Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
   3 * Copyright (c) 2007-2008 Intel Corporation
   4 *   Jesse Barnes <jesse.barnes@intel.com>
   5 * Copyright 2010 Red Hat, Inc.
   6 *
   7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
   8 * FB layer.
   9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
  10 *
  11 * Permission is hereby granted, free of charge, to any person obtaining a
  12 * copy of this software and associated documentation files (the "Software"),
  13 * to deal in the Software without restriction, including without limitation
  14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
  15 * and/or sell copies of the Software, and to permit persons to whom the
  16 * Software is furnished to do so, subject to the following conditions:
  17 *
  18 * The above copyright notice and this permission notice (including the
  19 * next paragraph) shall be included in all copies or substantial portions
  20 * of the Software.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  28 * DEALINGS IN THE SOFTWARE.
  29 */
  30
 
 
 
  31#include <linux/hdmi.h>
  32#include <linux/i2c.h>
  33#include <linux/kernel.h>
  34#include <linux/module.h>
 
 
  35#include <linux/slab.h>
  36#include <linux/vga_switcheroo.h>
  37
  38#include <drm/drm_displayid.h>
  39#include <drm/drm_drv.h>
  40#include <drm/drm_edid.h>
 
  41#include <drm/drm_encoder.h>
  42#include <drm/drm_print.h>
  43#include <drm/drm_scdc_helper.h>
  44
  45#include "drm_crtc_internal.h"
 
 
  46
  47#define version_greater(edid, maj, min) \
  48	(((edid)->version > (maj)) || \
  49	 ((edid)->version == (maj) && (edid)->revision > (min)))
 
  50
  51#define EDID_EST_TIMINGS 16
  52#define EDID_STD_TIMINGS 8
  53#define EDID_DETAILED_TIMINGS 4
  54
  55/*
  56 * EDID blocks out in the wild have a variety of bugs, try to collect
  57 * them here (note that userspace may work around broken monitors first,
  58 * but fixes should make their way here so that the kernel "just works"
  59 * on as many displays as possible).
  60 */
  61
  62/* First detailed mode wrong, use largest 60Hz mode */
  63#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
  64/* Reported 135MHz pixel clock is too high, needs adjustment */
  65#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
  66/* Prefer the largest mode at 75 Hz */
  67#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
  68/* Detail timing is in cm not mm */
  69#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
  70/* Detailed timing descriptors have bogus size values, so just take the
  71 * maximum size and use that.
  72 */
  73#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
  74/* use +hsync +vsync for detailed mode */
  75#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
  76/* Force reduced-blanking timings for detailed modes */
  77#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
  78/* Force 8bpc */
  79#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
  80/* Force 12bpc */
  81#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
  82/* Force 6bpc */
  83#define EDID_QUIRK_FORCE_6BPC			(1 << 10)
  84/* Force 10bpc */
  85#define EDID_QUIRK_FORCE_10BPC			(1 << 11)
  86/* Non desktop display (i.e. HMD) */
  87#define EDID_QUIRK_NON_DESKTOP			(1 << 12)
 
 
 
 
  88
  89struct detailed_mode_closure {
  90	struct drm_connector *connector;
  91	struct edid *edid;
  92	bool preferred;
  93	u32 quirks;
  94	int modes;
  95};
  96
 
 
 
 
 
  97#define LEVEL_DMT	0
  98#define LEVEL_GTF	1
  99#define LEVEL_GTF2	2
 100#define LEVEL_CVT	3
 101
 
 
 
 
 
 
 
 
 
 102static const struct edid_quirk {
 103	char vendor[4];
 104	int product_id;
 105	u32 quirks;
 106} edid_quirk_list[] = {
 107	/* Acer AL1706 */
 108	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
 109	/* Acer F51 */
 110	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
 111
 112	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
 113	{ "AEO", 0, EDID_QUIRK_FORCE_6BPC },
 
 
 
 114
 115	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
 116	{ "BOE", 0x78b, EDID_QUIRK_FORCE_6BPC },
 117
 118	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
 119	{ "CPT", 0x17df, EDID_QUIRK_FORCE_6BPC },
 120
 121	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
 122	{ "SDC", 0x3652, EDID_QUIRK_FORCE_6BPC },
 123
 124	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
 125	{ "BOE", 0x0771, EDID_QUIRK_FORCE_6BPC },
 126
 127	/* Belinea 10 15 55 */
 128	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
 129	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
 130
 131	/* Envision Peripherals, Inc. EN-7100e */
 132	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
 133	/* Envision EN2028 */
 134	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
 135
 136	/* Funai Electronics PM36B */
 137	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
 138	  EDID_QUIRK_DETAILED_IN_CM },
 
 
 
 
 
 
 139
 140	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
 141	{ "LGD", 764, EDID_QUIRK_FORCE_10BPC },
 142
 143	/* LG Philips LCD LP154W01-A5 */
 144	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
 145	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
 146
 147	/* Samsung SyncMaster 205BW.  Note: irony */
 148	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
 149	/* Samsung SyncMaster 22[5-6]BW */
 150	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
 151	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
 152
 153	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
 154	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
 155
 156	/* ViewSonic VA2026w */
 157	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
 158
 159	/* Medion MD 30217 PG */
 160	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
 161
 162	/* Lenovo G50 */
 163	{ "SDC", 18514, EDID_QUIRK_FORCE_6BPC },
 164
 165	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
 166	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
 167
 168	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
 169	{ "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
 170
 171	/* Valve Index Headset */
 172	{ "VLV", 0x91a8, EDID_QUIRK_NON_DESKTOP },
 173	{ "VLV", 0x91b0, EDID_QUIRK_NON_DESKTOP },
 174	{ "VLV", 0x91b1, EDID_QUIRK_NON_DESKTOP },
 175	{ "VLV", 0x91b2, EDID_QUIRK_NON_DESKTOP },
 176	{ "VLV", 0x91b3, EDID_QUIRK_NON_DESKTOP },
 177	{ "VLV", 0x91b4, EDID_QUIRK_NON_DESKTOP },
 178	{ "VLV", 0x91b5, EDID_QUIRK_NON_DESKTOP },
 179	{ "VLV", 0x91b6, EDID_QUIRK_NON_DESKTOP },
 180	{ "VLV", 0x91b7, EDID_QUIRK_NON_DESKTOP },
 181	{ "VLV", 0x91b8, EDID_QUIRK_NON_DESKTOP },
 182	{ "VLV", 0x91b9, EDID_QUIRK_NON_DESKTOP },
 183	{ "VLV", 0x91ba, EDID_QUIRK_NON_DESKTOP },
 184	{ "VLV", 0x91bb, EDID_QUIRK_NON_DESKTOP },
 185	{ "VLV", 0x91bc, EDID_QUIRK_NON_DESKTOP },
 186	{ "VLV", 0x91bd, EDID_QUIRK_NON_DESKTOP },
 187	{ "VLV", 0x91be, EDID_QUIRK_NON_DESKTOP },
 188	{ "VLV", 0x91bf, EDID_QUIRK_NON_DESKTOP },
 189
 190	/* HTC Vive and Vive Pro VR Headsets */
 191	{ "HVR", 0xaa01, EDID_QUIRK_NON_DESKTOP },
 192	{ "HVR", 0xaa02, EDID_QUIRK_NON_DESKTOP },
 193
 194	/* Oculus Rift DK1, DK2, and CV1 VR Headsets */
 195	{ "OVR", 0x0001, EDID_QUIRK_NON_DESKTOP },
 196	{ "OVR", 0x0003, EDID_QUIRK_NON_DESKTOP },
 197	{ "OVR", 0x0004, EDID_QUIRK_NON_DESKTOP },
 
 198
 199	/* Windows Mixed Reality Headsets */
 200	{ "ACR", 0x7fce, EDID_QUIRK_NON_DESKTOP },
 201	{ "HPN", 0x3515, EDID_QUIRK_NON_DESKTOP },
 202	{ "LEN", 0x0408, EDID_QUIRK_NON_DESKTOP },
 203	{ "LEN", 0xb800, EDID_QUIRK_NON_DESKTOP },
 204	{ "FUJ", 0x1970, EDID_QUIRK_NON_DESKTOP },
 205	{ "DEL", 0x7fce, EDID_QUIRK_NON_DESKTOP },
 206	{ "SEC", 0x144a, EDID_QUIRK_NON_DESKTOP },
 207	{ "AUS", 0xc102, EDID_QUIRK_NON_DESKTOP },
 208
 209	/* Sony PlayStation VR Headset */
 210	{ "SNY", 0x0704, EDID_QUIRK_NON_DESKTOP },
 211
 212	/* Sensics VR Headsets */
 213	{ "SEN", 0x1019, EDID_QUIRK_NON_DESKTOP },
 214
 215	/* OSVR HDK and HDK2 VR Headsets */
 216	{ "SVR", 0x1019, EDID_QUIRK_NON_DESKTOP },
 
