Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* bpf_jit_comp.c: BPF JIT compiler
  3 *
  4 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
  5 *
  6 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
  7 * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org>
 
 
 
 
  8 */
  9#include <linux/moduleloader.h>
 10#include <asm/cacheflush.h>
 11#include <asm/asm-compat.h>
 12#include <linux/netdevice.h>
 13#include <linux/filter.h>
 14#include <linux/if_vlan.h>
 
 
 
 
 
 
 
 15
 16#include "bpf_jit32.h"
 17
 18static inline void bpf_flush_icache(void *start, void *end)
 19{
 20	smp_wmb();
 21	flush_icache_range((unsigned long)start, (unsigned long)end);
 22}
 23
 24static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
 25				   struct codegen_context *ctx)
 26{
 27	int i;
 28	const struct sock_filter *filter = fp->insns;
 29
 30	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 31		/* Make stackframe */
 32		if (ctx->seen & SEEN_DATAREF) {
 33			/* If we call any helpers (for loads), save LR */
 34			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
 35			PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
 36
 37			/* Back up non-volatile regs. */
 38			PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D)));
 39			PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL)));
 40		}
 41		if (ctx->seen & SEEN_MEM) {
 42			/*
 43			 * Conditionally save regs r15-r31 as some will be used
 44			 * for M[] data.
 45			 */
 46			for (i = r_M; i < (r_M+16); i++) {
 47				if (ctx->seen & (1 << (i-r_M)))
 48					PPC_BPF_STL(i, 1, -(REG_SZ*(32-i)));
 49			}
 50		}
 51		PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
 
 52	}
 53
 54	if (ctx->seen & SEEN_DATAREF) {
 55		/*
 56		 * If this filter needs to access skb data,
 57		 * prepare r_D and r_HL:
 58		 *  r_HL = skb->len - skb->data_len
 59		 *  r_D	 = skb->data
 60		 */
 61		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 62							 data_len));
 63		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 64		PPC_SUB(r_HL, r_HL, r_scratch1);
 65		PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 66	}
 67
 68	if (ctx->seen & SEEN_XREG) {
 69		/*
 70		 * TODO: Could also detect whether first instr. sets X and
 71		 * avoid this (as below, with A).
 72		 */
 73		PPC_LI(r_X, 0);
 74	}
 75
 76	/* make sure we dont leak kernel information to user */
 77	if (bpf_needs_clear_a(&filter[0]))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78		PPC_LI(r_A, 0);
 
 79}
 80
 81static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
 82{
 83	int i;
 84
 85	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 86		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
 87		if (ctx->seen & SEEN_DATAREF) {
 88			PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
 89			PPC_MTLR(0);
 90			PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D)));
 91			PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL)));
 92		}
 93		if (ctx->seen & SEEN_MEM) {
 94			/* Restore any saved non-vol registers */
 95			for (i = r_M; i < (r_M+16); i++) {
 96				if (ctx->seen & (1 << (i-r_M)))
 97					PPC_BPF_LL(i, 1, -(REG_SZ*(32-i)));
 98			}
 99		}
100	}
101	/* The RETs have left a return value in R3. */
102
103	PPC_BLR();
104}
105
106#define CHOOSE_LOAD_FUNC(K, func) \
107	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
108
109/* Assemble the body code between the prologue & epilogue. */
110static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
111			      struct codegen_context *ctx,
112			      unsigned int *addrs)
113{
114	const struct sock_filter *filter = fp->insns;
115	int flen = fp->len;
116	u8 *func;
117	unsigned int true_cond;
118	int i;
119
120	/* Start of epilogue code */
121	unsigned int exit_addr = addrs[flen];
122
123	for (i = 0; i < flen; i++) {
124		unsigned int K = filter[i].k;
125		u16 code = bpf_anc_helper(&filter[i]);
126
127		/*
128		 * addrs[] maps a BPF bytecode address into a real offset from
129		 * the start of the body code.
130		 */
131		addrs[i] = ctx->idx * 4;
132
133		switch (code) {
134			/*** ALU ops ***/
135		case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
136			ctx->seen |= SEEN_XREG;
137			PPC_ADD(r_A, r_A, r_X);
138			break;
139		case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
140			if (!K)
141				break;
142			PPC_ADDI(r_A, r_A, IMM_L(K));
143			if (K >= 32768)
144				PPC_ADDIS(r_A, r_A, IMM_HA(K));
145			break;
146		case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
147			ctx->seen |= SEEN_XREG;
148			PPC_SUB(r_A, r_A, r_X);
149			break;
150		case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
151			if (!K)
152				break;
153			PPC_ADDI(r_A, r_A, IMM_L(-K));
154			if (K >= 32768)
155				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
156			break;
157		case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
158			ctx->seen |= SEEN_XREG;
159			PPC_MULW(r_A, r_A, r_X);
160			break;
161		case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
162			if (K < 32768)
163				PPC_MULI(r_A, r_A, K);
164			else {
165				PPC_LI32(r_scratch1, K);
166				PPC_MULW(r_A, r_A, r_scratch1);
167			}
168			break;
169		case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
170		case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
171			ctx->seen |= SEEN_XREG;
172			PPC_CMPWI(r_X, 0);
173			if (ctx->pc_ret0 != -1) {
174				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
175			} else {
 
 
 
 
176				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
177				PPC_LI(r_ret, 0);
178				PPC_JMP(exit_addr);
179			}
180			if (code == (BPF_ALU | BPF_MOD | BPF_X)) {
181				PPC_DIVWU(r_scratch1, r_A, r_X);
182				PPC_MULW(r_scratch1, r_X, r_scratch1);
183				PPC_SUB(r_A, r_A, r_scratch1);
184			} else {
185				PPC_DIVWU(r_A, r_A, r_X);
186			}
187			break;
188		case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
189			PPC_LI32(r_scratch2, K);
190			PPC_DIVWU(r_scratch1, r_A, r_scratch2);
191			PPC_MULW(r_scratch1, r_scratch2, r_scratch1);
192			PPC_SUB(r_A, r_A, r_scratch1);
193			break;
194		case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
195			if (K == 1)
196				break;
197			PPC_LI32(r_scratch1, K);
198			PPC_DIVWU(r_A, r_A, r_scratch1);
 
