Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * User-space Probes (UProbes)
4 *
5 * Copyright (C) IBM Corporation, 2008-2012
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10 */
11
12#include <linux/kernel.h>
13#include <linux/highmem.h>
14#include <linux/pagemap.h> /* read_mapping_page */
15#include <linux/slab.h>
16#include <linux/sched.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/coredump.h>
19#include <linux/export.h>
20#include <linux/rmap.h> /* anon_vma_prepare */
21#include <linux/mmu_notifier.h> /* set_pte_at_notify */
22#include <linux/swap.h> /* try_to_free_swap */
23#include <linux/ptrace.h> /* user_enable_single_step */
24#include <linux/kdebug.h> /* notifier mechanism */
25#include "../../mm/internal.h" /* munlock_vma_page */
26#include <linux/percpu-rwsem.h>
27#include <linux/task_work.h>
28#include <linux/shmem_fs.h>
29#include <linux/khugepaged.h>
30
31#include <linux/uprobes.h>
32
33#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
35
36static struct rb_root uprobes_tree = RB_ROOT;
37/*
38 * allows us to skip the uprobe_mmap if there are no uprobe events active
39 * at this time. Probably a fine grained per inode count is better?
40 */
41#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
42
43static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
44
45#define UPROBES_HASH_SZ 13
46/* serialize uprobe->pending_list */
47static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49
50DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51
52/* Have a copy of original instruction */
53#define UPROBE_COPY_INSN 0
54
55struct uprobe {
56 struct rb_node rb_node; /* node in the rb tree */
57 refcount_t ref;
58 struct rw_semaphore register_rwsem;
59 struct rw_semaphore consumer_rwsem;
60 struct list_head pending_list;
61 struct uprobe_consumer *consumers;
62 struct inode *inode; /* Also hold a ref to inode */
63 loff_t offset;
64 loff_t ref_ctr_offset;
65 unsigned long flags;
66
67 /*
68 * The generic code assumes that it has two members of unknown type
69 * owned by the arch-specific code:
70 *
71 * insn - copy_insn() saves the original instruction here for
72 * arch_uprobe_analyze_insn().
73 *
74 * ixol - potentially modified instruction to execute out of
75 * line, copied to xol_area by xol_get_insn_slot().
76 */
77 struct arch_uprobe arch;
78};
79
80struct delayed_uprobe {
81 struct list_head list;
82 struct uprobe *uprobe;
83 struct mm_struct *mm;
84};
85
86static DEFINE_MUTEX(delayed_uprobe_lock);
87static LIST_HEAD(delayed_uprobe_list);
88
89/*
90 * Execute out of line area: anonymous executable mapping installed
91 * by the probed task to execute the copy of the original instruction
92 * mangled by set_swbp().
93 *
94 * On a breakpoint hit, thread contests for a slot. It frees the
95 * slot after singlestep. Currently a fixed number of slots are
96 * allocated.
97 */
98struct xol_area {
99 wait_queue_head_t wq; /* if all slots are busy */
100 atomic_t slot_count; /* number of in-use slots */
101 unsigned long *bitmap; /* 0 = free slot */
102
103 struct vm_special_mapping xol_mapping;
104 struct page *pages[2];
105 /*
106 * We keep the vma's vm_start rather than a pointer to the vma
107 * itself. The probed process or a naughty kernel module could make
108 * the vma go away, and we must handle that reasonably gracefully.
109 */
110 unsigned long vaddr; /* Page(s) of instruction slots */
111};
112
113/*
114 * valid_vma: Verify if the specified vma is an executable vma
115 * Relax restrictions while unregistering: vm_flags might have
116 * changed after breakpoint was inserted.
117 * - is_register: indicates if we are in register context.
118 * - Return 1 if the specified virtual address is in an
119 * executable vma.
120 */
121static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122{
123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125 if (is_register)
126 flags |= VM_WRITE;
127
128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129}
130
131static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132{
133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134}
135
136static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137{
138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139}
140
141/**
142 * __replace_page - replace page in vma by new page.
143 * based on replace_page in mm/ksm.c
144 *
145 * @vma: vma that holds the pte pointing to page
146 * @addr: address the old @page is mapped at
147 * @old_page: the page we are replacing by new_page
148 * @new_page: the modified page we replace page by
149 *
150 * If @new_page is NULL, only unmap @old_page.
151 *
152 * Returns 0 on success, negative error code otherwise.
153 */
154static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 struct page *old_page, struct page *new_page)
156{
157 struct mm_struct *mm = vma->vm_mm;
158 struct page_vma_mapped_walk pvmw = {
159 .page = compound_head(old_page),
160 .vma = vma,
161 .address = addr,
162 };
163 int err;
164 struct mmu_notifier_range range;
165 struct mem_cgroup *memcg;
166
167 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
168 addr + PAGE_SIZE);
169
170 if (new_page) {
171 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
172 &memcg, false);
173 if (err)
174 return err;
175 }
176
177 /* For try_to_free_swap() and munlock_vma_page() below */
178 lock_page(old_page);
179
180 mmu_notifier_invalidate_range_start(&range);
181 err = -EAGAIN;
182 if (!page_vma_mapped_walk(&pvmw)) {
183 if (new_page)
184 mem_cgroup_cancel_charge(new_page, memcg, false);
185 goto unlock;
186 }
187 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
188
189 if (new_page) {
190 get_page(new_page);
191 page_add_new_anon_rmap(new_page, vma, addr, false);
192 mem_cgroup_commit_charge(new_page, memcg, false, false);
193 lru_cache_add_active_or_unevictable(new_page, vma);
194 } else
195 /* no new page, just dec_mm_counter for old_page */
196 dec_mm_counter(mm, MM_ANONPAGES);
197
198 if (!PageAnon(old_page)) {
199 dec_mm_counter(mm, mm_counter_file(old_page));
200 inc_mm_counter(mm, MM_ANONPAGES);
201 }
202
203 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
204 ptep_clear_flush_notify(vma, addr, pvmw.pte);
205 if (new_page)
206 set_pte_at_notify(mm, addr, pvmw.pte,
207 mk_pte(new_page, vma->vm_page_prot));
208
209 page_remove_rmap(old_page, false);
210 if (!page_mapped(old_page))
211 try_to_free_swap(old_page);
212 page_vma_mapped_walk_done(&pvmw);
213
214 if (vma->vm_flags & VM_LOCKED)
215 munlock_vma_page(old_page);
216 put_page(old_page);
217
218 err = 0;
219 unlock:
220 mmu_notifier_invalidate_range_end(&range);
221 unlock_page(old_page);
222 return err;
223}
224
225/**
226 * is_swbp_insn - check if instruction is breakpoint instruction.
227 * @insn: instruction to be checked.
228 * Default implementation of is_swbp_insn
229 * Returns true if @insn is a breakpoint instruction.
230 */
231bool __weak is_swbp_insn(uprobe_opcode_t *insn)
232{
233 return *insn == UPROBE_SWBP_INSN;
234}
235
236/**
237 * is_trap_insn - check if instruction is breakpoint instruction.
238 * @insn: instruction to be checked.
239 * Default implementation of is_trap_insn
240 * Returns true if @insn is a breakpoint instruction.
241 *
242 * This function is needed for the case where an architecture has multiple
243 * trap instructions (like powerpc).
244 */
245bool __weak is_trap_insn(uprobe_opcode_t *insn)
246{
247 return is_swbp_insn(insn);
248}
249
250static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
251{
252 void *kaddr = kmap_atomic(page);
253 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
254 kunmap_atomic(kaddr);
255}
256
257static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
258{
259 void *kaddr = kmap_atomic(page);
260 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
261 kunmap_atomic(kaddr);
262}
263
264static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
265{
266 uprobe_opcode_t old_opcode;
267 bool is_swbp;
268
269 /*
270 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
271 * We do not check if it is any other 'trap variant' which could
272 * be conditional trap instruction such as the one powerpc supports.
273 *
274 * The logic is that we do not care if the underlying instruction
275 * is a trap variant; uprobes always wins over any other (gdb)
276 * breakpoint.
277 */
278 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
279 is_swbp = is_swbp_insn(&old_opcode);
280
281 if (is_swbp_insn(new_opcode)) {
282 if (is_swbp) /* register: already installed? */
283 return 0;
284 } else {
285 if (!is_swbp) /* unregister: was it changed by us? */
286 return 0;
287 }
288
289 return 1;
290}
291
292static struct delayed_uprobe *
293delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
294{
295 struct delayed_uprobe *du;
296
297 list_for_each_entry(du, &delayed_uprobe_list, list)
298 if (du->uprobe == uprobe && du->mm == mm)
299 return du;
300 return NULL;
301}
302
303static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
304{
305 struct delayed_uprobe *du;
306
307 if (delayed_uprobe_check(uprobe, mm))
308 return 0;
309
310 du = kzalloc(sizeof(*du), GFP_KERNEL);
311 if (!du)
312 return -ENOMEM;
313
314 du->uprobe = uprobe;
315 du->mm = mm;
316 list_add(&du->list, &delayed_uprobe_list);
317 return 0;
318}
319
320static void delayed_uprobe_delete(struct delayed_uprobe *du)
321{
322 if (WARN_ON(!du))
323 return;
324 list_del(&du->list);
325 kfree(du);
326}
327
328static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
329{
330 struct list_head *pos, *q;
331 struct delayed_uprobe *du;
332
333 if (!uprobe && !mm)
334 return;
335
336 list_for_each_safe(pos, q, &delayed_uprobe_list) {
337 du = list_entry(pos, struct delayed_uprobe, list);
338
339 if (uprobe && du->uprobe != uprobe)
340 continue;
341 if (mm && du->mm != mm)
342 continue;
343
344 delayed_uprobe_delete(du);
345 }
346}
347
348static bool valid_ref_ctr_vma(struct uprobe *uprobe,
349 struct vm_area_struct *vma)
350{
351 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
352
353 return uprobe->ref_ctr_offset &&
354 vma->vm_file &&
355 file_inode(vma->vm_file) == uprobe->inode &&
356 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
357 vma->vm_start <= vaddr &&
358 vma->vm_end > vaddr;
359}
360
361static struct vm_area_struct *
362find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
363{
364 struct vm_area_struct *tmp;
365
366 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
367 if (valid_ref_ctr_vma(uprobe, tmp))
368 return tmp;
369
370 return NULL;
371}
372
373static int
374__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
375{
376 void *kaddr;
377 struct page *page;
378 struct vm_area_struct *vma;
379 int ret;
380 short *ptr;
381
382 if (!vaddr || !d)
383 return -EINVAL;
384
385 ret = get_user_pages_remote(NULL, mm, vaddr, 1,
386 FOLL_WRITE, &page, &vma, NULL);
387 if (unlikely(ret <= 0)) {
388 /*
389 * We are asking for 1 page. If get_user_pages_remote() fails,
390 * it may return 0, in that case we have to return error.
391 */
392 return ret == 0 ? -EBUSY : ret;
393 }
394
395 kaddr = kmap_atomic(page);
396 ptr = kaddr + (vaddr & ~PAGE_MASK);
397
398 if (unlikely(*ptr + d < 0)) {
399 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
400 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
401 ret = -EINVAL;
402 goto out;
403 }
404
405 *ptr += d;
406 ret = 0;
407out:
408 kunmap_atomic(kaddr);
409 put_page(page);
410 return ret;
411}
412
413static void update_ref_ctr_warn(struct uprobe *uprobe,
414 struct mm_struct *mm, short d)
415{
416 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
417 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
418 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
419 (unsigned long long) uprobe->offset,
420 (unsigned long long) uprobe->ref_ctr_offset, mm);
421}
422
423static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
424 short d)
425{
426 struct vm_area_struct *rc_vma;
427 unsigned long rc_vaddr;
428 int ret = 0;
429
430 rc_vma = find_ref_ctr_vma(uprobe, mm);
431
432 if (rc_vma) {
433 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
434 ret = __update_ref_ctr(mm, rc_vaddr, d);
435 if (ret)
436 update_ref_ctr_warn(uprobe, mm, d);
437
438 if (d > 0)
439 return ret;
440 }
441
442 mutex_lock(&delayed_uprobe_lock);
443 if (d > 0)
444 ret = delayed_uprobe_add(uprobe, mm);
445 else
446 delayed_uprobe_remove(uprobe, mm);
447 mutex_unlock(&delayed_uprobe_lock);
448
449 return ret;
450}
451
452/*
453 * NOTE:
454 * Expect the breakpoint instruction to be the smallest size instruction for
455 * the architecture. If an arch has variable length instruction and the
456 * breakpoint instruction is not of the smallest length instruction
457 * supported by that architecture then we need to modify is_trap_at_addr and
458 * uprobe_write_opcode accordingly. This would never be a problem for archs
459 * that have fixed length instructions.
460 *
461 * uprobe_write_opcode - write the opcode at a given virtual address.
462 * @mm: the probed process address space.
463 * @vaddr: the virtual address to store the opcode.
464 * @opcode: opcode to be written at @vaddr.
465 *
466 * Called with mm->mmap_sem held for write.
467 * Return 0 (success) or a negative errno.
468 */
469int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
470 unsigned long vaddr, uprobe_opcode_t opcode)
471{
472 struct uprobe *uprobe;
473 struct page *old_page, *new_page;
474 struct vm_area_struct *vma;
475 int ret, is_register, ref_ctr_updated = 0;
476 bool orig_page_huge = false;
477 unsigned int gup_flags = FOLL_FORCE;
478
479 is_register = is_swbp_insn(&opcode);
480 uprobe = container_of(auprobe, struct uprobe, arch);
481
482retry:
483 if (is_register)
484 gup_flags |= FOLL_SPLIT_PMD;
485 /* Read the page with vaddr into memory */
486 ret = get_user_pages_remote(NULL, mm, vaddr, 1, gup_flags,
487 &old_page, &vma, NULL);
488 if (ret <= 0)
489 return ret;
490
491 ret = verify_opcode(old_page, vaddr, &opcode);
492 if (ret <= 0)
493 goto put_old;
494
495 if (WARN(!is_register && PageCompound(old_page),
496 "uprobe unregister should never work on compound page\n")) {
497 ret = -EINVAL;
498 goto put_old;
499 }
500
501 /* We are going to replace instruction, update ref_ctr. */
502 if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
503 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
504 if (ret)
505 goto put_old;
506
507 ref_ctr_updated = 1;
508 }
509
510 ret = 0;
511 if (!is_register && !PageAnon(old_page))
512 goto put_old;
513
514 ret = anon_vma_prepare(vma);
515 if (ret)
516 goto put_old;
517
518 ret = -ENOMEM;
519 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
520 if (!new_page)
521 goto put_old;
522
523 __SetPageUptodate(new_page);
524 copy_highpage(new_page, old_page);
525 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
526
527 if (!is_register) {
528 struct page *orig_page;
529 pgoff_t index;
530
531 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
532
533 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
534 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
535 index);
536
537 if (orig_page) {
538 if (PageUptodate(orig_page) &&
539 pages_identical(new_page, orig_page)) {
540 /* let go new_page */
541 put_page(new_page);
542 new_page = NULL;
543
544 if (PageCompound(orig_page))
545 orig_page_huge = true;
546 }
547 put_page(orig_page);
548 }
549 }
550
551 ret = __replace_page(vma, vaddr, old_page, new_page);
552 if (new_page)
553 put_page(new_page);
554put_old:
555 put_page(old_page);
556
557 if (unlikely(ret == -EAGAIN))
558 goto retry;
559
560 /* Revert back reference counter if instruction update failed. */
561 if (ret && is_register && ref_ctr_updated)
562 update_ref_ctr(uprobe, mm, -1);
563
564 /* try collapse pmd for compound page */
565 if (!ret && orig_page_huge)
566 collapse_pte_mapped_thp(mm, vaddr);
567
568 return ret;
569}
570
571/**
572 * set_swbp - store breakpoint at a given address.
573 * @auprobe: arch specific probepoint information.
574 * @mm: the probed process address space.
575 * @vaddr: the virtual address to insert the opcode.
576 *
577 * For mm @mm, store the breakpoint instruction at @vaddr.
578 * Return 0 (success) or a negative errno.
579 */
580int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
581{
582 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
583}
584
585/**
586 * set_orig_insn - Restore the original instruction.
587 * @mm: the probed process address space.
588 * @auprobe: arch specific probepoint information.
589 * @vaddr: the virtual address to insert the opcode.
590 *
591 * For mm @mm, restore the original opcode (opcode) at @vaddr.
592 * Return 0 (success) or a negative errno.
593 */
594int __weak
595set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
596{
597 return uprobe_write_opcode(auprobe, mm, vaddr,
598 *(uprobe_opcode_t *)&auprobe->insn);
599}
600
601static struct uprobe *get_uprobe(struct uprobe *uprobe)
602{
603 refcount_inc(&uprobe->ref);
604 return uprobe;
605}
606
607static void put_uprobe(struct uprobe *uprobe)
608{
609 if (refcount_dec_and_test(&uprobe->ref)) {
610 /*
611 * If application munmap(exec_vma) before uprobe_unregister()
612 * gets called, we don't get a chance to remove uprobe from
613 * delayed_uprobe_list from remove_breakpoint(). Do it here.
