Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* bpf_jit_comp.c: BPF JIT compiler
3 *
4 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
5 *
6 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
7 * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org>
8 */
9#include <linux/moduleloader.h>
10#include <asm/cacheflush.h>
11#include <asm/asm-compat.h>
12#include <linux/netdevice.h>
13#include <linux/filter.h>
14#include <linux/if_vlan.h>
15
16#include "bpf_jit32.h"
17
18static inline void bpf_flush_icache(void *start, void *end)
19{
20 smp_wmb();
21 flush_icache_range((unsigned long)start, (unsigned long)end);
22}
23
24static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
25 struct codegen_context *ctx)
26{
27 int i;
28 const struct sock_filter *filter = fp->insns;
29
30 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
31 /* Make stackframe */
32 if (ctx->seen & SEEN_DATAREF) {
33 /* If we call any helpers (for loads), save LR */
34 EMIT(PPC_INST_MFLR | __PPC_RT(R0));
35 PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
36
37 /* Back up non-volatile regs. */
38 PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D)));
39 PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL)));
40 }
41 if (ctx->seen & SEEN_MEM) {
42 /*
43 * Conditionally save regs r15-r31 as some will be used
44 * for M[] data.
45 */
46 for (i = r_M; i < (r_M+16); i++) {
47 if (ctx->seen & (1 << (i-r_M)))
48 PPC_BPF_STL(i, 1, -(REG_SZ*(32-i)));
49 }
50 }
51 PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
52 }
53
54 if (ctx->seen & SEEN_DATAREF) {
55 /*
56 * If this filter needs to access skb data,
57 * prepare r_D and r_HL:
58 * r_HL = skb->len - skb->data_len
59 * r_D = skb->data
60 */
61 PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
62 data_len));
63 PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
64 PPC_SUB(r_HL, r_HL, r_scratch1);
65 PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
66 }
67
68 if (ctx->seen & SEEN_XREG) {
69 /*
70 * TODO: Could also detect whether first instr. sets X and
71 * avoid this (as below, with A).
72 */
73 PPC_LI(r_X, 0);
74 }
75
76 /* make sure we dont leak kernel information to user */
77 if (bpf_needs_clear_a(&filter[0]))
78 PPC_LI(r_A, 0);
79}
80
81static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
82{
83 int i;
84
85 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
86 PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
87 if (ctx->seen & SEEN_DATAREF) {
88 PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
89 PPC_MTLR(0);
90 PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D)));
91 PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL)));
92 }
93 if (ctx->seen & SEEN_MEM) {
94 /* Restore any saved non-vol registers */
95 for (i = r_M; i < (r_M+16); i++) {
96 if (ctx->seen & (1 << (i-r_M)))
97 PPC_BPF_LL(i, 1, -(REG_SZ*(32-i)));
98 }
99 }
100 }
101 /* The RETs have left a return value in R3. */
102
103 PPC_BLR();
104}
105
106#define CHOOSE_LOAD_FUNC(K, func) \
107 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
108
109/* Assemble the body code between the prologue & epilogue. */
110static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
111 struct codegen_context *ctx,
112 unsigned int *addrs)
113{
114 const struct sock_filter *filter = fp->insns;
115 int flen = fp->len;
116 u8 *func;
117 unsigned int true_cond;
118 int i;
119
120 /* Start of epilogue code */
121 unsigned int exit_addr = addrs[flen];
122
123 for (i = 0; i < flen; i++) {
124 unsigned int K = filter[i].k;
125 u16 code = bpf_anc_helper(&filter[i]);
126
127 /*
128 * addrs[] maps a BPF bytecode address into a real offset from
129 * the start of the body code.
