE_MULTI_EXT,
 620	0,
 621	0,
 622	0,
 623	ATA_CMD_WRITE_MULTI_FUA_EXT,
 624	/* pio */
 625	ATA_CMD_PIO_READ,
 626	ATA_CMD_PIO_WRITE,
 627	ATA_CMD_PIO_READ_EXT,
 628	ATA_CMD_PIO_WRITE_EXT,
 629	0,
 630	0,
 631	0,
 632	0,
 633	/* dma */
 634	ATA_CMD_READ,
 635	ATA_CMD_WRITE,
 636	ATA_CMD_READ_EXT,
 637	ATA_CMD_WRITE_EXT,
 638	0,
 639	0,
 640	0,
 641	ATA_CMD_WRITE_FUA_EXT
 642};
 643
 644/**
 645 *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
 646 *	@tf: command to examine and configure
 647 *	@dev: device tf belongs to
 648 *
 649 *	Examine the device configuration and tf->flags to calculate
 650 *	the proper read/write commands and protocol to use.
 651 *
 652 *	LOCKING:
 653 *	caller.
 654 */
 655static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 656{
 657	u8 cmd;
 658
 659	int index, fua, lba48, write;
 660
 661	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 662	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 663	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 664
 665	if (dev->flags & ATA_DFLAG_PIO) {
 666		tf->protocol = ATA_PROT_PIO;
 667		index = dev->multi_count ? 0 : 8;
 668	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 669		/* Unable to use DMA due to host limitation */
 670		tf->protocol = ATA_PROT_PIO;
 671		index = dev->multi_count ? 0 : 8;
 672	} else {
 673		tf->protocol = ATA_PROT_DMA;
 674		index = 16;
 675	}
 676
 677	cmd = ata_rw_cmds[index + fua + lba48 + write];
 678	if (cmd) {
 679		tf->command = cmd;
 680		return 0;
 681	}
 682	return -1;
 683}
 684
 685/**
 686 *	ata_tf_read_block - Read block address from ATA taskfile
 687 *	@tf: ATA taskfile of interest
 688 *	@dev: ATA device @tf belongs to
 689 *
 690 *	LOCKING:
 691 *	None.
 692 *
 693 *	Read block address from @tf.  This function can handle all
 694 *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
 695 *	flags select the address format to use.
 696 *
 697 *	RETURNS:
 698 *	Block address read from @tf.
 699 */
 700u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
 701{
 702	u64 block = 0;
 703
 704	if (tf->flags & ATA_TFLAG_LBA) {
 705		if (tf->flags & ATA_TFLAG_LBA48) {
 706			block |= (u64)tf->hob_lbah << 40;
 707			block |= (u64)tf->hob_lbam << 32;
 708			block |= (u64)tf->hob_lbal << 24;
 709		} else
 710			block |= (tf->device & 0xf) << 24;
 711
 712		block |= tf->lbah << 16;
 713		block |= tf->lbam << 8;
 714		block |= tf->lbal;
 715	} else {
 716		u32 cyl, head, sect;
 717
 718		cyl = tf->lbam | (tf->lbah << 8);
 719		head = tf->device & 0xf;
 720		sect = tf->lbal;
 721
 722		if (!sect) {
 723			ata_dev_warn(dev,
 724				     "device reported invalid CHS sector 0\n");
 725			return U64_MAX;
 726		}
 727
 728		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 729	}
 730
 731	return block;
 732}
 733
 734/**
 735 *	ata_build_rw_tf - Build ATA taskfile for given read/write request
 736 *	@tf: Target ATA taskfile
 737 *	@dev: ATA device @tf belongs to
 738 *	@block: Block address
 739 *	@n_block: Number of blocks
 740 *	@tf_flags: RW/FUA etc...
 741 *	@tag: tag
 742 *	@class: IO priority class
 743 *
 744 *	LOCKING:
 745 *	None.
 746 *
 747 *	Build ATA taskfile @tf for read/write request described by
 748 *	@block, @n_block, @tf_flags and @tag on @dev.
 749 *
 750 *	RETURNS:
 751 *
 752 *	0 on success, -ERANGE if the request is too large for @dev,
 753 *	-EINVAL if the request is invalid.
 754 */
 755int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 756		    u64 block, u32 n_block, unsigned int tf_flags,
 757		    unsigned int tag, int class)
 758{
 759	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 760	tf->flags |= tf_flags;
 761
 762	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 763		/* yay, NCQ */
 764		if (!lba_48_ok(block, n_block))
 765			return -ERANGE;
 766
 767		tf->protocol = ATA_PROT_NCQ;
 768		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 769
 770		if (tf->flags & ATA_TFLAG_WRITE)
 771			tf->command = ATA_CMD_FPDMA_WRITE;
 772		else
 773			tf->command = ATA_CMD_FPDMA_READ;
 774
 775		tf->nsect = tag << 3;
 776		tf->hob_feature = (n_block >> 8) & 0xff;
 777		tf->feature = n_block & 0xff;
 778
 779		tf->hob_lbah = (block >> 40) & 0xff;
 780		tf->hob_lbam = (block >> 32) & 0xff;
 781		tf->hob_lbal = (block >> 24) & 0xff;
 782		tf->lbah = (block >> 16) & 0xff;
 783		tf->lbam = (block >> 8) & 0xff;
 784		tf->lbal = block & 0xff;
 785
 786		tf->device = ATA_LBA;
 787		if (tf->flags & ATA_TFLAG_FUA)
 788			tf->device |= 1 << 7;
 789
 790		if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
 791			if (class == IOPRIO_CLASS_RT)
 792				tf->hob_nsect |= ATA_PRIO_HIGH <<
 793						 ATA_SHIFT_PRIO;
 794		}
 795	} else if (dev->flags & ATA_DFLAG_LBA) {
 796		tf->flags |= ATA_TFLAG_LBA;
 797
 798		if (lba_28_ok(block, n_block)) {
 799			/* use LBA28 */
 800			tf->device |= (block >> 24) & 0xf;
 801		} else if (lba_48_ok(block, n_block)) {
 802			if (!(dev->flags & ATA_DFLAG_LBA48))
 803				return -ERANGE;
 804
 805			/* use LBA48 */
 806			tf->flags |= ATA_TFLAG_LBA48;
 807
 808			tf->hob_nsect = (n_block >> 8) & 0xff;
 809
 810			tf->hob_lbah = (block >> 40) & 0xff;
 811			tf->hob_lbam = (block >> 32) & 0xff;
 812			tf->hob_lbal = (block >> 24) & 0xff;
 813		} else
 814			/* request too large even for LBA48 */
 815			return -ERANGE;
 816
 817		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 818			return -EINVAL;
 819
 820		tf->nsect = n_block & 0xff;
 821
 822		tf->lbah = (block >> 16) & 0xff;
 823		tf->lbam = (block >> 8) & 0xff;
 824		tf->lbal = block & 0xff;
 825
 826		tf->device |= ATA_LBA;
 827	} else {
 828		/* CHS */
 829		u32 sect, head, cyl, track;
 830
 831		/* The request -may- be too large for CHS addressing. */
 832		if (!lba_28_ok(block, n_block))
 833			return -ERANGE;
 834
 835		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 836			return -EINVAL;
 837
 838		/* Convert LBA to CHS */
 839		track = (u32)block / dev->sectors;
 840		cyl   = track / dev->heads;
 841		head  = track % dev->heads;
 842		sect  = (u32)block % dev->sectors + 1;
 843
 844		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 845			(u32)block, track, cyl, head, sect);
 846
 847		/* Check whether the converted CHS can fit.
 848		   Cylinder: 0-65535
 849		   Head: 0-15
 850		   Sector: 1-255*/
 851		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 852			return -ERANGE;
 853
 854		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 855		tf->lbal = sect;
 856		tf->lbam = cyl;
 857		tf->lbah = cyl >> 8;
 858		tf->device |= head;
 859	}
 860
 861	return 0;
 862}
 863
 864/**
 865 *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 866 *	@pio_mask: pio_mask
 867 *	@mwdma_mask: mwdma_mask
 868 *	@udma_mask: udma_mask
 869 *
 870 *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 871 *	unsigned int xfer_mask.
 872 *
 873 *	LOCKING:
 874 *	None.
 875 *
 876 *	RETURNS:
 877 *	Packed xfer_mask.
 878 */
 879unsigned long ata_pack_xfermask(unsigned long pio_mask,
 880				unsigned long mwdma_mask,
 881				unsigned long udma_mask)
 882{
 883	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 884		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 885		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 886}
 887
 888/**
 889 *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 890 *	@xfer_mask: xfer_mask to unpack
 891 *	@pio_mask: resulting pio_mask
 892 *	@mwdma_mask: resulting mwdma_mask
 893 *	@udma_mask: resulting udma_mask
 894 *
 895 *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 896 *	Any NULL destination masks will be ignored.
 897 */
 898void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 899			 unsigned long *mwdma_mask, unsigned long *udma_mask)
 900{
 901	if (pio_mask)
 902		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 903	if (mwdma_mask)
 904		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 905	if (udma_mask)
 906		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 907}
 908
 909static const struct ata_xfer_ent {
 910	int shift, bits;
 911	u8 base;
 912} ata_xfer_tbl[] = {
 913	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 914	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 915	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 916	{ -1, },
 917};
 918
 919/**
 920 *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 921 *	@xfer_mask: xfer_mask of interest
 922 *
 923 *	Return matching XFER_* value for @xfer_mask.  Only the highest
 924 *	bit of @xfer_mask is considered.
 925 *
 926 *	LOCKING:
 927 *	None.
 928 *
 929 *	RETURNS:
 930 *	Matching XFER_* value, 0xff if no match found.
 931 */
 932u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 933{
 934	int highbit = fls(xfer_mask) - 1;
 935	const struct ata_xfer_ent *ent;
 936
 937	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 938		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 939			return ent->base + highbit - ent->shift;
 940	return 0xff;
 941}
 942
 943/**
 944 *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 945 *	@xfer_mode: XFER_* of interest
 946 *
 947 *	Return matching xfer_mask for @xfer_mode.
 948 *
 949 *	LOCKING:
 950 *	None.
 951 *
 952 *	RETURNS:
 953 *	Matching xfer_mask, 0 if no match found.
 954 */
 955unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 956{
 957	const struct ata_xfer_ent *ent;
 958
 959	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 960		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 961			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 962				& ~((1 << ent->shift) - 1);
 963	return 0;
 964}
 965
 966/**
 967 *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 968 *	@xfer_mode: XFER_* of interest
 969 *
 970 *	Return matching xfer_shift for @xfer_mode.
 971 *
 972 *	LOCKING:
 973 *	None.
 974 *
 975 *	RETURNS:
 976 *	Matching xfer_shift, -1 if no match found.
 977 */
 978int ata_xfer_mode2shift(unsigned long xfer_mode)
 979{
 980	const struct ata_xfer_ent *ent;
 981
 982	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 983		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 984			return ent->shift;
 985	return -1;
 986}
 987
 988/**
 989 *	ata_mode_string - convert xfer_mask to string
 990 *	@xfer_mask: mask of bits supported; only highest bit counts.
 991 *
 992 *	Determine string which represents the highest speed
 993 *	(highest bit in @modemask).
 994 *
 995 *	LOCKING:
 996 *	None.
 997 *
 998 *	RETURNS:
 999 *	Constant C string representing highest speed listed in
1000 *	@mode_mask, or the constant C string "<n/a>".
1001 */
1002const char *ata_mode_string(unsigned long xfer_mask)
1003{
1004	static const char * const xfer_mode_str[] = {
1005		"PIO0",
1006		"PIO1",
1007		"PIO2",
1008		"PIO3",
1009		"PIO4",
1010		"PIO5",
1011		"PIO6",
1012		"MWDMA0",
1013		"MWDMA1",
1014		"MWDMA2",
1015		"MWDMA3",
1016		"MWDMA4",
1017		"UDMA/16",
1018		"UDMA/25",
1019		"UDMA/33",
1020		"UDMA/44",
1021		"UDMA/66",
1022		"UDMA/100",
1023		"UDMA/133",
1024		"UDMA7",
1025	};
1026	int highbit;
1027
1028	highbit = fls(xfer_mask) - 1;
1029	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030		return xfer_mode_str[highbit];
1031	return "<n/a>";
1032}
1033
1034const char *sata_spd_string(unsigned int spd)
1035{
1036	static const char * const spd_str[] = {
1037		"1.5 Gbps",
1038		"3.0 Gbps",
1039		"6.0 Gbps",
1040	};
1041
1042	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043		return "<unknown>";
1044	return spd_str[spd - 1];
1045}
1046
1047/**
1048 *	ata_dev_classify - determine device type based on ATA-spec signature
1049 *	@tf: ATA taskfile register set for device to be identified
1050 *
1051 *	Determine from taskfile register contents whether a device is
1052 *	ATA or ATAPI, as per "Signature and persistence" section
1053 *	of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 *	LOCKING:
1056 *	None.
1057 *
1058 *	RETURNS:
1059 *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061 */
1062unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063{
1064	/* Apple's open source Darwin code hints that some devices only
1065	 * put a proper signature into the LBA mid/high registers,
1066	 * So, we only check those.  It's sufficient for uniqueness.
1067	 *
1068	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069	 * signatures for ATA and ATAPI devices attached on SerialATA,
1070	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1071	 * spec has never mentioned about using different signatures
1072	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1073	 * Multiplier specification began to use 0x69/0x96 to identify
1074	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076	 * 0x69/0x96 shortly and described them as reserved for
1077	 * SerialATA.
1078	 *
1079	 * We follow the current spec and consider that 0x69/0x96
1080	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082	 * SEMB signature.  This is worked around in
1083	 * ata_dev_read_id().
1084	 */
1085	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086		DPRINTK("found ATA device by sig\n");
1087		return ATA_DEV_ATA;
1088	}
1089
1090	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091		DPRINTK("found ATAPI device by sig\n");
1092		return ATA_DEV_ATAPI;
1093	}
1094
1095	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096		DPRINTK("found PMP device by sig\n");
1097		return ATA_DEV_PMP;
1098	}
1099
1100	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102		return ATA_DEV_SEMB;
1103	}
1104
1105	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106		DPRINTK("found ZAC device by sig\n");
1107		return ATA_DEV_ZAC;
1108	}
1109
1110	DPRINTK("unknown device\n");
1111	return ATA_DEV_UNKNOWN;
1112}
1113
1114/**
1115 *	ata_id_string - Convert IDENTIFY DEVICE page into string
1116 *	@id: IDENTIFY DEVICE results we will examine
1117 *	@s: string into which data is output
1118 *	@ofs: offset into identify device page
1119 *	@len: length of string to return. must be an even number.
1120 *
1121 *	The strings in the IDENTIFY DEVICE page are broken up into
1122 *	16-bit chunks.  Run through the string, and output each
1123 *	8-bit chunk linearly, regardless of platform.
1124 *
1125 *	LOCKING:
1126 *	caller.
1127 */
1128
1129void ata_id_string(const u16 *id, unsigned char *s,
1130		   unsigned int ofs, unsigned int len)
1131{
1132	unsigned int c;
1133
1134	BUG_ON(len & 1);
1135
1136	while (len > 0) {
1137		c = id[ofs] >> 8;
1138		*s = c;
1139		s++;
1140
1141		c = id[ofs] & 0xff;
1142		*s = c;
1143		s++;
1144
1145		ofs++;
1146		len -= 2;
1147	}
1148}
1149
1150/**
1151 *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 *	@id: IDENTIFY DEVICE results we will examine
1153 *	@s: string into which data is output
1154 *	@ofs: offset into identify device page
1155 *	@len: length of string to return. must be an odd number.
1156 *
1157 *	This function is identical to ata_id_string except that it
1158 *	trims trailing spaces and terminates the resulting string with
1159 *	null.  @len must be actual maximum length (even number) + 1.
1160 *
1161 *	LOCKING:
1162 *	caller.
1163 */
1164void ata_id_c_string(const u16 *id, unsigned char *s,
1165		     unsigned int ofs, unsigned int len)
1166{
1167	unsigned char *p;
1168
1169	ata_id_string(id, s, ofs, len - 1);
1170
1171	p = s + strnlen(s, len - 1);
1172	while (p > s && p[-1] == ' ')
1173		p--;
1174	*p = '\0';
1175}
1176
1177static u64 ata_id_n_sectors(const u16 *id)
1178{
1179	if (ata_id_has_lba(id)) {
1180		if (ata_id_has_lba48(id))
1181			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182		else
1183			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184	} else {
1185		if (ata_id_current_chs_valid(id))
1186			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187			       id[ATA_ID_CUR_SECTORS];
1188		else
1189			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190			       id[ATA_ID_SECTORS];
1191	}
1192}
1193
1194u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195{
1196	u64 sectors = 0;
1197
1198	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201	sectors |= (tf->lbah & 0xff) << 16;
1202	sectors |= (tf->lbam & 0xff) << 8;
1203	sectors |= (tf->lbal & 0xff);
1204
1205	return sectors;
1206}
1207
1208u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209{
1210	u64 sectors = 0;
1211
1212	sectors |= (tf->device & 0x0f) << 24;
1213	sectors |= (tf->lbah & 0xff) << 16;
1214	sectors |= (tf->lbam & 0xff) << 8;
1215	sectors |= (tf->lbal & 0xff);
1216
1217	return sectors;
1218}
1219
1220/**
1221 *	ata_read_native_max_address - Read native max address
1222 *	@dev: target device
1223 *	@max_sectors: out parameter for the result native max address
1224 *
1225 *	Perform an LBA48 or LBA28 native size query upon the device in
1226 *	question.
1227 *
1228 *	RETURNS:
1229 *	0 on success, -EACCES if command is aborted by the drive.
1230 *	-EIO on other errors.
1231 */
1232static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233{
1234	unsigned int err_mask;
1235	struct ata_taskfile tf;
1236	int lba48 = ata_id_has_lba48(dev->id);
1237
1238	ata_tf_init(dev, &tf);
1239
1240	/* always clear all address registers */
1241	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242
1243	if (lba48) {
1244		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245		tf.flags |= ATA_TFLAG_LBA48;
1246	} else
1247		tf.command = ATA_CMD_READ_NATIVE_MAX;
1248
1249	tf.protocol = ATA_PROT_NODATA;
1250	tf.device |= ATA_LBA;
1251
1252	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253	if (err_mask) {
1254		ata_dev_warn(dev,
1255			     "failed to read native max address (err_mask=0x%x)\n",
1256			     err_mask);
1257		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258			return -EACCES;
1259		return -EIO;
1260	}
1261
1262	if (lba48)
1263		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1264	else
1265		*max_sectors = ata_tf_to_lba(&tf) + 1;
1266	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267		(*max_sectors)--;
1268	return 0;
1269}
1270
1271/**
1272 *	ata_set_max_sectors - Set max sectors
1273 *	@dev: target device
1274 *	@new_sectors: new max sectors value to set for the device
1275 *
1276 *	Set max sectors of @dev to @new_sectors.
1277 *
1278 *	RETURNS:
1279 *	0 on success, -EACCES if command is aborted or denied (due to
1280 *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1281 *	errors.
1282 */
1283static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284{
1285	unsigned int err_mask;
1286	struct ata_taskfile tf;
1287	int lba48 = ata_id_has_lba48(dev->id);
1288
1289	new_sectors--;
1290
1291	ata_tf_init(dev, &tf);
1292
1293	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294
1295	if (lba48) {
1296		tf.command = ATA_CMD_SET_MAX_EXT;
1297		tf.flags |= ATA_TFLAG_LBA48;
1298
1299		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302	} else {
1303		tf.command = ATA_CMD_SET_MAX;
1304
1305		tf.device |= (new_sectors >> 24) & 0xf;
1306	}
1307
1308	tf.protocol = ATA_PROT_NODATA;
1309	tf.device |= ATA_LBA;
1310
1311	tf.lbal = (new_sectors >> 0) & 0xff;
1312	tf.lbam = (new_sectors >> 8) & 0xff;
1313	tf.lbah = (new_sectors >> 16) & 0xff;
1314
1315	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316	if (err_mask) {
1317		ata_dev_warn(dev,
1318			     "failed to set max address (err_mask=0x%x)\n",
1319			     err_mask);
1320		if (err_mask == AC_ERR_DEV &&
1321		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322			return -EACCES;
1323		return -EIO;
1324	}
1325
1326	return 0;
1327}
1328
1329/**
1330 *	ata_hpa_resize		-	Resize a device with an HPA set
1331 *	@dev: Device to resize
1332 *
1333 *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 *	it if required to the full size of the media. The caller must check
1335 *	the drive has the HPA feature set enabled.
1336 *
1337 *	RETURNS:
1338 *	0 on success, -errno on failure.
1339 */
1340static int ata_hpa_resize(struct ata_device *dev)
1341{
1342	struct ata_eh_context *ehc = &dev->link->eh_context;
1343	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345	u64 sectors = ata_id_n_sectors(dev->id);
1346	u64 native_sectors;
1347	int rc;
1348
1349	/* do we need to do it? */
1350	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353		return 0;
1354
1355	/* read native max address */
1356	rc = ata_read_native_max_address(dev, &native_sectors);
1357	if (rc) {
1358		/* If device aborted the command or HPA isn't going to
1359		 * be unlocked, skip HPA resizing.
1360		 */
1361		if (rc == -EACCES || !unlock_hpa) {
1362			ata_dev_warn(dev,
1363				     "HPA support seems broken, skipping HPA handling\n");
1364			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366			/* we can continue if device aborted the command */
1367			if (rc == -EACCES)
1368				rc = 0;
1369		}
1370
1371		return rc;
1372	}
1373	dev->n_native_sectors = native_sectors;
1374
1375	/* nothing to do? */
1376	if (native_sectors <= sectors || !unlock_hpa) {
1377		if (!print_info || native_sectors == sectors)
1378			return 0;
1379
1380		if (native_sectors > sectors)
1381			ata_dev_info(dev,
1382				"HPA detected: current %llu, native %llu\n",
1383				(unsigned long long)sectors,
1384				(unsigned long long)native_sectors);
1385		else if (native_sectors < sectors)
1386			ata_dev_warn(dev,
1387				"native sectors (%llu) is smaller than sectors (%llu)\n",
1388				(unsigned long long)native_sectors,
1389				(unsigned long long)sectors);
1390		return 0;
1391	}
1392
1393	/* let's unlock HPA */
1394	rc = ata_set_max_sectors(dev, native_sectors);
1395	if (rc == -EACCES) {
1396		/* if device aborted the command, skip HPA resizing */
1397		ata_dev_warn(dev,
1398			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399			     (unsigned long long)sectors,
1400			     (unsigned long long)native_sectors);
1401		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402		return 0;
1403	} else if (rc)
1404		return rc;
1405
1406	/* re-read IDENTIFY data */
1407	rc = ata_dev_reread_id(dev, 0);
1408	if (rc) {
1409		ata_dev_err(dev,
1410			    "failed to re-read IDENTIFY data after HPA resizing\n");
1411		return rc;
1412	}
1413
1414	if (print_info) {
1415		u64 new_sectors = ata_id_n_sectors(dev->id);
1416		ata_dev_info(dev,
1417			"HPA unlocked: %llu -> %llu, native %llu\n",
1418			(unsigned long long)sectors,
1419			(unsigned long long)new_sectors,
1420			(unsigned long long)native_sectors);
1421	}
1422
1423	return 0;
1424}
1425
1426/**
1427 *	ata_dump_id - IDENTIFY DEVICE info debugging output
1428 *	@id: IDENTIFY DEVICE page to dump
1429 *
1430 *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 *	page.
1432 *
1433 *	LOCKING:
1434 *	caller.
1435 */
1436
1437static inline void ata_dump_id(const u16 *id)
1438{
1439	DPRINTK("49==0x%04x  "
1440		"53==0x%04x  "
1441		"63==0x%04x  "
1442		"64==0x%04x  "
1443		"75==0x%04x  \n",
1444		id[49],
1445		id[53],
1446		id[63],
1447		id[64],
1448		id[75]);
1449	DPRINTK("80==0x%04x  "
1450		"81==0x%04x  "
1451		"82==0x%04x  "
1452		"83==0x%04x  "
1453		"84==0x%04x  \n",
1454		id[80],
1455		id[81],
1456		id[82],
1457		id[83],
1458		id[84]);
1459	DPRINTK("88==0x%04x  "
1460		"93==0x%04x\n",
1461		id[88],
1462		id[93]);
1463}
1464
1465/**
1466 *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 *	@id: IDENTIFY data to compute xfer mask from
1468 *
1469 *	Compute the xfermask for this device. This is not as trivial
1470 *	as it seems if we must consider early devices correctly.
1471 *
1472 *	FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 *	LOCKING:
1475 *	None.
1476 *
1477 *	RETURNS:
1478 *	Computed xfermask
1479 */
1480unsigned long ata_id_xfermask(const u16 *id)
1481{
1482	unsigned long pio_mask, mwdma_mask, udma_mask;
1483
1484	/* Usual case. Word 53 indicates word 64 is valid */
1485	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487		pio_mask <<= 3;
1488		pio_mask |= 0x7;
1489	} else {
1490		/* If word 64 isn't valid then Word 51 high byte holds
1491		 * the PIO timing number for the maximum. Turn it into
1492		 * a mask.
1493		 */
1494		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495		if (mode < 5)	/* Valid PIO range */
1496			pio_mask = (2 << mode) - 1;
1497		else
1498			pio_mask = 1;
1499
1500		/* But wait.. there's more. Design your standards by
1501		 * committee and you too can get a free iordy field to
1502		 * process. However its the speeds not the modes that
1503		 * are supported... Note drivers using the timing API
1504		 * will get this right anyway
1505		 */
1506	}
1507
1508	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509
1510	if (ata_id_is_cfa(id)) {
1511		/*
1512		 *	Process compact flash extended modes
1513		 */
1514		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516
1517		if (pio)
1518			pio_mask |= (1 << 5);
1519		if (pio > 1)
1520			pio_mask |= (1 << 6);
1521		if (dma)
1522			mwdma_mask |= (1 << 3);
1523		if (dma > 1)
1524			mwdma_mask |= (1 << 4);
1525	}
1526
1527	udma_mask = 0;
1528	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530
1531	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532}
1533
1534static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535{
1536	struct completion *waiting = qc->private_data;
1537
1538	complete(waiting);
1539}
1540
1541/**
1542 *	ata_exec_internal_sg - execute libata internal command
1543 *	@dev: Device to which the command is sent
1544 *	@tf: Taskfile registers for the command and the result
1545 *	@cdb: CDB for packet command
1546 *	@dma_dir: Data transfer direction of the command
1547 *	@sgl: sg list for the data buffer of the command
1548 *	@n_elem: Number of sg entries
1549 *	@timeout: Timeout in msecs (0 for default)
1550 *
1551 *	Executes libata internal command with timeout.  @tf contains
1552 *	command on entry and result on return.  Timeout and error
1553 *	conditions are reported via return value.  No recovery action
1554 *	is taken after a command times out.  It's caller's duty to
1555 *	clean up after timeout.
1556 *
1557 *	LOCKING:
1558 *	None.  Should be called with kernel context, might sleep.
1559 *
1560 *	RETURNS:
1561 *	Zero on success, AC_ERR_* mask on failure
1562 */
1563unsigned ata_exec_internal_sg(struct ata_device *dev,
1564			      struct ata_taskfile *tf, const u8 *cdb,
1565			      int dma_dir, struct scatterlist *sgl,
1566			      unsigned int n_elem, unsigned long timeout)
1567{
1568	struct ata_link *link = dev->link;
1569	struct ata_port *ap = link->ap;
1570	u8 command = tf->command;
1571	int auto_timeout = 0;
1572	struct ata_queued_cmd *qc;
1573	unsigned int tag, preempted_tag;
1574	u32 preempted_sactive, preempted_qc_active;
 
