Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* bpf_jit_comp.c: BPF JIT compiler
 
  3 *
  4 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
 
  5 *
  6 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
  7 * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org>
  8 */
  9#include <linux/moduleloader.h>
 10#include <asm/cacheflush.h>
 11#include <asm/asm-compat.h>
 12#include <linux/netdevice.h>
 13#include <linux/filter.h>
 14#include <linux/if_vlan.h>
 
 
 15
 16#include "bpf_jit32.h"
 17
 18static inline void bpf_flush_icache(void *start, void *end)
 19{
 20	smp_wmb();
 21	flush_icache_range((unsigned long)start, (unsigned long)end);
 22}
 23
 24static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
 25				   struct codegen_context *ctx)
 
 26{
 27	int i;
 28	const struct sock_filter *filter = fp->insns;
 
 
 
 29
 30	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 31		/* Make stackframe */
 32		if (ctx->seen & SEEN_DATAREF) {
 33			/* If we call any helpers (for loads), save LR */
 34			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
 35			PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
 36
 37			/* Back up non-volatile regs. */
 38			PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D)));
 39			PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL)));
 40		}
 41		if (ctx->seen & SEEN_MEM) {
 42			/*
 43			 * Conditionally save regs r15-r31 as some will be used
 44			 * for M[] data.
 45			 */
 46			for (i = r_M; i < (r_M+16); i++) {
 47				if (ctx->seen & (1 << (i-r_M)))
 48					PPC_BPF_STL(i, 1, -(REG_SZ*(32-i)));
 49			}
 50		}
 51		PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
 52	}
 53
 54	if (ctx->seen & SEEN_DATAREF) {
 55		/*
 56		 * If this filter needs to access skb data,
 57		 * prepare r_D and r_HL:
 58		 *  r_HL = skb->len - skb->data_len
 59		 *  r_D	 = skb->data
 
 
 
 60		 */
 61		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 62							 data_len));
 63		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 64		PPC_SUB(r_HL, r_HL, r_scratch1);
 65		PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 66	}
 
 67
 68	if (ctx->seen & SEEN_XREG) {
 69		/*
 70		 * TODO: Could also detect whether first instr. sets X and
 71		 * avoid this (as below, with A).
 72		 */
 73		PPC_LI(r_X, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74	}
 75
 76	/* make sure we dont leak kernel information to user */
 77	if (bpf_needs_clear_a(&filter[0]))
 78		PPC_LI(r_A, 0);
 79}
 80
 81static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
 82{
 83	int i;
 84
 85	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 86		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
 87		if (ctx->seen & SEEN_DATAREF) {
 88			PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
 89			PPC_MTLR(0);
 90			PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D)));
 91			PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL)));
 92		}
 93		if (ctx->seen & SEEN_MEM) {
 94			/* Restore any saved non-vol registers */
 95			for (i = r_M; i < (r_M+16); i++) {
 96				if (ctx->seen & (1 << (i-r_M)))
 97					PPC_BPF_LL(i, 1, -(REG_SZ*(32-i)));
 98			}
 99		}
100	}
101	/* The RETs have left a return value in R3. */
102
103	PPC_BLR();
104}
105
106#define CHOOSE_LOAD_FUNC(K, func) \
107	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
 
 
 
 
 
