Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * User-space Probes (UProbes)
   4 *
   5 * Copyright (C) IBM Corporation, 2008-2012
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/highmem.h>
  14#include <linux/pagemap.h>	/* read_mapping_page */
  15#include <linux/slab.h>
  16#include <linux/sched.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/coredump.h>
  19#include <linux/export.h>
  20#include <linux/rmap.h>		/* anon_vma_prepare */
  21#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
  22#include <linux/swap.h>		/* try_to_free_swap */
  23#include <linux/ptrace.h>	/* user_enable_single_step */
  24#include <linux/kdebug.h>	/* notifier mechanism */
  25#include "../../mm/internal.h"	/* munlock_vma_page */
  26#include <linux/percpu-rwsem.h>
  27#include <linux/task_work.h>
  28#include <linux/shmem_fs.h>
  29#include <linux/khugepaged.h>
 
 
 
 
  30
  31#include <linux/uprobes.h>
  32
  33#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
  34#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
  35
  36static struct rb_root uprobes_tree = RB_ROOT;
  37/*
  38 * allows us to skip the uprobe_mmap if there are no uprobe events active
  39 * at this time.  Probably a fine grained per inode count is better?
  40 */
  41#define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
  42
  43static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
 
  44
  45#define UPROBES_HASH_SZ	13
  46/* serialize uprobe->pending_list */
  47static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
  48#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  49
  50DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
  51
 
 
 
  52/* Have a copy of original instruction */
  53#define UPROBE_COPY_INSN	0
  54
  55struct uprobe {
  56	struct rb_node		rb_node;	/* node in the rb tree */
  57	refcount_t		ref;
  58	struct rw_semaphore	register_rwsem;
  59	struct rw_semaphore	consumer_rwsem;
  60	struct list_head	pending_list;
  61	struct uprobe_consumer	*consumers;
  62	struct inode		*inode;		/* Also hold a ref to inode */
 
 
 
 
  63	loff_t			offset;
  64	loff_t			ref_ctr_offset;
  65	unsigned long		flags;
  66
  67	/*
  68	 * The generic code assumes that it has two members of unknown type
  69	 * owned by the arch-specific code:
  70	 *
  71	 * 	insn -	copy_insn() saves the original instruction here for
  72	 *		arch_uprobe_analyze_insn().
  73	 *
  74	 *	ixol -	potentially modified instruction to execute out of
  75	 *		line, copied to xol_area by xol_get_insn_slot().
  76	 */
  77	struct arch_uprobe	arch;
  78};
  79
  80struct delayed_uprobe {
  81	struct list_head list;
  82	struct uprobe *uprobe;
  83	struct mm_struct *mm;
  84};
  85
  86static DEFINE_MUTEX(delayed_uprobe_lock);
  87static LIST_HEAD(delayed_uprobe_list);
  88
  89/*
  90 * Execute out of line area: anonymous executable mapping installed
  91 * by the probed task to execute the copy of the original instruction
  92 * mangled by set_swbp().
  93 *
  94 * On a breakpoint hit, thread contests for a slot.  It frees the
  95 * slot after singlestep. Currently a fixed number of slots are
  96 * allocated.
  97 */
  98struct xol_area {
  99	wait_queue_head_t 		wq;		/* if all slots are busy */
 100	atomic_t 			slot_count;	/* number of in-use slots */
 101	unsigned long 			*bitmap;	/* 0 = free slot */
 102
 103	struct vm_special_mapping	xol_mapping;
 104	struct page 			*pages[2];
 105	/*
 106	 * We keep the vma's vm_start rather than a pointer to the vma
 107	 * itself.  The probed process or a naughty kernel module could make
 108	 * the vma go away, and we must handle that reasonably gracefully.
 109	 */
 110	unsigned long 			vaddr;		/* Page(s) of instruction slots */
 111};
 112
 
 
 
 
 
 113/*
 114 * valid_vma: Verify if the specified vma is an executable vma
 115 * Relax restrictions while unregistering: vm_flags might have
 116 * changed after breakpoint was inserted.
 117 *	- is_register: indicates if we are in register context.
 118 *	- Return 1 if the specified virtual address is in an
 119 *	  executable vma.
 120 */
 121static bool valid_vma(struct vm_area_struct *vma, bool is_register)
 122{
 123	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
 124
 125	if (is_register)
 126		flags |= VM_WRITE;
 127
 128	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
 129}
 130
 131static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
 132{
 133	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 134}
 135
 136static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
 137{
 138	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
 139}
 140
 141/**
 142 * __replace_page - replace page in vma by new page.
 143 * based on replace_page in mm/ksm.c
 144 *
 145 * @vma:      vma that holds the pte pointing to page
 146 * @addr:     address the old @page is mapped at
 147 * @old_page: the page we are replacing by new_page
 148 * @new_page: the modified page we replace page by
 149 *
 150 * If @new_page is NULL, only unmap @old_page.
 151 *
 152 * Returns 0 on success, negative error code otherwise.
 153 */
 154static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
 155				struct page *old_page, struct page *new_page)
 156{
 
 
 157	struct mm_struct *mm = vma->vm_mm;
 158	struct page_vma_mapped_walk pvmw = {
 159		.page = compound_head(old_page),
 160		.vma = vma,
 161		.address = addr,
 162	};
 163	int err;
 164	struct mmu_notifier_range range;
 165	struct mem_cgroup *memcg;
 166
 167	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
 168				addr + PAGE_SIZE);
 169
 170	if (new_page) {
 171		err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
 172					    &memcg, false);
 173		if (err)
 174			return err;
 175	}
 176
 177	/* For try_to_free_swap() and munlock_vma_page() below */
 178	lock_page(old_page);
 179
 180	mmu_notifier_invalidate_range_start(&range);
 181	err = -EAGAIN;
 182	if (!page_vma_mapped_walk(&pvmw)) {
 183		if (new_page)
 184			mem_cgroup_cancel_charge(new_page, memcg, false);
 185		goto unlock;
 186	}
 187	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
 188
 189	if (new_page) {
 190		get_page(new_page);
 191		page_add_new_anon_rmap(new_page, vma, addr, false);
 192		mem_cgroup_commit_charge(new_page, memcg, false, false);
 193		lru_cache_add_active_or_unevictable(new_page, vma);
 194	} else
 195		/* no new page, just dec_mm_counter for old_page */
 196		dec_mm_counter(mm, MM_ANONPAGES);
 197
 198	if (!PageAnon(old_page)) {
 199		dec_mm_counter(mm, mm_counter_file(old_page));
 200		inc_mm_counter(mm, MM_ANONPAGES);
 201	}
 202
 203	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
 204	ptep_clear_flush_notify(vma, addr, pvmw.pte);
 205	if (new_page)
 206		set_pte_at_notify(mm, addr, pvmw.pte,
 207				  mk_pte(new_page, vma->vm_page_prot));
 208
 209	page_remove_rmap(old_page, false);
 210	if (!page_mapped(old_page))
 211		try_to_free_swap(old_page);
 212	page_vma_mapped_walk_done(&pvmw);
 213
 214	if (vma->vm_flags & VM_LOCKED)
 215		munlock_vma_page(old_page);
 216	put_page(old_page);
 217
 218	err = 0;
 219 unlock:
 220	mmu_notifier_invalidate_range_end(&range);
 221	unlock_page(old_page);
 222	return err;
 223}
 224
 225/**
 226 * is_swbp_insn - check if instruction is breakpoint instruction.
 227 * @insn: instruction to be checked.
 228 * Default implementation of is_swbp_insn
 229 * Returns true if @insn is a breakpoint instruction.
 230 */
 231bool __weak is_swbp_insn(uprobe_opcode_t *insn)
 232{
 233	return *insn == UPROBE_SWBP_INSN;
 234}
 235
 236/**
 237 * is_trap_insn - check if instruction is breakpoint instruction.
 238 * @insn: instruction to be checked.
 239 * Default implementation of is_trap_insn
 240 * Returns true if @insn is a breakpoint instruction.
 241 *
 242 * This function is needed for the case where an architecture has multiple
 243 * trap instructions (like powerpc).
 244 */
 245bool __weak is_trap_insn(uprobe_opcode_t *insn)
 246{
 247	return is_swbp_insn(insn);
 248}
 249
 250static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
 251{
 252	void *kaddr = kmap_atomic(page);
 253	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
 254	kunmap_atomic(kaddr);
 255}
 256
 257static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
 258{
 259	void *kaddr = kmap_atomic(page);
 260	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
 261	kunmap_atomic(kaddr);
 262}
 263
 264static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
 265{
 266	uprobe_opcode_t old_opcode;
 267	bool is_swbp;
 268
 269	/*
 270	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
 271	 * We do not check if it is any other 'trap variant' which could
 272	 * be conditional trap instruction such as the one powerpc supports.
 273	 *
 274	 * The logic is that we do not care if the underlying instruction
 275	 * is a trap variant; uprobes always wins over any other (gdb)
 276	 * breakpoint.
 277	 */
 278	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
 279	is_swbp = is_swbp_insn(&old_opcode);
 280
 281	if (is_swbp_insn(new_opcode)) {
 282		if (is_swbp)		/* register: already installed? */
 283			return 0;
 284	} else {
 285		if (!is_swbp)		/* unregister: was it changed by us? */
 286			return 0;
 287	}
 288
 289	return 1;
 290}
 291
 292static struct delayed_uprobe *
 293delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
 294{
 295	struct delayed_uprobe *du;
 296
 297	list_for_each_entry(du, &delayed_uprobe_list, list)
 298		if (du->uprobe == uprobe && du->mm == mm)
 299			return du;
 300	return NULL;
 301}
 302
 303static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
 304{
 305	struct delayed_uprobe *du;
 306
 307	if (delayed_uprobe_check(uprobe, mm))
 308		return 0;
 309
 310	du  = kzalloc(sizeof(*du), GFP_KERNEL);
 311	if (!du)
 312		return -ENOMEM;
 313
 314	du->uprobe = uprobe;
 315	du->mm = mm;
 316	list_add(&du->list, &delayed_uprobe_list);
 317	return 0;
 318}
 319
 320static void delayed_uprobe_delete(struct delayed_uprobe *du)
 321{
 322	if (WARN_ON(!du))
 323		return;
 324	list_del(&du->list);
 325	kfree(du);
 326}
 327
 328static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
 329{
 330	struct list_head *pos, *q;
 331	struct delayed_uprobe *du;
 332
 333	if (!uprobe && !mm)
 334		return;
 335
 336	list_for_each_safe(pos, q, &delayed_uprobe_list) {
 337		du = list_entry(pos, struct delayed_uprobe, list);
 338
 339		if (uprobe && du->uprobe != uprobe)
 340			continue;
 341		if (mm && du->mm != mm)
 342			continue;
 343
 344		delayed_uprobe_delete(du);
 345	}
 346}
 347
 348static bool valid_ref_ctr_vma(struct uprobe *uprobe,
 349			      struct vm_area_struct *vma)
 350{
 351	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
 352
 353	return uprobe->ref_ctr_offset &&
 354		vma->vm_file &&
 355		file_inode(vma->vm_file) == uprobe->inode &&
 356		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
 357		vma->vm_start <= vaddr &&
 358		vma->vm_end > vaddr;
 359}
 360
 361static struct vm_area_struct *
 362find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
 363{
 
 364	struct vm_area_struct *tmp;
 365
 366	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
 367		if (valid_ref_ctr_vma(uprobe, tmp))
 368			return tmp;
 369
 370	return NULL;
 371}
 372
 373static int
 374__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
 375{
 376	void *kaddr;
 377	struct page *page;
 378	struct vm_area_struct *vma;
 379	int ret;
 380	short *ptr;
 381
 382	if (!vaddr || !d)
 383		return -EINVAL;
 384
 385	ret = get_user_pages_remote(NULL, mm, vaddr, 1,
 386			FOLL_WRITE, &page, &vma, NULL);
 387	if (unlikely(ret <= 0)) {
 388		/*
 389		 * We are asking for 1 page. If get_user_pages_remote() fails,
 390		 * it may return 0, in that case we have to return error.
 391		 */
 392		return ret == 0 ? -EBUSY : ret;
 393	}
 394
 395	kaddr = kmap_atomic(page);
 396	ptr = kaddr + (vaddr & ~PAGE_MASK);
 397
 398	if (unlikely(*ptr + d < 0)) {
 399		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
 400			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
 401		ret = -EINVAL;
 402		goto out;
 403	}
 404
 405	*ptr += d;
 406	ret = 0;
 407out:
 408	kunmap_atomic(kaddr);
 409	put_page(page);
 410	return ret;
 411}
 412
 413static void update_ref_ctr_warn(struct uprobe *uprobe,
 414				struct mm_struct *mm, short d)
 415{
 416	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
 417		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
 418		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
 419		(unsigned long long) uprobe->offset,
 420		(unsigned long long) uprobe->ref_ctr_offset, mm);
 421}
 422
 423static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
 424			  short d)
 425{
 426	struct vm_area_struct *rc_vma;
 427	unsigned long rc_vaddr;
 428	int ret = 0;
 429
 430	rc_vma = find_ref_ctr_vma(uprobe, mm);
 431
 432	if (rc_vma) {
 433		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
 434		ret = __update_ref_ctr(mm, rc_vaddr, d);
 435		if (ret)
 436			update_ref_ctr_warn(uprobe, mm, d);
 437
 438		if (d > 0)
 439			return ret;
 440	}
 441
 442	mutex_lock(&delayed_uprobe_lock);
 443	if (d > 0)
 444		ret = delayed_uprobe_add(uprobe, mm);
 445	else
 446		delayed_uprobe_remove(uprobe, mm);
 447	mutex_unlock(&delayed_uprobe_lock);
 448
 449	return ret;
 450}
 451
 452/*
 453 * NOTE:
 454 * Expect the breakpoint instruction to be the smallest size instruction for
 455 * the architecture. If an arch has variable length instruction and the
 456 * breakpoint instruction is not of the smallest length instruction
 457 * supported by that architecture then we need to modify is_trap_at_addr and
 458 * uprobe_write_opcode accordingly. This would never be a problem for archs
 459 * that have fixed length instructions.
 460 *
 461 * uprobe_write_opcode - write the opcode at a given virtual address.
 
 462 * @mm: the probed process address space.
 463 * @vaddr: the virtual address to store the opcode.
 464 * @opcode: opcode to be written at @vaddr.
 465 *
 466 * Called with mm->mmap_sem held for write.
 467 * Return 0 (success) or a negative errno.
 468 */
 469int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
 470			unsigned long vaddr, uprobe_opcode_t opcode)
 471{
 472	struct uprobe *uprobe;
 473	struct page *old_page, *new_page;
 474	struct vm_area_struct *vma;
 475	int ret, is_register, ref_ctr_updated = 0;
 476	bool orig_page_huge = false;
 477	unsigned int gup_flags = FOLL_FORCE;
 478
 479	is_register = is_swbp_insn(&opcode);
 480	uprobe = container_of(auprobe, struct uprobe, arch);
 481
 482retry:
 483	if (is_register)
 484		gup_flags |= FOLL_SPLIT_PMD;
 485	/* Read the page with vaddr into memory */
 486	ret = get_user_pages_remote(NULL, mm, vaddr, 1, gup_flags,
 487				    &old_page, &vma, NULL);
 488	if (ret <= 0)
 489		return ret;
 490
 491	ret = verify_opcode(old_page, vaddr, &opcode);
 492	if (ret <= 0)
 493		goto put_old;
 494
 
 
 
 
 
 495	if (WARN(!is_register && PageCompound(old_page),
 496		 "uprobe unregister should never work on compound page\n")) {
 497		ret = -EINVAL;
 498		goto put_old;
 499	}
 500
 501	/* We are going to replace instruction, update ref_ctr. */
 502	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
 503		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
 504		if (ret)
 505			goto put_old;
 506
 507		ref_ctr_updated = 1;
 508	}
 509
 510	ret = 0;
 511	if (!is_register && !PageAnon(old_page))
 512		goto put_old;
 513
 514	ret = anon_vma_prepare(vma);
 515	if (ret)
 516		goto put_old;
 517
 518	ret = -ENOMEM;
 519	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
 520	if (!new_page)
 521		goto put_old;
 522
 523	__SetPageUptodate(new_page);
 524	copy_highpage(new_page, old_page);
 525	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
 526
 527	if (!is_register) {
 528		struct page *orig_page;
 529		pgoff_t index;
 530
 531		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
 532
 533		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
 534		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
 535					  index);
 536
 537		if (orig_page) {
 538			if (PageUptodate(orig_page) &&
 539			    pages_identical(new_page, orig_page)) {
 540				/* let go new_page */
 541				put_page(new_page);
 542				new_page = NULL;
 543
 544				if (PageCompound(orig_page))
 545					orig_page_huge = true;
 546			}
 547			put_page(orig_page);
 548		}
 549	}
 550
 551	ret = __replace_page(vma, vaddr, old_page, new_page);
 552	if (new_page)
 553		put_page(new_page);
 554put_old:
 555	put_page(old_page);
 556
 557	if (unlikely(ret == -EAGAIN))
 558		goto retry;
 559
 560	/* Revert back reference counter if instruction update failed. */
 561	if (ret && is_register && ref_ctr_updated)
 562		update_ref_ctr(uprobe, mm, -1);
 563
 564	/* try collapse pmd for compound page */
 565	if (!ret && orig_page_huge)
 566		collapse_pte_mapped_thp(mm, vaddr);
 567
 568	return ret;
 569}
 570
 571/**
 572 * set_swbp - store breakpoint at a given address.
 573 * @auprobe: arch specific probepoint information.
 574 * @mm: the probed process address space.
 575 * @vaddr: the virtual address to insert the opcode.
 576 *
 577 * For mm @mm, store the breakpoint instruction at @vaddr.
 578 * Return 0 (success) or a negative errno.
 579 */
 580int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 581{
 582	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
 583}
 584
 585/**
 586 * set_orig_insn - Restore the original instruction.
 587 * @mm: the probed process address space.
 588 * @auprobe: arch specific probepoint information.
 589 * @vaddr: the virtual address to insert the opcode.
 590 *
 591 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 592 * Return 0 (success) or a negative errno.
 593 */
 594int __weak
 595set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 596{
 597	return uprobe_write_opcode(auprobe, mm, vaddr,
 598			*(uprobe_opcode_t *)&auprobe->insn);
 599}
 600
 