614 */
615 mutex_lock(&delayed_uprobe_lock);
616 delayed_uprobe_remove(uprobe, NULL);
617 mutex_unlock(&delayed_uprobe_lock);
618 kfree(uprobe);
619 }
620}
621
622static int match_uprobe(struct uprobe *l, struct uprobe *r)
623{
624 if (l->inode < r->inode)
625 return -1;
626
627 if (l->inode > r->inode)
628 return 1;
629
630 if (l->offset < r->offset)
631 return -1;
632
633 if (l->offset > r->offset)
634 return 1;
635
636 return 0;
637}
638
639static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
640{
641 struct uprobe u = { .inode = inode, .offset = offset };
642 struct rb_node *n = uprobes_tree.rb_node;
643 struct uprobe *uprobe;
644 int match;
645
646 while (n) {
647 uprobe = rb_entry(n, struct uprobe, rb_node);
648 match = match_uprobe(&u, uprobe);
649 if (!match)
650 return get_uprobe(uprobe);
651
652 if (match < 0)
653 n = n->rb_left;
654 else
655 n = n->rb_right;
656 }
657 return NULL;
658}
659
660/*
661 * Find a uprobe corresponding to a given inode:offset
662 * Acquires uprobes_treelock
663 */
664static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
665{
666 struct uprobe *uprobe;
667
668 spin_lock(&uprobes_treelock);
669 uprobe = __find_uprobe(inode, offset);
670 spin_unlock(&uprobes_treelock);
671
672 return uprobe;
673}
674
675static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
676{
677 struct rb_node **p = &uprobes_tree.rb_node;
678 struct rb_node *parent = NULL;
679 struct uprobe *u;
680 int match;
681
682 while (*p) {
683 parent = *p;
684 u = rb_entry(parent, struct uprobe, rb_node);
685 match = match_uprobe(uprobe, u);
686 if (!match)
687 return get_uprobe(u);
688
689 if (match < 0)
690 p = &parent->rb_left;
691 else
692 p = &parent->rb_right;
693
694 }
695
696 u = NULL;
697 rb_link_node(&uprobe->rb_node, parent, p);
698 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
699 /* get access + creation ref */
700 refcount_set(&uprobe->ref, 2);
701
702 return u;
703}
704
705/*
706 * Acquire uprobes_treelock.
707 * Matching uprobe already exists in rbtree;
708 * increment (access refcount) and return the matching uprobe.
709 *
710 * No matching uprobe; insert the uprobe in rb_tree;
711 * get a double refcount (access + creation) and return NULL.
712 */
713static struct uprobe *insert_uprobe(struct uprobe *uprobe)
714{
715 struct uprobe *u;
716
717 spin_lock(&uprobes_treelock);
718 u = __insert_uprobe(uprobe);
719 spin_unlock(&uprobes_treelock);
720
721 return u;
722}
723
724static void
725ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
726{
727 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
728 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
729 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
730 (unsigned long long) cur_uprobe->ref_ctr_offset,
731 (unsigned long long) uprobe->ref_ctr_offset);
732}
733
734static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
735 loff_t ref_ctr_offset)
736{
737 struct uprobe *uprobe, *cur_uprobe;
738
739 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
740 if (!uprobe)
741 return NULL;
742
743 uprobe->inode = inode;
744 uprobe->offset = offset;
745 uprobe->ref_ctr_offset = ref_ctr_offset;
746 init_rwsem(&uprobe->register_rwsem);
747 init_rwsem(&uprobe->consumer_rwsem);
748
749 /* add to uprobes_tree, sorted on inode:offset */
750 cur_uprobe = insert_uprobe(uprobe);
751 /* a uprobe exists for this inode:offset combination */
752 if (cur_uprobe) {
753 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
754 ref_ctr_mismatch_warn(cur_uprobe, uprobe);
755 put_uprobe(cur_uprobe);
756 kfree(uprobe);
757 return ERR_PTR(-EINVAL);
758 }
759 kfree(uprobe);
760 uprobe = cur_uprobe;
761 }
762
763 return uprobe;
764}
765
766static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
767{
768 down_write(&uprobe->consumer_rwsem);
769 uc->next = uprobe->consumers;
770 uprobe->consumers = uc;
771 up_write(&uprobe->consumer_rwsem);
772}
773
774/*
775 * For uprobe @uprobe, delete the consumer @uc.
776 * Return true if the @uc is deleted successfully
777 * or return false.
778 */
779static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
780{
781 struct uprobe_consumer **con;
782 bool ret = false;
783
784 down_write(&uprobe->consumer_rwsem);
785 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
786 if (*con == uc) {
787 *con = uc->next;
788 ret = true;
789 break;
790 }
791 }
792 up_write(&uprobe->consumer_rwsem);
793
794 return ret;
795}
796
797static int __copy_insn(struct address_space *mapping, struct file *filp,
798 void *insn, int nbytes, loff_t offset)
799{
800 struct page *page;
801 /*
802 * Ensure that the page that has the original instruction is populated
803 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
804 * see uprobe_register().
805 */
806 if (mapping->a_ops->readpage)
807 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
808 else
809 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
810 if (IS_ERR(page))
811 return PTR_ERR(page);
812
813 copy_from_page(page, offset, insn, nbytes);
814 put_page(page);
815
816 return 0;
817}
818
819static int copy_insn(struct uprobe *uprobe, struct file *filp)
820{
821 struct address_space *mapping = uprobe->inode->i_mapping;
822 loff_t offs = uprobe->offset;
823 void *insn = &uprobe->arch.insn;
824 int size = sizeof(uprobe->arch.insn);
825 int len, err = -EIO;
826
827 /* Copy only available bytes, -EIO if nothing was read */
828 do {
829 if (offs >= i_size_read(uprobe->inode))
830 break;
831
832 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
833 err = __copy_insn(mapping, filp, insn, len, offs);
834 if (err)
835 break;
836
837 insn += len;
838 offs += len;
839 size -= len;
840 } while (size);
841
842 return err;
843}
844
845static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
846 struct mm_struct *mm, unsigned long vaddr)
847{
848 int ret = 0;
849
850 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
851 return ret;
852
853 /* TODO: move this into _register, until then we abuse this sem. */
854 down_write(&uprobe->consumer_rwsem);
855 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
856 goto out;
857
858 ret = copy_insn(uprobe, file);
859 if (ret)
860 goto out;
861
862 ret = -ENOTSUPP;
863 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
864 goto out;
865
866 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
867 if (ret)
868 goto out;
869
870 /* uprobe_write_opcode() assumes we don't cross page boundary */
871 BUG_ON((uprobe->offset & ~PAGE_MASK) +
872 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
873
874 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
875 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
876
877 out:
878 up_write(&uprobe->consumer_rwsem);
879
880 return ret;
881}
882
883static inline bool consumer_filter(struct uprobe_consumer *uc,
884 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
885{
886 return !uc->filter || uc->filter(uc, ctx, mm);
887}
888
889static bool filter_chain(struct uprobe *uprobe,
890 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
891{
892 struct uprobe_consumer *uc;
893 bool ret = false;
894
895 down_read(&uprobe->consumer_rwsem);
896 for (uc = uprobe->consumers; uc; uc = uc->next) {
897 ret = consumer_filter(uc, ctx, mm);
898 if (ret)
899 break;
900 }
901 up_read(&uprobe->consumer_rwsem);
902
903 return ret;
904}
905
906static int
907install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
908 struct vm_area_struct *vma, unsigned long vaddr)
909{
910 bool first_uprobe;
911 int ret;
912
913 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
914 if (ret)
915 return ret;
916
917 /*
918 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
919 * the task can hit this breakpoint right after __replace_page().
920 */
921 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
922 if (first_uprobe)
923 set_bit(MMF_HAS_UPROBES, &mm->flags);
924
925 ret = set_swbp(&uprobe->arch, mm, vaddr);
926 if (!ret)
927 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
928 else if (first_uprobe)
929 clear_bit(MMF_HAS_UPROBES, &mm->flags);
930
931 return ret;
932}
933
934static int
935remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
936{
937 set_bit(MMF_RECALC_UPROBES, &mm->flags);
938 return set_orig_insn(&uprobe->arch, mm, vaddr);
939}
940
941static inline bool uprobe_is_active(struct uprobe *uprobe)
942{
943 return !RB_EMPTY_NODE(&uprobe->rb_node);
944}
945/*
946 * There could be threads that have already hit the breakpoint. They
947 * will recheck the current insn and restart if find_uprobe() fails.
948 * See find_active_uprobe().
949 */
950static void delete_uprobe(struct uprobe *uprobe)
951{
952 if (WARN_ON(!uprobe_is_active(uprobe)))
953 return;
954
955 spin_lock(&uprobes_treelock);
956 rb_erase(&uprobe->rb_node, &uprobes_tree);
957 spin_unlock(&uprobes_treelock);
958 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
959 put_uprobe(uprobe);
960}
961
962struct map_info {
963 struct map_info *next;
964 struct mm_struct *mm;
965 unsigned long vaddr;
966};
967
968static inline struct map_info *free_map_info(struct map_info *info)
969{
970 struct map_info *next = info->next;
971 kfree(info);
972 return next;
973}
974
975static struct map_info *
976build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
977{
978 unsigned long pgoff = offset >> PAGE_SHIFT;
979 struct vm_area_struct *vma;
980 struct map_info *curr = NULL;
981 struct map_info *prev = NULL;
982 struct map_info *info;
983 int more = 0;
984
985 again:
986 i_mmap_lock_read(mapping);
987 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
988 if (!valid_vma(vma, is_register))
989 continue;
990
991 if (!prev && !more) {
992 /*
993 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
994 * reclaim. This is optimistic, no harm done if it fails.
995 */
996 prev = kmalloc(sizeof(struct map_info),
997 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
998 if (prev)
999 prev->next = NULL;
1000 }
1001 if (!prev) {
1002 more++;
1003 continue;
1004 }
1005
1006 if (!mmget_not_zero(vma->vm_mm))
1007 continue;
1008
1009 info = prev;
1010 prev = prev->next;
1011 info->next = curr;
1012 curr = info;
1013
1014 info->mm = vma->vm_mm;
1015 info->vaddr = offset_to_vaddr(vma, offset);
1016 }
1017 i_mmap_unlock_read(mapping);
1018
1019 if (!more)
1020 goto out;
1021
1022 prev = curr;
1023 while (curr) {
1024 mmput(curr->mm);
1025 curr = curr->next;
1026 }
1027
1028 do {
1029 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1030 if (!info) {
1031 curr = ERR_PTR(-ENOMEM);
1032 goto out;
1033 }
1034 info->next = prev;
1035 prev = info;
1036 } while (--more);
1037
1038 goto again;
1039 out:
1040 while (prev)
1041 prev = free_map_info(prev);
1042 return curr;
1043}
1044
1045static int
1046register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1047{
1048 bool is_register = !!new;
1049 struct map_info *info;
1050 int err = 0;
1051
1052 percpu_down_write(&dup_mmap_sem);
1053 info = build_map_info(uprobe->inode->i_mapping,
1054 uprobe->offset, is_register);
1055 if (IS_ERR(info)) {
1056 err = PTR_ERR(info);
1057 goto out;
1058 }
1059
1060 while (info) {
1061 struct mm_struct *mm = info->mm;
1062 struct vm_area_struct *vma;
1063
1064 if (err && is_register)
1065 goto free;
1066
1067 down_write(&mm->mmap_sem);
1068 vma = find_vma(mm, info->vaddr);
1069 if (!vma || !valid_vma(vma, is_register) ||
1070 file_inode(vma->vm_file) != uprobe->inode)
1071 goto unlock;
1072
1073 if (vma->vm_start > info->vaddr ||
1074 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1075 goto unlock;
1076
1077 if (is_register) {
1078 /* consult only the "caller", new consumer. */
1079 if (consumer_filter(new,
1080 UPROBE_FILTER_REGISTER, mm))
1081 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1082 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1083 if (!filter_chain(uprobe,
1084 UPROBE_FILTER_UNREGISTER, mm))
1085 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1086 }
1087
1088 unlock:
1089 up_write(&mm->mmap_sem);
1090 free:
1091 mmput(mm);
1092 info = free_map_info(info);
1093 }
1094 out:
1095 percpu_up_write(&dup_mmap_sem);
1096 return err;
1097}
1098
1099static void
1100__uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1101{
1102 int err;
1103
1104 if (WARN_ON(!consumer_del(uprobe, uc)))
1105 return;
1106
1107 err = register_for_each_vma(uprobe, NULL);
1108 /* TODO : cant unregister? schedule a worker thread */
1109 if (!uprobe->consumers && !err)
1110 delete_uprobe(uprobe);
1111}
1112
1113/*
1114 * uprobe_unregister - unregister an already registered probe.
1115 * @inode: the file in which the probe has to be removed.
1116 * @offset: offset from the start of the file.
1117 * @uc: identify which probe if multiple probes are colocated.
1118 */
1119void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1120{
1121 struct uprobe *uprobe;
1122
1123 uprobe = find_uprobe(inode, offset);
1124 if (WARN_ON(!uprobe))
1125 return;
1126
1127 down_write(&uprobe->register_rwsem);
1128 __uprobe_unregister(uprobe, uc);
1129 up_write(&uprobe->register_rwsem);
1130 put_uprobe(uprobe);
1131}
1132EXPORT_SYMBOL_GPL(uprobe_unregister);
1133
1134/*
1135 * __uprobe_register - register a probe
1136 * @inode: the file in which the probe has to be placed.
1137 * @offset: offset from the start of the file.
1138 * @uc: information on howto handle the probe..
1139 *
1140 * Apart from the access refcount, __uprobe_register() takes a creation
1141 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1142 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1143 * tuple). Creation refcount stops uprobe_unregister from freeing the
1144 * @uprobe even before the register operation is complete. Creation
1145 * refcount is released when the last @uc for the @uprobe
1146 * unregisters. Caller of __uprobe_register() is required to keep @inode
1147 * (and the containing mount) referenced.
1148 *
1149 * Return errno if it cannot successully install probes
1150 * else return 0 (success)
1151 */
1152static int __uprobe_register(struct inode *inode, loff_t offset,
1153 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1154{
1155 struct uprobe *uprobe;
1156 int ret;
1157
1158 /* Uprobe must have at least one set consumer */
1159 if (!uc->handler && !uc->ret_handler)
1160 return -EINVAL;
1161
1162 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1163 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1164 return -EIO;
1165 /* Racy, just to catch the obvious mistakes */
1166 if (offset > i_size_read(inode))
1167 return -EINVAL;
1168
1169 retry:
1170 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1171 if (!uprobe)
1172 return -ENOMEM;
1173 if (IS_ERR(uprobe))
1174 return PTR_ERR(uprobe);
1175
1176 /*
1177 * We can race with uprobe_unregister()->delete_uprobe().
1178 * Check uprobe_is_active() and retry if it is false.
1179 */
1180 down_write(&uprobe->register_rwsem);
1181 ret = -EAGAIN;
1182 if (likely(uprobe_is_active(uprobe))) {
1183 consumer_add(uprobe, uc);
1184 ret = register_for_each_vma(uprobe, uc);
1185 if (ret)
1186 __uprobe_unregister(uprobe, uc);
1187 }
1188 up_write(&uprobe->register_rwsem);
1189 put_uprobe(uprobe);
1190
1191 if (unlikely(ret == -EAGAIN))
1192 goto retry;
1193 return ret;
1194}
1195
1196int uprobe_register(struct inode *inode, loff_t offset,
1197 struct uprobe_consumer *uc)
1198{
1199 return __uprobe_register(inode, offset, 0, uc);
1200}
1201EXPORT_SYMBOL_GPL(uprobe_register);
1202
1203int uprobe_register_refctr(struct inode *inode, loff_t offset,
1204 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1205{
1206 return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1207}
1208EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1209
1210/*
1211 * uprobe_apply - unregister an already registered probe.
1212 * @inode: the file in which the probe has to be removed.
1213 * @offset: offset from the start of the file.
1214 * @uc: consumer which wants to add more or remove some breakpoints
1215 * @add: add or remove the breakpoints
1216 */
1217int uprobe_apply(struct inode *inode, loff_t offset,
1218 struct uprobe_consumer *uc, bool add)
1219{
1220 struct uprobe *uprobe;
1221 struct uprobe_consumer *con;
1222 int ret = -ENOENT;
1223
1224 uprobe = find_uprobe(inode, offset);
1225 if (WARN_ON(!uprobe))
1226 return ret;
1227
1228 down_write(&uprobe->register_rwsem);
1229 for (con = uprobe->consumers; con && con != uc ; con = con->next)
1230 ;
1231 if (con)
1232 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1233 up_write(&uprobe->register_rwsem);
1234 put_uprobe(uprobe);
1235
1236 return ret;
1237}
1238
1239static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1240{
1241 struct vm_area_struct *vma;
1242 int err = 0;
1243
1244 down_read(&mm->mmap_sem);
1245 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1246 unsigned long vaddr;
1247 loff_t offset;
1248
1249 if (!valid_vma(vma, false) ||
1250 file_inode(vma->vm_file) != uprobe->inode)
1251 continue;
1252
1253 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1254 if (uprobe->offset < offset ||
1255 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1256 continue;
1257
1258 vaddr = offset_to_vaddr(vma, uprobe->offset);
1259 err |= remove_breakpoint(uprobe, mm, vaddr);
1260 }
1261 up_read(&mm->mmap_sem);
1262
1263 return err;
1264}
1265
1266static struct rb_node *
1267find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1268{
1269 struct rb_node *n = uprobes_tree.rb_node;
1270
1271 while (n) {
1272 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1273
1274 if (inode < u->inode) {
1275 n = n->rb_left;
1276 } else if (inode > u->inode) {
1277 n = n->rb_right;
1278 } else {
1279 if (max < u->offset)
1280 n = n->rb_left;
1281 else if (min > u->offset)
1282 n = n->rb_right;
1283 else
1284 break;
1285 }
1286 }
1287
1288 return n;
1289}
1290
1291/*
1292 * For a given range in vma, build a list of probes that need to be inserted.