108
109/* Assemble the body code between the prologue & epilogue. */
110static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
111			      struct codegen_context *ctx,
112			      unsigned int *addrs)
113{
114	const struct sock_filter *filter = fp->insns;
115	int flen = fp->len;
116	u8 *func;
117	unsigned int true_cond;
118	int i;
119
120	/* Start of epilogue code */
121	unsigned int exit_addr = addrs[flen];
122
123	for (i = 0; i < flen; i++) {
124		unsigned int K = filter[i].k;
125		u16 code = bpf_anc_helper(&filter[i]);
126
127		/*
128		 * addrs[] maps a BPF bytecode address into a real offset from
129		 * the start of the body code.
130		 */
131		addrs[i] = ctx->idx * 4;
132
133		switch (code) {
134			/*** ALU ops ***/
135		case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
136			ctx->seen |= SEEN_XREG;
137			PPC_ADD(r_A, r_A, r_X);
138			break;
139		case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
140			if (!K)
141				break;
142			PPC_ADDI(r_A, r_A, IMM_L(K));
143			if (K >= 32768)
144				PPC_ADDIS(r_A, r_A, IMM_HA(K));
145			break;
146		case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
147			ctx->seen |= SEEN_XREG;
148			PPC_SUB(r_A, r_A, r_X);
149			break;
150		case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
151			if (!K)
152				break;
153			PPC_ADDI(r_A, r_A, IMM_L(-K));
154			if (K >= 32768)
155				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
156			break;
157		case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
158			ctx->seen |= SEEN_XREG;
159			PPC_MULW(r_A, r_A, r_X);
160			break;
161		case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
162			if (K < 32768)
163				PPC_MULI(r_A, r_A, K);
164			else {
165				PPC_LI32(r_scratch1, K);
166				PPC_MULW(r_A, r_A, r_scratch1);
167			}
168			break;
169		case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
170		case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
171			ctx->seen |= SEEN_XREG;
172			PPC_CMPWI(r_X, 0);
173			if (ctx->pc_ret0 != -1) {
174				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
175			} else {
176				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
177				PPC_LI(r_ret, 0);
178				PPC_JMP(exit_addr);
179			}
180			if (code == (BPF_ALU | BPF_MOD | BPF_X)) {
181				PPC_DIVWU(r_scratch1, r_A, r_X);
182				PPC_MULW(r_scratch1, r_X, r_scratch1);
183				PPC_SUB(r_A, r_A, r_scratch1);
184			} else {
185				PPC_DIVWU(r_A, r_A, r_X);
186			}
187			break;
188		case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
189			PPC_LI32(r_scratch2, K);
190			PPC_DIVWU(r_scratch1, r_A, r_scratch2);
191			PPC_MULW(r_scratch1, r_scratch2, r_scratch1);
192			PPC_SUB(r_A, r_A, r_scratch1);
193			break;
194		case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
195			if (K == 1)
196				break;
197			PPC_LI32(r_scratch1, K);
198			PPC_DIVWU(r_A, r_A, r_scratch1);
199			break;
200		case BPF_ALU | BPF_AND | BPF_X:
201			ctx->seen |= SEEN_XREG;
202			PPC_AND(r_A, r_A, r_X);
203			break;
204		case BPF_ALU | BPF_AND | BPF_K:
205			if (!IMM_H(K))
206				PPC_ANDI(r_A, r_A, K);
207			else {
208				PPC_LI32(r_scratch1, K);
209				PPC_AND(r_A, r_A, r_scratch1);
210			}
211			break;
212		case BPF_ALU | BPF_OR | BPF_X:
213			ctx->seen |= SEEN_XREG;
214			PPC_OR(r_A, r_A, r_X);
215			break;
216		case BPF_ALU | BPF_OR | BPF_K:
217			if (IMM_L(K))
218				PPC_ORI(r_A, r_A, IMM_L(K));
219			if (K >= 65536)
220				PPC_ORIS(r_A, r_A, IMM_H(K));
221			break;
222		case BPF_ANC | SKF_AD_ALU_XOR_X:
223		case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
224			ctx->seen |= SEEN_XREG;
225			PPC_XOR(r_A, r_A, r_X);
226			break;
227		case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
228			if (IMM_L(K))
229				PPC_XORI(r_A, r_A, IMM_L(K));
230			if (K >= 65536)
231				PPC_XORIS(r_A, r_A, IMM_H(K));
232			break;
233		case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
234			ctx->seen |= SEEN_XREG;
235			PPC_SLW(r_A, r_A, r_X);
236			break;
237		case BPF_ALU | BPF_LSH | BPF_K:
238			if (K == 0)
239				break;
240			else
241				PPC_SLWI(r_A, r_A, K);
242			break;
243		case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
244			ctx->seen |= SEEN_XREG;
245			PPC_SRW(r_A, r_A, r_X);
246			break;
247		case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
248			if (K == 0)
249				break;
250			else
251				PPC_SRWI(r_A, r_A, K);
252			break;
253		case BPF_ALU | BPF_NEG:
254			PPC_NEG(r_A, r_A);
255			break;
256		case BPF_RET | BPF_K:
257			PPC_LI32(r_ret, K);
258			if (!K) {
259				if (ctx->pc_ret0 == -1)
260					ctx->pc_ret0 = i;
261			}
262			/*
263			 * If this isn't the very last instruction, branch to
264			 * the epilogue if we've stuff to clean up.  Otherwise,
265			 * if there's nothing to tidy, just return.  If we /are/
266			 * the last instruction, we're about to fall through to
267			 * the epilogue to return.
268			 */
269			if (i != flen - 1) {
270				/*
271				 * Note: 'seen' is properly valid only on pass
272				 * #2.	Both parts of this conditional are the
273				 * same instruction size though, meaning the
274				 * first pass will still correctly determine the
275				 * code size/addresses.
276				 */
277				if (ctx->seen)
278					PPC_JMP(exit_addr);
279				else
280					PPC_BLR();
281			}
282			break;
283		case BPF_RET | BPF_A:
284			PPC_MR(r_ret, r_A);
285			if (i != flen - 1) {
286				if (ctx->seen)
287					PPC_JMP(exit_addr);
288				else
289					PPC_BLR();
290			}
291			break;
292		case BPF_MISC | BPF_TAX: /* X = A */
293			PPC_MR(r_X, r_A);
294			break;
295		case BPF_MISC | BPF_TXA: /* A = X */
296			ctx->seen |= SEEN_XREG;
297			PPC_MR(r_A, r_X);
298			break;
299
300			/*** Constant loads/M[] access ***/
301		case BPF_LD | BPF_IMM: /* A = K */
302			PPC_LI32(r_A, K);
303			break;
304		case BPF_LDX | BPF_IMM: /* X = K */
305			PPC_LI32(r_X, K);
306			break;
307		case BPF_LD | BPF_MEM: /* A = mem[K] */
308			PPC_MR(r_A, r_M + (K & 0xf));
309			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
310			break;
311		case BPF_LDX | BPF_MEM: /* X = mem[K] */
312			PPC_MR(r_X, r_M + (K & 0xf));
313			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
314			break;
315		case BPF_ST: /* mem[K] = A */
316			PPC_MR(r_M + (K & 0xf), r_A);
317			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
318			break;
319		case BPF_STX: /* mem[K] = X */
320			PPC_MR(r_M + (K & 0xf), r_X);
321			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
322			break;
323		case BPF_LD | BPF_W | BPF_LEN: /*	A = skb->len; */
324			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
325			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
326			break;
327		case BPF_LDX | BPF_W | BPF_ABS: /* A = *((u32 *)(seccomp_data + K)); */
328			PPC_LWZ_OFFS(r_A, r_skb, K);
329			break;
330		case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
331			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
332			break;
333
334			/*** Ancillary info loads ***/
335		case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