 601static struct uprobe *get_uprobe(struct uprobe *uprobe)
 602{
 603	refcount_inc(&uprobe->ref);
 604	return uprobe;
 605}
 606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607static void put_uprobe(struct uprobe *uprobe)
 608{
 609	if (refcount_dec_and_test(&uprobe->ref)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610		/*
 611		 * If application munmap(exec_vma) before uprobe_unregister()
 612		 * gets called, we don't get a chance to remove uprobe from
 613		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
 614		 */
 615		mutex_lock(&delayed_uprobe_lock);
 616		delayed_uprobe_remove(uprobe, NULL);
 617		mutex_unlock(&delayed_uprobe_lock);
 618		kfree(uprobe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619	}
 620}
 621
 622static int match_uprobe(struct uprobe *l, struct uprobe *r)
 
 
 623{
 624	if (l->inode < r->inode)
 625		return -1;
 626
 627	if (l->inode > r->inode)
 628		return 1;
 629
 630	if (l->offset < r->offset)
 631		return -1;
 632
 633	if (l->offset > r->offset)
 634		return 1;
 635
 636	return 0;
 637}
 638
 639static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
 640{
 641	struct uprobe u = { .inode = inode, .offset = offset };
 642	struct rb_node *n = uprobes_tree.rb_node;
 643	struct uprobe *uprobe;
 644	int match;
 645
 646	while (n) {
 647		uprobe = rb_entry(n, struct uprobe, rb_node);
 648		match = match_uprobe(&u, uprobe);
 649		if (!match)
 650			return get_uprobe(uprobe);
 651
 652		if (match < 0)
 653			n = n->rb_left;
 654		else
 655			n = n->rb_right;
 656	}
 657	return NULL;
 
 
 
 
 658}
 659
 660/*
 661 * Find a uprobe corresponding to a given inode:offset
 662 * Acquires uprobes_treelock
 663 */
 664static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
 665{
 666	struct uprobe *uprobe;
 
 
 
 
 
 667
 668	spin_lock(&uprobes_treelock);
 669	uprobe = __find_uprobe(inode, offset);
 670	spin_unlock(&uprobes_treelock);
 671
 672	return uprobe;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673}
 674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 675static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
 676{
 677	struct rb_node **p = &uprobes_tree.rb_node;
 678	struct rb_node *parent = NULL;
 679	struct uprobe *u;
 680	int match;
 681
 682	while (*p) {
 683		parent = *p;
 684		u = rb_entry(parent, struct uprobe, rb_node);
 685		match = match_uprobe(uprobe, u);
 686		if (!match)
 687			return get_uprobe(u);
 688
 689		if (match < 0)
 690			p = &parent->rb_left;
 691		else
 692			p = &parent->rb_right;
 693
 
 694	}
 695
 696	u = NULL;
 697	rb_link_node(&uprobe->rb_node, parent, p);
 698	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
 699	/* get access + creation ref */
 700	refcount_set(&uprobe->ref, 2);
 701
 702	return u;
 703}
 704
 705/*
 706 * Acquire uprobes_treelock.
 707 * Matching uprobe already exists in rbtree;
 708 *	increment (access refcount) and return the matching uprobe.
 709 *
 710 * No matching uprobe; insert the uprobe in rb_tree;
 711 *	get a double refcount (access + creation) and return NULL.
 712 */
 713static struct uprobe *insert_uprobe(struct uprobe *uprobe)
 714{
 715	struct uprobe *u;
 716
 717	spin_lock(&uprobes_treelock);
 
 718	u = __insert_uprobe(uprobe);
 719	spin_unlock(&uprobes_treelock);
 
 720
 721	return u;
 722}
 723
 724static void
 725ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
 726{
 727	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
 728		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
 729		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
 730		(unsigned long long) cur_uprobe->ref_ctr_offset,
 731		(unsigned long long) uprobe->ref_ctr_offset);
 732}
 733
 734static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
 735				   loff_t ref_ctr_offset)
 736{
 737	struct uprobe *uprobe, *cur_uprobe;
 738
 739	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
 740	if (!uprobe)
 741		return NULL;
 742
 743	uprobe->inode = inode;
 744	uprobe->offset = offset;
 745	uprobe->ref_ctr_offset = ref_ctr_offset;
 
 746	init_rwsem(&uprobe->register_rwsem);
 747	init_rwsem(&uprobe->consumer_rwsem);
 
 
 748
 749	/* add to uprobes_tree, sorted on inode:offset */
 750	cur_uprobe = insert_uprobe(uprobe);
 751	/* a uprobe exists for this inode:offset combination */
 752	if (cur_uprobe) {
 753		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
 754			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
 755			put_uprobe(cur_uprobe);
 756			kfree(uprobe);
 757			return ERR_PTR(-EINVAL);
 758		}
 759		kfree(uprobe);
 760		uprobe = cur_uprobe;
 761	}
 762
 763	return uprobe;
 764}
 765
 766static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
 767{
 
 
 768	down_write(&uprobe->consumer_rwsem);
 769	uc->next = uprobe->consumers;
 770	uprobe->consumers = uc;
 771	up_write(&uprobe->consumer_rwsem);
 772}
 773
 774/*
 775 * For uprobe @uprobe, delete the consumer @uc.
 776 * Return true if the @uc is deleted successfully
 777 * or return false.
 778 */
 779static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
 780{
 781	struct uprobe_consumer **con;
 782	bool ret = false;
 783
 784	down_write(&uprobe->consumer_rwsem);
 785	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
 786		if (*con == uc) {
 787			*con = uc->next;
 788			ret = true;
 789			break;
 790		}
 791	}
 792	up_write(&uprobe->consumer_rwsem);
 793
 794	return ret;
 795}
 796
 797static int __copy_insn(struct address_space *mapping, struct file *filp,
 798			void *insn, int nbytes, loff_t offset)
 799{
 800	struct page *page;
 801	/*
 802	 * Ensure that the page that has the original instruction is populated
 803	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
 804	 * see uprobe_register().
 805	 */
 806	if (mapping->a_ops->readpage)
 807		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
 808	else
 809		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 810	if (IS_ERR(page))
 811		return PTR_ERR(page);
 812
 813	copy_from_page(page, offset, insn, nbytes);
 814	put_page(page);
 815
 816	return 0;
 817}
 818
 819static int copy_insn(struct uprobe *uprobe, struct file *filp)
 820{
 821	struct address_space *mapping = uprobe->inode->i_mapping;
 822	loff_t offs = uprobe->offset;
 823	void *insn = &uprobe->arch.insn;
 824	int size = sizeof(uprobe->arch.insn);
 825	int len, err = -EIO;
 826
 827	/* Copy only available bytes, -EIO if nothing was read */
 828	do {
 829		if (offs >= i_size_read(uprobe->inode))
 830			break;
 831
 832		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
 833		err = __copy_insn(mapping, filp, insn, len, offs);
 834		if (err)
 835			break;
 836
 837		insn += len;
 838		offs += len;
 839		size -= len;
 840	} while (size);
 841
 842	return err;
 843}
 844
 845static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
 846				struct mm_struct *mm, unsigned long vaddr)
 847{
 848	int ret = 0;
 849
 850	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 851		return ret;
 852
 853	/* TODO: move this into _register, until then we abuse this sem. */
 854	down_write(&uprobe->consumer_rwsem);
 855	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 856		goto out;
 857
 858	ret = copy_insn(uprobe, file);
 859	if (ret)
 860		goto out;
 861
 862	ret = -ENOTSUPP;
 863	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
 864		goto out;
 865
 866	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
 867	if (ret)
 868		goto out;
 869
 870	/* uprobe_write_opcode() assumes we don't cross page boundary */
 871	BUG_ON((uprobe->offset & ~PAGE_MASK) +
 872			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
 873
 874	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
 875	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
 876
 877 out:
 878	up_write(&uprobe->consumer_rwsem);
 879
 880	return ret;
 881}
 882
 883static inline bool consumer_filter(struct uprobe_consumer *uc,
 884				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 885{
 886	return !uc->filter || uc->filter(uc, ctx, mm);
 887}
 888
 889static bool filter_chain(struct uprobe *uprobe,
 890			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 891{
 892	struct uprobe_consumer *uc;
 893	bool ret = false;
 894
 895	down_read(&uprobe->consumer_rwsem);
 896	for (uc = uprobe->consumers; uc; uc = uc->next) {
 897		ret = consumer_filter(uc, ctx, mm);
 898		if (ret)
 899			break;
 900	}
 901	up_read(&uprobe->consumer_rwsem);
 902
 903	return ret;
 904}
 905
 906static int
 907install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
 908			struct vm_area_struct *vma, unsigned long vaddr)
 909{
 910	bool first_uprobe;
 911	int ret;
 912
 913	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
 914	if (ret)
 915		return ret;
 916
 917	/*
 918	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
 919	 * the task can hit this breakpoint right after __replace_page().
 920	 */
 921	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
 922	if (first_uprobe)
 923		set_bit(MMF_HAS_UPROBES, &mm->flags);
 924
 925	ret = set_swbp(&uprobe->arch, mm, vaddr);
 926	if (!ret)
 927		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
 928	else if (first_uprobe)
 929		clear_bit(MMF_HAS_UPROBES, &mm->flags);
 930
 931	return ret;
 932}
 933
 934static int
 935remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
 936{
 937	set_bit(MMF_RECALC_UPROBES, &mm->flags);
 938	return set_orig_insn(&uprobe->arch, mm, vaddr);
 939}
 940
 941static inline bool uprobe_is_active(struct uprobe *uprobe)
 942{
 943	return !RB_EMPTY_NODE(&uprobe->rb_node);
 944}
 945/*
 946 * There could be threads that have already hit the breakpoint. They
 947 * will recheck the current insn and restart if find_uprobe() fails.
 948 * See find_active_uprobe().
 949 */
 950static void delete_uprobe(struct uprobe *uprobe)
 951{
 952	if (WARN_ON(!uprobe_is_active(uprobe)))
 953		return;
 954
 955	spin_lock(&uprobes_treelock);
 956	rb_erase(&uprobe->rb_node, &uprobes_tree);
 957	spin_unlock(&uprobes_treelock);
 958	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
 959	put_uprobe(uprobe);
 960}
 961
 962struct map_info {
 963	struct map_info *next;
 964	struct mm_struct *mm;
 965	unsigned long vaddr;
 966};
 967
 968static inline struct map_info *free_map_info(struct map_info *info)
 969{
 970	struct map_info *next = info->next;
 971	kfree(info);
 972	return next;
 973}
 974
 975static struct map_info *
 976build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
 977{
 978	unsigned long pgoff = offset >> PAGE_SHIFT;
 979	struct vm_area_struct *vma;
 980	struct map_info *curr = NULL;
 981	struct map_info *prev = NULL;
 982	struct map_info *info;
 983	int more = 0;
 984
 985 again:
 986	i_mmap_lock_read(mapping);
 987	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 988		if (!valid_vma(vma, is_register))
 989			continue;
 990
 991		if (!prev && !more) {
 992			/*
 993			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
 994			 * reclaim. This is optimistic, no harm done if it fails.
 995			 */
 996			prev = kmalloc(sizeof(struct map_info),
 997					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 998			if (prev)
 999				prev->next = NULL;
1000		}
1001		if (!prev) {
1002			more++;
1003			continue;
1004		}
1005
1006		if (!mmget_not_zero(vma->vm_mm))
1007			continue;
1008
1009		info = prev;
1010		prev = prev->next;
1011		info->next = curr;
1012		curr = info;
1013
1014		info->mm = vma->vm_mm;
1015		info->vaddr = offset_to_vaddr(vma, offset);
1016	}
1017	i_mmap_unlock_read(mapping);
1018
1019	if (!more)
1020		goto out;
1021
1022	prev = curr;
1023	while (curr) {
1024		mmput(curr->mm);
1025		curr = curr->next;
1026	}
1027
1028	do {
1029		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1030		if (!info) {
1031			curr = ERR_PTR(-ENOMEM);
1032			goto out;
1033		}
1034		info->next = prev;
1035		prev = info;
1036	} while (--more);
1037
1038	goto again;
1039 out:
1040	while (prev)
1041		prev = free_map_info(prev);
1042	return curr;
1043}
1044
1045static int
1046register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1047{
1048	bool is_register = !!new;
1049	struct map_info *info;
1050	int err = 0;
1051
1052	percpu_down_write(&dup_mmap_sem);
1053	info = build_map_info(uprobe->inode->i_mapping,
1054					uprobe->offset, is_register);
1055	if (IS_ERR(info)) {
1056		err = PTR_ERR(info);
1057		goto out;
1058	}
1059
1060	while (info) {
1061		struct mm_struct *mm = info->mm;
1062		struct vm_area_struct *vma;
1063
1064		if (err && is_register)
1065			goto free;
 
 
 
 
 
 
 
 
 
 
1066
1067		down_write(&mm->mmap_sem);
1068		vma = find_vma(mm, info->vaddr);
1069		if (!vma || !valid_vma(vma, is_register) ||
1070		    file_inode(vma->vm_file) != uprobe->inode)
1071			goto unlock;
1072
1073		if (vma->vm_start > info->vaddr ||
1074		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1075			goto unlock;
1076
1077		if (is_register) {
1078			/* consult only the "caller", new consumer. */
1079			if (consumer_filter(new,
1080					UPROBE_FILTER_REGISTER, mm))
1081				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1082		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1083			if (!filter_chain(uprobe,
1084					UPROBE_FILTER_UNREGISTER, mm))
1085				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1086		}
1087
1088 unlock:
1089		up_write(&mm->mmap_sem);
1090 free:
1091		mmput(mm);
1092		info = free_map_info(info);
1093	}
1094 out:
1095	percpu_up_write(&dup_mmap_sem);
1096	return err;
1097}
1098
1099static void
1100__uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
 
 
 
 
1101{
1102	int err;
1103
1104	if (WARN_ON(!consumer_del(uprobe, uc)))
1105		return;
1106
1107	err = register_for_each_vma(uprobe, NULL);
1108	/* TODO : cant unregister? schedule a worker thread */
1109	if (!uprobe->consumers && !err)
1110		delete_uprobe(uprobe);
1111}
1112
1113/*
1114 * uprobe_unregister - unregister an already registered probe.
1115 * @inode: the file in which the probe has to be removed.
1116 * @offset: offset from the start of the file.
1117 * @uc: identify which probe if multiple probes are colocated.
1118 */
1119void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1120{
1121	struct uprobe *uprobe;
1122
1123	uprobe = find_uprobe(inode, offset);
1124	if (WARN_ON(!uprobe))
 
1125		return;
 
1126
1127	down_write(&uprobe->register_rwsem);
1128	__uprobe_unregister(uprobe, uc);
1129	up_write(&uprobe->register_rwsem);
1130	put_uprobe(uprobe);
1131}
1132EXPORT_SYMBOL_GPL(uprobe_unregister);
1133
1134/*
1135 * __uprobe_register - register a probe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136 * @inode: the file in which the probe has to be placed.
1137 * @offset: offset from the start of the file.
 
1138 * @uc: information on howto handle the probe..
1139 *
1140 * Apart from the access refcount, __uprobe_register() takes a creation
1141 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1142 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1143 * tuple).  Creation refcount stops uprobe_unregister from freeing the
1144 * @uprobe even before the register operation is complete. Creation
1145 * refcount is released when the last @uc for the @uprobe
1146 * unregisters. Caller of __uprobe_register() is required to keep @inode
1147 * (and the containing mount) referenced.
1148 *
1149 * Return errno if it cannot successully install probes
1150 * else return 0 (success)
1151 */
1152static int __uprobe_register(struct inode *inode, loff_t offset,
1153			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
 
1154{
1155	struct uprobe *uprobe;
1156	int ret;
1157
1158	/* Uprobe must have at least one set consumer */
1159	if (!uc->handler && !uc->ret_handler)
1160		return -EINVAL;
1161
1162	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1163	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1164		return -EIO;
 
1165	/* Racy, just to catch the obvious mistakes */
1166	if (offset > i_size_read(inode))
1167		return -EINVAL;
 
 
 
 
 
 
 
 
 
1168
1169 retry:
1170	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1171	if (!uprobe)
1172		return -ENOMEM;
1173	if (IS_ERR(uprobe))
1174		return PTR_ERR(uprobe);
1175
1176	/*
1177	 * We can race with uprobe_unregister()->delete_uprobe().
1178	 * Check uprobe_is_active() and retry if it is false.
1179	 */
1180	down_write(&uprobe->register_rwsem);
1181	ret = -EAGAIN;
1182	if (likely(uprobe_is_active(uprobe))) {
1183		consumer_add(uprobe, uc);
1184		ret = register_for_each_vma(uprobe, uc);
1185		if (ret)
1186			__uprobe_unregister(uprobe, uc);
1187	}
1188	up_write(&uprobe->register_rwsem);
1189	put_uprobe(uprobe);
1190
1191	if (unlikely(ret == -EAGAIN))
1192		goto retry;
1193	return ret;
1194}
 
 
 
 
 
 
1195
1196int uprobe_register(struct inode *inode, loff_t offset,
1197		    struct uprobe_consumer *uc)
1198{
1199	return __uprobe_register(inode, offset, 0, uc);
1200}
1201EXPORT_SYMBOL_GPL(uprobe_register);
1202
1203int uprobe_register_refctr(struct inode *inode, loff_t offset,
1204			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1205{
1206	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1207}
1208EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1209
1210/*
1211 * uprobe_apply - unregister an already registered probe.
1212 * @inode: the file in which the probe has to be removed.
1213 * @offset: offset from the start of the file.
1214 * @uc: consumer which wants to add more or remove some breakpoints
1215 * @add: add or remove the breakpoints
 
1216 */
1217int uprobe_apply(struct inode *inode, loff_t offset,
1218			struct uprobe_consumer *uc, bool add)
1219{
1220	struct uprobe *uprobe;
1221	struct uprobe_consumer *con;
1222	int ret = -ENOENT;
1223
1224	uprobe = find_uprobe(inode, offset);
1225	if (WARN_ON(!uprobe))
1226		return ret;
1227
1228	down_write(&uprobe->register_rwsem);
1229	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1230		;
1231	if (con)
1232		ret = register_for_each_vma(uprobe, add ? uc : NULL);
 
 
 
 
 
 
1233	up_write(&uprobe->register_rwsem);
1234	put_uprobe(uprobe);
1235
1236	return ret;
1237}
1238
1239static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1240{
 