1293 */
1294static void build_probe_list(struct inode *inode,
1295 struct vm_area_struct *vma,
1296 unsigned long start, unsigned long end,
1297 struct list_head *head)
1298{
1299 loff_t min, max;
1300 struct rb_node *n, *t;
1301 struct uprobe *u;
1302
1303 INIT_LIST_HEAD(head);
1304 min = vaddr_to_offset(vma, start);
1305 max = min + (end - start) - 1;
1306
1307 spin_lock(&uprobes_treelock);
1308 n = find_node_in_range(inode, min, max);
1309 if (n) {
1310 for (t = n; t; t = rb_prev(t)) {
1311 u = rb_entry(t, struct uprobe, rb_node);
1312 if (u->inode != inode || u->offset < min)
1313 break;
1314 list_add(&u->pending_list, head);
1315 get_uprobe(u);
1316 }
1317 for (t = n; (t = rb_next(t)); ) {
1318 u = rb_entry(t, struct uprobe, rb_node);
1319 if (u->inode != inode || u->offset > max)
1320 break;
1321 list_add(&u->pending_list, head);
1322 get_uprobe(u);
1323 }
1324 }
1325 spin_unlock(&uprobes_treelock);
1326}
1327
1328/* @vma contains reference counter, not the probed instruction. */
1329static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1330{
1331 struct list_head *pos, *q;
1332 struct delayed_uprobe *du;
1333 unsigned long vaddr;
1334 int ret = 0, err = 0;
1335
1336 mutex_lock(&delayed_uprobe_lock);
1337 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1338 du = list_entry(pos, struct delayed_uprobe, list);
1339
1340 if (du->mm != vma->vm_mm ||
1341 !valid_ref_ctr_vma(du->uprobe, vma))
1342 continue;
1343
1344 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1345 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1346 if (ret) {
1347 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1348 if (!err)
1349 err = ret;
1350 }
1351 delayed_uprobe_delete(du);
1352 }
1353 mutex_unlock(&delayed_uprobe_lock);
1354 return err;
1355}
1356
1357/*
1358 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1359 *
1360 * Currently we ignore all errors and always return 0, the callers
1361 * can't handle the failure anyway.
1362 */
1363int uprobe_mmap(struct vm_area_struct *vma)
1364{
1365 struct list_head tmp_list;
1366 struct uprobe *uprobe, *u;
1367 struct inode *inode;
1368
1369 if (no_uprobe_events())
1370 return 0;
1371
1372 if (vma->vm_file &&
1373 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1374 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1375 delayed_ref_ctr_inc(vma);
1376
1377 if (!valid_vma(vma, true))
1378 return 0;
1379
1380 inode = file_inode(vma->vm_file);
1381 if (!inode)
1382 return 0;
1383
1384 mutex_lock(uprobes_mmap_hash(inode));
1385 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1386 /*
1387 * We can race with uprobe_unregister(), this uprobe can be already
1388 * removed. But in this case filter_chain() must return false, all
1389 * consumers have gone away.
1390 */
1391 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1392 if (!fatal_signal_pending(current) &&
1393 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1394 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1395 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1396 }
1397 put_uprobe(uprobe);
1398 }
1399 mutex_unlock(uprobes_mmap_hash(inode));
1400
1401 return 0;
1402}
1403
1404static bool
1405vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1406{
1407 loff_t min, max;
1408 struct inode *inode;
1409 struct rb_node *n;
1410
1411 inode = file_inode(vma->vm_file);
1412
1413 min = vaddr_to_offset(vma, start);
1414 max = min + (end - start) - 1;
1415
1416 spin_lock(&uprobes_treelock);
1417 n = find_node_in_range(inode, min, max);
1418 spin_unlock(&uprobes_treelock);
1419
1420 return !!n;
1421}
1422
1423/*
1424 * Called in context of a munmap of a vma.
1425 */
1426void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1427{
1428 if (no_uprobe_events() || !valid_vma(vma, false))
1429 return;
1430
1431 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1432 return;
1433
1434 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1435 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1436 return;
1437
1438 if (vma_has_uprobes(vma, start, end))
1439 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1440}
1441
1442/* Slot allocation for XOL */
1443static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1444{
1445 struct vm_area_struct *vma;
1446 int ret;
1447
1448 if (down_write_killable(&mm->mmap_sem))
1449 return -EINTR;
1450
1451 if (mm->uprobes_state.xol_area) {
1452 ret = -EALREADY;
1453 goto fail;
1454 }
1455
1456 if (!area->vaddr) {
1457 /* Try to map as high as possible, this is only a hint. */
1458 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1459 PAGE_SIZE, 0, 0);
1460 if (area->vaddr & ~PAGE_MASK) {
1461 ret = area->vaddr;
1462 goto fail;
1463 }
1464 }
1465
1466 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1467 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1468 &area->xol_mapping);
1469 if (IS_ERR(vma)) {
1470 ret = PTR_ERR(vma);
1471 goto fail;
1472 }
1473
1474 ret = 0;
1475 /* pairs with get_xol_area() */
1476 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1477 fail:
1478 up_write(&mm->mmap_sem);
1479
1480 return ret;
1481}
1482
1483static struct xol_area *__create_xol_area(unsigned long vaddr)
1484{
1485 struct mm_struct *mm = current->mm;
1486 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1487 struct xol_area *area;
1488
1489 area = kmalloc(sizeof(*area), GFP_KERNEL);
1490 if (unlikely(!area))
1491 goto out;
1492
1493 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1494 GFP_KERNEL);
1495 if (!area->bitmap)
1496 goto free_area;
1497
1498 area->xol_mapping.name = "[uprobes]";
1499 area->xol_mapping.fault = NULL;
1500 area->xol_mapping.pages = area->pages;
1501 area->pages[0] = alloc_page(GFP_HIGHUSER);
1502 if (!area->pages[0])
1503 goto free_bitmap;
1504 area->pages[1] = NULL;
1505
1506 area->vaddr = vaddr;
1507 init_waitqueue_head(&area->wq);
1508 /* Reserve the 1st slot for get_trampoline_vaddr() */
1509 set_bit(0, area->bitmap);
1510 atomic_set(&area->slot_count, 1);
1511 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1512
1513 if (!xol_add_vma(mm, area))
1514 return area;
1515
1516 __free_page(area->pages[0]);
1517 free_bitmap:
1518 kfree(area->bitmap);
1519 free_area:
1520 kfree(area);
1521 out:
1522 return NULL;
1523}
1524
1525/*
1526 * get_xol_area - Allocate process's xol_area if necessary.
1527 * This area will be used for storing instructions for execution out of line.
1528 *
1529 * Returns the allocated area or NULL.
1530 */
1531static struct xol_area *get_xol_area(void)
1532{
1533 struct mm_struct *mm = current->mm;
1534 struct xol_area *area;
1535
1536 if (!mm->uprobes_state.xol_area)
1537 __create_xol_area(0);
1538
1539 /* Pairs with xol_add_vma() smp_store_release() */
1540 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1541 return area;
1542}
1543
1544/*
1545 * uprobe_clear_state - Free the area allocated for slots.
1546 */
1547void uprobe_clear_state(struct mm_struct *mm)
1548{
1549 struct xol_area *area = mm->uprobes_state.xol_area;
1550
1551 mutex_lock(&delayed_uprobe_lock);
1552 delayed_uprobe_remove(NULL, mm);
1553 mutex_unlock(&delayed_uprobe_lock);
1554
1555 if (!area)
1556 return;
1557
1558 put_page(area->pages[0]);
1559 kfree(area->bitmap);
1560 kfree(area);
1561}
1562
1563void uprobe_start_dup_mmap(void)
1564{
1565 percpu_down_read(&dup_mmap_sem);
1566}
1567
1568void uprobe_end_dup_mmap(void)
1569{
1570 percpu_up_read(&dup_mmap_sem);
1571}
1572
1573void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1574{
1575 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1576 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1577 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1578 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1579 }
1580}
1581
1582/*
1583 * - search for a free slot.
1584 */
1585static unsigned long xol_take_insn_slot(struct xol_area *area)
1586{
1587 unsigned long slot_addr;
1588 int slot_nr;
1589
1590 do {
1591 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1592 if (slot_nr < UINSNS_PER_PAGE) {
1593 if (!test_and_set_bit(slot_nr, area->bitmap))
1594 break;
1595
1596 slot_nr = UINSNS_PER_PAGE;
1597 continue;
1598 }
1599 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1600 } while (slot_nr >= UINSNS_PER_PAGE);
1601
1602 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1603 atomic_inc(&area->slot_count);
1604
1605 return slot_addr;
1606}
1607
1608/*
1609 * xol_get_insn_slot - allocate a slot for xol.
1610 * Returns the allocated slot address or 0.
1611 */
1612static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1613{
1614 struct xol_area *area;
1615 unsigned long xol_vaddr;
1616
1617 area = get_xol_area();
1618 if (!area)
1619 return 0;
1620
1621 xol_vaddr = xol_take_insn_slot(area);
1622 if (unlikely(!xol_vaddr))
1623 return 0;
1624
1625 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1626 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1627
1628 return xol_vaddr;
1629}
1630
1631/*
1632 * xol_free_insn_slot - If slot was earlier allocated by
1633 * @xol_get_insn_slot(), make the slot available for
1634 * subsequent requests.
1635 */
1636static void xol_free_insn_slot(struct task_struct *tsk)
1637{
1638 struct xol_area *area;
1639 unsigned long vma_end;
1640 unsigned long slot_addr;
1641
1642 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1643 return;
1644
1645 slot_addr = tsk->utask->xol_vaddr;
1646 if (unlikely(!slot_addr))
1647 return;
1648
1649 area = tsk->mm->uprobes_state.xol_area;
1650 vma_end = area->vaddr + PAGE_SIZE;
1651 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1652 unsigned long offset;
1653 int slot_nr;
1654
1655 offset = slot_addr - area->vaddr;
1656 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1657 if (slot_nr >= UINSNS_PER_PAGE)
1658 return;
1659
1660 clear_bit(slot_nr, area->bitmap);
1661 atomic_dec(&area->slot_count);
1662 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1663 if (waitqueue_active(&area->wq))
1664 wake_up(&area->wq);
1665
1666 tsk->utask->xol_vaddr = 0;
1667 }
1668}
1669
1670void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1671 void *src, unsigned long len)
1672{
1673 /* Initialize the slot */
1674 copy_to_page(page, vaddr, src, len);
1675
1676 /*
1677 * We probably need flush_icache_user_range() but it needs vma.
1678 * This should work on most of architectures by default. If
1679 * architecture needs to do something different it can define
1680 * its own version of the function.
1681 */
1682 flush_dcache_page(page);
1683}
1684
1685/**
1686 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1687 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1688 * instruction.
1689 * Return the address of the breakpoint instruction.
1690 */
1691unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1692{
1693 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1694}
1695
1696unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1697{
1698 struct uprobe_task *utask = current->utask;
1699
1700 if (unlikely(utask && utask->active_uprobe))
1701 return utask->vaddr;
1702
1703 return instruction_pointer(regs);
1704}
1705
1706static struct return_instance *free_ret_instance(struct return_instance *ri)
1707{
1708 struct return_instance *next = ri->next;
1709 put_uprobe(ri->uprobe);
1710 kfree(ri);
1711 return next;
1712}
1713
1714/*
1715 * Called with no locks held.
1716 * Called in context of an exiting or an exec-ing thread.
1717 */
1718void uprobe_free_utask(struct task_struct *t)
1719{
1720 struct uprobe_task *utask = t->utask;
1721 struct return_instance *ri;
1722
1723 if (!utask)
1724 return;
1725
1726 if (utask->active_uprobe)
1727 put_uprobe(utask->active_uprobe);
1728
1729 ri = utask->return_instances;
1730 while (ri)
1731 ri = free_ret_instance(ri);
1732
1733 xol_free_insn_slot(t);
1734 kfree(utask);
1735 t->utask = NULL;
1736}
1737
1738/*
1739 * Allocate a uprobe_task object for the task if if necessary.
1740 * Called when the thread hits a breakpoint.
1741 *
1742 * Returns:
1743 * - pointer to new uprobe_task on success
1744 * - NULL otherwise
1745 */
1746static struct uprobe_task *get_utask(void)
1747{
1748 if (!current->utask)
1749 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1750 return current->utask;
1751}
1752
1753static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1754{
1755 struct uprobe_task *n_utask;
1756 struct return_instance **p, *o, *n;
1757
1758 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1759 if (!n_utask)
1760 return -ENOMEM;
1761 t->utask = n_utask;
1762
1763 p = &n_utask->return_instances;
1764 for (o = o_utask->return_instances; o; o = o->next) {
1765 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1766 if (!n)
1767 return -ENOMEM;
1768
1769 *n = *o;
1770 get_uprobe(n->uprobe);
1771 n->next = NULL;
1772
1773 *p = n;
1774 p = &n->next;
1775 n_utask->depth++;
1776 }
1777
1778 return 0;
1779}
1780
1781static void uprobe_warn(struct task_struct *t, const char *msg)
1782{
1783 pr_warn("uprobe: %s:%d failed to %s\n",
1784 current->comm, current->pid, msg);
1785}
1786
1787static void dup_xol_work(struct callback_head *work)
1788{
1789 if (current->flags & PF_EXITING)
1790 return;
1791
1792 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1793 !fatal_signal_pending(current))
1794 uprobe_warn(current, "dup xol area");
1795}
1796
1797/*
1798 * Called in context of a new clone/fork from copy_process.
1799 */
1800void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1801{
1802 struct uprobe_task *utask = current->utask;
1803 struct mm_struct *mm = current->mm;
1804 struct xol_area *area;
1805
1806 t->utask = NULL;
1807
1808 if (!utask || !utask->return_instances)
1809 return;
1810
1811 if (mm == t->mm && !(flags & CLONE_VFORK))
1812 return;
1813
1814 if (dup_utask(t, utask))
1815 return uprobe_warn(t, "dup ret instances");
1816
1817 /* The task can fork() after dup_xol_work() fails */
1818 area = mm->uprobes_state.xol_area;
1819 if (!area)
1820 return uprobe_warn(t, "dup xol area");
1821
1822 if (mm == t->mm)
1823 return;
1824
1825 t->utask->dup_xol_addr = area->vaddr;
1826 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1827 task_work_add(t, &t->utask->dup_xol_work, true);
1828}
1829
1830/*
1831 * Current area->vaddr notion assume the trampoline address is always
1832 * equal area->vaddr.
1833 *
1834 * Returns -1 in case the xol_area is not allocated.
1835 */
1836static unsigned long get_trampoline_vaddr(void)
1837{
1838 struct xol_area *area;
1839 unsigned long trampoline_vaddr = -1;
1840
1841 /* Pairs with xol_add_vma() smp_store_release() */
1842 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1843 if (area)
1844 trampoline_vaddr = area->vaddr;
1845
1846 return trampoline_vaddr;
1847}
1848
1849static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1850 struct pt_regs *regs)
1851{
1852 struct return_instance *ri = utask->return_instances;
1853 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1854
1855 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1856 ri = free_ret_instance(ri);
1857 utask->depth--;
1858 }
1859 utask->return_instances = ri;
1860}
1861
1862static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1863{
1864 struct return_instance *ri;
1865 struct uprobe_task *utask;
1866 unsigned long orig_ret_vaddr, trampoline_vaddr;
1867 bool chained;
1868
1869 if (!get_xol_area())
1870 return;
1871
1872 utask = get_utask();
1873 if (!utask)
1874 return;
1875
1876 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1877 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1878 " nestedness limit pid/tgid=%d/%d\n",
1879 current->pid, current->tgid);
1880 return;
1881 }
1882
1883 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1884 if (!ri)
1885 return;
1886
1887 trampoline_vaddr = get_trampoline_vaddr();
1888 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1889 if (orig_ret_vaddr == -1)
1890 goto fail;
1891
1892 /* drop the entries invalidated by longjmp() */
1893 chained = (orig_ret_vaddr == trampoline_vaddr);
1894 cleanup_return_instances(utask, chained, regs);
1895
1896 /*
1897 * We don't want to keep trampoline address in stack, rather keep the
1898 * original return address of first caller thru all the consequent
1899 * instances. This also makes breakpoint unwrapping easier.
1900 */
1901 if (chained) {
1902 if (!utask->return_instances) {
1903 /*
1904 * This situation is not possible. Likely we have an
1905 * attack from user-space.
1906 */
1907 uprobe_warn(current, "handle tail call");
1908 goto fail;
1909 }
1910 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1911 }
1912
1913 ri->uprobe = get_uprobe(uprobe);
1914 ri->func = instruction_pointer(regs);
1915 ri->stack = user_stack_pointer(regs);
1916 ri->orig_ret_vaddr = orig_ret_vaddr;
1917 ri->chained = chained;
1918
1919 utask->depth++;
1920 ri->next = utask->return_instances;
1921 utask->return_instances = ri;
1922
1923 return;
1924 fail:
1925 kfree(ri);
1926}
1927
1928/* Prepare to single-step probed instruction out of line. */
1929static int
1930pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1931{
1932 struct uprobe_task *utask;
1933 unsigned long xol_vaddr;
1934 int err;
1935
1936 utask = get_utask();
1937 if (!utask)
1938 return -ENOMEM;
1939
1940 xol_vaddr = xol_get_insn_slot(uprobe);
1941 if (!xol_vaddr)
1942 return -ENOMEM;
1943
1944 utask->xol_vaddr = xol_vaddr;
1945 utask->vaddr = bp_vaddr;
1946
1947 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1948 if (unlikely(err)) {
1949 xol_free_insn_slot(current);
1950 return err;
1951 }
1952
1953 utask->active_uprobe = uprobe;
1954 utask->state = UTASK_SSTEP;
1955 return 0;
1956}
1957
1958/*
1959 * If we are singlestepping, then ensure this thread is not connected to
1960 * non-fatal signals until completion of singlestep. When xol insn itself
1961 * triggers the signal, restart the original insn even if the task is
1962 * already SIGKILL'ed (since coredump should report the correct ip). This
1963 * is even more important if the task has a handler for SIGSEGV/etc, The
1964 * _same_ instruction should be repeated again after return from the signal
1965 * handler, and SSTEP can never finish in this case.