199			break;
200		case BPF_ALU | BPF_AND | BPF_X:
201			ctx->seen |= SEEN_XREG;
202			PPC_AND(r_A, r_A, r_X);
203			break;
204		case BPF_ALU | BPF_AND | BPF_K:
205			if (!IMM_H(K))
206				PPC_ANDI(r_A, r_A, K);
207			else {
208				PPC_LI32(r_scratch1, K);
209				PPC_AND(r_A, r_A, r_scratch1);
210			}
211			break;
212		case BPF_ALU | BPF_OR | BPF_X:
213			ctx->seen |= SEEN_XREG;
214			PPC_OR(r_A, r_A, r_X);
215			break;
216		case BPF_ALU | BPF_OR | BPF_K:
217			if (IMM_L(K))
218				PPC_ORI(r_A, r_A, IMM_L(K));
219			if (K >= 65536)
220				PPC_ORIS(r_A, r_A, IMM_H(K));
221			break;
222		case BPF_ANC | SKF_AD_ALU_XOR_X:
223		case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
224			ctx->seen |= SEEN_XREG;
225			PPC_XOR(r_A, r_A, r_X);
226			break;
227		case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
228			if (IMM_L(K))
229				PPC_XORI(r_A, r_A, IMM_L(K));
230			if (K >= 65536)
231				PPC_XORIS(r_A, r_A, IMM_H(K));
232			break;
233		case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
234			ctx->seen |= SEEN_XREG;
235			PPC_SLW(r_A, r_A, r_X);
236			break;
237		case BPF_ALU | BPF_LSH | BPF_K:
238			if (K == 0)
239				break;
240			else
241				PPC_SLWI(r_A, r_A, K);
242			break;
243		case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
244			ctx->seen |= SEEN_XREG;
245			PPC_SRW(r_A, r_A, r_X);
246			break;
247		case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
248			if (K == 0)
249				break;
250			else
251				PPC_SRWI(r_A, r_A, K);
252			break;
253		case BPF_ALU | BPF_NEG:
254			PPC_NEG(r_A, r_A);
255			break;
256		case BPF_RET | BPF_K:
257			PPC_LI32(r_ret, K);
258			if (!K) {
259				if (ctx->pc_ret0 == -1)
260					ctx->pc_ret0 = i;
261			}
262			/*
263			 * If this isn't the very last instruction, branch to
264			 * the epilogue if we've stuff to clean up.  Otherwise,
265			 * if there's nothing to tidy, just return.  If we /are/
266			 * the last instruction, we're about to fall through to
267			 * the epilogue to return.
268			 */
269			if (i != flen - 1) {
270				/*
271				 * Note: 'seen' is properly valid only on pass
272				 * #2.	Both parts of this conditional are the
273				 * same instruction size though, meaning the
274				 * first pass will still correctly determine the
275				 * code size/addresses.
276				 */
277				if (ctx->seen)
278					PPC_JMP(exit_addr);
279				else
280					PPC_BLR();
281			}
282			break;
283		case BPF_RET | BPF_A:
284			PPC_MR(r_ret, r_A);
285			if (i != flen - 1) {
286				if (ctx->seen)
287					PPC_JMP(exit_addr);
288				else
289					PPC_BLR();
290			}
291			break;
292		case BPF_MISC | BPF_TAX: /* X = A */
293			PPC_MR(r_X, r_A);
294			break;
295		case BPF_MISC | BPF_TXA: /* A = X */
296			ctx->seen |= SEEN_XREG;
297			PPC_MR(r_A, r_X);
298			break;
299
300			/*** Constant loads/M[] access ***/
301		case BPF_LD | BPF_IMM: /* A = K */
302			PPC_LI32(r_A, K);
303			break;
304		case BPF_LDX | BPF_IMM: /* X = K */
305			PPC_LI32(r_X, K);
306			break;
307		case BPF_LD | BPF_MEM: /* A = mem[K] */
308			PPC_MR(r_A, r_M + (K & 0xf));
309			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
310			break;
311		case BPF_LDX | BPF_MEM: /* X = mem[K] */
312			PPC_MR(r_X, r_M + (K & 0xf));
313			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
314			break;
315		case BPF_ST: /* mem[K] = A */
316			PPC_MR(r_M + (K & 0xf), r_A);
317			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
318			break;
319		case BPF_STX: /* mem[K] = X */
320			PPC_MR(r_M + (K & 0xf), r_X);
321			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
322			break;
323		case BPF_LD | BPF_W | BPF_LEN: /*	A = skb->len; */
324			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
325			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
326			break;
327		case BPF_LDX | BPF_W | BPF_ABS: /* A = *((u32 *)(seccomp_data + K)); */
328			PPC_LWZ_OFFS(r_A, r_skb, K);
329			break;
330		case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
331			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
332			break;
333
334			/*** Ancillary info loads ***/
335		case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
 
 
 
 
 
 
336			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
337						  protocol) != 2);
338			PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
339							    protocol));
 
340			break;
341		case BPF_ANC | SKF_AD_IFINDEX:
342		case BPF_ANC | SKF_AD_HATYPE:
343			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
344						ifindex) != 4);
345			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
346						type) != 2);
347			PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
348								dev));
349			PPC_CMPDI(r_scratch1, 0);
350			if (ctx->pc_ret0 != -1) {
351				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
352			} else {
353				/* Exit, returning 0; first pass hits here. */
354				PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12);
355				PPC_LI(r_ret, 0);
356				PPC_JMP(exit_addr);
357			}
358			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
359				PPC_LWZ_OFFS(r_A, r_scratch1,
 