1241	struct vm_area_struct *vma;
1242	int err = 0;
1243
1244	down_read(&mm->mmap_sem);
1245	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1246		unsigned long vaddr;
1247		loff_t offset;
1248
1249		if (!valid_vma(vma, false) ||
1250		    file_inode(vma->vm_file) != uprobe->inode)
1251			continue;
1252
1253		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1254		if (uprobe->offset <  offset ||
1255		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1256			continue;
1257
1258		vaddr = offset_to_vaddr(vma, uprobe->offset);
1259		err |= remove_breakpoint(uprobe, mm, vaddr);
1260	}
1261	up_read(&mm->mmap_sem);
1262
1263	return err;
1264}
1265
1266static struct rb_node *
1267find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1268{
1269	struct rb_node *n = uprobes_tree.rb_node;
1270
1271	while (n) {
1272		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1273
1274		if (inode < u->inode) {
1275			n = n->rb_left;
1276		} else if (inode > u->inode) {
1277			n = n->rb_right;
1278		} else {
1279			if (max < u->offset)
1280				n = n->rb_left;
1281			else if (min > u->offset)
1282				n = n->rb_right;
1283			else
1284				break;
1285		}
1286	}
1287
1288	return n;
1289}
1290
1291/*
1292 * For a given range in vma, build a list of probes that need to be inserted.
1293 */
1294static void build_probe_list(struct inode *inode,
1295				struct vm_area_struct *vma,
1296				unsigned long start, unsigned long end,
1297				struct list_head *head)
1298{
1299	loff_t min, max;
1300	struct rb_node *n, *t;
1301	struct uprobe *u;
1302
1303	INIT_LIST_HEAD(head);
1304	min = vaddr_to_offset(vma, start);
1305	max = min + (end - start) - 1;
1306
1307	spin_lock(&uprobes_treelock);
1308	n = find_node_in_range(inode, min, max);
1309	if (n) {
1310		for (t = n; t; t = rb_prev(t)) {
1311			u = rb_entry(t, struct uprobe, rb_node);
1312			if (u->inode != inode || u->offset < min)
1313				break;
1314			list_add(&u->pending_list, head);
1315			get_uprobe(u);
 
1316		}
1317		for (t = n; (t = rb_next(t)); ) {
1318			u = rb_entry(t, struct uprobe, rb_node);
1319			if (u->inode != inode || u->offset > max)
1320				break;
1321			list_add(&u->pending_list, head);
1322			get_uprobe(u);
 
1323		}
1324	}
1325	spin_unlock(&uprobes_treelock);
1326}
1327
1328/* @vma contains reference counter, not the probed instruction. */
1329static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1330{
1331	struct list_head *pos, *q;
1332	struct delayed_uprobe *du;
1333	unsigned long vaddr;
1334	int ret = 0, err = 0;
1335
1336	mutex_lock(&delayed_uprobe_lock);
1337	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1338		du = list_entry(pos, struct delayed_uprobe, list);
1339
1340		if (du->mm != vma->vm_mm ||
1341		    !valid_ref_ctr_vma(du->uprobe, vma))
1342			continue;
1343
1344		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1345		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1346		if (ret) {
1347			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1348			if (!err)
1349				err = ret;
1350		}
1351		delayed_uprobe_delete(du);
1352	}
1353	mutex_unlock(&delayed_uprobe_lock);
1354	return err;
1355}
1356
1357/*
1358 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1359 *
1360 * Currently we ignore all errors and always return 0, the callers
1361 * can't handle the failure anyway.
1362 */
1363int uprobe_mmap(struct vm_area_struct *vma)
1364{
1365	struct list_head tmp_list;
1366	struct uprobe *uprobe, *u;
1367	struct inode *inode;
1368
1369	if (no_uprobe_events())
1370		return 0;
1371
1372	if (vma->vm_file &&
1373	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1374	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1375		delayed_ref_ctr_inc(vma);
1376
1377	if (!valid_vma(vma, true))
1378		return 0;
1379
1380	inode = file_inode(vma->vm_file);
1381	if (!inode)
1382		return 0;
1383
1384	mutex_lock(uprobes_mmap_hash(inode));
1385	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1386	/*
1387	 * We can race with uprobe_unregister(), this uprobe can be already
1388	 * removed. But in this case filter_chain() must return false, all
1389	 * consumers have gone away.
1390	 */
1391	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1392		if (!fatal_signal_pending(current) &&
1393		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1394			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1395			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1396		}
1397		put_uprobe(uprobe);
1398	}
1399	mutex_unlock(uprobes_mmap_hash(inode));
1400
1401	return 0;
1402}
1403
1404static bool
1405vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1406{
1407	loff_t min, max;
1408	struct inode *inode;
1409	struct rb_node *n;
1410
1411	inode = file_inode(vma->vm_file);
1412
1413	min = vaddr_to_offset(vma, start);
1414	max = min + (end - start) - 1;
1415
1416	spin_lock(&uprobes_treelock);
1417	n = find_node_in_range(inode, min, max);
1418	spin_unlock(&uprobes_treelock);
1419
1420	return !!n;
1421}
1422
1423/*
1424 * Called in context of a munmap of a vma.
1425 */
1426void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1427{
1428	if (no_uprobe_events() || !valid_vma(vma, false))
1429		return;
1430
1431	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1432		return;
1433
1434	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1435	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1436		return;
1437
1438	if (vma_has_uprobes(vma, start, end))
1439		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1440}
1441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442/* Slot allocation for XOL */
1443static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1444{
1445	struct vm_area_struct *vma;
1446	int ret;
1447
1448	if (down_write_killable(&mm->mmap_sem))
1449		return -EINTR;
1450
1451	if (mm->uprobes_state.xol_area) {
1452		ret = -EALREADY;
1453		goto fail;
1454	}
1455
1456	if (!area->vaddr) {
1457		/* Try to map as high as possible, this is only a hint. */
1458		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1459						PAGE_SIZE, 0, 0);
1460		if (area->vaddr & ~PAGE_MASK) {
1461			ret = area->vaddr;
1462			goto fail;
1463		}
1464	}
1465
1466	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1467				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1468				&area->xol_mapping);
1469	if (IS_ERR(vma)) {
1470		ret = PTR_ERR(vma);
1471		goto fail;
1472	}
1473
1474	ret = 0;
1475	/* pairs with get_xol_area() */
1476	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1477 fail:
1478	up_write(&mm->mmap_sem);
1479
1480	return ret;
1481}
1482
 
 
 
 
 
 
 
 
1483static struct xol_area *__create_xol_area(unsigned long vaddr)
1484{
1485	struct mm_struct *mm = current->mm;
1486	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1487	struct xol_area *area;
 
1488
1489	area = kmalloc(sizeof(*area), GFP_KERNEL);
1490	if (unlikely(!area))
1491		goto out;
1492
1493	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1494			       GFP_KERNEL);
1495	if (!area->bitmap)
1496		goto free_area;
1497
1498	area->xol_mapping.name = "[uprobes]";
1499	area->xol_mapping.fault = NULL;
1500	area->xol_mapping.pages = area->pages;
1501	area->pages[0] = alloc_page(GFP_HIGHUSER);
1502	if (!area->pages[0])
1503		goto free_bitmap;
1504	area->pages[1] = NULL;
1505
1506	area->vaddr = vaddr;
1507	init_waitqueue_head(&area->wq);
1508	/* Reserve the 1st slot for get_trampoline_vaddr() */
1509	set_bit(0, area->bitmap);
1510	atomic_set(&area->slot_count, 1);
1511	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1512
1513	if (!xol_add_vma(mm, area))
1514		return area;
1515
1516	__free_page(area->pages[0]);
1517 free_bitmap:
1518	kfree(area->bitmap);
1519 free_area:
1520	kfree(area);
1521 out:
1522	return NULL;
1523}
1524
1525/*
1526 * get_xol_area - Allocate process's xol_area if necessary.
1527 * This area will be used for storing instructions for execution out of line.
1528 *
1529 * Returns the allocated area or NULL.
1530 */
1531static struct xol_area *get_xol_area(void)
1532{
1533	struct mm_struct *mm = current->mm;
1534	struct xol_area *area;
1535
1536	if (!mm->uprobes_state.xol_area)
1537		__create_xol_area(0);
1538
1539	/* Pairs with xol_add_vma() smp_store_release() */
1540	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1541	return area;
1542}
1543
1544/*
1545 * uprobe_clear_state - Free the area allocated for slots.
1546 */
1547void uprobe_clear_state(struct mm_struct *mm)
1548{
1549	struct xol_area *area = mm->uprobes_state.xol_area;
1550
1551	mutex_lock(&delayed_uprobe_lock);
1552	delayed_uprobe_remove(NULL, mm);
1553	mutex_unlock(&delayed_uprobe_lock);
1554
1555	if (!area)
1556		return;
1557
1558	put_page(area->pages[0]);
1559	kfree(area->bitmap);
1560	kfree(area);
1561}
1562
1563void uprobe_start_dup_mmap(void)
1564{
1565	percpu_down_read(&dup_mmap_sem);
1566}
1567
1568void uprobe_end_dup_mmap(void)
1569{
1570	percpu_up_read(&dup_mmap_sem);
1571}
1572
1573void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1574{
1575	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1576		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1577		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1578		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1579	}
1580}
1581
1582/*
1583 *  - search for a free slot.
1584 */
1585static unsigned long xol_take_insn_slot(struct xol_area *area)
1586{
1587	unsigned long slot_addr;
1588	int slot_nr;
1589
1590	do {
1591		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1592		if (slot_nr < UINSNS_PER_PAGE) {
1593			if (!test_and_set_bit(slot_nr, area->bitmap))
1594				break;
1595
1596			slot_nr = UINSNS_PER_PAGE;
1597			continue;
1598		}
1599		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1600	} while (slot_nr >= UINSNS_PER_PAGE);
1601
1602	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1603	atomic_inc(&area->slot_count);
 
 
 
1604
1605	return slot_addr;
1606}
1607
1608/*
1609 * xol_get_insn_slot - allocate a slot for xol.
1610 * Returns the allocated slot address or 0.
1611 */
1612static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1613{
1614	struct xol_area *area;
1615	unsigned long xol_vaddr;
1616
1617	area = get_xol_area();
1618	if (!area)
1619		return 0;
1620
1621	xol_vaddr = xol_take_insn_slot(area);
1622	if (unlikely(!xol_vaddr))
1623		return 0;
1624
1625	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
 
1626			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1627
1628	return xol_vaddr;
1629}
1630
1631/*
1632 * xol_free_insn_slot - If slot was earlier allocated by
1633 * @xol_get_insn_slot(), make the slot available for
1634 * subsequent requests.
1635 */
1636static void xol_free_insn_slot(struct task_struct *tsk)
1637{
1638	struct xol_area *area;
1639	unsigned long vma_end;
1640	unsigned long slot_addr;
1641
1642	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
 
 
1643		return;
1644
1645	slot_addr = tsk->utask->xol_vaddr;
1646	if (unlikely(!slot_addr))
1647		return;
1648
1649	area = tsk->mm->uprobes_state.xol_area;
1650	vma_end = area->vaddr + PAGE_SIZE;
1651	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1652		unsigned long offset;
1653		int slot_nr;
1654
1655		offset = slot_addr - area->vaddr;
1656		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1657		if (slot_nr >= UINSNS_PER_PAGE)
1658			return;
1659
1660		clear_bit(slot_nr, area->bitmap);
1661		atomic_dec(&area->slot_count);
1662		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1663		if (waitqueue_active(&area->wq))
1664			wake_up(&area->wq);
1665
1666		tsk->utask->xol_vaddr = 0;
1667	}
1668}
1669
1670void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1671				  void *src, unsigned long len)
1672{
1673	/* Initialize the slot */
1674	copy_to_page(page, vaddr, src, len);
1675
1676	/*
1677	 * We probably need flush_icache_user_range() but it needs vma.
1678	 * This should work on most of architectures by default. If
1679	 * architecture needs to do something different it can define
1680	 * its own version of the function.
1681	 */
1682	flush_dcache_page(page);
1683}
1684
1685/**
1686 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1687 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1688 * instruction.
1689 * Return the address of the breakpoint instruction.
1690 */
1691unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1692{
1693	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1694}
1695
1696unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1697{
1698	struct uprobe_task *utask = current->utask;
1699
1700	if (unlikely(utask && utask->active_uprobe))
1701		return utask->vaddr;
1702
1703	return instruction_pointer(regs);
1704}
1705
1706static struct return_instance *free_ret_instance(struct return_instance *ri)
1707{
1708	struct return_instance *next = ri->next;
1709	put_uprobe(ri->uprobe);
1710	kfree(ri);
 
 
 
 
 
 
 
1711	return next;
1712}
1713
1714/*
1715 * Called with no locks held.
1716 * Called in context of an exiting or an exec-ing thread.
1717 */
1718void uprobe_free_utask(struct task_struct *t)
1719{
1720	struct uprobe_task *utask = t->utask;
1721	struct return_instance *ri;
1722
1723	if (!utask)
1724		return;
1725
1726	if (utask->active_uprobe)
1727		put_uprobe(utask->active_uprobe);
 
 
1728
1729	ri = utask->return_instances;
1730	while (ri)
1731		ri = free_ret_instance(ri);
1732
1733	xol_free_insn_slot(t);
1734	kfree(utask);
1735	t->utask = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1736}
1737
1738/*
1739 * Allocate a uprobe_task object for the task if if necessary.
1740 * Called when the thread hits a breakpoint.
1741 *
1742 * Returns:
1743 * - pointer to new uprobe_task on success
1744 * - NULL otherwise
1745 */
1746static struct uprobe_task *get_utask(void)
1747{
1748	if (!current->utask)
1749		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1750	return current->utask;
1751}
1752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1754{
1755	struct uprobe_task *n_utask;
1756	struct return_instance **p, *o, *n;
 
1757
1758	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1759	if (!n_utask)
1760		return -ENOMEM;
1761	t->utask = n_utask;
1762
 
 
 
1763	p = &n_utask->return_instances;
1764	for (o = o_utask->return_instances; o; o = o->next) {
1765		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1766		if (!n)
1767			return -ENOMEM;
1768
1769		*n = *o;
1770		get_uprobe(n->uprobe);
1771		n->next = NULL;
 
 
 
 
 
 
 
1772
1773		*p = n;
 
1774		p = &n->next;
 
1775		n_utask->depth++;
1776	}
1777
1778	return 0;
1779}
1780
1781static void uprobe_warn(struct task_struct *t, const char *msg)
1782{
1783	pr_warn("uprobe: %s:%d failed to %s\n",
1784			current->comm, current->pid, msg);
1785}
1786
1787static void dup_xol_work(struct callback_head *work)
1788{
1789	if (current->flags & PF_EXITING)
1790		return;
1791
1792	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1793			!fatal_signal_pending(current))
1794		uprobe_warn(current, "dup xol area");
1795}
1796
1797/*
1798 * Called in context of a new clone/fork from copy_process.
1799 */
1800void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1801{
1802	struct uprobe_task *utask = current->utask;
1803	struct mm_struct *mm = current->mm;
1804	struct xol_area *area;
1805
1806	t->utask = NULL;
1807
1808	if (!utask || !utask->return_instances)
1809		return;
1810
1811	if (mm == t->mm && !(flags & CLONE_VFORK))
1812		return;
1813
1814	if (dup_utask(t, utask))
1815		return uprobe_warn(t, "dup ret instances");
1816
1817	/* The task can fork() after dup_xol_work() fails */
1818	area = mm->uprobes_state.xol_area;
1819	if (!area)
1820		return uprobe_warn(t, "dup xol area");
1821
1822	if (mm == t->mm)
1823		return;
1824
1825	t->utask->dup_xol_addr = area->vaddr;
1826	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1827	task_work_add(t, &t->utask->dup_xol_work, true);
1828}
1829
1830/*
1831 * Current area->vaddr notion assume the trampoline address is always
1832 * equal area->vaddr.
1833 *
1834 * Returns -1 in case the xol_area is not allocated.
1835 */
1836static unsigned long get_trampoline_vaddr(void)
1837{
1838	struct xol_area *area;
1839	unsigned long trampoline_vaddr = -1;
1840
1841	/* Pairs with xol_add_vma() smp_store_release() */
1842	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1843	if (area)
1844		trampoline_vaddr = area->vaddr;
1845
1846	return trampoline_vaddr;
1847}
1848
1849static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1850					struct pt_regs *regs)
1851{
1852	struct return_instance *ri = utask->return_instances;
1853	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1854
1855	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1856		ri = free_ret_instance(ri);
1857		utask->depth--;
1858	}
1859	utask->return_instances = ri;
1860}
1861
1862static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
 
1863{
1864	struct return_instance *ri;
1865	struct uprobe_task *utask;
1866	unsigned long orig_ret_vaddr, trampoline_vaddr;
1867	bool chained;
 
1868
1869	if (!get_xol_area())
1870		return;
1871
1872	utask = get_utask();
1873	if (!utask)
1874		return;
1875
1876	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1877		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1878				" nestedness limit pid/tgid=%d/%d\n",
1879				current->pid, current->tgid);
1880		return;
1881	}
1882
1883	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1884	if (!ri)
1885		return;
1886
1887	trampoline_vaddr = get_trampoline_vaddr();
1888	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1889	if (orig_ret_vaddr == -1)
1890		goto fail;
1891
1892	/* drop the entries invalidated by longjmp() */
1893	chained = (orig_ret_vaddr == trampoline_vaddr);
1894	cleanup_return_instances(utask, chained, regs);
1895
1896	/*
1897	 * We don't want to keep trampoline address in stack, rather keep the
1898	 * original return address of first caller thru all the consequent
1899	 * instances. This also makes breakpoint unwrapping easier.
1900	 */
1901	if (chained) {
1902		if (!utask->return_instances) {
1903			/*
1904			 * This situation is not possible. Likely we have an
1905			 * attack from user-space.
1906			 */
1907			uprobe_warn(current, "handle tail call");
1908			goto fail;
1909		}
1910		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1911	}
1912
1913	ri->uprobe = get_uprobe(uprobe);
 
 
1914	ri->func = instruction_pointer(regs);
1915	ri->stack = user_stack_pointer(regs);
1916	ri->orig_ret_vaddr = orig_ret_vaddr;
1917	ri->chained = chained;
1918
1919	utask->depth++;
 
 
1920	ri->next = utask->return_instances;
1921	utask->return_instances = ri;
 
 
1922
1923	return;
1924 fail:
1925	kfree(ri);
1926}
1927
1928/* Prepare to single-step probed instruction out of line. */
1929static int
1930pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1931{
1932	struct uprobe_task *utask;
1933	unsigned long xol_vaddr;
1934	int err;
1935
1936	utask = get_utask();
1937	if (!utask)
1938		return -ENOMEM;
1939
1940	xol_vaddr = xol_get_insn_slot(uprobe);
1941	if (!xol_vaddr)
1942		return -ENOMEM;
 