130 */
131 addrs[i] = ctx->idx * 4;
132
133 switch (code) {
134 /*** ALU ops ***/
135 case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
136 ctx->seen |= SEEN_XREG;
137 PPC_ADD(r_A, r_A, r_X);
138 break;
139 case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
140 if (!K)
141 break;
142 PPC_ADDI(r_A, r_A, IMM_L(K));
143 if (K >= 32768)
144 PPC_ADDIS(r_A, r_A, IMM_HA(K));
145 break;
146 case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
147 ctx->seen |= SEEN_XREG;
148 PPC_SUB(r_A, r_A, r_X);
149 break;
150 case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
151 if (!K)
152 break;
153 PPC_ADDI(r_A, r_A, IMM_L(-K));
154 if (K >= 32768)
155 PPC_ADDIS(r_A, r_A, IMM_HA(-K));
156 break;
157 case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
158 ctx->seen |= SEEN_XREG;
159 PPC_MULW(r_A, r_A, r_X);
160 break;
161 case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
162 if (K < 32768)
163 PPC_MULI(r_A, r_A, K);
164 else {
165 PPC_LI32(r_scratch1, K);
166 PPC_MULW(r_A, r_A, r_scratch1);
167 }
168 break;
169 case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
170 case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
171 ctx->seen |= SEEN_XREG;
172 PPC_CMPWI(r_X, 0);
173 if (ctx->pc_ret0 != -1) {
174 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
175 } else {
176 PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
177 PPC_LI(r_ret, 0);
178 PPC_JMP(exit_addr);
179 }
180 if (code == (BPF_ALU | BPF_MOD | BPF_X)) {
181 PPC_DIVWU(r_scratch1, r_A, r_X);
182 PPC_MULW(r_scratch1, r_X, r_scratch1);
183 PPC_SUB(r_A, r_A, r_scratch1);
184 } else {
185 PPC_DIVWU(r_A, r_A, r_X);
186 }
187 break;
188 case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
189 PPC_LI32(r_scratch2, K);
190 PPC_DIVWU(r_scratch1, r_A, r_scratch2);
191 PPC_MULW(r_scratch1, r_scratch2, r_scratch1);
192 PPC_SUB(r_A, r_A, r_scratch1);
193 break;
194 case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
195 if (K == 1)
196 break;
197 PPC_LI32(r_scratch1, K);
198 PPC_DIVWU(r_A, r_A, r_scratch1);
199 break;
200 case BPF_ALU | BPF_AND | BPF_X:
201 ctx->seen |= SEEN_XREG;
202 PPC_AND(r_A, r_A, r_X);
203 break;
204 case BPF_ALU | BPF_AND | BPF_K:
205 if (!IMM_H(K))
206 PPC_ANDI(r_A, r_A, K);
207 else {
208 PPC_LI32(r_scratch1, K);
209 PPC_AND(r_A, r_A, r_scratch1);
210 }
211 break;
212 case BPF_ALU | BPF_OR | BPF_X:
213 ctx->seen |= SEEN_XREG;
214 PPC_OR(r_A, r_A, r_X);
215 break;
216 case BPF_ALU | BPF_OR | BPF_K:
217 if (IMM_L(K))
218 PPC_ORI(r_A, r_A, IMM_L(K));
219 if (K >= 65536)
220 PPC_ORIS(r_A, r_A, IMM_H(K));
221 break;
222 case BPF_ANC | SKF_AD_ALU_XOR_X:
223 case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
224 ctx->seen |= SEEN_XREG;
225 PPC_XOR(r_A, r_A, r_X);
226 break;
227 case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
228 if (IMM_L(K))
229 PPC_XORI(r_A, r_A, IMM_L(K));
230 if (K >= 65536)
231 PPC_XORIS(r_A, r_A, IMM_H(K));
232 break;
233 case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
234 ctx->seen |= SEEN_XREG;
235 PPC_SLW(r_A, r_A, r_X);
236 break;
237 case BPF_ALU | BPF_LSH | BPF_K:
238 if (K == 0)
239 break;
240 else
241 PPC_SLWI(r_A, r_A, K);
242 break;
243 case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
244 ctx->seen |= SEEN_XREG;
245 PPC_SRW(r_A, r_A, r_X);
246 break;
247 case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
248 if (K == 0)
249 break;
250 else
251 PPC_SRWI(r_A, r_A, K);
252 break;
253 case BPF_ALU | BPF_NEG:
254 PPC_NEG(r_A, r_A);
255 break;
256 case BPF_RET | BPF_K:
257 PPC_LI32(r_ret, K);
258 if (!K) {
259 if (ctx->pc_ret0 == -1)
260 ctx->pc_ret0 = i;
261 }
262 /*
263 * If this isn't the very last instruction, branch to
264 * the epilogue if we've stuff to clean up. Otherwise,
265 * if there's nothing to tidy, just return. If we /are/
266 * the last instruction, we're about to fall through to
267 * the epilogue to return.
268 */
269 if (i != flen - 1) {
270 /*
271 * Note: 'seen' is properly valid only on pass
272 * #2. Both parts of this conditional are the
273 * same instruction size though, meaning the
274 * first pass will still correctly determine the
275 * code size/addresses.