360				     offsetof(struct net_device, ifindex));
361			} else {
362				PPC_LHZ_OFFS(r_A, r_scratch1,
363				     offsetof(struct net_device, type));
364			}
365
366			break;
367		case BPF_ANC | SKF_AD_MARK:
368			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
369			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
370							  mark));
371			break;
372		case BPF_ANC | SKF_AD_RXHASH:
373			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
374			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
375							  hash));
376			break;
377		case BPF_ANC | SKF_AD_VLAN_TAG:
378			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
379
380			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
381							  vlan_tci));
382			break;
383		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
384			PPC_LBZ_OFFS(r_A, r_skb, PKT_VLAN_PRESENT_OFFSET());
385			if (PKT_VLAN_PRESENT_BIT)
386				PPC_SRWI(r_A, r_A, PKT_VLAN_PRESENT_BIT);
387			if (PKT_VLAN_PRESENT_BIT < 7)
388				PPC_ANDI(r_A, r_A, 1);
389			break;
390		case BPF_ANC | SKF_AD_QUEUE:
391			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
392						  queue_mapping) != 2);
393			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
394							  queue_mapping));
395			break;
396		case BPF_ANC | SKF_AD_PKTTYPE:
397			PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET());
398			PPC_ANDI(r_A, r_A, PKT_TYPE_MAX);
399			PPC_SRWI(r_A, r_A, 5);
400			break;
401		case BPF_ANC | SKF_AD_CPU:
402			PPC_BPF_LOAD_CPU(r_A);
 
 
 
 
 
 
403			break;
 
404			/*** Absolute loads from packet header/data ***/
405		case BPF_LD | BPF_W | BPF_ABS:
406			func = CHOOSE_LOAD_FUNC(K, sk_load_word);
407			goto common_load;
408		case BPF_LD | BPF_H | BPF_ABS:
409			func = CHOOSE_LOAD_FUNC(K, sk_load_half);
410			goto common_load;
411		case BPF_LD | BPF_B | BPF_ABS:
412			func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
413		common_load:
414			/* Load from [K]. */
415			ctx->seen |= SEEN_DATAREF;
416			PPC_FUNC_ADDR(r_scratch1, func);
417			PPC_MTLR(r_scratch1);
418			PPC_LI32(r_addr, K);
419			PPC_BLRL();
420			/*
421			 * Helper returns 'lt' condition on error, and an
422			 * appropriate return value in r3
423			 */
424			PPC_BCC(COND_LT, exit_addr);
425			break;
426
427			/*** Indirect loads from packet header/data ***/
428		case BPF_LD | BPF_W | BPF_IND:
429			func = sk_load_word;
430			goto common_load_ind;
431		case BPF_LD | BPF_H | BPF_IND:
432			func = sk_load_half;
433			goto common_load_ind;
434		case BPF_LD | BPF_B | BPF_IND:
435			func = sk_load_byte;
436		common_load_ind:
437			/*
438			 * Load from [X + K].  Negative offsets are tested for
439			 * in the helper functions.
440			 */
441			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
442			PPC_FUNC_ADDR(r_scratch1, func);
443			PPC_MTLR(r_scratch1);
444			PPC_ADDI(r_addr, r_X, IMM_L(K));
445			if (K >= 32768)
446				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
447			PPC_BLRL();
448			/* If error, cr0.LT set */
449			PPC_BCC(COND_LT, exit_addr);
450			break;
451
452		case BPF_LDX | BPF_B | BPF_MSH:
453			func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
454			goto common_load;
455			break;
456
457			/*** Jump and branches ***/
458		case BPF_JMP | BPF_JA:
459			if (K != 0)
460				PPC_JMP(addrs[i + 1 + K]);
461			break;
462
463		case BPF_JMP | BPF_JGT | BPF_K:
464		case BPF_JMP | BPF_JGT | BPF_X:
465			true_cond = COND_GT;
466			goto cond_branch;
467		case BPF_JMP | BPF_JGE | BPF_K:
468		case BPF_JMP | BPF_JGE | BPF_X:
469			true_cond = COND_GE;
470			goto cond_branch;
471		case BPF_JMP | BPF_JEQ | BPF_K:
472		case BPF_JMP | BPF_JEQ | BPF_X:
473			true_cond = COND_EQ;
474			goto cond_branch;
475		case BPF_JMP | BPF_JSET | BPF_K:
476		case BPF_JMP | BPF_JSET | BPF_X:
477			true_cond = COND_NE;
478			/* Fall through */
479		cond_branch:
480			/* same targets, can avoid doing the test :) */
481			if (filter[i].jt == filter[i].jf) {
482				if (filter[i].jt > 0)
483					PPC_JMP(addrs[i + 1 + filter[i].jt]);
484				break;
485			}
486
487			switch (code) {
488			case BPF_JMP | BPF_JGT | BPF_X:
489			case BPF_JMP | BPF_JGE | BPF_X:
490			case BPF_JMP | BPF_JEQ | BPF_X:
491				ctx->seen |= SEEN_XREG;
492				PPC_CMPLW(r_A, r_X);
493				break;
494			case BPF_JMP | BPF_JSET | BPF_X:
495				ctx->seen |= SEEN_XREG;
496				PPC_AND_DOT(r_scratch1, r_A, r_X);
497				break;
498			case BPF_JMP | BPF_JEQ | BPF_K:
499			case BPF_JMP | BPF_JGT | BPF_K:
500			case BPF_JMP | BPF_JGE | BPF_K:
501				if (K < 32768)
502					PPC_CMPLWI(r_A, K);
503				else {
504					PPC_LI32(r_scratch1, K);
505					PPC_CMPLW(r_A, r_scratch1);
506				}
507				break;
508			case BPF_JMP | BPF_JSET | BPF_K:
509				if (K < 32768)
510					/* PPC_ANDI is /only/ dot-form */
511					PPC_ANDI(r_scratch1, r_A, K);
512				else {
513					PPC_LI32(r_scratch1, K);
514					PPC_AND_DOT(r_scratch1, r_A,
515						    r_scratch1);
516				}
517				break;
518			}
519			/* Sometimes branches are constructed "backward", with
520			 * the false path being the branch and true path being
521			 * a fallthrough to the next instruction.
522			 */
523			if (filter[i].jt == 0)
524				/* Swap the sense of the branch */
525				PPC_BCC(true_cond ^ COND_CMP_TRUE,
526					addrs[i + 1 + filter[i].jf]);
527			else {
528				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
529				if (filter[i].jf != 0)
530					PPC_JMP(addrs[i + 1 + filter[i].jf]);
531			}
532			break;
533		default:
534			/* The filter contains something cruel & unusual.
535			 * We don't handle it, but also there shouldn't be
536			 * anything missing from our list.
537			 */
538			if (printk_ratelimit())
539				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
540				       filter[i].code, i);
541			return -ENOTSUPP;
542		}
543
544	}
545	/* Set end-of-body-code address for exit. */
546	addrs[i] = ctx->idx * 4;
547
548	return 0;
549}
550
551void bpf_jit_compile(struct bpf_prog *fp)
552{
553	unsigned int proglen;
554	unsigned int alloclen;
555	u32 *image = NULL;
556	u32 *code_base;
557	unsigned int *addrs;
558	struct codegen_context cgctx;
559	int pass;
560	int flen = fp->len;
561
562	if (!bpf_jit_enable)
563		return;
564
565	addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
566	if (addrs == NULL)
567		return;
568
569	/*
570	 * There are multiple assembly passes as the generated code will change
571	 * size as it settles down, figuring out the max branch offsets/exit
572	 * paths required.
573	 *
574	 * The range of standard conditional branches is +/- 32Kbytes.	Since
575	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
576	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
577	 * used, distinct from short branches.
578	 *
579	 * Current:
580	 *
581	 * For now, both branch types assemble to 2 words (short branches padded
582	 * with a NOP); this is less efficient, but assembly will always complete
583	 * after exactly 3 passes:
584	 *
585	 * First pass: No code buffer; Program is "faux-generated" -- no code
586	 * emitted but maximum size of output determined (and addrs[] filled
587	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
588	 * All generation choices assumed to be 'worst-case', e.g. branches all
589	 * far (2 instructions), return path code reduction not available, etc.
590	 *
591	 * Second pass: Code buffer allocated with size determined previously.
592	 * Prologue generated to support features we have seen used.  Exit paths
593	 * determined and addrs[] is filled in again, as code may be slightly
594	 * smaller as a result.
595	 *
596	 * Third pass: Code generated 'for real', and branch destinations
597	 * determined from now-accurate addrs[] map.
598	 *
599	 * Ideal:
600	 *
601	 * If we optimise this, near branches will be shorter.	On the
602	 * first assembly pass, we should err on the side of caution and
603	 * generate the biggest code.  On subsequent passes, branches will be
604	 * generated short or long and code size will reduce.  With smaller
605	 * code, more branches may fall into the short category, and code will
606	 * reduce more.
607	 *
608	 * Finally, if we see one pass generate code the same size as the
609	 * previous pass we have converged and should now generate code for
610	 * real.  Allocating at the end will also save the memory that would
611	 * otherwise be wasted by the (small) current code shrinkage.
612	 * Preferably, we should do a small number of passes (e.g. 5) and if we
613	 * haven't converged by then, get impatient and force code to generate
614	 * as-is, even if the odd branch would be left long.  The chances of a
615	 * long jump are tiny with all but the most enormous of BPF filter
616	 * inputs, so we should usually converge on the third pass.
617	 */
618
619	cgctx.idx = 0;
620	cgctx.seen = 0;
621	cgctx.pc_ret0 = -1;
622	/* Scouting faux-generate pass 0 */
623	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
624		/* We hit something illegal or unsupported. */
625		goto out;
626
627	/*
628	 * Pretend to build prologue, given the features we've seen.  This will
629	 * update ctgtx.idx as it pretends to output instructions, then we can
630	 * calculate total size from idx.
631	 */
632	bpf_jit_build_prologue(fp, 0, &cgctx);
633	bpf_jit_build_epilogue(0, &cgctx);
634
635	proglen = cgctx.idx * 4;
636	alloclen = proglen + FUNCTION_DESCR_SIZE;
637	image = module_alloc(alloclen);
 