1943
1944	utask->xol_vaddr = xol_vaddr;
1945	utask->vaddr = bp_vaddr;
1946
1947	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1948	if (unlikely(err)) {
1949		xol_free_insn_slot(current);
1950		return err;
1951	}
1952
1953	utask->active_uprobe = uprobe;
1954	utask->state = UTASK_SSTEP;
1955	return 0;
 
 
 
1956}
1957
1958/*
1959 * If we are singlestepping, then ensure this thread is not connected to
1960 * non-fatal signals until completion of singlestep.  When xol insn itself
1961 * triggers the signal,  restart the original insn even if the task is
1962 * already SIGKILL'ed (since coredump should report the correct ip).  This
1963 * is even more important if the task has a handler for SIGSEGV/etc, The
1964 * _same_ instruction should be repeated again after return from the signal
1965 * handler, and SSTEP can never finish in this case.
1966 */
1967bool uprobe_deny_signal(void)
1968{
1969	struct task_struct *t = current;
1970	struct uprobe_task *utask = t->utask;
1971
1972	if (likely(!utask || !utask->active_uprobe))
1973		return false;
1974
1975	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1976
1977	if (signal_pending(t)) {
1978		spin_lock_irq(&t->sighand->siglock);
1979		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1980		spin_unlock_irq(&t->sighand->siglock);
1981
1982		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1983			utask->state = UTASK_SSTEP_TRAPPED;
1984			set_tsk_thread_flag(t, TIF_UPROBE);
1985		}
1986	}
1987
1988	return true;
1989}
1990
1991static void mmf_recalc_uprobes(struct mm_struct *mm)
1992{
 
1993	struct vm_area_struct *vma;
1994
1995	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1996		if (!valid_vma(vma, false))
1997			continue;
1998		/*
1999		 * This is not strictly accurate, we can race with
2000		 * uprobe_unregister() and see the already removed
2001		 * uprobe if delete_uprobe() was not yet called.
2002		 * Or this uprobe can be filtered out.
2003		 */
2004		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2005			return;
2006	}
2007
2008	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2009}
2010
2011static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2012{
2013	struct page *page;
2014	uprobe_opcode_t opcode;
2015	int result;
2016
 
 
 
2017	pagefault_disable();
2018	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2019	pagefault_enable();
2020
2021	if (likely(result == 0))
2022		goto out;
2023
2024	/*
2025	 * The NULL 'tsk' here ensures that any faults that occur here
2026	 * will not be accounted to the task.  'mm' *is* current->mm,
2027	 * but we treat this as a 'remote' access since it is
2028	 * essentially a kernel access to the memory.
2029	 */
2030	result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
2031			NULL, NULL);
2032	if (result < 0)
2033		return result;
2034
2035	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2036	put_page(page);
2037 out:
2038	/* This needs to return true for any variant of the trap insn */
2039	return is_trap_insn(&opcode);
2040}
2041
2042static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
 
2043{
2044	struct mm_struct *mm = current->mm;
2045	struct uprobe *uprobe = NULL;
2046	struct vm_area_struct *vma;
2047
2048	down_read(&mm->mmap_sem);
2049	vma = find_vma(mm, bp_vaddr);
2050	if (vma && vma->vm_start <= bp_vaddr) {
2051		if (valid_vma(vma, false)) {
2052			struct inode *inode = file_inode(vma->vm_file);
2053			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2054
2055			uprobe = find_uprobe(inode, offset);
2056		}
2057
2058		if (!uprobe)
2059			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2060	} else {
2061		*is_swbp = -EFAULT;
2062	}
2063
2064	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2065		mmf_recalc_uprobes(mm);
2066	up_read(&mm->mmap_sem);
2067
2068	return uprobe;
2069}
2070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2071static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2072{
2073	struct uprobe_consumer *uc;
2074	int remove = UPROBE_HANDLER_REMOVE;
2075	bool need_prep = false; /* prepare return uprobe, when needed */
2076
2077	down_read(&uprobe->register_rwsem);
2078	for (uc = uprobe->consumers; uc; uc = uc->next) {
 
 
 
 
2079		int rc = 0;
2080
2081		if (uc->handler) {
2082			rc = uc->handler(uc, regs);
2083			WARN(rc & ~UPROBE_HANDLER_MASK,
2084				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2085		}
2086
2087		if (uc->ret_handler)
2088			need_prep = true;
 
 
 
 
 
 
 
 
 
 
 
2089
2090		remove &= rc;
 
 
 
 
 
 
2091	}
2092
2093	if (need_prep && !remove)
2094		prepare_uretprobe(uprobe, regs); /* put bp at return */
 
 
 
 
 
 
2095
2096	if (remove && uprobe->consumers) {
2097		WARN_ON(!uprobe_is_active(uprobe));
2098		unapply_uprobe(uprobe, current->mm);
2099	}
2100	up_read(&uprobe->register_rwsem);
2101}
2102
2103static void
2104handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2105{
2106	struct uprobe *uprobe = ri->uprobe;
2107	struct uprobe_consumer *uc;
 
 
 
 
 
2108
2109	down_read(&uprobe->register_rwsem);
2110	for (uc = uprobe->consumers; uc; uc = uc->next) {
2111		if (uc->ret_handler)
2112			uc->ret_handler(uc, ri->func, regs);
 
 
 
 
 
2113	}
2114	up_read(&uprobe->register_rwsem);
2115}
2116
2117static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2118{
2119	bool chained;
2120
2121	do {
2122		chained = ri->chained;
2123		ri = ri->next;	/* can't be NULL if chained */
2124	} while (chained);
2125
2126	return ri;
2127}
2128
2129static void handle_trampoline(struct pt_regs *regs)
2130{
2131	struct uprobe_task *utask;
2132	struct return_instance *ri, *next;
 
 
2133	bool valid;
2134
2135	utask = current->utask;
2136	if (!utask)
2137		goto sigill;
2138
2139	ri = utask->return_instances;
2140	if (!ri)
2141		goto sigill;
2142
2143	do {
2144		/*
2145		 * We should throw out the frames invalidated by longjmp().
2146		 * If this chain is valid, then the next one should be alive
2147		 * or NULL; the latter case means that nobody but ri->func
2148		 * could hit this trampoline on return. TODO: sigaltstack().
2149		 */
2150		next = find_next_ret_chain(ri);
2151		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2152
2153		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2154		do {
 
 
 
 
 
 
 
 
 
 
 
2155			if (valid)
2156				handle_uretprobe_chain(ri, regs);
2157			ri = free_ret_instance(ri);
 
 
 
2158			utask->depth--;
2159		} while (ri != next);
2160	} while (!valid);
2161
2162	utask->return_instances = ri;
2163	return;
2164
2165 sigill:
2166	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2167	force_sig(SIGILL);
2168
2169}
2170
2171bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2172{
2173	return false;
2174}
2175
2176bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2177					struct pt_regs *regs)
2178{
2179	return true;
2180}
2181
2182/*
2183 * Run handler and ask thread to singlestep.
2184 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2185 */
2186static void handle_swbp(struct pt_regs *regs)
2187{
2188	struct uprobe *uprobe;
2189	unsigned long bp_vaddr;
2190	int uninitialized_var(is_swbp);
2191
2192	bp_vaddr = uprobe_get_swbp_addr(regs);
2193	if (bp_vaddr == get_trampoline_vaddr())
2194		return handle_trampoline(regs);
 
 
2195
2196	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2197	if (!uprobe) {
2198		if (is_swbp > 0) {
2199			/* No matching uprobe; signal SIGTRAP. */
2200			send_sig(SIGTRAP, current, 0);
2201		} else {
2202			/*
2203			 * Either we raced with uprobe_unregister() or we can't
2204			 * access this memory. The latter is only possible if
2205			 * another thread plays with our ->mm. In both cases
2206			 * we can simply restart. If this vma was unmapped we
2207			 * can pretend this insn was not executed yet and get
2208			 * the (correct) SIGSEGV after restart.
2209			 */
2210			instruction_pointer_set(regs, bp_vaddr);
2211		}
2212		return;
2213	}
2214
2215	/* change it in advance for ->handler() and restart */
2216	instruction_pointer_set(regs, bp_vaddr);
2217
2218	/*
2219	 * TODO: move copy_insn/etc into _register and remove this hack.
2220	 * After we hit the bp, _unregister + _register can install the
2221	 * new and not-yet-analyzed uprobe at the same address, restart.
2222	 */
2223	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2224		goto out;
2225
2226	/*
2227	 * Pairs with the smp_wmb() in prepare_uprobe().
2228	 *
2229	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2230	 * we must also see the stores to &uprobe->arch performed by the
2231	 * prepare_uprobe() call.
2232	 */
2233	smp_rmb();
2234
2235	/* Tracing handlers use ->utask to communicate with fetch methods */
2236	if (!get_utask())
2237		goto out;
2238
2239	if (arch_uprobe_ignore(&uprobe->arch, regs))
2240		goto out;
2241
2242	handler_chain(uprobe, regs);
2243
2244	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2245		goto out;
2246
2247	if (!pre_ssout(uprobe, regs, bp_vaddr))
2248		return;
2249
2250	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2251out:
2252	put_uprobe(uprobe);
 
2253}
2254
2255/*
2256 * Perform required fix-ups and disable singlestep.
2257 * Allow pending signals to take effect.
2258 */
2259static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2260{
2261	struct uprobe *uprobe;
2262	int err = 0;
2263
2264	uprobe = utask->active_uprobe;
2265	if (utask->state == UTASK_SSTEP_ACK)
2266		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2267	else if (utask->state == UTASK_SSTEP_TRAPPED)
2268		arch_uprobe_abort_xol(&uprobe->arch, regs);
2269	else
2270		WARN_ON_ONCE(1);
2271
2272	put_uprobe(uprobe);
2273	utask->active_uprobe = NULL;
2274	utask->state = UTASK_RUNNING;
2275	xol_free_insn_slot(current);
2276
2277	spin_lock_irq(&current->sighand->siglock);
2278	recalc_sigpending(); /* see uprobe_deny_signal() */
2279	spin_unlock_irq(&current->sighand->siglock);
2280
2281	if (unlikely(err)) {
2282		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2283		force_sig(SIGILL);
2284	}
2285}
2286
2287/*
2288 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2289 * allows the thread to return from interrupt. After that handle_swbp()
2290 * sets utask->active_uprobe.
2291 *
2292 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2293 * and allows the thread to return from interrupt.
2294 *
2295 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2296 * uprobe_notify_resume().
2297 */
2298void uprobe_notify_resume(struct pt_regs *regs)
2299{
2300	struct uprobe_task *utask;
2301
2302	clear_thread_flag(TIF_UPROBE);
2303
2304	utask = current->utask;
2305	if (utask && utask->active_uprobe)
2306		handle_singlestep(utask, regs);
2307	else
2308		handle_swbp(regs);
2309}
2310
2311/*
2312 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2313 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2314 */
2315int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2316{
2317	if (!current->mm)
2318		return 0;
2319
2320	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2321	    (!current->utask || !current->utask->return_instances))
2322		return 0;
2323
2324	set_thread_flag(TIF_UPROBE);
2325	return 1;
2326}
2327
2328/*
2329 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2330 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2331 */
2332int uprobe_post_sstep_notifier(struct pt_regs *regs)
2333{
2334	struct uprobe_task *utask = current->utask;
2335
2336	if (!current->mm || !utask || !utask->active_uprobe)
2337		/* task is currently not uprobed */
2338		return 0;
2339
2340	utask->state = UTASK_SSTEP_ACK;
2341	set_thread_flag(TIF_UPROBE);
2342	return 1;
2343}
2344
2345static struct notifier_block uprobe_exception_nb = {
2346	.notifier_call		= arch_uprobe_exception_notify,
2347	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2348};
2349
2350void __init uprobes_init(void)
2351{
2352	int i;
2353
2354	for (i = 0; i < UPROBES_HASH_SZ; i++)
2355		mutex_init(&uprobes_mmap_mutex[i]);
2356
2357	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2358}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * User-space Probes (UProbes)
   4 *
   5 * Copyright (C) IBM Corporation, 2008-2012
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/highmem.h>
  14#include <linux/pagemap.h>	/* read_mapping_page */
  15#include <linux/slab.h>
  16#include <linux/sched.h>
  17#include <linux/sched/mm.h>
 
  18#include <linux/export.h>
  19#include <linux/rmap.h>		/* anon_vma_prepare */
  20#include <linux/mmu_notifier.h>
  21#include <linux/swap.h>		/* folio_free_swap */
  22#include <linux/ptrace.h>	/* user_enable_single_step */
  23#include <linux/kdebug.h>	/* notifier mechanism */
 
  24#include <linux/percpu-rwsem.h>
  25#include <linux/task_work.h>
  26#include <linux/shmem_fs.h>
  27#include <linux/khugepaged.h>
  28#include <linux/rcupdate_trace.h>
  29#include <linux/workqueue.h>
  30#include <linux/srcu.h>
  31#include <linux/oom.h>          /* check_stable_address_space */
  32
  33#include <linux/uprobes.h>
  34
  35#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
  36#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
  37
  38static struct rb_root uprobes_tree = RB_ROOT;
  39/*
  40 * allows us to skip the uprobe_mmap if there are no uprobe events active
  41 * at this time.  Probably a fine grained per inode count is better?
  42 */
  43#define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
  44
  45static DEFINE_RWLOCK(uprobes_treelock);	/* serialize rbtree access */
  46static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
  47
  48#define UPROBES_HASH_SZ	13
  49/* serialize uprobe->pending_list */
  50static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
  51#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  52
  53DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
  54
  55/* Covers return_instance's uprobe lifetime. */
  56DEFINE_STATIC_SRCU(uretprobes_srcu);
  57
  58/* Have a copy of original instruction */
  59#define UPROBE_COPY_INSN	0
  60
  61struct uprobe {
  62	struct rb_node		rb_node;	/* node in the rb tree */
  63	refcount_t		ref;
  64	struct rw_semaphore	register_rwsem;
  65	struct rw_semaphore	consumer_rwsem;
  66	struct list_head	pending_list;
  67	struct list_head	consumers;
  68	struct inode		*inode;		/* Also hold a ref to inode */
  69	union {
  70		struct rcu_head		rcu;
  71		struct work_struct	work;
  72	};
  73	loff_t			offset;
  74	loff_t			ref_ctr_offset;
  75	unsigned long		flags;		/* "unsigned long" so bitops work */
  76
  77	/*
  78	 * The generic code assumes that it has two members of unknown type
  79	 * owned by the arch-specific code:
  80	 *
  81	 * 	insn -	copy_insn() saves the original instruction here for
  82	 *		arch_uprobe_analyze_insn().
  83	 *
  84	 *	ixol -	potentially modified instruction to execute out of
  85	 *		line, copied to xol_area by xol_get_insn_slot().
  86	 */
  87	struct arch_uprobe	arch;
  88};
  89
  90struct delayed_uprobe {
  91	struct list_head list;
  92	struct uprobe *uprobe;
  93	struct mm_struct *mm;
  94};
  95
  96static DEFINE_MUTEX(delayed_uprobe_lock);
  97static LIST_HEAD(delayed_uprobe_list);
  98
  99/*
 100 * Execute out of line area: anonymous executable mapping installed
 101 * by the probed task to execute the copy of the original instruction
 102 * mangled by set_swbp().
 103 *
 104 * On a breakpoint hit, thread contests for a slot.  It frees the
 105 * slot after singlestep. Currently a fixed number of slots are
 106 * allocated.
 107 */
 108struct xol_area {
 109	wait_queue_head_t 		wq;		/* if all slots are busy */
 
 110	unsigned long 			*bitmap;	/* 0 = free slot */
 111
 112	struct page			*page;
 
 113	/*
 114	 * We keep the vma's vm_start rather than a pointer to the vma
 115	 * itself.  The probed process or a naughty kernel module could make
 116	 * the vma go away, and we must handle that reasonably gracefully.
 117	 */
 118	unsigned long 			vaddr;		/* Page(s) of instruction slots */
 119};
 120
 121static void uprobe_warn(struct task_struct *t, const char *msg)
 122{
 123	pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg);
 124}
 125
 126/*
 127 * valid_vma: Verify if the specified vma is an executable vma
 128 * Relax restrictions while unregistering: vm_flags might have
 129 * changed after breakpoint was inserted.
 130 *	- is_register: indicates if we are in register context.
 131 *	- Return 1 if the specified virtual address is in an
 132 *	  executable vma.
 133 */
 134static bool valid_vma(struct vm_area_struct *vma, bool is_register)
 135{
 136	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
 137
 138	if (is_register)
 139		flags |= VM_WRITE;
 140
 141	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
 142}
 143
 144static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
 145{
 146	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 147}
 148
 149static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
 150{
 151	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
 152}
 153
 154/**
 155 * __replace_page - replace page in vma by new page.
 156 * based on replace_page in mm/ksm.c
 157 *
 158 * @vma:      vma that holds the pte pointing to page
 159 * @addr:     address the old @page is mapped at
 160 * @old_page: the page we are replacing by new_page
 161 * @new_page: the modified page we replace page by
 162 *
 163 * If @new_page is NULL, only unmap @old_page.
 164 *
 165 * Returns 0 on success, negative error code otherwise.
 166 */
 167static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
 168				struct page *old_page, struct page *new_page)
 169{
 170	struct folio *old_folio = page_folio(old_page);
 171	struct folio *new_folio;
 172	struct mm_struct *mm = vma->vm_mm;
 173	DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
 
 
 
 
 174	int err;
 175	struct mmu_notifier_range range;
 
 176
 177	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
 178				addr + PAGE_SIZE);
 179
 180	if (new_page) {
 181		new_folio = page_folio(new_page);
 182		err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
 183		if (err)
 184			return err;
 185	}
 186
 187	/* For folio_free_swap() below */
 188	folio_lock(old_folio);
 189
 190	mmu_notifier_invalidate_range_start(&range);
 191	err = -EAGAIN;
 192	if (!page_vma_mapped_walk(&pvmw))
 
 
 193		goto unlock;
 
 194	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
 195
 196	if (new_page) {
 197		folio_get(new_folio);
 198		folio_add_new_anon_rmap(new_folio, vma, addr, RMAP_EXCLUSIVE);
 199		folio_add_lru_vma(new_folio, vma);
 
