Linux Audio

Check our new training course

Loading...
v5.4
  1/*  Generic MTRR (Memory Type Range Register) driver.
  2
  3    Copyright (C) 1997-2000  Richard Gooch
  4    Copyright (c) 2002	     Patrick Mochel
  5
  6    This library is free software; you can redistribute it and/or
  7    modify it under the terms of the GNU Library General Public
  8    License as published by the Free Software Foundation; either
  9    version 2 of the License, or (at your option) any later version.
 10
 11    This library is distributed in the hope that it will be useful,
 12    but WITHOUT ANY WARRANTY; without even the implied warranty of
 13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 14    Library General Public License for more details.
 15
 16    You should have received a copy of the GNU Library General Public
 17    License along with this library; if not, write to the Free
 18    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 19
 20    Richard Gooch may be reached by email at  rgooch@atnf.csiro.au
 21    The postal address is:
 22      Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
 23
 24    Source: "Pentium Pro Family Developer's Manual, Volume 3:
 25    Operating System Writer's Guide" (Intel document number 242692),
 26    section 11.11.7
 27
 28    This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
 29    on 6-7 March 2002.
 30    Source: Intel Architecture Software Developers Manual, Volume 3:
 31    System Programming Guide; Section 9.11. (1997 edition - PPro).
 32*/
 33
 34#define DEBUG
 35
 36#include <linux/types.h> /* FIXME: kvm_para.h needs this */
 37
 38#include <linux/stop_machine.h>
 39#include <linux/kvm_para.h>
 40#include <linux/uaccess.h>
 41#include <linux/export.h>
 42#include <linux/mutex.h>
 43#include <linux/init.h>
 44#include <linux/sort.h>
 45#include <linux/cpu.h>
 46#include <linux/pci.h>
 47#include <linux/smp.h>
 48#include <linux/syscore_ops.h>
 49#include <linux/rcupdate.h>
 50
 