336			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
337						  protocol) != 2);
338			PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
339							    protocol));
340			break;
341		case BPF_ANC | SKF_AD_IFINDEX:
342		case BPF_ANC | SKF_AD_HATYPE:
343			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
344						ifindex) != 4);
345			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
346						type) != 2);
347			PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
348								dev));
349			PPC_CMPDI(r_scratch1, 0);
350			if (ctx->pc_ret0 != -1) {
351				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
352			} else {
353				/* Exit, returning 0; first pass hits here. */
354				PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12);
355				PPC_LI(r_ret, 0);
356				PPC_JMP(exit_addr);
357			}
358			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
359				PPC_LWZ_OFFS(r_A, r_scratch1,
360				     offsetof(struct net_device, ifindex));
361			} else {
362				PPC_LHZ_OFFS(r_A, r_scratch1,
363				     offsetof(struct net_device, type));
364			}
365
366			break;
367		case BPF_ANC | SKF_AD_MARK:
368			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
369			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
370							  mark));
371			break;
372		case BPF_ANC | SKF_AD_RXHASH:
373			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
374			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
375							  hash));
376			break;
377		case BPF_ANC | SKF_AD_VLAN_TAG:
378			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
379
380			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
381							  vlan_tci));
382			break;
383		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
384			PPC_LBZ_OFFS(r_A, r_skb, PKT_VLAN_PRESENT_OFFSET());
385			if (PKT_VLAN_PRESENT_BIT)
386				PPC_SRWI(r_A, r_A, PKT_VLAN_PRESENT_BIT);
387			if (PKT_VLAN_PRESENT_BIT < 7)
388				PPC_ANDI(r_A, r_A, 1);
389			break;
390		case BPF_ANC | SKF_AD_QUEUE:
391			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
392						  queue_mapping) != 2);
393			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
394							  queue_mapping));
395			break;
396		case BPF_ANC | SKF_AD_PKTTYPE:
397			PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET());
398			PPC_ANDI(r_A, r_A, PKT_TYPE_MAX);
399			PPC_SRWI(r_A, r_A, 5);
400			break;
401		case BPF_ANC | SKF_AD_CPU:
402			PPC_BPF_LOAD_CPU(r_A);
403			break;
404			/*** Absolute loads from packet header/data ***/
405		case BPF_LD | BPF_W | BPF_ABS:
406			func = CHOOSE_LOAD_FUNC(K, sk_load_word);
407			goto common_load;
408		case BPF_LD | BPF_H | BPF_ABS:
409			func = CHOOSE_LOAD_FUNC(K, sk_load_half);
410			goto common_load;
411		case BPF_LD | BPF_B | BPF_ABS:
412			func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
413		common_load:
414			/* Load from [K]. */
415			ctx->seen |= SEEN_DATAREF;
416			PPC_FUNC_ADDR(r_scratch1, func);
417			PPC_MTLR(r_scratch1);
418			PPC_LI32(r_addr, K);
419			PPC_BLRL();
420			/*
421			 * Helper returns 'lt' condition on error, and an
422			 * appropriate return value in r3
423			 */
424			PPC_BCC(COND_LT, exit_addr);
425			break;
426
427			/*** Indirect loads from packet header/data ***/
428		case BPF_LD | BPF_W | BPF_IND:
429			func = sk_load_word;
430			goto common_load_ind;
431		case BPF_LD | BPF_H | BPF_IND:
432			func = sk_load_half;
433			goto common_load_ind;
434		case BPF_LD | BPF_B | BPF_IND:
435			func = sk_load_byte;
436		common_load_ind:
437			/*
438			 * Load from [X + K].  Negative offsets are tested for
439			 * in the helper functions.
440			 */
441			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
442			PPC_FUNC_ADDR(r_scratch1, func);
443			PPC_MTLR(r_scratch1);
444			PPC_ADDI(r_addr, r_X, IMM_L(K));
445			if (K >= 32768)
446				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
447			PPC_BLRL();
448			/* If error, cr0.LT set */
449			PPC_BCC(COND_LT, exit_addr);
450			break;
451
452		case BPF_LDX | BPF_B | BPF_MSH:
453			func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
454			goto common_load;
455			break;
456
457			/*** Jump and branches ***/
458		case BPF_JMP | BPF_JA:
459			if (K != 0)
460				PPC_JMP(addrs[i + 1 + K]);
461			break;
462
463		case BPF_JMP | BPF_JGT | BPF_K:
464		case BPF_JMP | BPF_JGT | BPF_X:
465			true_cond = COND_GT;
466			goto cond_branch;
467		case BPF_JMP | BPF_JGE | BPF_K:
468		case BPF_JMP | BPF_JGE | BPF_X:
469			true_cond = COND_GE;
470			goto cond_branch;
471		case BPF_JMP | BPF_JEQ | BPF_K:
472		case BPF_JMP | BPF_JEQ | BPF_X:
473			true_cond = COND_EQ;
474			goto cond_branch;
475		case BPF_JMP | BPF_JSET | BPF_K:
476		case BPF_JMP | BPF_JSET | BPF_X:
477			true_cond = COND_NE;
478			/* Fall through */
479		cond_branch:
480			/* same targets, can avoid doing the test :) */
481			if (filter[i].jt == filter[i].jf) {
482				if (filter[i].jt > 0)
483					PPC_JMP(addrs[i + 1 + filter[i].jt]);
484				break;
485			}
486
487			switch (code) {
488			case BPF_JMP | BPF_JGT | BPF_X:
489			case BPF_JMP | BPF_JGE | BPF_X:
490			case BPF_JMP | BPF_JEQ | BPF_X:
491				ctx->seen |= SEEN_XREG;
492				PPC_CMPLW(r_A, r_X);
493				break;
494			case BPF_JMP | BPF_JSET | BPF_X:
495				ctx->seen |= SEEN_XREG;
496				PPC_AND_DOT(r_scratch1, r_A, r_X);
497				break;
498			case BPF_JMP | BPF_JEQ | BPF_K:
499			case BPF_JMP | BPF_JGT | BPF_K:
500			case BPF_JMP | BPF_JGE | BPF_K:
501				if (K < 32768)
502					PPC_CMPLWI(r_A, K);
503				else {
504					PPC_LI32(r_scratch1, K);
505					PPC_CMPLW(r_A, r_scratch1);
506				}
507				break;
508			case BPF_JMP | BPF_JSET | BPF_K:
509				if (K < 32768)
510					/* PPC_ANDI is /only/ dot-form */
511					PPC_ANDI(r_scratch1, r_A, K);
512				else {
513					PPC_LI32(r_scratch1, K);
514					PPC_AND_DOT(r_scratch1, r_A,
515						    r_scratch1);
516				}
517				break;
518			}
519			/* Sometimes branches are constructed "backward", with
520			 * the false path being the branch and true path being
521			 * a fallthrough to the next instruction.
522			 */
523			if (filter[i].jt == 0)
524				/* Swap the sense of the branch */
525				PPC_BCC(true_cond ^ COND_CMP_TRUE,
526					addrs[i + 1 + filter[i].jf]);
527			else {
528				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
529				if (filter[i].jf != 0)
530					PPC_JMP(addrs[i + 1 + filter[i].jf]);
531			}
532			break;
533		default:
534			/* The filter contains something cruel & unusual.
535			 * We don't handle it, but also there shouldn't be
536			 * anything missing from our list.
537			 */
538			if (printk_ratelimit())
539				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
540				       filter[i].code, i);
541			return -ENOTSUPP;
542		}
543
544	}
545	/* Set end-of-body-code address for exit. */
546	addrs[i] = ctx->idx * 4;
547
548	return 0;
549}
550
551void bpf_jit_compile(struct bpf_prog *fp)
552{
553	unsigned int proglen;
554	unsigned int alloclen;
555	u32 *image = NULL;
556	u32 *code_base;
557	unsigned int *addrs;
 