 200	} else
 201		/* no new page, just dec_mm_counter for old_page */
 202		dec_mm_counter(mm, MM_ANONPAGES);
 203
 204	if (!folio_test_anon(old_folio)) {
 205		dec_mm_counter(mm, mm_counter_file(old_folio));
 206		inc_mm_counter(mm, MM_ANONPAGES);
 207	}
 208
 209	flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte)));
 210	ptep_clear_flush(vma, addr, pvmw.pte);
 211	if (new_page)
 212		set_pte_at(mm, addr, pvmw.pte,
 213			   mk_pte(new_page, vma->vm_page_prot));
 214
 215	folio_remove_rmap_pte(old_folio, old_page, vma);
 216	if (!folio_mapped(old_folio))
 217		folio_free_swap(old_folio);
 218	page_vma_mapped_walk_done(&pvmw);
 219	folio_put(old_folio);
 
 
 
 220
 221	err = 0;
 222 unlock:
 223	mmu_notifier_invalidate_range_end(&range);
 224	folio_unlock(old_folio);
 225	return err;
 226}
 227
 228/**
 229 * is_swbp_insn - check if instruction is breakpoint instruction.
 230 * @insn: instruction to be checked.
 231 * Default implementation of is_swbp_insn
 232 * Returns true if @insn is a breakpoint instruction.
 233 */
 234bool __weak is_swbp_insn(uprobe_opcode_t *insn)
 235{
 236	return *insn == UPROBE_SWBP_INSN;
 237}
 238
 239/**
 240 * is_trap_insn - check if instruction is breakpoint instruction.
 241 * @insn: instruction to be checked.
 242 * Default implementation of is_trap_insn
 243 * Returns true if @insn is a breakpoint instruction.
 244 *
 245 * This function is needed for the case where an architecture has multiple
 246 * trap instructions (like powerpc).
 247 */
 248bool __weak is_trap_insn(uprobe_opcode_t *insn)
 249{
 250	return is_swbp_insn(insn);
 251}
 252
 253static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
 254{
 255	void *kaddr = kmap_atomic(page);
 256	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
 257	kunmap_atomic(kaddr);
 258}
 259
 260static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
 261{
 262	void *kaddr = kmap_atomic(page);
 263	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
 264	kunmap_atomic(kaddr);
 265}
 266
 267static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
 268{
 269	uprobe_opcode_t old_opcode;
 270	bool is_swbp;
 271
 272	/*
 273	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
 274	 * We do not check if it is any other 'trap variant' which could
 275	 * be conditional trap instruction such as the one powerpc supports.
 276	 *
 277	 * The logic is that we do not care if the underlying instruction
 278	 * is a trap variant; uprobes always wins over any other (gdb)
 279	 * breakpoint.
 280	 */
 281	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
 282	is_swbp = is_swbp_insn(&old_opcode);
 283
 284	if (is_swbp_insn(new_opcode)) {
 285		if (is_swbp)		/* register: already installed? */
 286			return 0;
 287	} else {
 288		if (!is_swbp)		/* unregister: was it changed by us? */
 289			return 0;
 290	}
 291
 292	return 1;
 293}
 294
 295static struct delayed_uprobe *
 296delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
 297{
 298	struct delayed_uprobe *du;
 299
 300	list_for_each_entry(du, &delayed_uprobe_list, list)
 301		if (du->uprobe == uprobe && du->mm == mm)
 302			return du;
 303	return NULL;
 304}
 305
 306static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
 307{
 308	struct delayed_uprobe *du;
 309
 310	if (delayed_uprobe_check(uprobe, mm))
 311		return 0;
 312
 313	du  = kzalloc(sizeof(*du), GFP_KERNEL);
 314	if (!du)
 315		return -ENOMEM;
 316
 317	du->uprobe = uprobe;
 318	du->mm = mm;
 319	list_add(&du->list, &delayed_uprobe_list);
 320	return 0;
 321}
 322
 323static void delayed_uprobe_delete(struct delayed_uprobe *du)
 324{
 325	if (WARN_ON(!du))
 326		return;
 327	list_del(&du->list);
 328	kfree(du);
 329}
 330
 331static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
 332{
 333	struct list_head *pos, *q;
 334	struct delayed_uprobe *du;
 335
 336	if (!uprobe && !mm)
 337		return;
 338
 339	list_for_each_safe(pos, q, &delayed_uprobe_list) {
 340		du = list_entry(pos, struct delayed_uprobe, list);
 341
 342		if (uprobe && du->uprobe != uprobe)
 343			continue;
 344		if (mm && du->mm != mm)
 345			continue;
 346
 347		delayed_uprobe_delete(du);
 348	}
 349}
 350
 351static bool valid_ref_ctr_vma(struct uprobe *uprobe,
 352			      struct vm_area_struct *vma)
 353{
 354	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
 355
 356	return uprobe->ref_ctr_offset &&
 357		vma->vm_file &&
 358		file_inode(vma->vm_file) == uprobe->inode &&
 359		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
 360		vma->vm_start <= vaddr &&
 361		vma->vm_end > vaddr;
 362}
 363
 364static struct vm_area_struct *
 365find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
 366{
 367	VMA_ITERATOR(vmi, mm, 0);
 368	struct vm_area_struct *tmp;
 369
 370	for_each_vma(vmi, tmp)
 371		if (valid_ref_ctr_vma(uprobe, tmp))
 372			return tmp;
 373
 374	return NULL;
 375}
 376
 377static int
 378__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
 379{
 380	void *kaddr;
 381	struct page *page;
 
 382	int ret;
 383	short *ptr;
 384
 385	if (!vaddr || !d)
 386		return -EINVAL;
 387
 388	ret = get_user_pages_remote(mm, vaddr, 1,
 389				    FOLL_WRITE, &page, NULL);
 390	if (unlikely(ret <= 0)) {
 391		/*
 392		 * We are asking for 1 page. If get_user_pages_remote() fails,
 393		 * it may return 0, in that case we have to return error.
 394		 */
 395		return ret == 0 ? -EBUSY : ret;
 396	}
 397
 398	kaddr = kmap_atomic(page);
 399	ptr = kaddr + (vaddr & ~PAGE_MASK);
 400
 401	if (unlikely(*ptr + d < 0)) {
 402		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
 403			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
 404		ret = -EINVAL;
 405		goto out;
 406	}
 407
 408	*ptr += d;
 409	ret = 0;
 410out:
 411	kunmap_atomic(kaddr);
 412	put_page(page);
 413	return ret;
 414}
 415
 416static void update_ref_ctr_warn(struct uprobe *uprobe,
 417				struct mm_struct *mm, short d)
 418{
 419	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
 420		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
 421		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
 422		(unsigned long long) uprobe->offset,
 423		(unsigned long long) uprobe->ref_ctr_offset, mm);
 424}
 425
 426static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
 427			  short d)
 428{
 429	struct vm_area_struct *rc_vma;
 430	unsigned long rc_vaddr;
 431	int ret = 0;
 432
 433	rc_vma = find_ref_ctr_vma(uprobe, mm);
 434
 435	if (rc_vma) {
 436		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
 437		ret = __update_ref_ctr(mm, rc_vaddr, d);
 438		if (ret)
 439			update_ref_ctr_warn(uprobe, mm, d);
 440
 441		if (d > 0)
 442			return ret;
 443	}
 444
 445	mutex_lock(&delayed_uprobe_lock);
 446	if (d > 0)
 447		ret = delayed_uprobe_add(uprobe, mm);
 448	else
 449		delayed_uprobe_remove(uprobe, mm);
 450	mutex_unlock(&delayed_uprobe_lock);
 451
 452	return ret;
 453}
 454
 455/*
 456 * NOTE:
 457 * Expect the breakpoint instruction to be the smallest size instruction for
 458 * the architecture. If an arch has variable length instruction and the
 459 * breakpoint instruction is not of the smallest length instruction
 460 * supported by that architecture then we need to modify is_trap_at_addr and
 461 * uprobe_write_opcode accordingly. This would never be a problem for archs
 462 * that have fixed length instructions.
 463 *
 464 * uprobe_write_opcode - write the opcode at a given virtual address.
 465 * @auprobe: arch specific probepoint information.
 466 * @mm: the probed process address space.
 467 * @vaddr: the virtual address to store the opcode.
 468 * @opcode: opcode to be written at @vaddr.
 469 *
 470 * Called with mm->mmap_lock held for read or write.
 471 * Return 0 (success) or a negative errno.
 472 */
 473int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
 474			unsigned long vaddr, uprobe_opcode_t opcode)
 475{
 476	struct uprobe *uprobe;
 477	struct page *old_page, *new_page;
 478	struct vm_area_struct *vma;
 479	int ret, is_register, ref_ctr_updated = 0;
 480	bool orig_page_huge = false;
 481	unsigned int gup_flags = FOLL_FORCE;
 482
 483	is_register = is_swbp_insn(&opcode);
 484	uprobe = container_of(auprobe, struct uprobe, arch);
 485
 486retry:
 487	if (is_register)
 488		gup_flags |= FOLL_SPLIT_PMD;
 489	/* Read the page with vaddr into memory */
 490	old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
 491	if (IS_ERR(old_page))
 492		return PTR_ERR(old_page);
 
 493
 494	ret = verify_opcode(old_page, vaddr, &opcode);
 495	if (ret <= 0)
 496		goto put_old;
 497
 498	if (is_zero_page(old_page)) {
 499		ret = -EINVAL;
 500		goto put_old;
 501	}
 502
 503	if (WARN(!is_register && PageCompound(old_page),
 504		 "uprobe unregister should never work on compound page\n")) {
 505		ret = -EINVAL;
 506		goto put_old;
 507	}
 508
 509	/* We are going to replace instruction, update ref_ctr. */
 510	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
 511		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
 512		if (ret)
 513			goto put_old;
 514
 515		ref_ctr_updated = 1;
 516	}
 517
 518	ret = 0;
 519	if (!is_register && !PageAnon(old_page))
 520		goto put_old;
 521
 522	ret = anon_vma_prepare(vma);
 523	if (ret)
 524		goto put_old;
 525
 526	ret = -ENOMEM;
 527	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
 528	if (!new_page)
 529		goto put_old;
 530
 531	__SetPageUptodate(new_page);
 532	copy_highpage(new_page, old_page);
 533	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
 534
 535	if (!is_register) {
 536		struct page *orig_page;
 537		pgoff_t index;
 538
 539		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
 540
 541		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
 542		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
 543					  index);
 544
 545		if (orig_page) {
 546			if (PageUptodate(orig_page) &&
 547			    pages_identical(new_page, orig_page)) {
 548				/* let go new_page */
 549				put_page(new_page);
 550				new_page = NULL;
 551
 552				if (PageCompound(orig_page))
 553					orig_page_huge = true;
 554			}
 555			put_page(orig_page);
 556		}
 557	}
 558
 559	ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page);
 560	if (new_page)
 561		put_page(new_page);
 562put_old:
 563	put_page(old_page);
 564
 565	if (unlikely(ret == -EAGAIN))
 566		goto retry;
 567
 568	/* Revert back reference counter if instruction update failed. */
 569	if (ret && is_register && ref_ctr_updated)
 570		update_ref_ctr(uprobe, mm, -1);
 571
 572	/* try collapse pmd for compound page */
 573	if (!ret && orig_page_huge)
 574		collapse_pte_mapped_thp(mm, vaddr, false);
 575
 576	return ret;
 577}
 578
 579/**
 580 * set_swbp - store breakpoint at a given address.
 581 * @auprobe: arch specific probepoint information.
 582 * @mm: the probed process address space.
 583 * @vaddr: the virtual address to insert the opcode.
 584 *
 585 * For mm @mm, store the breakpoint instruction at @vaddr.
 586 * Return 0 (success) or a negative errno.
 587 */
 588int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 589{
 590	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
 591}
 592
 593/**
 594 * set_orig_insn - Restore the original instruction.
 595 * @mm: the probed process address space.
 596 * @auprobe: arch specific probepoint information.
 597 * @vaddr: the virtual address to insert the opcode.
 598 *
 599 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 600 * Return 0 (success) or a negative errno.
 601 */
 602int __weak
 603set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 604{
 605	return uprobe_write_opcode(auprobe, mm, vaddr,
 606			*(uprobe_opcode_t *)&auprobe->insn);
 607}
 608
 609/* uprobe should have guaranteed positive refcount */
 610static struct uprobe *get_uprobe(struct uprobe *uprobe)
 611{
 612	refcount_inc(&uprobe->ref);
 613	return uprobe;
 614}
 615
 616/*
 617 * uprobe should have guaranteed lifetime, which can be either of:
 618 *   - caller already has refcount taken (and wants an extra one);
 619 *   - uprobe is RCU protected and won't be freed until after grace period;
 620 *   - we are holding uprobes_treelock (for read or write, doesn't matter).
 621 */
 622static struct uprobe *try_get_uprobe(struct uprobe *uprobe)
 623{
 624	if (refcount_inc_not_zero(&uprobe->ref))
 625		return uprobe;
 626	return NULL;
 627}
 628
 629static inline bool uprobe_is_active(struct uprobe *uprobe)
 630{
 631	return !RB_EMPTY_NODE(&uprobe->rb_node);
 632}
 633
 634static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu)
 635{
 636	struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
 637
 638	kfree(uprobe);
 639}
 640
 641static void uprobe_free_srcu(struct rcu_head *rcu)
 642{
 643	struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
 644
 645	call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace);
 646}
 647
 648static void uprobe_free_deferred(struct work_struct *work)
 649{
 650	struct uprobe *uprobe = container_of(work, struct uprobe, work);
 651
 652	write_lock(&uprobes_treelock);
 653
 654	if (uprobe_is_active(uprobe)) {
 655		write_seqcount_begin(&uprobes_seqcount);
 656		rb_erase(&uprobe->rb_node, &uprobes_tree);
 657		write_seqcount_end(&uprobes_seqcount);
 658	}
 659
 660	write_unlock(&uprobes_treelock);
 661
 662	/*
 663	 * If application munmap(exec_vma) before uprobe_unregister()
 664	 * gets called, we don't get a chance to remove uprobe from
 665	 * delayed_uprobe_list from remove_breakpoint(). Do it here.
 666	 */
 667	mutex_lock(&delayed_uprobe_lock);
 668	delayed_uprobe_remove(uprobe, NULL);
 669	mutex_unlock(&delayed_uprobe_lock);
 670
 671	/* start srcu -> rcu_tasks_trace -> kfree chain */
 672	call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu);
 673}
 674
 675static void put_uprobe(struct uprobe *uprobe)
 676{
 677	if (!refcount_dec_and_test(&uprobe->ref))
 678		return;
 679
 680	INIT_WORK(&uprobe->work, uprobe_free_deferred);
 681	schedule_work(&uprobe->work);
 682}
 683
 684/* Initialize hprobe as SRCU-protected "leased" uprobe */
 685static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx)
 686{
 687	WARN_ON(!uprobe);
 688	hprobe->state = HPROBE_LEASED;
 689	hprobe->uprobe = uprobe;
 690	hprobe->srcu_idx = srcu_idx;
 691}
 692
 693/* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */
 694static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe)
 695{
 696	hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE;
 697	hprobe->uprobe = uprobe;
 698	hprobe->srcu_idx = -1;
 699}
 700
 701/*
 702 * hprobe_consume() fetches hprobe's underlying uprobe and detects whether
 703 * uprobe is SRCU protected or is refcounted. hprobe_consume() can be
 704 * used only once for a given hprobe.
 705 *
 706 * Caller has to call hprobe_finalize() and pass previous hprobe_state, so
 707 * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever
 708 * is appropriate.
 709 */
 710static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate)
 711{
 712	*hstate = xchg(&hprobe->state, HPROBE_CONSUMED);
 713	switch (*hstate) {
 714	case HPROBE_LEASED:
 715	case HPROBE_STABLE:
 716		return hprobe->uprobe;
 717	case HPROBE_GONE:	/* uprobe is NULL, no SRCU */
 718	case HPROBE_CONSUMED:	/* uprobe was finalized already, do nothing */
 719		return NULL;
 720	default:
 721		WARN(1, "hprobe invalid state %d", *hstate);
 722		return NULL;
 723	}
 724}
 725
 726/*
 727 * Reset hprobe state and, if hprobe was LEASED, release SRCU lock.
 728 * hprobe_finalize() can only be used from current context after
 729 * hprobe_consume() call (which determines uprobe and hstate value).
 730 */
 731static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate)
 732{
 733	switch (hstate) {
 734	case HPROBE_LEASED:
 735		__srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
 736		break;
 737	case HPROBE_STABLE:
 738		put_uprobe(hprobe->uprobe);
 739		break;
 740	case HPROBE_GONE:
 741	case HPROBE_CONSUMED:
 742		break;
 743	default:
 744		WARN(1, "hprobe invalid state %d", hstate);
 745		break;
 746	}
 747}
 748
 749/*
 750 * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED)
 751 * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of
 752 * them can win the race to perform SRCU unlocking. Whoever wins must perform
 753 * SRCU unlock.
 754 *
 755 * Returns underlying valid uprobe or NULL, if there was no underlying uprobe
 756 * to begin with or we failed to bump its refcount and it's going away.
 757 *
 758 * Returned non-NULL uprobe can be still safely used within an ongoing SRCU
 759 * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has
 760 * an extra refcount for caller to assume and use. Otherwise, it's not
 761 * guaranteed that returned uprobe has a positive refcount, so caller has to
 762 * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current
 763 * SRCU lock region. See dup_utask().
 764 */
 765static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get)
 766{
 767	enum hprobe_state hstate;
 768
 769	/*
 770	 * Caller should guarantee that return_instance is not going to be
 771	 * freed from under us. This can be achieved either through holding
 772	 * rcu_read_lock() or by owning return_instance in the first place.
 773	 *
 774	 * Underlying uprobe is itself protected from reuse by SRCU, so ensure
 775	 * SRCU lock is held properly.
 776	 */
 777	lockdep_assert(srcu_read_lock_held(&uretprobes_srcu));
 778
 779	hstate = READ_ONCE(hprobe->state);
 780	switch (hstate) {
 781	case HPROBE_STABLE:
 782		/* uprobe has positive refcount, bump refcount, if necessary */
 783		return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe;
 784	case HPROBE_GONE:
 785		/*
 786		 * SRCU was unlocked earlier and we didn't manage to take
 787		 * uprobe refcnt, so it's effectively NULL
 