1575	int preempted_nr_active_links;
1576	DECLARE_COMPLETION_ONSTACK(wait);
1577	unsigned long flags;
1578	unsigned int err_mask;
1579	int rc;
1580
1581	spin_lock_irqsave(ap->lock, flags);
1582
1583	/* no internal command while frozen */
1584	if (ap->pflags & ATA_PFLAG_FROZEN) {
1585		spin_unlock_irqrestore(ap->lock, flags);
1586		return AC_ERR_SYSTEM;
1587	}
1588
1589	/* initialize internal qc */
 
1590
1591	/* XXX: Tag 0 is used for drivers with legacy EH as some
1592	 * drivers choke if any other tag is given.  This breaks
1593	 * ata_tag_internal() test for those drivers.  Don't use new
1594	 * EH stuff without converting to it.
1595	 */
1596	if (ap->ops->error_handler)
1597		tag = ATA_TAG_INTERNAL;
1598	else
1599		tag = 0;
1600
1601	qc = __ata_qc_from_tag(ap, tag);
1602
1603	qc->tag = tag;
1604	qc->scsicmd = NULL;
1605	qc->ap = ap;
1606	qc->dev = dev;
1607	ata_qc_reinit(qc);
1608
1609	preempted_tag = link->active_tag;
1610	preempted_sactive = link->sactive;
1611	preempted_qc_active = ap->qc_active;
1612	preempted_nr_active_links = ap->nr_active_links;
1613	link->active_tag = ATA_TAG_POISON;
1614	link->sactive = 0;
1615	ap->qc_active = 0;
1616	ap->nr_active_links = 0;
1617
1618	/* prepare & issue qc */
1619	qc->tf = *tf;
1620	if (cdb)
1621		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622
1623	/* some SATA bridges need us to indicate data xfer direction */
1624	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625	    dma_dir == DMA_FROM_DEVICE)
1626		qc->tf.feature |= ATAPI_DMADIR;
1627
1628	qc->flags |= ATA_QCFLAG_RESULT_TF;
1629	qc->dma_dir = dma_dir;
1630	if (dma_dir != DMA_NONE) {
1631		unsigned int i, buflen = 0;
1632		struct scatterlist *sg;
1633
1634		for_each_sg(sgl, sg, n_elem, i)
1635			buflen += sg->length;
1636
1637		ata_sg_init(qc, sgl, n_elem);
1638		qc->nbytes = buflen;
1639	}
1640
1641	qc->private_data = &wait;
1642	qc->complete_fn = ata_qc_complete_internal;
1643
1644	ata_qc_issue(qc);
1645
1646	spin_unlock_irqrestore(ap->lock, flags);
1647
1648	if (!timeout) {
1649		if (ata_probe_timeout)
1650			timeout = ata_probe_timeout * 1000;
1651		else {
1652			timeout = ata_internal_cmd_timeout(dev, command);
1653			auto_timeout = 1;
1654		}
1655	}
1656
1657	if (ap->ops->error_handler)
1658		ata_eh_release(ap);
1659
1660	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661
1662	if (ap->ops->error_handler)
1663		ata_eh_acquire(ap);
1664
1665	ata_sff_flush_pio_task(ap);
1666
1667	if (!rc) {
1668		spin_lock_irqsave(ap->lock, flags);
1669
1670		/* We're racing with irq here.  If we lose, the
1671		 * following test prevents us from completing the qc
1672		 * twice.  If we win, the port is frozen and will be
1673		 * cleaned up by ->post_internal_cmd().
1674		 */
1675		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676			qc->err_mask |= AC_ERR_TIMEOUT;
1677
1678			if (ap->ops->error_handler)
1679				ata_port_freeze(ap);
1680			else
1681				ata_qc_complete(qc);
1682
1683			if (ata_msg_warn(ap))
1684				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685					     command);
1686		}
1687
1688		spin_unlock_irqrestore(ap->lock, flags);
1689	}
1690
1691	/* do post_internal_cmd */
1692	if (ap->ops->post_internal_cmd)
1693		ap->ops->post_internal_cmd(qc);
1694
1695	/* perform minimal error analysis */
1696	if (qc->flags & ATA_QCFLAG_FAILED) {
1697		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698			qc->err_mask |= AC_ERR_DEV;
1699
1700		if (!qc->err_mask)
1701			qc->err_mask |= AC_ERR_OTHER;
1702
1703		if (qc->err_mask & ~AC_ERR_OTHER)
1704			qc->err_mask &= ~AC_ERR_OTHER;
1705	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706		qc->result_tf.command |= ATA_SENSE;
1707	}
1708
1709	/* finish up */
1710	spin_lock_irqsave(ap->lock, flags);
1711
1712	*tf = qc->result_tf;
1713	err_mask = qc->err_mask;
1714
1715	ata_qc_free(qc);
1716	link->active_tag = preempted_tag;
1717	link->sactive = preempted_sactive;
1718	ap->qc_active = preempted_qc_active;
1719	ap->nr_active_links = preempted_nr_active_links;
1720
1721	spin_unlock_irqrestore(ap->lock, flags);
1722
1723	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724		ata_internal_cmd_timed_out(dev, command);
1725
1726	return err_mask;
1727}
1728
1729/**
1730 *	ata_exec_internal - execute libata internal command
1731 *	@dev: Device to which the command is sent
1732 *	@tf: Taskfile registers for the command and the result
1733 *	@cdb: CDB for packet command
1734 *	@dma_dir: Data transfer direction of the command
1735 *	@buf: Data buffer of the command
1736 *	@buflen: Length of data buffer
1737 *	@timeout: Timeout in msecs (0 for default)
1738 *
1739 *	Wrapper around ata_exec_internal_sg() which takes simple
1740 *	buffer instead of sg list.
1741 *
1742 *	LOCKING:
1743 *	None.  Should be called with kernel context, might sleep.
1744 *
1745 *	RETURNS:
1746 *	Zero on success, AC_ERR_* mask on failure
1747 */
1748unsigned ata_exec_internal(struct ata_device *dev,
1749			   struct ata_taskfile *tf, const u8 *cdb,
1750			   int dma_dir, void *buf, unsigned int buflen,
1751			   unsigned long timeout)
1752{
1753	struct scatterlist *psg = NULL, sg;
1754	unsigned int n_elem = 0;
1755
1756	if (dma_dir != DMA_NONE) {
1757		WARN_ON(!buf);
1758		sg_init_one(&sg, buf, buflen);
1759		psg = &sg;
1760		n_elem++;
1761	}
1762
1763	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764				    timeout);
1765}
1766
1767/**
1768 *	ata_pio_need_iordy	-	check if iordy needed
1769 *	@adev: ATA device
1770 *
1771 *	Check if the current speed of the device requires IORDY. Used
1772 *	by various controllers for chip configuration.
1773 */
1774unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775{
1776	/* Don't set IORDY if we're preparing for reset.  IORDY may
1777	 * lead to controller lock up on certain controllers if the
1778	 * port is not occupied.  See bko#11703 for details.
1779	 */
1780	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781		return 0;
1782	/* Controller doesn't support IORDY.  Probably a pointless
1783	 * check as the caller should know this.
1784	 */
1785	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1786		return 0;
1787	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1788	if (ata_id_is_cfa(adev->id)
1789	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790		return 0;
1791	/* PIO3 and higher it is mandatory */
1792	if (adev->pio_mode > XFER_PIO_2)
1793		return 1;
1794	/* We turn it on when possible */
1795	if (ata_id_has_iordy(adev->id))
1796		return 1;
1797	return 0;
1798}
1799
1800/**
1801 *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1802 *	@adev: ATA device
1803 *
1804 *	Compute the highest mode possible if we are not using iordy. Return
1805 *	-1 if no iordy mode is available.
1806 */
1807static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808{
1809	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1810	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1811		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1812		/* Is the speed faster than the drive allows non IORDY ? */
1813		if (pio) {
1814			/* This is cycle times not frequency - watch the logic! */
1815			if (pio > 240)	/* PIO2 is 240nS per cycle */
1816				return 3 << ATA_SHIFT_PIO;
1817			return 7 << ATA_SHIFT_PIO;
1818		}
1819	}
1820	return 3 << ATA_SHIFT_PIO;
1821}
1822
1823/**
1824 *	ata_do_dev_read_id		-	default ID read method
1825 *	@dev: device
1826 *	@tf: proposed taskfile
1827 *	@id: data buffer
1828 *
1829 *	Issue the identify taskfile and hand back the buffer containing
1830 *	identify data. For some RAID controllers and for pre ATA devices
1831 *	this function is wrapped or replaced by the driver
1832 */
1833unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834					struct ata_taskfile *tf, u16 *id)
1835{
1836	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838}
1839
1840/**
1841 *	ata_dev_read_id - Read ID data from the specified device
1842 *	@dev: target device
1843 *	@p_class: pointer to class of the target device (may be changed)
1844 *	@flags: ATA_READID_* flags
1845 *	@id: buffer to read IDENTIFY data into
1846 *
1847 *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1848 *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1849 *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1850 *	for pre-ATA4 drives.
1851 *
1852 *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1853 *	now we abort if we hit that case.
1854 *
1855 *	LOCKING:
1856 *	Kernel thread context (may sleep)
1857 *
1858 *	RETURNS:
1859 *	0 on success, -errno otherwise.
1860 */
1861int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1862		    unsigned int flags, u16 *id)
1863{
1864	struct ata_port *ap = dev->link->ap;
1865	unsigned int class = *p_class;
1866	struct ata_taskfile tf;
1867	unsigned int err_mask = 0;
1868	const char *reason;
1869	bool is_semb = class == ATA_DEV_SEMB;
1870	int may_fallback = 1, tried_spinup = 0;
1871	int rc;
1872
1873	if (ata_msg_ctl(ap))
1874		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1875
1876retry:
1877	ata_tf_init(dev, &tf);
1878
1879	switch (class) {
1880	case ATA_DEV_SEMB:
1881		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1882		/* fall through */
1883	case ATA_DEV_ATA:
1884	case ATA_DEV_ZAC:
1885		tf.command = ATA_CMD_ID_ATA;
1886		break;
1887	case ATA_DEV_ATAPI:
1888		tf.command = ATA_CMD_ID_ATAPI;
1889		break;
1890	default:
1891		rc = -ENODEV;
1892		reason = "unsupported class";
1893		goto err_out;
1894	}
1895
1896	tf.protocol = ATA_PROT_PIO;
1897
1898	/* Some devices choke if TF registers contain garbage.  Make
1899	 * sure those are properly initialized.
1900	 */
1901	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1902
1903	/* Device presence detection is unreliable on some
1904	 * controllers.  Always poll IDENTIFY if available.
1905	 */
1906	tf.flags |= ATA_TFLAG_POLLING;
1907
1908	if (ap->ops->read_id)
1909		err_mask = ap->ops->read_id(dev, &tf, id);
1910	else
1911		err_mask = ata_do_dev_read_id(dev, &tf, id);
1912
1913	if (err_mask) {
1914		if (err_mask & AC_ERR_NODEV_HINT) {
1915			ata_dev_dbg(dev, "NODEV after polling detection\n");
1916			return -ENOENT;
1917		}
1918
1919		if (is_semb) {
1920			ata_dev_info(dev,
1921		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1922			/* SEMB is not supported yet */
1923			*p_class = ATA_DEV_SEMB_UNSUP;
1924			return 0;
1925		}
1926
1927		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928			/* Device or controller might have reported
1929			 * the wrong device class.  Give a shot at the
1930			 * other IDENTIFY if the current one is
1931			 * aborted by the device.
1932			 */
1933			if (may_fallback) {
1934				may_fallback = 0;
1935
1936				if (class == ATA_DEV_ATA)
1937					class = ATA_DEV_ATAPI;
1938				else
1939					class = ATA_DEV_ATA;
1940				goto retry;
1941			}
1942
1943			/* Control reaches here iff the device aborted
1944			 * both flavors of IDENTIFYs which happens
1945			 * sometimes with phantom devices.
1946			 */
1947			ata_dev_dbg(dev,
1948				    "both IDENTIFYs aborted, assuming NODEV\n");
1949			return -ENOENT;
1950		}
1951
1952		rc = -EIO;
1953		reason = "I/O error";
1954		goto err_out;
1955	}
1956
1957	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1958		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959			    "class=%d may_fallback=%d tried_spinup=%d\n",
1960			    class, may_fallback, tried_spinup);
1961		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1963	}
1964
1965	/* Falling back doesn't make sense if ID data was read
1966	 * successfully at least once.
1967	 */
1968	may_fallback = 0;
1969
1970	swap_buf_le16(id, ATA_ID_WORDS);
1971
1972	/* sanity check */
1973	rc = -EINVAL;
1974	reason = "device reports invalid type";
1975
1976	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1977		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1978			goto err_out;
1979		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980							ata_id_is_ata(id)) {
1981			ata_dev_dbg(dev,
1982				"host indicates ignore ATA devices, ignored\n");
1983			return -ENOENT;
1984		}
1985	} else {
1986		if (ata_id_is_ata(id))
1987			goto err_out;
1988	}
1989
1990	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1991		tried_spinup = 1;
1992		/*
1993		 * Drive powered-up in standby mode, and requires a specific
1994		 * SET_FEATURES spin-up subcommand before it will accept
1995		 * anything other than the original IDENTIFY command.
1996		 */
1997		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1998		if (err_mask && id[2] != 0x738c) {
1999			rc = -EIO;
2000			reason = "SPINUP failed";
2001			goto err_out;
2002		}
2003		/*
2004		 * If the drive initially returned incomplete IDENTIFY info,
2005		 * we now must reissue the IDENTIFY command.
2006		 */
2007		if (id[2] == 0x37c8)
2008			goto retry;
2009	}
2010
2011	if ((flags & ATA_READID_POSTRESET) &&
2012	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2013		/*
2014		 * The exact sequence expected by certain pre-ATA4 drives is:
2015		 * SRST RESET
2016		 * IDENTIFY (optional in early ATA)
2017		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2018		 * anything else..
2019		 * Some drives were very specific about that exact sequence.
2020		 *
2021		 * Note that ATA4 says lba is mandatory so the second check
2022		 * should never trigger.
2023		 */
2024		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2025			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2026			if (err_mask) {
2027				rc = -EIO;
2028				reason = "INIT_DEV_PARAMS failed";
2029				goto err_out;
2030			}
2031
2032			/* current CHS translation info (id[53-58]) might be
2033			 * changed. reread the identify device info.
2034			 */
2035			flags &= ~ATA_READID_POSTRESET;
2036			goto retry;
2037		}
2038	}
2039
2040	*p_class = class;
2041
2042	return 0;
2043
2044 err_out:
2045	if (ata_msg_warn(ap))
2046		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2047			     reason, err_mask);
2048	return rc;
2049}
2050
2051/**
2052 *	ata_read_log_page - read a specific log page
2053 *	@dev: target device
2054 *	@log: log to read
2055 *	@page: page to read
2056 *	@buf: buffer to store read page
2057 *	@sectors: number of sectors to read
2058 *
2059 *	Read log page using READ_LOG_EXT command.
2060 *
2061 *	LOCKING:
2062 *	Kernel thread context (may sleep).
2063 *
2064 *	RETURNS:
2065 *	0 on success, AC_ERR_* mask otherwise.
2066 */
2067unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2068			       u8 page, void *buf, unsigned int sectors)
2069{
2070	unsigned long ap_flags = dev->link->ap->flags;
2071	struct ata_taskfile tf;
2072	unsigned int err_mask;
2073	bool dma = false;
2074
2075	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2076
2077	/*
2078	 * Return error without actually issuing the command on controllers
2079	 * which e.g. lockup on a read log page.
2080	 */
2081	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2082		return AC_ERR_DEV;
2083
2084retry:
2085	ata_tf_init(dev, &tf);
2086	if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2087	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2088		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2089		tf.protocol = ATA_PROT_DMA;
2090		dma = true;
2091	} else {
2092		tf.command = ATA_CMD_READ_LOG_EXT;
2093		tf.protocol = ATA_PROT_PIO;
2094		dma = false;
2095	}
2096	tf.lbal = log;
2097	tf.lbam = page;
2098	tf.nsect = sectors;
2099	tf.hob_nsect = sectors >> 8;
2100	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2101
2102	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2103				     buf, sectors * ATA_SECT_SIZE, 0);
2104
2105	if (err_mask && dma) {
2106		dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2107		ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2108		goto retry;
2109	}
2110
2111	DPRINTK("EXIT, err_mask=%x\n", err_mask);
2112	return err_mask;
2113}
2114
2115static bool ata_log_supported(struct ata_device *dev, u8 log)
2116{
2117	struct ata_port *ap = dev->link->ap;
2118
2119	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2120		return false;
2121	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2122}
2123
2124static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2125{
2126	struct ata_port *ap = dev->link->ap;
2127	unsigned int err, i;
2128
2129	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2130		ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2131		return false;
2132	}
2133
2134	/*
2135	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2136	 * supported.
2137	 */
2138	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2139				1);
2140	if (err) {
2141		ata_dev_info(dev,
2142			     "failed to get Device Identify Log Emask 0x%x\n",
2143			     err);
2144		return false;
2145	}
2146
2147	for (i = 0; i < ap->sector_buf[8]; i++) {
2148		if (ap->sector_buf[9 + i] == page)
2149			return true;
2150	}
2151
2152	return false;
2153}
2154
2155static int ata_do_link_spd_horkage(struct ata_device *dev)
2156{
2157	struct ata_link *plink = ata_dev_phys_link(dev);
2158	u32 target, target_limit;
2159
2160	if (!sata_scr_valid(plink))
2161		return 0;
2162
2163	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2164		target = 1;
2165	else
2166		return 0;
2167
2168	target_limit = (1 << target) - 1;
2169
2170	/* if already on stricter limit, no need to push further */
2171	if (plink->sata_spd_limit <= target_limit)
2172		return 0;
2173
2174	plink->sata_spd_limit = target_limit;
2175
2176	/* Request another EH round by returning -EAGAIN if link is
2177	 * going faster than the target speed.  Forward progress is
2178	 * guaranteed by setting sata_spd_limit to target_limit above.
2179	 */
2180	if (plink->sata_spd > target) {
2181		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2182			     sata_spd_string(target));
2183		return -EAGAIN;
2184	}
2185	return 0;
2186}
2187
2188static inline u8 ata_dev_knobble(struct ata_device *dev)
2189{
2190	struct ata_port *ap = dev->link->ap;
2191
2192	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2193		return 0;
2194
2195	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2196}
2197
2198static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2199{
2200	struct ata_port *ap = dev->link->ap;
2201	unsigned int err_mask;
2202
2203	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2204		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2205		return;
2206	}
2207	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2208				     0, ap->sector_buf, 1);
2209	if (err_mask) {
2210		ata_dev_dbg(dev,
2211			    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2212			    err_mask);
2213	} else {
2214		u8 *cmds = dev->ncq_send_recv_cmds;
2215
2216		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2217		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2218
2219		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2220			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2221			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2222				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2223		}
2224	}
2225}
2226
2227static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2228{
2229	struct ata_port *ap = dev->link->ap;
2230	unsigned int err_mask;
2231
2232	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2233		ata_dev_warn(dev,
2234			     "NCQ Send/Recv Log not supported\n");
2235		return;
2236	}
2237	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2238				     0, ap->sector_buf, 1);
2239	if (err_mask) {
2240		ata_dev_dbg(dev,
2241			    "failed to get NCQ Non-Data Log Emask 0x%x\n",
2242			    err_mask);
2243	} else {
2244		u8 *cmds = dev->ncq_non_data_cmds;
2245
2246		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2247	}
2248}
2249
2250static void ata_dev_config_ncq_prio(struct ata_device *dev)
2251{
2252	struct ata_port *ap = dev->link->ap;
2253	unsigned int err_mask;
2254
2255	if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2256		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2257		return;
2258	}
2259
2260	err_mask = ata_read_log_page(dev,
2261				     ATA_LOG_IDENTIFY_DEVICE,
2262				     ATA_LOG_SATA_SETTINGS,
2263				     ap->sector_buf,
2264				     1);
2265	if (err_mask) {
2266		ata_dev_dbg(dev,
2267			    "failed to get Identify Device data, Emask 0x%x\n",
2268			    err_mask);
2269		return;
2270	}
2271
2272	if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2273		dev->flags |= ATA_DFLAG_NCQ_PRIO;
2274	} else {
2275		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2276		ata_dev_dbg(dev, "SATA page does not support priority\n");
2277	}
2278
2279}
2280
2281static int ata_dev_config_ncq(struct ata_device *dev,
2282			       char *desc, size_t desc_sz)
2283{
2284	struct ata_port *ap = dev->link->ap;
2285	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2286	unsigned int err_mask;
2287	char *aa_desc = "";
2288
2289	if (!ata_id_has_ncq(dev->id)) {
2290		desc[0] = '\0';
2291		return 0;
2292	}
2293	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2294		snprintf(desc, desc_sz, "NCQ (not used)");
2295		return 0;
2296	}
2297	if (ap->flags & ATA_FLAG_NCQ) {
2298		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2299		dev->flags |= ATA_DFLAG_NCQ;
2300	}
2301
2302	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2303		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2304		ata_id_has_fpdma_aa(dev->id)) {
2305		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2306			SATA_FPDMA_AA);
2307		if (err_mask) {
2308			ata_dev_err(dev,
2309				    "failed to enable AA (error_mask=0x%x)\n",
2310				    err_mask);
2311			if (err_mask != AC_ERR_DEV) {
2312				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2313				return -EIO;
2314			}
2315		} else
2316			aa_desc = ", AA";
2317	}
2318
2319	if (hdepth >= ddepth)
2320		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2321	else
2322		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2323			ddepth, aa_desc);
2324
2325	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2326		if (ata_id_has_ncq_send_and_recv(dev->id))
2327			ata_dev_config_ncq_send_recv(dev);
2328		if (ata_id_has_ncq_non_data(dev->id))
2329			ata_dev_config_ncq_non_data(dev);
2330		if (ata_id_has_ncq_prio(dev->id))
2331			ata_dev_config_ncq_prio(dev);
2332	}
2333
2334	return 0;
2335}
2336
2337static void ata_dev_config_sense_reporting(struct ata_device *dev)
2338{
2339	unsigned int err_mask;
2340
2341	if (!ata_id_has_sense_reporting(dev->id))
2342		return;
2343
2344	if (ata_id_sense_reporting_enabled(dev->id))
2345		return;
2346
2347	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2348	if (err_mask) {
2349		ata_dev_dbg(dev,
2350			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2351			    err_mask);
2352	}
2353}
2354
2355static void ata_dev_config_zac(struct ata_device *dev)
2356{
2357	struct ata_port *ap = dev->link->ap;
2358	unsigned int err_mask;
2359	u8 *identify_buf = ap->sector_buf;
2360
2361	dev->zac_zones_optimal_open = U32_MAX;
2362	dev->zac_zones_optimal_nonseq = U32_MAX;
2363	dev->zac_zones_max_open = U32_MAX;
2364
2365	/*
2366	 * Always set the 'ZAC' flag for Host-managed devices.
2367	 */
2368	if (dev->class == ATA_DEV_ZAC)
2369		dev->flags |= ATA_DFLAG_ZAC;
2370	else if (ata_id_zoned_cap(dev->id) == 0x01)
2371		/*
2372		 * Check for host-aware devices.
2373		 */
2374		dev->flags |= ATA_DFLAG_ZAC;
2375
2376	if (!(dev->flags & ATA_DFLAG_ZAC))
2377		return;
2378
2379	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2380		ata_dev_warn(dev,
2381			     "ATA Zoned Information Log not supported\n");
2382		return;
2383	}
2384
2385	/*
2386	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2387	 */
2388	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2389				     ATA_LOG_ZONED_INFORMATION,
2390				     identify_buf, 1);
2391	if (!err_mask) {
2392		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2393
2394		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2395		if ((zoned_cap >> 63))
2396			dev->zac_zoned_cap = (zoned_cap & 1);
2397		opt_open = get_unaligned_le64(&identify_buf[24]);
2398		if ((opt_open >> 63))
2399			dev->zac_zones_optimal_open = (u32)opt_open;
2400		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2401		if ((opt_nonseq >> 63))
2402			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2403		max_open = get_unaligned_le64(&identify_buf[40]);
2404		if ((max_open >> 63))
2405			dev->zac_zones_max_open = (u32)max_open;
2406	}
2407}
2408
2409static void ata_dev_config_trusted(struct ata_device *dev)
2410{
2411	struct ata_port *ap = dev->link->ap;
2412	u64 trusted_cap;
2413	unsigned int err;
2414
2415	if (!ata_id_has_trusted(dev->id))
2416		return;
2417
2418	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2419		ata_dev_warn(dev,
2420			     "Security Log not supported\n");
2421		return;
2422	}
2423
2424	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2425			ap->sector_buf, 1);
2426	if (err) {
2427		ata_dev_dbg(dev,
2428			    "failed to read Security Log, Emask 0x%x\n", err);
2429		return;
2430	}
2431
2432	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2433	if (!(trusted_cap & (1ULL << 63))) {
2434		ata_dev_dbg(dev,
2435			    "Trusted Computing capability qword not valid!\n");
2436		return;
2437	}
2438
2439	if (trusted_cap & (1 << 0))
2440		dev->flags |= ATA_DFLAG_TRUSTED;
2441}
2442
2443/**
2444 *	ata_dev_configure - Configure the specified ATA/ATAPI device
2445 *	@dev: Target device to configure
2446 *
2447 *	Configure @dev according to @dev->id.  Generic and low-level
2448 *	driver specific fixups are also applied.
2449 *
2450 *	LOCKING:
2451 *	Kernel thread context (may sleep)
2452 *
2453 *	RETURNS:
2454 *	0 on success, -errno otherwise
2455 */
2456int ata_dev_configure(struct ata_device *dev)
2457{
2458	struct ata_port *ap = dev->link->ap;
2459	struct ata_eh_context *ehc = &dev->link->eh_context;
2460	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2461	const u16 *id = dev->id;
2462	unsigned long xfer_mask;
2463	unsigned int err_mask;
2464	char revbuf[7];		/* XYZ-99\0 */
2465	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2466	char modelbuf[ATA_ID_PROD_LEN+1];
2467	int rc;
2468
2469	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2470		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2471		return 0;
2472	}
2473
2474	if (ata_msg_probe(ap))
2475		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2476
2477	/* set horkage */
2478	dev->horkage |= ata_dev_blacklisted(dev);
2479	ata_force_horkage(dev);
2480
2481	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2482		ata_dev_info(dev, "unsupported device, disabling\n");
2483		ata_dev_disable(dev);
2484		return 0;
2485	}
2486
2487	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2488	    dev->class == ATA_DEV_ATAPI) {
2489		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2490			     atapi_enabled ? "not supported with this driver"
2491			     : "disabled");
2492		ata_dev_disable(dev);
2493		return 0;
2494	}
2495
2496	rc = ata_do_link_spd_horkage(dev);
2497	if (rc)
2498		return rc;
2499
2500	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2501	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2502	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2503		dev->horkage |= ATA_HORKAGE_NOLPM;
2504
 