638	if (!image)
639		goto out;
640
641	code_base = image + (FUNCTION_DESCR_SIZE/4);
642
643	/* Code generation passes 1-2 */
644	for (pass = 1; pass < 3; pass++) {
645		/* Now build the prologue, body code & epilogue for real. */
646		cgctx.idx = 0;
647		bpf_jit_build_prologue(fp, code_base, &cgctx);
648		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
649		bpf_jit_build_epilogue(code_base, &cgctx);
650
651		if (bpf_jit_enable > 1)
652			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
653				proglen - (cgctx.idx * 4), cgctx.seen);
654	}
655
656	if (bpf_jit_enable > 1)
657		/* Note that we output the base address of the code_base
658		 * rather than image, since opcodes are in code_base.
659		 */
660		bpf_jit_dump(flen, proglen, pass, code_base);
661
662	bpf_flush_icache(code_base, code_base + (proglen/4));
663
664#ifdef CONFIG_PPC64
665	/* Function descriptor nastiness: Address + TOC */
666	((u64 *)image)[0] = (u64)code_base;
667	((u64 *)image)[1] = local_paca->kernel_toc;
668#endif
669
670	fp->bpf_func = (void *)image;
671	fp->jited = 1;
672
 
 
 
 
 
 
 
 
 
 
 
 
 
673out:
674	kfree(addrs);
675	return;
676}
677
678void bpf_jit_free(struct bpf_prog *fp)
 
 
 
 
 
 
 
 
679{
680	if (fp->jited)
681		module_memfree(fp->bpf_func);
682
683	bpf_prog_unlock_free(fp);
 