 788		 */
 789		return NULL;
 790	case HPROBE_CONSUMED:
 791		/*
 792		 * uprobe was consumed, so it's effectively NULL as far as
 793		 * uretprobe processing logic is concerned
 794		 */
 795		return NULL;
 796	case HPROBE_LEASED: {
 797		struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe);
 798		/*
 799		 * Try to switch hprobe state, guarding against
 800		 * hprobe_consume() or another hprobe_expire() racing with us.
 801		 * Note, if we failed to get uprobe refcount, we use special
 802		 * HPROBE_GONE state to signal that hprobe->uprobe shouldn't
 803		 * be used as it will be freed after SRCU is unlocked.
 804		 */
 805		if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) {
 806			/* We won the race, we are the ones to unlock SRCU */
 807			__srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
 808			return get ? get_uprobe(uprobe) : uprobe;
 809		}
 810
 811		/*
 812		 * We lost the race, undo refcount bump (if it ever happened),
 813		 * unless caller would like an extra refcount anyways.
 814		 */
 815		if (uprobe && !get)
 816			put_uprobe(uprobe);
 817		/*
 818		 * Even if hprobe_consume() or another hprobe_expire() wins
 819		 * the state update race and unlocks SRCU from under us, we
 820		 * still have a guarantee that underyling uprobe won't be
 821		 * freed due to ongoing caller's SRCU lock region, so we can
 822		 * return it regardless. Also, if `get` was true, we also have
 823		 * an extra ref for the caller to own. This is used in dup_utask().
 824		 */
 825		return uprobe;
 826	}
 827	default:
 828		WARN(1, "unknown hprobe state %d", hstate);
 829		return NULL;
 830	}
 831}
 832
 833static __always_inline
 834int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
 835	       const struct uprobe *r)
 836{
 837	if (l_inode < r->inode)
 838		return -1;
 839
 840	if (l_inode > r->inode)
 841		return 1;
 842
 843	if (l_offset < r->offset)
 844		return -1;
 845
 846	if (l_offset > r->offset)
 847		return 1;
 848
 849	return 0;
 850}
 851
 852#define __node_2_uprobe(node) \
 853	rb_entry((node), struct uprobe, rb_node)
 
 
 
 
 854
 855struct __uprobe_key {
 856	struct inode *inode;
 857	loff_t offset;
 858};
 
 859
 860static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
 861{
 862	const struct __uprobe_key *a = key;
 863	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
 864}
 865
 866static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
 867{
 868	struct uprobe *u = __node_2_uprobe(a);
 869	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
 870}
 871
 872/*
 873 * Assumes being inside RCU protected region.
 874 * No refcount is taken on returned uprobe.
 875 */
 876static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
 877{
 878	struct __uprobe_key key = {
 879		.inode = inode,
 880		.offset = offset,
 881	};
 882	struct rb_node *node;
 883	unsigned int seq;
 884
 885	lockdep_assert(rcu_read_lock_trace_held());
 
 
 886
 887	do {
 888		seq = read_seqcount_begin(&uprobes_seqcount);
 889		node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key);
 890		/*
 891		 * Lockless RB-tree lookups can result only in false negatives.
 892		 * If the element is found, it is correct and can be returned
 893		 * under RCU protection. If we find nothing, we need to
 894		 * validate that seqcount didn't change. If it did, we have to
 895		 * try again as we might have missed the element (false
 896		 * negative). If seqcount is unchanged, search truly failed.
 897		 */
 898		if (node)
 899			return __node_2_uprobe(node);
 900	} while (read_seqcount_retry(&uprobes_seqcount, seq));
 901
 902	return NULL;
 903}
 904
 905/*
 906 * Attempt to insert a new uprobe into uprobes_tree.
 907 *
 908 * If uprobe already exists (for given inode+offset), we just increment
 909 * refcount of previously existing uprobe.
 910 *
 911 * If not, a provided new instance of uprobe is inserted into the tree (with
 912 * assumed initial refcount == 1).
 913 *
 914 * In any case, we return a uprobe instance that ends up being in uprobes_tree.
 915 * Caller has to clean up new uprobe instance, if it ended up not being
 916 * inserted into the tree.
 917 *
 918 * We assume that uprobes_treelock is held for writing.
 919 */
 920static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
 921{
 922	struct rb_node *node;
 923again:
 924	node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
 925	if (node) {
 926		struct uprobe *u = __node_2_uprobe(node);
 927
 928		if (!try_get_uprobe(u)) {
 929			rb_erase(node, &uprobes_tree);
 930			RB_CLEAR_NODE(&u->rb_node);
 931			goto again;
 932		}
 
 
 
 
 
 933
 934		return u;
 935	}
 936
 937	return uprobe;
 
 
 
 
 
 
 938}
 939
 940/*
 941 * Acquire uprobes_treelock and insert uprobe into uprobes_tree
 942 * (or reuse existing one, see __insert_uprobe() comments above).
 
 
 
 
 943 */
 944static struct uprobe *insert_uprobe(struct uprobe *uprobe)
 945{
 946	struct uprobe *u;
 947
 948	write_lock(&uprobes_treelock);
 949	write_seqcount_begin(&uprobes_seqcount);
 950	u = __insert_uprobe(uprobe);
 951	write_seqcount_end(&uprobes_seqcount);
 952	write_unlock(&uprobes_treelock);
 953
 954	return u;
 955}
 956
 957static void
 958ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
 959{
 960	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
 961		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
 962		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
 963		(unsigned long long) cur_uprobe->ref_ctr_offset,
 964		(unsigned long long) uprobe->ref_ctr_offset);
 965}
 966
 967static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
 968				   loff_t ref_ctr_offset)
 969{
 970	struct uprobe *uprobe, *cur_uprobe;
 971
 972	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
 973	if (!uprobe)
 974		return ERR_PTR(-ENOMEM);
 975
 976	uprobe->inode = inode;
 977	uprobe->offset = offset;
 978	uprobe->ref_ctr_offset = ref_ctr_offset;
 979	INIT_LIST_HEAD(&uprobe->consumers);
 980	init_rwsem(&uprobe->register_rwsem);
 981	init_rwsem(&uprobe->consumer_rwsem);
 982	RB_CLEAR_NODE(&uprobe->rb_node);
 983	refcount_set(&uprobe->ref, 1);
 984
 985	/* add to uprobes_tree, sorted on inode:offset */
 986	cur_uprobe = insert_uprobe(uprobe);
 987	/* a uprobe exists for this inode:offset combination */
 988	if (cur_uprobe != uprobe) {
 989		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
 990			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
 991			put_uprobe(cur_uprobe);
 992			kfree(uprobe);
 993			return ERR_PTR(-EINVAL);
 994		}
 995		kfree(uprobe);
 996		uprobe = cur_uprobe;
 997	}
 998
 999	return uprobe;
1000}
1001
1002static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
1003{
1004	static atomic64_t id;
1005
1006	down_write(&uprobe->consumer_rwsem);
1007	list_add_rcu(&uc->cons_node, &uprobe->consumers);
1008	uc->id = (__u64) atomic64_inc_return(&id);
1009	up_write(&uprobe->consumer_rwsem);
1010}
1011
1012/*
1013 * For uprobe @uprobe, delete the consumer @uc.
1014 * Should never be called with consumer that's not part of @uprobe->consumers.
 
1015 */
1016static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
1017{
 
 
 
1018	down_write(&uprobe->consumer_rwsem);
1019	list_del_rcu(&uc->cons_node);
 
 
 
 
 
 
1020	up_write(&uprobe->consumer_rwsem);
 
 
1021}
1022
1023static int __copy_insn(struct address_space *mapping, struct file *filp,
1024			void *insn, int nbytes, loff_t offset)
1025{
1026	struct page *page;
1027	/*
1028	 * Ensure that the page that has the original instruction is populated
1029	 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
1030	 * see uprobe_register().
1031	 */
1032	if (mapping->a_ops->read_folio)
1033		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
1034	else
1035		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
1036	if (IS_ERR(page))
1037		return PTR_ERR(page);
1038
1039	copy_from_page(page, offset, insn, nbytes);
1040	put_page(page);
1041
1042	return 0;
1043}
1044
1045static int copy_insn(struct uprobe *uprobe, struct file *filp)
1046{
1047	struct address_space *mapping = uprobe->inode->i_mapping;
1048	loff_t offs = uprobe->offset;
1049	void *insn = &uprobe->arch.insn;
1050	int size = sizeof(uprobe->arch.insn);
1051	int len, err = -EIO;
1052
1053	/* Copy only available bytes, -EIO if nothing was read */
1054	do {
1055		if (offs >= i_size_read(uprobe->inode))
1056			break;
1057
1058		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
1059		err = __copy_insn(mapping, filp, insn, len, offs);
1060		if (err)
1061			break;
1062
1063		insn += len;
1064		offs += len;
1065		size -= len;
1066	} while (size);
1067
1068	return err;
1069}
1070
1071static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
1072				struct mm_struct *mm, unsigned long vaddr)
1073{
1074	int ret = 0;
1075
1076	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1077		return ret;
1078
1079	/* TODO: move this into _register, until then we abuse this sem. */
1080	down_write(&uprobe->consumer_rwsem);
1081	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1082		goto out;
1083
1084	ret = copy_insn(uprobe, file);
1085	if (ret)
1086		goto out;
1087
1088	ret = -ENOTSUPP;
1089	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
1090		goto out;
1091
1092	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
1093	if (ret)
1094		goto out;
1095
 
 
 
 
1096	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
1097	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
1098
1099 out:
1100	up_write(&uprobe->consumer_rwsem);
1101
1102	return ret;
1103}
1104
1105static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm)
 
1106{
1107	return !uc->filter || uc->filter(uc, mm);
1108}
1109
1110static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
 
1111{
1112	struct uprobe_consumer *uc;
1113	bool ret = false;
1114
1115	down_read(&uprobe->consumer_rwsem);
1116	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1117		ret = consumer_filter(uc, mm);
1118		if (ret)
1119			break;
1120	}
1121	up_read(&uprobe->consumer_rwsem);
1122
1123	return ret;
1124}
1125
1126static int
1127install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
1128			struct vm_area_struct *vma, unsigned long vaddr)
1129{
1130	bool first_uprobe;
1131	int ret;
1132
1133	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
1134	if (ret)
1135		return ret;
1136
1137	/*
1138	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
1139	 * the task can hit this breakpoint right after __replace_page().
1140	 */
1141	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
1142	if (first_uprobe)
1143		set_bit(MMF_HAS_UPROBES, &mm->flags);
1144
1145	ret = set_swbp(&uprobe->arch, mm, vaddr);
1146	if (!ret)
1147		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
1148	else if (first_uprobe)
1149		clear_bit(MMF_HAS_UPROBES, &mm->flags);
1150
1151	return ret;
1152}
1153
1154static int
1155remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
1156{
1157	set_bit(MMF_RECALC_UPROBES, &mm->flags);
1158	return set_orig_insn(&uprobe->arch, mm, vaddr);
1159}
1160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1161struct map_info {
1162	struct map_info *next;
1163	struct mm_struct *mm;
1164	unsigned long vaddr;
1165};
1166
1167static inline struct map_info *free_map_info(struct map_info *info)
1168{
1169	struct map_info *next = info->next;
1170	kfree(info);
1171	return next;
1172}
1173
1174static struct map_info *
1175build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
1176{
1177	unsigned long pgoff = offset >> PAGE_SHIFT;
1178	struct vm_area_struct *vma;
1179	struct map_info *curr = NULL;
1180	struct map_info *prev = NULL;
1181	struct map_info *info;
1182	int more = 0;
1183
1184 again:
1185	i_mmap_lock_read(mapping);
1186	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1187		if (!valid_vma(vma, is_register))
1188			continue;
1189
1190		if (!prev && !more) {
1191			/*
1192			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
1193			 * reclaim. This is optimistic, no harm done if it fails.
1194			 */
1195			prev = kmalloc(sizeof(struct map_info),
1196					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
1197			if (prev)
1198				prev->next = NULL;
1199		}
1200		if (!prev) {
1201			more++;
1202			continue;
1203		}
1204
1205		if (!mmget_not_zero(vma->vm_mm))
1206			continue;
1207
1208		info = prev;
1209		prev = prev->next;
1210		info->next = curr;
1211		curr = info;
1212
1213		info->mm = vma->vm_mm;
1214		info->vaddr = offset_to_vaddr(vma, offset);
1215	}
1216	i_mmap_unlock_read(mapping);
1217
1218	if (!more)
1219		goto out;
1220
1221	prev = curr;
1222	while (curr) {
1223		mmput(curr->mm);
1224		curr = curr->next;
1225	}
1226
1227	do {
1228		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1229		if (!info) {
1230			curr = ERR_PTR(-ENOMEM);
1231			goto out;
1232		}
1233		info->next = prev;
1234		prev = info;
1235	} while (--more);
1236
1237	goto again;
1238 out:
1239	while (prev)
1240		prev = free_map_info(prev);
1241	return curr;
1242}
1243
1244static int
1245register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1246{
1247	bool is_register = !!new;
1248	struct map_info *info;
1249	int err = 0;
1250
1251	percpu_down_write(&dup_mmap_sem);
1252	info = build_map_info(uprobe->inode->i_mapping,
1253					uprobe->offset, is_register);
1254	if (IS_ERR(info)) {
1255		err = PTR_ERR(info);
1256		goto out;
1257	}
1258
1259	while (info) {
1260		struct mm_struct *mm = info->mm;
1261		struct vm_area_struct *vma;
1262
1263		if (err && is_register)
1264			goto free;
1265		/*
1266		 * We take mmap_lock for writing to avoid the race with
1267		 * find_active_uprobe_rcu() which takes mmap_lock for reading.
1268		 * Thus this install_breakpoint() can not make
1269		 * is_trap_at_addr() true right after find_uprobe_rcu()
1270		 * returns NULL in find_active_uprobe_rcu().
1271		 */
1272		mmap_write_lock(mm);
1273		if (check_stable_address_space(mm))
1274			goto unlock;
1275
 
1276		vma = find_vma(mm, info->vaddr);
1277		if (!vma || !valid_vma(vma, is_register) ||
1278		    file_inode(vma->vm_file) != uprobe->inode)
1279			goto unlock;
1280
1281		if (vma->vm_start > info->vaddr ||
1282		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1283			goto unlock;
1284
1285		if (is_register) {
1286			/* consult only the "caller", new consumer. */
1287			if (consumer_filter(new, mm))
 
1288				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1289		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1290			if (!filter_chain(uprobe, mm))
 
1291				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1292		}
1293
1294 unlock:
1295		mmap_write_unlock(mm);
1296 free:
1297		mmput(mm);
1298		info = free_map_info(info);
1299	}
1300 out:
1301	percpu_up_write(&dup_mmap_sem);
1302	return err;
1303}
1304
1305/**
1306 * uprobe_unregister_nosync - unregister an already registered probe.
1307 * @uprobe: uprobe to remove
1308 * @uc: identify which probe if multiple probes are colocated.
1309 */
1310void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc)
1311{
1312	int err;
1313
1314	down_write(&uprobe->register_rwsem);
1315	consumer_del(uprobe, uc);
 
1316	err = register_for_each_vma(uprobe, NULL);
1317	up_write(&uprobe->register_rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
1318
1319	/* TODO : cant unregister? schedule a worker thread */
1320	if (unlikely(err)) {
1321		uprobe_warn(current, "unregister, leaking uprobe");
1322		return;
1323	}
1324
 
 
 
1325	put_uprobe(uprobe);
1326}
1327EXPORT_SYMBOL_GPL(uprobe_unregister_nosync);
1328
1329void uprobe_unregister_sync(void)
1330{
1331	/*
1332	 * Now that handler_chain() and handle_uretprobe_chain() iterate over
1333	 * uprobe->consumers list under RCU protection without holding
1334	 * uprobe->register_rwsem, we need to wait for RCU grace period to
1335	 * make sure that we can't call into just unregistered
1336	 * uprobe_consumer's callbacks anymore. If we don't do that, fast and
1337	 * unlucky enough caller can free consumer's memory and cause
1338	 * handler_chain() or handle_uretprobe_chain() to do an use-after-free.
1339	 */
1340	synchronize_rcu_tasks_trace();
1341	synchronize_srcu(&uretprobes_srcu);
1342}
1343EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
1344
1345/**
1346 * uprobe_register - register a probe
1347 * @inode: the file in which the probe has to be placed.
1348 * @offset: offset from the start of the file.
1349 * @ref_ctr_offset: offset of SDT marker / reference counter
1350 * @uc: information on howto handle the probe..
1351 *
1352 * Apart from the access refcount, uprobe_register() takes a creation
1353 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1354 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1355 * tuple).  Creation refcount stops uprobe_unregister from freeing the
1356 * @uprobe even before the register operation is complete. Creation
1357 * refcount is released when the last @uc for the @uprobe
1358 * unregisters. Caller of uprobe_register() is required to keep @inode
1359 * (and the containing mount) referenced.
1360 *
1361 * Return: pointer to the new uprobe on success or an ERR_PTR on failure.
 