 51#include <asm/cpufeature.h>
 52#include <asm/e820/api.h>
 53#include <asm/mtrr.h>
 54#include <asm/msr.h>
 55#include <asm/pat.h>
 56
 57#include "mtrr.h"
 58
 59/* arch_phys_wc_add returns an MTRR register index plus this offset. */
 60#define MTRR_TO_PHYS_WC_OFFSET 1000
 61
 62u32 num_var_ranges;
 63static bool __mtrr_enabled;
 64
 65static bool mtrr_enabled(void)
 66{
 67	return __mtrr_enabled;
 68}
 69
 70unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
 71static DEFINE_MUTEX(mtrr_mutex);
 72
 73u64 size_or_mask, size_and_mask;
 74static bool mtrr_aps_delayed_init;
 75
 76static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM] __ro_after_init;
 77
 78const struct mtrr_ops *mtrr_if;
 79
 80static void set_mtrr(unsigned int reg, unsigned long base,
 81		     unsigned long size, mtrr_type type);
 82
 83void __init set_mtrr_ops(const struct mtrr_ops *ops)
 84{
 85	if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
 86		mtrr_ops[ops->vendor] = ops;
 87}
 88
 89/*  Returns non-zero if we have the write-combining memory type  */
 90static int have_wrcomb(void)
 91{
 92	struct pci_dev *dev;
 93
 94	dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
 95	if (dev != NULL) {
 96		/*
 97		 * ServerWorks LE chipsets < rev 6 have problems with
 98		 * write-combining. Don't allow it and leave room for other
 99		 * chipsets to be tagged
100		 */
101		if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
102		    dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
103		    dev->revision <= 5) {
104			pr_info("Serverworks LE rev < 6 detected. Write-combining disabled.\n");
105			pci_dev_put(dev);
106			return 0;
107		}
108		/*
109		 * Intel 450NX errata # 23. Non ascending cacheline evictions to
110		 * write combining memory may resulting in data corruption
111		 */
112		if (dev->vendor == PCI_VENDOR_ID_INTEL &&
113		    dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
114			pr_info("Intel 450NX MMC detected. Write-combining disabled.\n");
115			pci_dev_put(dev);
116			return 0;
117		}
118		pci_dev_put(dev);
119	}
120	return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
121}
122
123/*  This function returns the number of variable MTRRs  */
124static void __init set_num_var_ranges(void)
125{
126	unsigned long config = 0, dummy;
127
128	if (use_intel())
129		rdmsr(MSR_MTRRcap, config, dummy);
130	else if (is_cpu(AMD) || is_cpu(HYGON))
131		config = 2;
132	else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
133		config = 8;
134
135	num_var_ranges = config & 0xff;
136}
137
138static void __init init_table(void)
139{
140	int i, max;
141
142	max = num_var_ranges;
143	for (i = 0; i < max; i++)
144		mtrr_usage_table[i] = 1;
145}
146
147struct set_mtrr_data {
148	unsigned long	smp_base;
149	unsigned long	smp_size;
150	unsigned int	smp_reg;
151	mtrr_type	smp_type;
152};
153
154/**
155 * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
156 * by all the CPUs.
157 * @info: pointer to mtrr configuration data
158 *
159 * Returns nothing.
160 */
161static int mtrr_rendezvous_handler(void *info)
162{
163	struct set_mtrr_data *data = info;
164
165	/*
166	 * We use this same function to initialize the mtrrs during boot,
167	 * resume, runtime cpu online and on an explicit request to set a
168	 * specific MTRR.
169	 *
170	 * During boot or suspend, the state of the boot cpu's mtrrs has been
171	 * saved, and we want to replicate that across all the cpus that come
172	 * online (either at the end of boot or resume or during a runtime cpu
173	 * online). If we're doing that, @reg is set to something special and on
174	 * all the cpu's we do mtrr_if->set_all() (On the logical cpu that
175	 * started the boot/resume sequence, this might be a duplicate
176	 * set_all()).
177	 */
178	if (data->smp_reg != ~0U) {
179		mtrr_if->set(data->smp_reg, data->smp_base,
180			     data->smp_size, data->smp_type);
181	} else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) {
182		mtrr_if->set_all();
183	}
184	return 0;
185}
186
187static inline int types_compatible(mtrr_type type1, mtrr_type type2)
188{
189	return type1 == MTRR_TYPE_UNCACHABLE ||
190	       type2 == MTRR_TYPE_UNCACHABLE ||
191	       (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
192	       (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
193}
194
195/**
196 * set_mtrr - update mtrrs on all processors
197 * @reg:	mtrr in question
198 * @base:	mtrr base
199 * @size:	mtrr size
200 * @type:	mtrr type
201 *
202 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
203 *
204 * 1. Queue work to do the following on all processors:
205 * 2. Disable Interrupts
206 * 3. Wait for all procs to do so
207 * 4. Enter no-fill cache mode
208 * 5. Flush caches
209 * 6. Clear PGE bit
210 * 7. Flush all TLBs
211 * 8. Disable all range registers
212 * 9. Update the MTRRs
213 * 10. Enable all range registers
214 * 11. Flush all TLBs and caches again
215 * 12. Enter normal cache mode and reenable caching
216 * 13. Set PGE
217 * 14. Wait for buddies to catch up
218 * 15. Enable interrupts.
219 *
220 * What does that mean for us? Well, stop_machine() will ensure that
221 * the rendezvous handler is started on each CPU. And in lockstep they
222 * do the state transition of disabling interrupts, updating MTRR's
223 * (the CPU vendors may each do it differently, so we call mtrr_if->set()
224 * callback and let them take care of it.) and enabling interrupts.
225 *
226 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
227 * becomes nops.
228 */
229static void
230set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
231{
232	struct set_mtrr_data data = { .smp_reg = reg,
233				      .smp_base = base,
234				      .smp_size = size,
235				      .smp_type = type
236				    };
237
238	stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
239}
240
241static void set_mtrr_cpuslocked(unsigned int reg, unsigned long base,
242				unsigned long size, mtrr_type type)
243{
244	struct set_mtrr_data data = { .smp_reg = reg,
245				      .smp_base = base,
246				      .smp_size = size,
247				      .smp_type = type
248				    };
249
250	stop_machine_cpuslocked(mtrr_rendezvous_handler, &data, cpu_online_mask);
251}
252
253static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base,
254				      unsigned long size, mtrr_type type)
255{
256	struct set_mtrr_data data = { .smp_reg = reg,
257				      .smp_base = base,
258				      .smp_size = size,
259				      .smp_type = type
260				    };
261
262	stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data,
263				       cpu_callout_mask);
264}
265
266/**
267 * mtrr_add_page - Add a memory type region
268 * @base: Physical base address of region in pages (in units of 4 kB!)
269 * @size: Physical size of region in pages (4 kB)
270 * @type: Type of MTRR desired
271 * @increment: If this is true do usage counting on the region
272 *
273 * Memory type region registers control the caching on newer Intel and
274 * non Intel processors. This function allows drivers to request an
275 * MTRR is added. The details and hardware specifics of each processor's
276 * implementation are hidden from the caller, but nevertheless the
277 * caller should expect to need to provide a power of two size on an
278 * equivalent power of two boundary.
279 *
280 * If the region cannot be added either because all regions are in use
281 * or the CPU cannot support it a negative value is returned. On success
282 * the register number for this entry is returned, but should be treated
283 * as a cookie only.
284 *
285 * On a multiprocessor machine the changes are made to all processors.
286 * This is required on x86 by the Intel processors.
287 *
288 * The available types are
289 *
290 * %MTRR_TYPE_UNCACHABLE - No caching
291 *
292 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
293 *
294 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
295 *
296 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
297 *
298 * BUGS: Needs a quiet flag for the cases where drivers do not mind
299 * failures and do not wish system log messages to be sent.
300 */
301int mtrr_add_page(unsigned long base, unsigned long size,
302		  unsigned int type, bool increment)
303{
304	unsigned long lbase, lsize;
305	int i, replace, error;
306	mtrr_type ltype;
307
308	if (!mtrr_enabled())
309		return -ENXIO;
310
311	error = mtrr_if->validate_add_page(base, size, type);
312	if (error)
313		return error;
314
315	if (type >= MTRR_NUM_TYPES) {
316		pr_warn("type: %u invalid\n", type);
317		return -EINVAL;
318	}
319
320	/* If the type is WC, check that this processor supports it */
321	if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
322		pr_warn("your processor doesn't support write-combining\n");
323		return -ENOSYS;
324	}
325
326	if (!size) {
327		pr_warn("zero sized request\n");
328		return -EINVAL;
329	}
330
331	if ((base | (base + size - 1)) >>
332	    (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
333		pr_warn("base or size exceeds the MTRR width\n");
334		return -EINVAL;
335	}
336
337	error = -EINVAL;
338	replace = -1;
339
340	/* No CPU hotplug when we change MTRR entries */
341	get_online_cpus();
342
343	/* Search for existing MTRR  */
344	mutex_lock(&mtrr_mutex);
345	for (i = 0; i < num_var_ranges; ++i) {
346		mtrr_if->get(i, &lbase, &lsize, &ltype);
347		if (!lsize || base > lbase + lsize - 1 ||
348		    base + size - 1 < lbase)
349			continue;
350		/*
351		 * At this point we know there is some kind of
352		 * overlap/enclosure
353		 */
354		if (base < lbase || base + size - 1 > lbase + lsize - 1) {
355			if (base <= lbase &&
356			    base + size - 1 >= lbase + lsize - 1) {