558	struct codegen_context cgctx;
559	int pass;
560	int flen = fp->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561
562	if (!bpf_jit_enable)
563		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
564
565	addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
566	if (addrs == NULL)
567		return;
 
 
568
569	/*
570	 * There are multiple assembly passes as the generated code will change
571	 * size as it settles down, figuring out the max branch offsets/exit
572	 * paths required.
573	 *
574	 * The range of standard conditional branches is +/- 32Kbytes.	Since
575	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
576	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
577	 * used, distinct from short branches.
578	 *
579	 * Current:
580	 *
581	 * For now, both branch types assemble to 2 words (short branches padded
582	 * with a NOP); this is less efficient, but assembly will always complete
583	 * after exactly 3 passes:
584	 *
585	 * First pass: No code buffer; Program is "faux-generated" -- no code
586	 * emitted but maximum size of output determined (and addrs[] filled
587	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
588	 * All generation choices assumed to be 'worst-case', e.g. branches all
589	 * far (2 instructions), return path code reduction not available, etc.
590	 *
591	 * Second pass: Code buffer allocated with size determined previously.
592	 * Prologue generated to support features we have seen used.  Exit paths
593	 * determined and addrs[] is filled in again, as code may be slightly
594	 * smaller as a result.
595	 *
596	 * Third pass: Code generated 'for real', and branch destinations
597	 * determined from now-accurate addrs[] map.
598	 *
599	 * Ideal:
600	 *
601	 * If we optimise this, near branches will be shorter.	On the
602	 * first assembly pass, we should err on the side of caution and
603	 * generate the biggest code.  On subsequent passes, branches will be
604	 * generated short or long and code size will reduce.  With smaller
605	 * code, more branches may fall into the short category, and code will
606	 * reduce more.
607	 *
608	 * Finally, if we see one pass generate code the same size as the
609	 * previous pass we have converged and should now generate code for
610	 * real.  Allocating at the end will also save the memory that would
611	 * otherwise be wasted by the (small) current code shrinkage.
612	 * Preferably, we should do a small number of passes (e.g. 5) and if we
613	 * haven't converged by then, get impatient and force code to generate
614	 * as-is, even if the odd branch would be left long.  The chances of a
615	 * long jump are tiny with all but the most enormous of BPF filter
616	 * inputs, so we should usually converge on the third pass.
617	 */
618
619	cgctx.idx = 0;
620	cgctx.seen = 0;
621	cgctx.pc_ret0 = -1;
622	/* Scouting faux-generate pass 0 */
623	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
624		/* We hit something illegal or unsupported. */
625		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
626
 