1966 */
1967bool uprobe_deny_signal(void)
1968{
1969 struct task_struct *t = current;
1970 struct uprobe_task *utask = t->utask;
1971
1972 if (likely(!utask || !utask->active_uprobe))
1973 return false;
1974
1975 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1976
1977 if (signal_pending(t)) {
1978 spin_lock_irq(&t->sighand->siglock);
1979 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1980 spin_unlock_irq(&t->sighand->siglock);
1981
1982 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1983 utask->state = UTASK_SSTEP_TRAPPED;
1984 set_tsk_thread_flag(t, TIF_UPROBE);
1985 }
1986 }
1987
1988 return true;
1989}
1990
1991static void mmf_recalc_uprobes(struct mm_struct *mm)
1992{
1993 struct vm_area_struct *vma;
1994
1995 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1996 if (!valid_vma(vma, false))
1997 continue;
1998 /*
1999 * This is not strictly accurate, we can race with
2000 * uprobe_unregister() and see the already removed
2001 * uprobe if delete_uprobe() was not yet called.
2002 * Or this uprobe can be filtered out.
2003 */
2004 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2005 return;
2006 }
2007
2008 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2009}
2010
2011static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2012{
2013 struct page *page;
2014 uprobe_opcode_t opcode;
2015 int result;
2016
2017 pagefault_disable();
2018 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2019 pagefault_enable();
2020
2021 if (likely(result == 0))
2022 goto out;
2023
2024 /*
2025 * The NULL 'tsk' here ensures that any faults that occur here
2026 * will not be accounted to the task. 'mm' *is* current->mm,
2027 * but we treat this as a 'remote' access since it is
2028 * essentially a kernel access to the memory.
2029 */
2030 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
2031 NULL, NULL);
2032 if (result < 0)
2033 return result;
2034
2035 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2036 put_page(page);
2037 out:
2038 /* This needs to return true for any variant of the trap insn */
2039 return is_trap_insn(&opcode);
2040}
2041
2042static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2043{
2044 struct mm_struct *mm = current->mm;
2045 struct uprobe *uprobe = NULL;
2046 struct vm_area_struct *vma;
2047
2048 down_read(&mm->mmap_sem);
2049 vma = find_vma(mm, bp_vaddr);
2050 if (vma && vma->vm_start <= bp_vaddr) {
2051 if (valid_vma(vma, false)) {
2052 struct inode *inode = file_inode(vma->vm_file);
2053 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2054
2055 uprobe = find_uprobe(inode, offset);
2056 }
2057
2058 if (!uprobe)
2059 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2060 } else {
2061 *is_swbp = -EFAULT;
2062 }
2063
2064 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2065 mmf_recalc_uprobes(mm);
2066 up_read(&mm->mmap_sem);
2067
2068 return uprobe;
2069}
2070
2071static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2072{
2073 struct uprobe_consumer *uc;
2074 int remove = UPROBE_HANDLER_REMOVE;
2075 bool need_prep = false; /* prepare return uprobe, when needed */
2076
2077 down_read(&uprobe->register_rwsem);
2078 for (uc = uprobe->consumers; uc; uc = uc->next) {
2079 int rc = 0;
2080
2081 if (uc->handler) {
2082 rc = uc->handler(uc, regs);
2083 WARN(rc & ~UPROBE_HANDLER_MASK,
2084 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2085 }
2086
2087 if (uc->ret_handler)
2088 need_prep = true;
2089
2090 remove &= rc;
2091 }
2092
2093 if (need_prep && !remove)
2094 prepare_uretprobe(uprobe, regs); /* put bp at return */
2095
2096 if (remove && uprobe->consumers) {
2097 WARN_ON(!uprobe_is_active(uprobe));
2098 unapply_uprobe(uprobe, current->mm);
2099 }
2100 up_read(&uprobe->register_rwsem);
2101}
2102
2103static void
2104handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2105{
2106 struct uprobe *uprobe = ri->uprobe;
2107 struct uprobe_consumer *uc;
2108
2109 down_read(&uprobe->register_rwsem);
2110 for (uc = uprobe->consumers; uc; uc = uc->next) {
2111 if (uc->ret_handler)
2112 uc->ret_handler(uc, ri->func, regs);
2113 }
2114 up_read(&uprobe->register_rwsem);
2115}
2116
2117static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2118{
2119 bool chained;
2120
2121 do {
2122 chained = ri->chained;
2123 ri = ri->next; /* can't be NULL if chained */
2124 } while (chained);
2125
2126 return ri;
2127}
2128
2129static void handle_trampoline(struct pt_regs *regs)
2130{
2131 struct uprobe_task *utask;
2132 struct return_instance *ri, *next;
2133 bool valid;
2134
2135 utask = current->utask;
2136 if (!utask)
2137 goto sigill;
2138
2139 ri = utask->return_instances;
2140 if (!ri)
2141 goto sigill;
2142
2143 do {
2144 /*
2145 * We should throw out the frames invalidated by longjmp().
2146 * If this chain is valid, then the next one should be alive
2147 * or NULL; the latter case means that nobody but ri->func
2148 * could hit this trampoline on return. TODO: sigaltstack().
2149 */
2150 next = find_next_ret_chain(ri);
2151 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2152
2153 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2154 do {
2155 if (valid)
2156 handle_uretprobe_chain(ri, regs);
2157 ri = free_ret_instance(ri);
2158 utask->depth--;
2159 } while (ri != next);
2160 } while (!valid);
2161
2162 utask->return_instances = ri;
2163 return;
2164
2165 sigill:
2166 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2167 force_sig(SIGILL);
2168
2169}
2170
2171bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2172{
2173 return false;
2174}
2175
2176bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2177 struct pt_regs *regs)
2178{
2179 return true;
2180}
2181
2182/*
2183 * Run handler and ask thread to singlestep.
2184 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2185 */
2186static void handle_swbp(struct pt_regs *regs)
2187{
2188 struct uprobe *uprobe;
2189 unsigned long bp_vaddr;
2190 int uninitialized_var(is_swbp);
2191
2192 bp_vaddr = uprobe_get_swbp_addr(regs);
2193 if (bp_vaddr == get_trampoline_vaddr())
2194 return handle_trampoline(regs);
2195
2196 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2197 if (!uprobe) {
2198 if (is_swbp > 0) {
2199 /* No matching uprobe; signal SIGTRAP. */
2200 send_sig(SIGTRAP, current, 0);
2201 } else {
2202 /*
2203 * Either we raced with uprobe_unregister() or we can't
2204 * access this memory. The latter is only possible if
2205 * another thread plays with our ->mm. In both cases
2206 * we can simply restart. If this vma was unmapped we
2207 * can pretend this insn was not executed yet and get
2208 * the (correct) SIGSEGV after restart.
2209 */
2210 instruction_pointer_set(regs, bp_vaddr);
2211 }
2212 return;
2213 }
2214
2215 /* change it in advance for ->handler() and restart */
2216 instruction_pointer_set(regs, bp_vaddr);
2217
2218 /*
2219 * TODO: move copy_insn/etc into _register and remove this hack.
2220 * After we hit the bp, _unregister + _register can install the
2221 * new and not-yet-analyzed uprobe at the same address, restart.
2222 */
2223 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2224 goto out;
2225
2226 /*
2227 * Pairs with the smp_wmb() in prepare_uprobe().
2228 *
2229 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2230 * we must also see the stores to &uprobe->arch performed by the
2231 * prepare_uprobe() call.
2232 */
2233 smp_rmb();
2234
2235 /* Tracing handlers use ->utask to communicate with fetch methods */
2236 if (!get_utask())
2237 goto out;
2238
2239 if (arch_uprobe_ignore(&uprobe->arch, regs))
2240 goto out;
2241
2242 handler_chain(uprobe, regs);
2243
2244 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2245 goto out;
2246
2247 if (!pre_ssout(uprobe, regs, bp_vaddr))
2248 return;
2249
2250 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2251out:
2252 put_uprobe(uprobe);
2253}
2254
2255/*
2256 * Perform required fix-ups and disable singlestep.
2257 * Allow pending signals to take effect.
2258 */
2259static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2260{
2261 struct uprobe *uprobe;
2262 int err = 0;
2263
2264 uprobe = utask->active_uprobe;
2265 if (utask->state == UTASK_SSTEP_ACK)
2266 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2267 else if (utask->state == UTASK_SSTEP_TRAPPED)
2268 arch_uprobe_abort_xol(&uprobe->arch, regs);
2269 else
2270 WARN_ON_ONCE(1);
2271
2272 put_uprobe(uprobe);
2273 utask->active_uprobe = NULL;
2274 utask->state = UTASK_RUNNING;
2275 xol_free_insn_slot(current);
2276
2277 spin_lock_irq(¤t->sighand->siglock);
2278 recalc_sigpending(); /* see uprobe_deny_signal() */
2279 spin_unlock_irq(¤t->sighand->siglock);
2280
2281 if (unlikely(err)) {
2282 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2283 force_sig(SIGILL);
2284 }
2285}
2286
2287/*
2288 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2289 * allows the thread to return from interrupt. After that handle_swbp()
2290 * sets utask->active_uprobe.
2291 *
2292 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2293 * and allows the thread to return from interrupt.
2294 *
2295 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2296 * uprobe_notify_resume().
2297 */
2298void uprobe_notify_resume(struct pt_regs *regs)
2299{
2300 struct uprobe_task *utask;
2301
2302 clear_thread_flag(TIF_UPROBE);
2303
2304 utask = current->utask;
2305 if (utask && utask->active_uprobe)
2306 handle_singlestep(utask, regs);
2307 else
2308 handle_swbp(regs);
2309}
2310
2311/*
2312 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2313 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2314 */
2315int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2316{
2317 if (!current->mm)
2318 return 0;
2319
2320 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) &&
2321 (!current->utask || !current->utask->return_instances))
2322 return 0;
2323
2324 set_thread_flag(TIF_UPROBE);
2325 return 1;
2326}
2327
2328/*
2329 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2330 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2331 */
2332int uprobe_post_sstep_notifier(struct pt_regs *regs)
2333{
2334 struct uprobe_task *utask = current->utask;
2335
2336 if (!current->mm || !utask || !utask->active_uprobe)
2337 /* task is currently not uprobed */
2338 return 0;
2339
2340 utask->state = UTASK_SSTEP_ACK;
2341 set_thread_flag(TIF_UPROBE);
2342 return 1;
2343}
2344
2345static struct notifier_block uprobe_exception_nb = {
2346 .notifier_call = arch_uprobe_exception_notify,
2347 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2348};
2349
2350void __init uprobes_init(void)
2351{
2352 int i;
2353
2354 for (i = 0; i < UPROBES_HASH_SZ; i++)
2355 mutex_init(&uprobes_mmap_mutex[i]);
2356
2357 BUG_ON(register_die_notifier(&uprobe_exception_nb));
2358}
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * User-space Probes (UProbes)
4 *
5 * Copyright (C) IBM Corporation, 2008-2012
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10 */
11
12#include <linux/kernel.h>
13#include <linux/highmem.h>
14#include <linux/pagemap.h> /* read_mapping_page */
15#include <linux/slab.h>
16#include <linux/sched.h>
17#include <linux/sched/mm.h>
18#include <linux/export.h>
19#include <linux/rmap.h> /* anon_vma_prepare */
20#include <linux/mmu_notifier.h>
21#include <linux/swap.h> /* folio_free_swap */
22#include <linux/ptrace.h> /* user_enable_single_step */
23#include <linux/kdebug.h> /* notifier mechanism */
24#include <linux/percpu-rwsem.h>
25#include <linux/task_work.h>
26#include <linux/shmem_fs.h>
27#include <linux/khugepaged.h>
28#include <linux/rcupdate_trace.h>
29#include <linux/workqueue.h>
30#include <linux/srcu.h>
31#include <linux/oom.h> /* check_stable_address_space */
32
33#include <linux/uprobes.h>
34
35#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
36#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
37
38static struct rb_root uprobes_tree = RB_ROOT;
39/*
40 * allows us to skip the uprobe_mmap if there are no uprobe events active
41 * at this time. Probably a fine grained per inode count is better?
42 */
43#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
44
45static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */
46static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
47
48#define UPROBES_HASH_SZ 13
49/* serialize uprobe->pending_list */
50static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
51#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
52
53DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
54
55/* Covers return_instance's uprobe lifetime. */
56DEFINE_STATIC_SRCU(uretprobes_srcu);
57
58/* Have a copy of original instruction */
59#define UPROBE_COPY_INSN 0
60
61struct uprobe {
62 struct rb_node rb_node; /* node in the rb tree */
63 refcount_t ref;
64 struct rw_semaphore register_rwsem;
65 struct rw_semaphore consumer_rwsem;
66 struct list_head pending_list;
67 struct list_head consumers;
68 struct inode *inode; /* Also hold a ref to inode */
69 union {
70 struct rcu_head rcu;
71 struct work_struct work;
72 };
73 loff_t offset;
74 loff_t ref_ctr_offset;
75 unsigned long flags; /* "unsigned long" so bitops work */
76
77 /*
78 * The generic code assumes that it has two members of unknown type
79 * owned by the arch-specific code:
80 *
81 * insn - copy_insn() saves the original instruction here for
82 * arch_uprobe_analyze_insn().
83 *
84 * ixol - potentially modified instruction to execute out of
85 * line, copied to xol_area by xol_get_insn_slot().
86 */
87 struct arch_uprobe arch;
88};
89
90struct delayed_uprobe {
91 struct list_head list;
92 struct uprobe *uprobe;
93 struct mm_struct *mm;
94};
95
96static DEFINE_MUTEX(delayed_uprobe_lock);
97static LIST_HEAD(delayed_uprobe_list);
98
99/*
100 * Execute out of line area: anonymous executable mapping installed
101 * by the probed task to execute the copy of the original instruction
102 * mangled by set_swbp().
103 *
104 * On a breakpoint hit, thread contests for a slot. It frees the
105 * slot after singlestep. Currently a fixed number of slots are
106 * allocated.
107 */
108struct xol_area {
109 wait_queue_head_t wq; /* if all slots are busy */
110 unsigned long *bitmap; /* 0 = free slot */
111
112 struct page *page;
113 /*
114 * We keep the vma's vm_start rather than a pointer to the vma
115 * itself. The probed process or a naughty kernel module could make
116 * the vma go away, and we must handle that reasonably gracefully.
117 */
118 unsigned long vaddr; /* Page(s) of instruction slots */
119};
120
121static void uprobe_warn(struct task_struct *t, const char *msg)
122{
123 pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg);
124}
125
126/*
127 * valid_vma: Verify if the specified vma is an executable vma
128 * Relax restrictions while unregistering: vm_flags might have
129 * changed after breakpoint was inserted.
130 * - is_register: indicates if we are in register context.
131 * - Return 1 if the specified virtual address is in an
132 * executable vma.
133 */
134static bool valid_vma(struct vm_area_struct *vma, bool is_register)
135{
136 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
137
138 if (is_register)
139 flags |= VM_WRITE;
140
141 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
142}
143
144static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
145{
146 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
147}
148
149static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
150{
151 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
152}
153
154/**
155 * __replace_page - replace page in vma by new page.
156 * based on replace_page in mm/ksm.c
157 *
158 * @vma: vma that holds the pte pointing to page
159 * @addr: address the old @page is mapped at
160 * @old_page: the page we are replacing by new_page
161 * @new_page: the modified page we replace page by
162 *
163 * If @new_page is NULL, only unmap @old_page.
164 *
165 * Returns 0 on success, negative error code otherwise.
166 */
167static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
168 struct page *old_page, struct page *new_page)
169{
170 struct folio *old_folio = page_folio(old_page);
171 struct folio *new_folio;
172 struct mm_struct *mm = vma->vm_mm;
173 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
174 int err;
175 struct mmu_notifier_range range;
176
177 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
178 addr + PAGE_SIZE);
179
180 if (new_page) {
181 new_folio = page_folio(new_page);
182 err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
183 if (err)
184 return err;
185 }
186
187 /* For folio_free_swap() below */
188 folio_lock(old_folio);
189
190 mmu_notifier_invalidate_range_start(&range);
191 err = -EAGAIN;
192 if (!page_vma_mapped_walk(&pvmw))
193 goto unlock;
194 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
195
196 if (new_page) {
197 folio_get(new_folio);
198 folio_add_new_anon_rmap(new_folio, vma, addr, RMAP_EXCLUSIVE);
199 folio_add_lru_vma(new_folio, vma);
200 } else
201 /* no new page, just dec_mm_counter for old_page */
202 dec_mm_counter(mm, MM_ANONPAGES);
203
204 if (!folio_test_anon(old_folio)) {
205 dec_mm_counter(mm, mm_counter_file(old_folio));
206 inc_mm_counter(mm, MM_ANONPAGES);
207 }
208
209 flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte)));
210 ptep_clear_flush(vma, addr, pvmw.pte);
211 if (new_page)
212 set_pte_at(mm, addr, pvmw.pte,
213 mk_pte(new_page, vma->vm_page_prot));
214
215 folio_remove_rmap_pte(old_folio, old_page, vma);
216 if (!folio_mapped(old_folio))
217 folio_free_swap(old_folio);
218 page_vma_mapped_walk_done(&pvmw);
219 folio_put(old_folio);
220
221 err = 0;
222 unlock:
223 mmu_notifier_invalidate_range_end(&range);
224 folio_unlock(old_folio);
225 return err;
226}
227
228/**
229 * is_swbp_insn - check if instruction is breakpoint instruction.