357				/*  New region encloses an existing region  */
358				if (type == ltype) {
359					replace = replace == -1 ? i : -2;
360					continue;
361				} else if (types_compatible(type, ltype))
362					continue;
363			}
364			pr_warn("0x%lx000,0x%lx000 overlaps existing 0x%lx000,0x%lx000\n", base, size, lbase,
365				lsize);
366			goto out;
367		}
368		/* New region is enclosed by an existing region */
369		if (ltype != type) {
370			if (types_compatible(type, ltype))
371				continue;
372			pr_warn("type mismatch for %lx000,%lx000 old: %s new: %s\n",
373				base, size, mtrr_attrib_to_str(ltype),
374				mtrr_attrib_to_str(type));
375			goto out;
376		}
377		if (increment)
378			++mtrr_usage_table[i];
379		error = i;
380		goto out;
381	}
382	/* Search for an empty MTRR */
383	i = mtrr_if->get_free_region(base, size, replace);
384	if (i >= 0) {
385		set_mtrr_cpuslocked(i, base, size, type);
386		if (likely(replace < 0)) {
387			mtrr_usage_table[i] = 1;
388		} else {
389			mtrr_usage_table[i] = mtrr_usage_table[replace];
390			if (increment)
391				mtrr_usage_table[i]++;
392			if (unlikely(replace != i)) {
393				set_mtrr_cpuslocked(replace, 0, 0, 0);
394				mtrr_usage_table[replace] = 0;
395			}
396		}
397	} else {
398		pr_info("no more MTRRs available\n");
399	}
400	error = i;
401 out:
402	mutex_unlock(&mtrr_mutex);
403	put_online_cpus();
404	return error;
405}
406
407static int mtrr_check(unsigned long base, unsigned long size)
408{
409	if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
410		pr_warn("size and base must be multiples of 4 kiB\n");
411		pr_debug("size: 0x%lx  base: 0x%lx\n", size, base);
412		dump_stack();
413		return -1;
414	}
415	return 0;
416}
417
418/**
419 * mtrr_add - Add a memory type region
420 * @base: Physical base address of region
421 * @size: Physical size of region
422 * @type: Type of MTRR desired
423 * @increment: If this is true do usage counting on the region
424 *
425 * Memory type region registers control the caching on newer Intel and
426 * non Intel processors. This function allows drivers to request an
427 * MTRR is added. The details and hardware specifics of each processor's
428 * implementation are hidden from the caller, but nevertheless the
429 * caller should expect to need to provide a power of two size on an
430 * equivalent power of two boundary.
431 *
432 * If the region cannot be added either because all regions are in use
433 * or the CPU cannot support it a negative value is returned. On success
434 * the register number for this entry is returned, but should be treated
435 * as a cookie only.
436 *
437 * On a multiprocessor machine the changes are made to all processors.
438 * This is required on x86 by the Intel processors.
439 *
440 * The available types are
441 *
442 * %MTRR_TYPE_UNCACHABLE - No caching
443 *
444 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
445 *
446 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
447 *
448 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
449 *
450 * BUGS: Needs a quiet flag for the cases where drivers do not mind
451 * failures and do not wish system log messages to be sent.
452 */
453int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
454	     bool increment)
455{
456	if (!mtrr_enabled())
457		return -ENODEV;
458	if (mtrr_check(base, size))
459		return -EINVAL;
460	return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
461			     increment);
462}
463
464/**
465 * mtrr_del_page - delete a memory type region
466 * @reg: Register returned by mtrr_add
467 * @base: Physical base address
468 * @size: Size of region
469 *
470 * If register is supplied then base and size are ignored. This is
471 * how drivers should call it.
472 *
473 * Releases an MTRR region. If the usage count drops to zero the
474 * register is freed and the region returns to default state.
475 * On success the register is returned, on failure a negative error
476 * code.
477 */
478int mtrr_del_page(int reg, unsigned long base, unsigned long size)
479{
480	int i, max;
481	mtrr_type ltype;
482	unsigned long lbase, lsize;
483	int error = -EINVAL;
484
485	if (!mtrr_enabled())
486		return -ENODEV;
487
488	max = num_var_ranges;
489	/* No CPU hotplug when we change MTRR entries */
490	get_online_cpus();
491	mutex_lock(&mtrr_mutex);
492	if (reg < 0) {
493		/*  Search for existing MTRR  */
494		for (i = 0; i < max; ++i) {
495			mtrr_if->get(i, &lbase, &lsize, &ltype);
496			if (lbase == base && lsize == size) {
497				reg = i;
498				break;
499			}
500		}
501		if (reg < 0) {
502			pr_debug("no MTRR for %lx000,%lx000 found\n",
503				 base, size);
504			goto out;
505		}
506	}
507	if (reg >= max) {
508		pr_warn("register: %d too big\n", reg);
509		goto out;
510	}
511	mtrr_if->get(reg, &lbase, &lsize, &ltype);
512	if (lsize < 1) {
513		pr_warn("MTRR %d not used\n", reg);
514		goto out;
515	}
516	if (mtrr_usage_table[reg] < 1) {
517		pr_warn("reg: %d has count=0\n", reg);
518		goto out;
519	}
520	if (--mtrr_usage_table[reg] < 1)
521		set_mtrr_cpuslocked(reg, 0, 0, 0);
522	error = reg;
523 out:
524	mutex_unlock(&mtrr_mutex);
525	put_online_cpus();
526	return error;
527}
528
529/**
530 * mtrr_del - delete a memory type region
531 * @reg: Register returned by mtrr_add
532 * @base: Physical base address
533 * @size: Size of region
534 *
535 * If register is supplied then base and size are ignored. This is
536 * how drivers should call it.
537 *
538 * Releases an MTRR region. If the usage count drops to zero the
539 * register is freed and the region returns to default state.
540 * On success the register is returned, on failure a negative error
541 * code.
542 */
543int mtrr_del(int reg, unsigned long base, unsigned long size)
544{
545	if (!mtrr_enabled())
546		return -ENODEV;
547	if (mtrr_check(base, size))
548		return -EINVAL;
549	return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
550}
551
552/**
553 * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
554 * @base: Physical base address
555 * @size: Size of region
556 *
557 * If PAT is available, this does nothing.  If PAT is unavailable, it
558 * attempts to add a WC MTRR covering size bytes starting at base and
559 * logs an error if this fails.
560 *
561 * The called should provide a power of two size on an equivalent
562 * power of two boundary.
563 *
564 * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
565 * but drivers should not try to interpret that return value.
566 */
567int arch_phys_wc_add(unsigned long base, unsigned long size)
568{
569	int ret;
570
571	if (pat_enabled() || !mtrr_enabled())
572		return 0;  /* Success!  (We don't need to do anything.) */
573
574	ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
575	if (ret < 0) {
576		pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
577			(void *)base, (void *)(base + size - 1));
578		return ret;
579	}
580	return ret + MTRR_TO_PHYS_WC_OFFSET;
581}
582EXPORT_SYMBOL(arch_phys_wc_add);
583
584/*
585 * arch_phys_wc_del - undoes arch_phys_wc_add
586 * @handle: Return value from arch_phys_wc_add
587 *
588 * This cleans up after mtrr_add_wc_if_needed.
589 *
590 * The API guarantees that mtrr_del_wc_if_needed(error code) and
591 * mtrr_del_wc_if_needed(0) do nothing.
592 */
593void arch_phys_wc_del(int handle)
594{
595	if (handle >= 1) {
596		WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
597		mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
598	}
599}
600EXPORT_SYMBOL(arch_phys_wc_del);
601
602/*
603 * arch_phys_wc_index - translates arch_phys_wc_add's return value
604 * @handle: Return value from arch_phys_wc_add
605 *
606 * This will turn the return value from arch_phys_wc_add into an mtrr
607 * index suitable for debugging.
608 *
609 * Note: There is no legitimate use for this function, except possibly
610 * in printk line.  Alas there is an illegitimate use in some ancient
611 * drm ioctls.
612 */
613int arch_phys_wc_index(int handle)
614{
615	if (handle < MTRR_TO_PHYS_WC_OFFSET)
616		return -1;
617	else
618		return handle - MTRR_TO_PHYS_WC_OFFSET;
619}
620EXPORT_SYMBOL_GPL(arch_phys_wc_index);
621
622/*
623 * HACK ALERT!
624 * These should be called implicitly, but we can't yet until all the initcall
625 * stuff is done...
626 */
627static void __init init_ifs(void)
628{
629#ifndef CONFIG_X86_64
630	amd_init_mtrr();
631	cyrix_init_mtrr();
632	centaur_init_mtrr();
633#endif
634}
635
636/* The suspend/resume methods are only for CPU without MTRR. CPU using generic
637 * MTRR driver doesn't require this
638 */
639struct mtrr_value {
640	mtrr_type	ltype;
641	unsigned long	lbase;
642	unsigned long	lsize;
643};
644
645static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
646
647static int mtrr_save(void)
648{
649	int i;
650
651	for (i = 0; i < num_var_ranges; i++) {
652		mtrr_if->get(i, &mtrr_value[i].lbase,
653				&mtrr_value[i].lsize,
654				&mtrr_value[i].ltype);
655	}
656	return 0;
657}
658
659static void mtrr_restore(void)
660{
661	int i;
662
663	for (i = 0; i < num_var_ranges; i++) {
664		if (mtrr_value[i].lsize) {
665			set_mtrr(i, mtrr_value[i].lbase,
666				    mtrr_value[i].lsize,
667				    mtrr_value[i].ltype);
668		}
669	}
670}
671
672
673
674static struct syscore_ops mtrr_syscore_ops = {
675	.suspend	= mtrr_save,
676	.resume		= mtrr_restore,
677};
678
679int __initdata changed_by_mtrr_cleanup;
680
681#define SIZE_OR_MASK_BITS(n)  (~((1ULL << ((n) - PAGE_SHIFT)) - 1))
682/**
683 * mtrr_bp_init - initialize mtrrs on the boot CPU
684 *
685 * This needs to be called early; before any of the other CPUs are
686 * initialized (i.e. before smp_init()).
687 *
688 */
689void __init mtrr_bp_init(void)
690{
 