 
 
2505	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2506		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2507		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2508	}
2509
2510	/* let ACPI work its magic */
2511	rc = ata_acpi_on_devcfg(dev);
2512	if (rc)
2513		return rc;
2514
2515	/* massage HPA, do it early as it might change IDENTIFY data */
2516	rc = ata_hpa_resize(dev);
2517	if (rc)
2518		return rc;
2519
2520	/* print device capabilities */
2521	if (ata_msg_probe(ap))
2522		ata_dev_dbg(dev,
2523			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2524			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2525			    __func__,
2526			    id[49], id[82], id[83], id[84],
2527			    id[85], id[86], id[87], id[88]);
2528
2529	/* initialize to-be-configured parameters */
2530	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2531	dev->max_sectors = 0;
2532	dev->cdb_len = 0;
2533	dev->n_sectors = 0;
2534	dev->cylinders = 0;
2535	dev->heads = 0;
2536	dev->sectors = 0;
2537	dev->multi_count = 0;
2538
2539	/*
2540	 * common ATA, ATAPI feature tests
2541	 */
2542
2543	/* find max transfer mode; for printk only */
2544	xfer_mask = ata_id_xfermask(id);
2545
2546	if (ata_msg_probe(ap))
2547		ata_dump_id(id);
2548
2549	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2550	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2551			sizeof(fwrevbuf));
2552
2553	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2554			sizeof(modelbuf));
2555
2556	/* ATA-specific feature tests */
2557	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2558		if (ata_id_is_cfa(id)) {
2559			/* CPRM may make this media unusable */
2560			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2561				ata_dev_warn(dev,
2562	"supports DRM functions and may not be fully accessible\n");
2563			snprintf(revbuf, 7, "CFA");
2564		} else {
2565			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2566			/* Warn the user if the device has TPM extensions */
2567			if (ata_id_has_tpm(id))
2568				ata_dev_warn(dev,
2569	"supports DRM functions and may not be fully accessible\n");
2570		}
2571
2572		dev->n_sectors = ata_id_n_sectors(id);
2573
2574		/* get current R/W Multiple count setting */
2575		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2576			unsigned int max = dev->id[47] & 0xff;
2577			unsigned int cnt = dev->id[59] & 0xff;
2578			/* only recognize/allow powers of two here */
2579			if (is_power_of_2(max) && is_power_of_2(cnt))
2580				if (cnt <= max)
2581					dev->multi_count = cnt;
2582		}
2583
2584		if (ata_id_has_lba(id)) {
2585			const char *lba_desc;
2586			char ncq_desc[24];
2587
2588			lba_desc = "LBA";
2589			dev->flags |= ATA_DFLAG_LBA;
2590			if (ata_id_has_lba48(id)) {
2591				dev->flags |= ATA_DFLAG_LBA48;
2592				lba_desc = "LBA48";
2593
2594				if (dev->n_sectors >= (1UL << 28) &&
2595				    ata_id_has_flush_ext(id))
2596					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2597			}
2598
2599			/* config NCQ */
2600			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2601			if (rc)
2602				return rc;
2603
2604			/* print device info to dmesg */
2605			if (ata_msg_drv(ap) && print_info) {
2606				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2607					     revbuf, modelbuf, fwrevbuf,
2608					     ata_mode_string(xfer_mask));
2609				ata_dev_info(dev,
2610					     "%llu sectors, multi %u: %s %s\n",
2611					(unsigned long long)dev->n_sectors,
2612					dev->multi_count, lba_desc, ncq_desc);
2613			}
2614		} else {
2615			/* CHS */
2616
2617			/* Default translation */
2618			dev->cylinders	= id[1];
2619			dev->heads	= id[3];
2620			dev->sectors	= id[6];
2621
2622			if (ata_id_current_chs_valid(id)) {
2623				/* Current CHS translation is valid. */
2624				dev->cylinders = id[54];
2625				dev->heads     = id[55];
2626				dev->sectors   = id[56];
2627			}
2628
2629			/* print device info to dmesg */
2630			if (ata_msg_drv(ap) && print_info) {
2631				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2632					     revbuf,	modelbuf, fwrevbuf,
2633					     ata_mode_string(xfer_mask));
2634				ata_dev_info(dev,
2635					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2636					     (unsigned long long)dev->n_sectors,
2637					     dev->multi_count, dev->cylinders,
2638					     dev->heads, dev->sectors);
2639			}
2640		}
2641
2642		/* Check and mark DevSlp capability. Get DevSlp timing variables
2643		 * from SATA Settings page of Identify Device Data Log.
2644		 */
2645		if (ata_id_has_devslp(dev->id)) {
2646			u8 *sata_setting = ap->sector_buf;
2647			int i, j;
2648
2649			dev->flags |= ATA_DFLAG_DEVSLP;
2650			err_mask = ata_read_log_page(dev,
2651						     ATA_LOG_IDENTIFY_DEVICE,
2652						     ATA_LOG_SATA_SETTINGS,
2653						     sata_setting,
2654						     1);
2655			if (err_mask)
2656				ata_dev_dbg(dev,
2657					    "failed to get Identify Device Data, Emask 0x%x\n",
2658					    err_mask);
2659			else
2660				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2661					j = ATA_LOG_DEVSLP_OFFSET + i;
2662					dev->devslp_timing[i] = sata_setting[j];
2663				}
2664		}
2665		ata_dev_config_sense_reporting(dev);
2666		ata_dev_config_zac(dev);
2667		ata_dev_config_trusted(dev);
2668		dev->cdb_len = 32;
2669	}
2670
2671	/* ATAPI-specific feature tests */
2672	else if (dev->class == ATA_DEV_ATAPI) {
2673		const char *cdb_intr_string = "";
2674		const char *atapi_an_string = "";
2675		const char *dma_dir_string = "";
2676		u32 sntf;
2677
2678		rc = atapi_cdb_len(id);
2679		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2680			if (ata_msg_warn(ap))
2681				ata_dev_warn(dev, "unsupported CDB len\n");
2682			rc = -EINVAL;
2683			goto err_out_nosup;
2684		}
2685		dev->cdb_len = (unsigned int) rc;
2686
2687		/* Enable ATAPI AN if both the host and device have
2688		 * the support.  If PMP is attached, SNTF is required
2689		 * to enable ATAPI AN to discern between PHY status
2690		 * changed notifications and ATAPI ANs.
2691		 */
2692		if (atapi_an &&
2693		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2694		    (!sata_pmp_attached(ap) ||
2695		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2696			/* issue SET feature command to turn this on */
2697			err_mask = ata_dev_set_feature(dev,
2698					SETFEATURES_SATA_ENABLE, SATA_AN);
2699			if (err_mask)
2700				ata_dev_err(dev,
2701					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2702					    err_mask);
2703			else {
2704				dev->flags |= ATA_DFLAG_AN;
2705				atapi_an_string = ", ATAPI AN";
2706			}
2707		}
2708
2709		if (ata_id_cdb_intr(dev->id)) {
2710			dev->flags |= ATA_DFLAG_CDB_INTR;
2711			cdb_intr_string = ", CDB intr";
2712		}
2713
2714		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2715			dev->flags |= ATA_DFLAG_DMADIR;
2716			dma_dir_string = ", DMADIR";
2717		}
2718
2719		if (ata_id_has_da(dev->id)) {
2720			dev->flags |= ATA_DFLAG_DA;
2721			zpodd_init(dev);
2722		}
2723
2724		/* print device info to dmesg */
2725		if (ata_msg_drv(ap) && print_info)
2726			ata_dev_info(dev,
2727				     "ATAPI: %s, %s, max %s%s%s%s\n",
2728				     modelbuf, fwrevbuf,
2729				     ata_mode_string(xfer_mask),
2730				     cdb_intr_string, atapi_an_string,
2731				     dma_dir_string);
2732	}
2733
2734	/* determine max_sectors */
2735	dev->max_sectors = ATA_MAX_SECTORS;
2736	if (dev->flags & ATA_DFLAG_LBA48)
2737		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2738
2739	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2740	   200 sectors */
2741	if (ata_dev_knobble(dev)) {
2742		if (ata_msg_drv(ap) && print_info)
2743			ata_dev_info(dev, "applying bridge limits\n");
2744		dev->udma_mask &= ATA_UDMA5;
2745		dev->max_sectors = ATA_MAX_SECTORS;
2746	}
2747
2748	if ((dev->class == ATA_DEV_ATAPI) &&
2749	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2750		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2751		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2752	}
2753
2754	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2755		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2756					 dev->max_sectors);
2757
2758	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2759		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2760					 dev->max_sectors);
2761
2762	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2763		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2764
2765	if (ap->ops->dev_config)
2766		ap->ops->dev_config(dev);
2767
2768	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2769		/* Let the user know. We don't want to disallow opens for
2770		   rescue purposes, or in case the vendor is just a blithering
2771		   idiot. Do this after the dev_config call as some controllers
2772		   with buggy firmware may want to avoid reporting false device
2773		   bugs */
2774
2775		if (print_info) {
2776			ata_dev_warn(dev,
2777"Drive reports diagnostics failure. This may indicate a drive\n");
2778			ata_dev_warn(dev,
2779"fault or invalid emulation. Contact drive vendor for information.\n");
2780		}
2781	}
2782
2783	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2784		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2785		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2786	}
2787
2788	return 0;
2789
2790err_out_nosup:
2791	if (ata_msg_probe(ap))
2792		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2793	return rc;
2794}
2795
2796/**
2797 *	ata_cable_40wire	-	return 40 wire cable type
2798 *	@ap: port
2799 *
2800 *	Helper method for drivers which want to hardwire 40 wire cable
2801 *	detection.
2802 */
2803
2804int ata_cable_40wire(struct ata_port *ap)
2805{
2806	return ATA_CBL_PATA40;
2807}
2808
2809/**
2810 *	ata_cable_80wire	-	return 80 wire cable type
2811 *	@ap: port
2812 *
2813 *	Helper method for drivers which want to hardwire 80 wire cable
2814 *	detection.
2815 */
2816
2817int ata_cable_80wire(struct ata_port *ap)
2818{
2819	return ATA_CBL_PATA80;
2820}
2821
2822/**
2823 *	ata_cable_unknown	-	return unknown PATA cable.
2824 *	@ap: port
2825 *
2826 *	Helper method for drivers which have no PATA cable detection.
2827 */
2828
2829int ata_cable_unknown(struct ata_port *ap)
2830{
2831	return ATA_CBL_PATA_UNK;
2832}
2833
2834/**
2835 *	ata_cable_ignore	-	return ignored PATA cable.
2836 *	@ap: port
2837 *
2838 *	Helper method for drivers which don't use cable type to limit
2839 *	transfer mode.
2840 */
2841int ata_cable_ignore(struct ata_port *ap)
2842{
2843	return ATA_CBL_PATA_IGN;
2844}
2845
2846/**
2847 *	ata_cable_sata	-	return SATA cable type
2848 *	@ap: port
2849 *
2850 *	Helper method for drivers which have SATA cables
2851 */
2852
2853int ata_cable_sata(struct ata_port *ap)
2854{
2855	return ATA_CBL_SATA;
2856}
2857
2858/**
2859 *	ata_bus_probe - Reset and probe ATA bus
2860 *	@ap: Bus to probe
2861 *
2862 *	Master ATA bus probing function.  Initiates a hardware-dependent
2863 *	bus reset, then attempts to identify any devices found on
2864 *	the bus.
2865 *
2866 *	LOCKING:
2867 *	PCI/etc. bus probe sem.
2868 *
2869 *	RETURNS:
2870 *	Zero on success, negative errno otherwise.
2871 */
2872
2873int ata_bus_probe(struct ata_port *ap)
2874{
2875	unsigned int classes[ATA_MAX_DEVICES];
2876	int tries[ATA_MAX_DEVICES];
2877	int rc;
2878	struct ata_device *dev;
2879
2880	ata_for_each_dev(dev, &ap->link, ALL)
2881		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2882
2883 retry:
2884	ata_for_each_dev(dev, &ap->link, ALL) {
2885		/* If we issue an SRST then an ATA drive (not ATAPI)
2886		 * may change configuration and be in PIO0 timing. If
2887		 * we do a hard reset (or are coming from power on)
2888		 * this is true for ATA or ATAPI. Until we've set a
2889		 * suitable controller mode we should not touch the
2890		 * bus as we may be talking too fast.
2891		 */
2892		dev->pio_mode = XFER_PIO_0;
2893		dev->dma_mode = 0xff;
2894
2895		/* If the controller has a pio mode setup function
2896		 * then use it to set the chipset to rights. Don't
2897		 * touch the DMA setup as that will be dealt with when
2898		 * configuring devices.
2899		 */
2900		if (ap->ops->set_piomode)
2901			ap->ops->set_piomode(ap, dev);
2902	}
2903
2904	/* reset and determine device classes */
2905	ap->ops->phy_reset(ap);
2906
2907	ata_for_each_dev(dev, &ap->link, ALL) {
2908		if (dev->class != ATA_DEV_UNKNOWN)
2909			classes[dev->devno] = dev->class;
2910		else
2911			classes[dev->devno] = ATA_DEV_NONE;
2912
2913		dev->class = ATA_DEV_UNKNOWN;
2914	}
2915
2916	/* read IDENTIFY page and configure devices. We have to do the identify
2917	   specific sequence bass-ackwards so that PDIAG- is released by
2918	   the slave device */
2919
2920	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2921		if (tries[dev->devno])
2922			dev->class = classes[dev->devno];
2923
2924		if (!ata_dev_enabled(dev))
2925			continue;
2926
2927		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2928				     dev->id);
2929		if (rc)
2930			goto fail;
2931	}
2932
2933	/* Now ask for the cable type as PDIAG- should have been released */
2934	if (ap->ops->cable_detect)
2935		ap->cbl = ap->ops->cable_detect(ap);
2936
2937	/* We may have SATA bridge glue hiding here irrespective of
2938	 * the reported cable types and sensed types.  When SATA
2939	 * drives indicate we have a bridge, we don't know which end
2940	 * of the link the bridge is which is a problem.
2941	 */
2942	ata_for_each_dev(dev, &ap->link, ENABLED)
2943		if (ata_id_is_sata(dev->id))
2944			ap->cbl = ATA_CBL_SATA;
2945
2946	/* After the identify sequence we can now set up the devices. We do
2947	   this in the normal order so that the user doesn't get confused */
2948
2949	ata_for_each_dev(dev, &ap->link, ENABLED) {
2950		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2951		rc = ata_dev_configure(dev);
2952		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2953		if (rc)
2954			goto fail;
2955	}
2956
2957	/* configure transfer mode */
2958	rc = ata_set_mode(&ap->link, &dev);
2959	if (rc)
2960		goto fail;
2961
2962	ata_for_each_dev(dev, &ap->link, ENABLED)
2963		return 0;
2964
2965	return -ENODEV;
2966
2967 fail:
2968	tries[dev->devno]--;
2969
2970	switch (rc) {
2971	case -EINVAL:
2972		/* eeek, something went very wrong, give up */
2973		tries[dev->devno] = 0;
2974		break;
2975
2976	case -ENODEV:
2977		/* give it just one more chance */
2978		tries[dev->devno] = min(tries[dev->devno], 1);
2979		/* fall through */
2980	case -EIO:
2981		if (tries[dev->devno] == 1) {
2982			/* This is the last chance, better to slow
2983			 * down than lose it.
2984			 */
2985			sata_down_spd_limit(&ap->link, 0);
2986			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2987		}
2988	}
2989
2990	if (!tries[dev->devno])
2991		ata_dev_disable(dev);
2992
2993	goto retry;
2994}
2995
2996/**
2997 *	sata_print_link_status - Print SATA link status
2998 *	@link: SATA link to printk link status about
2999 *
3000 *	This function prints link speed and status of a SATA link.
3001 *
3002 *	LOCKING:
3003 *	None.
3004 */
3005static void sata_print_link_status(struct ata_link *link)
3006{
3007	u32 sstatus, scontrol, tmp;
3008
3009	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3010		return;
3011	sata_scr_read(link, SCR_CONTROL, &scontrol);
3012
3013	if (ata_phys_link_online(link)) {
3014		tmp = (sstatus >> 4) & 0xf;
3015		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3016			      sata_spd_string(tmp), sstatus, scontrol);
3017	} else {
3018		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3019			      sstatus, scontrol);
3020	}
3021}
3022
3023/**
3024 *	ata_dev_pair		-	return other device on cable
3025 *	@adev: device
3026 *
3027 *	Obtain the other device on the same cable, or if none is
3028 *	present NULL is returned
3029 */
3030
3031struct ata_device *ata_dev_pair(struct ata_device *adev)
3032{
3033	struct ata_link *link = adev->link;
3034	struct ata_device *pair = &link->device[1 - adev->devno];
3035	if (!ata_dev_enabled(pair))
3036		return NULL;
3037	return pair;
3038}
3039
3040/**
3041 *	sata_down_spd_limit - adjust SATA spd limit downward
3042 *	@link: Link to adjust SATA spd limit for
3043 *	@spd_limit: Additional limit
3044 *
3045 *	Adjust SATA spd limit of @link downward.  Note that this
3046 *	function only adjusts the limit.  The change must be applied
3047 *	using sata_set_spd().
3048 *
3049 *	If @spd_limit is non-zero, the speed is limited to equal to or
3050 *	lower than @spd_limit if such speed is supported.  If
3051 *	@spd_limit is slower than any supported speed, only the lowest
3052 *	supported speed is allowed.
3053 *
3054 *	LOCKING:
3055 *	Inherited from caller.
3056 *
3057 *	RETURNS:
3058 *	0 on success, negative errno on failure
3059 */
3060int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3061{
3062	u32 sstatus, spd, mask;
3063	int rc, bit;
3064
3065	if (!sata_scr_valid(link))
3066		return -EOPNOTSUPP;
3067
3068	/* If SCR can be read, use it to determine the current SPD.
3069	 * If not, use cached value in link->sata_spd.
3070	 */
3071	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3072	if (rc == 0 && ata_sstatus_online(sstatus))
3073		spd = (sstatus >> 4) & 0xf;
3074	else
3075		spd = link->sata_spd;
3076
3077	mask = link->sata_spd_limit;
3078	if (mask <= 1)
3079		return -EINVAL;
3080
3081	/* unconditionally mask off the highest bit */
3082	bit = fls(mask) - 1;
3083	mask &= ~(1 << bit);
3084
3085	/*
3086	 * Mask off all speeds higher than or equal to the current one.  At
3087	 * this point, if current SPD is not available and we previously
3088	 * recorded the link speed from SStatus, the driver has already
3089	 * masked off the highest bit so mask should already be 1 or 0.
3090	 * Otherwise, we should not force 1.5Gbps on a link where we have
3091	 * not previously recorded speed from SStatus.  Just return in this
3092	 * case.
3093	 */
3094	if (spd > 1)
3095		mask &= (1 << (spd - 1)) - 1;
3096	else
3097		return -EINVAL;
3098
3099	/* were we already at the bottom? */
3100	if (!mask)
3101		return -EINVAL;
3102
3103	if (spd_limit) {
3104		if (mask & ((1 << spd_limit) - 1))
3105			mask &= (1 << spd_limit) - 1;
3106		else {
3107			bit = ffs(mask) - 1;
3108			mask = 1 << bit;
3109		}
3110	}
3111
3112	link->sata_spd_limit = mask;
3113
3114	ata_link_warn(link, "limiting SATA link speed to %s\n",
3115		      sata_spd_string(fls(mask)));
3116
3117	return 0;
3118}
3119
3120static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3121{
3122	struct ata_link *host_link = &link->ap->link;
3123	u32 limit, target, spd;
3124
3125	limit = link->sata_spd_limit;
3126
3127	/* Don't configure downstream link faster than upstream link.
3128	 * It doesn't speed up anything and some PMPs choke on such
3129	 * configuration.
3130	 */
3131	if (!ata_is_host_link(link) && host_link->sata_spd)
3132		limit &= (1 << host_link->sata_spd) - 1;
3133
3134	if (limit == UINT_MAX)
3135		target = 0;
3136	else
3137		target = fls(limit);
3138
3139	spd = (*scontrol >> 4) & 0xf;
3140	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3141
3142	return spd != target;
3143}
3144
3145/**
3146 *	sata_set_spd_needed - is SATA spd configuration needed
3147 *	@link: Link in question
3148 *
3149 *	Test whether the spd limit in SControl matches
3150 *	@link->sata_spd_limit.  This function is used to determine
3151 *	whether hardreset is necessary to apply SATA spd
3152 *	configuration.
3153 *
3154 *	LOCKING:
3155 *	Inherited from caller.
3156 *
3157 *	RETURNS:
3158 *	1 if SATA spd configuration is needed, 0 otherwise.
3159 */
3160static int sata_set_spd_needed(struct ata_link *link)
3161{
3162	u32 scontrol;
3163
3164	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3165		return 1;
3166
3167	return __sata_set_spd_needed(link, &scontrol);
3168}
3169
3170/**
3171 *	sata_set_spd - set SATA spd according to spd limit
3172 *	@link: Link to set SATA spd for
3173 *
3174 *	Set SATA spd of @link according to sata_spd_limit.
3175 *
3176 *	LOCKING:
3177 *	Inherited from caller.
3178 *
3179 *	RETURNS:
3180 *	0 if spd doesn't need to be changed, 1 if spd has been
3181 *	changed.  Negative errno if SCR registers are inaccessible.
3182 */
3183int sata_set_spd(struct ata_link *link)
3184{
3185	u32 scontrol;
3186	int rc;
3187
3188	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3189		return rc;
3190
3191	if (!__sata_set_spd_needed(link, &scontrol))
3192		return 0;
3193
3194	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3195		return rc;
3196
3197	return 1;
3198}
3199
3200/*
3201 * This mode timing computation functionality is ported over from
3202 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3203 */
3204/*
3205 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3206 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3207 * for UDMA6, which is currently supported only by Maxtor drives.
3208 *
3209 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3210 */
3211
3212static const struct ata_timing ata_timing[] = {
3213/*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3214	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3215	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3216	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3217	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3218	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3219	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3220	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3221
3222	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3223	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3224	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3225
3226	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3227	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3228	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3229	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3230	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3231
3232/*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3233	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3234	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3235	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3236	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3237	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3238	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3239	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3240
3241	{ 0xFF }
3242};
3243
3244#define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3245#define EZ(v, unit)		((v)?ENOUGH(((v) * 1000), unit):0)
3246
3247static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3248{
3249	q->setup	= EZ(t->setup,       T);
3250	q->act8b	= EZ(t->act8b,       T);
3251	q->rec8b	= EZ(t->rec8b,       T);
3252	q->cyc8b	= EZ(t->cyc8b,       T);
3253	q->active	= EZ(t->active,      T);
3254	q->recover	= EZ(t->recover,     T);
3255	q->dmack_hold	= EZ(t->dmack_hold,  T);
3256	q->cycle	= EZ(t->cycle,       T);
3257	q->udma		= EZ(t->udma,       UT);
3258}
3259
3260void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3261		      struct ata_timing *m, unsigned int what)
3262{
3263	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3264	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3265	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3266	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3267	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3268	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3269	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3270	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3271	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3272}
3273
3274const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3275{
3276	const struct ata_timing *t = ata_timing;
3277
3278	while (xfer_mode > t->mode)
3279		t++;
3280
3281	if (xfer_mode == t->mode)
3282		return t;
3283
3284	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3285			__func__, xfer_mode);
3286
3287	return NULL;
3288}
3289
3290int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3291		       struct ata_timing *t, int T, int UT)
3292{
3293	const u16 *id = adev->id;
3294	const struct ata_timing *s;
3295	struct ata_timing p;
3296
3297	/*
3298	 * Find the mode.
3299	 */
3300
3301	if (!(s = ata_timing_find_mode(speed)))
3302		return -EINVAL;
3303
3304	memcpy(t, s, sizeof(*s));
3305
3306	/*
3307	 * If the drive is an EIDE drive, it can tell us it needs extended
3308	 * PIO/MW_DMA cycle timing.
3309	 */
3310
3311	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3312		memset(&p, 0, sizeof(p));
3313
3314		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3315			if (speed <= XFER_PIO_2)
3316				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3317			else if ((speed <= XFER_PIO_4) ||
3318				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3319				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3320		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3321			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3322
3323		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3324	}
3325
3326	/*
3327	 * Convert the timing to bus clock counts.
3328	 */
3329
3330	ata_timing_quantize(t, t, T, UT);
3331
3332	/*
3333	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3334	 * S.M.A.R.T * and some other commands. We have to ensure that the
3335	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3336	 */
3337
3338	if (speed > XFER_PIO_6) {
3339		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3340		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3341	}
3342
3343	/*
3344	 * Lengthen active & recovery time so that cycle time is correct.
3345	 */
3346
3347	if (t->act8b + t->rec8b < t->cyc8b) {
3348		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3349		t->rec8b = t->cyc8b - t->act8b;
3350	}
3351
3352	if (t->active + t->recover < t->cycle) {
3353		t->active += (t->cycle - (t->active + t->recover)) / 2;
3354		t->recover = t->cycle - t->active;
3355	}
3356
3357	/* In a few cases quantisation may produce enough errors to
3358	   leave t->cycle too low for the sum of active and recovery
3359	   if so we must correct this */
3360	if (t->active + t->recover > t->cycle)
3361		t->cycle = t->active + t->recover;
3362
3363	return 0;
3364}
3365
3366/**
3367 *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3368 *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3369 *	@cycle: cycle duration in ns
3370 *
3371 *	Return matching xfer mode for @cycle.  The returned mode is of
3372 *	the transfer type specified by @xfer_shift.  If @cycle is too
3373 *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3374 *	than the fastest known mode, the fasted mode is returned.
3375 *
3376 *	LOCKING:
3377 *	None.
3378 *
3379 *	RETURNS:
3380 *	Matching xfer_mode, 0xff if no match found.
3381 */
3382u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3383{
3384	u8 base_mode = 0xff, last_mode = 0xff;
3385	const struct ata_xfer_ent *ent;
3386	const struct ata_timing *t;
3387
3388	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3389		if (ent->shift == xfer_shift)
3390			base_mode = ent->base;
3391
3392	for (t = ata_timing_find_mode(base_mode);
3393	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3394		unsigned short this_cycle;
3395
3396		switch (xfer_shift) {
3397		case ATA_SHIFT_PIO:
3398		case ATA_SHIFT_MWDMA:
3399			this_cycle = t->cycle;
3400			break;
3401		case ATA_SHIFT_UDMA:
3402			this_cycle = t->udma;
3403			break;
3404		default:
3405			return 0xff;
3406		}
3407
3408		if (cycle > this_cycle)
3409			break;
3410
3411		last_mode = t->mode;
3412	}
3413
3414	return last_mode;
3415}
3416
3417/**
3418 *	ata_down_xfermask_limit - adjust dev xfer masks downward
3419 *	@dev: Device to adjust xfer masks
3420 *	@sel: ATA_DNXFER_* selector
3421 *
3422 *	Adjust xfer masks of @dev downward.  Note that this function
3423 *	does not apply the change.  Invoking ata_set_mode() afterwards
3424 *	will apply the limit.
3425 *
3426 *	LOCKING:
3427 *	Inherited from caller.
3428 *
3429 *	RETURNS:
3430 *	0 on success, negative errno on failure
3431 */
3432int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3433{
3434	char buf[32];
3435	unsigned long orig_mask, xfer_mask;
3436	unsigned long pio_mask, mwdma_mask, udma_mask;
3437	int quiet, highbit;
3438
3439	quiet = !!(sel & ATA_DNXFER_QUIET);
3440	sel &= ~ATA_DNXFER_QUIET;
3441
3442	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3443						  dev->mwdma_mask,
3444						  dev->udma_mask);
3445	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3446
3447	switch (sel) {
3448	case ATA_DNXFER_PIO:
3449		highbit = fls(pio_mask) - 1;
3450		pio_mask &= ~(1 << highbit);
3451		break;
3452
3453	case ATA_DNXFER_DMA:
3454		if (udma_mask) {
3455			highbit = fls(udma_mask) - 1;
3456			udma_mask &= ~(1 << highbit);
3457			if (!udma_mask)
3458				return -ENOENT;
3459		} else if (mwdma_mask) {
3460			highbit = fls(mwdma_mask) - 1;
3461			mwdma_mask &= ~(1 << highbit);
3462			if (!mwdma_mask)
3463				return -ENOENT;
3464		}
3465		break;
3466
3467	case ATA_DNXFER_40C:
3468		udma_mask &= ATA_UDMA_MASK_40C;
3469		break;
3470
3471	case ATA_DNXFER_FORCE_PIO0:
3472		pio_mask &= 1;
3473		/* fall through */
3474	case ATA_DNXFER_FORCE_PIO:
3475		mwdma_mask = 0;
3476		udma_mask = 0;
3477		break;
3478
3479	default:
3480		BUG();
3481	}
3482
3483	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3484
3485	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3486		return -ENOENT;
3487
3488	if (!quiet) {
3489		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3490			snprintf(buf, sizeof(buf), "%s:%s",
3491				 ata_mode_string(xfer_mask),
3492				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3493		else
3494			snprintf(buf, sizeof(buf), "%s",
3495				 ata_mode_string(xfer_mask));
3496
3497		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3498	}
3499
3500	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3501			    &dev->udma_mask);
3502
3503	return 0;
3504}
3505
3506static int ata_dev_set_mode(struct ata_device *dev)
3507{
3508	struct ata_port *ap = dev->link->ap;
3509	struct ata_eh_context *ehc = &dev->link->eh_context;
3510	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3511	const char *dev_err_whine = "";
3512	int ign_dev_err = 0;
3513	unsigned int err_mask = 0;
3514	int rc;
3515
3516	dev->flags &= ~ATA_DFLAG_PIO;
3517	if (dev->xfer_shift == ATA_SHIFT_PIO)
3518		dev->flags |= ATA_DFLAG_PIO;
3519
3520	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3521		dev_err_whine = " (SET_XFERMODE skipped)";
3522	else {
3523		if (nosetxfer)
3524			ata_dev_warn(dev,
3525				     "NOSETXFER but PATA detected - can't "
3526				     "skip SETXFER, might malfunction\n");
3527		err_mask = ata_dev_set_xfermode(dev);
3528	}
3529
3530	if (err_mask & ~AC_ERR_DEV)
3531		goto fail;
3532
3533	/* revalidate */
3534	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3535	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3536	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3537	if (rc)
3538		return rc;
3539
3540	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3541		/* Old CFA may refuse this command, which is just fine */
3542		if (ata_id_is_cfa(dev->id))
3543			ign_dev_err = 1;
3544		/* Catch several broken garbage emulations plus some pre
3545		   ATA devices */
3546		if (ata_id_major_version(dev->id) == 0 &&
3547					dev->pio_mode <= XFER_PIO_2)
3548			ign_dev_err = 1;
3549		/* Some very old devices and some bad newer ones fail
3550		   any kind of SET_XFERMODE request but support PIO0-2
3551		   timings and no IORDY */
3552		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3553			ign_dev_err = 1;
3554	}
3555	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3556	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3557	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3558	    dev->dma_mode == XFER_MW_DMA_0 &&
3559	    (dev->id[63] >> 8) & 1)
3560		ign_dev_err = 1;
3561
3562	/* if the device is actually configured correctly, ignore dev err */
3563	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3564		ign_dev_err = 1;
3565
3566	if (err_mask & AC_ERR_DEV) {
3567		if (!ign_dev_err)
3568			goto fail;
3569		else
3570			dev_err_whine = " (device error ignored)";
3571	}
3572
3573	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3574		dev->xfer_shift, (int)dev->xfer_mode);
3575
3576	ata_dev_info(dev, "configured for %s%s\n",
3577		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3578		     dev_err_whine);
 