230 * @insn: instruction to be checked.
231 * Default implementation of is_swbp_insn
232 * Returns true if @insn is a breakpoint instruction.
233 */
234bool __weak is_swbp_insn(uprobe_opcode_t *insn)
235{
236 return *insn == UPROBE_SWBP_INSN;
237}
238
239/**
240 * is_trap_insn - check if instruction is breakpoint instruction.
241 * @insn: instruction to be checked.
242 * Default implementation of is_trap_insn
243 * Returns true if @insn is a breakpoint instruction.
244 *
245 * This function is needed for the case where an architecture has multiple
246 * trap instructions (like powerpc).
247 */
248bool __weak is_trap_insn(uprobe_opcode_t *insn)
249{
250 return is_swbp_insn(insn);
251}
252
253static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
254{
255 void *kaddr = kmap_atomic(page);
256 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
257 kunmap_atomic(kaddr);
258}
259
260static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
261{
262 void *kaddr = kmap_atomic(page);
263 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
264 kunmap_atomic(kaddr);
265}
266
267static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
268{
269 uprobe_opcode_t old_opcode;
270 bool is_swbp;
271
272 /*
273 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
274 * We do not check if it is any other 'trap variant' which could
275 * be conditional trap instruction such as the one powerpc supports.
276 *
277 * The logic is that we do not care if the underlying instruction
278 * is a trap variant; uprobes always wins over any other (gdb)
279 * breakpoint.
280 */
281 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
282 is_swbp = is_swbp_insn(&old_opcode);
283
284 if (is_swbp_insn(new_opcode)) {
285 if (is_swbp) /* register: already installed? */
286 return 0;
287 } else {
288 if (!is_swbp) /* unregister: was it changed by us? */
289 return 0;
290 }
291
292 return 1;
293}
294
295static struct delayed_uprobe *
296delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
297{
298 struct delayed_uprobe *du;
299
300 list_for_each_entry(du, &delayed_uprobe_list, list)
301 if (du->uprobe == uprobe && du->mm == mm)
302 return du;
303 return NULL;
304}
305
306static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
307{
308 struct delayed_uprobe *du;
309
310 if (delayed_uprobe_check(uprobe, mm))
311 return 0;
312
313 du = kzalloc(sizeof(*du), GFP_KERNEL);
314 if (!du)
315 return -ENOMEM;
316
317 du->uprobe = uprobe;
318 du->mm = mm;
319 list_add(&du->list, &delayed_uprobe_list);
320 return 0;
321}
322
323static void delayed_uprobe_delete(struct delayed_uprobe *du)
324{
325 if (WARN_ON(!du))
326 return;
327 list_del(&du->list);
328 kfree(du);
329}
330
331static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
332{
333 struct list_head *pos, *q;
334 struct delayed_uprobe *du;
335
336 if (!uprobe && !mm)
337 return;
338
339 list_for_each_safe(pos, q, &delayed_uprobe_list) {
340 du = list_entry(pos, struct delayed_uprobe, list);
341
342 if (uprobe && du->uprobe != uprobe)
343 continue;
344 if (mm && du->mm != mm)
345 continue;
346
347 delayed_uprobe_delete(du);
348 }
349}
350
351static bool valid_ref_ctr_vma(struct uprobe *uprobe,
352 struct vm_area_struct *vma)
353{
354 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
355
356 return uprobe->ref_ctr_offset &&
357 vma->vm_file &&
358 file_inode(vma->vm_file) == uprobe->inode &&
359 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
360 vma->vm_start <= vaddr &&
361 vma->vm_end > vaddr;
362}
363
364static struct vm_area_struct *
365find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
366{
367 VMA_ITERATOR(vmi, mm, 0);
368 struct vm_area_struct *tmp;
369
370 for_each_vma(vmi, tmp)
371 if (valid_ref_ctr_vma(uprobe, tmp))
372 return tmp;
373
374 return NULL;
375}
376
377static int
378__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
379{
380 void *kaddr;
381 struct page *page;
382 int ret;
383 short *ptr;
384
385 if (!vaddr || !d)
386 return -EINVAL;
387
388 ret = get_user_pages_remote(mm, vaddr, 1,
389 FOLL_WRITE, &page, NULL);
390 if (unlikely(ret <= 0)) {
391 /*
392 * We are asking for 1 page. If get_user_pages_remote() fails,
393 * it may return 0, in that case we have to return error.
394 */
395 return ret == 0 ? -EBUSY : ret;
396 }
397
398 kaddr = kmap_atomic(page);
399 ptr = kaddr + (vaddr & ~PAGE_MASK);
400
401 if (unlikely(*ptr + d < 0)) {
402 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
403 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
404 ret = -EINVAL;
405 goto out;
406 }
407
408 *ptr += d;
409 ret = 0;
410out:
411 kunmap_atomic(kaddr);
412 put_page(page);
413 return ret;
414}
415
416static void update_ref_ctr_warn(struct uprobe *uprobe,
417 struct mm_struct *mm, short d)
418{
419 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
420 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
421 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
422 (unsigned long long) uprobe->offset,
423 (unsigned long long) uprobe->ref_ctr_offset, mm);
424}
425
426static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
427 short d)
428{
429 struct vm_area_struct *rc_vma;
430 unsigned long rc_vaddr;
431 int ret = 0;
432
433 rc_vma = find_ref_ctr_vma(uprobe, mm);
434
435 if (rc_vma) {
436 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
437 ret = __update_ref_ctr(mm, rc_vaddr, d);
438 if (ret)
439 update_ref_ctr_warn(uprobe, mm, d);
440
441 if (d > 0)
442 return ret;
443 }
444
445 mutex_lock(&delayed_uprobe_lock);
446 if (d > 0)
447 ret = delayed_uprobe_add(uprobe, mm);
448 else
449 delayed_uprobe_remove(uprobe, mm);
450 mutex_unlock(&delayed_uprobe_lock);
451
452 return ret;
453}
454
455/*
456 * NOTE:
457 * Expect the breakpoint instruction to be the smallest size instruction for
458 * the architecture. If an arch has variable length instruction and the
459 * breakpoint instruction is not of the smallest length instruction
460 * supported by that architecture then we need to modify is_trap_at_addr and
461 * uprobe_write_opcode accordingly. This would never be a problem for archs
462 * that have fixed length instructions.
463 *
464 * uprobe_write_opcode - write the opcode at a given virtual address.
465 * @auprobe: arch specific probepoint information.
466 * @mm: the probed process address space.
467 * @vaddr: the virtual address to store the opcode.
468 * @opcode: opcode to be written at @vaddr.
469 *
470 * Called with mm->mmap_lock held for read or write.
471 * Return 0 (success) or a negative errno.
472 */
473int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
474 unsigned long vaddr, uprobe_opcode_t opcode)
475{
476 struct uprobe *uprobe;
477 struct page *old_page, *new_page;
478 struct vm_area_struct *vma;
479 int ret, is_register, ref_ctr_updated = 0;
480 bool orig_page_huge = false;
481 unsigned int gup_flags = FOLL_FORCE;
482
483 is_register = is_swbp_insn(&opcode);
484 uprobe = container_of(auprobe, struct uprobe, arch);
485
486retry:
487 if (is_register)
488 gup_flags |= FOLL_SPLIT_PMD;
489 /* Read the page with vaddr into memory */
490 old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
491 if (IS_ERR(old_page))
492 return PTR_ERR(old_page);
493
494 ret = verify_opcode(old_page, vaddr, &opcode);
495 if (ret <= 0)
496 goto put_old;
497
498 if (is_zero_page(old_page)) {
499 ret = -EINVAL;
500 goto put_old;
501 }
502
503 if (WARN(!is_register && PageCompound(old_page),
504 "uprobe unregister should never work on compound page\n")) {
505 ret = -EINVAL;
506 goto put_old;
507 }
508
509 /* We are going to replace instruction, update ref_ctr. */
510 if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
511 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
512 if (ret)
513 goto put_old;
514
515 ref_ctr_updated = 1;
516 }
517
518 ret = 0;
519 if (!is_register && !PageAnon(old_page))
520 goto put_old;
521
522 ret = anon_vma_prepare(vma);
523 if (ret)
524 goto put_old;
525
526 ret = -ENOMEM;
527 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
528 if (!new_page)
529 goto put_old;
530
531 __SetPageUptodate(new_page);
532 copy_highpage(new_page, old_page);
533 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
534
535 if (!is_register) {
536 struct page *orig_page;
537 pgoff_t index;
538
539 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
540
541 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
542 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
543 index);
544
545 if (orig_page) {
546 if (PageUptodate(orig_page) &&
547 pages_identical(new_page, orig_page)) {
548 /* let go new_page */
549 put_page(new_page);
550 new_page = NULL;
551
552 if (PageCompound(orig_page))
553 orig_page_huge = true;
554 }
555 put_page(orig_page);
556 }
557 }
558
559 ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page);
560 if (new_page)
561 put_page(new_page);
562put_old:
563 put_page(old_page);
564
565 if (unlikely(ret == -EAGAIN))
566 goto retry;
567
568 /* Revert back reference counter if instruction update failed. */
569 if (ret && is_register && ref_ctr_updated)
570 update_ref_ctr(uprobe, mm, -1);
571
572 /* try collapse pmd for compound page */
573 if (!ret && orig_page_huge)
574 collapse_pte_mapped_thp(mm, vaddr, false);
575
576 return ret;
577}
578
579/**
580 * set_swbp - store breakpoint at a given address.
581 * @auprobe: arch specific probepoint information.
582 * @mm: the probed process address space.
583 * @vaddr: the virtual address to insert the opcode.
584 *
585 * For mm @mm, store the breakpoint instruction at @vaddr.
586 * Return 0 (success) or a negative errno.
587 */
588int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
589{
590 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
591}
592
593/**
594 * set_orig_insn - Restore the original instruction.
595 * @mm: the probed process address space.
596 * @auprobe: arch specific probepoint information.
597 * @vaddr: the virtual address to insert the opcode.
598 *
599 * For mm @mm, restore the original opcode (opcode) at @vaddr.
600 * Return 0 (success) or a negative errno.
601 */
602int __weak
603set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
604{
605 return uprobe_write_opcode(auprobe, mm, vaddr,
606 *(uprobe_opcode_t *)&auprobe->insn);
607}
608
609/* uprobe should have guaranteed positive refcount */
610static struct uprobe *get_uprobe(struct uprobe *uprobe)
611{
612 refcount_inc(&uprobe->ref);
613 return uprobe;
614}
615
616/*
617 * uprobe should have guaranteed lifetime, which can be either of:
618 * - caller already has refcount taken (and wants an extra one);
619 * - uprobe is RCU protected and won't be freed until after grace period;
620 * - we are holding uprobes_treelock (for read or write, doesn't matter).
621 */
622static struct uprobe *try_get_uprobe(struct uprobe *uprobe)
623{
624 if (refcount_inc_not_zero(&uprobe->ref))
625 return uprobe;
626 return NULL;
627}
628
629static inline bool uprobe_is_active(struct uprobe *uprobe)
630{
631 return !RB_EMPTY_NODE(&uprobe->rb_node);
632}
633
634static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu)
635{
636 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
637
638 kfree(uprobe);
639}
640
641static void uprobe_free_srcu(struct rcu_head *rcu)
642{
643 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
644
645 call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace);
646}
647
648static void uprobe_free_deferred(struct work_struct *work)
649{
650 struct uprobe *uprobe = container_of(work, struct uprobe, work);
651
652 write_lock(&uprobes_treelock);
653
654 if (uprobe_is_active(uprobe)) {
655 write_seqcount_begin(&uprobes_seqcount);
656 rb_erase(&uprobe->rb_node, &uprobes_tree);
657 write_seqcount_end(&uprobes_seqcount);
658 }
659
660 write_unlock(&uprobes_treelock);
661
662 /*
663 * If application munmap(exec_vma) before uprobe_unregister()
664 * gets called, we don't get a chance to remove uprobe from
665 * delayed_uprobe_list from remove_breakpoint(). Do it here.
666 */
667 mutex_lock(&delayed_uprobe_lock);
668 delayed_uprobe_remove(uprobe, NULL);
669 mutex_unlock(&delayed_uprobe_lock);
670
671 /* start srcu -> rcu_tasks_trace -> kfree chain */
672 call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu);
673}
674
675static void put_uprobe(struct uprobe *uprobe)
676{
677 if (!refcount_dec_and_test(&uprobe->ref))
678 return;
679
680 INIT_WORK(&uprobe->work, uprobe_free_deferred);
681 schedule_work(&uprobe->work);
682}
683
684/* Initialize hprobe as SRCU-protected "leased" uprobe */
685static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx)
686{
687 WARN_ON(!uprobe);
688 hprobe->state = HPROBE_LEASED;
689 hprobe->uprobe = uprobe;
690 hprobe->srcu_idx = srcu_idx;
691}
692
693/* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */
694static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe)
695{
696 hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE;
697 hprobe->uprobe = uprobe;
698 hprobe->srcu_idx = -1;
699}
700
701/*
702 * hprobe_consume() fetches hprobe's underlying uprobe and detects whether
703 * uprobe is SRCU protected or is refcounted. hprobe_consume() can be
704 * used only once for a given hprobe.
705 *
706 * Caller has to call hprobe_finalize() and pass previous hprobe_state, so
707 * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever
708 * is appropriate.
709 */
710static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate)
711{
712 *hstate = xchg(&hprobe->state, HPROBE_CONSUMED);
713 switch (*hstate) {
714 case HPROBE_LEASED:
715 case HPROBE_STABLE:
716 return hprobe->uprobe;
717 case HPROBE_GONE: /* uprobe is NULL, no SRCU */
718 case HPROBE_CONSUMED: /* uprobe was finalized already, do nothing */
719 return NULL;
720 default:
721 WARN(1, "hprobe invalid state %d", *hstate);
722 return NULL;
723 }
724}
725
726/*
727 * Reset hprobe state and, if hprobe was LEASED, release SRCU lock.
728 * hprobe_finalize() can only be used from current context after
729 * hprobe_consume() call (which determines uprobe and hstate value).
730 */
731static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate)
732{
733 switch (hstate) {
734 case HPROBE_LEASED:
735 __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
736 break;
737 case HPROBE_STABLE:
738 put_uprobe(hprobe->uprobe);
739 break;
740 case HPROBE_GONE:
741 case HPROBE_CONSUMED:
742 break;
743 default:
744 WARN(1, "hprobe invalid state %d", hstate);
745 break;
746 }
747}
748
749/*
750 * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED)
751 * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of
752 * them can win the race to perform SRCU unlocking. Whoever wins must perform
753 * SRCU unlock.
754 *
755 * Returns underlying valid uprobe or NULL, if there was no underlying uprobe
756 * to begin with or we failed to bump its refcount and it's going away.
757 *
758 * Returned non-NULL uprobe can be still safely used within an ongoing SRCU
759 * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has
760 * an extra refcount for caller to assume and use. Otherwise, it's not
761 * guaranteed that returned uprobe has a positive refcount, so caller has to
762 * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current
763 * SRCU lock region. See dup_utask().
764 */
765static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get)
766{
767 enum hprobe_state hstate;
768
769 /*
770 * Caller should guarantee that return_instance is not going to be
771 * freed from under us. This can be achieved either through holding
772 * rcu_read_lock() or by owning return_instance in the first place.
773 *
774 * Underlying uprobe is itself protected from reuse by SRCU, so ensure
775 * SRCU lock is held properly.
776 */
777 lockdep_assert(srcu_read_lock_held(&uretprobes_srcu));
778
779 hstate = READ_ONCE(hprobe->state);
780 switch (hstate) {
781 case HPROBE_STABLE:
782 /* uprobe has positive refcount, bump refcount, if necessary */
783 return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe;
784 case HPROBE_GONE:
785 /*
786 * SRCU was unlocked earlier and we didn't manage to take
787 * uprobe refcnt, so it's effectively NULL
788 */
789 return NULL;
790 case HPROBE_CONSUMED:
791 /*
792 * uprobe was consumed, so it's effectively NULL as far as
793 * uretprobe processing logic is concerned
794 */
795 return NULL;
796 case HPROBE_LEASED: {
797 struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe);
798 /*
799 * Try to switch hprobe state, guarding against
800 * hprobe_consume() or another hprobe_expire() racing with us.
801 * Note, if we failed to get uprobe refcount, we use special
802 * HPROBE_GONE state to signal that hprobe->uprobe shouldn't
803 * be used as it will be freed after SRCU is unlocked.
804 */
805 if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) {
806 /* We won the race, we are the ones to unlock SRCU */
807 __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
808 return get ? get_uprobe(uprobe) : uprobe;
809 }
810
811 /*
812 * We lost the race, undo refcount bump (if it ever happened),
813 * unless caller would like an extra refcount anyways.
814 */
815 if (uprobe && !get)
816 put_uprobe(uprobe);
817 /*
818 * Even if hprobe_consume() or another hprobe_expire() wins
819 * the state update race and unlocks SRCU from under us, we
820 * still have a guarantee that underyling uprobe won't be
821 * freed due to ongoing caller's SRCU lock region, so we can
822 * return it regardless. Also, if `get` was true, we also have
823 * an extra ref for the caller to own. This is used in dup_utask().