 217};
 218
 219/*
 220 * Autogenerated from the DMT spec.
 221 * This table is copied from xfree86/modes/xf86EdidModes.c.
 222 */
 223static const struct drm_display_mode drm_dmt_modes[] = {
 224	/* 0x01 - 640x350@85Hz */
 225	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 226		   736, 832, 0, 350, 382, 385, 445, 0,
 227		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 228	/* 0x02 - 640x400@85Hz */
 229	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 230		   736, 832, 0, 400, 401, 404, 445, 0,
 231		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 232	/* 0x03 - 720x400@85Hz */
 233	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
 234		   828, 936, 0, 400, 401, 404, 446, 0,
 235		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 236	/* 0x04 - 640x480@60Hz */
 237	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 238		   752, 800, 0, 480, 490, 492, 525, 0,
 239		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 240	/* 0x05 - 640x480@72Hz */
 241	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 242		   704, 832, 0, 480, 489, 492, 520, 0,
 243		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 244	/* 0x06 - 640x480@75Hz */
 245	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 246		   720, 840, 0, 480, 481, 484, 500, 0,
 247		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 248	/* 0x07 - 640x480@85Hz */
 249	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
 250		   752, 832, 0, 480, 481, 484, 509, 0,
 251		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 252	/* 0x08 - 800x600@56Hz */
 253	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 254		   896, 1024, 0, 600, 601, 603, 625, 0,
 255		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 256	/* 0x09 - 800x600@60Hz */
 257	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 258		   968, 1056, 0, 600, 601, 605, 628, 0,
 259		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 260	/* 0x0a - 800x600@72Hz */
 261	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 262		   976, 1040, 0, 600, 637, 643, 666, 0,
 263		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 264	/* 0x0b - 800x600@75Hz */
 265	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 266		   896, 1056, 0, 600, 601, 604, 625, 0,
 267		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 268	/* 0x0c - 800x600@85Hz */
 269	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
 270		   896, 1048, 0, 600, 601, 604, 631, 0,
 271		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 272	/* 0x0d - 800x600@120Hz RB */
 273	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
 274		   880, 960, 0, 600, 603, 607, 636, 0,
 275		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 276	/* 0x0e - 848x480@60Hz */
 277	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
 278		   976, 1088, 0, 480, 486, 494, 517, 0,
 279		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 280	/* 0x0f - 1024x768@43Hz, interlace */
 281	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
 282		   1208, 1264, 0, 768, 768, 776, 817, 0,
 283		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 284		   DRM_MODE_FLAG_INTERLACE) },
 285	/* 0x10 - 1024x768@60Hz */
 286	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 287		   1184, 1344, 0, 768, 771, 777, 806, 0,
 288		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 289	/* 0x11 - 1024x768@70Hz */
 290	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 291		   1184, 1328, 0, 768, 771, 777, 806, 0,
 292		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 293	/* 0x12 - 1024x768@75Hz */
 294	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 295		   1136, 1312, 0, 768, 769, 772, 800, 0,
 296		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 297	/* 0x13 - 1024x768@85Hz */
 298	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
 299		   1168, 1376, 0, 768, 769, 772, 808, 0,
 300		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 301	/* 0x14 - 1024x768@120Hz RB */
 302	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
 303		   1104, 1184, 0, 768, 771, 775, 813, 0,
 304		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 305	/* 0x15 - 1152x864@75Hz */
 306	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 307		   1344, 1600, 0, 864, 865, 868, 900, 0,
 308		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 309	/* 0x55 - 1280x720@60Hz */
 310	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 311		   1430, 1650, 0, 720, 725, 730, 750, 0,
 312		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 313	/* 0x16 - 1280x768@60Hz RB */
 314	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
 315		   1360, 1440, 0, 768, 771, 778, 790, 0,
 316		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 317	/* 0x17 - 1280x768@60Hz */
 318	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
 319		   1472, 1664, 0, 768, 771, 778, 798, 0,
 320		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 321	/* 0x18 - 1280x768@75Hz */
 322	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
 323		   1488, 1696, 0, 768, 771, 778, 805, 0,
 324		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 325	/* 0x19 - 1280x768@85Hz */
 326	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
 327		   1496, 1712, 0, 768, 771, 778, 809, 0,
 328		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 329	/* 0x1a - 1280x768@120Hz RB */
 330	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
 331		   1360, 1440, 0, 768, 771, 778, 813, 0,
 332		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 333	/* 0x1b - 1280x800@60Hz RB */
 334	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
 335		   1360, 1440, 0, 800, 803, 809, 823, 0,
 336		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 337	/* 0x1c - 1280x800@60Hz */
 338	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
 339		   1480, 1680, 0, 800, 803, 809, 831, 0,
 340		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 341	/* 0x1d - 1280x800@75Hz */
 342	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
 343		   1488, 1696, 0, 800, 803, 809, 838, 0,
 344		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 345	/* 0x1e - 1280x800@85Hz */
 346	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
 347		   1496, 1712, 0, 800, 803, 809, 843, 0,
 348		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 349	/* 0x1f - 1280x800@120Hz RB */
 350	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
 351		   1360, 1440, 0, 800, 803, 809, 847, 0,
 352		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 353	/* 0x20 - 1280x960@60Hz */
 354	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
 355		   1488, 1800, 0, 960, 961, 964, 1000, 0,
 356		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 357	/* 0x21 - 1280x960@85Hz */
 358	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
 359		   1504, 1728, 0, 960, 961, 964, 1011, 0,
 360		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 361	/* 0x22 - 1280x960@120Hz RB */
 362	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
 363		   1360, 1440, 0, 960, 963, 967, 1017, 0,
 364		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 365	/* 0x23 - 1280x1024@60Hz */
 366	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
 367		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 368		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 369	/* 0x24 - 1280x1024@75Hz */
 370	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 371		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 372		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 373	/* 0x25 - 1280x1024@85Hz */
 374	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
 375		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
 376		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 377	/* 0x26 - 1280x1024@120Hz RB */
 378	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
 379		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
 380		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 381	/* 0x27 - 1360x768@60Hz */
 382	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
 383		   1536, 1792, 0, 768, 771, 777, 795, 0,
 384		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 385	/* 0x28 - 1360x768@120Hz RB */
 386	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
 387		   1440, 1520, 0, 768, 771, 776, 813, 0,
 388		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 389	/* 0x51 - 1366x768@60Hz */
 390	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
 391		   1579, 1792, 0, 768, 771, 774, 798, 0,
 392		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 393	/* 0x56 - 1366x768@60Hz */
 394	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
 395		   1436, 1500, 0, 768, 769, 772, 800, 0,
 396		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 397	/* 0x29 - 1400x1050@60Hz RB */
 398	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
 399		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
 400		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 401	/* 0x2a - 1400x1050@60Hz */
 402	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
 403		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
 404		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 405	/* 0x2b - 1400x1050@75Hz */
 406	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
 407		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
 408		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 409	/* 0x2c - 1400x1050@85Hz */
 410	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
 411		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
 412		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 413	/* 0x2d - 1400x1050@120Hz RB */
 414	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
 415		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
 416		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 417	/* 0x2e - 1440x900@60Hz RB */
 418	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
 419		   1520, 1600, 0, 900, 903, 909, 926, 0,
 420		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 421	/* 0x2f - 1440x900@60Hz */
 422	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
 423		   1672, 1904, 0, 900, 903, 909, 934, 0,
 424		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 425	/* 0x30 - 1440x900@75Hz */
 426	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
 427		   1688, 1936, 0, 900, 903, 909, 942, 0,
 428		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 429	/* 0x31 - 1440x900@85Hz */
 430	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
 431		   1696, 1952, 0, 900, 903, 909, 948, 0,
 432		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 433	/* 0x32 - 1440x900@120Hz RB */
 434	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
 435		   1520, 1600, 0, 900, 903, 909, 953, 0,
 436		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 437	/* 0x53 - 1600x900@60Hz */
 438	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
 439		   1704, 1800, 0, 900, 901, 904, 1000, 0,
 440		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 441	/* 0x33 - 1600x1200@60Hz */
 442	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
 443		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 444		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 445	/* 0x34 - 1600x1200@65Hz */
 446	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
 447		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 448		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 449	/* 0x35 - 1600x1200@70Hz */
 450	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
 451		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 452		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 453	/* 0x36 - 1600x1200@75Hz */
 454	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
 455		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 456		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 457	/* 0x37 - 1600x1200@85Hz */
 458	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
 459		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 460		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 461	/* 0x38 - 1600x1200@120Hz RB */
 462	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
 463		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
 464		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 465	/* 0x39 - 1680x1050@60Hz RB */
 466	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
 467		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
 468		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 469	/* 0x3a - 1680x1050@60Hz */
 470	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
 471		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
 472		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 473	/* 0x3b - 1680x1050@75Hz */
 474	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
 475		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
 476		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 477	/* 0x3c - 1680x1050@85Hz */
 478	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
 479		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
 480		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 481	/* 0x3d - 1680x1050@120Hz RB */
 482	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
 483		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
 484		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 485	/* 0x3e - 1792x1344@60Hz */
 486	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
 487		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
 488		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 489	/* 0x3f - 1792x1344@75Hz */
 490	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
 491		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
 492		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 493	/* 0x40 - 1792x1344@120Hz RB */
 494	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
 495		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
 496		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 497	/* 0x41 - 1856x1392@60Hz */
 498	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
 499		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
 500		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 501	/* 0x42 - 1856x1392@75Hz */
 502	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
 503		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
 504		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 505	/* 0x43 - 1856x1392@120Hz RB */
 506	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
 507		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
 508		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 509	/* 0x52 - 1920x1080@60Hz */
 510	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 511		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 512		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 513	/* 0x44 - 1920x1200@60Hz RB */
 514	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
 515		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
 516		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 517	/* 0x45 - 1920x1200@60Hz */
 518	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
 519		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
 520		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 521	/* 0x46 - 1920x1200@75Hz */
 522	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
 523		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
 524		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 525	/* 0x47 - 1920x1200@85Hz */
 526	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
 527		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
 528		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 529	/* 0x48 - 1920x1200@120Hz RB */
 530	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
 531		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
 532		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 533	/* 0x49 - 1920x1440@60Hz */
 534	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
 535		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
 536		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 537	/* 0x4a - 1920x1440@75Hz */
 538	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
 539		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
 540		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 541	/* 0x4b - 1920x1440@120Hz RB */
 542	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
 543		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
 544		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 545	/* 0x54 - 2048x1152@60Hz */
 546	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
 547		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
 548		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 549	/* 0x4c - 2560x1600@60Hz RB */
 550	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
 551		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
 552		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 553	/* 0x4d - 2560x1600@60Hz */
 554	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
 555		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
 556		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 557	/* 0x4e - 2560x1600@75Hz */
 558	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
 559		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
 560		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 561	/* 0x4f - 2560x1600@85Hz */
 562	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
 563		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
 564		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 565	/* 0x50 - 2560x1600@120Hz RB */
 566	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
 567		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
 568		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 569	/* 0x57 - 4096x2160@60Hz RB */
 570	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
 571		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 572		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 573	/* 0x58 - 4096x2160@59.94Hz RB */
 574	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
 575		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 576		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 577};
 578
 579/*
 580 * These more or less come from the DMT spec.  The 720x400 modes are
 581 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
 582 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
 583 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
 584 * mode.
 585 *
 586 * The DMT modes have been fact-checked; the rest are mild guesses.
 587 */
 588static const struct drm_display_mode edid_est_modes[] = {
 589	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 590		   968, 1056, 0, 600, 601, 605, 628, 0,
 591		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
 592	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 593		   896, 1024, 0, 600, 601, 603,  625, 0,
 594		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
 595	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 596		   720, 840, 0, 480, 481, 484, 500, 0,
 597		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
 598	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 599		   704,  832, 0, 480, 489, 492, 520, 0,
 600		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
 601	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
 602		   768,  864, 0, 480, 483, 486, 525, 0,
 603		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
 604	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 605		   752, 800, 0, 480, 490, 492, 525, 0,
 606		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
 607	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
 608		   846, 900, 0, 400, 421, 423,  449, 0,
 609		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
 610	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
 611		   846,  900, 0, 400, 412, 414, 449, 0,
 612		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
 613	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 614		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 615		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
 616	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 617		   1136, 1312, 0,  768, 769, 772, 800, 0,
 618		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
 619	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 620		   1184, 1328, 0,  768, 771, 777, 806, 0,
 621		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
 622	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 623		   1184, 1344, 0,  768, 771, 777, 806, 0,
 624		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
 625	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
 626		   1208, 1264, 0, 768, 768, 776, 817, 0,
 627		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
 628	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
 629		   928, 1152, 0, 624, 625, 628, 667, 0,
 630		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
 631	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 632		   896, 1056, 0, 600, 601, 604,  625, 0,
 633		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
 634	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 635		   976, 1040, 0, 600, 637, 643, 666, 0,
 636		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
 637	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 638		   1344, 1600, 0,  864, 865, 868, 900, 0,
 639		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
 640};
 641
 642struct minimode {
 643	short w;
 644	short h;
 645	short r;
 646	short rb;
 647};
 648
 649static const struct minimode est3_modes[] = {
 650	/* byte 6 */
 651	{ 640, 350, 85, 0 },
 652	{ 640, 400, 85, 0 },
 653	{ 720, 400, 85, 0 },
 654	{ 640, 480, 85, 0 },
 655	{ 848, 480, 60, 0 },
 656	{ 800, 600, 85, 0 },
 657	{ 1024, 768, 85, 0 },
 658	{ 1152, 864, 75, 0 },
 659	/* byte 7 */
 660	{ 1280, 768, 60, 1 },
 661	{ 1280, 768, 60, 0 },
 662	{ 1280, 768, 75, 0 },
 663	{ 1280, 768, 85, 0 },
 664	{ 1280, 960, 60, 0 },
 665	{ 1280, 960, 85, 0 },
 666	{ 1280, 1024, 60, 0 },
 667	{ 1280, 1024, 85, 0 },
 668	/* byte 8 */
 669	{ 1360, 768, 60, 0 },
 670	{ 1440, 900, 60, 1 },
 671	{ 1440, 900, 60, 0 },
 672	{ 1440, 900, 75, 0 },
 673	{ 1440, 900, 85, 0 },
 674	{ 1400, 1050, 60, 1 },
 675	{ 1400, 1050, 60, 0 },
 676	{ 1400, 1050, 75, 0 },
 677	/* byte 9 */
 678	{ 1400, 1050, 85, 0 },
 679	{ 1680, 1050, 60, 1 },
 680	{ 1680, 1050, 60, 0 },
 681	{ 1680, 1050, 75, 0 },
 682	{ 1680, 1050, 85, 0 },
 683	{ 1600, 1200, 60, 0 },
 684	{ 1600, 1200, 65, 0 },
 685	{ 1600, 1200, 70, 0 },
 686	/* byte 10 */
 687	{ 1600, 1200, 75, 0 },
 688	{ 1600, 1200, 85, 0 },
 689	{ 1792, 1344, 60, 0 },
 690	{ 1792, 1344, 75, 0 },
 691	{ 1856, 1392, 60, 0 },
 692	{ 1856, 1392, 75, 0 },
 693	{ 1920, 1200, 60, 1 },
 694	{ 1920, 1200, 60, 0 },
 695	/* byte 11 */
 696	{ 1920, 1200, 75, 0 },
 697	{ 1920, 1200, 85, 0 },
 698	{ 1920, 1440, 60, 0 },
 699	{ 1920, 1440, 75, 0 },
 700};
 701
 702static const struct minimode extra_modes[] = {
 703	{ 1024, 576,  60, 0 },
 704	{ 1366, 768,  60, 0 },
 705	{ 1600, 900,  60, 0 },
 706	{ 1680, 945,  60, 0 },
 707	{ 1920, 1080, 60, 0 },
 708	{ 2048, 1152, 60, 0 },
 709	{ 2048, 1536, 60, 0 },
 710};
 711
 712/*
 713 * Probably taken from CEA-861 spec.
 714 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
 715 *
 716 * Index using the VIC.
 717 */
 718static const struct drm_display_mode edid_cea_modes[] = {
 719	/* 0 - dummy, VICs start at 1 */
 720	{ },
 721	/* 1 - 640x480@60Hz 4:3 */
 722	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 723		   752, 800, 0, 480, 490, 492, 525, 0,
 724		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 725	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 726	/* 2 - 720x480@60Hz 4:3 */
 727	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 728		   798, 858, 0, 480, 489, 495, 525, 0,
 729		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 730	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 731	/* 3 - 720x480@60Hz 16:9 */
 732	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 733		   798, 858, 0, 480, 489, 495, 525, 0,
 734		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 735	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 736	/* 4 - 1280x720@60Hz 16:9 */
 737	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 738		   1430, 1650, 0, 720, 725, 730, 750, 0,
 739		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 740	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 741	/* 5 - 1920x1080i@60Hz 16:9 */
 742	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 743		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 744		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 745		   DRM_MODE_FLAG_INTERLACE),
 746	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 747	/* 6 - 720(1440)x480i@60Hz 4:3 */
 748	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 749		   801, 858, 0, 480, 488, 494, 525, 0,
 750		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 751		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 752	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 753	/* 7 - 720(1440)x480i@60Hz 16:9 */
 754	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 755		   801, 858, 0, 480, 488, 494, 525, 0,
 756		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 757		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 758	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 759	/* 8 - 720(1440)x240@60Hz 4:3 */
 760	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 761		   801, 858, 0, 240, 244, 247, 262, 0,
 762		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 763		   DRM_MODE_FLAG_DBLCLK),
 764	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 765	/* 9 - 720(1440)x240@60Hz 16:9 */