 
3579
3580	return 0;
3581
3582 fail:
3583	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3584	return -EIO;
3585}
3586
3587/**
3588 *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3589 *	@link: link on which timings will be programmed
3590 *	@r_failed_dev: out parameter for failed device
3591 *
3592 *	Standard implementation of the function used to tune and set
3593 *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3594 *	ata_dev_set_mode() fails, pointer to the failing device is
3595 *	returned in @r_failed_dev.
3596 *
3597 *	LOCKING:
3598 *	PCI/etc. bus probe sem.
3599 *
3600 *	RETURNS:
3601 *	0 on success, negative errno otherwise
3602 */
3603
3604int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3605{
3606	struct ata_port *ap = link->ap;
3607	struct ata_device *dev;
3608	int rc = 0, used_dma = 0, found = 0;
3609
3610	/* step 1: calculate xfer_mask */
3611	ata_for_each_dev(dev, link, ENABLED) {
3612		unsigned long pio_mask, dma_mask;
3613		unsigned int mode_mask;
3614
3615		mode_mask = ATA_DMA_MASK_ATA;
3616		if (dev->class == ATA_DEV_ATAPI)
3617			mode_mask = ATA_DMA_MASK_ATAPI;
3618		else if (ata_id_is_cfa(dev->id))
3619			mode_mask = ATA_DMA_MASK_CFA;
3620
3621		ata_dev_xfermask(dev);
3622		ata_force_xfermask(dev);
3623
3624		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3625
3626		if (libata_dma_mask & mode_mask)
3627			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3628						     dev->udma_mask);
3629		else
3630			dma_mask = 0;
3631
3632		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3633		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3634
3635		found = 1;
3636		if (ata_dma_enabled(dev))
3637			used_dma = 1;
3638	}
3639	if (!found)
3640		goto out;
3641
3642	/* step 2: always set host PIO timings */
3643	ata_for_each_dev(dev, link, ENABLED) {
3644		if (dev->pio_mode == 0xff) {
3645			ata_dev_warn(dev, "no PIO support\n");
3646			rc = -EINVAL;
3647			goto out;
3648		}
3649
3650		dev->xfer_mode = dev->pio_mode;
3651		dev->xfer_shift = ATA_SHIFT_PIO;
3652		if (ap->ops->set_piomode)
3653			ap->ops->set_piomode(ap, dev);
3654	}
3655
3656	/* step 3: set host DMA timings */
3657	ata_for_each_dev(dev, link, ENABLED) {
3658		if (!ata_dma_enabled(dev))
3659			continue;
3660
3661		dev->xfer_mode = dev->dma_mode;
3662		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3663		if (ap->ops->set_dmamode)
3664			ap->ops->set_dmamode(ap, dev);
3665	}
3666
3667	/* step 4: update devices' xfer mode */
3668	ata_for_each_dev(dev, link, ENABLED) {
3669		rc = ata_dev_set_mode(dev);
3670		if (rc)
3671			goto out;
3672	}
3673
3674	/* Record simplex status. If we selected DMA then the other
3675	 * host channels are not permitted to do so.
3676	 */
3677	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3678		ap->host->simplex_claimed = ap;
3679
3680 out:
3681	if (rc)
3682		*r_failed_dev = dev;
3683	return rc;
3684}
3685
3686/**
3687 *	ata_wait_ready - wait for link to become ready
3688 *	@link: link to be waited on
3689 *	@deadline: deadline jiffies for the operation
3690 *	@check_ready: callback to check link readiness
3691 *
3692 *	Wait for @link to become ready.  @check_ready should return
3693 *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3694 *	link doesn't seem to be occupied, other errno for other error
3695 *	conditions.
3696 *
3697 *	Transient -ENODEV conditions are allowed for
3698 *	ATA_TMOUT_FF_WAIT.
3699 *
3700 *	LOCKING:
3701 *	EH context.
3702 *
3703 *	RETURNS:
3704 *	0 if @link is ready before @deadline; otherwise, -errno.
3705 */
3706int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3707		   int (*check_ready)(struct ata_link *link))
3708{
3709	unsigned long start = jiffies;
3710	unsigned long nodev_deadline;
3711	int warned = 0;
3712
3713	/* choose which 0xff timeout to use, read comment in libata.h */
3714	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3715		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3716	else
3717		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3718
3719	/* Slave readiness can't be tested separately from master.  On
3720	 * M/S emulation configuration, this function should be called
3721	 * only on the master and it will handle both master and slave.
3722	 */
3723	WARN_ON(link == link->ap->slave_link);
3724
3725	if (time_after(nodev_deadline, deadline))
3726		nodev_deadline = deadline;
3727
3728	while (1) {
3729		unsigned long now = jiffies;
3730		int ready, tmp;
3731
3732		ready = tmp = check_ready(link);
3733		if (ready > 0)
3734			return 0;
3735
3736		/*
3737		 * -ENODEV could be transient.  Ignore -ENODEV if link
3738		 * is online.  Also, some SATA devices take a long
3739		 * time to clear 0xff after reset.  Wait for
3740		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3741		 * offline.
3742		 *
3743		 * Note that some PATA controllers (pata_ali) explode
3744		 * if status register is read more than once when
3745		 * there's no device attached.
3746		 */
3747		if (ready == -ENODEV) {
3748			if (ata_link_online(link))
3749				ready = 0;
3750			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3751				 !ata_link_offline(link) &&
3752				 time_before(now, nodev_deadline))
3753				ready = 0;
3754		}
3755
3756		if (ready)
3757			return ready;
3758		if (time_after(now, deadline))
3759			return -EBUSY;
3760
3761		if (!warned && time_after(now, start + 5 * HZ) &&
3762		    (deadline - now > 3 * HZ)) {
3763			ata_link_warn(link,
3764				"link is slow to respond, please be patient "
3765				"(ready=%d)\n", tmp);
3766			warned = 1;
3767		}
3768
3769		ata_msleep(link->ap, 50);
3770	}
3771}
3772
3773/**
3774 *	ata_wait_after_reset - wait for link to become ready after reset
3775 *	@link: link to be waited on
3776 *	@deadline: deadline jiffies for the operation
3777 *	@check_ready: callback to check link readiness
3778 *
3779 *	Wait for @link to become ready after reset.
3780 *
3781 *	LOCKING:
3782 *	EH context.
3783 *
3784 *	RETURNS:
3785 *	0 if @link is ready before @deadline; otherwise, -errno.
3786 */
3787int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3788				int (*check_ready)(struct ata_link *link))
3789{
3790	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3791
3792	return ata_wait_ready(link, deadline, check_ready);
3793}
3794
3795/**
3796 *	sata_link_debounce - debounce SATA phy status
3797 *	@link: ATA link to debounce SATA phy status for
3798 *	@params: timing parameters { interval, duration, timeout } in msec
3799 *	@deadline: deadline jiffies for the operation
3800 *
3801 *	Make sure SStatus of @link reaches stable state, determined by
3802 *	holding the same value where DET is not 1 for @duration polled
3803 *	every @interval, before @timeout.  Timeout constraints the
3804 *	beginning of the stable state.  Because DET gets stuck at 1 on
3805 *	some controllers after hot unplugging, this functions waits
3806 *	until timeout then returns 0 if DET is stable at 1.
3807 *
3808 *	@timeout is further limited by @deadline.  The sooner of the
3809 *	two is used.
3810 *
3811 *	LOCKING:
3812 *	Kernel thread context (may sleep)
3813 *
3814 *	RETURNS:
3815 *	0 on success, -errno on failure.
3816 */
3817int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3818		       unsigned long deadline)
3819{
3820	unsigned long interval = params[0];
3821	unsigned long duration = params[1];
3822	unsigned long last_jiffies, t;
3823	u32 last, cur;
3824	int rc;
3825
3826	t = ata_deadline(jiffies, params[2]);
3827	if (time_before(t, deadline))
3828		deadline = t;
3829
3830	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3831		return rc;
3832	cur &= 0xf;
3833
3834	last = cur;
3835	last_jiffies = jiffies;
3836
3837	while (1) {
3838		ata_msleep(link->ap, interval);
3839		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3840			return rc;
3841		cur &= 0xf;
3842
3843		/* DET stable? */
3844		if (cur == last) {
3845			if (cur == 1 && time_before(jiffies, deadline))
3846				continue;
3847			if (time_after(jiffies,
3848				       ata_deadline(last_jiffies, duration)))
3849				return 0;
3850			continue;
3851		}
3852
3853		/* unstable, start over */
3854		last = cur;
3855		last_jiffies = jiffies;
3856
3857		/* Check deadline.  If debouncing failed, return
3858		 * -EPIPE to tell upper layer to lower link speed.
3859		 */
3860		if (time_after(jiffies, deadline))
3861			return -EPIPE;
3862	}
3863}
3864
3865/**
3866 *	sata_link_resume - resume SATA link
3867 *	@link: ATA link to resume SATA
3868 *	@params: timing parameters { interval, duration, timeout } in msec
3869 *	@deadline: deadline jiffies for the operation
3870 *
3871 *	Resume SATA phy @link and debounce it.
3872 *
3873 *	LOCKING:
3874 *	Kernel thread context (may sleep)
3875 *
3876 *	RETURNS:
3877 *	0 on success, -errno on failure.
3878 */
3879int sata_link_resume(struct ata_link *link, const unsigned long *params,
3880		     unsigned long deadline)
3881{
3882	int tries = ATA_LINK_RESUME_TRIES;
3883	u32 scontrol, serror;
3884	int rc;
3885
3886	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3887		return rc;
3888
3889	/*
3890	 * Writes to SControl sometimes get ignored under certain
3891	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3892	 * cleared.
3893	 */
3894	do {
3895		scontrol = (scontrol & 0x0f0) | 0x300;
3896		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3897			return rc;
3898		/*
3899		 * Some PHYs react badly if SStatus is pounded
3900		 * immediately after resuming.  Delay 200ms before
3901		 * debouncing.
3902		 */
3903		if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3904			ata_msleep(link->ap, 200);
3905
3906		/* is SControl restored correctly? */
3907		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3908			return rc;
3909	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3910
3911	if ((scontrol & 0xf0f) != 0x300) {
3912		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3913			     scontrol);
3914		return 0;
3915	}
3916
3917	if (tries < ATA_LINK_RESUME_TRIES)
3918		ata_link_warn(link, "link resume succeeded after %d retries\n",
3919			      ATA_LINK_RESUME_TRIES - tries);
3920
3921	if ((rc = sata_link_debounce(link, params, deadline)))
3922		return rc;
3923
3924	/* clear SError, some PHYs require this even for SRST to work */
3925	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3926		rc = sata_scr_write(link, SCR_ERROR, serror);
3927
3928	return rc != -EINVAL ? rc : 0;
3929}
3930
3931/**
3932 *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3933 *	@link: ATA link to manipulate SControl for
3934 *	@policy: LPM policy to configure
3935 *	@spm_wakeup: initiate LPM transition to active state
3936 *
3937 *	Manipulate the IPM field of the SControl register of @link
3938 *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3939 *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3940 *	the link.  This function also clears PHYRDY_CHG before
3941 *	returning.
3942 *
3943 *	LOCKING:
3944 *	EH context.
3945 *
3946 *	RETURNS:
3947 *	0 on success, -errno otherwise.
3948 */
3949int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3950		      bool spm_wakeup)
3951{
3952	struct ata_eh_context *ehc = &link->eh_context;
3953	bool woken_up = false;
3954	u32 scontrol;
3955	int rc;
3956
3957	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3958	if (rc)
3959		return rc;
3960
3961	switch (policy) {
3962	case ATA_LPM_MAX_POWER:
3963		/* disable all LPM transitions */
3964		scontrol |= (0x7 << 8);
3965		/* initiate transition to active state */
3966		if (spm_wakeup) {
3967			scontrol |= (0x4 << 12);
3968			woken_up = true;
3969		}
3970		break;
3971	case ATA_LPM_MED_POWER:
3972		/* allow LPM to PARTIAL */
3973		scontrol &= ~(0x1 << 8);
3974		scontrol |= (0x6 << 8);
3975		break;
3976	case ATA_LPM_MED_POWER_WITH_DIPM:
 