824 */
825 return uprobe;
826 }
827 default:
828 WARN(1, "unknown hprobe state %d", hstate);
829 return NULL;
830 }
831}
832
833static __always_inline
834int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
835 const struct uprobe *r)
836{
837 if (l_inode < r->inode)
838 return -1;
839
840 if (l_inode > r->inode)
841 return 1;
842
843 if (l_offset < r->offset)
844 return -1;
845
846 if (l_offset > r->offset)
847 return 1;
848
849 return 0;
850}
851
852#define __node_2_uprobe(node) \
853 rb_entry((node), struct uprobe, rb_node)
854
855struct __uprobe_key {
856 struct inode *inode;
857 loff_t offset;
858};
859
860static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
861{
862 const struct __uprobe_key *a = key;
863 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
864}
865
866static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
867{
868 struct uprobe *u = __node_2_uprobe(a);
869 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
870}
871
872/*
873 * Assumes being inside RCU protected region.
874 * No refcount is taken on returned uprobe.
875 */
876static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
877{
878 struct __uprobe_key key = {
879 .inode = inode,
880 .offset = offset,
881 };
882 struct rb_node *node;
883 unsigned int seq;
884
885 lockdep_assert(rcu_read_lock_trace_held());
886
887 do {
888 seq = read_seqcount_begin(&uprobes_seqcount);
889 node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key);
890 /*
891 * Lockless RB-tree lookups can result only in false negatives.
892 * If the element is found, it is correct and can be returned
893 * under RCU protection. If we find nothing, we need to
894 * validate that seqcount didn't change. If it did, we have to
895 * try again as we might have missed the element (false
896 * negative). If seqcount is unchanged, search truly failed.
897 */
898 if (node)
899 return __node_2_uprobe(node);
900 } while (read_seqcount_retry(&uprobes_seqcount, seq));
901
902 return NULL;
903}
904
905/*
906 * Attempt to insert a new uprobe into uprobes_tree.
907 *
908 * If uprobe already exists (for given inode+offset), we just increment
909 * refcount of previously existing uprobe.
910 *
911 * If not, a provided new instance of uprobe is inserted into the tree (with
912 * assumed initial refcount == 1).
913 *
914 * In any case, we return a uprobe instance that ends up being in uprobes_tree.
915 * Caller has to clean up new uprobe instance, if it ended up not being
916 * inserted into the tree.
917 *
918 * We assume that uprobes_treelock is held for writing.
919 */
920static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
921{
922 struct rb_node *node;
923again:
924 node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
925 if (node) {
926 struct uprobe *u = __node_2_uprobe(node);
927
928 if (!try_get_uprobe(u)) {
929 rb_erase(node, &uprobes_tree);
930 RB_CLEAR_NODE(&u->rb_node);
931 goto again;
932 }
933
934 return u;
935 }
936
937 return uprobe;
938}
939
940/*
941 * Acquire uprobes_treelock and insert uprobe into uprobes_tree
942 * (or reuse existing one, see __insert_uprobe() comments above).
943 */
944static struct uprobe *insert_uprobe(struct uprobe *uprobe)
945{
946 struct uprobe *u;
947
948 write_lock(&uprobes_treelock);
949 write_seqcount_begin(&uprobes_seqcount);
950 u = __insert_uprobe(uprobe);
951 write_seqcount_end(&uprobes_seqcount);
952 write_unlock(&uprobes_treelock);
953
954 return u;
955}
956
957static void
958ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
959{
960 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
961 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
962 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
963 (unsigned long long) cur_uprobe->ref_ctr_offset,
964 (unsigned long long) uprobe->ref_ctr_offset);
965}
966
967static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
968 loff_t ref_ctr_offset)
969{
970 struct uprobe *uprobe, *cur_uprobe;
971
972 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
973 if (!uprobe)
974 return ERR_PTR(-ENOMEM);
975
976 uprobe->inode = inode;
977 uprobe->offset = offset;
978 uprobe->ref_ctr_offset = ref_ctr_offset;
979 INIT_LIST_HEAD(&uprobe->consumers);
980 init_rwsem(&uprobe->register_rwsem);
981 init_rwsem(&uprobe->consumer_rwsem);
982 RB_CLEAR_NODE(&uprobe->rb_node);
983 refcount_set(&uprobe->ref, 1);
984
985 /* add to uprobes_tree, sorted on inode:offset */
986 cur_uprobe = insert_uprobe(uprobe);
987 /* a uprobe exists for this inode:offset combination */
988 if (cur_uprobe != uprobe) {
989 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
990 ref_ctr_mismatch_warn(cur_uprobe, uprobe);
991 put_uprobe(cur_uprobe);
992 kfree(uprobe);
993 return ERR_PTR(-EINVAL);
994 }
995 kfree(uprobe);
996 uprobe = cur_uprobe;
997 }
998
999 return uprobe;
1000}
1001
1002static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
1003{
1004 static atomic64_t id;
1005
1006 down_write(&uprobe->consumer_rwsem);
1007 list_add_rcu(&uc->cons_node, &uprobe->consumers);
1008 uc->id = (__u64) atomic64_inc_return(&id);
1009 up_write(&uprobe->consumer_rwsem);
1010}
1011
1012/*
1013 * For uprobe @uprobe, delete the consumer @uc.
1014 * Should never be called with consumer that's not part of @uprobe->consumers.
1015 */
1016static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
1017{
1018 down_write(&uprobe->consumer_rwsem);
1019 list_del_rcu(&uc->cons_node);
1020 up_write(&uprobe->consumer_rwsem);
1021}
1022
1023static int __copy_insn(struct address_space *mapping, struct file *filp,
1024 void *insn, int nbytes, loff_t offset)
1025{
1026 struct page *page;
1027 /*
1028 * Ensure that the page that has the original instruction is populated
1029 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
1030 * see uprobe_register().
1031 */
1032 if (mapping->a_ops->read_folio)
1033 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
1034 else
1035 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
1036 if (IS_ERR(page))
1037 return PTR_ERR(page);
1038
1039 copy_from_page(page, offset, insn, nbytes);
1040 put_page(page);
1041
1042 return 0;
1043}
1044
1045static int copy_insn(struct uprobe *uprobe, struct file *filp)
1046{
1047 struct address_space *mapping = uprobe->inode->i_mapping;
1048 loff_t offs = uprobe->offset;
1049 void *insn = &uprobe->arch.insn;
1050 int size = sizeof(uprobe->arch.insn);
1051 int len, err = -EIO;
1052
1053 /* Copy only available bytes, -EIO if nothing was read */
1054 do {
1055 if (offs >= i_size_read(uprobe->inode))
1056 break;
1057
1058 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
1059 err = __copy_insn(mapping, filp, insn, len, offs);
1060 if (err)
1061 break;
1062
1063 insn += len;
1064 offs += len;
1065 size -= len;
1066 } while (size);
1067
1068 return err;
1069}
1070
1071static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
1072 struct mm_struct *mm, unsigned long vaddr)
1073{
1074 int ret = 0;
1075
1076 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1077 return ret;
1078
1079 /* TODO: move this into _register, until then we abuse this sem. */
1080 down_write(&uprobe->consumer_rwsem);
1081 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1082 goto out;
1083
1084 ret = copy_insn(uprobe, file);
1085 if (ret)
1086 goto out;
1087
1088 ret = -ENOTSUPP;
1089 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
1090 goto out;
1091
1092 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
1093 if (ret)
1094 goto out;
1095
1096 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
1097 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
1098
1099 out:
1100 up_write(&uprobe->consumer_rwsem);
1101
1102 return ret;
1103}
1104
1105static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm)
1106{
1107 return !uc->filter || uc->filter(uc, mm);
1108}
1109
1110static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
1111{
1112 struct uprobe_consumer *uc;
1113 bool ret = false;
1114
1115 down_read(&uprobe->consumer_rwsem);
1116 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1117 ret = consumer_filter(uc, mm);
1118 if (ret)
1119 break;
1120 }
1121 up_read(&uprobe->consumer_rwsem);
1122
1123 return ret;
1124}
1125
1126static int
1127install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
1128 struct vm_area_struct *vma, unsigned long vaddr)
1129{
1130 bool first_uprobe;
1131 int ret;
1132
1133 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
1134 if (ret)
1135 return ret;
1136
1137 /*
1138 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
1139 * the task can hit this breakpoint right after __replace_page().
1140 */
1141 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
1142 if (first_uprobe)
1143 set_bit(MMF_HAS_UPROBES, &mm->flags);
1144
1145 ret = set_swbp(&uprobe->arch, mm, vaddr);
1146 if (!ret)
1147 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
1148 else if (first_uprobe)
1149 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1150
1151 return ret;
1152}
1153
1154static int
1155remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
1156{
1157 set_bit(MMF_RECALC_UPROBES, &mm->flags);
1158 return set_orig_insn(&uprobe->arch, mm, vaddr);
1159}
1160
1161struct map_info {
1162 struct map_info *next;
1163 struct mm_struct *mm;
1164 unsigned long vaddr;
1165};
1166
1167static inline struct map_info *free_map_info(struct map_info *info)
1168{
1169 struct map_info *next = info->next;
1170 kfree(info);
1171 return next;
1172}
1173
1174static struct map_info *
1175build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
1176{
1177 unsigned long pgoff = offset >> PAGE_SHIFT;
1178 struct vm_area_struct *vma;
1179 struct map_info *curr = NULL;
1180 struct map_info *prev = NULL;
1181 struct map_info *info;
1182 int more = 0;
1183
1184 again:
1185 i_mmap_lock_read(mapping);
1186 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1187 if (!valid_vma(vma, is_register))
1188 continue;
1189
1190 if (!prev && !more) {
1191 /*
1192 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
1193 * reclaim. This is optimistic, no harm done if it fails.
1194 */
1195 prev = kmalloc(sizeof(struct map_info),
1196 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
1197 if (prev)
1198 prev->next = NULL;
1199 }
1200 if (!prev) {
1201 more++;
1202 continue;
1203 }
1204
1205 if (!mmget_not_zero(vma->vm_mm))
1206 continue;
1207
1208 info = prev;
1209 prev = prev->next;
1210 info->next = curr;
1211 curr = info;
1212
1213 info->mm = vma->vm_mm;
1214 info->vaddr = offset_to_vaddr(vma, offset);
1215 }
1216 i_mmap_unlock_read(mapping);
1217
1218 if (!more)
1219 goto out;
1220
1221 prev = curr;
1222 while (curr) {
1223 mmput(curr->mm);
1224 curr = curr->next;
1225 }
1226
1227 do {
1228 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1229 if (!info) {
1230 curr = ERR_PTR(-ENOMEM);
1231 goto out;
1232 }
1233 info->next = prev;
1234 prev = info;
1235 } while (--more);
1236
1237 goto again;
1238 out:
1239 while (prev)
1240 prev = free_map_info(prev);
1241 return curr;
1242}
1243
1244static int
1245register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1246{
1247 bool is_register = !!new;
1248 struct map_info *info;
1249 int err = 0;
1250
1251 percpu_down_write(&dup_mmap_sem);
1252 info = build_map_info(uprobe->inode->i_mapping,
1253 uprobe->offset, is_register);
1254 if (IS_ERR(info)) {
1255 err = PTR_ERR(info);
1256 goto out;
1257 }
1258
1259 while (info) {
1260 struct mm_struct *mm = info->mm;
1261 struct vm_area_struct *vma;
1262
1263 if (err && is_register)
1264 goto free;
1265 /*
1266 * We take mmap_lock for writing to avoid the race with
1267 * find_active_uprobe_rcu() which takes mmap_lock for reading.
1268 * Thus this install_breakpoint() can not make
1269 * is_trap_at_addr() true right after find_uprobe_rcu()
1270 * returns NULL in find_active_uprobe_rcu().
1271 */
1272 mmap_write_lock(mm);
1273 if (check_stable_address_space(mm))
1274 goto unlock;
1275
1276 vma = find_vma(mm, info->vaddr);
1277 if (!vma || !valid_vma(vma, is_register) ||
1278 file_inode(vma->vm_file) != uprobe->inode)
1279 goto unlock;
1280
1281 if (vma->vm_start > info->vaddr ||
1282 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1283 goto unlock;
1284
1285 if (is_register) {
1286 /* consult only the "caller", new consumer. */
1287 if (consumer_filter(new, mm))
1288 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1289 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1290 if (!filter_chain(uprobe, mm))
1291 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1292 }
1293
1294 unlock:
1295 mmap_write_unlock(mm);
1296 free:
1297 mmput(mm);
1298 info = free_map_info(info);
1299 }
1300 out:
1301 percpu_up_write(&dup_mmap_sem);
1302 return err;
1303}
1304
1305/**
1306 * uprobe_unregister_nosync - unregister an already registered probe.
1307 * @uprobe: uprobe to remove
1308 * @uc: identify which probe if multiple probes are colocated.
1309 */
1310void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc)
1311{
1312 int err;
1313
1314 down_write(&uprobe->register_rwsem);
1315 consumer_del(uprobe, uc);
1316 err = register_for_each_vma(uprobe, NULL);
1317 up_write(&uprobe->register_rwsem);
1318
1319 /* TODO : cant unregister? schedule a worker thread */
1320 if (unlikely(err)) {
1321 uprobe_warn(current, "unregister, leaking uprobe");
1322 return;
1323 }
1324
1325 put_uprobe(uprobe);
1326}
1327EXPORT_SYMBOL_GPL(uprobe_unregister_nosync);
1328
1329void uprobe_unregister_sync(void)
1330{
1331 /*
1332 * Now that handler_chain() and handle_uretprobe_chain() iterate over
1333 * uprobe->consumers list under RCU protection without holding
1334 * uprobe->register_rwsem, we need to wait for RCU grace period to
1335 * make sure that we can't call into just unregistered
1336 * uprobe_consumer's callbacks anymore. If we don't do that, fast and
1337 * unlucky enough caller can free consumer's memory and cause
1338 * handler_chain() or handle_uretprobe_chain() to do an use-after-free.
1339 */
1340 synchronize_rcu_tasks_trace();
1341 synchronize_srcu(&uretprobes_srcu);
1342}
1343EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
1344
1345/**
1346 * uprobe_register - register a probe
1347 * @inode: the file in which the probe has to be placed.
1348 * @offset: offset from the start of the file.
1349 * @ref_ctr_offset: offset of SDT marker / reference counter
1350 * @uc: information on howto handle the probe..
1351 *
1352 * Apart from the access refcount, uprobe_register() takes a creation
1353 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1354 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1355 * tuple). Creation refcount stops uprobe_unregister from freeing the
1356 * @uprobe even before the register operation is complete. Creation
1357 * refcount is released when the last @uc for the @uprobe
1358 * unregisters. Caller of uprobe_register() is required to keep @inode
1359 * (and the containing mount) referenced.
1360 *
1361 * Return: pointer to the new uprobe on success or an ERR_PTR on failure.
1362 */
1363struct uprobe *uprobe_register(struct inode *inode,
1364 loff_t offset, loff_t ref_ctr_offset,
1365 struct uprobe_consumer *uc)
1366{
1367 struct uprobe *uprobe;
1368 int ret;
1369
1370 /* Uprobe must have at least one set consumer */
1371 if (!uc->handler && !uc->ret_handler)
1372 return ERR_PTR(-EINVAL);
1373
1374 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1375 if (!inode->i_mapping->a_ops->read_folio &&
1376 !shmem_mapping(inode->i_mapping))
1377 return ERR_PTR(-EIO);
1378 /* Racy, just to catch the obvious mistakes */
1379 if (offset > i_size_read(inode))
1380 return ERR_PTR(-EINVAL);
1381
1382 /*
1383 * This ensures that copy_from_page(), copy_to_page() and
1384 * __update_ref_ctr() can't cross page boundary.
1385 */
1386 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1387 return ERR_PTR(-EINVAL);
1388 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1389 return ERR_PTR(-EINVAL);
1390
1391 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1392 if (IS_ERR(uprobe))
1393 return uprobe;
1394
1395 down_write(&uprobe->register_rwsem);
1396 consumer_add(uprobe, uc);
1397 ret = register_for_each_vma(uprobe, uc);
1398 up_write(&uprobe->register_rwsem);
1399
1400 if (ret) {
1401 uprobe_unregister_nosync(uprobe, uc);
1402 /*
1403 * Registration might have partially succeeded, so we can have
1404 * this consumer being called right at this time. We need to
1405 * sync here. It's ok, it's unlikely slow path.
1406 */
1407 uprobe_unregister_sync();
1408 return ERR_PTR(ret);
1409 }
1410
1411 return uprobe;
1412}
1413EXPORT_SYMBOL_GPL(uprobe_register);
1414
1415/**
1416 * uprobe_apply - add or remove the breakpoints according to @uc->filter
1417 * @uprobe: uprobe which "owns" the breakpoint
1418 * @uc: consumer which wants to add more or remove some breakpoints
1419 * @add: add or remove the breakpoints
1420 * Return: 0 on success or negative error code.
1421 */
1422int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
1423{
1424 struct uprobe_consumer *con;
1425 int ret = -ENOENT;
1426
1427 down_write(&uprobe->register_rwsem);
1428
1429 rcu_read_lock_trace();
1430 list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1431 if (con == uc) {
1432 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1433 break;
1434 }
1435 }
1436 rcu_read_unlock_trace();
1437
1438 up_write(&uprobe->register_rwsem);
1439
1440 return ret;
1441}
1442
1443static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1444{
1445 VMA_ITERATOR(vmi, mm, 0);
1446 struct vm_area_struct *vma;
1447 int err = 0;
1448
1449 mmap_read_lock(mm);
1450 for_each_vma(vmi, vma) {
1451 unsigned long vaddr;
1452 loff_t offset;
1453
1454 if (!valid_vma(vma, false) ||
1455 file_inode(vma->vm_file) != uprobe->inode)
1456 continue;
1457
1458 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1459 if (uprobe->offset < offset ||
1460 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1461 continue;
1462
1463 vaddr = offset_to_vaddr(vma, uprobe->offset);
1464 err |= remove_breakpoint(uprobe, mm, vaddr);
1465 }
1466 mmap_read_unlock(mm);
1467
1468 return err;
1469}
1470
1471static struct rb_node *
1472find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1473{
1474 struct rb_node *n = uprobes_tree.rb_node;
1475
1476 while (n) {
1477 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1478
1479 if (inode < u->inode) {
1480 n = n->rb_left;
1481 } else if (inode > u->inode) {
1482 n = n->rb_right;
1483 } else {
1484 if (max < u->offset)
1485 n = n->rb_left;
1486 else if (min > u->offset)
1487 n = n->rb_right;
1488 else
1489 break;
1490 }
1491 }
1492
1493 return n;
1494}
1495
1496/*
1497 * For a given range in vma, build a list of probes that need to be inserted.