691	u32 phys_addr;
692
693	init_ifs();
694
695	phys_addr = 32;
696
697	if (boot_cpu_has(X86_FEATURE_MTRR)) {
698		mtrr_if = &generic_mtrr_ops;
699		size_or_mask = SIZE_OR_MASK_BITS(36);
700		size_and_mask = 0x00f00000;
701		phys_addr = 36;
702
703		/*
704		 * This is an AMD specific MSR, but we assume(hope?) that
705		 * Intel will implement it too when they extend the address
706		 * bus of the Xeon.
707		 */
708		if (cpuid_eax(0x80000000) >= 0x80000008) {
709			phys_addr = cpuid_eax(0x80000008) & 0xff;
710			/* CPUID workaround for Intel 0F33/0F34 CPU */
711			if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
712			    boot_cpu_data.x86 == 0xF &&
713			    boot_cpu_data.x86_model == 0x3 &&
714			    (boot_cpu_data.x86_stepping == 0x3 ||
715			     boot_cpu_data.x86_stepping == 0x4))
716				phys_addr = 36;
717
718			size_or_mask = SIZE_OR_MASK_BITS(phys_addr);
719			size_and_mask = ~size_or_mask & 0xfffff00000ULL;
720		} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
721			   boot_cpu_data.x86 == 6) {
722			/*
723			 * VIA C* family have Intel style MTRRs,
724			 * but don't support PAE
725			 */
726			size_or_mask = SIZE_OR_MASK_BITS(32);
727			size_and_mask = 0;
728			phys_addr = 32;
729		}
730	} else {
731		switch (boot_cpu_data.x86_vendor) {
732		case X86_VENDOR_AMD:
733			if (cpu_feature_enabled(X86_FEATURE_K6_MTRR)) {
734				/* Pre-Athlon (K6) AMD CPU MTRRs */
735				mtrr_if = mtrr_ops[X86_VENDOR_AMD];
736				size_or_mask = SIZE_OR_MASK_BITS(32);
737				size_and_mask = 0;
738			}
739			break;
740		case X86_VENDOR_CENTAUR:
741			if (cpu_feature_enabled(X86_FEATURE_CENTAUR_MCR)) {
742				mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
743				size_or_mask = SIZE_OR_MASK_BITS(32);
744				size_and_mask = 0;
745			}
746			break;
747		case X86_VENDOR_CYRIX:
748			if (cpu_feature_enabled(X86_FEATURE_CYRIX_ARR)) {
749				mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
750				size_or_mask = SIZE_OR_MASK_BITS(32);
751				size_and_mask = 0;
752			}
753			break;
754		default:
755			break;
756		}
757	}
758
759	if (mtrr_if) {
760		__mtrr_enabled = true;
761		set_num_var_ranges();
762		init_table();
763		if (use_intel()) {
764			/* BIOS may override */
765			__mtrr_enabled = get_mtrr_state();
766
767			if (mtrr_enabled())
768				mtrr_bp_pat_init();
769
770			if (mtrr_cleanup(phys_addr)) {
771				changed_by_mtrr_cleanup = 1;
772				mtrr_if->set_all();
773			}
774		}
775	}
776
777	if (!mtrr_enabled()) {
778		pr_info("Disabled\n");
779
780		/*
781		 * PAT initialization relies on MTRR's rendezvous handler.
782		 * Skip PAT init until the handler can initialize both
783		 * features independently.
784		 */
785		pat_disable("MTRRs disabled, skipping PAT initialization too.");
786	}
787}
788
789void mtrr_ap_init(void)
790{
791	if (!mtrr_enabled())
792		return;
793
794	if (!use_intel() || mtrr_aps_delayed_init)
795		return;
796
797	rcu_cpu_starting(smp_processor_id());
798
799	/*
800	 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
801	 * changed, but this routine will be called in cpu boot time,
802	 * holding the lock breaks it.
803	 *
804	 * This routine is called in two cases:
805	 *
806	 *   1. very earily time of software resume, when there absolutely
807	 *      isn't mtrr entry changes;
808	 *
809	 *   2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
810	 *      lock to prevent mtrr entry changes
811	 */
812	set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
813}
814
815/**
816 * Save current fixed-range MTRR state of the first cpu in cpu_online_mask.
 