 
684}
v3.5.6
  1/* bpf_jit_comp.c: BPF JIT compiler for PPC64
 
  2 *
  3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
  4 *
  5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 */
 12#include <linux/moduleloader.h>
 13#include <asm/cacheflush.h>
 
 14#include <linux/netdevice.h>
 15#include <linux/filter.h>
 16#include "bpf_jit.h"
 17
 18#ifndef __BIG_ENDIAN
 19/* There are endianness assumptions herein. */
 20#error "Little-endian PPC not supported in BPF compiler"
 21#endif
 22
 23int bpf_jit_enable __read_mostly;
 24
 
 25
 26static inline void bpf_flush_icache(void *start, void *end)
 27{
 28	smp_wmb();
 29	flush_icache_range((unsigned long)start, (unsigned long)end);
 30}
 31
 32static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
 33				   struct codegen_context *ctx)
 34{
 35	int i;
 36	const struct sock_filter *filter = fp->insns;
 37
 38	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 39		/* Make stackframe */
 40		if (ctx->seen & SEEN_DATAREF) {
 41			/* If we call any helpers (for loads), save LR */
 42			EMIT(PPC_INST_MFLR | __PPC_RT(0));
 43			PPC_STD(0, 1, 16);
 44
 45			/* Back up non-volatile regs. */
 46			PPC_STD(r_D, 1, -(8*(32-r_D)));
 47			PPC_STD(r_HL, 1, -(8*(32-r_HL)));
 48		}
 49		if (ctx->seen & SEEN_MEM) {
 50			/*
 51			 * Conditionally save regs r15-r31 as some will be used
 52			 * for M[] data.
 53			 */
 54			for (i = r_M; i < (r_M+16); i++) {
 55				if (ctx->seen & (1 << (i-r_M)))
 56					PPC_STD(i, 1, -(8*(32-i)));
 57			}
 58		}
 59		EMIT(PPC_INST_STDU | __PPC_RS(1) | __PPC_RA(1) |
 60		     (-BPF_PPC_STACKFRAME & 0xfffc));
 61	}
 62
 63	if (ctx->seen & SEEN_DATAREF) {
 64		/*
 65		 * If this filter needs to access skb data,
 66		 * prepare r_D and r_HL:
 67		 *  r_HL = skb->len - skb->data_len
 68		 *  r_D	 = skb->data
 69		 */
 70		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 71							 data_len));
 72		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 73		PPC_SUB(r_HL, r_HL, r_scratch1);
 74		PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 75	}
 76
 77	if (ctx->seen & SEEN_XREG) {
 78		/*
 79		 * TODO: Could also detect whether first instr. sets X and
 80		 * avoid this (as below, with A).
 81		 */
 82		PPC_LI(r_X, 0);
 83	}
 84
 85	switch (filter[0].code) {
 86	case BPF_S_RET_K:
 87	case BPF_S_LD_W_LEN:
 88	case BPF_S_ANC_PROTOCOL:
 89	case BPF_S_ANC_IFINDEX:
 90	case BPF_S_ANC_MARK:
 91	case BPF_S_ANC_RXHASH:
 92	case BPF_S_ANC_CPU:
 93	case BPF_S_ANC_QUEUE:
 94	case BPF_S_LD_W_ABS:
 95	case BPF_S_LD_H_ABS:
 96	case BPF_S_LD_B_ABS:
 97		/* first instruction sets A register (or is RET 'constant') */
 98		break;
 99	default:
100		/* make sure we dont leak kernel information to user */
101		PPC_LI(r_A, 0);
102	}
103}
104
105static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
106{
107	int i;
108
109	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
110		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
111		if (ctx->seen & SEEN_DATAREF) {
112			PPC_LD(0, 1, 16);
113			PPC_MTLR(0);
114			PPC_LD(r_D, 1, -(8*(32-r_D)));
115			PPC_LD(r_HL, 1, -(8*(32-r_HL)));
116		}
117		if (ctx->seen & SEEN_MEM) {
118			/* Restore any saved non-vol registers */
119			for (i = r_M; i < (r_M+16); i++) {
120				if (ctx->seen & (1 << (i-r_M)))
121					PPC_LD(i, 1, -(8*(32-i)));
122			}
123		}
124	}
125	/* The RETs have left a return value in R3. */
126
127	PPC_BLR();
128}
129
130#define CHOOSE_LOAD_FUNC(K, func) \
131	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
132
133/* Assemble the body code between the prologue & epilogue. */
134static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
135			      struct codegen_context *ctx,
136			      unsigned int *addrs)
137{
138	const struct sock_filter *filter = fp->insns;
139	int flen = fp->len;
140	u8 *func;
141	unsigned int true_cond;
142	int i;
143
144	/* Start of epilogue code */
145	unsigned int exit_addr = addrs[flen];
146
147	for (i = 0; i < flen; i++) {
148		unsigned int K = filter[i].k;
 
149
150		/*
151		 * addrs[] maps a BPF bytecode address into a real offset from
152		 * the start of the body code.
153		 */
154		addrs[i] = ctx->idx * 4;
155
156		switch (filter[i].code) {
157			/*** ALU ops ***/
158		case BPF_S_ALU_ADD_X: /* A += X; */
159			ctx->seen |= SEEN_XREG;
160			PPC_ADD(r_A, r_A, r_X);
161			break;
162		case BPF_S_ALU_ADD_K: /* A += K; */
163			if (!K)
164				break;
165			PPC_ADDI(r_A, r_A, IMM_L(K));
166			if (K >= 32768)
167				PPC_ADDIS(r_A, r_A, IMM_HA(K));
168			break;
169		case BPF_S_ALU_SUB_X: /* A -= X; */
170			ctx->seen |= SEEN_XREG;
171			PPC_SUB(r_A, r_A, r_X);
172			break;
173		case BPF_S_ALU_SUB_K: /* A -= K */
174			if (!K)
175				break;
176			PPC_ADDI(r_A, r_A, IMM_L(-K));
177			if (K >= 32768)
178				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
179			break;
180		case BPF_S_ALU_MUL_X: /* A *= X; */
181			ctx->seen |= SEEN_XREG;
182			PPC_MUL(r_A, r_A, r_X);
183			break;
184		case BPF_S_ALU_MUL_K: /* A *= K */
185			if (K < 32768)
186				PPC_MULI(r_A, r_A, K);
187			else {
188				PPC_LI32(r_scratch1, K);
189				PPC_MUL(r_A, r_A, r_scratch1);
190			}
191			break;
192		case BPF_S_ALU_DIV_X: /* A /= X; */
 