276 */
277 if (ctx->seen)
278 PPC_JMP(exit_addr);
279 else
280 PPC_BLR();
281 }
282 break;
283 case BPF_RET | BPF_A:
284 PPC_MR(r_ret, r_A);
285 if (i != flen - 1) {
286 if (ctx->seen)
287 PPC_JMP(exit_addr);
288 else
289 PPC_BLR();
290 }
291 break;
292 case BPF_MISC | BPF_TAX: /* X = A */
293 PPC_MR(r_X, r_A);
294 break;
295 case BPF_MISC | BPF_TXA: /* A = X */
296 ctx->seen |= SEEN_XREG;
297 PPC_MR(r_A, r_X);
298 break;
299
300 /*** Constant loads/M[] access ***/
301 case BPF_LD | BPF_IMM: /* A = K */
302 PPC_LI32(r_A, K);
303 break;
304 case BPF_LDX | BPF_IMM: /* X = K */
305 PPC_LI32(r_X, K);
306 break;
307 case BPF_LD | BPF_MEM: /* A = mem[K] */
308 PPC_MR(r_A, r_M + (K & 0xf));
309 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
310 break;
311 case BPF_LDX | BPF_MEM: /* X = mem[K] */
312 PPC_MR(r_X, r_M + (K & 0xf));
313 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
314 break;
315 case BPF_ST: /* mem[K] = A */
316 PPC_MR(r_M + (K & 0xf), r_A);
317 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
318 break;
319 case BPF_STX: /* mem[K] = X */
320 PPC_MR(r_M + (K & 0xf), r_X);
321 ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
322 break;
323 case BPF_LD | BPF_W | BPF_LEN: /* A = skb->len; */
324 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
325 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
326 break;
327 case BPF_LDX | BPF_W | BPF_ABS: /* A = *((u32 *)(seccomp_data + K)); */
328 PPC_LWZ_OFFS(r_A, r_skb, K);
329 break;
330 case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
331 PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
332 break;
333
334 /*** Ancillary info loads ***/
335 case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
336 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
337 protocol) != 2);
338 PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
339 protocol));
340 break;
341 case BPF_ANC | SKF_AD_IFINDEX:
342 case BPF_ANC | SKF_AD_HATYPE:
343 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
344 ifindex) != 4);
345 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
346 type) != 2);
347 PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
348 dev));
349 PPC_CMPDI(r_scratch1, 0);
350 if (ctx->pc_ret0 != -1) {
351 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
352 } else {
353 /* Exit, returning 0; first pass hits here. */
354 PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12);
355 PPC_LI(r_ret, 0);
356 PPC_JMP(exit_addr);
357 }
358 if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
359 PPC_LWZ_OFFS(r_A, r_scratch1,
360 offsetof(struct net_device, ifindex));
361 } else {
362 PPC_LHZ_OFFS(r_A, r_scratch1,
363 offsetof(struct net_device, type));
364 }
365
366 break;
367 case BPF_ANC | SKF_AD_MARK:
368 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
369 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
370 mark));
371 break;
372 case BPF_ANC | SKF_AD_RXHASH:
373 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
374 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
375 hash));
376 break;
377 case BPF_ANC | SKF_AD_VLAN_TAG:
378 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
379
380 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
381 vlan_tci));
382 break;
383 case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
384 PPC_LBZ_OFFS(r_A, r_skb, PKT_VLAN_PRESENT_OFFSET());
385 if (PKT_VLAN_PRESENT_BIT)
386 PPC_SRWI(r_A, r_A, PKT_VLAN_PRESENT_BIT);
387 if (PKT_VLAN_PRESENT_BIT < 7)
388 PPC_ANDI(r_A, r_A, 1);
389 break;
390 case BPF_ANC | SKF_AD_QUEUE:
391 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
392 queue_mapping) != 2);
393 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
394 queue_mapping));
395 break;
396 case BPF_ANC | SKF_AD_PKTTYPE:
397 PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET());
398 PPC_ANDI(r_A, r_A, PKT_TYPE_MAX);
399 PPC_SRWI(r_A, r_A, 5);
400 break;
401 case BPF_ANC | SKF_AD_CPU:
402 PPC_BPF_LOAD_CPU(r_A);
403 break;
404 /*** Absolute loads from packet header/data ***/
405 case BPF_LD | BPF_W | BPF_ABS:
406 func = CHOOSE_LOAD_FUNC(K, sk_load_word);
407 goto common_load;
408 case BPF_LD | BPF_H | BPF_ABS:
409 func = CHOOSE_LOAD_FUNC(K, sk_load_half);
410 goto common_load;
411 case BPF_LD | BPF_B | BPF_ABS:
412 func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
413 common_load:
414 /* Load from [K]. */
415 ctx->seen |= SEEN_DATAREF;
416 PPC_FUNC_ADDR(r_scratch1, func);
417 PPC_MTLR(r_scratch1);
418 PPC_LI32(r_addr, K);
419 PPC_BLRL();
420 /*
421 * Helper returns 'lt' condition on error, and an
422 * appropriate return value in r3
423 */
424 PPC_BCC(COND_LT, exit_addr);
425 break;
426
427 /*** Indirect loads from packet header/data ***/
428 case BPF_LD | BPF_W | BPF_IND:
429 func = sk_load_word;
430 goto common_load_ind;
431 case BPF_LD | BPF_H | BPF_IND:
432 func = sk_load_half;
433 goto common_load_ind;
434 case BPF_LD | BPF_B | BPF_IND:
435 func = sk_load_byte;
436 common_load_ind:
437 /*
438 * Load from [X + K]. Negative offsets are tested for
439 * in the helper functions.