817 */
818void mtrr_save_state(void)
819{
820	int first_cpu;
821
822	if (!mtrr_enabled())
823		return;
824
825	first_cpu = cpumask_first(cpu_online_mask);
826	smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
827}
828
829void set_mtrr_aps_delayed_init(void)
830{
831	if (!mtrr_enabled())
832		return;
833	if (!use_intel())
834		return;
835
836	mtrr_aps_delayed_init = true;
837}
838
839/*
840 * Delayed MTRR initialization for all AP's
841 */
842void mtrr_aps_init(void)
843{
844	if (!use_intel() || !mtrr_enabled())
845		return;
846
847	/*
848	 * Check if someone has requested the delay of AP MTRR initialization,
849	 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
850	 * then we are done.
851	 */
852	if (!mtrr_aps_delayed_init)
853		return;
854
855	set_mtrr(~0U, 0, 0, 0);
856	mtrr_aps_delayed_init = false;
857}
858
859void mtrr_bp_restore(void)
860{
861	if (!use_intel() || !mtrr_enabled())
862		return;
863
864	mtrr_if->set_all();
865}
866
867static int __init mtrr_init_finialize(void)
868{
869	if (!mtrr_enabled())
870		return 0;
871
872	if (use_intel()) {
873		if (!changed_by_mtrr_cleanup)
874			mtrr_state_warn();
875		return 0;
876	}
877
878	/*
879	 * The CPU has no MTRR and seems to not support SMP. They have
880	 * specific drivers, we use a tricky method to support
881	 * suspend/resume for them.
882	 *
883	 * TBD: is there any system with such CPU which supports
884	 * suspend/resume? If no, we should remove the code.
885	 */
886	register_syscore_ops(&mtrr_syscore_ops);
887
888	return 0;
889}
890subsys_initcall(mtrr_init_finialize);
v6.2
  1/*  Generic MTRR (Memory Type Range Register) driver.
  2
  3    Copyright (C) 1997-2000  Richard Gooch
  4    Copyright (c) 2002	     Patrick Mochel
  5
  6    This library is free software; you can redistribute it and/or
  7    modify it under the terms of the GNU Library General Public
  8    License as published by the Free Software Foundation; either
  9    version 2 of the License, or (at your option) any later version.
 10
 11    This library is distributed in the hope that it will be useful,
 12    but WITHOUT ANY WARRANTY; without even the implied warranty of
 13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 14    Library General Public License for more details.
 15
 16    You should have received a copy of the GNU Library General Public
 17    License along with this library; if not, write to the Free
 18    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 19
 20    Richard Gooch may be reached by email at  rgooch@atnf.csiro.au
 21    The postal address is:
 22      Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
 23
 24    Source: "Pentium Pro Family Developer's Manual, Volume 3:
 25    Operating System Writer's Guide" (Intel document number 242692),
 26    section 11.11.7
 27
 28    This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
 29    on 6-7 March 2002.
 30    Source: Intel Architecture Software Developers Manual, Volume 3:
 31    System Programming Guide; Section 9.11. (1997 edition - PPro).
 32*/
 33
 