627	/*
628	 * Pretend to build prologue, given the features we've seen.  This will
629	 * update ctgtx.idx as it pretends to output instructions, then we can
630	 * calculate total size from idx.
631	 */
632	bpf_jit_build_prologue(fp, 0, &cgctx);
 
633	bpf_jit_build_epilogue(0, &cgctx);
634
 
 
 
635	proglen = cgctx.idx * 4;
636	alloclen = proglen + FUNCTION_DESCR_SIZE;
637	image = module_alloc(alloclen);
638	if (!image)
639		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640
641	code_base = image + (FUNCTION_DESCR_SIZE/4);
 
 
642
643	/* Code generation passes 1-2 */
644	for (pass = 1; pass < 3; pass++) {
645		/* Now build the prologue, body code & epilogue for real. */
646		cgctx.idx = 0;
647		bpf_jit_build_prologue(fp, code_base, &cgctx);
648		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
 
 
 
 
 
649		bpf_jit_build_epilogue(code_base, &cgctx);
650
651		if (bpf_jit_enable > 1)
652			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
653				proglen - (cgctx.idx * 4), cgctx.seen);
654	}
655
 
656	if (bpf_jit_enable > 1)
657		/* Note that we output the base address of the code_base
 
658		 * rather than image, since opcodes are in code_base.
659		 */
660		bpf_jit_dump(flen, proglen, pass, code_base);
661
662	bpf_flush_icache(code_base, code_base + (proglen/4));
663
664#ifdef CONFIG_PPC64
665	/* Function descriptor nastiness: Address + TOC */
666	((u64 *)image)[0] = (u64)code_base;
667	((u64 *)image)[1] = local_paca->kernel_toc;
668#endif
669
670	fp->bpf_func = (void *)image;
671	fp->jited = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672
673out:
674	kfree(addrs);
675	return;
 