440 */
441 ctx->seen |= SEEN_DATAREF | SEEN_XREG;
442 PPC_FUNC_ADDR(r_scratch1, func);
443 PPC_MTLR(r_scratch1);
444 PPC_ADDI(r_addr, r_X, IMM_L(K));
445 if (K >= 32768)
446 PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
447 PPC_BLRL();
448 /* If error, cr0.LT set */
449 PPC_BCC(COND_LT, exit_addr);
450 break;
451
452 case BPF_LDX | BPF_B | BPF_MSH:
453 func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
454 goto common_load;
455 break;
456
457 /*** Jump and branches ***/
458 case BPF_JMP | BPF_JA:
459 if (K != 0)
460 PPC_JMP(addrs[i + 1 + K]);
461 break;
462
463 case BPF_JMP | BPF_JGT | BPF_K:
464 case BPF_JMP | BPF_JGT | BPF_X:
465 true_cond = COND_GT;
466 goto cond_branch;
467 case BPF_JMP | BPF_JGE | BPF_K:
468 case BPF_JMP | BPF_JGE | BPF_X:
469 true_cond = COND_GE;
470 goto cond_branch;
471 case BPF_JMP | BPF_JEQ | BPF_K:
472 case BPF_JMP | BPF_JEQ | BPF_X:
473 true_cond = COND_EQ;
474 goto cond_branch;
475 case BPF_JMP | BPF_JSET | BPF_K:
476 case BPF_JMP | BPF_JSET | BPF_X:
477 true_cond = COND_NE;
478 /* Fall through */
479 cond_branch:
480 /* same targets, can avoid doing the test :) */
481 if (filter[i].jt == filter[i].jf) {
482 if (filter[i].jt > 0)
483 PPC_JMP(addrs[i + 1 + filter[i].jt]);
484 break;
485 }
486
487 switch (code) {
488 case BPF_JMP | BPF_JGT | BPF_X:
489 case BPF_JMP | BPF_JGE | BPF_X:
490 case BPF_JMP | BPF_JEQ | BPF_X:
491 ctx->seen |= SEEN_XREG;
492 PPC_CMPLW(r_A, r_X);
493 break;
494 case BPF_JMP | BPF_JSET | BPF_X:
495 ctx->seen |= SEEN_XREG;
496 PPC_AND_DOT(r_scratch1, r_A, r_X);
497 break;
498 case BPF_JMP | BPF_JEQ | BPF_K:
499 case BPF_JMP | BPF_JGT | BPF_K:
500 case BPF_JMP | BPF_JGE | BPF_K:
501 if (K < 32768)
502 PPC_CMPLWI(r_A, K);
503 else {
504 PPC_LI32(r_scratch1, K);
505 PPC_CMPLW(r_A, r_scratch1);
506 }
507 break;
508 case BPF_JMP | BPF_JSET | BPF_K:
509 if (K < 32768)
510 /* PPC_ANDI is /only/ dot-form */
511 PPC_ANDI(r_scratch1, r_A, K);
512 else {
513 PPC_LI32(r_scratch1, K);
514 PPC_AND_DOT(r_scratch1, r_A,
515 r_scratch1);
516 }
517 break;
518 }
519 /* Sometimes branches are constructed "backward", with
520 * the false path being the branch and true path being
521 * a fallthrough to the next instruction.
522 */
523 if (filter[i].jt == 0)
524 /* Swap the sense of the branch */
525 PPC_BCC(true_cond ^ COND_CMP_TRUE,
526 addrs[i + 1 + filter[i].jf]);
527 else {
528 PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
529 if (filter[i].jf != 0)
530 PPC_JMP(addrs[i + 1 + filter[i].jf]);
531 }
532 break;
533 default:
534 /* The filter contains something cruel & unusual.
535 * We don't handle it, but also there shouldn't be
536 * anything missing from our list.