 
 34#include <linux/types.h> /* FIXME: kvm_para.h needs this */
 35
 36#include <linux/stop_machine.h>
 37#include <linux/kvm_para.h>
 38#include <linux/uaccess.h>
 39#include <linux/export.h>
 40#include <linux/mutex.h>
 41#include <linux/init.h>
 42#include <linux/sort.h>
 43#include <linux/cpu.h>
 44#include <linux/pci.h>
 45#include <linux/smp.h>
 46#include <linux/syscore_ops.h>
 47#include <linux/rcupdate.h>
 48
 49#include <asm/cacheinfo.h>
 50#include <asm/cpufeature.h>
 51#include <asm/e820/api.h>
 52#include <asm/mtrr.h>
 53#include <asm/msr.h>
 54#include <asm/memtype.h>
 55
 56#include "mtrr.h"
 57
 58/* arch_phys_wc_add returns an MTRR register index plus this offset. */
 59#define MTRR_TO_PHYS_WC_OFFSET 1000
 60
 61u32 num_var_ranges;
 
 
 62static bool mtrr_enabled(void)
 63{
 64	return !!mtrr_if;
 65}
 66
 67unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
 68static DEFINE_MUTEX(mtrr_mutex);
 69
 70u64 size_or_mask, size_and_mask;
 
 
 
 71
 72const struct mtrr_ops *mtrr_if;
 73
 
 
 
 
 
 
 
 
 
 74/*  Returns non-zero if we have the write-combining memory type  */
 75static int have_wrcomb(void)
 76{
 77	struct pci_dev *dev;
 78
 79	dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
 80	if (dev != NULL) {
 81		/*
 82		 * ServerWorks LE chipsets < rev 6 have problems with
 83		 * write-combining. Don't allow it and leave room for other
 84		 * chipsets to be tagged
 85		 */
 86		if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
 87		    dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
 88		    dev->revision <= 5) {
 89			pr_info("Serverworks LE rev < 6 detected. Write-combining disabled.\n");
 90			pci_dev_put(dev);
 91			return 0;
 92		}
 93		/*
 94		 * Intel 450NX errata # 23. Non ascending cacheline evictions to
 95		 * write combining memory may resulting in data corruption
 96		 */
 97		if (dev->vendor == PCI_VENDOR_ID_INTEL &&
 98		    dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
 99			pr_info("Intel 450NX MMC detected. Write-combining disabled.\n");
100			pci_dev_put(dev);
101			return 0;
102		}
103		pci_dev_put(dev);
104	}
105	return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
106}
107
108/*  This function returns the number of variable MTRRs  */
109static void __init set_num_var_ranges(bool use_generic)
110{
111	unsigned long config = 0, dummy;
112
113	if (use_generic)
114		rdmsr(MSR_MTRRcap, config, dummy);
115	else if (is_cpu(AMD) || is_cpu(HYGON))
116		config = 2;
117	else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
118		config = 8;
119
120	num_var_ranges = config & 0xff;
121}
122
123static void __init init_table(void)
124{
125	int i, max;
126
127	max = num_var_ranges;
128	for (i = 0; i < max; i++)
129		mtrr_usage_table[i] = 1;
130}
131
132struct set_mtrr_data {
133	unsigned long	smp_base;
134	unsigned long	smp_size;
135	unsigned int	smp_reg;
136	mtrr_type	smp_type;
137};
138
139/**
140 * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
141 * by all the CPUs.
142 * @info: pointer to mtrr configuration data
143 *
144 * Returns nothing.
145 */
146static int mtrr_rendezvous_handler(void *info)
147{
148	struct set_mtrr_data *data = info;
149
150	mtrr_if->set(data->smp_reg, data->smp_base,
151		     data->smp_size, data->smp_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152	return 0;
153}
154
155static inline int types_compatible(mtrr_type type1, mtrr_type type2)
156{
157	return type1 == MTRR_TYPE_UNCACHABLE ||
158	       type2 == MTRR_TYPE_UNCACHABLE ||
159	       (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
160	       (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
161}
162
163/**
164 * set_mtrr - update mtrrs on all processors
165 * @reg:	mtrr in question
166 * @base:	mtrr base
167 * @size:	mtrr size
168 * @type:	mtrr type
169 *
170 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
171 *
172 * 1. Queue work to do the following on all processors:
173 * 2. Disable Interrupts
174 * 3. Wait for all procs to do so
175 * 4. Enter no-fill cache mode
176 * 5. Flush caches
177 * 6. Clear PGE bit
178 * 7. Flush all TLBs
179 * 8. Disable all range registers
180 * 9. Update the MTRRs
181 * 10. Enable all range registers
182 * 11. Flush all TLBs and caches again
183 * 12. Enter normal cache mode and reenable caching
184 * 13. Set PGE
185 * 14. Wait for buddies to catch up
186 * 15. Enable interrupts.
187 *
188 * What does that mean for us? Well, stop_machine() will ensure that
189 * the rendezvous handler is started on each CPU. And in lockstep they
190 * do the state transition of disabling interrupts, updating MTRR's
191 * (the CPU vendors may each do it differently, so we call mtrr_if->set()
192 * callback and let them take care of it.) and enabling interrupts.
193 *
194 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
195 * becomes nops.
196 */
197static void
198set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
199{
200	struct set_mtrr_data data = { .smp_reg = reg,
201				      .smp_base = base,
202				      .smp_size = size,
203				      .smp_type = type
204				    };
205
206	stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
207}
208
209static void set_mtrr_cpuslocked(unsigned int reg, unsigned long base,
210				unsigned long size, mtrr_type type)
211{
212	struct set_mtrr_data data = { .smp_reg = reg,
213				      .smp_base = base,
214				      .smp_size = size,
215				      .smp_type = type
216				    };
217
218	stop_machine_cpuslocked(mtrr_rendezvous_handler, &data, cpu_online_mask);
219}
220
 