 
676}
677
678void bpf_jit_free(struct bpf_prog *fp)
 
 
 
 
 
679{
680	if (fp->jited)
681		module_memfree(fp->bpf_func);
 
 
682
683	bpf_prog_unlock_free(fp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * eBPF JIT compiler
  4 *
  5 * Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
  6 *		  IBM Corporation
  7 *
  8 * Based on the powerpc classic BPF JIT compiler by Matt Evans
 
  9 */
 10#include <linux/moduleloader.h>
 11#include <asm/cacheflush.h>
 12#include <asm/asm-compat.h>
 13#include <linux/netdevice.h>
 14#include <linux/filter.h>
 15#include <linux/if_vlan.h>
 16#include <asm/kprobes.h>
 17#include <linux/bpf.h>
 18
 19#include "bpf_jit.h"
 20
 21static void bpf_jit_fill_ill_insns(void *area, unsigned int size)
 22{
 23	memset32(area, BREAKPOINT_INSTRUCTION, size / 4);
 
 24}
 25
 26/* Fix updated addresses (for subprog calls, ldimm64, et al) during extra pass */
 27static int bpf_jit_fixup_addresses(struct bpf_prog *fp, u32 *image,
 28				   struct codegen_context *ctx, u32 *addrs)
 29{
 30	const struct bpf_insn *insn = fp->insnsi;
 31	bool func_addr_fixed;
 32	u64 func_addr;
 33	u32 tmp_idx;
 34	int i, j, ret;
 35
 36	for (i = 0; i < fp->len; i++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 37		/*
 38		 * During the extra pass, only the branch target addresses for
 39		 * the subprog calls need to be fixed. All other instructions
 40		 * can left untouched.
 41		 *
 42		 * The JITed image length does not change because we already
 43		 * ensure that the JITed instruction sequence for these calls
 44		 * are of fixed length by padding them with NOPs.
 45		 */
 46		if (insn[i].code == (BPF_JMP | BPF_CALL) &&
 47		    insn[i].src_reg == BPF_PSEUDO_CALL) {
 48			ret = bpf_jit_get_func_addr(fp, &insn[i], true,
 49						    &func_addr,
 50						    &func_addr_fixed);
 51			if (ret < 0)
 52				return ret;
 53
 54			/*
 55			 * Save ctx->idx as this would currently point to the
 56			 * end of the JITed image and set it to the offset of
 57			 * the instruction sequence corresponding to the
 58			 * subprog call temporarily.
 59			 */
 60			tmp_idx = ctx->idx;
 61			ctx->idx = addrs[i] / 4;
 62			ret = bpf_jit_emit_func_call_rel(image, ctx, func_addr);
 63			if (ret)
 64				return ret;
 65
 66			/*
 67			 * Restore ctx->idx here. This is safe as the length
 68			 * of the JITed sequence remains unchanged.
 69			 */
 70			ctx->idx = tmp_idx;
 71		} else if (insn[i].code == (BPF_LD | BPF_IMM | BPF_DW)) {
 72			tmp_idx = ctx->idx;
 73			ctx->idx = addrs[i] / 4;
 74#ifdef CONFIG_PPC32
 75			PPC_LI32(bpf_to_ppc(insn[i].dst_reg) - 1, (u32)insn[i + 1].imm);
 76			PPC_LI32(bpf_to_ppc(insn[i].dst_reg), (u32)insn[i].imm);
 77			for (j = ctx->idx - addrs[i] / 4; j < 4; j++)
 78				EMIT(PPC_RAW_NOP());
 79#else
 80			func_addr = ((u64)(u32)insn[i].imm) | (((u64)(u32)insn[i + 1].imm) << 32);
 81			PPC_LI64(bpf_to_ppc(insn[i].dst_reg), func_addr);
 82			/* overwrite rest with nops */
 83			for (j = ctx->idx - addrs[i] / 4; j < 5; j++)
 84				EMIT(PPC_RAW_NOP());
 85#endif
 86			ctx->idx = tmp_idx;
 87			i++;
 88		}
 89	}
 90
 91	return 0;
 
 
 92}
 93
 94int bpf_jit_emit_exit_insn(u32 *image, struct codegen_context *ctx, int tmp_reg, long exit_addr)
 95{
 96	if (!exit_addr || is_offset_in_branch_range(exit_addr - (ctx->idx * 4))) {
 97		PPC_JMP(exit_addr);
 98	} else if (ctx->alt_exit_addr) {
 99		if (WARN_ON(!is_offset_in_branch_range((long)ctx->alt_exit_addr - (ctx->idx * 4))))
100			return -1;
101		PPC_JMP(ctx->alt_exit_addr);
102	} else {
103		ctx->alt_exit_addr = ctx->idx * 4;
104		bpf_jit_build_epilogue(image, ctx);
 