537 */
538 if (printk_ratelimit())
539 pr_err("BPF filter opcode %04x (@%d) unsupported\n",
540 filter[i].code, i);
541 return -ENOTSUPP;
542 }
543
544 }
545 /* Set end-of-body-code address for exit. */
546 addrs[i] = ctx->idx * 4;
547
548 return 0;
549}
550
551void bpf_jit_compile(struct bpf_prog *fp)
552{
553 unsigned int proglen;
554 unsigned int alloclen;
555 u32 *image = NULL;
556 u32 *code_base;
557 unsigned int *addrs;
558 struct codegen_context cgctx;
559 int pass;
560 int flen = fp->len;
561
562 if (!bpf_jit_enable)
563 return;
564
565 addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
566 if (addrs == NULL)
567 return;
568
569 /*
570 * There are multiple assembly passes as the generated code will change
571 * size as it settles down, figuring out the max branch offsets/exit
572 * paths required.
573 *
574 * The range of standard conditional branches is +/- 32Kbytes. Since
575 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
576 * finish with 8 bytes/instruction. Not feasible, so long jumps are
577 * used, distinct from short branches.
578 *
579 * Current:
580 *
581 * For now, both branch types assemble to 2 words (short branches padded
582 * with a NOP); this is less efficient, but assembly will always complete
583 * after exactly 3 passes:
584 *
585 * First pass: No code buffer; Program is "faux-generated" -- no code
586 * emitted but maximum size of output determined (and addrs[] filled
587 * in). Also, we note whether we use M[], whether we use skb data, etc.
588 * All generation choices assumed to be 'worst-case', e.g. branches all
589 * far (2 instructions), return path code reduction not available, etc.
590 *
591 * Second pass: Code buffer allocated with size determined previously.
592 * Prologue generated to support features we have seen used. Exit paths
593 * determined and addrs[] is filled in again, as code may be slightly
594 * smaller as a result.
595 *
596 * Third pass: Code generated 'for real', and branch destinations
597 * determined from now-accurate addrs[] map.
598 *
599 * Ideal:
600 *
601 * If we optimise this, near branches will be shorter. On the
602 * first assembly pass, we should err on the side of caution and
603 * generate the biggest code. On subsequent passes, branches will be
604 * generated short or long and code size will reduce. With smaller
605 * code, more branches may fall into the short category, and code will
606 * reduce more.
607 *
608 * Finally, if we see one pass generate code the same size as the
609 * previous pass we have converged and should now generate code for
610 * real. Allocating at the end will also save the memory that would
611 * otherwise be wasted by the (small) current code shrinkage.
612 * Preferably, we should do a small number of passes (e.g. 5) and if we
613 * haven't converged by then, get impatient and force code to generate
614 * as-is, even if the odd branch would be left long. The chances of a
615 * long jump are tiny with all but the most enormous of BPF filter
616 * inputs, so we should usually converge on the third pass.
617 */
618
619 cgctx.idx = 0;
620 cgctx.seen = 0;
621 cgctx.pc_ret0 = -1;
622 /* Scouting faux-generate pass 0 */
623 if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
624 /* We hit something illegal or unsupported. */
625 goto out;
626
627 /*
628 * Pretend to build prologue, given the features we've seen. This will
629 * update ctgtx.idx as it pretends to output instructions, then we can
630 * calculate total size from idx.
631 */
632 bpf_jit_build_prologue(fp, 0, &cgctx);
633 bpf_jit_build_epilogue(0, &cgctx);
634
635 proglen = cgctx.idx * 4;
636 alloclen = proglen + FUNCTION_DESCR_SIZE;
637 image = module_alloc(alloclen);
638 if (!image)
639 goto out;
640
641 code_base = image + (FUNCTION_DESCR_SIZE/4);
642
643 /* Code generation passes 1-2 */
644 for (pass = 1; pass < 3; pass++) {
645 /* Now build the prologue, body code & epilogue for real. */
646 cgctx.idx = 0;
647 bpf_jit_build_prologue(fp, code_base, &cgctx);
648 bpf_jit_build_body(fp, code_base, &cgctx, addrs);
649 bpf_jit_build_epilogue(code_base, &cgctx);
650
651 if (bpf_jit_enable > 1)
652 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
653 proglen - (cgctx.idx * 4), cgctx.seen);
654 }
655
656 if (bpf_jit_enable > 1)
657 /* Note that we output the base address of the code_base
658 * rather than image, since opcodes are in code_base.