 
 
 
 
 
 
 
 
 
 
 
 
221/**
222 * mtrr_add_page - Add a memory type region
223 * @base: Physical base address of region in pages (in units of 4 kB!)
224 * @size: Physical size of region in pages (4 kB)
225 * @type: Type of MTRR desired
226 * @increment: If this is true do usage counting on the region
227 *
228 * Memory type region registers control the caching on newer Intel and
229 * non Intel processors. This function allows drivers to request an
230 * MTRR is added. The details and hardware specifics of each processor's
231 * implementation are hidden from the caller, but nevertheless the
232 * caller should expect to need to provide a power of two size on an
233 * equivalent power of two boundary.
234 *
235 * If the region cannot be added either because all regions are in use
236 * or the CPU cannot support it a negative value is returned. On success
237 * the register number for this entry is returned, but should be treated
238 * as a cookie only.
239 *
240 * On a multiprocessor machine the changes are made to all processors.
241 * This is required on x86 by the Intel processors.
242 *
243 * The available types are
244 *
245 * %MTRR_TYPE_UNCACHABLE - No caching
246 *
247 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
248 *
249 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
250 *
251 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
252 *
253 * BUGS: Needs a quiet flag for the cases where drivers do not mind
254 * failures and do not wish system log messages to be sent.
255 */
256int mtrr_add_page(unsigned long base, unsigned long size,
257		  unsigned int type, bool increment)
258{
259	unsigned long lbase, lsize;
260	int i, replace, error;
261	mtrr_type ltype;
262
263	if (!mtrr_enabled())
264		return -ENXIO;
265
266	error = mtrr_if->validate_add_page(base, size, type);
267	if (error)
268		return error;
269
270	if (type >= MTRR_NUM_TYPES) {
271		pr_warn("type: %u invalid\n", type);
272		return -EINVAL;
273	}
274
275	/* If the type is WC, check that this processor supports it */
276	if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
277		pr_warn("your processor doesn't support write-combining\n");
278		return -ENOSYS;
279	}
280
281	if (!size) {
282		pr_warn("zero sized request\n");
283		return -EINVAL;
284	}
285
286	if ((base | (base + size - 1)) >>
287	    (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
288		pr_warn("base or size exceeds the MTRR width\n");
289		return -EINVAL;
290	}
291
292	error = -EINVAL;
293	replace = -1;
294
295	/* No CPU hotplug when we change MTRR entries */
296	cpus_read_lock();
297
298	/* Search for existing MTRR  */
299	mutex_lock(&mtrr_mutex);
300	for (i = 0; i < num_var_ranges; ++i) {
301		mtrr_if->get(i, &lbase, &lsize, &ltype);
302		if (!lsize || base > lbase + lsize - 1 ||
303		    base + size - 1 < lbase)
304			continue;
305		/*
306		 * At this point we know there is some kind of
307		 * overlap/enclosure
308		 */
309		if (base < lbase || base + size - 1 > lbase + lsize - 1) {
310			if (base <= lbase &&
311			    base + size - 1 >= lbase + lsize - 1) {
312				/*  New region encloses an existing region  */
313				if (type == ltype) {
314					replace = replace == -1 ? i : -2;
315					continue;
316				} else if (types_compatible(type, ltype))
317					continue;
318			}
319			pr_warn("0x%lx000,0x%lx000 overlaps existing 0x%lx000,0x%lx000\n", base, size, lbase,
320				lsize);
321			goto out;
322		}
323		/* New region is enclosed by an existing region */
324		if (ltype != type) {
325			if (types_compatible(type, ltype))
326				continue;
327			pr_warn("type mismatch for %lx000,%lx000 old: %s new: %s\n",
328				base, size, mtrr_attrib_to_str(ltype),
329				mtrr_attrib_to_str(type));
330			goto out;
331		}
332		if (increment)
333			++mtrr_usage_table[i];
334		error = i;
335		goto out;
336	}
337	/* Search for an empty MTRR */
338	i = mtrr_if->get_free_region(base, size, replace);
339	if (i >= 0) {
340		set_mtrr_cpuslocked(i, base, size, type);
341		if (likely(replace < 0)) {
342			mtrr_usage_table[i] = 1;
343		} else {
344			mtrr_usage_table[i] = mtrr_usage_table[replace];
345			if (increment)
346				mtrr_usage_table[i]++;
347			if (unlikely(replace != i)) {
348				set_mtrr_cpuslocked(replace, 0, 0, 0);
349				mtrr_usage_table[replace] = 0;
350			}
351		}
352	} else {
353		pr_info("no more MTRRs available\n");
354	}
355	error = i;
356 out:
357	mutex_unlock(&mtrr_mutex);
358	cpus_read_unlock();
359	return error;
360}
361
362static int mtrr_check(unsigned long base, unsigned long size)
363{
364	if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
365		pr_warn("size and base must be multiples of 4 kiB\n");
366		pr_debug("size: 0x%lx  base: 0x%lx\n", size, base);
367		dump_stack();
368		return -1;
369	}
370	return 0;
371}
372
373/**
374 * mtrr_add - Add a memory type region
375 * @base: Physical base address of region
376 * @size: Physical size of region
377 * @type: Type of MTRR desired
378 * @increment: If this is true do usage counting on the region
379 *
380 * Memory type region registers control the caching on newer Intel and
381 * non Intel processors. This function allows drivers to request an
382 * MTRR is added. The details and hardware specifics of each processor's
383 * implementation are hidden from the caller, but nevertheless the
384 * caller should expect to need to provide a power of two size on an
385 * equivalent power of two boundary.
386 *
387 * If the region cannot be added either because all regions are in use
388 * or the CPU cannot support it a negative value is returned. On success
389 * the register number for this entry is returned, but should be treated
390 * as a cookie only.
391 *
392 * On a multiprocessor machine the changes are made to all processors.
393 * This is required on x86 by the Intel processors.
394 *
395 * The available types are
396 *
397 * %MTRR_TYPE_UNCACHABLE - No caching
398 *
399 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
400 *
401 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
402 *
403 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
404 *
405 * BUGS: Needs a quiet flag for the cases where drivers do not mind
406 * failures and do not wish system log messages to be sent.
407 */
408int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
409	     bool increment)
410{
411	if (!mtrr_enabled())
412		return -ENODEV;
413	if (mtrr_check(base, size))
414		return -EINVAL;
415	return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
416			     increment);
417}
418
419/**
420 * mtrr_del_page - delete a memory type region
421 * @reg: Register returned by mtrr_add
422 * @base: Physical base address
423 * @size: Size of region
424 *
425 * If register is supplied then base and size are ignored. This is
426 * how drivers should call it.
427 *
428 * Releases an MTRR region. If the usage count drops to zero the
429 * register is freed and the region returns to default state.
430 * On success the register is returned, on failure a negative error
431 * code.
432 */
433int mtrr_del_page(int reg, unsigned long base, unsigned long size)
434{
435	int i, max;
436	mtrr_type ltype;
437	unsigned long lbase, lsize;
438	int error = -EINVAL;
439
440	if (!mtrr_enabled())
441		return -ENODEV;
442
443	max = num_var_ranges;
444	/* No CPU hotplug when we change MTRR entries */
445	cpus_read_lock();
446	mutex_lock(&mtrr_mutex);
447	if (reg < 0) {
448		/*  Search for existing MTRR  */
449		for (i = 0; i < max; ++i) {
450			mtrr_if->get(i, &lbase, &lsize, &ltype);
451			if (lbase == base && lsize == size) {
452				reg = i;
453				break;
454			}
455		}
456		if (reg < 0) {
457			pr_debug("no MTRR for %lx000,%lx000 found\n",
458				 base, size);
459			goto out;
460		}
461	}
462	if (reg >= max) {
463		pr_warn("register: %d too big\n", reg);
464		goto out;
465	}
466	mtrr_if->get(reg, &lbase, &lsize, &ltype);
467	if (lsize < 1) {
468		pr_warn("MTRR %d not used\n", reg);
469		goto out;
470	}
471	if (mtrr_usage_table[reg] < 1) {
472		pr_warn("reg: %d has count=0\n", reg);
473		goto out;
474	}
475	if (--mtrr_usage_table[reg] < 1)
476		set_mtrr_cpuslocked(reg, 0, 0, 0);
477	error = reg;
478 out:
479	mutex_unlock(&mtrr_mutex);
480	cpus_read_unlock();
481	return error;
482}
483
484/**
485 * mtrr_del - delete a memory type region
486 * @reg: Register returned by mtrr_add
487 * @base: Physical base address
488 * @size: Size of region
489 *
490 * If register is supplied then base and size are ignored. This is
491 * how drivers should call it.
492 *
493 * Releases an MTRR region. If the usage count drops to zero the
494 * register is freed and the region returns to default state.
495 * On success the register is returned, on failure a negative error
496 * code.
497 */
498int mtrr_del(int reg, unsigned long base, unsigned long size)
499{
500	if (!mtrr_enabled())
501		return -ENODEV;
502	if (mtrr_check(base, size))
503		return -EINVAL;
504	return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
505}
506
507/**
508 * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
509 * @base: Physical base address
510 * @size: Size of region
511 *
512 * If PAT is available, this does nothing.  If PAT is unavailable, it
513 * attempts to add a WC MTRR covering size bytes starting at base and
514 * logs an error if this fails.
515 *
516 * The called should provide a power of two size on an equivalent
517 * power of two boundary.
518 *
519 * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
520 * but drivers should not try to interpret that return value.
521 */
522int arch_phys_wc_add(unsigned long base, unsigned long size)
523{
524	int ret;
525
526	if (pat_enabled() || !mtrr_enabled())
527		return 0;  /* Success!  (We don't need to do anything.) */
528
529	ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
530	if (ret < 0) {
531		pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
532			(void *)base, (void *)(base + size - 1));
533		return ret;
534	}
535	return ret + MTRR_TO_PHYS_WC_OFFSET;
536}
537EXPORT_SYMBOL(arch_phys_wc_add);
538
539/*
540 * arch_phys_wc_del - undoes arch_phys_wc_add
541 * @handle: Return value from arch_phys_wc_add
542 *
543 * This cleans up after mtrr_add_wc_if_needed.
544 *
545 * The API guarantees that mtrr_del_wc_if_needed(error code) and
546 * mtrr_del_wc_if_needed(0) do nothing.
547 */
548void arch_phys_wc_del(int handle)
549{
550	if (handle >= 1) {
551		WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
552		mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
553	}
554}
555EXPORT_SYMBOL(arch_phys_wc_del);
556
557/*
558 * arch_phys_wc_index - translates arch_phys_wc_add's return value
559 * @handle: Return value from arch_phys_wc_add
560 *
561 * This will turn the return value from arch_phys_wc_add into an mtrr
562 * index suitable for debugging.
563 *
564 * Note: There is no legitimate use for this function, except possibly
565 * in printk line.  Alas there is an illegitimate use in some ancient
566 * drm ioctls.
567 */
568int arch_phys_wc_index(int handle)
569{
570	if (handle < MTRR_TO_PHYS_WC_OFFSET)
571		return -1;
572	else
573		return handle - MTRR_TO_PHYS_WC_OFFSET;
574}
575EXPORT_SYMBOL_GPL(arch_phys_wc_index);
576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577/* The suspend/resume methods are only for CPU without MTRR. CPU using generic
578 * MTRR driver doesn't require this
579 */
580struct mtrr_value {
581	mtrr_type	ltype;
582	unsigned long	lbase;
583	unsigned long	lsize;
584};
585
586static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
587
588static int mtrr_save(void)
589{
590	int i;
591
592	for (i = 0; i < num_var_ranges; i++) {
593		mtrr_if->get(i, &mtrr_value[i].lbase,
594				&mtrr_value[i].lsize,
595				&mtrr_value[i].ltype);
596	}
597	return 0;
598}
599
600static void mtrr_restore(void)
601{
602	int i;
603
604	for (i = 0; i < num_var_ranges; i++) {
605		if (mtrr_value[i].lsize) {
606			set_mtrr(i, mtrr_value[i].lbase,
607				    mtrr_value[i].lsize,
608				    mtrr_value[i].ltype);
609		}
610	}
611}
612
613
614
615static struct syscore_ops mtrr_syscore_ops = {
616	.suspend	= mtrr_save,
617	.resume		= mtrr_restore,
618};
619
620int __initdata changed_by_mtrr_cleanup;
621
622#define SIZE_OR_MASK_BITS(n)  (~((1ULL << ((n) - PAGE_SHIFT)) - 1))
623/**
624 * mtrr_bp_init - initialize mtrrs on the boot CPU
625 *
626 * This needs to be called early; before any of the other CPUs are
627 * initialized (i.e. before smp_init()).
628 *
629 */
630void __init mtrr_bp_init(void)
631{
632	const char *why = "(not available)";
633	u32 phys_addr;
634
 