 766	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 767		   801, 858, 0, 240, 244, 247, 262, 0,
 768		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 769		   DRM_MODE_FLAG_DBLCLK),
 770	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 771	/* 10 - 2880x480i@60Hz 4:3 */
 772	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 773		   3204, 3432, 0, 480, 488, 494, 525, 0,
 774		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 775		   DRM_MODE_FLAG_INTERLACE),
 776	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 777	/* 11 - 2880x480i@60Hz 16:9 */
 778	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 779		   3204, 3432, 0, 480, 488, 494, 525, 0,
 780		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 781		   DRM_MODE_FLAG_INTERLACE),
 782	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 783	/* 12 - 2880x240@60Hz 4:3 */
 784	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 785		   3204, 3432, 0, 240, 244, 247, 262, 0,
 786		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 787	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 788	/* 13 - 2880x240@60Hz 16:9 */
 789	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 790		   3204, 3432, 0, 240, 244, 247, 262, 0,
 791		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 792	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 793	/* 14 - 1440x480@60Hz 4:3 */
 794	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 795		   1596, 1716, 0, 480, 489, 495, 525, 0,
 796		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 797	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 798	/* 15 - 1440x480@60Hz 16:9 */
 799	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 800		   1596, 1716, 0, 480, 489, 495, 525, 0,
 801		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 802	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 803	/* 16 - 1920x1080@60Hz 16:9 */
 804	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 805		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 806		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 807	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 808	/* 17 - 720x576@50Hz 4:3 */
 809	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 810		   796, 864, 0, 576, 581, 586, 625, 0,
 811		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 812	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 813	/* 18 - 720x576@50Hz 16:9 */
 814	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 815		   796, 864, 0, 576, 581, 586, 625, 0,
 816		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 817	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 818	/* 19 - 1280x720@50Hz 16:9 */
 819	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
 820		   1760, 1980, 0, 720, 725, 730, 750, 0,
 821		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 822	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 823	/* 20 - 1920x1080i@50Hz 16:9 */
 824	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 825		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 826		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 827		   DRM_MODE_FLAG_INTERLACE),
 828	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 829	/* 21 - 720(1440)x576i@50Hz 4:3 */
 830	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 831		   795, 864, 0, 576, 580, 586, 625, 0,
 832		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 833		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 834	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 835	/* 22 - 720(1440)x576i@50Hz 16:9 */
 836	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 837		   795, 864, 0, 576, 580, 586, 625, 0,
 838		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 839		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 840	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 841	/* 23 - 720(1440)x288@50Hz 4:3 */
 842	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 843		   795, 864, 0, 288, 290, 293, 312, 0,
 844		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 845		   DRM_MODE_FLAG_DBLCLK),
 846	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 847	/* 24 - 720(1440)x288@50Hz 16:9 */
 848	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 849		   795, 864, 0, 288, 290, 293, 312, 0,
 850		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 851		   DRM_MODE_FLAG_DBLCLK),
 852	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 853	/* 25 - 2880x576i@50Hz 4:3 */
 854	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 855		   3180, 3456, 0, 576, 580, 586, 625, 0,
 856		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 857		   DRM_MODE_FLAG_INTERLACE),
 858	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 859	/* 26 - 2880x576i@50Hz 16:9 */
 860	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 861		   3180, 3456, 0, 576, 580, 586, 625, 0,
 862		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 863		   DRM_MODE_FLAG_INTERLACE),
 864	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 865	/* 27 - 2880x288@50Hz 4:3 */
 866	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 867		   3180, 3456, 0, 288, 290, 293, 312, 0,
 868		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 869	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 870	/* 28 - 2880x288@50Hz 16:9 */
 871	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 872		   3180, 3456, 0, 288, 290, 293, 312, 0,
 873		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 874	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 875	/* 29 - 1440x576@50Hz 4:3 */
 876	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 877		   1592, 1728, 0, 576, 581, 586, 625, 0,
 878		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 879	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 880	/* 30 - 1440x576@50Hz 16:9 */
 881	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 882		   1592, 1728, 0, 576, 581, 586, 625, 0,
 883		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 884	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 885	/* 31 - 1920x1080@50Hz 16:9 */
 886	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 887		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 888		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 889	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 890	/* 32 - 1920x1080@24Hz 16:9 */
 891	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
 892		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
 893		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 894	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 895	/* 33 - 1920x1080@25Hz 16:9 */
 896	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 897		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 898		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 899	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 900	/* 34 - 1920x1080@30Hz 16:9 */
 901	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 902		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 903		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 904	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 905	/* 35 - 2880x480@60Hz 4:3 */
 906	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 907		   3192, 3432, 0, 480, 489, 495, 525, 0,
 908		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 909	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 910	/* 36 - 2880x480@60Hz 16:9 */
 911	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 912		   3192, 3432, 0, 480, 489, 495, 525, 0,
 913		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 914	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 915	/* 37 - 2880x576@50Hz 4:3 */
 916	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 917		   3184, 3456, 0, 576, 581, 586, 625, 0,
 918		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 919	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 920	/* 38 - 2880x576@50Hz 16:9 */
 921	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 922		   3184, 3456, 0, 576, 581, 586, 625, 0,
 923		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 924	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 925	/* 39 - 1920x1080i@50Hz 16:9 */
 926	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
 927		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
 928		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
 929		   DRM_MODE_FLAG_INTERLACE),
 930	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 931	/* 40 - 1920x1080i@100Hz 16:9 */
 932	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 933		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 934		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 935		   DRM_MODE_FLAG_INTERLACE),
 936	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 937	/* 41 - 1280x720@100Hz 16:9 */
 938	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
 939		   1760, 1980, 0, 720, 725, 730, 750, 0,
 940		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 941	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 942	/* 42 - 720x576@100Hz 4:3 */
 943	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 944		   796, 864, 0, 576, 581, 586, 625, 0,
 945		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 946	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 947	/* 43 - 720x576@100Hz 16:9 */
 948	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 949		   796, 864, 0, 576, 581, 586, 625, 0,
 950		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 951	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 952	/* 44 - 720(1440)x576i@100Hz 4:3 */
 953	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 954		   795, 864, 0, 576, 580, 586, 625, 0,
 955		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 956		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 957	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 958	/* 45 - 720(1440)x576i@100Hz 16:9 */
 959	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 960		   795, 864, 0, 576, 580, 586, 625, 0,
 961		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 962		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 963	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 964	/* 46 - 1920x1080i@120Hz 16:9 */
 965	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 966		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 967		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 968		   DRM_MODE_FLAG_INTERLACE),
 969	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 970	/* 47 - 1280x720@120Hz 16:9 */
 971	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
 972		   1430, 1650, 0, 720, 725, 730, 750, 0,
 973		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 974	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 975	/* 48 - 720x480@120Hz 4:3 */
 976	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 977		   798, 858, 0, 480, 489, 495, 525, 0,
 978		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 979	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 980	/* 49 - 720x480@120Hz 16:9 */
 981	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 982		   798, 858, 0, 480, 489, 495, 525, 0,
 983		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 984	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 985	/* 50 - 720(1440)x480i@120Hz 4:3 */
 986	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
 987		   801, 858, 0, 480, 488, 494, 525, 0,
 988		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 989		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 990	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 991	/* 51 - 720(1440)x480i@120Hz 16:9 */
 992	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
 993		   801, 858, 0, 480, 488, 494, 525, 0,
 994		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 995		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 996	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 997	/* 52 - 720x576@200Hz 4:3 */
 998	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
 999		   796, 864, 0, 576, 581, 586, 625, 0,
1000		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1001	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1002	/* 53 - 720x576@200Hz 16:9 */
1003	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1004		   796, 864, 0, 576, 581, 586, 625, 0,
1005		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1006	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1007	/* 54 - 720(1440)x576i@200Hz 4:3 */
1008	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1009		   795, 864, 0, 576, 580, 586, 625, 0,
1010		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1011		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1012	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1013	/* 55 - 720(1440)x576i@200Hz 16:9 */
1014	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1015		   795, 864, 0, 576, 580, 586, 625, 0,
1016		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1017		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1018	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1019	/* 56 - 720x480@240Hz 4:3 */
1020	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1021		   798, 858, 0, 480, 489, 495, 525, 0,
1022		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1023	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1024	/* 57 - 720x480@240Hz 16:9 */
1025	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1026		   798, 858, 0, 480, 489, 495, 525, 0,
1027		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1028	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1029	/* 58 - 720(1440)x480i@240Hz 4:3 */
1030	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1031		   801, 858, 0, 480, 488, 494, 525, 0,
1032		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1033		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1034	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1035	/* 59 - 720(1440)x480i@240Hz 16:9 */
1036	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1037		   801, 858, 0, 480, 488, 494, 525, 0,
1038		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1039		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1040	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1041	/* 60 - 1280x720@24Hz 16:9 */
1042	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1043		   3080, 3300, 0, 720, 725, 730, 750, 0,
1044		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1045	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1046	/* 61 - 1280x720@25Hz 16:9 */
1047	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1048		   3740, 3960, 0, 720, 725, 730, 750, 0,
1049		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1050	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1051	/* 62 - 1280x720@30Hz 16:9 */
1052	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1053		   3080, 3300, 0, 720, 725, 730, 750, 0,
1054		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1055	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1056	/* 63 - 1920x1080@120Hz 16:9 */
1057	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1058		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1059		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1060	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061	/* 64 - 1920x1080@100Hz 16:9 */
1062	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1063		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1064		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066	/* 65 - 1280x720@24Hz 64:27 */
1067	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1068		   3080, 3300, 0, 720, 725, 730, 750, 0,
1069		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1071	/* 66 - 1280x720@25Hz 64:27 */
1072	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1073		   3740, 3960, 0, 720, 725, 730, 750, 0,
1074		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1076	/* 67 - 1280x720@30Hz 64:27 */
1077	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1078		   3080, 3300, 0, 720, 725, 730, 750, 0,
1079		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1081	/* 68 - 1280x720@50Hz 64:27 */
1082	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1083		   1760, 1980, 0, 720, 725, 730, 750, 0,
1084		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1086	/* 69 - 1280x720@60Hz 64:27 */
1087	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1088		   1430, 1650, 0, 720, 725, 730, 750, 0,
1089		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091	/* 70 - 1280x720@100Hz 64:27 */
1092	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1093		   1760, 1980, 0, 720, 725, 730, 750, 0,
1094		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096	/* 71 - 1280x720@120Hz 64:27 */
1097	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1098		   1430, 1650, 0, 720, 725, 730, 750, 0,
1099		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101	/* 72 - 1920x1080@24Hz 64:27 */
1102	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1103		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1104		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106	/* 73 - 1920x1080@25Hz 64:27 */
1107	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1108		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1109		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111	/* 74 - 1920x1080@30Hz 64:27 */
1112	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1113		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1114		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116	/* 75 - 1920x1080@50Hz 64:27 */
1117	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1118		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1119		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121	/* 76 - 1920x1080@60Hz 64:27 */
1122	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1123		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1124		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126	/* 77 - 1920x1080@100Hz 64:27 */
1127	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1128		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131	/* 78 - 1920x1080@120Hz 64:27 */
1132	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1133		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136	/* 79 - 1680x720@24Hz 64:27 */
1137	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1138		   3080, 3300, 0, 720, 725, 730, 750, 0,
1139		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141	/* 80 - 1680x720@25Hz 64:27 */
1142	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1143		   2948, 3168, 0, 720, 725, 730, 750, 0,
1144		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146	/* 81 - 1680x720@30Hz 64:27 */
1147	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1148		   2420, 2640, 0, 720, 725, 730, 750, 0,
1149		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151	/* 82 - 1680x720@50Hz 64:27 */
1152	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1153		   1980, 2200, 0, 720, 725, 730, 750, 0,
1154		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156	/* 83 - 1680x720@60Hz 64:27 */
1157	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1158		   1980, 2200, 0, 720, 725, 730, 750, 0,
1159		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161	/* 84 - 1680x720@100Hz 64:27 */
1162	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1163		   1780, 2000, 0, 720, 725, 730, 825, 0,
1164		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166	/* 85 - 1680x720@120Hz 64:27 */
1167	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1168		   1780, 2000, 0, 720, 725, 730, 825, 0,
1169		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171	/* 86 - 2560x1080@24Hz 64:27 */
1172	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1173		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1174		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176	/* 87 - 2560x1080@25Hz 64:27 */
1177	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1178		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1179		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181	/* 88 - 2560x1080@30Hz 64:27 */
1182	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1183		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1184		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186	/* 89 - 2560x1080@50Hz 64:27 */
1187	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1188		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1189		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191	/* 90 - 2560x1080@60Hz 64:27 */
1192	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1193		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1194		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196	/* 91 - 2560x1080@100Hz 64:27 */
1197	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1198		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1199		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201	/* 92 - 2560x1080@120Hz 64:27 */
1202	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1203		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1204		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206	/* 93 - 3840x2160@24Hz 16:9 */
1207	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1208		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1209		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1211	/* 94 - 3840x2160@25Hz 16:9 */
1212	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1213		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1214		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1216	/* 95 - 3840x2160@30Hz 16:9 */
1217	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1218		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1219		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1221	/* 96 - 3840x2160@50Hz 16:9 */
1222	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1223		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1224		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1226	/* 97 - 3840x2160@60Hz 16:9 */
1227	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1228		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1229		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231	/* 98 - 4096x2160@24Hz 256:135 */
1232	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1233		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1234		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1236	/* 99 - 4096x2160@25Hz 256:135 */
1237	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1238		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1239		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1241	/* 100 - 4096x2160@30Hz 256:135 */
1242	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1243		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1244		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1246	/* 101 - 4096x2160@50Hz 256:135 */
1247	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1248		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1249		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1251	/* 102 - 4096x2160@60Hz 256:135 */
1252	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1253		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1254		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256	/* 103 - 3840x2160@24Hz 64:27 */
1257	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1258		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1259		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1261	/* 104 - 3840x2160@25Hz 64:27 */
1262	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1263		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1264		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1266	/* 105 - 3840x2160@30Hz 64:27 */
1267	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1268		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1269		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1271	/* 106 - 3840x2160@50Hz 64:27 */
1272	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1273		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1274		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1276	/* 107 - 3840x2160@60Hz 64:27 */
1277	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1278		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1279		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1281};
1282
1283/*
1284 * HDMI 1.4 4k modes. Index using the VIC.
1285 */
1286static const struct drm_display_mode edid_4k_modes[] = {
1287	/* 0 - dummy, VICs start at 1 */
1288	{ },
1289	/* 1 - 3840x2160@30Hz */
1290	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1291		   3840, 4016, 4104, 4400, 0,
1292		   2160, 2168, 2178, 2250, 0,
1293		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1294	  .vrefresh = 30, },
1295	/* 2 - 3840x2160@25Hz */
1296	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1297		   3840, 4896, 4984, 5280, 0,
1298		   2160, 2168, 2178, 2250, 0,
1299		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300	  .vrefresh = 25, },
1301	/* 3 - 3840x2160@24Hz */
1302	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1303		   3840, 5116, 5204, 5500, 0,
1304		   2160, 2168, 2178, 2250, 0,
1305		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1306	  .vrefresh = 24, },
1307	/* 4 - 4096x2160@24Hz (SMPTE) */
1308	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1309		   4096, 5116, 5204, 5500, 0,
1310		   2160, 2168, 2178, 2250, 0,
1311		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1312	  .vrefresh = 24, },
1313};
1314
1315/*** DDC fetch and block validation ***/
1316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1317static const u8 edid_header[] = {
1318	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1319};
1320
 