659 */
660 bpf_jit_dump(flen, proglen, pass, code_base);
661
662 bpf_flush_icache(code_base, code_base + (proglen/4));
663
664#ifdef CONFIG_PPC64
665 /* Function descriptor nastiness: Address + TOC */
666 ((u64 *)image)[0] = (u64)code_base;
667 ((u64 *)image)[1] = local_paca->kernel_toc;
668#endif
669
670 fp->bpf_func = (void *)image;
671 fp->jited = 1;
672
673out:
674 kfree(addrs);
675 return;
676}
677
678void bpf_jit_free(struct bpf_prog *fp)
679{
680 if (fp->jited)
681 module_memfree(fp->bpf_func);
682
683 bpf_prog_unlock_free(fp);
684}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * eBPF JIT compiler
4 *
5 * Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
6 * IBM Corporation
7 *
8 * Based on the powerpc classic BPF JIT compiler by Matt Evans
9 */
10#include <linux/moduleloader.h>
11#include <asm/cacheflush.h>
12#include <asm/asm-compat.h>
13#include <linux/netdevice.h>
14#include <linux/filter.h>
15#include <linux/if_vlan.h>
16#include <asm/kprobes.h>
17#include <linux/bpf.h>
18
19#include "bpf_jit.h"
20
21static void bpf_jit_fill_ill_insns(void *area, unsigned int size)
22{
23 memset32(area, BREAKPOINT_INSTRUCTION, size / 4);
24}
25
26/* Fix updated addresses (for subprog calls, ldimm64, et al) during extra pass */
27static int bpf_jit_fixup_addresses(struct bpf_prog *fp, u32 *image,
28 struct codegen_context *ctx, u32 *addrs)
29{
30 const struct bpf_insn *insn = fp->insnsi;
31 bool func_addr_fixed;
32 u64 func_addr;
33 u32 tmp_idx;
34 int i, j, ret;
35
36 for (i = 0; i < fp->len; i++) {
37 /*
38 * During the extra pass, only the branch target addresses for
39 * the subprog calls need to be fixed. All other instructions
40 * can left untouched.
41 *
42 * The JITed image length does not change because we already
43 * ensure that the JITed instruction sequence for these calls
44 * are of fixed length by padding them with NOPs.
45 */
46 if (insn[i].code == (BPF_JMP | BPF_CALL) &&
47 insn[i].src_reg == BPF_PSEUDO_CALL) {
48 ret = bpf_jit_get_func_addr(fp, &insn[i], true,
49 &func_addr,
50 &func_addr_fixed);
51 if (ret < 0)
52 return ret;
53
54 /*
55 * Save ctx->idx as this would currently point to the
56 * end of the JITed image and set it to the offset of
57 * the instruction sequence corresponding to the
58 * subprog call temporarily.
59 */
60 tmp_idx = ctx->idx;
61 ctx->idx = addrs[i] / 4;
62 ret = bpf_jit_emit_func_call_rel(image, ctx, func_addr);
63 if (ret)
64 return ret;
65
66 /*
67 * Restore ctx->idx here. This is safe as the length
68 * of the JITed sequence remains unchanged.
69 */
70 ctx->idx = tmp_idx;
71 } else if (insn[i].code == (BPF_LD | BPF_IMM | BPF_DW)) {
72 tmp_idx = ctx->idx;
73 ctx->idx = addrs[i] / 4;
74#ifdef CONFIG_PPC32
75 PPC_LI32(bpf_to_ppc(insn[i].dst_reg) - 1, (u32)insn[i + 1].imm);
76 PPC_LI32(bpf_to_ppc(insn[i].dst_reg), (u32)insn[i].imm);
77 for (j = ctx->idx - addrs[i] / 4; j < 4; j++)
78 EMIT(PPC_RAW_NOP());
79#else
80 func_addr = ((u64)(u32)insn[i].imm) | (((u64)(u32)insn[i + 1].imm) << 32);
81 PPC_LI64(bpf_to_ppc(insn[i].dst_reg), func_addr);
82 /* overwrite rest with nops */
83 for (j = ctx->idx - addrs[i] / 4; j < 5; j++)
84 EMIT(PPC_RAW_NOP());
85#endif
86 ctx->idx = tmp_idx;
87 i++;
88 }
89 }
90
91 return 0;
92}
93
94int bpf_jit_emit_exit_insn(u32 *image, struct codegen_context *ctx, int tmp_reg, long exit_addr)
95{
96 if (!exit_addr || is_offset_in_branch_range(exit_addr - (ctx->idx * 4))) {
97 PPC_JMP(exit_addr);
98 } else if (ctx->alt_exit_addr) {
99 if (WARN_ON(!is_offset_in_branch_range((long)ctx->alt_exit_addr - (ctx->idx * 4))))
100 return -1;
101 PPC_JMP(ctx->alt_exit_addr);
102 } else {
103 ctx->alt_exit_addr = ctx->idx * 4;