193			ctx->seen |= SEEN_XREG;
194			PPC_CMPWI(r_X, 0);
195			if (ctx->pc_ret0 != -1) {
196				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
197			} else {
198				/*
199				 * Exit, returning 0; first pass hits here
200				 * (longer worst-case code size).
201				 */
202				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
203				PPC_LI(r_ret, 0);
204				PPC_JMP(exit_addr);
205			}
206			PPC_DIVWU(r_A, r_A, r_X);
 
 
 
 
 
 
207			break;
208		case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
 
 
 
 
 
 
 
 
209			PPC_LI32(r_scratch1, K);
210			/* Top 32 bits of 64bit result -> A */
211			PPC_MULHWU(r_A, r_A, r_scratch1);
212			break;
213		case BPF_S_ALU_AND_X:
214			ctx->seen |= SEEN_XREG;
215			PPC_AND(r_A, r_A, r_X);
216			break;
217		case BPF_S_ALU_AND_K:
218			if (!IMM_H(K))
219				PPC_ANDI(r_A, r_A, K);
220			else {
221				PPC_LI32(r_scratch1, K);
222				PPC_AND(r_A, r_A, r_scratch1);
223			}
224			break;
225		case BPF_S_ALU_OR_X:
226			ctx->seen |= SEEN_XREG;
227			PPC_OR(r_A, r_A, r_X);
228			break;
229		case BPF_S_ALU_OR_K:
230			if (IMM_L(K))
231				PPC_ORI(r_A, r_A, IMM_L(K));
232			if (K >= 65536)
233				PPC_ORIS(r_A, r_A, IMM_H(K));
234			break;
235		case BPF_S_ALU_LSH_X: /* A <<= X; */
 
 
 
 
 
 
 
 
 
 
 
236			ctx->seen |= SEEN_XREG;
237			PPC_SLW(r_A, r_A, r_X);
238			break;
239		case BPF_S_ALU_LSH_K:
240			if (K == 0)
241				break;
242			else
243				PPC_SLWI(r_A, r_A, K);
244			break;
245		case BPF_S_ALU_RSH_X: /* A >>= X; */
246			ctx->seen |= SEEN_XREG;
247			PPC_SRW(r_A, r_A, r_X);
248			break;
249		case BPF_S_ALU_RSH_K: /* A >>= K; */
250			if (K == 0)
251				break;
252			else
253				PPC_SRWI(r_A, r_A, K);
254			break;
255		case BPF_S_ALU_NEG:
256			PPC_NEG(r_A, r_A);
257			break;
258		case BPF_S_RET_K:
259			PPC_LI32(r_ret, K);
260			if (!K) {
261				if (ctx->pc_ret0 == -1)
262					ctx->pc_ret0 = i;
263			}
264			/*
265			 * If this isn't the very last instruction, branch to
266			 * the epilogue if we've stuff to clean up.  Otherwise,
267			 * if there's nothing to tidy, just return.  If we /are/
268			 * the last instruction, we're about to fall through to
269			 * the epilogue to return.
270			 */
271			if (i != flen - 1) {
272				/*
273				 * Note: 'seen' is properly valid only on pass
274				 * #2.	Both parts of this conditional are the
275				 * same instruction size though, meaning the
276				 * first pass will still correctly determine the
277				 * code size/addresses.
278				 */
279				if (ctx->seen)
280					PPC_JMP(exit_addr);
281				else
282					PPC_BLR();
283			}
284			break;
285		case BPF_S_RET_A:
286			PPC_MR(r_ret, r_A);
287			if (i != flen - 1) {
288				if (ctx->seen)
289					PPC_JMP(exit_addr);
290				else
291					PPC_BLR();
292			}
293			break;
294		case BPF_S_MISC_TAX: /* X = A */
295			PPC_MR(r_X, r_A);
296			break;
297		case BPF_S_MISC_TXA: /* A = X */
298			ctx->seen |= SEEN_XREG;
299			PPC_MR(r_A, r_X);
300			break;
301
302			/*** Constant loads/M[] access ***/
303		case BPF_S_LD_IMM: /* A = K */
304			PPC_LI32(r_A, K);
305			break;
306		case BPF_S_LDX_IMM: /* X = K */
307			PPC_LI32(r_X, K);
308			break;
309		case BPF_S_LD_MEM: /* A = mem[K] */
310			PPC_MR(r_A, r_M + (K & 0xf));
311			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
312			break;
313		case BPF_S_LDX_MEM: /* X = mem[K] */
314			PPC_MR(r_X, r_M + (K & 0xf));
315			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
316			break;
317		case BPF_S_ST: /* mem[K] = A */
318			PPC_MR(r_M + (K & 0xf), r_A);
319			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
320			break;
321		case BPF_S_STX: /* mem[K] = X */
322			PPC_MR(r_M + (K & 0xf), r_X);
323			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
324			break;
325		case BPF_S_LD_W_LEN: /*	A = skb->len; */
326			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
327			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
328			break;
329		case BPF_S_LDX_W_LEN: /* X = skb->len; */
 
 
 
330			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
331			break;
332
333			/*** Ancillary info loads ***/
334
335			/* None of the BPF_S_ANC* codes appear to be passed by
336			 * sk_chk_filter().  The interpreter and the x86 BPF
337			 * compiler implement them so we do too -- they may be
338			 * planted in future.
339			 */
340		case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
341			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
342						  protocol) != 2);
343			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
344							  protocol));
345			/* ntohs is a NOP with BE loads. */
346			break;
347		case BPF_S_ANC_IFINDEX:
348			PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 
 