 
 
 
 
1321/**
1322 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1323 * @raw_edid: pointer to raw base EDID block
1324 *
1325 * Sanity check the header of the base EDID block.
1326 *
1327 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1328 */
1329int drm_edid_header_is_valid(const u8 *raw_edid)
1330{
 
1331	int i, score = 0;
1332
1333	for (i = 0; i < sizeof(edid_header); i++)
1334		if (raw_edid[i] == edid_header[i])
1335			score++;
 
1336
1337	return score;
1338}
1339EXPORT_SYMBOL(drm_edid_header_is_valid);
1340
1341static int edid_fixup __read_mostly = 6;
1342module_param_named(edid_fixup, edid_fixup, int, 0400);
1343MODULE_PARM_DESC(edid_fixup,
1344		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1345
1346static void drm_get_displayid(struct drm_connector *connector,
1347			      struct edid *edid);
1348static int validate_displayid(u8 *displayid, int length, int idx);
1349
1350static int drm_edid_block_checksum(const u8 *raw_edid)
1351{
 
1352	int i;
1353	u8 csum = 0;
1354	for (i = 0; i < EDID_LENGTH; i++)
1355		csum += raw_edid[i];
 
1356
1357	return csum;
 
 
1358}
1359
1360static bool drm_edid_is_zero(const u8 *in_edid, int length)
1361{
1362	if (memchr_inv(in_edid, 0, length))
1363		return false;
1364
1365	return true;
1366}
1367
1368/**
1369 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1370 * @raw_edid: pointer to raw EDID block
1371 * @block: type of block to validate (0 for base, extension otherwise)
1372 * @print_bad_edid: if true, dump bad EDID blocks to the console
1373 * @edid_corrupt: if true, the header or checksum is invalid
1374 *
1375 * Validate a base or extension EDID block and optionally dump bad blocks to
1376 * the console.
1377 *
1378 * Return: True if the block is valid, false otherwise.
1379 */
1380bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1381			  bool *edid_corrupt)
1382{
1383	u8 csum;
1384	struct edid *edid = (struct edid *)raw_edid;
1385
1386	if (WARN_ON(!raw_edid))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387		return false;
1388
1389	if (edid_fixup > 8 || edid_fixup < 0)
1390		edid_fixup = 6;
 
1391
1392	if (block == 0) {
1393		int score = drm_edid_header_is_valid(raw_edid);
1394		if (score == 8) {
1395			if (edid_corrupt)
1396				*edid_corrupt = false;
1397		} else if (score >= edid_fixup) {
1398			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1399			 * The corrupt flag needs to be set here otherwise, the
1400			 * fix-up code here will correct the problem, the
1401			 * checksum is correct and the test fails
1402			 */
1403			if (edid_corrupt)
1404				*edid_corrupt = true;
1405			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1406			memcpy(raw_edid, edid_header, sizeof(edid_header));
1407		} else {
1408			if (edid_corrupt)
1409				*edid_corrupt = true;
1410			goto bad;
1411		}
1412	}
1413
1414	csum = drm_edid_block_checksum(raw_edid);
1415	if (csum) {
1416		if (edid_corrupt)
1417			*edid_corrupt = true;
1418
1419		/* allow CEA to slide through, switches mangle this */
1420		if (raw_edid[0] == CEA_EXT) {
1421			DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum);
1422			DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n");
1423		} else {
1424			if (print_bad_edid)
1425				DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum);
 
 
 
 
 
 
 
 
 
1426
1427			goto bad;
 
 
 
 
 
 
 
 
 
 
1428		}
 
 
 
1429	}
1430
1431	/* per-block-type checks */
1432	switch (raw_edid[0]) {
1433	case 0: /* base */
1434		if (edid->version != 1) {
1435			DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version);
1436			goto bad;
1437		}
1438
1439		if (edid->revision > 4)
1440			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1441		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1443	default:
 
 
1444		break;
1445	}
 
1446
1447	return true;
 
 
 
1448
1449bad:
1450	if (print_bad_edid) {
1451		if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1452			pr_notice("EDID block is all zeroes\n");
1453		} else {
1454			pr_notice("Raw EDID:\n");
1455			print_hex_dump(KERN_NOTICE,
1456				       " \t", DUMP_PREFIX_NONE, 16, 1,
1457				       raw_edid, EDID_LENGTH, false);
1458		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1459	}
1460	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461}
1462EXPORT_SYMBOL(drm_edid_block_valid);
1463
1464/**
1465 * drm_edid_is_valid - sanity check EDID data
1466 * @edid: EDID data
1467 *
1468 * Sanity-check an entire EDID record (including extensions)
1469 *
1470 * Return: True if the EDID data is valid, false otherwise.
1471 */
1472bool drm_edid_is_valid(struct edid *edid)
1473{
1474	int i;
1475	u8 *raw = (u8 *)edid;
1476
1477	if (!edid)
1478		return false;
1479
1480	for (i = 0; i <= edid->extensions; i++)
1481		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
 
 
1482			return false;
 
1483
1484	return true;
1485}
1486EXPORT_SYMBOL(drm_edid_is_valid);
1487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1488#define DDC_SEGMENT_ADDR 0x30
1489/**
1490 * drm_do_probe_ddc_edid() - get EDID information via I2C
1491 * @data: I2C device adapter
1492 * @buf: EDID data buffer to be filled
1493 * @block: 128 byte EDID block to start fetching from
1494 * @len: EDID data buffer length to fetch
1495 *
1496 * Try to fetch EDID information by calling I2C driver functions.
1497 *
1498 * Return: 0 on success or -1 on failure.
1499 */
1500static int
1501drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1502{
1503	struct i2c_adapter *adapter = data;
1504	unsigned char start = block * EDID_LENGTH;
1505	unsigned char segment = block >> 1;
1506	unsigned char xfers = segment ? 3 : 2;
1507	int ret, retries = 5;
1508
1509	/*
1510	 * The core I2C driver will automatically retry the transfer if the
1511	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1512	 * are susceptible to errors under a heavily loaded machine and
1513	 * generate spurious NAKs and timeouts. Retrying the transfer
1514	 * of the individual block a few times seems to overcome this.
1515	 */
1516	do {
1517		struct i2c_msg msgs[] = {
1518			{
1519				.addr	= DDC_SEGMENT_ADDR,
1520				.flags	= 0,
1521				.len	= 1,
1522				.buf	= &segment,
1523			}, {
1524				.addr	= DDC_ADDR,
1525				.flags	= 0,
1526				.len	= 1,
1527				.buf	= &start,
1528			}, {
1529				.addr	= DDC_ADDR,
1530				.flags	= I2C_M_RD,
1531				.len	= len,
1532				.buf	= buf,
1533			}
1534		};
1535
1536		/*
1537		 * Avoid sending the segment addr to not upset non-compliant
1538		 * DDC monitors.
1539		 */
1540		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1541
1542		if (ret == -ENXIO) {
1543			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1544					adapter->name);
1545			break;
1546		}
1547	} while (ret != xfers && --retries);
1548
1549	return ret == xfers ? 0 : -1;
1550}
1551
1552static void connector_bad_edid(struct drm_connector *connector,
1553			       u8 *edid, int num_blocks)
1554{
1555	int i;
 
1556
1557	if (connector->bad_edid_counter++ && !(drm_debug & DRM_UT_KMS))
1558		return;
 
 
 
 
 
1559
1560	dev_warn(connector->dev->dev,
1561		 "%s: EDID is invalid:\n",
1562		 connector->name);
1563	for (i = 0; i < num_blocks; i++) {
1564		u8 *block = edid + i * EDID_LENGTH;
1565		char prefix[20];
1566
1567		if (drm_edid_is_zero(block, EDID_LENGTH))
1568			sprintf(prefix, "\t[%02x] ZERO ", i);
1569		else if (!drm_edid_block_valid(block, i, false, NULL))
1570			sprintf(prefix, "\t[%02x] BAD  ", i);
1571		else
1572			sprintf(prefix, "\t[%02x] GOOD ", i);
1573
1574		print_hex_dump(KERN_WARNING,
1575			       prefix, DUMP_PREFIX_NONE, 16, 1,
1576			       block, EDID_LENGTH, false);
1577	}
 
 
 
1578}
1579
1580/* Get override or firmware EDID */
1581static struct edid *drm_get_override_edid(struct drm_connector *connector)
1582{
1583	struct edid *override = NULL;
1584
1585	if (connector->override_edid)
1586		override = drm_edid_duplicate(connector->edid_blob_ptr->data);
 
 
 
 
1587
1588	if (!override)
1589		override = drm_load_edid_firmware(connector);
1590
1591	return IS_ERR(override) ? NULL : override;
1592}
1593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594/**
1595 * drm_add_override_edid_modes - add modes from override/firmware EDID
1596 * @connector: connector we're probing
1597 *
1598 * Add modes from the override/firmware EDID, if available. Only to be used from
1599 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
1600 * failed during drm_get_edid() and caused the override/firmware EDID to be
1601 * skipped.
1602 *
1603 * Return: The number of modes added or 0 if we couldn't find any.
1604 */
1605int drm_add_override_edid_modes(struct drm_connector *connector)
1606{
1607	struct edid *override;
1608	int num_modes = 0;
1609
1610	override = drm_get_override_edid(connector);
1611	if (override) {
1612		drm_connector_update_edid_property(connector, override);
1613		num_modes = drm_add_edid_modes(connector, override);
1614		kfree(override);
 
1615
1616		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
1617			      connector->base.id, connector->name, num_modes);
 
1618	}
1619
1620	return num_modes;
1621}
1622EXPORT_SYMBOL(drm_add_override_edid_modes);
1623
1624/**
1625 * drm_do_get_edid - get EDID data using a custom EDID block read function
1626 * @connector: connector we're probing
1627 * @get_edid_block: EDID block read function
1628 * @data: private data passed to the block read function
1629 *
1630 * When the I2C adapter connected to the DDC bus is hidden behind a device that
1631 * exposes a different interface to read EDID blocks this function can be used
1632 * to get EDID data using a custom block read function.
1633 *
1634 * As in the general case the DDC bus is accessible by the kernel at the I2C
1635 * level, drivers must make all reasonable efforts to expose it as an I2C
1636 * adapter and use drm_get_edid() instead of abusing this function.
1637 *
1638 * The EDID may be overridden using debugfs override_edid or firmare EDID
1639 * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
1640 * order. Having either of them bypasses actual EDID reads.
1641 *
1642 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1643 */
1644struct edid *drm_do_get_edid(struct drm_connector *connector,
1645	int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1646			      size_t len),
1647	void *data)
1648{
1649	int i, j = 0, valid_extensions = 0;
1650	u8 *edid, *new;
1651	struct edid *override;
1652
1653	override = drm_get_override_edid(connector);
1654	if (override)
1655		return override;
1656
1657	if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1658		return NULL;
 
 
 
 
 
1659
1660	/* base block fetch */
1661	for (i = 0; i < 4; i++) {
1662		if (get_edid_block(data, edid, 0, EDID_LENGTH))
1663			goto out;
1664		if (drm_edid_block_valid(edid, 0, false,
1665					 &connector->edid_corrupt))
 
 
 
 
 
 
 
 
 
 
 
 
 
1666			break;
1667		if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1668			connector->null_edid_counter++;
1669			goto carp;
1670		}
 
1671	}
1672	if (i == 4)
1673		goto carp;
1674
1675	/* if there's no extensions, we're done */
1676	valid_extensions = edid[0x7e];
1677	if (valid_extensions == 0)
1678		return (struct edid *)edid;
1679
1680	new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
 
1681	if (!new)
1682		goto out;
1683	edid = new;
1684
1685	for (j = 1; j <= edid[0x7e]; j++) {
1686		u8 *block = edid + j * EDID_LENGTH;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687
1688		for (i = 0; i < 4; i++) {
1689			if (get_edid_block(data, block, j, EDID_LENGTH))
1690				goto out;
1691			if (drm_edid_block_valid(block, j, false, NULL))
1692				break;
 
 
 
1693		}
 
 
 
 
1694
1695		if (i == 4)
1696			valid_extensions--;
1697	}
1698
1699	if (valid_extensions != edid[0x7e]) {
1700		u8 *base;
 
1701
1702		connector_bad_edid(connector, edid, edid[0x7e] + 1);
1703
1704		edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions;
1705		edid[0x7e] = valid_extensions;
 
 
1706
1707		new = kmalloc_array(valid_extensions + 1, EDID_LENGTH,
1708				    GFP_KERNEL);
1709		if (!new)
1710			goto out;
 