3977	case ATA_LPM_MIN_POWER:
3978		if (ata_link_nr_enabled(link) > 0)
3979			/* no restrictions on LPM transitions */
3980			scontrol &= ~(0x7 << 8);
3981		else {
3982			/* empty port, power off */
3983			scontrol &= ~0xf;
3984			scontrol |= (0x1 << 2);
3985		}
3986		break;
3987	default:
3988		WARN_ON(1);
3989	}
3990
3991	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3992	if (rc)
3993		return rc;
3994
3995	/* give the link time to transit out of LPM state */
3996	if (woken_up)
3997		msleep(10);
3998
3999	/* clear PHYRDY_CHG from SError */
4000	ehc->i.serror &= ~SERR_PHYRDY_CHG;
4001	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
4002}
4003
4004/**
4005 *	ata_std_prereset - prepare for reset
4006 *	@link: ATA link to be reset
4007 *	@deadline: deadline jiffies for the operation
4008 *
4009 *	@link is about to be reset.  Initialize it.  Failure from
4010 *	prereset makes libata abort whole reset sequence and give up
4011 *	that port, so prereset should be best-effort.  It does its
4012 *	best to prepare for reset sequence but if things go wrong, it
4013 *	should just whine, not fail.
4014 *
4015 *	LOCKING:
4016 *	Kernel thread context (may sleep)
4017 *
4018 *	RETURNS:
4019 *	0 on success, -errno otherwise.
4020 */
4021int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4022{
4023	struct ata_port *ap = link->ap;
4024	struct ata_eh_context *ehc = &link->eh_context;
4025	const unsigned long *timing = sata_ehc_deb_timing(ehc);
4026	int rc;
4027
4028	/* if we're about to do hardreset, nothing more to do */
4029	if (ehc->i.action & ATA_EH_HARDRESET)
4030		return 0;
4031
4032	/* if SATA, resume link */
4033	if (ap->flags & ATA_FLAG_SATA) {
4034		rc = sata_link_resume(link, timing, deadline);
4035		/* whine about phy resume failure but proceed */
4036		if (rc && rc != -EOPNOTSUPP)
4037			ata_link_warn(link,
4038				      "failed to resume link for reset (errno=%d)\n",
4039				      rc);
4040	}
4041
4042	/* no point in trying softreset on offline link */
4043	if (ata_phys_link_offline(link))
4044		ehc->i.action &= ~ATA_EH_SOFTRESET;
4045
4046	return 0;
4047}
4048
4049/**
4050 *	sata_link_hardreset - reset link via SATA phy reset
4051 *	@link: link to reset
4052 *	@timing: timing parameters { interval, duration, timeout } in msec
4053 *	@deadline: deadline jiffies for the operation
4054 *	@online: optional out parameter indicating link onlineness
4055 *	@check_ready: optional callback to check link readiness
4056 *
4057 *	SATA phy-reset @link using DET bits of SControl register.
4058 *	After hardreset, link readiness is waited upon using
4059 *	ata_wait_ready() if @check_ready is specified.  LLDs are
4060 *	allowed to not specify @check_ready and wait itself after this
4061 *	function returns.  Device classification is LLD's
4062 *	responsibility.
4063 *
4064 *	*@online is set to one iff reset succeeded and @link is online
4065 *	after reset.
4066 *
4067 *	LOCKING:
4068 *	Kernel thread context (may sleep)
4069 *
4070 *	RETURNS:
4071 *	0 on success, -errno otherwise.
4072 */
4073int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4074			unsigned long deadline,
4075			bool *online, int (*check_ready)(struct ata_link *))
4076{
4077	u32 scontrol;
4078	int rc;
4079
4080	DPRINTK("ENTER\n");
4081
4082	if (online)
4083		*online = false;
4084
4085	if (sata_set_spd_needed(link)) {
4086		/* SATA spec says nothing about how to reconfigure
4087		 * spd.  To be on the safe side, turn off phy during
4088		 * reconfiguration.  This works for at least ICH7 AHCI
4089		 * and Sil3124.
4090		 */
4091		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4092			goto out;
4093
4094		scontrol = (scontrol & 0x0f0) | 0x304;
4095
4096		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4097			goto out;
4098
4099		sata_set_spd(link);
4100	}
4101
4102	/* issue phy wake/reset */
4103	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4104		goto out;
4105
4106	scontrol = (scontrol & 0x0f0) | 0x301;
4107
4108	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4109		goto out;
4110
4111	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4112	 * 10.4.2 says at least 1 ms.
4113	 */
4114	ata_msleep(link->ap, 1);
4115
4116	/* bring link back */
4117	rc = sata_link_resume(link, timing, deadline);
4118	if (rc)
4119		goto out;
4120	/* if link is offline nothing more to do */
4121	if (ata_phys_link_offline(link))
4122		goto out;
4123
4124	/* Link is online.  From this point, -ENODEV too is an error. */
4125	if (online)
4126		*online = true;
4127
4128	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4129		/* If PMP is supported, we have to do follow-up SRST.
4130		 * Some PMPs don't send D2H Reg FIS after hardreset if
4131		 * the first port is empty.  Wait only for
4132		 * ATA_TMOUT_PMP_SRST_WAIT.
4133		 */
4134		if (check_ready) {
4135			unsigned long pmp_deadline;
4136
4137			pmp_deadline = ata_deadline(jiffies,
4138						    ATA_TMOUT_PMP_SRST_WAIT);
4139			if (time_after(pmp_deadline, deadline))
4140				pmp_deadline = deadline;
4141			ata_wait_ready(link, pmp_deadline, check_ready);
4142		}
4143		rc = -EAGAIN;
4144		goto out;
4145	}
4146
4147	rc = 0;
4148	if (check_ready)
4149		rc = ata_wait_ready(link, deadline, check_ready);
4150 out:
4151	if (rc && rc != -EAGAIN) {
4152		/* online is set iff link is online && reset succeeded */
4153		if (online)
4154			*online = false;
4155		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4156	}
4157	DPRINTK("EXIT, rc=%d\n", rc);
4158	return rc;
4159}
4160
4161/**
4162 *	sata_std_hardreset - COMRESET w/o waiting or classification
4163 *	@link: link to reset
4164 *	@class: resulting class of attached device
4165 *	@deadline: deadline jiffies for the operation
4166 *
4167 *	Standard SATA COMRESET w/o waiting or classification.
4168 *
4169 *	LOCKING:
4170 *	Kernel thread context (may sleep)
4171 *
4172 *	RETURNS:
4173 *	0 if link offline, -EAGAIN if link online, -errno on errors.
4174 */
4175int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4176		       unsigned long deadline)
4177{
4178	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4179	bool online;
4180	int rc;
4181
4182	/* do hardreset */
4183	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4184	return online ? -EAGAIN : rc;
4185}
4186
4187/**
4188 *	ata_std_postreset - standard postreset callback
4189 *	@link: the target ata_link
4190 *	@classes: classes of attached devices
4191 *
4192 *	This function is invoked after a successful reset.  Note that
4193 *	the device might have been reset more than once using
4194 *	different reset methods before postreset is invoked.
4195 *
4196 *	LOCKING:
4197 *	Kernel thread context (may sleep)
4198 */
4199void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4200{
4201	u32 serror;
4202
4203	DPRINTK("ENTER\n");
4204
4205	/* reset complete, clear SError */
4206	if (!sata_scr_read(link, SCR_ERROR, &serror))
4207		sata_scr_write(link, SCR_ERROR, serror);
4208
4209	/* print link status */
4210	sata_print_link_status(link);
4211
4212	DPRINTK("EXIT\n");
4213}
4214
4215/**
4216 *	ata_dev_same_device - Determine whether new ID matches configured device
4217 *	@dev: device to compare against
4218 *	@new_class: class of the new device
4219 *	@new_id: IDENTIFY page of the new device
4220 *
4221 *	Compare @new_class and @new_id against @dev and determine
4222 *	whether @dev is the device indicated by @new_class and
4223 *	@new_id.
4224 *
4225 *	LOCKING:
4226 *	None.
4227 *
4228 *	RETURNS:
4229 *	1 if @dev matches @new_class and @new_id, 0 otherwise.
4230 */
4231static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4232			       const u16 *new_id)
4233{
4234	const u16 *old_id = dev->id;
4235	unsigned char model[2][ATA_ID_PROD_LEN + 1];
4236	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4237
4238	if (dev->class != new_class) {
4239		ata_dev_info(dev, "class mismatch %d != %d\n",
4240			     dev->class, new_class);
4241		return 0;
4242	}
4243
4244	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4245	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4246	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4247	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4248
4249	if (strcmp(model[0], model[1])) {
4250		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4251			     model[0], model[1]);
4252		return 0;
4253	}
4254
4255	if (strcmp(serial[0], serial[1])) {
4256		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4257			     serial[0], serial[1]);
4258		return 0;
4259	}
4260
4261	return 1;
4262}
4263
4264/**
4265 *	ata_dev_reread_id - Re-read IDENTIFY data
4266 *	@dev: target ATA device
4267 *	@readid_flags: read ID flags
4268 *
4269 *	Re-read IDENTIFY page and make sure @dev is still attached to
4270 *	the port.
4271 *
4272 *	LOCKING:
4273 *	Kernel thread context (may sleep)
4274 *
4275 *	RETURNS:
4276 *	0 on success, negative errno otherwise
4277 */
4278int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4279{
4280	unsigned int class = dev->class;
4281	u16 *id = (void *)dev->link->ap->sector_buf;
4282	int rc;
4283
4284	/* read ID data */
4285	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4286	if (rc)
4287		return rc;
4288
4289	/* is the device still there? */
4290	if (!ata_dev_same_device(dev, class, id))
4291		return -ENODEV;
4292
4293	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4294	return 0;
4295}
4296
4297/**
4298 *	ata_dev_revalidate - Revalidate ATA device
4299 *	@dev: device to revalidate
4300 *	@new_class: new class code
4301 *	@readid_flags: read ID flags
4302 *
4303 *	Re-read IDENTIFY page, make sure @dev is still attached to the
4304 *	port and reconfigure it according to the new IDENTIFY page.
4305 *
4306 *	LOCKING:
4307 *	Kernel thread context (may sleep)
4308 *
4309 *	RETURNS:
4310 *	0 on success, negative errno otherwise
4311 */
4312int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4313		       unsigned int readid_flags)
4314{
4315	u64 n_sectors = dev->n_sectors;
4316	u64 n_native_sectors = dev->n_native_sectors;
4317	int rc;
4318
4319	if (!ata_dev_enabled(dev))
4320		return -ENODEV;
4321
4322	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4323	if (ata_class_enabled(new_class) &&
4324	    new_class != ATA_DEV_ATA &&
4325	    new_class != ATA_DEV_ATAPI &&
4326	    new_class != ATA_DEV_ZAC &&
4327	    new_class != ATA_DEV_SEMB) {
4328		ata_dev_info(dev, "class mismatch %u != %u\n",
4329			     dev->class, new_class);
4330		rc = -ENODEV;
4331		goto fail;
4332	}
4333
4334	/* re-read ID */
4335	rc = ata_dev_reread_id(dev, readid_flags);
4336	if (rc)
4337		goto fail;
4338
4339	/* configure device according to the new ID */
4340	rc = ata_dev_configure(dev);
4341	if (rc)
4342		goto fail;
4343
4344	/* verify n_sectors hasn't changed */
4345	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4346	    dev->n_sectors == n_sectors)
4347		return 0;
4348
4349	/* n_sectors has changed */
4350	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4351		     (unsigned long long)n_sectors,
4352		     (unsigned long long)dev->n_sectors);
4353
4354	/*
4355	 * Something could have caused HPA to be unlocked
4356	 * involuntarily.  If n_native_sectors hasn't changed and the
4357	 * new size matches it, keep the device.
4358	 */
4359	if (dev->n_native_sectors == n_native_sectors &&
4360	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4361		ata_dev_warn(dev,
4362			     "new n_sectors matches native, probably "
4363			     "late HPA unlock, n_sectors updated\n");
4364		/* use the larger n_sectors */
4365		return 0;
4366	}
4367
4368	/*
4369	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4370	 * unlocking HPA in those cases.
4371	 *
4372	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4373	 */
4374	if (dev->n_native_sectors == n_native_sectors &&
4375	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4376	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4377		ata_dev_warn(dev,
4378			     "old n_sectors matches native, probably "
4379			     "late HPA lock, will try to unlock HPA\n");
4380		/* try unlocking HPA */
4381		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4382		rc = -EIO;
4383	} else
4384		rc = -ENODEV;
4385
4386	/* restore original n_[native_]sectors and fail */
4387	dev->n_native_sectors = n_native_sectors;
4388	dev->n_sectors = n_sectors;
4389 fail:
4390	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4391	return rc;
4392}
4393
4394struct ata_blacklist_entry {
4395	const char *model_num;
4396	const char *model_rev;
4397	unsigned long horkage;
4398};
4399
4400static const struct ata_blacklist_entry ata_device_blacklist [] = {
4401	/* Devices with DMA related problems under Linux */
4402	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4403	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4404	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4405	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4406	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4407	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4408	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4409	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4410	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4411	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4412	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4413	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4414	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4415	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4416	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4417	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4418	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4419	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4420	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4421	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4422	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4423	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4424	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4425	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4426	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4427	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4428	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4429	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4430	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4431	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4432	/* Odd clown on sil3726/4726 PMPs */
4433	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4434
4435	/* Weird ATAPI devices */
4436	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4437	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4438	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4439	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4440
4441	/*
4442	 * Causes silent data corruption with higher max sects.
4443	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4444	 */
4445	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4446
4447	/*
4448	 * These devices time out with higher max sects.
4449	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4450	 */
4451	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4452	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4453
4454	/* Devices we expect to fail diagnostics */
4455
4456	/* Devices where NCQ should be avoided */
4457	/* NCQ is slow */
4458	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4459	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4460	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4461	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4462	/* NCQ is broken */
4463	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4464	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4465	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4466	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4467	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4468
4469	/* Seagate NCQ + FLUSH CACHE firmware bug */
4470	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4471						ATA_HORKAGE_FIRMWARE_WARN },
4472
4473	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4474						ATA_HORKAGE_FIRMWARE_WARN },
4475
4476	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4477						ATA_HORKAGE_FIRMWARE_WARN },
4478
4479	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4480						ATA_HORKAGE_FIRMWARE_WARN },
4481
4482	/* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4483	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4484	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
 
4485	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4486
4487	/* Blacklist entries taken from Silicon Image 3124/3132
4488	   Windows driver .inf file - also several Linux problem reports */
4489	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4490	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4491	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4492
4493	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4494	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4495
4496	/* Some Sandisk SSDs lock up hard with NCQ enabled.  Reported on
4497	   SD7SN6S256G and SD8SN8U256G */
4498	{ "SanDisk SD[78]SN*G",	NULL,		ATA_HORKAGE_NONCQ, },
4499
4500	/* devices which puke on READ_NATIVE_MAX */
4501	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4502	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4503	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4504	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4505
4506	/* this one allows HPA unlocking but fails IOs on the area */
4507	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4508
4509	/* Devices which report 1 sector over size HPA */
4510	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4511	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4512	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4513
4514	/* Devices which get the IVB wrong */
4515	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4516	/* Maybe we should just blacklist TSSTcorp... */
4517	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4518
4519	/* Devices that do not need bridging limits applied */
4520	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4521	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4522
4523	/* Devices which aren't very happy with higher link speeds */
4524	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4525	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4526
4527	/*
4528	 * Devices which choke on SETXFER.  Applies only if both the
4529	 * device and controller are SATA.
4530	 */
4531	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4532	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4533	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4534	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4535	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4536
4537	/* Crucial BX100 SSD 500GB has broken LPM support */
4538	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4539
4540	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4541	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4542						ATA_HORKAGE_ZERO_AFTER_TRIM |
4543						ATA_HORKAGE_NOLPM, },
4544	/* 512GB MX100 with newer firmware has only LPM issues */
4545	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4546						ATA_HORKAGE_NOLPM, },
4547
4548	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4549	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4550						ATA_HORKAGE_ZERO_AFTER_TRIM |
4551						ATA_HORKAGE_NOLPM, },
4552	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4553						ATA_HORKAGE_ZERO_AFTER_TRIM |
4554						ATA_HORKAGE_NOLPM, },
4555
4556	/* These specific Samsung models/firmware-revs do not handle LPM well */
4557	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4558	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4559
4560	/* Sandisk devices which are known to not handle LPM well */
4561	{ "SanDisk SD7UB3Q*G1001",	NULL,	ATA_HORKAGE_NOLPM, },
4562
4563	/* devices that don't properly handle queued TRIM commands */
4564	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4565						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4566	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4567						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4568	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4569						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4570	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4571						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4572	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4573						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4574	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4575						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4576	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4577						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4578	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4579						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4580	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4581						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4582
4583	/* devices that don't properly handle TRIM commands */
4584	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4585
4586	/*
4587	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4588	 * (Return Zero After Trim) flags in the ATA Command Set are
4589	 * unreliable in the sense that they only define what happens if
4590	 * the device successfully executed the DSM TRIM command. TRIM
4591	 * is only advisory, however, and the device is free to silently
4592	 * ignore all or parts of the request.
4593	 *
4594	 * Whitelist drives that are known to reliably return zeroes
4595	 * after TRIM.
4596	 */
4597
4598	/*
4599	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4600	 * that model before whitelisting all other intel SSDs.
4601	 */
4602	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4603
4604	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4605	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4606	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4607	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4608	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4609	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
 