 
 
 
349								dev));
350			PPC_CMPDI(r_scratch1, 0);
351			if (ctx->pc_ret0 != -1) {
352				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
353			} else {
354				/* Exit, returning 0; first pass hits here. */
355				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
356				PPC_LI(r_ret, 0);
357				PPC_JMP(exit_addr);
358			}
359			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
360						  ifindex) != 4);
361			PPC_LWZ_OFFS(r_A, r_scratch1,
362				     offsetof(struct net_device, ifindex));
 
 
 
 
 
363			break;
364		case BPF_S_ANC_MARK:
365			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
366			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
367							  mark));
368			break;
369		case BPF_S_ANC_RXHASH:
370			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
371			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
372							  rxhash));
 
 
 
 
 
 
373			break;
374		case BPF_S_ANC_QUEUE:
 
 
 
 
 
 
 
375			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
376						  queue_mapping) != 2);
377			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
378							  queue_mapping));
379			break;
380		case BPF_S_ANC_CPU:
381#ifdef CONFIG_SMP
382			/*
383			 * PACA ptr is r13:
384			 * raw_smp_processor_id() = local_paca->paca_index
385			 */
386			BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
387						  paca_index) != 2);
388			PPC_LHZ_OFFS(r_A, 13,
389				     offsetof(struct paca_struct, paca_index));
390#else
391			PPC_LI(r_A, 0);
392#endif
393			break;
394
395			/*** Absolute loads from packet header/data ***/
396		case BPF_S_LD_W_ABS:
397			func = CHOOSE_LOAD_FUNC(K, sk_load_word);
398			goto common_load;
399		case BPF_S_LD_H_ABS:
400			func = CHOOSE_LOAD_FUNC(K, sk_load_half);
401			goto common_load;
402		case BPF_S_LD_B_ABS:
403			func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
404		common_load:
405			/* Load from [K]. */
406			ctx->seen |= SEEN_DATAREF;
407			PPC_LI64(r_scratch1, func);
408			PPC_MTLR(r_scratch1);
409			PPC_LI32(r_addr, K);
410			PPC_BLRL();
411			/*
412			 * Helper returns 'lt' condition on error, and an
413			 * appropriate return value in r3
414			 */
415			PPC_BCC(COND_LT, exit_addr);
416			break;
417
418			/*** Indirect loads from packet header/data ***/
419		case BPF_S_LD_W_IND:
420			func = sk_load_word;
421			goto common_load_ind;
422		case BPF_S_LD_H_IND:
423			func = sk_load_half;
424			goto common_load_ind;
425		case BPF_S_LD_B_IND:
426			func = sk_load_byte;
427		common_load_ind:
428			/*
429			 * Load from [X + K].  Negative offsets are tested for
430			 * in the helper functions.
431			 */
432			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
433			PPC_LI64(r_scratch1, func);
434			PPC_MTLR(r_scratch1);
435			PPC_ADDI(r_addr, r_X, IMM_L(K));
436			if (K >= 32768)
437				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
438			PPC_BLRL();
439			/* If error, cr0.LT set */
440			PPC_BCC(COND_LT, exit_addr);
441			break;
442
443		case BPF_S_LDX_B_MSH:
444			func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
445			goto common_load;
446			break;
447
448			/*** Jump and branches ***/
449		case BPF_S_JMP_JA:
450			if (K != 0)
451				PPC_JMP(addrs[i + 1 + K]);
452			break;
453
454		case BPF_S_JMP_JGT_K:
455		case BPF_S_JMP_JGT_X:
456			true_cond = COND_GT;
457			goto cond_branch;
458		case BPF_S_JMP_JGE_K:
459		case BPF_S_JMP_JGE_X:
460			true_cond = COND_GE;
461			goto cond_branch;
462		case BPF_S_JMP_JEQ_K:
463		case BPF_S_JMP_JEQ_X:
464			true_cond = COND_EQ;
465			goto cond_branch;
466		case BPF_S_JMP_JSET_K:
467		case BPF_S_JMP_JSET_X:
468			true_cond = COND_NE;
469			/* Fall through */
470		cond_branch:
471			/* same targets, can avoid doing the test :) */
472			if (filter[i].jt == filter[i].jf) {
473				if (filter[i].jt > 0)
474					PPC_JMP(addrs[i + 1 + filter[i].jt]);
475				break;
476			}
477
478			switch (filter[i].code) {
479			case BPF_S_JMP_JGT_X:
480			case BPF_S_JMP_JGE_X:
481			case BPF_S_JMP_JEQ_X:
482				ctx->seen |= SEEN_XREG;
483				PPC_CMPLW(r_A, r_X);
484				break;
485			case BPF_S_JMP_JSET_X:
486				ctx->seen |= SEEN_XREG;
487				PPC_AND_DOT(r_scratch1, r_A, r_X);
488				break;
489			case BPF_S_JMP_JEQ_K:
490			case BPF_S_JMP_JGT_K:
491			case BPF_S_JMP_JGE_K:
492				if (K < 32768)
493					PPC_CMPLWI(r_A, K);
494				else {
495					PPC_LI32(r_scratch1, K);
496					PPC_CMPLW(r_A, r_scratch1);
497				}
498				break;
499			case BPF_S_JMP_JSET_K:
500				if (K < 32768)
501					/* PPC_ANDI is /only/ dot-form */
502					PPC_ANDI(r_scratch1, r_A, K);
503				else {
504					PPC_LI32(r_scratch1, K);
505					PPC_AND_DOT(r_scratch1, r_A,
506						    r_scratch1);
507				}
508				break;
509			}
510			/* Sometimes branches are constructed "backward", with
511			 * the false path being the branch and true path being
512			 * a fallthrough to the next instruction.
513			 */
514			if (filter[i].jt == 0)
515				/* Swap the sense of the branch */
516				PPC_BCC(true_cond ^ COND_CMP_TRUE,
517					addrs[i + 1 + filter[i].jf]);
518			else {
519				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
520				if (filter[i].jf != 0)
521					PPC_JMP(addrs[i + 1 + filter[i].jf]);
522			}
523			break;
524		default:
525			/* The filter contains something cruel & unusual.
526			 * We don't handle it, but also there shouldn't be
527			 * anything missing from our list.
528			 */
529			if (printk_ratelimit())