 
 
 
 
 
 
 
 
 
1711
1712		base = new;
1713		for (i = 0; i <= edid[0x7e]; i++) {
1714			u8 *block = edid + i * EDID_LENGTH;
 
 
 
1715
1716			if (!drm_edid_block_valid(block, i, false, NULL))
1717				continue;
 
1718
1719			memcpy(base, block, EDID_LENGTH);
1720			base += EDID_LENGTH;
1721		}
 
1722
1723		kfree(edid);
1724		edid = new;
 
 
 
 
 
1725	}
1726
1727	return (struct edid *)edid;
 
1728
1729carp:
1730	connector_bad_edid(connector, edid, 1);
1731out:
1732	kfree(edid);
1733	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1734}
1735EXPORT_SYMBOL_GPL(drm_do_get_edid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1736
1737/**
1738 * drm_probe_ddc() - probe DDC presence
1739 * @adapter: I2C adapter to probe
1740 *
1741 * Return: True on success, false on failure.
1742 */
1743bool
1744drm_probe_ddc(struct i2c_adapter *adapter)
1745{
1746	unsigned char out;
1747
1748	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1749}
1750EXPORT_SYMBOL(drm_probe_ddc);
1751
1752/**
1753 * drm_get_edid - get EDID data, if available
1754 * @connector: connector we're probing
1755 * @adapter: I2C adapter to use for DDC
1756 *
1757 * Poke the given I2C channel to grab EDID data if possible.  If found,
1758 * attach it to the connector.
1759 *
1760 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1761 */
1762struct edid *drm_get_edid(struct drm_connector *connector,
1763			  struct i2c_adapter *adapter)
1764{
1765	struct edid *edid;
1766
1767	if (connector->force == DRM_FORCE_OFF)
1768		return NULL;
1769
1770	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
1771		return NULL;
1772
1773	edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1774	if (edid)
1775		drm_get_displayid(connector, edid);
1776	return edid;
1777}
1778EXPORT_SYMBOL(drm_get_edid);
1779
1780/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
1782 * @connector: connector we're probing
1783 * @adapter: I2C adapter to use for DDC
1784 *
1785 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
1786 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
1787 * switch DDC to the GPU which is retrieving EDID.
1788 *
1789 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
1790 */
1791struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
1792				     struct i2c_adapter *adapter)
1793{
1794	struct pci_dev *pdev = connector->dev->pdev;
 
1795	struct edid *edid;
1796
 
 
 
1797	vga_switcheroo_lock_ddc(pdev);
1798	edid = drm_get_edid(connector, adapter);
1799	vga_switcheroo_unlock_ddc(pdev);
1800
1801	return edid;
1802}
1803EXPORT_SYMBOL(drm_get_edid_switcheroo);
1804
1805/**
1806 * drm_edid_duplicate - duplicate an EDID and the extensions
1807 * @edid: EDID to duplicate
 
1808 *
1809 * Return: Pointer to duplicated EDID or NULL on allocation failure.
 
 
 
 
1810 */
1811struct edid *drm_edid_duplicate(const struct edid *edid)
 
1812{
1813	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1814}
1815EXPORT_SYMBOL(drm_edid_duplicate);
1816
1817/*** EDID parsing ***/
 
 
 
 
 
 
 
 
 
1818
1819/**
1820 * edid_vendor - match a string against EDID's obfuscated vendor field
1821 * @edid: EDID to match
1822 * @vendor: vendor string
1823 *
1824 * Returns true if @vendor is in @edid, false otherwise
1825 */
1826static bool edid_vendor(const struct edid *edid, const char *vendor)
1827{
1828	char edid_vendor[3];
1829
1830	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1831	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1832			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1833	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1834
1835	return !strncmp(edid_vendor, vendor, 3);
1836}
 
 
 
1837
1838/**
1839 * edid_get_quirks - return quirk flags for a given EDID
1840 * @edid: EDID to process
1841 *
1842 * This tells subsequent routines what fixes they need to apply.
 
 
1843 */
1844static u32 edid_get_quirks(const struct edid *edid)
1845{
1846	const struct edid_quirk *quirk;
1847	int i;
1848
1849	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1850		quirk = &edid_quirk_list[i];
1851
1852		if (edid_vendor(edid, quirk->vendor) &&
1853		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1854			return quirk->quirks;
1855	}
1856
1857	return 0;
1858}
1859
1860#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1861#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1862
1863/**
1864 * edid_fixup_preferred - set preferred modes based on quirk list
1865 * @connector: has mode list to fix up
1866 * @quirks: quirks list
1867 *
1868 * Walk the mode list for @connector, clearing the preferred status
1869 * on existing modes and setting it anew for the right mode ala @quirks.
1870 */
1871static void edid_fixup_preferred(struct drm_connector *connector,
1872				 u32 quirks)
1873{
 
1874	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1875	int target_refresh = 0;
1876	int cur_vrefresh, preferred_vrefresh;
1877
1878	if (list_empty(&connector->probed_modes))
1879		return;
1880
1881	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1882		target_refresh = 60;
1883	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1884		target_refresh = 75;
1885
1886	preferred_mode = list_first_entry(&connector->probed_modes,
1887					  struct drm_display_mode, head);
1888
1889	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1890		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1891
1892		if (cur_mode == preferred_mode)
1893			continue;
1894
1895		/* Largest mode is preferred */
1896		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1897			preferred_mode = cur_mode;
1898
1899		cur_vrefresh = cur_mode->vrefresh ?
1900			cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1901		preferred_vrefresh = preferred_mode->vrefresh ?
1902			preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1903		/* At a given size, try to get closest to target refresh */
1904		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1905		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1906		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1907			preferred_mode = cur_mode;
1908		}
1909	}
1910
1911	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1912}
1913
1914static bool
1915mode_is_rb(const struct drm_display_mode *mode)
1916{
1917	return (mode->htotal - mode->hdisplay == 160) &&
1918	       (mode->hsync_end - mode->hdisplay == 80) &&
1919	       (mode->hsync_end - mode->hsync_start == 32) &&
1920	       (mode->vsync_start - mode->vdisplay == 3);
1921}
1922
1923/*
1924 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1925 * @dev: Device to duplicate against
1926 * @hsize: Mode width
1927 * @vsize: Mode height
1928 * @fresh: Mode refresh rate
1929 * @rb: Mode reduced-blanking-ness
1930 *
1931 * Walk the DMT mode list looking for a match for the given parameters.
1932 *
1933 * Return: A newly allocated copy of the mode, or NULL if not found.
1934 */
1935struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1936					   int hsize, int vsize, int fresh,
1937					   bool rb)
1938{
1939	int i;
1940
1941	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1942		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
 
1943		if (hsize != ptr->hdisplay)
1944			continue;
1945		if (vsize != ptr->vdisplay)
1946			continue;
1947		if (fresh != drm_mode_vrefresh(ptr))
1948			continue;
1949		if (rb != mode_is_rb(ptr))
1950			continue;
1951
1952		return drm_mode_duplicate(dev, ptr);
1953	}
1954
1955	return NULL;
1956}
1957EXPORT_SYMBOL(drm_mode_find_dmt);
1958
1959typedef void detailed_cb(struct detailed_timing *timing, void *closure);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1960
1961static void
1962cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1963{
1964	int i, n = 0;
1965	u8 d = ext[0x02];
1966	u8 *det_base = ext + d;
 
 
 
1967
1968	n = (127 - d) / 18;
1969	for (i = 0; i < n; i++)
1970		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1971}
1972
1973static void
1974vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1975{
1976	unsigned int i, n = min((int)ext[0x02], 6);
1977	u8 *det_base = ext + 5;
1978
1979	if (ext[0x01] != 1)
1980		return; /* unknown version */
1981
1982	for (i = 0; i < n; i++)
1983		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1984}
1985
1986static void
1987drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1988{
 
 
1989	int i;
1990	struct edid *edid = (struct edid *)raw_edid;
1991
1992	if (edid == NULL)
1993		return;
1994
1995	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1996		cb(&(edid->detailed_timings[i]), closure);
1997
1998	for (i = 1; i <= raw_edid[0x7e]; i++) {
1999		u8 *ext = raw_edid + (i * EDID_LENGTH);
2000		switch (*ext) {
2001		case CEA_EXT:
2002			cea_for_each_detailed_block(ext, cb, closure);
2003			break;
2004		case VTB_EXT:
2005			vtb_for_each_detailed_block(ext, cb, closure);
2006			break;
2007		default:
2008			break;
2009		}
2010	}
 
2011}
2012
2013static void
2014is_rb(struct detailed_timing *t, void *data)
2015{
2016	u8 *r = (u8 *)t;
2017	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
2018		if (r[15] & 0x10)
2019			*(bool *)data = true;
 
 
 
 
 
 
 
2020}
2021
2022/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
2023static bool
2024drm_monitor_supports_rb(struct edid *edid)
2025{
2026	if (edid->revision >= 4) {
2027		bool ret = false;
2028		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
 
2029		return ret;
2030	}
2031
2032	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
2033}
2034
2035static void
2036find_gtf2(struct detailed_timing *t, void *data)
2037{
2038	u8 *r = (u8 *)t;
2039	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
2040		*(u8 **)data = r;
 
 
 
 
 
 
2041}
2042
2043/* Secondary GTF curve kicks in above some break frequency */
2044static int
2045drm_gtf2_hbreak(struct edid *edid)
2046{
2047	u8 *r = NULL;
2048	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2049	return r ? (r[12] * 2) : 0;
 
 
 
 
2050}
2051
2052static int
2053drm_gtf2_2c(struct edid *edid)
2054{
2055	u8 *r = NULL;
2056	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2057	return r ? r[13] : 0;
 
 
 
 
2058}
2059
2060static int
2061drm_gtf2_m(struct edid *edid)
2062{
2063	u8 *r = NULL;
2064	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2065	return r ? (r[15] << 8) + r[14] : 0;
 
 
 
 
2066}
2067
2068static int
2069drm_gtf2_k(struct edid *edid)
2070{
2071	u8 *r = NULL;
2072	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2073	return r ? r[16] : 0;
 
 
 
 
2074}
2075
2076static int
2077drm_gtf2_2j(struct edid *edid)
 
 
 
 
 
 
 
 
 
 
 
 
2078{
2079	u8 *r = NULL;
2080	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2081	return r ? r[17] : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082}
2083
2084/**
2085 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
2086 * @edid: EDID block to scan
2087 */
2088static int standard_timing_level(struct edid *edid)
2089{
2090	if (edid->revision >= 2) {
2091		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
2092			return LEVEL_CVT;
2093		if (drm_gtf2_hbreak(edid))
2094			return LEVEL_GTF2;
 
 
 
 
 
 
 
 
 
 
2095		return LEVEL_GTF;
 