1498 */
1499static void build_probe_list(struct inode *inode,
1500 struct vm_area_struct *vma,
1501 unsigned long start, unsigned long end,
1502 struct list_head *head)
1503{
1504 loff_t min, max;
1505 struct rb_node *n, *t;
1506 struct uprobe *u;
1507
1508 INIT_LIST_HEAD(head);
1509 min = vaddr_to_offset(vma, start);
1510 max = min + (end - start) - 1;
1511
1512 read_lock(&uprobes_treelock);
1513 n = find_node_in_range(inode, min, max);
1514 if (n) {
1515 for (t = n; t; t = rb_prev(t)) {
1516 u = rb_entry(t, struct uprobe, rb_node);
1517 if (u->inode != inode || u->offset < min)
1518 break;
1519 /* if uprobe went away, it's safe to ignore it */
1520 if (try_get_uprobe(u))
1521 list_add(&u->pending_list, head);
1522 }
1523 for (t = n; (t = rb_next(t)); ) {
1524 u = rb_entry(t, struct uprobe, rb_node);
1525 if (u->inode != inode || u->offset > max)
1526 break;
1527 /* if uprobe went away, it's safe to ignore it */
1528 if (try_get_uprobe(u))
1529 list_add(&u->pending_list, head);
1530 }
1531 }
1532 read_unlock(&uprobes_treelock);
1533}
1534
1535/* @vma contains reference counter, not the probed instruction. */
1536static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1537{
1538 struct list_head *pos, *q;
1539 struct delayed_uprobe *du;
1540 unsigned long vaddr;
1541 int ret = 0, err = 0;
1542
1543 mutex_lock(&delayed_uprobe_lock);
1544 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1545 du = list_entry(pos, struct delayed_uprobe, list);
1546
1547 if (du->mm != vma->vm_mm ||
1548 !valid_ref_ctr_vma(du->uprobe, vma))
1549 continue;
1550
1551 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1552 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1553 if (ret) {
1554 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1555 if (!err)
1556 err = ret;
1557 }
1558 delayed_uprobe_delete(du);
1559 }
1560 mutex_unlock(&delayed_uprobe_lock);
1561 return err;
1562}
1563
1564/*
1565 * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1566 *
1567 * Currently we ignore all errors and always return 0, the callers
1568 * can't handle the failure anyway.
1569 */
1570int uprobe_mmap(struct vm_area_struct *vma)
1571{
1572 struct list_head tmp_list;
1573 struct uprobe *uprobe, *u;
1574 struct inode *inode;
1575
1576 if (no_uprobe_events())
1577 return 0;
1578
1579 if (vma->vm_file &&
1580 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1581 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1582 delayed_ref_ctr_inc(vma);
1583
1584 if (!valid_vma(vma, true))
1585 return 0;
1586
1587 inode = file_inode(vma->vm_file);
1588 if (!inode)
1589 return 0;
1590
1591 mutex_lock(uprobes_mmap_hash(inode));
1592 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1593 /*
1594 * We can race with uprobe_unregister(), this uprobe can be already
1595 * removed. But in this case filter_chain() must return false, all
1596 * consumers have gone away.
1597 */
1598 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1599 if (!fatal_signal_pending(current) &&
1600 filter_chain(uprobe, vma->vm_mm)) {
1601 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1602 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1603 }
1604 put_uprobe(uprobe);
1605 }
1606 mutex_unlock(uprobes_mmap_hash(inode));
1607
1608 return 0;
1609}
1610
1611static bool
1612vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1613{
1614 loff_t min, max;
1615 struct inode *inode;
1616 struct rb_node *n;
1617
1618 inode = file_inode(vma->vm_file);
1619
1620 min = vaddr_to_offset(vma, start);
1621 max = min + (end - start) - 1;
1622
1623 read_lock(&uprobes_treelock);
1624 n = find_node_in_range(inode, min, max);
1625 read_unlock(&uprobes_treelock);
1626
1627 return !!n;
1628}
1629
1630/*
1631 * Called in context of a munmap of a vma.
1632 */
1633void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1634{
1635 if (no_uprobe_events() || !valid_vma(vma, false))
1636 return;
1637
1638 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1639 return;
1640
1641 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1642 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1643 return;
1644
1645 if (vma_has_uprobes(vma, start, end))
1646 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1647}
1648
1649static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
1650 struct vm_area_struct *vma, struct vm_fault *vmf)
1651{
1652 struct xol_area *area = vma->vm_mm->uprobes_state.xol_area;
1653
1654 vmf->page = area->page;
1655 get_page(vmf->page);
1656 return 0;
1657}
1658
1659static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma)
1660{
1661 return -EPERM;
1662}
1663
1664static const struct vm_special_mapping xol_mapping = {
1665 .name = "[uprobes]",
1666 .fault = xol_fault,
1667 .mremap = xol_mremap,
1668};
1669
1670/* Slot allocation for XOL */
1671static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1672{
1673 struct vm_area_struct *vma;
1674 int ret;
1675
1676 if (mmap_write_lock_killable(mm))
1677 return -EINTR;
1678
1679 if (mm->uprobes_state.xol_area) {
1680 ret = -EALREADY;
1681 goto fail;
1682 }
1683
1684 if (!area->vaddr) {
1685 /* Try to map as high as possible, this is only a hint. */
1686 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1687 PAGE_SIZE, 0, 0);
1688 if (IS_ERR_VALUE(area->vaddr)) {
1689 ret = area->vaddr;
1690 goto fail;
1691 }
1692 }
1693
1694 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1695 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1696 &xol_mapping);
1697 if (IS_ERR(vma)) {
1698 ret = PTR_ERR(vma);
1699 goto fail;
1700 }
1701
1702 ret = 0;
1703 /* pairs with get_xol_area() */
1704 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1705 fail:
1706 mmap_write_unlock(mm);
1707
1708 return ret;
1709}
1710
1711void * __weak arch_uprobe_trampoline(unsigned long *psize)
1712{
1713 static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1714
1715 *psize = UPROBE_SWBP_INSN_SIZE;
1716 return &insn;
1717}
1718
1719static struct xol_area *__create_xol_area(unsigned long vaddr)
1720{
1721 struct mm_struct *mm = current->mm;
1722 unsigned long insns_size;
1723 struct xol_area *area;
1724 void *insns;
1725
1726 area = kzalloc(sizeof(*area), GFP_KERNEL);
1727 if (unlikely(!area))
1728 goto out;
1729
1730 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1731 GFP_KERNEL);
1732 if (!area->bitmap)
1733 goto free_area;
1734
1735 area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1736 if (!area->page)
1737 goto free_bitmap;
1738
1739 area->vaddr = vaddr;
1740 init_waitqueue_head(&area->wq);
1741 /* Reserve the 1st slot for get_trampoline_vaddr() */
1742 set_bit(0, area->bitmap);
1743 insns = arch_uprobe_trampoline(&insns_size);
1744 arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
1745
1746 if (!xol_add_vma(mm, area))
1747 return area;
1748
1749 __free_page(area->page);
1750 free_bitmap:
1751 kfree(area->bitmap);
1752 free_area:
1753 kfree(area);
1754 out:
1755 return NULL;
1756}
1757
1758/*
1759 * get_xol_area - Allocate process's xol_area if necessary.
1760 * This area will be used for storing instructions for execution out of line.
1761 *
1762 * Returns the allocated area or NULL.
1763 */
1764static struct xol_area *get_xol_area(void)
1765{
1766 struct mm_struct *mm = current->mm;
1767 struct xol_area *area;
1768
1769 if (!mm->uprobes_state.xol_area)
1770 __create_xol_area(0);
1771
1772 /* Pairs with xol_add_vma() smp_store_release() */
1773 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1774 return area;
1775}
1776
1777/*
1778 * uprobe_clear_state - Free the area allocated for slots.
1779 */
1780void uprobe_clear_state(struct mm_struct *mm)
1781{
1782 struct xol_area *area = mm->uprobes_state.xol_area;
1783
1784 mutex_lock(&delayed_uprobe_lock);
1785 delayed_uprobe_remove(NULL, mm);
1786 mutex_unlock(&delayed_uprobe_lock);
1787
1788 if (!area)
1789 return;
1790
1791 put_page(area->page);
1792 kfree(area->bitmap);
1793 kfree(area);
1794}
1795
1796void uprobe_start_dup_mmap(void)
1797{
1798 percpu_down_read(&dup_mmap_sem);
1799}
1800
1801void uprobe_end_dup_mmap(void)
1802{
1803 percpu_up_read(&dup_mmap_sem);
1804}
1805
1806void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1807{
1808 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1809 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1810 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1811 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1812 }
1813}
1814
1815static unsigned long xol_get_slot_nr(struct xol_area *area)
1816{
1817 unsigned long slot_nr;
1818
1819 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1820 if (slot_nr < UINSNS_PER_PAGE) {
1821 if (!test_and_set_bit(slot_nr, area->bitmap))
1822 return slot_nr;
1823 }
1824
1825 return UINSNS_PER_PAGE;
1826}
1827
1828/*
1829 * xol_get_insn_slot - allocate a slot for xol.
1830 */
1831static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask)
1832{
1833 struct xol_area *area = get_xol_area();
1834 unsigned long slot_nr;
1835
1836 if (!area)
1837 return false;
1838
1839 wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE);
1840
1841 utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES;
1842 arch_uprobe_copy_ixol(area->page, utask->xol_vaddr,
1843 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1844 return true;
1845}
1846
1847/*
1848 * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot()
1849 */
1850static void xol_free_insn_slot(struct uprobe_task *utask)
1851{
1852 struct xol_area *area = current->mm->uprobes_state.xol_area;
1853 unsigned long offset = utask->xol_vaddr - area->vaddr;
1854 unsigned int slot_nr;
1855
1856 utask->xol_vaddr = 0;
1857 /* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */
1858 if (WARN_ON_ONCE(offset >= PAGE_SIZE))
1859 return;
1860
1861 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1862 clear_bit(slot_nr, area->bitmap);
1863 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1864 if (waitqueue_active(&area->wq))
1865 wake_up(&area->wq);
1866}
1867
1868void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1869 void *src, unsigned long len)
1870{
1871 /* Initialize the slot */
1872 copy_to_page(page, vaddr, src, len);
1873
1874 /*
1875 * We probably need flush_icache_user_page() but it needs vma.
1876 * This should work on most of architectures by default. If
1877 * architecture needs to do something different it can define
1878 * its own version of the function.
1879 */
1880 flush_dcache_page(page);
1881}
1882
1883/**
1884 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1885 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1886 * instruction.
1887 * Return the address of the breakpoint instruction.
1888 */
1889unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1890{
1891 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1892}
1893
1894unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1895{
1896 struct uprobe_task *utask = current->utask;
1897
1898 if (unlikely(utask && utask->active_uprobe))
1899 return utask->vaddr;
1900
1901 return instruction_pointer(regs);
1902}
1903
1904static struct return_instance *free_ret_instance(struct return_instance *ri, bool cleanup_hprobe)
1905{
1906 struct return_instance *next = ri->next;
1907
1908 if (cleanup_hprobe) {
1909 enum hprobe_state hstate;
1910
1911 (void)hprobe_consume(&ri->hprobe, &hstate);
1912 hprobe_finalize(&ri->hprobe, hstate);
1913 }
1914
1915 kfree_rcu(ri, rcu);
1916 return next;
1917}
1918
1919/*
1920 * Called with no locks held.
1921 * Called in context of an exiting or an exec-ing thread.
1922 */
1923void uprobe_free_utask(struct task_struct *t)
1924{
1925 struct uprobe_task *utask = t->utask;
1926 struct return_instance *ri;
1927
1928 if (!utask)
1929 return;
1930
1931 t->utask = NULL;
1932 WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr);
1933
1934 timer_delete_sync(&utask->ri_timer);
1935
1936 ri = utask->return_instances;
1937 while (ri)
1938 ri = free_ret_instance(ri, true /* cleanup_hprobe */);
1939
1940 kfree(utask);
1941}
1942
1943#define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */
1944
1945#define for_each_ret_instance_rcu(pos, head) \
1946 for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next))
1947
1948static void ri_timer(struct timer_list *timer)
1949{
1950 struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer);
1951 struct return_instance *ri;
1952
1953 /* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */
1954 guard(srcu)(&uretprobes_srcu);
1955 /* RCU protects return_instance from freeing. */
1956 guard(rcu)();
1957
1958 for_each_ret_instance_rcu(ri, utask->return_instances)
1959 hprobe_expire(&ri->hprobe, false);
1960}
1961
1962static struct uprobe_task *alloc_utask(void)
1963{
1964 struct uprobe_task *utask;
1965
1966 utask = kzalloc(sizeof(*utask), GFP_KERNEL);
1967 if (!utask)
1968 return NULL;
1969
1970 timer_setup(&utask->ri_timer, ri_timer, 0);
1971
1972 return utask;
1973}
1974
1975/*
1976 * Allocate a uprobe_task object for the task if necessary.
1977 * Called when the thread hits a breakpoint.
1978 *
1979 * Returns:
1980 * - pointer to new uprobe_task on success
1981 * - NULL otherwise
1982 */
1983static struct uprobe_task *get_utask(void)
1984{
1985 if (!current->utask)
1986 current->utask = alloc_utask();
1987 return current->utask;
1988}
1989
1990static size_t ri_size(int consumers_cnt)
1991{
1992 struct return_instance *ri;
1993
1994 return sizeof(*ri) + sizeof(ri->consumers[0]) * consumers_cnt;
1995}
1996
1997#define DEF_CNT 4
1998
1999static struct return_instance *alloc_return_instance(void)
2000{
2001 struct return_instance *ri;
2002
2003 ri = kzalloc(ri_size(DEF_CNT), GFP_KERNEL);
2004 if (!ri)
2005 return ZERO_SIZE_PTR;
2006
2007 ri->consumers_cnt = DEF_CNT;
2008 return ri;
2009}
2010
2011static struct return_instance *dup_return_instance(struct return_instance *old)
2012{
2013 size_t size = ri_size(old->consumers_cnt);
2014
2015 return kmemdup(old, size, GFP_KERNEL);
2016}
2017
2018static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
2019{
2020 struct uprobe_task *n_utask;
2021 struct return_instance **p, *o, *n;
2022 struct uprobe *uprobe;
2023
2024 n_utask = alloc_utask();
2025 if (!n_utask)
2026 return -ENOMEM;
2027 t->utask = n_utask;
2028
2029 /* protect uprobes from freeing, we'll need try_get_uprobe() them */
2030 guard(srcu)(&uretprobes_srcu);
2031
2032 p = &n_utask->return_instances;
2033 for (o = o_utask->return_instances; o; o = o->next) {
2034 n = dup_return_instance(o);
2035 if (!n)
2036 return -ENOMEM;
2037
2038 /* if uprobe is non-NULL, we'll have an extra refcount for uprobe */
2039 uprobe = hprobe_expire(&o->hprobe, true);
2040
2041 /*
2042 * New utask will have stable properly refcounted uprobe or
2043 * NULL. Even if we failed to get refcounted uprobe, we still
2044 * need to preserve full set of return_instances for proper
2045 * uretprobe handling and nesting in forked task.
2046 */
2047 hprobe_init_stable(&n->hprobe, uprobe);
2048
2049 n->next = NULL;
2050 rcu_assign_pointer(*p, n);
2051 p = &n->next;
2052
2053 n_utask->depth++;
2054 }
2055
2056 return 0;
2057}
2058
2059static void dup_xol_work(struct callback_head *work)
2060{
2061 if (current->flags & PF_EXITING)
2062 return;
2063
2064 if (!__create_xol_area(current->utask->dup_xol_addr) &&
2065 !fatal_signal_pending(current))
2066 uprobe_warn(current, "dup xol area");
2067}
2068
2069/*
2070 * Called in context of a new clone/fork from copy_process.
2071 */
2072void uprobe_copy_process(struct task_struct *t, unsigned long flags)
2073{
2074 struct uprobe_task *utask = current->utask;
2075 struct mm_struct *mm = current->mm;
2076 struct xol_area *area;
2077
2078 t->utask = NULL;
2079
2080 if (!utask || !utask->return_instances)
2081 return;
2082
2083 if (mm == t->mm && !(flags & CLONE_VFORK))
2084 return;
2085
2086 if (dup_utask(t, utask))
2087 return uprobe_warn(t, "dup ret instances");
2088
2089 /* The task can fork() after dup_xol_work() fails */
2090 area = mm->uprobes_state.xol_area;
2091 if (!area)
2092 return uprobe_warn(t, "dup xol area");
2093
2094 if (mm == t->mm)
2095 return;
2096
2097 t->utask->dup_xol_addr = area->vaddr;
2098 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
2099 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
2100}
2101
2102/*
2103 * Current area->vaddr notion assume the trampoline address is always
2104 * equal area->vaddr.
2105 *
2106 * Returns -1 in case the xol_area is not allocated.