 
 
 
 
 
 
 
105	}
 
106
107	return 0;
108}
109
110struct powerpc64_jit_data {
111	struct bpf_binary_header *header;
112	u32 *addrs;
113	u8 *image;
114	u32 proglen;
115	struct codegen_context ctx;
116};
117
118bool bpf_jit_needs_zext(void)
 
 
 
119{
120	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121}
122
123struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
124{
125	u32 proglen;
126	u32 alloclen;
127	u8 *image = NULL;
128	u32 *code_base;
129	u32 *addrs;
130	struct powerpc64_jit_data *jit_data;
131	struct codegen_context cgctx;
132	int pass;
133	int flen;
134	struct bpf_binary_header *bpf_hdr;
135	struct bpf_prog *org_fp = fp;
136	struct bpf_prog *tmp_fp;
137	bool bpf_blinded = false;
138	bool extra_pass = false;
139	u32 extable_len;
140	u32 fixup_len;
141
142	if (!fp->jit_requested)
143		return org_fp;
144
145	tmp_fp = bpf_jit_blind_constants(org_fp);
146	if (IS_ERR(tmp_fp))
147		return org_fp;
148
149	if (tmp_fp != org_fp) {
150		bpf_blinded = true;
151		fp = tmp_fp;
152	}
153
154	jit_data = fp->aux->jit_data;
155	if (!jit_data) {
156		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
157		if (!jit_data) {
158			fp = org_fp;
159			goto out;
160		}
161		fp->aux->jit_data = jit_data;
162	}
163
164	flen = fp->len;
165	addrs = jit_data->addrs;
166	if (addrs) {
167		cgctx = jit_data->ctx;
168		image = jit_data->image;
169		bpf_hdr = jit_data->header;
170		proglen = jit_data->proglen;
171		extra_pass = true;
172		goto skip_init_ctx;
173	}
174
175	addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
176	if (addrs == NULL) {
177		fp = org_fp;
178		goto out_addrs;
179	}
180
181	memset(&cgctx, 0, sizeof(struct codegen_context));
182	bpf_jit_init_reg_mapping(&cgctx);
183
184	/* Make sure that the stack is quadword aligned. */
185	cgctx.stack_size = round_up(fp->aux->stack_depth, 16);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
 
 
 
187	/* Scouting faux-generate pass 0 */
188	if (bpf_jit_build_body(fp, 0, &cgctx, addrs, 0)) {
189		/* We hit something illegal or unsupported. */
190		fp = org_fp;
191		goto out_addrs;
192	}
193
194	/*
195	 * If we have seen a tail call, we need a second pass.
196	 * This is because bpf_jit_emit_common_epilogue() is called
197	 * from bpf_jit_emit_tail_call() with a not yet stable ctx->seen.
198	 * We also need a second pass if we ended up with too large
199	 * a program so as to ensure BPF_EXIT branches are in range.
200	 */
201	if (cgctx.seen & SEEN_TAILCALL || !is_offset_in_branch_range((long)cgctx.idx * 4)) {
202		cgctx.idx = 0;
203		if (bpf_jit_build_body(fp, 0, &cgctx, addrs, 0)) {
204			fp = org_fp;
205			goto out_addrs;
206		}
207	}
208
209	bpf_jit_realloc_regs(&cgctx);
210	/*
211	 * Pretend to build prologue, given the features we've seen.  This will
212	 * update ctgtx.idx as it pretends to output instructions, then we can
213	 * calculate total size from idx.
214	 */
215	bpf_jit_build_prologue(0, &cgctx);
216	addrs[fp->len] = cgctx.idx * 4;
217	bpf_jit_build_epilogue(0, &cgctx);
218
219	fixup_len = fp->aux->num_exentries * BPF_FIXUP_LEN * 4;
220	extable_len = fp->aux->num_exentries * sizeof(struct exception_table_entry);
221
222	proglen = cgctx.idx * 4;
223	alloclen = proglen + FUNCTION_DESCR_SIZE + fixup_len + extable_len;
224
225	bpf_hdr = bpf_jit_binary_alloc(alloclen, &image, 4, bpf_jit_fill_ill_insns);
226	if (!bpf_hdr) {
227		fp = org_fp;
228		goto out_addrs;
229	}
230
231	if (extable_len)
232		fp->aux->extable = (void *)image + FUNCTION_DESCR_SIZE + proglen + fixup_len;
233
234skip_init_ctx:
235	code_base = (u32 *)(image + FUNCTION_DESCR_SIZE);
236
237	if (extra_pass) {
238		/*
239		 * Do not touch the prologue and epilogue as they will remain
240		 * unchanged. Only fix the branch target address for subprog
241		 * calls in the body, and ldimm64 instructions.
242		 *
243		 * This does not change the offsets and lengths of the subprog
244		 * call instruction sequences and hence, the size of the JITed
245		 * image as well.
246		 */
247		bpf_jit_fixup_addresses(fp, code_base, &cgctx, addrs);
248
249		/* There is no need to perform the usual passes. */
250		goto skip_codegen_passes;
251	}
252
253	/* Code generation passes 1-2 */
254	for (pass = 1; pass < 3; pass++) {
255		/* Now build the prologue, body code & epilogue for real. */
256		cgctx.idx = 0;
257		cgctx.alt_exit_addr = 0;
258		bpf_jit_build_prologue(code_base, &cgctx);
259		if (bpf_jit_build_body(fp, code_base, &cgctx, addrs, pass)) {
260			bpf_jit_binary_free(bpf_hdr);
261			fp = org_fp;
262			goto out_addrs;
263		}
264		bpf_jit_build_epilogue(code_base, &cgctx);
265
266		if (bpf_jit_enable > 1)
267			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
268				proglen - (cgctx.idx * 4), cgctx.seen);
269	}
270
271skip_codegen_passes:
272	if (bpf_jit_enable > 1)
273		/*
274		 * Note that we output the base address of the code_base
275		 * rather than image, since opcodes are in code_base.
276		 */
277		bpf_jit_dump(flen, proglen, pass, code_base);
278
279#ifdef CONFIG_PPC64_ELF_ABI_V1
 