 
2096	}
2097	return LEVEL_DMT;
2098}
2099
2100/*
2101 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
2102 * monitors fill with ascii space (0x20) instead.
2103 */
2104static int
2105bad_std_timing(u8 a, u8 b)
2106{
2107	return (a == 0x00 && b == 0x00) ||
2108	       (a == 0x01 && b == 0x01) ||
2109	       (a == 0x20 && b == 0x20);
2110}
2111
2112/**
2113 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
2114 * @connector: connector of for the EDID block
2115 * @edid: EDID block to scan
2116 * @t: standard timing params
2117 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118 * Take the standard timing params (in this case width, aspect, and refresh)
2119 * and convert them into a real mode using CVT/GTF/DMT.
2120 */
2121static struct drm_display_mode *
2122drm_mode_std(struct drm_connector *connector, struct edid *edid,
2123	     struct std_timing *t)
2124{
2125	struct drm_device *dev = connector->dev;
2126	struct drm_display_mode *m, *mode = NULL;
2127	int hsize, vsize;
2128	int vrefresh_rate;
2129	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
2130		>> EDID_TIMING_ASPECT_SHIFT;
2131	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
2132		>> EDID_TIMING_VFREQ_SHIFT;
2133	int timing_level = standard_timing_level(edid);
2134
2135	if (bad_std_timing(t->hsize, t->vfreq_aspect))
2136		return NULL;
2137
2138	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
2139	hsize = t->hsize * 8 + 248;
2140	/* vrefresh_rate = vfreq + 60 */
2141	vrefresh_rate = vfreq + 60;
2142	/* the vdisplay is calculated based on the aspect ratio */
2143	if (aspect_ratio == 0) {
2144		if (edid->revision < 3)
2145			vsize = hsize;
2146		else
2147			vsize = (hsize * 10) / 16;
2148	} else if (aspect_ratio == 1)
2149		vsize = (hsize * 3) / 4;
2150	else if (aspect_ratio == 2)
2151		vsize = (hsize * 4) / 5;
2152	else
2153		vsize = (hsize * 9) / 16;
2154
2155	/* HDTV hack, part 1 */
2156	if (vrefresh_rate == 60 &&
2157	    ((hsize == 1360 && vsize == 765) ||
2158	     (hsize == 1368 && vsize == 769))) {
2159		hsize = 1366;
2160		vsize = 768;
2161	}
2162
2163	/*
2164	 * If this connector already has a mode for this size and refresh
2165	 * rate (because it came from detailed or CVT info), use that
2166	 * instead.  This way we don't have to guess at interlace or
2167	 * reduced blanking.
2168	 */
2169	list_for_each_entry(m, &connector->probed_modes, head)
2170		if (m->hdisplay == hsize && m->vdisplay == vsize &&
2171		    drm_mode_vrefresh(m) == vrefresh_rate)
2172			return NULL;
2173
2174	/* HDTV hack, part 2 */
2175	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
2176		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
2177				    false);
2178		if (!mode)
2179			return NULL;
2180		mode->hdisplay = 1366;
2181		mode->hsync_start = mode->hsync_start - 1;
2182		mode->hsync_end = mode->hsync_end - 1;
2183		return mode;
2184	}
2185
2186	/* check whether it can be found in default mode table */
2187	if (drm_monitor_supports_rb(edid)) {
2188		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
2189					 true);
2190		if (mode)
2191			return mode;
2192	}
2193	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
2194	if (mode)
2195		return mode;
2196
2197	/* okay, generate it */
2198	switch (timing_level) {
2199	case LEVEL_DMT:
2200		break;
2201	case LEVEL_GTF:
2202		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2203		break;
2204	case LEVEL_GTF2:
2205		/*
2206		 * This is potentially wrong if there's ever a monitor with
2207		 * more than one ranges section, each claiming a different
2208		 * secondary GTF curve.  Please don't do that.
2209		 */
2210		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2211		if (!mode)
2212			return NULL;
2213		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
2214			drm_mode_destroy(dev, mode);
2215			mode = drm_gtf_mode_complex(dev, hsize, vsize,
2216						    vrefresh_rate, 0, 0,
2217						    drm_gtf2_m(edid),
2218						    drm_gtf2_2c(edid),
2219						    drm_gtf2_k(edid),
2220						    drm_gtf2_2j(edid));
2221		}
2222		break;
2223	case LEVEL_CVT:
2224		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
2225				    false);
2226		break;
2227	}
2228	return mode;
2229}
2230
2231/*
2232 * EDID is delightfully ambiguous about how interlaced modes are to be
2233 * encoded.  Our internal representation is of frame height, but some
2234 * HDTV detailed timings are encoded as field height.
2235 *
2236 * The format list here is from CEA, in frame size.  Technically we
2237 * should be checking refresh rate too.  Whatever.
2238 */
2239static void
2240drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
2241			    struct detailed_pixel_timing *pt)
2242{
2243	int i;
2244	static const struct {
2245		int w, h;
2246	} cea_interlaced[] = {
2247		{ 1920, 1080 },
2248		{  720,  480 },
2249		{ 1440,  480 },
2250		{ 2880,  480 },
2251		{  720,  576 },
2252		{ 1440,  576 },
2253		{ 2880,  576 },
2254	};
2255
2256	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
2257		return;
2258
2259	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
2260		if ((mode->hdisplay == cea_interlaced[i].w) &&
2261		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
2262			mode->vdisplay *= 2;
2263			mode->vsync_start *= 2;
2264			mode->vsync_end *= 2;
2265			mode->vtotal *= 2;
2266			mode->vtotal |= 1;
2267		}
2268	}
2269
2270	mode->flags |= DRM_MODE_FLAG_INTERLACE;
2271}
2272
2273/**
2274 * drm_mode_detailed - create a new mode from an EDID detailed timing section
2275 * @dev: DRM device (needed to create new mode)
2276 * @edid: EDID block
2277 * @timing: EDID detailed timing info
2278 * @quirks: quirks to apply
2279 *
2280 * An EDID detailed timing block contains enough info for us to create and
2281 * return a new struct drm_display_mode.
2282 */
2283static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
2284						  struct edid *edid,
2285						  struct detailed_timing *timing,
2286						  u32 quirks)
2287{
 
 
2288	struct drm_display_mode *mode;
2289	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
2290	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
2291	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
2292	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
2293	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
2294	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
2295	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
2296	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
2297	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
2298
2299	/* ignore tiny modes */
2300	if (hactive < 64 || vactive < 64)
2301		return NULL;
2302
2303	if (pt->misc & DRM_EDID_PT_STEREO) {
2304		DRM_DEBUG_KMS("stereo mode not supported\n");
 
2305		return NULL;
2306	}
2307	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
2308		DRM_DEBUG_KMS("composite sync not supported\n");
 
2309	}
2310
2311	/* it is incorrect if hsync/vsync width is zero */
2312	if (!hsync_pulse_width || !vsync_pulse_width) {
2313		DRM_DEBUG_KMS("Incorrect Detailed timing. "
2314				"Wrong Hsync/Vsync pulse width\n");
2315		return NULL;
2316	}
2317
2318	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
2319		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
2320		if (!mode)
2321			return NULL;
2322
2323		goto set_size;
2324	}
2325
2326	mode = drm_mode_create(dev);
2327	if (!mode)
2328		return NULL;
2329
2330	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
2331		timing->pixel_clock = cpu_to_le16(1088);
2332
2333	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
2334
2335	mode->hdisplay = hactive;
2336	mode->hsync_start = mode->hdisplay + hsync_offset;
2337	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
2338	mode->htotal = mode->hdisplay + hblank;
2339
2340	mode->vdisplay = vactive;
2341	mode->vsync_start = mode->vdisplay + vsync_offset;
2342	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
2343	mode->vtotal = mode->vdisplay + vblank;
2344
2345	/* Some EDIDs have bogus h/vtotal values */
2346	if (mode->hsync_end > mode->htotal)
2347		mode->htotal = mode->hsync_end + 1;
2348	if (mode->vsync_end > mode->vtotal)
2349		mode->vtotal = mode->vsync_end + 1;
 
 
 
 
 
 
 
 
2350
2351	drm_mode_do_interlace_quirk(mode, pt);
2352
2353	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
2354		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
 
 
 
 
 
2355	}
2356
2357	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
2358		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
2359	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
2360		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
2361
2362set_size:
2363	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
2364	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
2365
2366	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
2367		mode->width_mm *= 10;
2368		mode->height_mm *= 10;
2369	}
2370
2371	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
2372		mode->width_mm = edid->width_cm * 10;
2373		mode->height_mm = edid->height_cm * 10;
2374	}
2375
2376	mode->type = DRM_MODE_TYPE_DRIVER;
2377	mode->vrefresh = drm_mode_vrefresh(mode);
2378	drm_mode_set_name(mode);
2379
2380	return mode;
2381}
2382
2383static bool
2384mode_in_hsync_range(const struct drm_display_mode *mode,
2385		    struct edid *edid, u8 *t)
2386{
2387	int hsync, hmin, hmax;
2388
2389	hmin = t[7];
2390	if (edid->revision >= 4)
2391	    hmin += ((t[4] & 0x04) ? 255 : 0);
2392	hmax = t[8];
2393	if (edid->revision >= 4)
2394	    hmax += ((t[4] & 0x08) ? 255 : 0);
2395	hsync = drm_mode_hsync(mode);
2396
2397	return (hsync <= hmax && hsync >= hmin);
2398}
2399
2400static bool
2401mode_in_vsync_range(const struct drm_display_mode *mode,
2402		    struct edid *edid, u8 *t)
2403{
2404	int vsync, vmin, vmax;
2405
2406	vmin = t[5];
2407	if (edid->revision >= 4)
2408	    vmin += ((t[4] & 0x01) ? 255 : 0);
2409	vmax = t[6];
2410	if (edid->revision >= 4)
2411	    vmax += ((t[4] & 0x02) ? 255 : 0);
2412	vsync = drm_mode_vrefresh(mode);
2413
2414	return (vsync <= vmax && vsync >= vmin);
2415}
2416
2417static u32
2418range_pixel_clock(struct edid *edid, u8 *t)
2419{
2420	/* unspecified */
2421	if (t[9] == 0 || t[9] == 255)
2422		return 0;
2423
2424	/* 1.4 with CVT support gives us real precision, yay */
2425	if (edid->revision >= 4 && t[10] == 0x04)
2426		return (t[9] * 10000) - ((t[12] >> 2) * 250);
2427
2428	/* 1.3 is pathetic, so fuzz up a bit */
2429	return t[9] * 10000 + 5001;
2430}
2431
2432static bool
2433mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2434	      struct detailed_timing *timing)
2435{
 
2436	u32 max_clock;
2437	u8 *t = (u8 *)timing;
2438
2439	if (!mode_in_hsync_range(mode, edid, t))
2440		return false;
2441
2442	if (!mode_in_vsync_range(mode, edid, t))
2443		return false;
2444
2445	if ((max_clock = range_pixel_clock(edid, t)))
 
2446		if (mode->clock > max_clock)
2447			return false;
2448
2449	/* 1.4 max horizontal check */
2450	if (edid->revision >= 4 && t[10] == 0x04)
2451		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2452			return false;
2453
2454	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2455		return false;
2456
2457	return true;
2458}
2459
2460static bool valid_inferred_mode(const struct drm_connector *connector,
2461				const struct drm_display_mode *mode)
2462{
2463	const struct drm_display_mode *m;
2464	bool ok = false;
2465
2466	list_for_each_entry(m, &connector->probed_modes, head) {
2467		if (mode->hdisplay == m->hdisplay &&
2468		    mode->vdisplay == m->vdisplay &&
2469		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2470			return false; /* duplicated */
2471		if (mode->hdisplay <= m->hdisplay &&
2472		    mode->vdisplay <= m->vdisplay)
2473			ok = true;
2474	}
2475	return ok;
2476}
2477
2478static int
2479drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2480			struct detailed_timing *timing)
2481{
2482	int i, modes = 0;
2483	struct drm_display_mode *newmode;
2484	struct drm_device *dev = connector->dev;
2485
2486	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2487		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2488		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
2489			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2490			if (newmode) {
2491				drm_mode_probed_add(connector, newmode);
2492				modes++;
2493			}
2494		}
2495	}
2496
2497	return modes;
2498}
2499
2500/* fix up 1366x768 mode from 1368x768;
2501 * GFT/CVT can't express 1366 width which isn't dividable by 8
2502 */
2503void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
2504{
2505	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2506		mode->hdisplay = 1366;
2507		mode->hsync_start--;
2508		mode->hsync_end--;
2509		drm_mode_set_name(mode);
2510	}
2511}
2512
2513static int
2514drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2515			struct detailed_timing *timing)
2516{
2517	int i, modes = 0;
2518	struct drm_display_mode *newmode;
2519	struct drm_device *dev = connector->dev;
2520
2521	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2522		const struct minimode *m = &extra_modes[i];
 
2523		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2524		if (!newmode)
2525			return modes;
2526
2527		drm_mode_fixup_1366x768(newmode);
2528		if (!mode_in_range(newmode, edid, timing) ||
2529		    !valid_inferred_mode(connector, newmode)) {
2530			drm_mode_destroy(dev, newmode);
2531			continue;
2532		}
2533
2534		drm_mode_probed_add(connector, newmode);
2535		modes++;
2536	}
2537
2538	return modes;
2539}
2540
2541static int
2542drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2543			struct detailed_timing *timing)
2544{
2545	int i, modes = 0;
2546	struct drm_display_mode *newmode;
2547	struct drm_device *dev = connector->dev;
2548	bool rb = drm_monitor_supports_rb(edid);
2549
2550	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2551		const struct minimode *m = &extra_modes[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2552		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2553		if (!newmode)
2554			return modes;
2555
2556		drm_mode_fixup_1366x768(newmode);
2557		if (!mode_in_range(newmode, edid, timing) ||
2558		    !valid_inferred_mode(connector, newmode)) {
2559			drm_mode_destroy(dev, newmode);
2560			continue;
2561		}
2562
2563		drm_mode_probed_add(connector, newmode);
2564		modes++;
2565	}
2566
2567	return modes;
2568}
2569
2570static void
2571do_inferred_modes(struct detailed_timing *timing, void *c)
2572{
2573	struct detailed_mode_closure *closure = c;
2574	struct detailed_non_pixel *data = &timing->data.other_data;
2575	struct detailed_data_monitor_range *range = &data->data.range;
2576
2577	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2578		return;
2579
2580	closure->modes += drm_dmt_modes_for_range(closure->connector,
2581						  closure->edid,
2582						  timing);
2583	
2584	if (!version_greater(closure->edid, 1, 1))
2585		return; /* GTF not defined yet */
2586
2587	switch (range->flags) {
2588	case 0x02: /* secondary gtf, XXX could do more */
2589	case 0x00: /* default gtf */
 
 
 
 
2590		closure->modes += drm_gtf_modes_for_range(closure->connector,
2591							  closure->edid,
2592							  timing);
2593		break;
2594	case 0x04: /* cvt, only in 1.4+ */
2595		if (!version_greater(closure->edid, 1, 3))
2596			break;
2597
2598		closure->modes += drm_cvt_modes_for_range(closure->connector,
2599							  closure->edid,
2600							  timing);
2601		break;
2602	case 0x01: /* just the ranges, no formula */
2603	default:
2604		break;
2605	}
2606}
2607
2608static int
2609add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2610{
2611	struct detailed_mode_closure closure = {
2612		.connector = connector,
2613		.edid = edid,
2614	};
2615
2616	if (version_greater(edid, 1, 0))
2617		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2618					    &closure);
2619
2620	return closure.modes;
2621}
2622
2623static int
2624drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2625{
2626	int i, j, m, modes = 0;
2627	struct drm_display_mode *mode;
2628	u8 *est = ((u8 *)timing) + 6;
2629
2630	for (i = 0; i < 6; i++) {
2631		for (j = 7; j >= 0; j--) {
2632			m = (i * 8) + (7 - j);
2633			if (m >= ARRAY_SIZE(est3_modes))
2634				break;
2635			if (est[i] & (1 << j)) {
2636				mode = drm_mode_find_dmt(connector->dev,
2637							 est3_modes[m].w,
2638							 est3_modes[m].h,
2639							 est3_modes[m].r,
2640							 est3_modes[m].rb);
2641				if (mode) {
2642					drm_mode_probed_add(connector, mode);
2643					modes++;
2644				}
2645			}
2646		}
2647	}
2648
2649	return modes;
2650}
2651
2652static void
2653do_established_modes(struct detailed_timing *timing, void *c)
2654{
2655	struct detailed_mode_closure *closure = c;
2656	struct detailed_non_pixel *data = &timing->data.other_data;
2657
2658	if (data->type == EDID_DETAIL_EST_TIMINGS)
2659		closure->modes += drm_est3_modes(closure->connector, timing);
 