530				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
531				       filter[i].code, i);
532			return -ENOTSUPP;
533		}
534
535	}
536	/* Set end-of-body-code address for exit. */
537	addrs[i] = ctx->idx * 4;
538
539	return 0;
540}
541
542void bpf_jit_compile(struct sk_filter *fp)
543{
544	unsigned int proglen;
545	unsigned int alloclen;
546	u32 *image = NULL;
547	u32 *code_base;
548	unsigned int *addrs;
549	struct codegen_context cgctx;
550	int pass;
551	int flen = fp->len;
552
553	if (!bpf_jit_enable)
554		return;
555
556	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
557	if (addrs == NULL)
558		return;
559
560	/*
561	 * There are multiple assembly passes as the generated code will change
562	 * size as it settles down, figuring out the max branch offsets/exit
563	 * paths required.
564	 *
565	 * The range of standard conditional branches is +/- 32Kbytes.	Since
566	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
567	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
568	 * used, distinct from short branches.
569	 *
570	 * Current:
571	 *
572	 * For now, both branch types assemble to 2 words (short branches padded
573	 * with a NOP); this is less efficient, but assembly will always complete
574	 * after exactly 3 passes:
575	 *
576	 * First pass: No code buffer; Program is "faux-generated" -- no code
577	 * emitted but maximum size of output determined (and addrs[] filled
578	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
579	 * All generation choices assumed to be 'worst-case', e.g. branches all
580	 * far (2 instructions), return path code reduction not available, etc.
581	 *
582	 * Second pass: Code buffer allocated with size determined previously.
583	 * Prologue generated to support features we have seen used.  Exit paths
584	 * determined and addrs[] is filled in again, as code may be slightly
585	 * smaller as a result.
586	 *
587	 * Third pass: Code generated 'for real', and branch destinations
588	 * determined from now-accurate addrs[] map.
589	 *
590	 * Ideal:
591	 *
592	 * If we optimise this, near branches will be shorter.	On the
593	 * first assembly pass, we should err on the side of caution and
594	 * generate the biggest code.  On subsequent passes, branches will be
595	 * generated short or long and code size will reduce.  With smaller
596	 * code, more branches may fall into the short category, and code will
597	 * reduce more.
598	 *
599	 * Finally, if we see one pass generate code the same size as the
600	 * previous pass we have converged and should now generate code for
601	 * real.  Allocating at the end will also save the memory that would
602	 * otherwise be wasted by the (small) current code shrinkage.
603	 * Preferably, we should do a small number of passes (e.g. 5) and if we
604	 * haven't converged by then, get impatient and force code to generate
605	 * as-is, even if the odd branch would be left long.  The chances of a
606	 * long jump are tiny with all but the most enormous of BPF filter
607	 * inputs, so we should usually converge on the third pass.
608	 */
609
610	cgctx.idx = 0;
611	cgctx.seen = 0;
612	cgctx.pc_ret0 = -1;
613	/* Scouting faux-generate pass 0 */
614	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
615		/* We hit something illegal or unsupported. */
616		goto out;
617
618	/*
619	 * Pretend to build prologue, given the features we've seen.  This will
620	 * update ctgtx.idx as it pretends to output instructions, then we can
621	 * calculate total size from idx.
622	 */
623	bpf_jit_build_prologue(fp, 0, &cgctx);
624	bpf_jit_build_epilogue(0, &cgctx);
625
626	proglen = cgctx.idx * 4;
627	alloclen = proglen + FUNCTION_DESCR_SIZE;
628	image = module_alloc(max_t(unsigned int, alloclen,
629				   sizeof(struct work_struct)));
630	if (!image)
631		goto out;
632
633	code_base = image + (FUNCTION_DESCR_SIZE/4);
634
635	/* Code generation passes 1-2 */
636	for (pass = 1; pass < 3; pass++) {
637		/* Now build the prologue, body code & epilogue for real. */
638		cgctx.idx = 0;
639		bpf_jit_build_prologue(fp, code_base, &cgctx);
640		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
641		bpf_jit_build_epilogue(code_base, &cgctx);
642
643		if (bpf_jit_enable > 1)
644			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
645				proglen - (cgctx.idx * 4), cgctx.seen);
646	}
647
648	if (bpf_jit_enable > 1)
649		pr_info("flen=%d proglen=%u pass=%d image=%p\n",
650		       flen, proglen, pass, image);
 
 
 
 
 
 
 
 
 
 
 
 
 
651
652	if (image) {
653		if (bpf_jit_enable > 1)
654			print_hex_dump(KERN_ERR, "JIT code: ",
655				       DUMP_PREFIX_ADDRESS,
656				       16, 1, code_base,
657				       proglen, false);
658
659		bpf_flush_icache(code_base, code_base + (proglen/4));
660		/* Function descriptor nastiness: Address + TOC */
661		((u64 *)image)[0] = (u64)code_base;
662		((u64 *)image)[1] = local_paca->kernel_toc;
663		fp->bpf_func = (void *)image;
664	}
665out:
666	kfree(addrs);
667	return;
668}
669
670static void jit_free_defer(struct work_struct *arg)
671{
672	module_free(NULL, arg);
673}
674
675/* run from softirq, we must use a work_struct to call
676 * module_free() from process context
677 */
678void bpf_jit_free(struct sk_filter *fp)
679{
680	if (fp->bpf_func != sk_run_filter) {
681		struct work_struct *work = (struct work_struct *)fp->bpf_func;
682
683		INIT_WORK(work, jit_free_defer);
684		schedule_work(work);
685	}
686}