4610	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4611
4612	/*
4613	 * Some WD SATA-I drives spin up and down erratically when the link
4614	 * is put into the slumber mode.  We don't have full list of the
4615	 * affected devices.  Disable LPM if the device matches one of the
4616	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4617	 * lost too.
4618	 *
4619	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4620	 */
4621	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4622	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4623	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4624	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4625	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4626	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4627	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4628
4629	/* End Marker */
4630	{ }
4631};
4632
4633static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4634{
4635	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4636	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4637	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4638
4639	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4640	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4641
4642	while (ad->model_num) {
4643		if (glob_match(ad->model_num, model_num)) {
4644			if (ad->model_rev == NULL)
4645				return ad->horkage;
4646			if (glob_match(ad->model_rev, model_rev))
4647				return ad->horkage;
4648		}
4649		ad++;
4650	}
4651	return 0;
4652}
4653
4654static int ata_dma_blacklisted(const struct ata_device *dev)
4655{
4656	/* We don't support polling DMA.
4657	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4658	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4659	 */
4660	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4661	    (dev->flags & ATA_DFLAG_CDB_INTR))
4662		return 1;
4663	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4664}
4665
4666/**
4667 *	ata_is_40wire		-	check drive side detection
4668 *	@dev: device
4669 *
4670 *	Perform drive side detection decoding, allowing for device vendors
4671 *	who can't follow the documentation.
4672 */
4673
4674static int ata_is_40wire(struct ata_device *dev)
4675{
4676	if (dev->horkage & ATA_HORKAGE_IVB)
4677		return ata_drive_40wire_relaxed(dev->id);
4678	return ata_drive_40wire(dev->id);
4679}
4680
4681/**
4682 *	cable_is_40wire		-	40/80/SATA decider
4683 *	@ap: port to consider
4684 *
4685 *	This function encapsulates the policy for speed management
4686 *	in one place. At the moment we don't cache the result but
4687 *	there is a good case for setting ap->cbl to the result when
4688 *	we are called with unknown cables (and figuring out if it
4689 *	impacts hotplug at all).
4690 *
4691 *	Return 1 if the cable appears to be 40 wire.
4692 */
4693
4694static int cable_is_40wire(struct ata_port *ap)
4695{
4696	struct ata_link *link;
4697	struct ata_device *dev;
4698
4699	/* If the controller thinks we are 40 wire, we are. */
4700	if (ap->cbl == ATA_CBL_PATA40)
4701		return 1;
4702
4703	/* If the controller thinks we are 80 wire, we are. */
4704	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4705		return 0;
4706
4707	/* If the system is known to be 40 wire short cable (eg
4708	 * laptop), then we allow 80 wire modes even if the drive
4709	 * isn't sure.
4710	 */
4711	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4712		return 0;
4713
4714	/* If the controller doesn't know, we scan.
4715	 *
4716	 * Note: We look for all 40 wire detects at this point.  Any
4717	 *       80 wire detect is taken to be 80 wire cable because
4718	 * - in many setups only the one drive (slave if present) will
4719	 *   give a valid detect
4720	 * - if you have a non detect capable drive you don't want it
4721	 *   to colour the choice
4722	 */
4723	ata_for_each_link(link, ap, EDGE) {
4724		ata_for_each_dev(dev, link, ENABLED) {
4725			if (!ata_is_40wire(dev))
4726				return 0;
4727		}
4728	}
4729	return 1;
4730}
4731
4732/**
4733 *	ata_dev_xfermask - Compute supported xfermask of the given device
4734 *	@dev: Device to compute xfermask for
4735 *
4736 *	Compute supported xfermask of @dev and store it in
4737 *	dev->*_mask.  This function is responsible for applying all
4738 *	known limits including host controller limits, device
4739 *	blacklist, etc...
4740 *
4741 *	LOCKING:
4742 *	None.
4743 */
4744static void ata_dev_xfermask(struct ata_device *dev)
4745{
4746	struct ata_link *link = dev->link;
4747	struct ata_port *ap = link->ap;
4748	struct ata_host *host = ap->host;
4749	unsigned long xfer_mask;
4750
4751	/* controller modes available */
4752	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4753				      ap->mwdma_mask, ap->udma_mask);
4754
4755	/* drive modes available */
4756	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4757				       dev->mwdma_mask, dev->udma_mask);
4758	xfer_mask &= ata_id_xfermask(dev->id);
4759
4760	/*
4761	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4762	 *	cable
4763	 */
4764	if (ata_dev_pair(dev)) {
4765		/* No PIO5 or PIO6 */
4766		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4767		/* No MWDMA3 or MWDMA 4 */
4768		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4769	}
4770
4771	if (ata_dma_blacklisted(dev)) {
4772		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4773		ata_dev_warn(dev,
4774			     "device is on DMA blacklist, disabling DMA\n");
4775	}
4776
4777	if ((host->flags & ATA_HOST_SIMPLEX) &&
4778	    host->simplex_claimed && host->simplex_claimed != ap) {
4779		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4780		ata_dev_warn(dev,
4781			     "simplex DMA is claimed by other device, disabling DMA\n");
4782	}
4783
4784	if (ap->flags & ATA_FLAG_NO_IORDY)
4785		xfer_mask &= ata_pio_mask_no_iordy(dev);
4786
4787	if (ap->ops->mode_filter)
4788		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4789
4790	/* Apply cable rule here.  Don't apply it early because when
4791	 * we handle hot plug the cable type can itself change.
4792	 * Check this last so that we know if the transfer rate was
4793	 * solely limited by the cable.
4794	 * Unknown or 80 wire cables reported host side are checked
4795	 * drive side as well. Cases where we know a 40wire cable
4796	 * is used safely for 80 are not checked here.
4797	 */
4798	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4799		/* UDMA/44 or higher would be available */
4800		if (cable_is_40wire(ap)) {
4801			ata_dev_warn(dev,
4802				     "limited to UDMA/33 due to 40-wire cable\n");
4803			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4804		}
4805
4806	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4807			    &dev->mwdma_mask, &dev->udma_mask);
4808}
4809
4810/**
4811 *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4812 *	@dev: Device to which command will be sent
4813 *
4814 *	Issue SET FEATURES - XFER MODE command to device @dev
4815 *	on port @ap.
4816 *
4817 *	LOCKING:
4818 *	PCI/etc. bus probe sem.
4819 *
4820 *	RETURNS:
4821 *	0 on success, AC_ERR_* mask otherwise.
4822 */
4823
4824static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4825{
4826	struct ata_taskfile tf;
4827	unsigned int err_mask;
4828
4829	/* set up set-features taskfile */
4830	DPRINTK("set features - xfer mode\n");
4831
4832	/* Some controllers and ATAPI devices show flaky interrupt
4833	 * behavior after setting xfer mode.  Use polling instead.
4834	 */
4835	ata_tf_init(dev, &tf);
4836	tf.command = ATA_CMD_SET_FEATURES;
4837	tf.feature = SETFEATURES_XFER;
4838	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4839	tf.protocol = ATA_PROT_NODATA;
4840	/* If we are using IORDY we must send the mode setting command */
4841	if (ata_pio_need_iordy(dev))
4842		tf.nsect = dev->xfer_mode;
4843	/* If the device has IORDY and the controller does not - turn it off */
4844 	else if (ata_id_has_iordy(dev->id))
4845		tf.nsect = 0x01;
4846	else /* In the ancient relic department - skip all of this */
4847		return 0;
4848
4849	/* On some disks, this command causes spin-up, so we need longer timeout */
4850	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4851
4852	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4853	return err_mask;
4854}
4855
4856/**
4857 *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4858 *	@dev: Device to which command will be sent
4859 *	@enable: Whether to enable or disable the feature
4860 *	@feature: The sector count represents the feature to set
4861 *
4862 *	Issue SET FEATURES - SATA FEATURES command to device @dev
4863 *	on port @ap with sector count
4864 *
4865 *	LOCKING:
4866 *	PCI/etc. bus probe sem.
4867 *
4868 *	RETURNS:
4869 *	0 on success, AC_ERR_* mask otherwise.
4870 */
4871unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4872{
4873	struct ata_taskfile tf;
4874	unsigned int err_mask;
4875	unsigned long timeout = 0;
4876
4877	/* set up set-features taskfile */
4878	DPRINTK("set features - SATA features\n");
4879
4880	ata_tf_init(dev, &tf);
4881	tf.command = ATA_CMD_SET_FEATURES;
4882	tf.feature = enable;
4883	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4884	tf.protocol = ATA_PROT_NODATA;
4885	tf.nsect = feature;
4886
4887	if (enable == SETFEATURES_SPINUP)
4888		timeout = ata_probe_timeout ?
4889			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4890	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4891
4892	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4893	return err_mask;
4894}
4895EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4896
4897/**
4898 *	ata_dev_init_params - Issue INIT DEV PARAMS command
4899 *	@dev: Device to which command will be sent
4900 *	@heads: Number of heads (taskfile parameter)
4901 *	@sectors: Number of sectors (taskfile parameter)
4902 *
4903 *	LOCKING:
4904 *	Kernel thread context (may sleep)
4905 *
4906 *	RETURNS:
4907 *	0 on success, AC_ERR_* mask otherwise.
4908 */
4909static unsigned int ata_dev_init_params(struct ata_device *dev,
4910					u16 heads, u16 sectors)
4911{
4912	struct ata_taskfile tf;
4913	unsigned int err_mask;
4914
4915	/* Number of sectors per track 1-255. Number of heads 1-16 */
4916	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4917		return AC_ERR_INVALID;
4918
4919	/* set up init dev params taskfile */
4920	DPRINTK("init dev params \n");
4921
4922	ata_tf_init(dev, &tf);
4923	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4924	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4925	tf.protocol = ATA_PROT_NODATA;
4926	tf.nsect = sectors;
4927	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4928
4929	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4930	/* A clean abort indicates an original or just out of spec drive
4931	   and we should continue as we issue the setup based on the
4932	   drive reported working geometry */
4933	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4934		err_mask = 0;
4935
4936	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4937	return err_mask;
4938}
4939
4940/**
4941 *	atapi_check_dma - Check whether ATAPI DMA can be supported
4942 *	@qc: Metadata associated with taskfile to check
4943 *
4944 *	Allow low-level driver to filter ATA PACKET commands, returning
4945 *	a status indicating whether or not it is OK to use DMA for the
4946 *	supplied PACKET command.
4947 *
4948 *	LOCKING:
4949 *	spin_lock_irqsave(host lock)
4950 *
4951 *	RETURNS: 0 when ATAPI DMA can be used
4952 *               nonzero otherwise
4953 */
4954int atapi_check_dma(struct ata_queued_cmd *qc)
4955{
4956	struct ata_port *ap = qc->ap;
4957
4958	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4959	 * few ATAPI devices choke on such DMA requests.
4960	 */
4961	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4962	    unlikely(qc->nbytes & 15))
4963		return 1;
4964
4965	if (ap->ops->check_atapi_dma)
4966		return ap->ops->check_atapi_dma(qc);
4967
4968	return 0;
4969}
4970
4971/**
4972 *	ata_std_qc_defer - Check whether a qc needs to be deferred
4973 *	@qc: ATA command in question
4974 *
4975 *	Non-NCQ commands cannot run with any other command, NCQ or
4976 *	not.  As upper layer only knows the queue depth, we are
4977 *	responsible for maintaining exclusion.  This function checks
4978 *	whether a new command @qc can be issued.
4979 *
4980 *	LOCKING:
4981 *	spin_lock_irqsave(host lock)
4982 *
4983 *	RETURNS:
4984 *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4985 */
4986int ata_std_qc_defer(struct ata_queued_cmd *qc)
4987{
4988	struct ata_link *link = qc->dev->link;
4989
4990	if (ata_is_ncq(qc->tf.protocol)) {
4991		if (!ata_tag_valid(link->active_tag))
4992			return 0;
4993	} else {
4994		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4995			return 0;
4996	}
4997
4998	return ATA_DEFER_LINK;
4999}
5000
5001void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
5002
5003/**
5004 *	ata_sg_init - Associate command with scatter-gather table.
5005 *	@qc: Command to be associated
5006 *	@sg: Scatter-gather table.
5007 *	@n_elem: Number of elements in s/g table.
5008 *
5009 *	Initialize the data-related elements of queued_cmd @qc
5010 *	to point to a scatter-gather table @sg, containing @n_elem
5011 *	elements.
5012 *
5013 *	LOCKING:
5014 *	spin_lock_irqsave(host lock)
5015 */
5016void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
5017		 unsigned int n_elem)
5018{
5019	qc->sg = sg;
5020	qc->n_elem = n_elem;
5021	qc->cursg = qc->sg;
5022}
5023
5024#ifdef CONFIG_HAS_DMA
5025
5026/**
5027 *	ata_sg_clean - Unmap DMA memory associated with command
5028 *	@qc: Command containing DMA memory to be released
5029 *
5030 *	Unmap all mapped DMA memory associated with this command.
5031 *
5032 *	LOCKING:
5033 *	spin_lock_irqsave(host lock)
5034 */
5035static void ata_sg_clean(struct ata_queued_cmd *qc)
5036{
5037	struct ata_port *ap = qc->ap;
5038	struct scatterlist *sg = qc->sg;
5039	int dir = qc->dma_dir;
5040
5041	WARN_ON_ONCE(sg == NULL);
5042
5043	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5044
5045	if (qc->n_elem)
5046		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5047
5048	qc->flags &= ~ATA_QCFLAG_DMAMAP;
5049	qc->sg = NULL;
5050}
5051
5052/**
5053 *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5054 *	@qc: Command with scatter-gather table to be mapped.
5055 *
5056 *	DMA-map the scatter-gather table associated with queued_cmd @qc.
5057 *
5058 *	LOCKING:
5059 *	spin_lock_irqsave(host lock)
5060 *
5061 *	RETURNS:
5062 *	Zero on success, negative on error.
5063 *
5064 */
5065static int ata_sg_setup(struct ata_queued_cmd *qc)
5066{
5067	struct ata_port *ap = qc->ap;
5068	unsigned int n_elem;
5069
5070	VPRINTK("ENTER, ata%u\n", ap->print_id);
5071
5072	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5073	if (n_elem < 1)
5074		return -1;
5075
5076	DPRINTK("%d sg elements mapped\n", n_elem);
5077	qc->orig_n_elem = qc->n_elem;
5078	qc->n_elem = n_elem;
5079	qc->flags |= ATA_QCFLAG_DMAMAP;
5080
5081	return 0;
5082}
5083
5084#else /* !CONFIG_HAS_DMA */
5085
5086static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5087static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5088
5089#endif /* !CONFIG_HAS_DMA */
5090
5091/**
5092 *	swap_buf_le16 - swap halves of 16-bit words in place
5093 *	@buf:  Buffer to swap
5094 *	@buf_words:  Number of 16-bit words in buffer.
5095 *
5096 *	Swap halves of 16-bit words if needed to convert from
5097 *	little-endian byte order to native cpu byte order, or
5098 *	vice-versa.
5099 *
5100 *	LOCKING:
5101 *	Inherited from caller.
5102 */
5103void swap_buf_le16(u16 *buf, unsigned int buf_words)
5104{
5105#ifdef __BIG_ENDIAN
5106	unsigned int i;
5107
5108	for (i = 0; i < buf_words; i++)
5109		buf[i] = le16_to_cpu(buf[i]);
5110#endif /* __BIG_ENDIAN */
5111}
5112
5113/**
5114 *	ata_qc_new_init - Request an available ATA command, and initialize it
5115 *	@dev: Device from whom we request an available command structure
5116 *	@tag: tag
5117 *
5118 *	LOCKING:
5119 *	None.
5120 */
5121
5122struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5123{
5124	struct ata_port *ap = dev->link->ap;
5125	struct ata_queued_cmd *qc;
5126
5127	/* no command while frozen */
5128	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5129		return NULL;
5130
5131	/* libsas case */
5132	if (ap->flags & ATA_FLAG_SAS_HOST) {
5133		tag = ata_sas_allocate_tag(ap);
5134		if (tag < 0)
5135			return NULL;
5136	}
5137
5138	qc = __ata_qc_from_tag(ap, tag);
5139	qc->tag = tag;
5140	qc->scsicmd = NULL;
5141	qc->ap = ap;
5142	qc->dev = dev;
5143
5144	ata_qc_reinit(qc);
5145
5146	return qc;
5147}
5148
5149/**
5150 *	ata_qc_free - free unused ata_queued_cmd
5151 *	@qc: Command to complete
5152 *
5153 *	Designed to free unused ata_queued_cmd object
5154 *	in case something prevents using it.
5155 *
5156 *	LOCKING:
5157 *	spin_lock_irqsave(host lock)
5158 */
5159void ata_qc_free(struct ata_queued_cmd *qc)
5160{
5161	struct ata_port *ap;
5162	unsigned int tag;
5163
5164	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5165	ap = qc->ap;
5166
5167	qc->flags = 0;
5168	tag = qc->tag;
5169	if (likely(ata_tag_valid(tag))) {
5170		qc->tag = ATA_TAG_POISON;
5171		if (ap->flags & ATA_FLAG_SAS_HOST)
5172			ata_sas_free_tag(tag, ap);
5173	}
5174}
5175
5176void __ata_qc_complete(struct ata_queued_cmd *qc)
5177{
5178	struct ata_port *ap;
5179	struct ata_link *link;
5180
5181	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5182	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5183	ap = qc->ap;
5184	link = qc->dev->link;
5185
5186	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5187		ata_sg_clean(qc);
5188
5189	/* command should be marked inactive atomically with qc completion */
5190	if (ata_is_ncq(qc->tf.protocol)) {
5191		link->sactive &= ~(1 << qc->tag);
5192		if (!link->sactive)
5193			ap->nr_active_links--;
5194	} else {
5195		link->active_tag = ATA_TAG_POISON;
5196		ap->nr_active_links--;
5197	}
5198
5199	/* clear exclusive status */
5200	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5201		     ap->excl_link == link))
5202		ap->excl_link = NULL;
5203
5204	/* atapi: mark qc as inactive to prevent the interrupt handler
5205	 * from completing the command twice later, before the error handler
5206	 * is called. (when rc != 0 and atapi request sense is needed)
5207	 */
5208	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5209	ap->qc_active &= ~(1 << qc->tag);
5210
5211	/* call completion callback */
5212	qc->complete_fn(qc);
5213}
5214
5215static void fill_result_tf(struct ata_queued_cmd *qc)
5216{
5217	struct ata_port *ap = qc->ap;
5218
5219	qc->result_tf.flags = qc->tf.flags;
5220	ap->ops->qc_fill_rtf(qc);
5221}
5222
5223static void ata_verify_xfer(struct ata_queued_cmd *qc)
5224{
5225	struct ata_device *dev = qc->dev;
5226
5227	if (!ata_is_data(qc->tf.protocol))
5228		return;
5229
5230	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5231		return;
5232
5233	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5234}
5235
5236/**
5237 *	ata_qc_complete - Complete an active ATA command
5238 *	@qc: Command to complete
5239 *
5240 *	Indicate to the mid and upper layers that an ATA command has
5241 *	completed, with either an ok or not-ok status.
5242 *
5243 *	Refrain from calling this function multiple times when
5244 *	successfully completing multiple NCQ commands.
5245 *	ata_qc_complete_multiple() should be used instead, which will
5246 *	properly update IRQ expect state.
5247 *
5248 *	LOCKING:
5249 *	spin_lock_irqsave(host lock)
5250 */
5251void ata_qc_complete(struct ata_queued_cmd *qc)
5252{
5253	struct ata_port *ap = qc->ap;
5254
5255	/* Trigger the LED (if available) */
5256	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
5257
5258	/* XXX: New EH and old EH use different mechanisms to
5259	 * synchronize EH with regular execution path.
5260	 *
5261	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5262	 * Normal execution path is responsible for not accessing a
5263	 * failed qc.  libata core enforces the rule by returning NULL
5264	 * from ata_qc_from_tag() for failed qcs.
5265	 *
5266	 * Old EH depends on ata_qc_complete() nullifying completion
5267	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5268	 * not synchronize with interrupt handler.  Only PIO task is
5269	 * taken care of.
5270	 */
5271	if (ap->ops->error_handler) {
5272		struct ata_device *dev = qc->dev;
5273		struct ata_eh_info *ehi = &dev->link->eh_info;
5274
5275		if (unlikely(qc->err_mask))
5276			qc->flags |= ATA_QCFLAG_FAILED;
5277
5278		/*
5279		 * Finish internal commands without any further processing
5280		 * and always with the result TF filled.
5281		 */
5282		if (unlikely(ata_tag_internal(qc->tag))) {
5283			fill_result_tf(qc);
5284			trace_ata_qc_complete_internal(qc);
5285			__ata_qc_complete(qc);
5286			return;
5287		}
5288
5289		/*
5290		 * Non-internal qc has failed.  Fill the result TF and
5291		 * summon EH.
5292		 */
5293		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5294			fill_result_tf(qc);
5295			trace_ata_qc_complete_failed(qc);
5296			ata_qc_schedule_eh(qc);
5297			return;
5298		}
5299
5300		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5301
5302		/* read result TF if requested */
5303		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5304			fill_result_tf(qc);
5305
5306		trace_ata_qc_complete_done(qc);
5307		/* Some commands need post-processing after successful
5308		 * completion.
5309		 */
5310		switch (qc->tf.command) {
5311		case ATA_CMD_SET_FEATURES:
5312			if (qc->tf.feature != SETFEATURES_WC_ON &&
5313			    qc->tf.feature != SETFEATURES_WC_OFF &&
5314			    qc->tf.feature != SETFEATURES_RA_ON &&
5315			    qc->tf.feature != SETFEATURES_RA_OFF)
5316				break;
5317			/* fall through */
5318		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5319		case ATA_CMD_SET_MULTI: /* multi_count changed */
5320			/* revalidate device */
5321			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5322			ata_port_schedule_eh(ap);
5323			break;
5324
5325		case ATA_CMD_SLEEP:
5326			dev->flags |= ATA_DFLAG_SLEEPING;
5327			break;
5328		}
5329
5330		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5331			ata_verify_xfer(qc);
5332
5333		__ata_qc_complete(qc);
5334	} else {
5335		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5336			return;
5337
5338		/* read result TF if failed or requested */
5339		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5340			fill_result_tf(qc);
5341
5342		__ata_qc_complete(qc);
5343	}
5344}
5345
5346/**
5347 *	ata_qc_complete_multiple - Complete multiple qcs successfully
5348 *	@ap: port in question
5349 *	@qc_active: new qc_active mask
5350 *
5351 *	Complete in-flight commands.  This functions is meant to be
5352 *	called from low-level driver's interrupt routine to complete
5353 *	requests normally.  ap->qc_active and @qc_active is compared
5354 *	and commands are completed accordingly.
5355 *
5356 *	Always use this function when completing multiple NCQ commands
5357 *	from IRQ handlers instead of calling ata_qc_complete()
5358 *	multiple times to keep IRQ expect status properly in sync.
5359 *
5360 *	LOCKING:
5361 *	spin_lock_irqsave(host lock)
5362 *
5363 *	RETURNS:
5364 *	Number of completed commands on success, -errno otherwise.
5365 */
5366int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5367{
 
5368	int nr_done = 0;
5369	u32 done_mask;
5370
5371	done_mask = ap->qc_active ^ qc_active;
 
 
 
 
 
 
 
 
 