 
2660}
2661
2662/**
2663 * add_established_modes - get est. modes from EDID and add them
2664 * @connector: connector to add mode(s) to
2665 * @edid: EDID block to scan
2666 *
2667 * Each EDID block contains a bitmap of the supported "established modes" list
2668 * (defined above).  Tease them out and add them to the global modes list.
2669 */
2670static int
2671add_established_modes(struct drm_connector *connector, struct edid *edid)
2672{
2673	struct drm_device *dev = connector->dev;
 
2674	unsigned long est_bits = edid->established_timings.t1 |
2675		(edid->established_timings.t2 << 8) |
2676		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2677	int i, modes = 0;
2678	struct detailed_mode_closure closure = {
2679		.connector = connector,
2680		.edid = edid,
2681	};
2682
2683	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2684		if (est_bits & (1<<i)) {
2685			struct drm_display_mode *newmode;
 
2686			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2687			if (newmode) {
2688				drm_mode_probed_add(connector, newmode);
2689				modes++;
2690			}
2691		}
2692	}
2693
2694	if (version_greater(edid, 1, 0))
2695		    drm_for_each_detailed_block((u8 *)edid,
2696						do_established_modes, &closure);
2697
2698	return modes + closure.modes;
2699}
2700
2701static void
2702do_standard_modes(struct detailed_timing *timing, void *c)
2703{
2704	struct detailed_mode_closure *closure = c;
2705	struct detailed_non_pixel *data = &timing->data.other_data;
2706	struct drm_connector *connector = closure->connector;
2707	struct edid *edid = closure->edid;
2708
2709	if (data->type == EDID_DETAIL_STD_MODES) {
2710		int i;
2711		for (i = 0; i < 6; i++) {
2712			struct std_timing *std;
2713			struct drm_display_mode *newmode;
2714
2715			std = &data->data.timings[i];
2716			newmode = drm_mode_std(connector, edid, std);
2717			if (newmode) {
2718				drm_mode_probed_add(connector, newmode);
2719				closure->modes++;
2720			}
 
 
2721		}
2722	}
2723}
2724
2725/**
2726 * add_standard_modes - get std. modes from EDID and add them
2727 * @connector: connector to add mode(s) to
2728 * @edid: EDID block to scan
2729 *
2730 * Standard modes can be calculated using the appropriate standard (DMT,
2731 * GTF or CVT. Grab them from @edid and add them to the list.
2732 */
2733static int
2734add_standard_modes(struct drm_connector *connector, struct edid *edid)
2735{
2736	int i, modes = 0;
2737	struct detailed_mode_closure closure = {
2738		.connector = connector,
2739		.edid = edid,
2740	};
2741
2742	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2743		struct drm_display_mode *newmode;
2744
2745		newmode = drm_mode_std(connector, edid,
2746				       &edid->standard_timings[i]);
2747		if (newmode) {
2748			drm_mode_probed_add(connector, newmode);
2749			modes++;
2750		}
2751	}
2752
2753	if (version_greater(edid, 1, 0))
2754		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2755					    &closure);
2756
2757	/* XXX should also look for standard codes in VTB blocks */
2758
2759	return modes + closure.modes;
2760}
2761
2762static int drm_cvt_modes(struct drm_connector *connector,
2763			 struct detailed_timing *timing)
2764{
2765	int i, j, modes = 0;
2766	struct drm_display_mode *newmode;
2767	struct drm_device *dev = connector->dev;
2768	struct cvt_timing *cvt;
2769	const int rates[] = { 60, 85, 75, 60, 50 };
2770	const u8 empty[3] = { 0, 0, 0 };
2771
2772	for (i = 0; i < 4; i++) {
2773		int uninitialized_var(width), height;
 
2774		cvt = &(timing->data.other_data.data.cvt[i]);
2775
2776		if (!memcmp(cvt->code, empty, 3))
2777			continue;
2778
2779		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2780		switch (cvt->code[1] & 0x0c) {
 
 
2781		case 0x00:
2782			width = height * 4 / 3;
2783			break;
2784		case 0x04:
2785			width = height * 16 / 9;
2786			break;
2787		case 0x08:
2788			width = height * 16 / 10;
2789			break;
2790		case 0x0c:
2791			width = height * 15 / 9;
2792			break;
2793		}
2794
2795		for (j = 1; j < 5; j++) {
2796			if (cvt->code[2] & (1 << j)) {
2797				newmode = drm_cvt_mode(dev, width, height,
2798						       rates[j], j == 0,
2799						       false, false);
2800				if (newmode) {
2801					drm_mode_probed_add(connector, newmode);
2802					modes++;
2803				}
2804			}
2805		}
2806	}
2807
2808	return modes;
2809}
2810
2811static void
2812do_cvt_mode(struct detailed_timing *timing, void *c)
2813{
2814	struct detailed_mode_closure *closure = c;
2815	struct detailed_non_pixel *data = &timing->data.other_data;
2816
2817	if (data->type == EDID_DETAIL_CVT_3BYTE)
2818		closure->modes += drm_cvt_modes(closure->connector, timing);
 
 
2819}
2820
2821static int
2822add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2823{	
2824	struct detailed_mode_closure closure = {
2825		.connector = connector,
2826		.edid = edid,
2827	};
2828
2829	if (version_greater(edid, 1, 2))
2830		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2831
2832	/* XXX should also look for CVT codes in VTB blocks */
2833
2834	return closure.modes;
2835}
2836
2837static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
 
2838
2839static void
2840do_detailed_mode(struct detailed_timing *timing, void *c)
2841{
2842	struct detailed_mode_closure *closure = c;
2843	struct drm_display_mode *newmode;
2844
2845	if (timing->pixel_clock) {
2846		newmode = drm_mode_detailed(closure->connector->dev,
2847					    closure->edid, timing,
2848					    closure->quirks);
2849		if (!newmode)
2850			return;
2851
2852		if (closure->preferred)
2853			newmode->type |= DRM_MODE_TYPE_PREFERRED;
 
 
2854
2855		/*
2856		 * Detailed modes are limited to 10kHz pixel clock resolution,
2857		 * so fix up anything that looks like CEA/HDMI mode, but the clock
2858		 * is just slightly off.
2859		 */
2860		fixup_detailed_cea_mode_clock(newmode);
2861
2862		drm_mode_probed_add(closure->connector, newmode);
2863		closure->modes++;
2864		closure->preferred = false;
2865	}
 
 
 
 
 
 
2866}
2867
2868/*
2869 * add_detailed_modes - Add modes from detailed timings
2870 * @connector: attached connector
2871 * @edid: EDID block to scan
2872 * @quirks: quirks to apply
2873 */
2874static int
2875add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2876		   u32 quirks)
2877{
2878	struct detailed_mode_closure closure = {
2879		.connector = connector,
2880		.edid = edid,
2881		.preferred = true,
2882		.quirks = quirks,
2883	};
2884
2885	if (closure.preferred && !version_greater(edid, 1, 3))
 
 
2886		closure.preferred =
2887		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2888
2889	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2890
2891	return closure.modes;
2892}
2893
2894#define AUDIO_BLOCK	0x01
2895#define VIDEO_BLOCK     0x02
2896#define VENDOR_BLOCK    0x03
2897#define SPEAKER_BLOCK	0x04
2898#define HDR_STATIC_METADATA_BLOCK	0x6
2899#define USE_EXTENDED_TAG 0x07
2900#define EXT_VIDEO_CAPABILITY_BLOCK 0x00
2901#define EXT_VIDEO_DATA_BLOCK_420	0x0E
2902#define EXT_VIDEO_CAP_BLOCK_Y420CMDB 0x0F
 
 
 
 
 
 
 
2903#define EDID_BASIC_AUDIO	(1 << 6)
2904#define EDID_CEA_YCRCB444	(1 << 5)
2905#define EDID_CEA_YCRCB422	(1 << 4)
2906#define EDID_CEA_VCDB_QS	(1 << 6)
2907
2908/*
2909 * Search EDID for CEA extension block.
 
 
2910 */
2911static u8 *drm_find_edid_extension(const struct edid *edid, int ext_id)
 
2912{
2913	u8 *edid_ext = NULL;
2914	int i;
2915
2916	/* No EDID or EDID extensions */
2917	if (edid == NULL || edid->extensions == 0)
2918		return NULL;
2919
2920	/* Find CEA extension */
2921	for (i = 0; i < edid->extensions; i++) {
2922		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2923		if (edid_ext[0] == ext_id)
2924			break;
2925	}
2926
2927	if (i == edid->extensions)
2928		return NULL;
2929
2930	return edid_ext;
2931}
2932
2933
2934static u8 *drm_find_displayid_extension(const struct edid *edid)
2935{
2936	return drm_find_edid_extension(edid, DISPLAYID_EXT);
2937}
2938
2939static u8 *drm_find_cea_extension(const struct edid *edid)
 
2940{
2941	int ret;
2942	int idx = 1;
2943	int length = EDID_LENGTH;
2944	struct displayid_block *block;
2945	u8 *cea;
2946	u8 *displayid;
2947
2948	/* Look for a top level CEA extension block */
2949	cea = drm_find_edid_extension(edid, CEA_EXT);
2950	if (cea)
2951		return cea;
2952
2953	/* CEA blocks can also be found embedded in a DisplayID block */
2954	displayid = drm_find_displayid_extension(edid);
2955	if (!displayid)
2956		return NULL;
2957
2958	ret = validate_displayid(displayid, length, idx);
2959	if (ret)
2960		return NULL;
2961
2962	idx += sizeof(struct displayid_hdr);
2963	for_each_displayid_db(displayid, block, idx, length) {
 
2964		if (block->tag == DATA_BLOCK_CTA) {
2965			cea = (u8 *)block;
2966			break;
2967		}
2968	}
 
2969
2970	return cea;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2971}
2972
2973/*
2974 * Calculate the alternate clock for the CEA mode
2975 * (60Hz vs. 59.94Hz etc.)
2976 */
2977static unsigned int
2978cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2979{
2980	unsigned int clock = cea_mode->clock;
2981
2982	if (cea_mode->vrefresh % 6 != 0)
2983		return clock;
2984
2985	/*
2986	 * edid_cea_modes contains the 59.94Hz
2987	 * variant for 240 and 480 line modes,
2988	 * and the 60Hz variant otherwise.
2989	 */
2990	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2991		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2992	else
2993		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2994
2995	return clock;
2996}
2997
2998static bool
2999cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
3000{
3001	/*
3002	 * For certain VICs the spec allows the vertical
3003	 * front porch to vary by one or two lines.
3004	 *
3005	 * cea_modes[] stores the variant with the shortest
3006	 * vertical front porch. We can adjust the mode to
3007	 * get the other variants by simply increasing the
3008	 * vertical front porch length.
3009	 */
3010	BUILD_BUG_ON(edid_cea_modes[8].vtotal != 262 ||
3011		     edid_cea_modes[9].vtotal != 262 ||
3012		     edid_cea_modes[12].vtotal != 262 ||
3013		     edid_cea_modes[13].vtotal != 262 ||
3014		     edid_cea_modes[23].vtotal != 312 ||
3015		     edid_cea_modes[24].vtotal != 312 ||
3016		     edid_cea_modes[27].vtotal != 312 ||
3017		     edid_cea_modes[28].vtotal != 312);
3018
3019	if (((vic == 8 || vic == 9 ||
3020	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
3021	    ((vic == 23 || vic == 24 ||
3022	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
3023		mode->vsync_start++;
3024		mode->vsync_end++;
3025		mode->vtotal++;
3026
3027		return true;
3028	}
3029
3030	return false;
3031}
3032
3033static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
3034					     unsigned int clock_tolerance)
3035{
3036	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3037	u8 vic;
3038
3039	if (!to_match->clock)
3040		return 0;
3041
3042	if (to_match->picture_aspect_ratio)
3043		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3044
3045	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
3046		struct drm_display_mode cea_mode = edid_cea_modes[vic];
3047		unsigned int clock1, clock2;
3048
 
 
3049		/* Check both 60Hz and 59.94Hz */
3050		clock1 = cea_mode.clock;
3051		clock2 = cea_mode_alternate_clock(&cea_mode);
3052
3053		if (abs(to_match->clock - clock1) > clock_tolerance &&
3054		    abs(to_match->clock - clock2) > clock_tolerance)
3055			continue;
3056
3057		do {
3058			if (drm_mode_match(to_match, &cea_mode, match_flags))
3059				return vic;
3060		} while (cea_mode_alternate_timings(vic, &cea_mode));
3061	}
3062
3063	return 0;
3064}
3065
3066/**
3067 * drm_match_cea_mode - look for a CEA mode matching given mode
3068 * @to_match: display mode
3069 *
3070 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
3071 * mode.
3072 */
3073u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
3074{
3075	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3076	u8 vic;
3077
3078	if (!to_match->clock)
3079		return 0;
3080
3081	if (to_match->picture_aspect_ratio)
3082		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3083
3084	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
3085		struct drm_display_mode cea_mode = edid_cea_modes[vic];
3086		unsigned int clock1, clock2;
3087
 