1362 */
1363struct uprobe *uprobe_register(struct inode *inode,
1364				loff_t offset, loff_t ref_ctr_offset,
1365				struct uprobe_consumer *uc)
1366{
1367	struct uprobe *uprobe;
1368	int ret;
1369
1370	/* Uprobe must have at least one set consumer */
1371	if (!uc->handler && !uc->ret_handler)
1372		return ERR_PTR(-EINVAL);
1373
1374	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1375	if (!inode->i_mapping->a_ops->read_folio &&
1376	    !shmem_mapping(inode->i_mapping))
1377		return ERR_PTR(-EIO);
1378	/* Racy, just to catch the obvious mistakes */
1379	if (offset > i_size_read(inode))
1380		return ERR_PTR(-EINVAL);
1381
1382	/*
1383	 * This ensures that copy_from_page(), copy_to_page() and
1384	 * __update_ref_ctr() can't cross page boundary.
1385	 */
1386	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1387		return ERR_PTR(-EINVAL);
1388	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1389		return ERR_PTR(-EINVAL);
1390
 
1391	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
 
 
1392	if (IS_ERR(uprobe))
1393		return uprobe;
1394
 
 
 
 
1395	down_write(&uprobe->register_rwsem);
1396	consumer_add(uprobe, uc);
1397	ret = register_for_each_vma(uprobe, uc);
 
 
 
 
 
1398	up_write(&uprobe->register_rwsem);
 
1399
1400	if (ret) {
1401		uprobe_unregister_nosync(uprobe, uc);
1402		/*
1403		 * Registration might have partially succeeded, so we can have
1404		 * this consumer being called right at this time. We need to
1405		 * sync here. It's ok, it's unlikely slow path.
1406		 */
1407		uprobe_unregister_sync();
1408		return ERR_PTR(ret);
1409	}
1410
1411	return uprobe;
 
 
 
1412}
1413EXPORT_SYMBOL_GPL(uprobe_register);
1414
1415/**
1416 * uprobe_apply - add or remove the breakpoints according to @uc->filter
1417 * @uprobe: uprobe which "owns" the breakpoint
 
 
 
 
 
 
 
 
1418 * @uc: consumer which wants to add more or remove some breakpoints
1419 * @add: add or remove the breakpoints
1420 * Return: 0 on success or negative error code.
1421 */
1422int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
 
1423{
 
1424	struct uprobe_consumer *con;
1425	int ret = -ENOENT;
1426
 
 
 
 
1427	down_write(&uprobe->register_rwsem);
1428
1429	rcu_read_lock_trace();
1430	list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1431		if (con == uc) {
1432			ret = register_for_each_vma(uprobe, add ? uc : NULL);
1433			break;
1434		}
1435	}
1436	rcu_read_unlock_trace();
1437
1438	up_write(&uprobe->register_rwsem);
 
1439
1440	return ret;
1441}
1442
1443static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1444{
1445	VMA_ITERATOR(vmi, mm, 0);
1446	struct vm_area_struct *vma;
1447	int err = 0;
1448
1449	mmap_read_lock(mm);
1450	for_each_vma(vmi, vma) {
1451		unsigned long vaddr;
1452		loff_t offset;
1453
1454		if (!valid_vma(vma, false) ||
1455		    file_inode(vma->vm_file) != uprobe->inode)
1456			continue;
1457
1458		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1459		if (uprobe->offset <  offset ||
1460		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1461			continue;
1462
1463		vaddr = offset_to_vaddr(vma, uprobe->offset);
1464		err |= remove_breakpoint(uprobe, mm, vaddr);
1465	}
1466	mmap_read_unlock(mm);
1467
1468	return err;
1469}
1470
1471static struct rb_node *
1472find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1473{
1474	struct rb_node *n = uprobes_tree.rb_node;
1475
1476	while (n) {
1477		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1478
1479		if (inode < u->inode) {
1480			n = n->rb_left;
1481		} else if (inode > u->inode) {
1482			n = n->rb_right;
1483		} else {
1484			if (max < u->offset)
1485				n = n->rb_left;
1486			else if (min > u->offset)
1487				n = n->rb_right;
1488			else
1489				break;
1490		}
1491	}
1492
1493	return n;
1494}
1495
1496/*
1497 * For a given range in vma, build a list of probes that need to be inserted.
1498 */
1499static void build_probe_list(struct inode *inode,
1500				struct vm_area_struct *vma,
1501				unsigned long start, unsigned long end,
1502				struct list_head *head)
1503{
1504	loff_t min, max;
1505	struct rb_node *n, *t;
1506	struct uprobe *u;
1507
1508	INIT_LIST_HEAD(head);
1509	min = vaddr_to_offset(vma, start);
1510	max = min + (end - start) - 1;
1511
1512	read_lock(&uprobes_treelock);
1513	n = find_node_in_range(inode, min, max);
1514	if (n) {
1515		for (t = n; t; t = rb_prev(t)) {
1516			u = rb_entry(t, struct uprobe, rb_node);
1517			if (u->inode != inode || u->offset < min)
1518				break;
1519			/* if uprobe went away, it's safe to ignore it */
1520			if (try_get_uprobe(u))
1521				list_add(&u->pending_list, head);
1522		}
1523		for (t = n; (t = rb_next(t)); ) {
1524			u = rb_entry(t, struct uprobe, rb_node);
1525			if (u->inode != inode || u->offset > max)
1526				break;
1527			/* if uprobe went away, it's safe to ignore it */
1528			if (try_get_uprobe(u))
1529				list_add(&u->pending_list, head);
1530		}
1531	}
1532	read_unlock(&uprobes_treelock);
1533}
1534
1535/* @vma contains reference counter, not the probed instruction. */
1536static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1537{
1538	struct list_head *pos, *q;
1539	struct delayed_uprobe *du;
1540	unsigned long vaddr;
1541	int ret = 0, err = 0;
1542
1543	mutex_lock(&delayed_uprobe_lock);
1544	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1545		du = list_entry(pos, struct delayed_uprobe, list);
1546
1547		if (du->mm != vma->vm_mm ||
1548		    !valid_ref_ctr_vma(du->uprobe, vma))
1549			continue;
1550
1551		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1552		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1553		if (ret) {
1554			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1555			if (!err)
1556				err = ret;
1557		}
1558		delayed_uprobe_delete(du);
1559	}
1560	mutex_unlock(&delayed_uprobe_lock);
1561	return err;
1562}
1563
1564/*
1565 * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1566 *
1567 * Currently we ignore all errors and always return 0, the callers
1568 * can't handle the failure anyway.
1569 */
1570int uprobe_mmap(struct vm_area_struct *vma)
1571{
1572	struct list_head tmp_list;
1573	struct uprobe *uprobe, *u;
1574	struct inode *inode;
1575
1576	if (no_uprobe_events())
1577		return 0;
1578
1579	if (vma->vm_file &&
1580	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1581	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1582		delayed_ref_ctr_inc(vma);
1583
1584	if (!valid_vma(vma, true))
1585		return 0;
1586
1587	inode = file_inode(vma->vm_file);
1588	if (!inode)
1589		return 0;
1590
1591	mutex_lock(uprobes_mmap_hash(inode));
1592	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1593	/*
1594	 * We can race with uprobe_unregister(), this uprobe can be already
1595	 * removed. But in this case filter_chain() must return false, all
1596	 * consumers have gone away.
1597	 */
1598	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1599		if (!fatal_signal_pending(current) &&
1600		    filter_chain(uprobe, vma->vm_mm)) {
1601			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1602			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1603		}
1604		put_uprobe(uprobe);
1605	}
1606	mutex_unlock(uprobes_mmap_hash(inode));
1607
1608	return 0;
1609}
1610
1611static bool
1612vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1613{
1614	loff_t min, max;
1615	struct inode *inode;
1616	struct rb_node *n;
1617
1618	inode = file_inode(vma->vm_file);
1619
1620	min = vaddr_to_offset(vma, start);
1621	max = min + (end - start) - 1;
1622
1623	read_lock(&uprobes_treelock);
1624	n = find_node_in_range(inode, min, max);
1625	read_unlock(&uprobes_treelock);
1626
1627	return !!n;
1628}
1629
1630/*
1631 * Called in context of a munmap of a vma.
1632 */
1633void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1634{
1635	if (no_uprobe_events() || !valid_vma(vma, false))
1636		return;
1637
1638	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1639		return;
1640
1641	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1642	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1643		return;
1644
1645	if (vma_has_uprobes(vma, start, end))
1646		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1647}
1648
1649static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
1650			    struct vm_area_struct *vma, struct vm_fault *vmf)
1651{
1652	struct xol_area *area = vma->vm_mm->uprobes_state.xol_area;
1653
1654	vmf->page = area->page;
1655	get_page(vmf->page);
1656	return 0;
1657}
1658
1659static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma)
1660{
1661	return -EPERM;
1662}
1663
1664static const struct vm_special_mapping xol_mapping = {
1665	.name = "[uprobes]",
1666	.fault = xol_fault,
1667	.mremap = xol_mremap,
1668};
1669
1670/* Slot allocation for XOL */
1671static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1672{
1673	struct vm_area_struct *vma;
1674	int ret;
1675
1676	if (mmap_write_lock_killable(mm))
1677		return -EINTR;
1678
1679	if (mm->uprobes_state.xol_area) {
1680		ret = -EALREADY;
1681		goto fail;
1682	}
1683
1684	if (!area->vaddr) {
1685		/* Try to map as high as possible, this is only a hint. */
1686		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1687						PAGE_SIZE, 0, 0);
1688		if (IS_ERR_VALUE(area->vaddr)) {
1689			ret = area->vaddr;
1690			goto fail;
1691		}
1692	}
1693
1694	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1695				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1696				&xol_mapping);
1697	if (IS_ERR(vma)) {
1698		ret = PTR_ERR(vma);
1699		goto fail;
1700	}
1701
1702	ret = 0;
1703	/* pairs with get_xol_area() */
1704	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1705 fail:
1706	mmap_write_unlock(mm);
1707
1708	return ret;
1709}
1710
1711void * __weak arch_uprobe_trampoline(unsigned long *psize)
1712{
1713	static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1714
1715	*psize = UPROBE_SWBP_INSN_SIZE;
1716	return &insn;
1717}
1718
1719static struct xol_area *__create_xol_area(unsigned long vaddr)
1720{
1721	struct mm_struct *mm = current->mm;
1722	unsigned long insns_size;
1723	struct xol_area *area;
1724	void *insns;
1725
1726	area = kzalloc(sizeof(*area), GFP_KERNEL);
1727	if (unlikely(!area))
1728		goto out;
1729
1730	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1731			       GFP_KERNEL);
1732	if (!area->bitmap)
1733		goto free_area;
1734
1735	area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1736	if (!area->page)
 
 
 
1737		goto free_bitmap;
 
1738
1739	area->vaddr = vaddr;
1740	init_waitqueue_head(&area->wq);
1741	/* Reserve the 1st slot for get_trampoline_vaddr() */
1742	set_bit(0, area->bitmap);
1743	insns = arch_uprobe_trampoline(&insns_size);
1744	arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
1745
1746	if (!xol_add_vma(mm, area))
1747		return area;
1748
1749	__free_page(area->page);
1750 free_bitmap:
1751	kfree(area->bitmap);
1752 free_area:
1753	kfree(area);
1754 out:
1755	return NULL;
1756}
1757
1758/*
1759 * get_xol_area - Allocate process's xol_area if necessary.
1760 * This area will be used for storing instructions for execution out of line.
1761 *
1762 * Returns the allocated area or NULL.
1763 */
1764static struct xol_area *get_xol_area(void)
1765{
1766	struct mm_struct *mm = current->mm;
1767	struct xol_area *area;
1768
1769	if (!mm->uprobes_state.xol_area)
1770		__create_xol_area(0);
1771
1772	/* Pairs with xol_add_vma() smp_store_release() */
1773	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1774	return area;
1775}
1776
1777/*
1778 * uprobe_clear_state - Free the area allocated for slots.
1779 */
1780void uprobe_clear_state(struct mm_struct *mm)
1781{
1782	struct xol_area *area = mm->uprobes_state.xol_area;
1783
1784	mutex_lock(&delayed_uprobe_lock);
1785	delayed_uprobe_remove(NULL, mm);
1786	mutex_unlock(&delayed_uprobe_lock);
1787
1788	if (!area)
1789		return;
1790
1791	put_page(area->page);
1792	kfree(area->bitmap);
1793	kfree(area);
1794}
1795
1796void uprobe_start_dup_mmap(void)
1797{
1798	percpu_down_read(&dup_mmap_sem);
1799}
1800
1801void uprobe_end_dup_mmap(void)
1802{
1803	percpu_up_read(&dup_mmap_sem);
1804}
1805
1806void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1807{
1808	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1809		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1810		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1811		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1812	}
1813}
1814
1815static unsigned long xol_get_slot_nr(struct xol_area *area)
 
 
 
1816{
1817	unsigned long slot_nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
1818
1819	slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1820	if (slot_nr < UINSNS_PER_PAGE) {
1821		if (!test_and_set_bit(slot_nr, area->bitmap))
1822			return slot_nr;
1823	}
1824
1825	return UINSNS_PER_PAGE;
1826}
1827
1828/*
1829 * xol_get_insn_slot - allocate a slot for xol.
 
1830 */
1831static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask)
1832{
1833	struct xol_area *area = get_xol_area();
1834	unsigned long slot_nr;
1835
 
1836	if (!area)
1837		return false;
1838
1839	wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE);
 
 
1840
1841	utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES;
1842	arch_uprobe_copy_ixol(area->page, utask->xol_vaddr,
1843			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1844	return true;
 
1845}
1846
1847/*
1848 * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot()
 
 
1849 */
1850static void xol_free_insn_slot(struct uprobe_task *utask)
1851{
1852	struct xol_area *area = current->mm->uprobes_state.xol_area;
1853	unsigned long offset = utask->xol_vaddr - area->vaddr;
1854	unsigned int slot_nr;
1855
1856	utask->xol_vaddr = 0;
1857	/* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */
1858	if (WARN_ON_ONCE(offset >= PAGE_SIZE))
1859		return;
1860
1861	slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1862	clear_bit(slot_nr, area->bitmap);
1863	smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1864	if (waitqueue_active(&area->wq))
1865		wake_up(&area->wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866}
1867
1868void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1869				  void *src, unsigned long len)
1870{
1871	/* Initialize the slot */
1872	copy_to_page(page, vaddr, src, len);
1873
1874	/*
1875	 * We probably need flush_icache_user_page() but it needs vma.
1876	 * This should work on most of architectures by default. If
1877	 * architecture needs to do something different it can define
1878	 * its own version of the function.
1879	 */
1880	flush_dcache_page(page);
1881}
1882
1883/**
1884 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1885 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1886 * instruction.
1887 * Return the address of the breakpoint instruction.
1888 */
1889unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1890{
1891	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1892}
1893
1894unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1895{
1896	struct uprobe_task *utask = current->utask;
1897
1898	if (unlikely(utask && utask->active_uprobe))
1899		return utask->vaddr;
1900
1901	return instruction_pointer(regs);
1902}
1903
1904static struct return_instance *free_ret_instance(struct return_instance *ri, bool cleanup_hprobe)
1905{
1906	struct return_instance *next = ri->next;
1907
1908	if (cleanup_hprobe) {
1909		enum hprobe_state hstate;
1910
1911		(void)hprobe_consume(&ri->hprobe, &hstate);
1912		hprobe_finalize(&ri->hprobe, hstate);
1913	}
1914
1915	kfree_rcu(ri, rcu);
1916	return next;
1917}
1918
1919/*
1920 * Called with no locks held.
1921 * Called in context of an exiting or an exec-ing thread.
1922 */
1923void uprobe_free_utask(struct task_struct *t)
1924{
1925	struct uprobe_task *utask = t->utask;
1926	struct return_instance *ri;
1927
1928	if (!utask)
1929		return;
1930
1931	t->utask = NULL;
1932	WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr);
1933
1934	timer_delete_sync(&utask->ri_timer);
1935
1936	ri = utask->return_instances;
1937	while (ri)
1938		ri = free_ret_instance(ri, true /* cleanup_hprobe */);
1939
 
1940	kfree(utask);
1941}
1942
1943#define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */
1944
1945#define for_each_ret_instance_rcu(pos, head) \
1946	for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next))
1947
1948static void ri_timer(struct timer_list *timer)
1949{
1950	struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer);
1951	struct return_instance *ri;
1952
1953	/* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */
1954	guard(srcu)(&uretprobes_srcu);
1955	/* RCU protects return_instance from freeing. */
1956	guard(rcu)();
1957
1958	for_each_ret_instance_rcu(ri, utask->return_instances)
1959		hprobe_expire(&ri->hprobe, false);
1960}
1961
1962static struct uprobe_task *alloc_utask(void)
1963{
1964	struct uprobe_task *utask;
1965
1966	utask = kzalloc(sizeof(*utask), GFP_KERNEL);
1967	if (!utask)
1968		return NULL;
1969
1970	timer_setup(&utask->ri_timer, ri_timer, 0);
1971
1972	return utask;
1973}
1974
1975/*
1976 * Allocate a uprobe_task object for the task if necessary.
1977 * Called when the thread hits a breakpoint.
1978 *
1979 * Returns:
1980 * - pointer to new uprobe_task on success
1981 * - NULL otherwise
1982 */
1983static struct uprobe_task *get_utask(void)
1984{
1985	if (!current->utask)
1986		current->utask = alloc_utask();
1987	return current->utask;
1988}
1989
1990static size_t ri_size(int consumers_cnt)
1991{
1992	struct return_instance *ri;
1993
1994	return sizeof(*ri) + sizeof(ri->consumers[0]) * consumers_cnt;
1995}
1996
1997#define DEF_CNT 4
1998
1999static struct return_instance *alloc_return_instance(void)
2000{
2001	struct return_instance *ri;
2002
2003	ri = kzalloc(ri_size(DEF_CNT), GFP_KERNEL);
2004	if (!ri)
2005		return ZERO_SIZE_PTR;
2006
2007	ri->consumers_cnt = DEF_CNT;
2008	return ri;
2009}
2010
2011static struct return_instance *dup_return_instance(struct return_instance *old)
2012{
2013	size_t size = ri_size(old->consumers_cnt);
2014
2015	return kmemdup(old, size, GFP_KERNEL);
2016}
2017
2018static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
2019{
2020	struct uprobe_task *n_utask;
2021	struct return_instance **p, *o, *n;
2022	struct uprobe *uprobe;
2023
2024	n_utask = alloc_utask();
2025	if (!n_utask)
2026		return -ENOMEM;
2027	t->utask = n_utask;
2028
2029	/* protect uprobes from freeing, we'll need try_get_uprobe() them */
2030	guard(srcu)(&uretprobes_srcu);
2031
2032	p = &n_utask->return_instances;
2033	for (o = o_utask->return_instances; o; o = o->next) {
2034		n = dup_return_instance(o);
2035		if (!n)
2036			return -ENOMEM;
2037
2038		/* if uprobe is non-NULL, we'll have an extra refcount for uprobe */
2039		uprobe = hprobe_expire(&o->hprobe, true);
2040
2041		/*
2042		 * New utask will have stable properly refcounted uprobe or
2043		 * NULL. Even if we failed to get refcounted uprobe, we still
2044		 * need to preserve full set of return_instances for proper
2045		 * uretprobe handling and nesting in forked task.
2046		 */
2047		hprobe_init_stable(&n->hprobe, uprobe);
2048
2049		n->next = NULL;
2050		rcu_assign_pointer(*p, n);
2051		p = &n->next;
2052
2053		n_utask->depth++;
2054	}
2055
2056	return 0;
2057}
2058
 
 
 
 
 