2107 */
2108unsigned long uprobe_get_trampoline_vaddr(void)
2109{
2110 struct xol_area *area;
2111 unsigned long trampoline_vaddr = -1;
2112
2113 /* Pairs with xol_add_vma() smp_store_release() */
2114 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
2115 if (area)
2116 trampoline_vaddr = area->vaddr;
2117
2118 return trampoline_vaddr;
2119}
2120
2121static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
2122 struct pt_regs *regs)
2123{
2124 struct return_instance *ri = utask->return_instances;
2125 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
2126
2127 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
2128 ri = free_ret_instance(ri, true /* cleanup_hprobe */);
2129 utask->depth--;
2130 }
2131 rcu_assign_pointer(utask->return_instances, ri);
2132}
2133
2134static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs,
2135 struct return_instance *ri)
2136{
2137 struct uprobe_task *utask = current->utask;
2138 unsigned long orig_ret_vaddr, trampoline_vaddr;
2139 bool chained;
2140 int srcu_idx;
2141
2142 if (!get_xol_area())
2143 goto free;
2144
2145 if (utask->depth >= MAX_URETPROBE_DEPTH) {
2146 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
2147 " nestedness limit pid/tgid=%d/%d\n",
2148 current->pid, current->tgid);
2149 goto free;
2150 }
2151
2152 trampoline_vaddr = uprobe_get_trampoline_vaddr();
2153 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
2154 if (orig_ret_vaddr == -1)
2155 goto free;
2156
2157 /* drop the entries invalidated by longjmp() */
2158 chained = (orig_ret_vaddr == trampoline_vaddr);
2159 cleanup_return_instances(utask, chained, regs);
2160
2161 /*
2162 * We don't want to keep trampoline address in stack, rather keep the
2163 * original return address of first caller thru all the consequent
2164 * instances. This also makes breakpoint unwrapping easier.
2165 */
2166 if (chained) {
2167 if (!utask->return_instances) {
2168 /*
2169 * This situation is not possible. Likely we have an
2170 * attack from user-space.
2171 */
2172 uprobe_warn(current, "handle tail call");
2173 goto free;
2174 }
2175 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
2176 }
2177
2178 /* __srcu_read_lock() because SRCU lock survives switch to user space */
2179 srcu_idx = __srcu_read_lock(&uretprobes_srcu);
2180
2181 ri->func = instruction_pointer(regs);
2182 ri->stack = user_stack_pointer(regs);
2183 ri->orig_ret_vaddr = orig_ret_vaddr;
2184 ri->chained = chained;
2185
2186 utask->depth++;
2187
2188 hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx);
2189 ri->next = utask->return_instances;
2190 rcu_assign_pointer(utask->return_instances, ri);
2191
2192 mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD);
2193
2194 return;
2195free:
2196 kfree(ri);
2197}
2198
2199/* Prepare to single-step probed instruction out of line. */
2200static int
2201pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
2202{
2203 struct uprobe_task *utask = current->utask;
2204 int err;
2205
2206 if (!try_get_uprobe(uprobe))
2207 return -EINVAL;
2208
2209 if (!xol_get_insn_slot(uprobe, utask)) {
2210 err = -ENOMEM;
2211 goto err_out;
2212 }
2213
2214 utask->vaddr = bp_vaddr;
2215 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
2216 if (unlikely(err)) {
2217 xol_free_insn_slot(utask);
2218 goto err_out;
2219 }
2220
2221 utask->active_uprobe = uprobe;
2222 utask->state = UTASK_SSTEP;
2223 return 0;
2224err_out:
2225 put_uprobe(uprobe);
2226 return err;
2227}
2228
2229/*
2230 * If we are singlestepping, then ensure this thread is not connected to
2231 * non-fatal signals until completion of singlestep. When xol insn itself
2232 * triggers the signal, restart the original insn even if the task is
2233 * already SIGKILL'ed (since coredump should report the correct ip). This
2234 * is even more important if the task has a handler for SIGSEGV/etc, The
2235 * _same_ instruction should be repeated again after return from the signal
2236 * handler, and SSTEP can never finish in this case.
2237 */
2238bool uprobe_deny_signal(void)
2239{
2240 struct task_struct *t = current;
2241 struct uprobe_task *utask = t->utask;
2242
2243 if (likely(!utask || !utask->active_uprobe))
2244 return false;
2245
2246 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
2247
2248 if (task_sigpending(t)) {
2249 spin_lock_irq(&t->sighand->siglock);
2250 clear_tsk_thread_flag(t, TIF_SIGPENDING);
2251 spin_unlock_irq(&t->sighand->siglock);
2252
2253 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
2254 utask->state = UTASK_SSTEP_TRAPPED;
2255 set_tsk_thread_flag(t, TIF_UPROBE);
2256 }
2257 }
2258
2259 return true;
2260}
2261
2262static void mmf_recalc_uprobes(struct mm_struct *mm)
2263{
2264 VMA_ITERATOR(vmi, mm, 0);
2265 struct vm_area_struct *vma;
2266
2267 for_each_vma(vmi, vma) {
2268 if (!valid_vma(vma, false))
2269 continue;
2270 /*
2271 * This is not strictly accurate, we can race with
2272 * uprobe_unregister() and see the already removed
2273 * uprobe if delete_uprobe() was not yet called.
2274 * Or this uprobe can be filtered out.
2275 */
2276 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2277 return;
2278 }
2279
2280 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2281}
2282
2283static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2284{
2285 struct page *page;
2286 uprobe_opcode_t opcode;
2287 int result;
2288
2289 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2290 return -EINVAL;
2291
2292 pagefault_disable();
2293 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2294 pagefault_enable();
2295
2296 if (likely(result == 0))
2297 goto out;
2298
2299 result = get_user_pages(vaddr, 1, FOLL_FORCE, &page);
2300 if (result < 0)
2301 return result;
2302
2303 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2304 put_page(page);
2305 out:
2306 /* This needs to return true for any variant of the trap insn */
2307 return is_trap_insn(&opcode);
2308}
2309
2310/* assumes being inside RCU protected region */
2311static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp)
2312{
2313 struct mm_struct *mm = current->mm;
2314 struct uprobe *uprobe = NULL;
2315 struct vm_area_struct *vma;
2316
2317 mmap_read_lock(mm);
2318 vma = vma_lookup(mm, bp_vaddr);
2319 if (vma) {
2320 if (valid_vma(vma, false)) {
2321 struct inode *inode = file_inode(vma->vm_file);
2322 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2323
2324 uprobe = find_uprobe_rcu(inode, offset);
2325 }
2326
2327 if (!uprobe)
2328 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2329 } else {
2330 *is_swbp = -EFAULT;
2331 }
2332
2333 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2334 mmf_recalc_uprobes(mm);
2335 mmap_read_unlock(mm);
2336
2337 return uprobe;
2338}
2339
2340static struct return_instance*
2341push_consumer(struct return_instance *ri, int idx, __u64 id, __u64 cookie)
2342{
2343 if (unlikely(ri == ZERO_SIZE_PTR))
2344 return ri;
2345
2346 if (unlikely(idx >= ri->consumers_cnt)) {
2347 struct return_instance *old_ri = ri;
2348
2349 ri->consumers_cnt += DEF_CNT;
2350 ri = krealloc(old_ri, ri_size(old_ri->consumers_cnt), GFP_KERNEL);
2351 if (!ri) {
2352 kfree(old_ri);
2353 return ZERO_SIZE_PTR;
2354 }
2355 }
2356
2357 ri->consumers[idx].id = id;
2358 ri->consumers[idx].cookie = cookie;
2359 return ri;
2360}
2361
2362static struct return_consumer *
2363return_consumer_find(struct return_instance *ri, int *iter, int id)
2364{
2365 struct return_consumer *ric;
2366 int idx = *iter;
2367
2368 for (ric = &ri->consumers[idx]; idx < ri->consumers_cnt; idx++, ric++) {
2369 if (ric->id == id) {
2370 *iter = idx + 1;
2371 return ric;
2372 }
2373 }
2374 return NULL;
2375}
2376
2377static bool ignore_ret_handler(int rc)
2378{
2379 return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE;
2380}
2381
2382static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2383{
2384 struct uprobe_consumer *uc;
2385 bool has_consumers = false, remove = true;
2386 struct return_instance *ri = NULL;
2387 int push_idx = 0;
2388
2389 current->utask->auprobe = &uprobe->arch;
2390
2391 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2392 bool session = uc->handler && uc->ret_handler;
2393 __u64 cookie = 0;
2394 int rc = 0;
2395
2396 if (uc->handler) {
2397 rc = uc->handler(uc, regs, &cookie);
2398 WARN(rc < 0 || rc > 2,
2399 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2400 }
2401
2402 remove &= rc == UPROBE_HANDLER_REMOVE;
2403 has_consumers = true;
2404
2405 if (!uc->ret_handler || ignore_ret_handler(rc))
2406 continue;
2407
2408 if (!ri)
2409 ri = alloc_return_instance();
2410
2411 if (session)
2412 ri = push_consumer(ri, push_idx++, uc->id, cookie);
2413 }
2414 current->utask->auprobe = NULL;
2415
2416 if (!ZERO_OR_NULL_PTR(ri)) {
2417 /*
2418 * The push_idx value has the final number of return consumers,
2419 * and ri->consumers_cnt has number of allocated consumers.
2420 */
2421 ri->consumers_cnt = push_idx;
2422 prepare_uretprobe(uprobe, regs, ri);
2423 }
2424
2425 if (remove && has_consumers) {
2426 down_read(&uprobe->register_rwsem);
2427
2428 /* re-check that removal is still required, this time under lock */
2429 if (!filter_chain(uprobe, current->mm)) {
2430 WARN_ON(!uprobe_is_active(uprobe));
2431 unapply_uprobe(uprobe, current->mm);
2432 }
2433
2434 up_read(&uprobe->register_rwsem);
2435 }
2436}
2437
2438static void
2439handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs)
2440{
2441 struct return_consumer *ric;
2442 struct uprobe_consumer *uc;
2443 int ric_idx = 0;
2444
2445 /* all consumers unsubscribed meanwhile */
2446 if (unlikely(!uprobe))
2447 return;
2448
2449 rcu_read_lock_trace();
2450 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2451 bool session = uc->handler && uc->ret_handler;
2452
2453 if (uc->ret_handler) {
2454 ric = return_consumer_find(ri, &ric_idx, uc->id);
2455 if (!session || ric)
2456 uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL);
2457 }
2458 }
2459 rcu_read_unlock_trace();
2460}
2461
2462static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2463{
2464 bool chained;
2465
2466 do {
2467 chained = ri->chained;
2468 ri = ri->next; /* can't be NULL if chained */
2469 } while (chained);
2470
2471 return ri;
2472}
2473
2474void uprobe_handle_trampoline(struct pt_regs *regs)
2475{
2476 struct uprobe_task *utask;
2477 struct return_instance *ri, *next;
2478 struct uprobe *uprobe;
2479 enum hprobe_state hstate;
2480 bool valid;
2481
2482 utask = current->utask;
2483 if (!utask)
2484 goto sigill;
2485
2486 ri = utask->return_instances;
2487 if (!ri)
2488 goto sigill;
2489
2490 do {
2491 /*
2492 * We should throw out the frames invalidated by longjmp().
2493 * If this chain is valid, then the next one should be alive
2494 * or NULL; the latter case means that nobody but ri->func
2495 * could hit this trampoline on return. TODO: sigaltstack().
2496 */
2497 next = find_next_ret_chain(ri);
2498 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2499
2500 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2501 do {
2502 /* pop current instance from the stack of pending return instances,
2503 * as it's not pending anymore: we just fixed up original
2504 * instruction pointer in regs and are about to call handlers;
2505 * this allows fixup_uretprobe_trampoline_entries() to properly fix up
2506 * captured stack traces from uretprobe handlers, in which pending
2507 * trampoline addresses on the stack are replaced with correct
2508 * original return addresses
2509 */
2510 rcu_assign_pointer(utask->return_instances, ri->next);
2511
2512 uprobe = hprobe_consume(&ri->hprobe, &hstate);
2513 if (valid)
2514 handle_uretprobe_chain(ri, uprobe, regs);
2515 hprobe_finalize(&ri->hprobe, hstate);
2516
2517 /* We already took care of hprobe, no need to waste more time on that. */
2518 ri = free_ret_instance(ri, false /* !cleanup_hprobe */);
2519 utask->depth--;
2520 } while (ri != next);
2521 } while (!valid);
2522
2523 return;
2524
2525sigill:
2526 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2527 force_sig(SIGILL);
2528}
2529
2530bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2531{
2532 return false;
2533}
2534
2535bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2536 struct pt_regs *regs)
2537{
2538 return true;
2539}
2540
2541/*
2542 * Run handler and ask thread to singlestep.
2543 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2544 */
2545static void handle_swbp(struct pt_regs *regs)
2546{
2547 struct uprobe *uprobe;
2548 unsigned long bp_vaddr;
2549 int is_swbp;
2550
2551 bp_vaddr = uprobe_get_swbp_addr(regs);
2552 if (bp_vaddr == uprobe_get_trampoline_vaddr())
2553 return uprobe_handle_trampoline(regs);
2554
2555 rcu_read_lock_trace();
2556
2557 uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2558 if (!uprobe) {
2559 if (is_swbp > 0) {
2560 /* No matching uprobe; signal SIGTRAP. */
2561 force_sig(SIGTRAP);
2562 } else {
2563 /*
2564 * Either we raced with uprobe_unregister() or we can't
2565 * access this memory. The latter is only possible if
2566 * another thread plays with our ->mm. In both cases
2567 * we can simply restart. If this vma was unmapped we
2568 * can pretend this insn was not executed yet and get
2569 * the (correct) SIGSEGV after restart.
2570 */
2571 instruction_pointer_set(regs, bp_vaddr);
2572 }
2573 goto out;
2574 }
2575
2576 /* change it in advance for ->handler() and restart */
2577 instruction_pointer_set(regs, bp_vaddr);
2578
2579 /*
2580 * TODO: move copy_insn/etc into _register and remove this hack.
2581 * After we hit the bp, _unregister + _register can install the
2582 * new and not-yet-analyzed uprobe at the same address, restart.
2583 */
2584 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2585 goto out;
2586
2587 /*
2588 * Pairs with the smp_wmb() in prepare_uprobe().
2589 *
2590 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2591 * we must also see the stores to &uprobe->arch performed by the
2592 * prepare_uprobe() call.
2593 */
2594 smp_rmb();
2595
2596 /* Tracing handlers use ->utask to communicate with fetch methods */
2597 if (!get_utask())
2598 goto out;
2599
2600 if (arch_uprobe_ignore(&uprobe->arch, regs))
2601 goto out;
2602
2603 handler_chain(uprobe, regs);
2604
2605 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2606 goto out;
2607
2608 if (pre_ssout(uprobe, regs, bp_vaddr))
2609 goto out;
2610
2611out:
2612 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2613 rcu_read_unlock_trace();
2614}
2615
2616/*
2617 * Perform required fix-ups and disable singlestep.
2618 * Allow pending signals to take effect.
2619 */
2620static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2621{
2622 struct uprobe *uprobe;
2623 int err = 0;
2624
2625 uprobe = utask->active_uprobe;
2626 if (utask->state == UTASK_SSTEP_ACK)
2627 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2628 else if (utask->state == UTASK_SSTEP_TRAPPED)
2629 arch_uprobe_abort_xol(&uprobe->arch, regs);
2630 else
2631 WARN_ON_ONCE(1);
2632
2633 put_uprobe(uprobe);
2634 utask->active_uprobe = NULL;
2635 utask->state = UTASK_RUNNING;
2636 xol_free_insn_slot(utask);
2637
2638 spin_lock_irq(¤t->sighand->siglock);
2639 recalc_sigpending(); /* see uprobe_deny_signal() */
2640 spin_unlock_irq(¤t->sighand->siglock);
2641
2642 if (unlikely(err)) {
2643 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2644 force_sig(SIGILL);
2645 }
2646}
2647
2648/*
2649 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2650 * allows the thread to return from interrupt. After that handle_swbp()
2651 * sets utask->active_uprobe.
2652 *
2653 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2654 * and allows the thread to return from interrupt.
2655 *
2656 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2657 * uprobe_notify_resume().
2658 */
2659void uprobe_notify_resume(struct pt_regs *regs)
2660{
2661 struct uprobe_task *utask;
2662
2663 clear_thread_flag(TIF_UPROBE);
2664
2665 utask = current->utask;
2666 if (utask && utask->active_uprobe)
2667 handle_singlestep(utask, regs);
2668 else
2669 handle_swbp(regs);
2670}
2671
2672/*
2673 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2674 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2675 */
2676int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2677{
2678 if (!current->mm)
2679 return 0;
2680
2681 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) &&
2682 (!current->utask || !current->utask->return_instances))
2683 return 0;
2684
2685 set_thread_flag(TIF_UPROBE);
2686 return 1;
2687}
2688
2689/*
2690 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2691 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2692 */
2693int uprobe_post_sstep_notifier(struct pt_regs *regs)
2694{
2695 struct uprobe_task *utask = current->utask;
2696
2697 if (!current->mm || !utask || !utask->active_uprobe)
2698 /* task is currently not uprobed */
2699 return 0;
2700
2701 utask->state = UTASK_SSTEP_ACK;
2702 set_thread_flag(TIF_UPROBE);
2703 return 1;
2704}
2705
2706static struct notifier_block uprobe_exception_nb = {
2707 .notifier_call = arch_uprobe_exception_notify,
2708 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2709};
2710
2711void __init uprobes_init(void)
2712{
2713 int i;
2714
2715 for (i = 0; i < UPROBES_HASH_SZ; i++)
2716 mutex_init(&uprobes_mmap_mutex[i]);
2717
2718 BUG_ON(register_die_notifier(&uprobe_exception_nb));
2719}