 
5372
5373	if (unlikely(done_mask & qc_active)) {
5374		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5375			     ap->qc_active, qc_active);
5376		return -EINVAL;
5377	}
5378
5379	while (done_mask) {
5380		struct ata_queued_cmd *qc;
5381		unsigned int tag = __ffs(done_mask);
5382
5383		qc = ata_qc_from_tag(ap, tag);
5384		if (qc) {
5385			ata_qc_complete(qc);
5386			nr_done++;
5387		}
5388		done_mask &= ~(1 << tag);
5389	}
5390
5391	return nr_done;
5392}
5393
5394/**
5395 *	ata_qc_issue - issue taskfile to device
5396 *	@qc: command to issue to device
5397 *
5398 *	Prepare an ATA command to submission to device.
5399 *	This includes mapping the data into a DMA-able
5400 *	area, filling in the S/G table, and finally
5401 *	writing the taskfile to hardware, starting the command.
5402 *
5403 *	LOCKING:
5404 *	spin_lock_irqsave(host lock)
5405 */
5406void ata_qc_issue(struct ata_queued_cmd *qc)
5407{
5408	struct ata_port *ap = qc->ap;
5409	struct ata_link *link = qc->dev->link;
5410	u8 prot = qc->tf.protocol;
5411
5412	/* Make sure only one non-NCQ command is outstanding.  The
5413	 * check is skipped for old EH because it reuses active qc to
5414	 * request ATAPI sense.
5415	 */
5416	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5417
5418	if (ata_is_ncq(prot)) {
5419		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5420
5421		if (!link->sactive)
5422			ap->nr_active_links++;
5423		link->sactive |= 1 << qc->tag;
5424	} else {
5425		WARN_ON_ONCE(link->sactive);
5426
5427		ap->nr_active_links++;
5428		link->active_tag = qc->tag;
5429	}
5430
5431	qc->flags |= ATA_QCFLAG_ACTIVE;
5432	ap->qc_active |= 1 << qc->tag;
5433
5434	/*
5435	 * We guarantee to LLDs that they will have at least one
5436	 * non-zero sg if the command is a data command.
5437	 */
5438	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5439		goto sys_err;
5440
5441	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5442				 (ap->flags & ATA_FLAG_PIO_DMA)))
5443		if (ata_sg_setup(qc))
5444			goto sys_err;
5445
5446	/* if device is sleeping, schedule reset and abort the link */
5447	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5448		link->eh_info.action |= ATA_EH_RESET;
5449		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5450		ata_link_abort(link);
5451		return;
5452	}
5453
5454	ap->ops->qc_prep(qc);
5455	trace_ata_qc_issue(qc);
5456	qc->err_mask |= ap->ops->qc_issue(qc);
5457	if (unlikely(qc->err_mask))
5458		goto err;
5459	return;
5460
5461sys_err:
5462	qc->err_mask |= AC_ERR_SYSTEM;
5463err:
5464	ata_qc_complete(qc);
5465}
5466
5467/**
5468 *	sata_scr_valid - test whether SCRs are accessible
5469 *	@link: ATA link to test SCR accessibility for
5470 *
5471 *	Test whether SCRs are accessible for @link.
5472 *
5473 *	LOCKING:
5474 *	None.
5475 *
5476 *	RETURNS:
5477 *	1 if SCRs are accessible, 0 otherwise.
5478 */
5479int sata_scr_valid(struct ata_link *link)
5480{
5481	struct ata_port *ap = link->ap;
5482
5483	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5484}
5485
5486/**
5487 *	sata_scr_read - read SCR register of the specified port
5488 *	@link: ATA link to read SCR for
5489 *	@reg: SCR to read
5490 *	@val: Place to store read value
5491 *
5492 *	Read SCR register @reg of @link into *@val.  This function is
5493 *	guaranteed to succeed if @link is ap->link, the cable type of
5494 *	the port is SATA and the port implements ->scr_read.
5495 *
5496 *	LOCKING:
5497 *	None if @link is ap->link.  Kernel thread context otherwise.
5498 *
5499 *	RETURNS:
5500 *	0 on success, negative errno on failure.
5501 */
5502int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5503{
5504	if (ata_is_host_link(link)) {
5505		if (sata_scr_valid(link))
5506			return link->ap->ops->scr_read(link, reg, val);
5507		return -EOPNOTSUPP;
5508	}
5509
5510	return sata_pmp_scr_read(link, reg, val);
5511}
5512
5513/**
5514 *	sata_scr_write - write SCR register of the specified port
5515 *	@link: ATA link to write SCR for
5516 *	@reg: SCR to write
5517 *	@val: value to write
5518 *
5519 *	Write @val to SCR register @reg of @link.  This function is
5520 *	guaranteed to succeed if @link is ap->link, the cable type of
5521 *	the port is SATA and the port implements ->scr_read.
5522 *
5523 *	LOCKING:
5524 *	None if @link is ap->link.  Kernel thread context otherwise.
5525 *
5526 *	RETURNS:
5527 *	0 on success, negative errno on failure.
5528 */
5529int sata_scr_write(struct ata_link *link, int reg, u32 val)
5530{
5531	if (ata_is_host_link(link)) {
5532		if (sata_scr_valid(link))
5533			return link->ap->ops->scr_write(link, reg, val);
5534		return -EOPNOTSUPP;
5535	}
5536
5537	return sata_pmp_scr_write(link, reg, val);
5538}
5539
5540/**
5541 *	sata_scr_write_flush - write SCR register of the specified port and flush
5542 *	@link: ATA link to write SCR for
5543 *	@reg: SCR to write
5544 *	@val: value to write
5545 *
5546 *	This function is identical to sata_scr_write() except that this
5547 *	function performs flush after writing to the register.
5548 *
5549 *	LOCKING:
5550 *	None if @link is ap->link.  Kernel thread context otherwise.
5551 *
5552 *	RETURNS:
5553 *	0 on success, negative errno on failure.
5554 */
5555int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5556{
5557	if (ata_is_host_link(link)) {
5558		int rc;
5559
5560		if (sata_scr_valid(link)) {
5561			rc = link->ap->ops->scr_write(link, reg, val);
5562			if (rc == 0)
5563				rc = link->ap->ops->scr_read(link, reg, &val);
5564			return rc;
5565		}
5566		return -EOPNOTSUPP;
5567	}
5568
5569	return sata_pmp_scr_write(link, reg, val);
5570}
5571
5572/**
5573 *	ata_phys_link_online - test whether the given link is online
5574 *	@link: ATA link to test
5575 *
5576 *	Test whether @link is online.  Note that this function returns
5577 *	0 if online status of @link cannot be obtained, so
5578 *	ata_link_online(link) != !ata_link_offline(link).
5579 *
5580 *	LOCKING:
5581 *	None.
5582 *
5583 *	RETURNS:
5584 *	True if the port online status is available and online.
5585 */
5586bool ata_phys_link_online(struct ata_link *link)
5587{
5588	u32 sstatus;
5589
5590	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5591	    ata_sstatus_online(sstatus))
5592		return true;
5593	return false;
5594}
5595
5596/**
5597 *	ata_phys_link_offline - test whether the given link is offline
5598 *	@link: ATA link to test
5599 *
5600 *	Test whether @link is offline.  Note that this function
5601 *	returns 0 if offline status of @link cannot be obtained, so
5602 *	ata_link_online(link) != !ata_link_offline(link).
5603 *
5604 *	LOCKING:
5605 *	None.
5606 *
5607 *	RETURNS:
5608 *	True if the port offline status is available and offline.
5609 */
5610bool ata_phys_link_offline(struct ata_link *link)
5611{
5612	u32 sstatus;
5613
5614	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5615	    !ata_sstatus_online(sstatus))
5616		return true;
5617	return false;
5618}
5619
5620/**
5621 *	ata_link_online - test whether the given link is online
5622 *	@link: ATA link to test
5623 *
5624 *	Test whether @link is online.  This is identical to
5625 *	ata_phys_link_online() when there's no slave link.  When
5626 *	there's a slave link, this function should only be called on
5627 *	the master link and will return true if any of M/S links is
5628 *	online.
5629 *
5630 *	LOCKING:
5631 *	None.
5632 *
5633 *	RETURNS:
5634 *	True if the port online status is available and online.
5635 */
5636bool ata_link_online(struct ata_link *link)
5637{
5638	struct ata_link *slave = link->ap->slave_link;
5639
5640	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5641
5642	return ata_phys_link_online(link) ||
5643		(slave && ata_phys_link_online(slave));
5644}
5645
5646/**
5647 *	ata_link_offline - test whether the given link is offline
5648 *	@link: ATA link to test
5649 *
5650 *	Test whether @link is offline.  This is identical to
5651 *	ata_phys_link_offline() when there's no slave link.  When
5652 *	there's a slave link, this function should only be called on
5653 *	the master link and will return true if both M/S links are
5654 *	offline.
5655 *
5656 *	LOCKING:
5657 *	None.
5658 *
5659 *	RETURNS:
5660 *	True if the port offline status is available and offline.
5661 */
5662bool ata_link_offline(struct ata_link *link)
5663{
5664	struct ata_link *slave = link->ap->slave_link;
5665
5666	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5667
5668	return ata_phys_link_offline(link) &&
5669		(!slave || ata_phys_link_offline(slave));
5670}
5671
5672#ifdef CONFIG_PM
5673static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5674				unsigned int action, unsigned int ehi_flags,
5675				bool async)
5676{
5677	struct ata_link *link;
5678	unsigned long flags;
5679
5680	/* Previous resume operation might still be in
5681	 * progress.  Wait for PM_PENDING to clear.
5682	 */
5683	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5684		ata_port_wait_eh(ap);
5685		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5686	}
5687
5688	/* request PM ops to EH */
5689	spin_lock_irqsave(ap->lock, flags);
5690
5691	ap->pm_mesg = mesg;
5692	ap->pflags |= ATA_PFLAG_PM_PENDING;
5693	ata_for_each_link(link, ap, HOST_FIRST) {
5694		link->eh_info.action |= action;
5695		link->eh_info.flags |= ehi_flags;
5696	}
5697
5698	ata_port_schedule_eh(ap);
5699
5700	spin_unlock_irqrestore(ap->lock, flags);
5701
5702	if (!async) {
5703		ata_port_wait_eh(ap);
5704		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5705	}
5706}
5707
5708/*
5709 * On some hardware, device fails to respond after spun down for suspend.  As
5710 * the device won't be used before being resumed, we don't need to touch the
5711 * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5712 *
5713 * http://thread.gmane.org/gmane.linux.ide/46764
5714 */
5715static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5716						 | ATA_EHI_NO_AUTOPSY
5717						 | ATA_EHI_NO_RECOVERY;
5718
5719static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5720{
5721	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5722}
5723
5724static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5725{
5726	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5727}
5728
5729static int ata_port_pm_suspend(struct device *dev)
5730{
5731	struct ata_port *ap = to_ata_port(dev);
5732
5733	if (pm_runtime_suspended(dev))
5734		return 0;
5735
5736	ata_port_suspend(ap, PMSG_SUSPEND);
5737	return 0;
5738}
5739
5740static int ata_port_pm_freeze(struct device *dev)
5741{
5742	struct ata_port *ap = to_ata_port(dev);
5743
5744	if (pm_runtime_suspended(dev))
5745		return 0;
5746
5747	ata_port_suspend(ap, PMSG_FREEZE);
5748	return 0;
5749}
5750
5751static int ata_port_pm_poweroff(struct device *dev)
5752{
5753	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5754	return 0;
5755}
5756
5757static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5758						| ATA_EHI_QUIET;
5759
5760static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5761{
5762	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5763}
5764
5765static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5766{
5767	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5768}
5769
5770static int ata_port_pm_resume(struct device *dev)
5771{
5772	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5773	pm_runtime_disable(dev);
5774	pm_runtime_set_active(dev);
5775	pm_runtime_enable(dev);
5776	return 0;
5777}
5778
5779/*
5780 * For ODDs, the upper layer will poll for media change every few seconds,
5781 * which will make it enter and leave suspend state every few seconds. And
5782 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5783 * is very little and the ODD may malfunction after constantly being reset.
5784 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5785 * ODD is attached to the port.
5786 */
5787static int ata_port_runtime_idle(struct device *dev)
5788{
5789	struct ata_port *ap = to_ata_port(dev);
5790	struct ata_link *link;
5791	struct ata_device *adev;
5792
5793	ata_for_each_link(link, ap, HOST_FIRST) {
5794		ata_for_each_dev(adev, link, ENABLED)
5795			if (adev->class == ATA_DEV_ATAPI &&
5796			    !zpodd_dev_enabled(adev))
5797				return -EBUSY;
5798	}
5799
5800	return 0;
5801}
5802
5803static int ata_port_runtime_suspend(struct device *dev)
5804{
5805	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5806	return 0;
5807}
5808
5809static int ata_port_runtime_resume(struct device *dev)
5810{
5811	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5812	return 0;
5813}
5814
5815static const struct dev_pm_ops ata_port_pm_ops = {
5816	.suspend = ata_port_pm_suspend,
5817	.resume = ata_port_pm_resume,
5818	.freeze = ata_port_pm_freeze,
5819	.thaw = ata_port_pm_resume,
5820	.poweroff = ata_port_pm_poweroff,
5821	.restore = ata_port_pm_resume,
5822
5823	.runtime_suspend = ata_port_runtime_suspend,
5824	.runtime_resume = ata_port_runtime_resume,
5825	.runtime_idle = ata_port_runtime_idle,
5826};
5827
5828/* sas ports don't participate in pm runtime management of ata_ports,
5829 * and need to resume ata devices at the domain level, not the per-port
5830 * level. sas suspend/resume is async to allow parallel port recovery
5831 * since sas has multiple ata_port instances per Scsi_Host.
5832 */
5833void ata_sas_port_suspend(struct ata_port *ap)
5834{
5835	ata_port_suspend_async(ap, PMSG_SUSPEND);
5836}
5837EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5838
5839void ata_sas_port_resume(struct ata_port *ap)
5840{
5841	ata_port_resume_async(ap, PMSG_RESUME);
5842}
5843EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5844
5845/**
5846 *	ata_host_suspend - suspend host
5847 *	@host: host to suspend
5848 *	@mesg: PM message
5849 *
5850 *	Suspend @host.  Actual operation is performed by port suspend.
5851 */
5852int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5853{
5854	host->dev->power.power_state = mesg;
5855	return 0;
5856}
5857
5858/**
5859 *	ata_host_resume - resume host
5860 *	@host: host to resume
5861 *
5862 *	Resume @host.  Actual operation is performed by port resume.
5863 */
5864void ata_host_resume(struct ata_host *host)
5865{
5866	host->dev->power.power_state = PMSG_ON;
5867}
5868#endif
5869
5870const struct device_type ata_port_type = {
5871	.name = "ata_port",
5872#ifdef CONFIG_PM
5873	.pm = &ata_port_pm_ops,
5874#endif
5875};
5876
5877/**
5878 *	ata_dev_init - Initialize an ata_device structure
5879 *	@dev: Device structure to initialize
5880 *
5881 *	Initialize @dev in preparation for probing.
5882 *
5883 *	LOCKING:
5884 *	Inherited from caller.
5885 */
5886void ata_dev_init(struct ata_device *dev)
5887{
5888	struct ata_link *link = ata_dev_phys_link(dev);
5889	struct ata_port *ap = link->ap;
5890	unsigned long flags;
5891
5892	/* SATA spd limit is bound to the attached device, reset together */
5893	link->sata_spd_limit = link->hw_sata_spd_limit;
5894	link->sata_spd = 0;
5895
5896	/* High bits of dev->flags are used to record warm plug
5897	 * requests which occur asynchronously.  Synchronize using
5898	 * host lock.
5899	 */
5900	spin_lock_irqsave(ap->lock, flags);
5901	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5902	dev->horkage = 0;
5903	spin_unlock_irqrestore(ap->lock, flags);
5904
5905	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5906	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5907	dev->pio_mask = UINT_MAX;
5908	dev->mwdma_mask = UINT_MAX;
5909	dev->udma_mask = UINT_MAX;
5910}
5911
5912/**
5913 *	ata_link_init - Initialize an ata_link structure
5914 *	@ap: ATA port link is attached to
5915 *	@link: Link structure to initialize
5916 *	@pmp: Port multiplier port number
5917 *
5918 *	Initialize @link.
5919 *
5920 *	LOCKING:
5921 *	Kernel thread context (may sleep)
5922 */
5923void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5924{
5925	int i;
5926
5927	/* clear everything except for devices */
5928	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5929	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5930
5931	link->ap = ap;
5932	link->pmp = pmp;
5933	link->active_tag = ATA_TAG_POISON;
5934	link->hw_sata_spd_limit = UINT_MAX;
5935
5936	/* can't use iterator, ap isn't initialized yet */
5937	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5938		struct ata_device *dev = &link->device[i];
5939
5940		dev->link = link;
5941		dev->devno = dev - link->device;
5942#ifdef CONFIG_ATA_ACPI
5943		dev->gtf_filter = ata_acpi_gtf_filter;
5944#endif
5945		ata_dev_init(dev);
5946	}
5947}
5948
5949/**
5950 *	sata_link_init_spd - Initialize link->sata_spd_limit
5951 *	@link: Link to configure sata_spd_limit for
5952 *
5953 *	Initialize @link->[hw_]sata_spd_limit to the currently
5954 *	configured value.
5955 *
5956 *	LOCKING:
5957 *	Kernel thread context (may sleep).
5958 *
5959 *	RETURNS:
5960 *	0 on success, -errno on failure.
5961 */
5962int sata_link_init_spd(struct ata_link *link)
5963{
5964	u8 spd;
5965	int rc;
5966
5967	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5968	if (rc)
5969		return rc;
5970
5971	spd = (link->saved_scontrol >> 4) & 0xf;
5972	if (spd)
5973		link->hw_sata_spd_limit &= (1 << spd) - 1;
5974
5975	ata_force_link_limits(link);
5976
5977	link->sata_spd_limit = link->hw_sata_spd_limit;
5978
5979	return 0;
5980}
5981
5982/**
5983 *	ata_port_alloc - allocate and initialize basic ATA port resources
5984 *	@host: ATA host this allocated port belongs to
5985 *
5986 *	Allocate and initialize basic ATA port resources.
5987 *
5988 *	RETURNS:
5989 *	Allocate ATA port on success, NULL on failure.
5990 *
5991 *	LOCKING:
5992 *	Inherited from calling layer (may sleep).
5993 */
5994struct ata_port *ata_port_alloc(struct ata_host *host)
5995{
5996	struct ata_port *ap;
5997
5998	DPRINTK("ENTER\n");
5999
6000	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6001	if (!ap)
6002		return NULL;
6003
6004	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
6005	ap->lock = &host->lock;
6006	ap->print_id = -1;
6007	ap->local_port_no = -1;
6008	ap->host = host;
6009	ap->dev = host->dev;
6010
6011#if defined(ATA_VERBOSE_DEBUG)
6012	/* turn on all debugging levels */
6013	ap->msg_enable = 0x00FF;
6014#elif defined(ATA_DEBUG)
6015	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6016#else
6017	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6018#endif
6019
6020	mutex_init(&ap->scsi_scan_mutex);
6021	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6022	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6023	INIT_LIST_HEAD(&ap->eh_done_q);
6024	init_waitqueue_head(&ap->eh_wait_q);
6025	init_completion(&ap->park_req_pending);
6026	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6027		    TIMER_DEFERRABLE);
6028
6029	ap->cbl = ATA_CBL_NONE;
6030
6031	ata_link_init(ap, &ap->link, 0);
6032
6033#ifdef ATA_IRQ_TRAP
6034	ap->stats.unhandled_irq = 1;
6035	ap->stats.idle_irq = 1;
6036#endif
6037	ata_sff_port_init(ap);
6038
6039	return ap;
6040}
6041
6042static void ata_devres_release(struct device *gendev, void *res)
6043{
6044	struct ata_host *host = dev_get_drvdata(gendev);
6045	int i;
6046
6047	for (i = 0; i < host->n_ports; i++) {
6048		struct ata_port *ap = host->ports[i];
6049
6050		if (!ap)
6051			continue;
6052
6053		if (ap->scsi_host)
6054			scsi_host_put(ap->scsi_host);
6055
6056	}
6057
6058	dev_set_drvdata(gendev, NULL);
6059	ata_host_put(host);
6060}
6061
6062static void ata_host_release(struct kref *kref)
6063{
6064	struct ata_host *host = container_of(kref, struct ata_host, kref);
6065	int i;
6066
6067	for (i = 0; i < host->n_ports; i++) {
6068		struct ata_port *ap = host->ports[i];
6069
6070		kfree(ap->pmp_link);
6071		kfree(ap->slave_link);
6072		kfree(ap);
6073		host->ports[i] = NULL;
6074	}
6075	kfree(host);
6076}
6077
6078void ata_host_get(struct ata_host *host)
6079{
6080	kref_get(&host->kref);
6081}
6082
6083void ata_host_put(struct ata_host *host)
6084{
6085	kref_put(&host->kref, ata_host_release);
6086}
6087
6088/**
6089 *	ata_host_alloc - allocate and init basic ATA host resources
6090 *	@dev: generic device this host is associated with
6091 *	@max_ports: maximum number of ATA ports associated with this host
6092 *
6093 *	Allocate and initialize basic ATA host resources.  LLD calls
6094 *	this function to allocate a host, initializes it fully and
6095 *	attaches it using ata_host_register().
6096 *
6097 *	@max_ports ports are allocated and host->n_ports is
6098 *	initialized to @max_ports.  The caller is allowed to decrease
6099 *	host->n_ports before calling ata_host_register().  The unused
6100 *	ports will be automatically freed on registration.
6101 *
6102 *	RETURNS:
6103 *	Allocate ATA host on success, NULL on failure.
6104 *
6105 *	LOCKING:
6106 *	Inherited from calling layer (may sleep).
6107 */
6108struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6109{
6110	struct ata_host *host;
6111	size_t sz;
6112	int i;
6113	void *dr;
6114
6115	DPRINTK("ENTER\n");
6116
6117	/* alloc a container for our list of ATA ports (buses) */
6118	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6119	host = kzalloc(sz, GFP_KERNEL);
6120	if (!host)
6121		return NULL;
6122
6123	if (!devres_open_group(dev, NULL, GFP_KERNEL))
6124		goto err_free;
6125
6126	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
6127	if (!dr)
6128		goto err_out;
6129
6130	devres_add(dev, dr);
6131	dev_set_drvdata(dev, host);
6132
6133	spin_lock_init(&host->lock);
6134	mutex_init(&host->eh_mutex);
6135	host->dev = dev;
6136	host->n_ports = max_ports;
6137	kref_init(&host->kref);
6138
6139	/* allocate ports bound to this host */
6140	for (i = 0; i < max_ports; i++) {
6141		struct ata_port *ap;
6142
6143		ap = ata_port_alloc(host);
6144		if (!ap)
6145			goto err_out;
6146
6147		ap->port_no = i;
6148		host->ports[i] = ap;
6149	}
6150
6151	devres_remove_group(dev, NULL);
6152	return host;
6153
6154 err_out:
6155	devres_release_group(dev, NULL);
6156 err_free:
6157	kfree(host);
6158	return NULL;
6159}
6160
6161/**
6162 *	ata_host_alloc_pinfo - alloc host and init with port_info array
6163 *	@dev: generic device this host is associated with
6164 *	@ppi: array of ATA port_info to initialize host with
6165 *	@n_ports: number of ATA ports attached to this host
6166 *
6167 *	Allocate ATA host and initialize with info from @ppi.  If NULL
6168 *	terminated, @ppi may contain fewer entries than @n_ports.  The
6169 *	last entry will be used for the remaining ports.
6170 *
6171 *	RETURNS:
6172 *	Allocate ATA host on success, NULL on failure.
6173 *
6174 *	LOCKING:
6175 *	Inherited from calling layer (may sleep).
6176 */
6177struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6178				      const struct ata_port_info * const * ppi,
6179				      int n_ports)
6180{
6181	const struct ata_port_info *pi;
6182	struct ata_host *host;
6183	int i, j;
6184
6185	host = ata_host_alloc(dev, n_ports);
6186	if (!host)
6187		return NULL;
6188
6189	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6190		struct ata_port *ap = host->ports[i];
6191
6192		if (ppi[j])
6193			pi = ppi[j++];
6194
6195		ap->pio_mask = pi->pio_mask;
6196		ap->mwdma_mask = pi->mwdma_mask;
6197		ap->udma_mask = pi->udma_mask;
6198		ap->flags |= pi->flags;
6199		ap->link.flags |= pi->link_flags;
6200		ap->ops = pi->port_ops;
6201
6202		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6203			host->ops = pi->port_ops;
6204	}
6205
6206	return host;
6207}
6208
6209/**
6210 *	ata_slave_link_init - initialize slave link
6211 *	@ap: port to initialize slave link for
6212 *
6213 *	Create and initialize slave link for @ap.  This enables slave
6214 *	link handling on the port.
6215 *
6216 *	In libata, a port contains links and a link contains devices.
6217 *	There is single host link but if a PMP is attached to it,
6218 *	there can be multiple fan-out links.  On SATA, there's usually
6219 *	a single device connected to a link but PATA and SATA
6220 *	controllers emulating TF based interface can have two - master
6221 *	and slave.
6222 *
6223 *	However, there are a few controllers which don't fit into this
6224 *	abstraction too well - SATA controllers which emulate TF
6225 *	interface with both master and slave devices but also have
6226 *	separate SCR register sets for each device.  These controllers
6227 *	need separate links for physical link handling
6228 *	(e.g. onlineness, link speed) but should be treated like a
6229 *	traditional M/S controller for everything else (e.g. command
6230 *	issue, softreset).
6231 *
6232 *	slave_link is libata's way of handling this class of
6233 *	controllers without impacting core layer too much.  For
6234 *	anything other than physical link handling, the default host
6235 *	link is used for both master and slave.  For physical link
6236 *	handling, separate @ap->slave_link is used.  All dirty details
6237 *	are implemented inside libata core layer.  From LLD's POV, the
6238 *	only difference is that prereset, hardreset and postreset are
6239 *	called once more for the slave link, so the reset sequence
6240 *	looks like the following.
6241 *
6242 *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6243 *	softreset(M) -> postreset(M) -> postreset(S)
6244 *
6245 *	Note that softreset is called only for the master.  Softreset
6246 *	resets both M/S by definition, so SRST on master should handle
6247 *	both (the standard method will work just fine).
6248 *
6249 *	LOCKING:
6250 *	Should be called before host is registered.
6251 *
6252 *	RETURNS:
6253 *	0 on success, -errno on failure.
6254 */
6255int ata_slave_link_init(struct ata_port *ap)
6256{
6257	struct ata_link *link;
6258
6259	WARN_ON(ap->slave_link);
6260	WARN_ON(ap->flags & ATA_FLAG_PMP);
6261
6262	link = kzalloc(sizeof(*link), GFP_KERNEL);
6263	if (!link)
6264		return -ENOMEM;
6265
6266	ata_link_init(ap, link, 1);
6267	ap->slave_link = link;
6268	return 0;
6269}
6270
6271static void ata_host_stop(struct device *gendev, void *res)
6272{
6273	struct ata_host *host = dev_get_drvdata(gendev);
6274	int i;
6275
6276	WARN_ON(!(host->flags & ATA_HOST_STARTED));
6277
6278	for (i = 0; i < host->n_ports; i++) {
6279		struct ata_port *ap = host->ports[i];
6280
6281		if (ap->ops->port_stop)
6282			ap->ops->port_stop(ap);
6283	}
6284
6285	if (host->ops->host_stop)
6286		host->ops->host_stop(host);
6287}
6288
6289/**
6290 *	ata_finalize_port_ops - finalize ata_port_operations
6291 *	@ops: ata_port_operations to finalize
6292 *
6293 *	An ata_port_operations can inherit from another ops and that
6294 *	ops can again inherit from another.  This can go on as many
6295 *	times as necessary as long as there is no loop in the
6296 *	inheritance chain.
6297 *
6298 *	Ops tables are finalized when the host is started.  NULL or
6299 *	unspecified entries are inherited from the closet ancestor
6300 *	which has the method and the entry is populated with it.
6301 *	After finalization, the ops table directly points to all the
6302 *	methods and ->inherits is no longer necessary and cleared.
6303 *
6304 *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6305 *
6306 *	LOCKING:
6307 *	None.
6308 */
6309static void ata_finalize_port_ops(struct ata_port_operations *ops)
6310{
6311	static DEFINE_SPINLOCK(lock);
6312	const struct ata_port_operations *cur;
6313	void **begin = (void **)ops;
6314	void **end = (void **)&ops->inherits;
6315	void **pp;
6316
6317	if (!ops || !ops->inherits)
6318		return;
6319
6320	spin_lock(&lock);
6321
6322	for (cur = ops->inherits; cur; cur = cur->inherits) {
6323		void **inherit = (void **)cur;
6324
6325		for (pp = begin; pp < end; pp++, inherit++)
6326			if (!*pp)
6327				*pp = *inherit;
6328	}
6329
6330	for (pp = begin; pp < end; pp++)
6331		if (IS_ERR(*pp))
6332			*pp = NULL;
6333
6334	ops->inherits = NULL;
6335
6336	spin_unlock(&lock);
6337}
6338
6339/**
6340 *	ata_host_start - start and freeze ports of an ATA host
6341 *	@host: ATA host to start ports for
6342 *
6343 *	Start and then freeze ports of @host.  Started status is
6344 *	recorded in host->flags, so this function can be called
6345 *	multiple times.  Ports are guaranteed to get started only
6346 *	once.  If host->ops isn't initialized yet, its set to the
6347 *	first non-dummy port ops.
6348 *
6349 *	LOCKING:
6350 *	Inherited from calling layer (may sleep).
6351 *
6352 *	RETURNS:
6353 *	0 if all ports are started successfully, -errno otherwise.
6354 */
6355int ata_host_start(struct ata_host *host)
6356{
6357	int have_stop = 0;
6358	void *start_dr = NULL;
6359	int i, rc;
6360
6361	if (host->flags & ATA_HOST_STARTED)
6362		return 0;
6363
6364	ata_finalize_port_ops(host->ops);
6365
6366	for (i = 0; i < host->n_ports; i++) {
6367		struct ata_port *ap = host->ports[i];
6368
6369		ata_finalize_port_ops(ap->ops);
6370
6371		if (!host->ops && !ata_port_is_dummy(ap))
6372			host->ops = ap->ops;
6373
6374		if (ap->ops->port_stop)
6375			have_stop = 1;
6376	}
6377
6378	if (host->ops->host_stop)
6379		have_stop = 1;
6380
6381	if (have_stop) {
6382		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6383		if (!start_dr)
6384			return -ENOMEM;
6385	}
6386
6387	for (i = 0; i < host->n_ports; i++) {
6388		struct ata_port *ap = host->ports[i];
6389
6390		if (ap->ops->port_start) {
6391			rc = ap->ops->port_start(ap);
6392			if (rc) {
6393				if (rc != -ENODEV)
6394					dev_err(host->dev,
6395						"failed to start port %d (errno=%d)\n",
6396						i, rc);
6397				goto err_out;
6398			}
6399		}
6400		ata_eh_freeze_port(ap);
6401	}
6402
6403	if (start_dr)
6404		devres_add(host->dev, start_dr);
6405	host->flags |= ATA_HOST_STARTED;
6406	return 0;
6407
6408 err_out:
6409	while (--i >= 0) {
6410		struct ata_port *ap = host->ports[i];
6411
6412		if (ap->ops->port_stop)
6413			ap->ops->port_stop(ap);
6414	}
6415	devres_free(start_dr);
6416	return rc;
6417}
6418
6419/**
6420 *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6421 *	@host:	host to initialize
6422 *	@dev:	device host is attached to
6423 *	@ops:	port_ops
6424 *
6425 */
6426void ata_host_init(struct ata_host *host, struct device *dev,
6427		   struct ata_port_operations *ops)
6428{
6429	spin_lock_init(&host->lock);
6430	mutex_init(&host->eh_mutex);
6431	host->n_tags = ATA_MAX_QUEUE - 1;
6432	host->dev = dev;
6433	host->ops = ops;
 