 
635	phys_addr = 32;
636
637	if (boot_cpu_has(X86_FEATURE_MTRR)) {
638		mtrr_if = &generic_mtrr_ops;
639		size_or_mask = SIZE_OR_MASK_BITS(36);
640		size_and_mask = 0x00f00000;
641		phys_addr = 36;
642
643		/*
644		 * This is an AMD specific MSR, but we assume(hope?) that
645		 * Intel will implement it too when they extend the address
646		 * bus of the Xeon.
647		 */
648		if (cpuid_eax(0x80000000) >= 0x80000008) {
649			phys_addr = cpuid_eax(0x80000008) & 0xff;
650			/* CPUID workaround for Intel 0F33/0F34 CPU */
651			if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
652			    boot_cpu_data.x86 == 0xF &&
653			    boot_cpu_data.x86_model == 0x3 &&
654			    (boot_cpu_data.x86_stepping == 0x3 ||
655			     boot_cpu_data.x86_stepping == 0x4))
656				phys_addr = 36;
657
658			size_or_mask = SIZE_OR_MASK_BITS(phys_addr);
659			size_and_mask = ~size_or_mask & 0xfffff00000ULL;
660		} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
661			   boot_cpu_data.x86 == 6) {
662			/*
663			 * VIA C* family have Intel style MTRRs,
664			 * but don't support PAE
665			 */
666			size_or_mask = SIZE_OR_MASK_BITS(32);
667			size_and_mask = 0;
668			phys_addr = 32;
669		}
670	} else {
671		switch (boot_cpu_data.x86_vendor) {
672		case X86_VENDOR_AMD:
673			if (cpu_feature_enabled(X86_FEATURE_K6_MTRR)) {
674				/* Pre-Athlon (K6) AMD CPU MTRRs */
675				mtrr_if = &amd_mtrr_ops;
676				size_or_mask = SIZE_OR_MASK_BITS(32);
677				size_and_mask = 0;
678			}
679			break;
680		case X86_VENDOR_CENTAUR:
681			if (cpu_feature_enabled(X86_FEATURE_CENTAUR_MCR)) {
682				mtrr_if = &centaur_mtrr_ops;
683				size_or_mask = SIZE_OR_MASK_BITS(32);
684				size_and_mask = 0;
685			}
686			break;
687		case X86_VENDOR_CYRIX:
688			if (cpu_feature_enabled(X86_FEATURE_CYRIX_ARR)) {
689				mtrr_if = &cyrix_mtrr_ops;
690				size_or_mask = SIZE_OR_MASK_BITS(32);
691				size_and_mask = 0;
692			}
693			break;
694		default:
695			break;
696		}
697	}
698
699	if (mtrr_enabled()) {
700		set_num_var_ranges(mtrr_if == &generic_mtrr_ops);
 
701		init_table();
702		if (mtrr_if == &generic_mtrr_ops) {
703			/* BIOS may override */
704			if (get_mtrr_state()) {
705				memory_caching_control |= CACHE_MTRR;
706				changed_by_mtrr_cleanup = mtrr_cleanup(phys_addr);
707			} else {
708				mtrr_if = NULL;
709				why = "by BIOS";
 
 
710			}
711		}
712	}
713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714	if (!mtrr_enabled())
715		pr_info("MTRRs disabled %s\n", why);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
716}
717
718/**
719 * mtrr_save_state - Save current fixed-range MTRR state of the first
720 *	cpu in cpu_online_mask.
721 */
722void mtrr_save_state(void)
723{
724	int first_cpu;
725
726	if (!mtrr_enabled())
727		return;
728
729	first_cpu = cpumask_first(cpu_online_mask);
730	smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
731}
732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733static int __init mtrr_init_finialize(void)
734{
735	if (!mtrr_enabled())
736		return 0;
737
738	if (memory_caching_control & CACHE_MTRR) {
739		if (!changed_by_mtrr_cleanup)
740			mtrr_state_warn();
741		return 0;
742	}
743
744	/*
745	 * The CPU has no MTRR and seems to not support SMP. They have
746	 * specific drivers, we use a tricky method to support
747	 * suspend/resume for them.
748	 *
749	 * TBD: is there any system with such CPU which supports
750	 * suspend/resume? If no, we should remove the code.
751	 */
752	register_syscore_ops(&mtrr_syscore_ops);
753
754	return 0;
755}
756subsys_initcall(mtrr_init_finialize);