 
2059static void dup_xol_work(struct callback_head *work)
2060{
2061	if (current->flags & PF_EXITING)
2062		return;
2063
2064	if (!__create_xol_area(current->utask->dup_xol_addr) &&
2065			!fatal_signal_pending(current))
2066		uprobe_warn(current, "dup xol area");
2067}
2068
2069/*
2070 * Called in context of a new clone/fork from copy_process.
2071 */
2072void uprobe_copy_process(struct task_struct *t, unsigned long flags)
2073{
2074	struct uprobe_task *utask = current->utask;
2075	struct mm_struct *mm = current->mm;
2076	struct xol_area *area;
2077
2078	t->utask = NULL;
2079
2080	if (!utask || !utask->return_instances)
2081		return;
2082
2083	if (mm == t->mm && !(flags & CLONE_VFORK))
2084		return;
2085
2086	if (dup_utask(t, utask))
2087		return uprobe_warn(t, "dup ret instances");
2088
2089	/* The task can fork() after dup_xol_work() fails */
2090	area = mm->uprobes_state.xol_area;
2091	if (!area)
2092		return uprobe_warn(t, "dup xol area");
2093
2094	if (mm == t->mm)
2095		return;
2096
2097	t->utask->dup_xol_addr = area->vaddr;
2098	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
2099	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
2100}
2101
2102/*
2103 * Current area->vaddr notion assume the trampoline address is always
2104 * equal area->vaddr.
2105 *
2106 * Returns -1 in case the xol_area is not allocated.
2107 */
2108unsigned long uprobe_get_trampoline_vaddr(void)
2109{
2110	struct xol_area *area;
2111	unsigned long trampoline_vaddr = -1;
2112
2113	/* Pairs with xol_add_vma() smp_store_release() */
2114	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
2115	if (area)
2116		trampoline_vaddr = area->vaddr;
2117
2118	return trampoline_vaddr;
2119}
2120
2121static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
2122					struct pt_regs *regs)
2123{
2124	struct return_instance *ri = utask->return_instances;
2125	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
2126
2127	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
2128		ri = free_ret_instance(ri, true /* cleanup_hprobe */);
2129		utask->depth--;
2130	}
2131	rcu_assign_pointer(utask->return_instances, ri);
2132}
2133
2134static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs,
2135			      struct return_instance *ri)
2136{
2137	struct uprobe_task *utask = current->utask;
 
2138	unsigned long orig_ret_vaddr, trampoline_vaddr;
2139	bool chained;
2140	int srcu_idx;
2141
2142	if (!get_xol_area())
2143		goto free;
 
 
 
 
2144
2145	if (utask->depth >= MAX_URETPROBE_DEPTH) {
2146		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
2147				" nestedness limit pid/tgid=%d/%d\n",
2148				current->pid, current->tgid);
2149		goto free;
2150	}
2151
2152	trampoline_vaddr = uprobe_get_trampoline_vaddr();
 
 
 
 
2153	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
2154	if (orig_ret_vaddr == -1)
2155		goto free;
2156
2157	/* drop the entries invalidated by longjmp() */
2158	chained = (orig_ret_vaddr == trampoline_vaddr);
2159	cleanup_return_instances(utask, chained, regs);
2160
2161	/*
2162	 * We don't want to keep trampoline address in stack, rather keep the
2163	 * original return address of first caller thru all the consequent
2164	 * instances. This also makes breakpoint unwrapping easier.
2165	 */
2166	if (chained) {
2167		if (!utask->return_instances) {
2168			/*
2169			 * This situation is not possible. Likely we have an
2170			 * attack from user-space.
2171			 */
2172			uprobe_warn(current, "handle tail call");
2173			goto free;
2174		}
2175		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
2176	}
2177
2178	/* __srcu_read_lock() because SRCU lock survives switch to user space */
2179	srcu_idx = __srcu_read_lock(&uretprobes_srcu);
2180
2181	ri->func = instruction_pointer(regs);
2182	ri->stack = user_stack_pointer(regs);
2183	ri->orig_ret_vaddr = orig_ret_vaddr;
2184	ri->chained = chained;
2185
2186	utask->depth++;
2187
2188	hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx);
2189	ri->next = utask->return_instances;
2190	rcu_assign_pointer(utask->return_instances, ri);
2191
2192	mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD);
2193
2194	return;
2195free:
2196	kfree(ri);
2197}
2198
2199/* Prepare to single-step probed instruction out of line. */
2200static int
2201pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
2202{
2203	struct uprobe_task *utask = current->utask;
 
2204	int err;
2205
2206	if (!try_get_uprobe(uprobe))
2207		return -EINVAL;
 
2208
2209	if (!xol_get_insn_slot(uprobe, utask)) {
2210		err = -ENOMEM;
2211		goto err_out;
2212	}
2213
 
2214	utask->vaddr = bp_vaddr;
 
2215	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
2216	if (unlikely(err)) {
2217		xol_free_insn_slot(utask);
2218		goto err_out;
2219	}
2220
2221	utask->active_uprobe = uprobe;
2222	utask->state = UTASK_SSTEP;
2223	return 0;
2224err_out:
2225	put_uprobe(uprobe);
2226	return err;
2227}
2228
2229/*
2230 * If we are singlestepping, then ensure this thread is not connected to
2231 * non-fatal signals until completion of singlestep.  When xol insn itself
2232 * triggers the signal,  restart the original insn even if the task is
2233 * already SIGKILL'ed (since coredump should report the correct ip).  This
2234 * is even more important if the task has a handler for SIGSEGV/etc, The
2235 * _same_ instruction should be repeated again after return from the signal
2236 * handler, and SSTEP can never finish in this case.
2237 */
2238bool uprobe_deny_signal(void)
2239{
2240	struct task_struct *t = current;
2241	struct uprobe_task *utask = t->utask;
2242
2243	if (likely(!utask || !utask->active_uprobe))
2244		return false;
2245
2246	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
2247
2248	if (task_sigpending(t)) {
2249		spin_lock_irq(&t->sighand->siglock);
2250		clear_tsk_thread_flag(t, TIF_SIGPENDING);
2251		spin_unlock_irq(&t->sighand->siglock);
2252
2253		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
2254			utask->state = UTASK_SSTEP_TRAPPED;
2255			set_tsk_thread_flag(t, TIF_UPROBE);
2256		}
2257	}
2258
2259	return true;
2260}
2261
2262static void mmf_recalc_uprobes(struct mm_struct *mm)
2263{
2264	VMA_ITERATOR(vmi, mm, 0);
2265	struct vm_area_struct *vma;
2266
2267	for_each_vma(vmi, vma) {
2268		if (!valid_vma(vma, false))
2269			continue;
2270		/*
2271		 * This is not strictly accurate, we can race with
2272		 * uprobe_unregister() and see the already removed
2273		 * uprobe if delete_uprobe() was not yet called.
2274		 * Or this uprobe can be filtered out.
2275		 */
2276		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2277			return;
2278	}
2279
2280	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2281}
2282
2283static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2284{
2285	struct page *page;
2286	uprobe_opcode_t opcode;
2287	int result;
2288
2289	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2290		return -EINVAL;
2291
2292	pagefault_disable();
2293	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2294	pagefault_enable();
2295
2296	if (likely(result == 0))
2297		goto out;
2298
2299	result = get_user_pages(vaddr, 1, FOLL_FORCE, &page);
 
 
 
 
 
 
 
2300	if (result < 0)
2301		return result;
2302
2303	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2304	put_page(page);
2305 out:
2306	/* This needs to return true for any variant of the trap insn */
2307	return is_trap_insn(&opcode);
2308}
2309
2310/* assumes being inside RCU protected region */
2311static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp)
2312{
2313	struct mm_struct *mm = current->mm;
2314	struct uprobe *uprobe = NULL;
2315	struct vm_area_struct *vma;
2316
2317	mmap_read_lock(mm);
2318	vma = vma_lookup(mm, bp_vaddr);
2319	if (vma) {
2320		if (valid_vma(vma, false)) {
2321			struct inode *inode = file_inode(vma->vm_file);
2322			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2323
2324			uprobe = find_uprobe_rcu(inode, offset);
2325		}
2326
2327		if (!uprobe)
2328			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2329	} else {
2330		*is_swbp = -EFAULT;
2331	}
2332
2333	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2334		mmf_recalc_uprobes(mm);
2335	mmap_read_unlock(mm);
2336
2337	return uprobe;
2338}
2339
2340static struct return_instance*
2341push_consumer(struct return_instance *ri, int idx, __u64 id, __u64 cookie)
2342{
2343	if (unlikely(ri == ZERO_SIZE_PTR))
2344		return ri;
2345
2346	if (unlikely(idx >= ri->consumers_cnt)) {
2347		struct return_instance *old_ri = ri;
2348
2349		ri->consumers_cnt += DEF_CNT;
2350		ri = krealloc(old_ri, ri_size(old_ri->consumers_cnt), GFP_KERNEL);
2351		if (!ri) {
2352			kfree(old_ri);
2353			return ZERO_SIZE_PTR;
2354		}
2355	}
2356
2357	ri->consumers[idx].id = id;
2358	ri->consumers[idx].cookie = cookie;
2359	return ri;
2360}
2361
2362static struct return_consumer *
2363return_consumer_find(struct return_instance *ri, int *iter, int id)
2364{
2365	struct return_consumer *ric;
2366	int idx = *iter;
2367
2368	for (ric = &ri->consumers[idx]; idx < ri->consumers_cnt; idx++, ric++) {
2369		if (ric->id == id) {
2370			*iter = idx + 1;
2371			return ric;
2372		}
2373	}
2374	return NULL;
2375}
2376
2377static bool ignore_ret_handler(int rc)
2378{
2379	return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE;
2380}
2381
2382static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2383{
2384	struct uprobe_consumer *uc;
2385	bool has_consumers = false, remove = true;
2386	struct return_instance *ri = NULL;
2387	int push_idx = 0;
2388
2389	current->utask->auprobe = &uprobe->arch;
2390
2391	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2392		bool session = uc->handler && uc->ret_handler;
2393		__u64 cookie = 0;
2394		int rc = 0;
2395
2396		if (uc->handler) {
2397			rc = uc->handler(uc, regs, &cookie);
2398			WARN(rc < 0 || rc > 2,
2399				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2400		}
2401
2402		remove &= rc == UPROBE_HANDLER_REMOVE;
2403		has_consumers = true;
2404
2405		if (!uc->ret_handler || ignore_ret_handler(rc))
2406			continue;
2407
2408		if (!ri)
2409			ri = alloc_return_instance();
2410
2411		if (session)
2412			ri = push_consumer(ri, push_idx++, uc->id, cookie);
2413	}
2414	current->utask->auprobe = NULL;
2415
2416	if (!ZERO_OR_NULL_PTR(ri)) {
2417		/*
2418		 * The push_idx value has the final number of return consumers,
2419		 * and ri->consumers_cnt has number of allocated consumers.
2420		 */
2421		ri->consumers_cnt = push_idx;
2422		prepare_uretprobe(uprobe, regs, ri);
2423	}
2424
2425	if (remove && has_consumers) {
2426		down_read(&uprobe->register_rwsem);
2427
2428		/* re-check that removal is still required, this time under lock */
2429		if (!filter_chain(uprobe, current->mm)) {
2430			WARN_ON(!uprobe_is_active(uprobe));
2431			unapply_uprobe(uprobe, current->mm);
2432		}
2433
2434		up_read(&uprobe->register_rwsem);
 
 
2435	}
 
2436}
2437
2438static void
2439handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs)
2440{
2441	struct return_consumer *ric;
2442	struct uprobe_consumer *uc;
2443	int ric_idx = 0;
2444
2445	/* all consumers unsubscribed meanwhile */
2446	if (unlikely(!uprobe))
2447		return;
2448
2449	rcu_read_lock_trace();
2450	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2451		bool session = uc->handler && uc->ret_handler;
2452
2453		if (uc->ret_handler) {
2454			ric = return_consumer_find(ri, &ric_idx, uc->id);
2455			if (!session || ric)
2456				uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL);
2457		}
2458	}
2459	rcu_read_unlock_trace();
2460}
2461
2462static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2463{
2464	bool chained;
2465
2466	do {
2467		chained = ri->chained;
2468		ri = ri->next;	/* can't be NULL if chained */
2469	} while (chained);
2470
2471	return ri;
2472}
2473
2474void uprobe_handle_trampoline(struct pt_regs *regs)
2475{
2476	struct uprobe_task *utask;
2477	struct return_instance *ri, *next;
2478	struct uprobe *uprobe;
2479	enum hprobe_state hstate;
2480	bool valid;
2481
2482	utask = current->utask;
2483	if (!utask)
2484		goto sigill;
2485
2486	ri = utask->return_instances;
2487	if (!ri)
2488		goto sigill;
2489
2490	do {
2491		/*
2492		 * We should throw out the frames invalidated by longjmp().
2493		 * If this chain is valid, then the next one should be alive
2494		 * or NULL; the latter case means that nobody but ri->func
2495		 * could hit this trampoline on return. TODO: sigaltstack().
2496		 */
2497		next = find_next_ret_chain(ri);
2498		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2499
2500		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2501		do {
2502			/* pop current instance from the stack of pending return instances,
2503			 * as it's not pending anymore: we just fixed up original
2504			 * instruction pointer in regs and are about to call handlers;
2505			 * this allows fixup_uretprobe_trampoline_entries() to properly fix up
2506			 * captured stack traces from uretprobe handlers, in which pending
2507			 * trampoline addresses on the stack are replaced with correct
2508			 * original return addresses
2509			 */
2510			rcu_assign_pointer(utask->return_instances, ri->next);
2511
2512			uprobe = hprobe_consume(&ri->hprobe, &hstate);
2513			if (valid)
2514				handle_uretprobe_chain(ri, uprobe, regs);
2515			hprobe_finalize(&ri->hprobe, hstate);
2516
2517			/* We already took care of hprobe, no need to waste more time on that. */
2518			ri = free_ret_instance(ri, false /* !cleanup_hprobe */);
2519			utask->depth--;
2520		} while (ri != next);
2521	} while (!valid);
2522
 
2523	return;
2524
2525sigill:
2526	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2527	force_sig(SIGILL);
 
2528}
2529
2530bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2531{
2532	return false;
2533}
2534
2535bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2536					struct pt_regs *regs)
2537{
2538	return true;
2539}
2540
2541/*
2542 * Run handler and ask thread to singlestep.
2543 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2544 */
2545static void handle_swbp(struct pt_regs *regs)
2546{
2547	struct uprobe *uprobe;
2548	unsigned long bp_vaddr;
2549	int is_swbp;
2550
2551	bp_vaddr = uprobe_get_swbp_addr(regs);
2552	if (bp_vaddr == uprobe_get_trampoline_vaddr())
2553		return uprobe_handle_trampoline(regs);
2554
2555	rcu_read_lock_trace();
2556
2557	uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2558	if (!uprobe) {
2559		if (is_swbp > 0) {
2560			/* No matching uprobe; signal SIGTRAP. */
2561			force_sig(SIGTRAP);
2562		} else {
2563			/*
2564			 * Either we raced with uprobe_unregister() or we can't
2565			 * access this memory. The latter is only possible if
2566			 * another thread plays with our ->mm. In both cases
2567			 * we can simply restart. If this vma was unmapped we
2568			 * can pretend this insn was not executed yet and get
2569			 * the (correct) SIGSEGV after restart.
2570			 */
2571			instruction_pointer_set(regs, bp_vaddr);
2572		}
2573		goto out;
2574	}
2575
2576	/* change it in advance for ->handler() and restart */
2577	instruction_pointer_set(regs, bp_vaddr);
2578
2579	/*
2580	 * TODO: move copy_insn/etc into _register and remove this hack.
2581	 * After we hit the bp, _unregister + _register can install the
2582	 * new and not-yet-analyzed uprobe at the same address, restart.
2583	 */
2584	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2585		goto out;
2586
2587	/*
2588	 * Pairs with the smp_wmb() in prepare_uprobe().
2589	 *
2590	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2591	 * we must also see the stores to &uprobe->arch performed by the
2592	 * prepare_uprobe() call.
2593	 */
2594	smp_rmb();
2595
2596	/* Tracing handlers use ->utask to communicate with fetch methods */
2597	if (!get_utask())
2598		goto out;
2599
2600	if (arch_uprobe_ignore(&uprobe->arch, regs))
2601		goto out;
2602
2603	handler_chain(uprobe, regs);
2604
2605	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2606		goto out;
2607
2608	if (pre_ssout(uprobe, regs, bp_vaddr))
2609		goto out;
2610
 
2611out:
2612	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2613	rcu_read_unlock_trace();
2614}
2615
2616/*
2617 * Perform required fix-ups and disable singlestep.
2618 * Allow pending signals to take effect.
2619 */
2620static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2621{
2622	struct uprobe *uprobe;
2623	int err = 0;
2624
2625	uprobe = utask->active_uprobe;
2626	if (utask->state == UTASK_SSTEP_ACK)
2627		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2628	else if (utask->state == UTASK_SSTEP_TRAPPED)
2629		arch_uprobe_abort_xol(&uprobe->arch, regs);
2630	else
2631		WARN_ON_ONCE(1);
2632
2633	put_uprobe(uprobe);
2634	utask->active_uprobe = NULL;
2635	utask->state = UTASK_RUNNING;
2636	xol_free_insn_slot(utask);
2637
2638	spin_lock_irq(&current->sighand->siglock);
2639	recalc_sigpending(); /* see uprobe_deny_signal() */
2640	spin_unlock_irq(&current->sighand->siglock);
2641
2642	if (unlikely(err)) {
2643		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2644		force_sig(SIGILL);
2645	}
2646}
2647
2648/*
2649 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2650 * allows the thread to return from interrupt. After that handle_swbp()
2651 * sets utask->active_uprobe.
2652 *
2653 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2654 * and allows the thread to return from interrupt.
2655 *
2656 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2657 * uprobe_notify_resume().
2658 */
2659void uprobe_notify_resume(struct pt_regs *regs)
2660{
2661	struct uprobe_task *utask;
2662
2663	clear_thread_flag(TIF_UPROBE);
2664
2665	utask = current->utask;
2666	if (utask && utask->active_uprobe)
2667		handle_singlestep(utask, regs);
2668	else
2669		handle_swbp(regs);
2670}
2671
2672/*
2673 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2674 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2675 */
2676int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2677{
2678	if (!current->mm)
2679		return 0;
2680
2681	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2682	    (!current->utask || !current->utask->return_instances))
2683		return 0;
2684
2685	set_thread_flag(TIF_UPROBE);
2686	return 1;
2687}
2688
2689/*
2690 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2691 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2692 */
2693int uprobe_post_sstep_notifier(struct pt_regs *regs)
2694{
2695	struct uprobe_task *utask = current->utask;
2696
2697	if (!current->mm || !utask || !utask->active_uprobe)
2698		/* task is currently not uprobed */
2699		return 0;
2700
2701	utask->state = UTASK_SSTEP_ACK;
2702	set_thread_flag(TIF_UPROBE);
2703	return 1;
2704}
2705
2706static struct notifier_block uprobe_exception_nb = {
2707	.notifier_call		= arch_uprobe_exception_notify,
2708	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2709};
2710
2711void __init uprobes_init(void)
2712{
2713	int i;
2714
2715	for (i = 0; i < UPROBES_HASH_SZ; i++)
2716		mutex_init(&uprobes_mmap_mutex[i]);
2717
2718	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2719}