6434}
6435
6436void __ata_port_probe(struct ata_port *ap)
6437{
6438	struct ata_eh_info *ehi = &ap->link.eh_info;
6439	unsigned long flags;
6440
6441	/* kick EH for boot probing */
6442	spin_lock_irqsave(ap->lock, flags);
6443
6444	ehi->probe_mask |= ATA_ALL_DEVICES;
6445	ehi->action |= ATA_EH_RESET;
6446	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6447
6448	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6449	ap->pflags |= ATA_PFLAG_LOADING;
6450	ata_port_schedule_eh(ap);
6451
6452	spin_unlock_irqrestore(ap->lock, flags);
6453}
6454
6455int ata_port_probe(struct ata_port *ap)
6456{
6457	int rc = 0;
6458
6459	if (ap->ops->error_handler) {
6460		__ata_port_probe(ap);
6461		ata_port_wait_eh(ap);
6462	} else {
6463		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6464		rc = ata_bus_probe(ap);
6465		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6466	}
6467	return rc;
6468}
6469
6470
6471static void async_port_probe(void *data, async_cookie_t cookie)
6472{
6473	struct ata_port *ap = data;
6474
6475	/*
6476	 * If we're not allowed to scan this host in parallel,
6477	 * we need to wait until all previous scans have completed
6478	 * before going further.
6479	 * Jeff Garzik says this is only within a controller, so we
6480	 * don't need to wait for port 0, only for later ports.
6481	 */
6482	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6483		async_synchronize_cookie(cookie);
6484
6485	(void)ata_port_probe(ap);
6486
6487	/* in order to keep device order, we need to synchronize at this point */
6488	async_synchronize_cookie(cookie);
6489
6490	ata_scsi_scan_host(ap, 1);
6491}
6492
6493/**
6494 *	ata_host_register - register initialized ATA host
6495 *	@host: ATA host to register
6496 *	@sht: template for SCSI host
6497 *
6498 *	Register initialized ATA host.  @host is allocated using
6499 *	ata_host_alloc() and fully initialized by LLD.  This function
6500 *	starts ports, registers @host with ATA and SCSI layers and
6501 *	probe registered devices.
6502 *
6503 *	LOCKING:
6504 *	Inherited from calling layer (may sleep).
6505 *
6506 *	RETURNS:
6507 *	0 on success, -errno otherwise.
6508 */
6509int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6510{
6511	int i, rc;
6512
6513	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6514
6515	/* host must have been started */
6516	if (!(host->flags & ATA_HOST_STARTED)) {
6517		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6518		WARN_ON(1);
6519		return -EINVAL;
6520	}
6521
6522	/* Blow away unused ports.  This happens when LLD can't
6523	 * determine the exact number of ports to allocate at
6524	 * allocation time.
6525	 */
6526	for (i = host->n_ports; host->ports[i]; i++)
6527		kfree(host->ports[i]);
6528
6529	/* give ports names and add SCSI hosts */
6530	for (i = 0; i < host->n_ports; i++) {
6531		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6532		host->ports[i]->local_port_no = i + 1;
6533	}
6534
6535	/* Create associated sysfs transport objects  */
6536	for (i = 0; i < host->n_ports; i++) {
6537		rc = ata_tport_add(host->dev,host->ports[i]);
6538		if (rc) {
6539			goto err_tadd;
6540		}
6541	}
6542
6543	rc = ata_scsi_add_hosts(host, sht);
6544	if (rc)
6545		goto err_tadd;
6546
6547	/* set cable, sata_spd_limit and report */
6548	for (i = 0; i < host->n_ports; i++) {
6549		struct ata_port *ap = host->ports[i];
6550		unsigned long xfer_mask;
6551
6552		/* set SATA cable type if still unset */
6553		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6554			ap->cbl = ATA_CBL_SATA;
6555
6556		/* init sata_spd_limit to the current value */
6557		sata_link_init_spd(&ap->link);
6558		if (ap->slave_link)
6559			sata_link_init_spd(ap->slave_link);
6560
6561		/* print per-port info to dmesg */
6562		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6563					      ap->udma_mask);
6564
6565		if (!ata_port_is_dummy(ap)) {
6566			ata_port_info(ap, "%cATA max %s %s\n",
6567				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6568				      ata_mode_string(xfer_mask),
6569				      ap->link.eh_info.desc);
6570			ata_ehi_clear_desc(&ap->link.eh_info);
6571		} else
6572			ata_port_info(ap, "DUMMY\n");
6573	}
6574
6575	/* perform each probe asynchronously */
6576	for (i = 0; i < host->n_ports; i++) {
6577		struct ata_port *ap = host->ports[i];
6578		async_schedule(async_port_probe, ap);
6579	}
6580
6581	return 0;
6582
6583 err_tadd:
6584	while (--i >= 0) {
6585		ata_tport_delete(host->ports[i]);
6586	}
6587	return rc;
6588
6589}
6590
6591/**
6592 *	ata_host_activate - start host, request IRQ and register it
6593 *	@host: target ATA host
6594 *	@irq: IRQ to request
6595 *	@irq_handler: irq_handler used when requesting IRQ
6596 *	@irq_flags: irq_flags used when requesting IRQ
6597 *	@sht: scsi_host_template to use when registering the host
6598 *
6599 *	After allocating an ATA host and initializing it, most libata
6600 *	LLDs perform three steps to activate the host - start host,
6601 *	request IRQ and register it.  This helper takes necessary
6602 *	arguments and performs the three steps in one go.
6603 *
6604 *	An invalid IRQ skips the IRQ registration and expects the host to
6605 *	have set polling mode on the port. In this case, @irq_handler
6606 *	should be NULL.
6607 *
6608 *	LOCKING:
6609 *	Inherited from calling layer (may sleep).
6610 *
6611 *	RETURNS:
6612 *	0 on success, -errno otherwise.
6613 */
6614int ata_host_activate(struct ata_host *host, int irq,
6615		      irq_handler_t irq_handler, unsigned long irq_flags,
6616		      struct scsi_host_template *sht)
6617{
6618	int i, rc;
6619	char *irq_desc;
6620
6621	rc = ata_host_start(host);
6622	if (rc)
6623		return rc;
6624
6625	/* Special case for polling mode */
6626	if (!irq) {
6627		WARN_ON(irq_handler);
6628		return ata_host_register(host, sht);
6629	}
6630
6631	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6632				  dev_driver_string(host->dev),
6633				  dev_name(host->dev));
6634	if (!irq_desc)
6635		return -ENOMEM;
6636
6637	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6638			      irq_desc, host);
6639	if (rc)
6640		return rc;
6641
6642	for (i = 0; i < host->n_ports; i++)
6643		ata_port_desc(host->ports[i], "irq %d", irq);
6644
6645	rc = ata_host_register(host, sht);
6646	/* if failed, just free the IRQ and leave ports alone */
6647	if (rc)
6648		devm_free_irq(host->dev, irq, host);
6649
6650	return rc;
6651}
6652
6653/**
6654 *	ata_port_detach - Detach ATA port in preparation of device removal
6655 *	@ap: ATA port to be detached
6656 *
6657 *	Detach all ATA devices and the associated SCSI devices of @ap;
6658 *	then, remove the associated SCSI host.  @ap is guaranteed to
6659 *	be quiescent on return from this function.
6660 *
6661 *	LOCKING:
6662 *	Kernel thread context (may sleep).
6663 */
6664static void ata_port_detach(struct ata_port *ap)
6665{
6666	unsigned long flags;
6667	struct ata_link *link;
6668	struct ata_device *dev;
6669
6670	if (!ap->ops->error_handler)
6671		goto skip_eh;
6672
6673	/* tell EH we're leaving & flush EH */
6674	spin_lock_irqsave(ap->lock, flags);
6675	ap->pflags |= ATA_PFLAG_UNLOADING;
6676	ata_port_schedule_eh(ap);
6677	spin_unlock_irqrestore(ap->lock, flags);
6678
6679	/* wait till EH commits suicide */
6680	ata_port_wait_eh(ap);
6681
6682	/* it better be dead now */
6683	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6684
6685	cancel_delayed_work_sync(&ap->hotplug_task);
6686
6687 skip_eh:
6688	/* clean up zpodd on port removal */
6689	ata_for_each_link(link, ap, HOST_FIRST) {
6690		ata_for_each_dev(dev, link, ALL) {
6691			if (zpodd_dev_enabled(dev))
6692				zpodd_exit(dev);
6693		}
6694	}
6695	if (ap->pmp_link) {
6696		int i;
6697		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6698			ata_tlink_delete(&ap->pmp_link[i]);
6699	}
6700	/* remove the associated SCSI host */
6701	scsi_remove_host(ap->scsi_host);
6702	ata_tport_delete(ap);
6703}
6704
6705/**
6706 *	ata_host_detach - Detach all ports of an ATA host
6707 *	@host: Host to detach
6708 *
6709 *	Detach all ports of @host.
6710 *
6711 *	LOCKING:
6712 *	Kernel thread context (may sleep).
6713 */
6714void ata_host_detach(struct ata_host *host)
6715{
6716	int i;
6717
6718	for (i = 0; i < host->n_ports; i++)
6719		ata_port_detach(host->ports[i]);
6720
6721	/* the host is dead now, dissociate ACPI */
6722	ata_acpi_dissociate(host);
6723}
6724
6725#ifdef CONFIG_PCI
6726
6727/**
6728 *	ata_pci_remove_one - PCI layer callback for device removal
6729 *	@pdev: PCI device that was removed
6730 *
6731 *	PCI layer indicates to libata via this hook that hot-unplug or
6732 *	module unload event has occurred.  Detach all ports.  Resource
6733 *	release is handled via devres.
6734 *
6735 *	LOCKING:
6736 *	Inherited from PCI layer (may sleep).
6737 */
6738void ata_pci_remove_one(struct pci_dev *pdev)
6739{
6740	struct ata_host *host = pci_get_drvdata(pdev);
6741
6742	ata_host_detach(host);
6743}
6744
6745/* move to PCI subsystem */
6746int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6747{
6748	unsigned long tmp = 0;
6749
6750	switch (bits->width) {
6751	case 1: {
6752		u8 tmp8 = 0;
6753		pci_read_config_byte(pdev, bits->reg, &tmp8);
6754		tmp = tmp8;
6755		break;
6756	}
6757	case 2: {
6758		u16 tmp16 = 0;
6759		pci_read_config_word(pdev, bits->reg, &tmp16);
6760		tmp = tmp16;
6761		break;
6762	}
6763	case 4: {
6764		u32 tmp32 = 0;
6765		pci_read_config_dword(pdev, bits->reg, &tmp32);
6766		tmp = tmp32;
6767		break;
6768	}
6769
6770	default:
6771		return -EINVAL;
6772	}
6773
6774	tmp &= bits->mask;
6775
6776	return (tmp == bits->val) ? 1 : 0;
6777}
6778
6779#ifdef CONFIG_PM
6780void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6781{
6782	pci_save_state(pdev);
6783	pci_disable_device(pdev);
6784
6785	if (mesg.event & PM_EVENT_SLEEP)
6786		pci_set_power_state(pdev, PCI_D3hot);
6787}
6788
6789int ata_pci_device_do_resume(struct pci_dev *pdev)
6790{
6791	int rc;
6792
6793	pci_set_power_state(pdev, PCI_D0);
6794	pci_restore_state(pdev);
6795
6796	rc = pcim_enable_device(pdev);
6797	if (rc) {
6798		dev_err(&pdev->dev,
6799			"failed to enable device after resume (%d)\n", rc);
6800		return rc;
6801	}
6802
6803	pci_set_master(pdev);
6804	return 0;
6805}
6806
6807int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6808{
6809	struct ata_host *host = pci_get_drvdata(pdev);
6810	int rc = 0;
6811
6812	rc = ata_host_suspend(host, mesg);
6813	if (rc)
6814		return rc;
6815
6816	ata_pci_device_do_suspend(pdev, mesg);
6817
6818	return 0;
6819}
6820
6821int ata_pci_device_resume(struct pci_dev *pdev)
6822{
6823	struct ata_host *host = pci_get_drvdata(pdev);
6824	int rc;
6825
6826	rc = ata_pci_device_do_resume(pdev);
6827	if (rc == 0)
6828		ata_host_resume(host);
6829	return rc;
6830}
6831#endif /* CONFIG_PM */
6832
6833#endif /* CONFIG_PCI */
6834
6835/**
6836 *	ata_platform_remove_one - Platform layer callback for device removal
6837 *	@pdev: Platform device that was removed
6838 *
6839 *	Platform layer indicates to libata via this hook that hot-unplug or
6840 *	module unload event has occurred.  Detach all ports.  Resource
6841 *	release is handled via devres.
6842 *
6843 *	LOCKING:
6844 *	Inherited from platform layer (may sleep).
6845 */
6846int ata_platform_remove_one(struct platform_device *pdev)
6847{
6848	struct ata_host *host = platform_get_drvdata(pdev);
6849
6850	ata_host_detach(host);
6851
6852	return 0;
6853}
6854
6855static int __init ata_parse_force_one(char **cur,
6856				      struct ata_force_ent *force_ent,
6857				      const char **reason)
6858{
6859	static const struct ata_force_param force_tbl[] __initconst = {
6860		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6861		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6862		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6863		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6864		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6865		{ "sata",	.cbl		= ATA_CBL_SATA },
6866		{ "1.5Gbps",	.spd_limit	= 1 },
6867		{ "3.0Gbps",	.spd_limit	= 2 },
6868		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6869		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6870		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6871		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6872		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6873		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6874		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6875		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6876		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6877		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6878		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6879		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6880		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6881		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6882		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6883		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6884		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6885		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6886		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6887		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6888		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6889		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6890		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6891		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6892		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6893		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6894		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6895		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6896		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6897		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6898		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6899		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6900		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6901		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6902		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6903		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6904		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6905		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6906		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6907		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6908		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6909		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6910		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6911		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6912		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6913	};
6914	char *start = *cur, *p = *cur;
6915	char *id, *val, *endp;
6916	const struct ata_force_param *match_fp = NULL;
6917	int nr_matches = 0, i;
6918
6919	/* find where this param ends and update *cur */
6920	while (*p != '\0' && *p != ',')
6921		p++;
6922
6923	if (*p == '\0')
6924		*cur = p;
6925	else
6926		*cur = p + 1;
6927
6928	*p = '\0';
6929
6930	/* parse */
6931	p = strchr(start, ':');
6932	if (!p) {
6933		val = strstrip(start);
6934		goto parse_val;
6935	}
6936	*p = '\0';
6937
6938	id = strstrip(start);
6939	val = strstrip(p + 1);
6940
6941	/* parse id */
6942	p = strchr(id, '.');
6943	if (p) {
6944		*p++ = '\0';
6945		force_ent->device = simple_strtoul(p, &endp, 10);
6946		if (p == endp || *endp != '\0') {
6947			*reason = "invalid device";
6948			return -EINVAL;
6949		}
6950	}
6951
6952	force_ent->port = simple_strtoul(id, &endp, 10);
6953	if (id == endp || *endp != '\0') {
6954		*reason = "invalid port/link";
6955		return -EINVAL;
6956	}
6957
6958 parse_val:
6959	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6960	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6961		const struct ata_force_param *fp = &force_tbl[i];
6962
6963		if (strncasecmp(val, fp->name, strlen(val)))
6964			continue;
6965
6966		nr_matches++;
6967		match_fp = fp;
6968
6969		if (strcasecmp(val, fp->name) == 0) {
6970			nr_matches = 1;
6971			break;
6972		}
6973	}
6974
6975	if (!nr_matches) {
6976		*reason = "unknown value";
6977		return -EINVAL;
6978	}
6979	if (nr_matches > 1) {
6980		*reason = "ambiguous value";
6981		return -EINVAL;
6982	}
6983
6984	force_ent->param = *match_fp;
6985
6986	return 0;
6987}
6988
6989static void __init ata_parse_force_param(void)
6990{
6991	int idx = 0, size = 1;
6992	int last_port = -1, last_device = -1;
6993	char *p, *cur, *next;
6994
6995	/* calculate maximum number of params and allocate force_tbl */
6996	for (p = ata_force_param_buf; *p; p++)
6997		if (*p == ',')
6998			size++;
6999
7000	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
7001	if (!ata_force_tbl) {
7002		printk(KERN_WARNING "ata: failed to extend force table, "
7003		       "libata.force ignored\n");
7004		return;
7005	}
7006
7007	/* parse and populate the table */
7008	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7009		const char *reason = "";
7010		struct ata_force_ent te = { .port = -1, .device = -1 };
7011
7012		next = cur;
7013		if (ata_parse_force_one(&next, &te, &reason)) {
7014			printk(KERN_WARNING "ata: failed to parse force "
7015			       "parameter \"%s\" (%s)\n",
7016			       cur, reason);
7017			continue;
7018		}
7019
7020		if (te.port == -1) {
7021			te.port = last_port;
7022			te.device = last_device;
7023		}
7024
7025		ata_force_tbl[idx++] = te;
7026
7027		last_port = te.port;
7028		last_device = te.device;
7029	}
7030
7031	ata_force_tbl_size = idx;
7032}
7033
7034static int __init ata_init(void)
7035{
7036	int rc;
7037
7038	ata_parse_force_param();
7039
7040	rc = ata_sff_init();
7041	if (rc) {
7042		kfree(ata_force_tbl);
7043		return rc;
7044	}
7045
7046	libata_transport_init();
7047	ata_scsi_transport_template = ata_attach_transport();
7048	if (!ata_scsi_transport_template) {
7049		ata_sff_exit();
7050		rc = -ENOMEM;
7051		goto err_out;
7052	}
7053
7054	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7055	return 0;
7056
7057err_out:
7058	return rc;
7059}
7060
7061static void __exit ata_exit(void)
7062{
7063	ata_release_transport(ata_scsi_transport_template);
7064	libata_transport_exit();
7065	ata_sff_exit();
7066	kfree(ata_force_tbl);
7067}
7068
7069subsys_initcall(ata_init);
7070module_exit(ata_exit);
7071
7072static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7073
7074int ata_ratelimit(void)
7075{
7076	return __ratelimit(&ratelimit);
7077}
7078
7079/**
7080 *	ata_msleep - ATA EH owner aware msleep
7081 *	@ap: ATA port to attribute the sleep to
7082 *	@msecs: duration to sleep in milliseconds
7083 *
7084 *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
7085 *	ownership is released before going to sleep and reacquired
7086 *	after the sleep is complete.  IOW, other ports sharing the
7087 *	@ap->host will be allowed to own the EH while this task is
7088 *	sleeping.
7089 *
7090 *	LOCKING:
7091 *	Might sleep.
7092 */
7093void ata_msleep(struct ata_port *ap, unsigned int msecs)
7094{
7095	bool owns_eh = ap && ap->host->eh_owner == current;
7096
7097	if (owns_eh)
7098		ata_eh_release(ap);
7099
7100	if (msecs < 20) {
7101		unsigned long usecs = msecs * USEC_PER_MSEC;
7102		usleep_range(usecs, usecs + 50);
7103	} else {
7104		msleep(msecs);
7105	}
7106
7107	if (owns_eh)
7108		ata_eh_acquire(ap);
7109}
7110
7111/**
7112 *	ata_wait_register - wait until register value changes
7113 *	@ap: ATA port to wait register for, can be NULL
7114 *	@reg: IO-mapped register
7115 *	@mask: Mask to apply to read register value
7116 *	@val: Wait condition
7117 *	@interval: polling interval in milliseconds
7118 *	@timeout: timeout in milliseconds
7119 *
7120 *	Waiting for some bits of register to change is a common
7121 *	operation for ATA controllers.  This function reads 32bit LE
7122 *	IO-mapped register @reg and tests for the following condition.
7123 *
7124 *	(*@reg & mask) != val
7125 *
7126 *	If the condition is met, it returns; otherwise, the process is
7127 *	repeated after @interval_msec until timeout.
7128 *
7129 *	LOCKING:
7130 *	Kernel thread context (may sleep)
7131 *
7132 *	RETURNS:
7133 *	The final register value.
7134 */
7135u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7136		      unsigned long interval, unsigned long timeout)
7137{
7138	unsigned long deadline;
7139	u32 tmp;
7140
7141	tmp = ioread32(reg);
7142
7143	/* Calculate timeout _after_ the first read to make sure
7144	 * preceding writes reach the controller before starting to
7145	 * eat away the timeout.
7146	 */
7147	deadline = ata_deadline(jiffies, timeout);
7148
7149	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7150		ata_msleep(ap, interval);
7151		tmp = ioread32(reg);
7152	}
7153
7154	return tmp;
7155}
7156
7157/**
7158 *	sata_lpm_ignore_phy_events - test if PHY event should be ignored
7159 *	@link: Link receiving the event
7160 *
7161 *	Test whether the received PHY event has to be ignored or not.
7162 *
7163 *	LOCKING:
7164 *	None:
7165 *
7166 *	RETURNS:
7167 *	True if the event has to be ignored.
7168 */
7169bool sata_lpm_ignore_phy_events(struct ata_link *link)
7170{
7171	unsigned long lpm_timeout = link->last_lpm_change +
7172				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7173
7174	/* if LPM is enabled, PHYRDY doesn't mean anything */
7175	if (link->lpm_policy > ATA_LPM_MAX_POWER)
7176		return true;
7177
7178	/* ignore the first PHY event after the LPM policy changed
7179	 * as it is might be spurious
7180	 */
7181	if ((link->flags & ATA_LFLAG_CHANGED) &&
7182	    time_before(jiffies, lpm_timeout))
7183		return true;
7184
7185	return false;
7186}
7187EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7188
7189/*
7190 * Dummy port_ops
7191 */
7192static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7193{
7194	return AC_ERR_SYSTEM;
7195}
7196
7197static void ata_dummy_error_handler(struct ata_port *ap)
7198{
7199	/* truly dummy */
7200}
7201
7202struct ata_port_operations ata_dummy_port_ops = {
7203	.qc_prep		= ata_noop_qc_prep,
7204	.qc_issue		= ata_dummy_qc_issue,
7205	.error_handler		= ata_dummy_error_handler,
7206	.sched_eh		= ata_std_sched_eh,
7207	.end_eh			= ata_std_end_eh,
7208};
7209
7210const struct ata_port_info ata_dummy_port_info = {
7211	.port_ops		= &ata_dummy_port_ops,
7212};
7213
7214/*
7215 * Utility print functions
7216 */
7217void ata_port_printk(const struct ata_port *ap, const char *level,
7218		     const char *fmt, ...)
7219{
7220	struct va_format vaf;
7221	va_list args;
7222
7223	va_start(args, fmt);
7224
7225	vaf.fmt = fmt;
7226	vaf.va = &args;
7227
7228	printk("%sata%u: %pV", level, ap->print_id, &vaf);
7229
7230	va_end(args);
7231}
7232EXPORT_SYMBOL(ata_port_printk);
7233
7234void ata_link_printk(const struct ata_link *link, const char *level,
7235		     const char *fmt, ...)
7236{
7237	struct va_format vaf;
7238	va_list args;
7239
7240	va_start(args, fmt);
7241
7242	vaf.fmt = fmt;
7243	vaf.va = &args;
7244
7245	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7246		printk("%sata%u.%02u: %pV",
7247		       level, link->ap->print_id, link->pmp, &vaf);
7248	else
7249		printk("%sata%u: %pV",
7250		       level, link->ap->print_id, &vaf);
7251
7252	va_end(args);
7253}
7254EXPORT_SYMBOL(ata_link_printk);
7255
7256void ata_dev_printk(const struct ata_device *dev, const char *level,
7257		    const char *fmt, ...)
7258{
7259	struct va_format vaf;
7260	va_list args;
7261
7262	va_start(args, fmt);
7263
7264	vaf.fmt = fmt;
7265	vaf.va = &args;
7266
7267	printk("%sata%u.%02u: %pV",
7268	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7269	       &vaf);
7270
7271	va_end(args);
7272}
7273EXPORT_SYMBOL(ata_dev_printk);
7274
7275void ata_print_version(const struct device *dev, const char *version)
7276{
7277	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7278}
7279EXPORT_SYMBOL(ata_print_version);
7280
7281/*
7282 * libata is essentially a library of internal helper functions for
7283 * low-level ATA host controller drivers.  As such, the API/ABI is
7284 * likely to change as new drivers are added and updated.
7285 * Do not depend on ABI/API stability.
7286 */
7287EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7288EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7289EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7290EXPORT_SYMBOL_GPL(ata_base_port_ops);
7291EXPORT_SYMBOL_GPL(sata_port_ops);
7292EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7293EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7294EXPORT_SYMBOL_GPL(ata_link_next);
7295EXPORT_SYMBOL_GPL(ata_dev_next);
7296EXPORT_SYMBOL_GPL(ata_std_bios_param);
7297EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7298EXPORT_SYMBOL_GPL(ata_host_init);
7299EXPORT_SYMBOL_GPL(ata_host_alloc);
7300EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7301EXPORT_SYMBOL_GPL(ata_slave_link_init);
7302EXPORT_SYMBOL_GPL(ata_host_start);
7303EXPORT_SYMBOL_GPL(ata_host_register);
7304EXPORT_SYMBOL_GPL(ata_host_activate);
7305EXPORT_SYMBOL_GPL(ata_host_detach);
7306EXPORT_SYMBOL_GPL(ata_sg_init);
7307EXPORT_SYMBOL_GPL(ata_qc_complete);
7308EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7309EXPORT_SYMBOL_GPL(atapi_cmd_type);
7310EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7311EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7312EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7313EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7314EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7315EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7316EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7317EXPORT_SYMBOL_GPL(ata_mode_string);
7318EXPORT_SYMBOL_GPL(ata_id_xfermask);
7319EXPORT_SYMBOL_GPL(ata_do_set_mode);
7320EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7321EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7322EXPORT_SYMBOL_GPL(ata_dev_disable);
7323EXPORT_SYMBOL_GPL(sata_set_spd);
7324EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7325EXPORT_SYMBOL_GPL(sata_link_debounce);
7326EXPORT_SYMBOL_GPL(sata_link_resume);
7327EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7328EXPORT_SYMBOL_GPL(ata_std_prereset);
7329EXPORT_SYMBOL_GPL(sata_link_hardreset);
7330EXPORT_SYMBOL_GPL(sata_std_hardreset);
7331EXPORT_SYMBOL_GPL(ata_std_postreset);
7332EXPORT_SYMBOL_GPL(ata_dev_classify);
7333EXPORT_SYMBOL_GPL(ata_dev_pair);
7334EXPORT_SYMBOL_GPL(ata_ratelimit);
7335EXPORT_SYMBOL_GPL(ata_msleep);
7336EXPORT_SYMBOL_GPL(ata_wait_register);
7337EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7338EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7339EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7340EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7341EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7342EXPORT_SYMBOL_GPL(sata_scr_valid);
7343EXPORT_SYMBOL_GPL(sata_scr_read);
7344EXPORT_SYMBOL_GPL(sata_scr_write);
7345EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7346EXPORT_SYMBOL_GPL(ata_link_online);
7347EXPORT_SYMBOL_GPL(ata_link_offline);
7348#ifdef CONFIG_PM
7349EXPORT_SYMBOL_GPL(ata_host_suspend);
7350EXPORT_SYMBOL_GPL(ata_host_resume);
7351#endif /* CONFIG_PM */
7352EXPORT_SYMBOL_GPL(ata_id_string);
7353EXPORT_SYMBOL_GPL(ata_id_c_string);
7354EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7355EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7356
7357EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7358EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7359EXPORT_SYMBOL_GPL(ata_timing_compute);
7360EXPORT_SYMBOL_GPL(ata_timing_merge);
7361EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7362
7363#ifdef CONFIG_PCI
7364EXPORT_SYMBOL_GPL(pci_test_config_bits);
7365EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7366#ifdef CONFIG_PM
7367EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7368EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7369EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7370EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7371#endif /* CONFIG_PM */
7372#endif /* CONFIG_PCI */
7373
7374EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7375
7376EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7377EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7378EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7379EXPORT_SYMBOL_GPL(ata_port_desc);
7380#ifdef CONFIG_PCI
7381EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7382#endif /* CONFIG_PCI */
7383EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7384EXPORT_SYMBOL_GPL(ata_link_abort);
7385EXPORT_SYMBOL_GPL(ata_port_abort);
7386EXPORT_SYMBOL_GPL(ata_port_freeze);
7387EXPORT_SYMBOL_GPL(sata_async_notification);
7388EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7389EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7390EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7391EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7392EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7393EXPORT_SYMBOL_GPL(ata_do_eh);
7394EXPORT_SYMBOL_GPL(ata_std_error_handler);
7395
7396EXPORT_SYMBOL_GPL(ata_cable_40wire);
7397EXPORT_SYMBOL_GPL(ata_cable_80wire);
7398EXPORT_SYMBOL_GPL(ata_cable_unknown);
7399EXPORT_SYMBOL_GPL(ata_cable_ignore);
7400EXPORT_SYMBOL_GPL(ata_cable_sata);