104 bpf_jit_build_epilogue(image, ctx);
105 }
106
107 return 0;
108}
109
110struct powerpc64_jit_data {
111 struct bpf_binary_header *header;
112 u32 *addrs;
113 u8 *image;
114 u32 proglen;
115 struct codegen_context ctx;
116};
117
118bool bpf_jit_needs_zext(void)
119{
120 return true;
121}
122
123struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
124{
125 u32 proglen;
126 u32 alloclen;
127 u8 *image = NULL;
128 u32 *code_base;
129 u32 *addrs;
130 struct powerpc64_jit_data *jit_data;
131 struct codegen_context cgctx;
132 int pass;
133 int flen;
134 struct bpf_binary_header *bpf_hdr;
135 struct bpf_prog *org_fp = fp;
136 struct bpf_prog *tmp_fp;
137 bool bpf_blinded = false;
138 bool extra_pass = false;
139 u32 extable_len;
140 u32 fixup_len;
141
142 if (!fp->jit_requested)
143 return org_fp;
144
145 tmp_fp = bpf_jit_blind_constants(org_fp);
146 if (IS_ERR(tmp_fp))
147 return org_fp;
148
149 if (tmp_fp != org_fp) {
150 bpf_blinded = true;
151 fp = tmp_fp;
152 }
153
154 jit_data = fp->aux->jit_data;
155 if (!jit_data) {
156 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
157 if (!jit_data) {
158 fp = org_fp;
159 goto out;
160 }
161 fp->aux->jit_data = jit_data;
162 }
163
164 flen = fp->len;
165 addrs = jit_data->addrs;
166 if (addrs) {
167 cgctx = jit_data->ctx;
168 image = jit_data->image;
169 bpf_hdr = jit_data->header;
170 proglen = jit_data->proglen;
171 extra_pass = true;
172 goto skip_init_ctx;
173 }
174
175 addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
176 if (addrs == NULL) {
177 fp = org_fp;
178 goto out_addrs;
179 }
180
181 memset(&cgctx, 0, sizeof(struct codegen_context));
182 bpf_jit_init_reg_mapping(&cgctx);
183
184 /* Make sure that the stack is quadword aligned. */
185 cgctx.stack_size = round_up(fp->aux->stack_depth, 16);
186
187 /* Scouting faux-generate pass 0 */
188 if (bpf_jit_build_body(fp, 0, &cgctx, addrs, 0)) {
189 /* We hit something illegal or unsupported. */
190 fp = org_fp;
191 goto out_addrs;
192 }
193
194 /*
195 * If we have seen a tail call, we need a second pass.
196 * This is because bpf_jit_emit_common_epilogue() is called
197 * from bpf_jit_emit_tail_call() with a not yet stable ctx->seen.
198 * We also need a second pass if we ended up with too large
199 * a program so as to ensure BPF_EXIT branches are in range.
200 */
201 if (cgctx.seen & SEEN_TAILCALL || !is_offset_in_branch_range((long)cgctx.idx * 4)) {
202 cgctx.idx = 0;
203 if (bpf_jit_build_body(fp, 0, &cgctx, addrs, 0)) {
204 fp = org_fp;
205 goto out_addrs;
206 }
207 }
208
209 bpf_jit_realloc_regs(&cgctx);
210 /*
211 * Pretend to build prologue, given the features we've seen. This will
212 * update ctgtx.idx as it pretends to output instructions, then we can
213 * calculate total size from idx.
214 */
215 bpf_jit_build_prologue(0, &cgctx);
216 addrs[fp->len] = cgctx.idx * 4;
217 bpf_jit_build_epilogue(0, &cgctx);
218
219 fixup_len = fp->aux->num_exentries * BPF_FIXUP_LEN * 4;
220 extable_len = fp->aux->num_exentries * sizeof(struct exception_table_entry);
221
222 proglen = cgctx.idx * 4;
223 alloclen = proglen + FUNCTION_DESCR_SIZE + fixup_len + extable_len;
224
225 bpf_hdr = bpf_jit_binary_alloc(alloclen, &image, 4, bpf_jit_fill_ill_insns);
226 if (!bpf_hdr) {
227 fp = org_fp;
228 goto out_addrs;
229 }
230
231 if (extable_len)
232 fp->aux->extable = (void *)image + FUNCTION_DESCR_SIZE + proglen + fixup_len;
233
234skip_init_ctx:
235 code_base = (u32 *)(image + FUNCTION_DESCR_SIZE);
236
237 if (extra_pass) {
238 /*
239 * Do not touch the prologue and epilogue as they will remain
240 * unchanged. Only fix the branch target address for subprog
241 * calls in the body, and ldimm64 instructions.