 
280	/* Function descriptor nastiness: Address + TOC */
281	((u64 *)image)[0] = (u64)code_base;
282	((u64 *)image)[1] = local_paca->kernel_toc;
283#endif
284
285	fp->bpf_func = (void *)image;
286	fp->jited = 1;
287	fp->jited_len = proglen + FUNCTION_DESCR_SIZE;
288
289	bpf_flush_icache(bpf_hdr, (u8 *)bpf_hdr + bpf_hdr->size);
290	if (!fp->is_func || extra_pass) {
291		bpf_jit_binary_lock_ro(bpf_hdr);
292		bpf_prog_fill_jited_linfo(fp, addrs);
293out_addrs:
294		kfree(addrs);
295		kfree(jit_data);
296		fp->aux->jit_data = NULL;
297	} else {
298		jit_data->addrs = addrs;
299		jit_data->ctx = cgctx;
300		jit_data->proglen = proglen;
301		jit_data->image = image;
302		jit_data->header = bpf_hdr;
303	}
304
305out:
306	if (bpf_blinded)
307		bpf_jit_prog_release_other(fp, fp == org_fp ? tmp_fp : org_fp);
308
309	return fp;
310}
311
312/*
313 * The caller should check for (BPF_MODE(code) == BPF_PROBE_MEM) before calling
314 * this function, as this only applies to BPF_PROBE_MEM, for now.
315 */
316int bpf_add_extable_entry(struct bpf_prog *fp, u32 *image, int pass, struct codegen_context *ctx,
317			  int insn_idx, int jmp_off, int dst_reg)
318{
319	off_t offset;
320	unsigned long pc;
321	struct exception_table_entry *ex;
322	u32 *fixup;
323
324	/* Populate extable entries only in the last pass */
325	if (pass != 2)
326		return 0;
327
328	if (!fp->aux->extable ||
329	    WARN_ON_ONCE(ctx->exentry_idx >= fp->aux->num_exentries))
330		return -EINVAL;
331
332	pc = (unsigned long)&image[insn_idx];
333
334	fixup = (void *)fp->aux->extable -
335		(fp->aux->num_exentries * BPF_FIXUP_LEN * 4) +
336		(ctx->exentry_idx * BPF_FIXUP_LEN * 4);
337
338	fixup[0] = PPC_RAW_LI(dst_reg, 0);
339	if (IS_ENABLED(CONFIG_PPC32))
340		fixup[1] = PPC_RAW_LI(dst_reg - 1, 0); /* clear higher 32-bit register too */
341
342	fixup[BPF_FIXUP_LEN - 1] =
343		PPC_RAW_BRANCH((long)(pc + jmp_off) - (long)&fixup[BPF_FIXUP_LEN - 1]);
344
345	ex = &fp->aux->extable[ctx->exentry_idx];
346
347	offset = pc - (long)&ex->insn;
348	if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN))
349		return -ERANGE;
350	ex->insn = offset;
351
352	offset = (long)fixup - (long)&ex->fixup;
353	if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN))
354		return -ERANGE;
355	ex->fixup = offset;
356
357	ctx->exentry_idx++;
358	return 0;
359}