242 *
243 * This does not change the offsets and lengths of the subprog
244 * call instruction sequences and hence, the size of the JITed
245 * image as well.
246 */
247 bpf_jit_fixup_addresses(fp, code_base, &cgctx, addrs);
248
249 /* There is no need to perform the usual passes. */
250 goto skip_codegen_passes;
251 }
252
253 /* Code generation passes 1-2 */
254 for (pass = 1; pass < 3; pass++) {
255 /* Now build the prologue, body code & epilogue for real. */
256 cgctx.idx = 0;
257 cgctx.alt_exit_addr = 0;
258 bpf_jit_build_prologue(code_base, &cgctx);
259 if (bpf_jit_build_body(fp, code_base, &cgctx, addrs, pass)) {
260 bpf_jit_binary_free(bpf_hdr);
261 fp = org_fp;
262 goto out_addrs;
263 }
264 bpf_jit_build_epilogue(code_base, &cgctx);
265
266 if (bpf_jit_enable > 1)
267 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
268 proglen - (cgctx.idx * 4), cgctx.seen);
269 }
270
271skip_codegen_passes:
272 if (bpf_jit_enable > 1)
273 /*
274 * Note that we output the base address of the code_base
275 * rather than image, since opcodes are in code_base.
276 */
277 bpf_jit_dump(flen, proglen, pass, code_base);
278
279#ifdef CONFIG_PPC64_ELF_ABI_V1
280 /* Function descriptor nastiness: Address + TOC */
281 ((u64 *)image)[0] = (u64)code_base;
282 ((u64 *)image)[1] = local_paca->kernel_toc;
283#endif
284
285 fp->bpf_func = (void *)image;
286 fp->jited = 1;
287 fp->jited_len = proglen + FUNCTION_DESCR_SIZE;
288
289 bpf_flush_icache(bpf_hdr, (u8 *)bpf_hdr + bpf_hdr->size);
290 if (!fp->is_func || extra_pass) {
291 bpf_jit_binary_lock_ro(bpf_hdr);
292 bpf_prog_fill_jited_linfo(fp, addrs);
293out_addrs:
294 kfree(addrs);
295 kfree(jit_data);
296 fp->aux->jit_data = NULL;
297 } else {
298 jit_data->addrs = addrs;
299 jit_data->ctx = cgctx;
300 jit_data->proglen = proglen;
301 jit_data->image = image;
302 jit_data->header = bpf_hdr;
303 }
304
305out:
306 if (bpf_blinded)
307 bpf_jit_prog_release_other(fp, fp == org_fp ? tmp_fp : org_fp);
308
309 return fp;
310}
311
312/*
313 * The caller should check for (BPF_MODE(code) == BPF_PROBE_MEM) before calling
314 * this function, as this only applies to BPF_PROBE_MEM, for now.
315 */
316int bpf_add_extable_entry(struct bpf_prog *fp, u32 *image, int pass, struct codegen_context *ctx,
317 int insn_idx, int jmp_off, int dst_reg)
318{
319 off_t offset;
320 unsigned long pc;
321 struct exception_table_entry *ex;
322 u32 *fixup;
323
324 /* Populate extable entries only in the last pass */
325 if (pass != 2)
326 return 0;
327
328 if (!fp->aux->extable ||
329 WARN_ON_ONCE(ctx->exentry_idx >= fp->aux->num_exentries))
330 return -EINVAL;
331
332 pc = (unsigned long)&image[insn_idx];
333
334 fixup = (void *)fp->aux->extable -
335 (fp->aux->num_exentries * BPF_FIXUP_LEN * 4) +
336 (ctx->exentry_idx * BPF_FIXUP_LEN * 4);
337
338 fixup[0] = PPC_RAW_LI(dst_reg, 0);
339 if (IS_ENABLED(CONFIG_PPC32))
340 fixup[1] = PPC_RAW_LI(dst_reg - 1, 0); /* clear higher 32-bit register too */
341
342 fixup[BPF_FIXUP_LEN - 1] =
343 PPC_RAW_BRANCH((long)(pc + jmp_off) - (long)&fixup[BPF_FIXUP_LEN - 1]);
344
345 ex = &fp->aux->extable[ctx->exentry_idx];
346
347 offset = pc - (long)&ex->insn;
348 if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN))
349 return -ERANGE;
350 ex->insn = offset;
351
352 offset = (long)fixup - (long)&ex->fixup;
353 if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN))
354 return -ERANGE;
355 ex->fixup = offset;
356
357 ctx->exentry_idx++;
358 return 0;
359}