 
3088		/* Check both 60Hz and 59.94Hz */
3089		clock1 = cea_mode.clock;
3090		clock2 = cea_mode_alternate_clock(&cea_mode);
3091
3092		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
3093		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
3094			continue;
3095
3096		do {
3097			if (drm_mode_match(to_match, &cea_mode, match_flags))
3098				return vic;
3099		} while (cea_mode_alternate_timings(vic, &cea_mode));
3100	}
3101
3102	return 0;
3103}
3104EXPORT_SYMBOL(drm_match_cea_mode);
3105
3106static bool drm_valid_cea_vic(u8 vic)
3107{
3108	return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
3109}
3110
3111/**
3112 * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
3113 * the input VIC from the CEA mode list
3114 * @video_code: ID given to each of the CEA modes
3115 *
3116 * Returns picture aspect ratio
3117 */
3118enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
3119{
3120	return edid_cea_modes[video_code].picture_aspect_ratio;
 
 
 
 
 
 
 
 
 
 
3121}
3122EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
3123
3124/*
3125 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
3126 * specific block).
3127 *
3128 * It's almost like cea_mode_alternate_clock(), we just need to add an
3129 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
3130 * one.
3131 */
3132static unsigned int
3133hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3134{
3135	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
3136		return hdmi_mode->clock;
3137
3138	return cea_mode_alternate_clock(hdmi_mode);
3139}
3140
3141static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3142					      unsigned int clock_tolerance)
3143{
3144	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3145	u8 vic;
3146
3147	if (!to_match->clock)
3148		return 0;
3149
 
 
 
3150	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3151		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3152		unsigned int clock1, clock2;
3153
3154		/* Make sure to also match alternate clocks */
3155		clock1 = hdmi_mode->clock;
3156		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3157
3158		if (abs(to_match->clock - clock1) > clock_tolerance &&
3159		    abs(to_match->clock - clock2) > clock_tolerance)
3160			continue;
3161
3162		if (drm_mode_match(to_match, hdmi_mode, match_flags))
3163			return vic;
3164	}
3165
3166	return 0;
3167}
3168
3169/*
3170 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
3171 * @to_match: display mode
3172 *
3173 * An HDMI mode is one defined in the HDMI vendor specific block.
3174 *
3175 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
3176 */
3177static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
3178{
3179	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3180	u8 vic;
3181
3182	if (!to_match->clock)
3183		return 0;
3184
 
 
 
3185	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3186		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3187		unsigned int clock1, clock2;
3188
3189		/* Make sure to also match alternate clocks */
3190		clock1 = hdmi_mode->clock;
3191		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3192
3193		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
3194		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
3195		    drm_mode_match(to_match, hdmi_mode, match_flags))
3196			return vic;
3197	}
3198	return 0;
3199}
3200
3201static bool drm_valid_hdmi_vic(u8 vic)
3202{
3203	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
3204}
3205
3206static int
3207add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
3208{
3209	struct drm_device *dev = connector->dev;
3210	struct drm_display_mode *mode, *tmp;
3211	LIST_HEAD(list);
3212	int modes = 0;
3213
3214	/* Don't add CEA modes if the CEA extension block is missing */
3215	if (!drm_find_cea_extension(edid))
3216		return 0;
3217
3218	/*
3219	 * Go through all probed modes and create a new mode
3220	 * with the alternate clock for certain CEA modes.
3221	 */
3222	list_for_each_entry(mode, &connector->probed_modes, head) {
3223		const struct drm_display_mode *cea_mode = NULL;
3224		struct drm_display_mode *newmode;
3225		u8 vic = drm_match_cea_mode(mode);
3226		unsigned int clock1, clock2;
3227
3228		if (drm_valid_cea_vic(vic)) {
3229			cea_mode = &edid_cea_modes[vic];
3230			clock2 = cea_mode_alternate_clock(cea_mode);
3231		} else {
3232			vic = drm_match_hdmi_mode(mode);
3233			if (drm_valid_hdmi_vic(vic)) {
3234				cea_mode = &edid_4k_modes[vic];
3235				clock2 = hdmi_mode_alternate_clock(cea_mode);
3236			}
3237		}
3238
3239		if (!cea_mode)
3240			continue;
3241
3242		clock1 = cea_mode->clock;
3243
3244		if (clock1 == clock2)
3245			continue;
3246
3247		if (mode->clock != clock1 && mode->clock != clock2)
3248			continue;
3249
3250		newmode = drm_mode_duplicate(dev, cea_mode);
3251		if (!newmode)
3252			continue;
3253
3254		/* Carry over the stereo flags */
3255		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
3256
3257		/*
3258		 * The current mode could be either variant. Make
3259		 * sure to pick the "other" clock for the new mode.
3260		 */
3261		if (mode->clock != clock1)
3262			newmode->clock = clock1;
3263		else
3264			newmode->clock = clock2;
3265
3266		list_add_tail(&newmode->head, &list);
3267	}
3268
3269	list_for_each_entry_safe(mode, tmp, &list, head) {
3270		list_del(&mode->head);
3271		drm_mode_probed_add(connector, mode);
3272		modes++;
3273	}
3274
3275	return modes;
3276}
3277
3278static u8 svd_to_vic(u8 svd)
3279{
3280	/* 0-6 bit vic, 7th bit native mode indicator */
3281	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
3282		return svd & 127;
3283
3284	return svd;
3285}
3286
 
 
 
 
3287static struct drm_display_mode *
3288drm_display_mode_from_vic_index(struct drm_connector *connector,
3289				const u8 *video_db, u8 video_len,
3290				u8 video_index)
3291{
 
3292	struct drm_device *dev = connector->dev;
3293	struct drm_display_mode *newmode;
3294	u8 vic;
3295
3296	if (video_db == NULL || video_index >= video_len)
3297		return NULL;
3298
3299	/* CEA modes are numbered 1..127 */
3300	vic = svd_to_vic(video_db[video_index]);
3301	if (!drm_valid_cea_vic(vic))
3302		return NULL;
3303
3304	newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3305	if (!newmode)
3306		return NULL;
3307
3308	newmode->vrefresh = 0;
3309
3310	return newmode;
3311}
3312
3313/*
3314 * do_y420vdb_modes - Parse YCBCR 420 only modes
3315 * @connector: connector corresponding to the HDMI sink
3316 * @svds: start of the data block of CEA YCBCR 420 VDB
3317 * @len: length of the CEA YCBCR 420 VDB
3318 *
3319 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
3320 * which contains modes which can be supported in YCBCR 420
3321 * output format only.
3322 */
3323static int do_y420vdb_modes(struct drm_connector *connector,
3324			    const u8 *svds, u8 svds_len)
3325{
3326	int modes = 0, i;
3327	struct drm_device *dev = connector->dev;
3328	struct drm_display_info *info = &connector->display_info;
3329	struct drm_hdmi_info *hdmi = &info->hdmi;
3330
3331	for (i = 0; i < svds_len; i++) {
3332		u8 vic = svd_to_vic(svds[i]);
3333		struct drm_display_mode *newmode;
3334
3335		if (!drm_valid_cea_vic(vic))
3336			continue;
3337
3338		newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3339		if (!newmode)
3340			break;
3341		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
3342		drm_mode_probed_add(connector, newmode);
3343		modes++;
3344	}
3345
3346	if (modes > 0)
3347		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3348	return modes;
3349}
3350
3351/*
3352 * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
3353 * @connector: connector corresponding to the HDMI sink
3354 * @vic: CEA vic for the video mode to be added in the map
 
 
3355 *
3356 * Makes an entry for a videomode in the YCBCR 420 bitmap
3357 */
3358static void
3359drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
 
3360{
3361	u8 vic = svd_to_vic(svd);
3362	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3363
3364	if (!drm_valid_cea_vic(vic))
3365		return;
 
 
 
 
 
3366
3367	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
3368}
 
3369
3370static int
3371do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
3372{
 
3373	int i, modes = 0;
3374	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3375
3376	for (i = 0; i < len; i++) {
 
 
 
3377		struct drm_display_mode *mode;
3378		mode = drm_display_mode_from_vic_index(connector, db, len, i);
3379		if (mode) {
3380			/*
3381			 * YCBCR420 capability block contains a bitmap which
3382			 * gives the index of CEA modes from CEA VDB, which
3383			 * can support YCBCR 420 sampling output also (apart
3384			 * from RGB/YCBCR444 etc).
3385			 * For example, if the bit 0 in bitmap is set,
3386			 * first mode in VDB can support YCBCR420 output too.
3387			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
3388			 */
3389			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
3390				drm_add_cmdb_modes(connector, db[i]);
3391
 
 
3392			drm_mode_probed_add(connector, mode);
3393			modes++;
3394		}
3395	}
3396
3397	return modes;
3398}
3399
3400struct stereo_mandatory_mode {
3401	int width, height, vrefresh;
3402	unsigned int flags;
3403};
3404
3405static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
3406	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3407	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
3408	{ 1920, 1080, 50,
3409	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3410	{ 1920, 1080, 60,
3411	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3412	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3413	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
3414	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3415	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
3416};
3417
3418static bool
3419stereo_match_mandatory(const struct drm_display_mode *mode,
3420		       const struct stereo_mandatory_mode *stereo_mode)
3421{
3422	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
3423
3424	return mode->hdisplay == stereo_mode->width &&
3425	       mode->vdisplay == stereo_mode->height &&
3426	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
3427	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
3428}
3429
3430static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
3431{
3432	struct drm_device *dev = connector->dev;
3433	const struct drm_display_mode *mode;
3434	struct list_head stereo_modes;
3435	int modes = 0, i;
3436
3437	INIT_LIST_HEAD(&stereo_modes);
3438
3439	list_for_each_entry(mode, &connector->probed_modes, head) {
3440		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
3441			const struct stereo_mandatory_mode *mandatory;
3442			struct drm_display_mode *new_mode;
3443
3444			if (!stereo_match_mandatory(mode,
3445						    &stereo_mandatory_modes[i]))
3446				continue;
3447
3448			mandatory = &stereo_mandatory_modes[i];
3449			new_mode = drm_mode_duplicate(dev, mode);
3450			if (!new_mode)
3451				continue;
3452
3453			new_mode->flags |= mandatory->flags;
3454			list_add_tail(&new_mode->head, &stereo_modes);
3455			modes++;
3456		}
3457	}
3458
3459	list_splice_tail(&stereo_modes, &connector->probed_modes);
3460
3461	return modes;
3462}
3463
3464static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
3465{
3466	struct drm_device *dev = connector->dev;
3467	struct drm_display_mode *newmode;
3468
3469	if (!drm_valid_hdmi_vic(vic)) {
3470		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
 
3471		return 0;
3472	}
3473
3474	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
3475	if (!newmode)
3476		return 0;
3477
3478	drm_mode_probed_add(connector, newmode);
3479
3480	return 1;
3481}
3482
3483static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
3484			       const u8 *video_db, u8 video_len, u8 video_index)
3485{
3486	struct drm_display_mode *newmode;
3487	int modes = 0;
3488
3489	if (structure & (1 << 0)) {
3490		newmode = drm_display_mode_from_vic_index(connector, video_db,
3491							  video_len,
3492							  video_index);
3493		if (newmode) {
3494			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
3495			drm_mode_probed_add(connector, newmode);
3496			modes++;
3497		}
3498	}
3499	if (structure & (1 << 6)) {
3500		newmode = drm_display_mode_from_vic_index(connector, video_db,
3501							  video_len,
3502							  video_index);
3503		if (newmode) {
3504			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3505			drm_mode_probed_add(connector, newmode);
3506			modes++;
3507		}
3508	}
3509	if (structure & (1 << 8)) {
3510		newmode = drm_display_mode_from_vic_index(connector, video_db,
3511							  video_len,
3512							  video_index);
3513		if (newmode) {
3514			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3515			drm_mode_probed_add(connector, newmode);
3516			modes++;
3517		}
3518	}
3519
3520	return modes;
3521}
3522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3523/*
3524 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
3525 * @connector: connector corresponding to the HDMI sink
3526 * @db: start of the CEA vendor specific block
3527 * @len: length of the CEA block payload, ie. one can access up to db[len]
3528 *
3529 * Parses the HDMI VSDB looking for modes to add to @connector. This function
3530 * also adds the stereo 3d modes when applicable.
3531 */
3532static int
3533do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
3534		   const u8 *video_db, u8 video_len)
3535{
3536	struct drm_display_info *info = &connector->display_info;
3537	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
3538	u8 vic_len, hdmi_3d_len = 0;
3539	u16 mask;
3540	u16 structure_all;
3541
3542	if (len < 8)
3543		goto out;
3544
3545	/* no HDMI_Video_Present */
3546	if (!(db[8] & (1 << 5)))
3547		goto out;
3548
3549	/* Latency_Fields_Present */
3550	if (db[8] & (1 << 7))
3551		offset += 2;
3552
3553	/* I_Latency_Fields_Present */
3554	if (db[8] & (1 << 6))
3555		offset += 2;
3556
3557	/* the declared length is not long enough for the 2 first bytes
3558	 * of additional video format capabilities */
3559	if (len < (8 + offset + 2))
3560		goto out;
3561
3562	/* 3D_Present */
3563	offset++;
3564	if (db[8 + offset] & (1 << 7)) {
3565		modes += add_hdmi_mandatory_stereo_modes(connector);
3566
3567		/* 3D_Multi_present */
3568		multi_present = (db[8 + offset] & 0x60) >> 5;
3569	}
3570
3571	offset++;
3572	vic_len = db[8 + offset] >> 5;
3573	hdmi_3d_len = db[8 + offset] & 0x1f;
3574
3575	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3576		u8 vic;
3577
3578		vic = db[9 + offset + i];
3579		modes += add_hdmi_mode(connector, vic);
3580	}
3581	offset += 1 + vic_len;
3582
3583	if (multi_present == 1)
3584		multi_len = 2;
3585	else if (multi_present == 2)
3586		multi_len = 4;
3587	else
3588		multi_len = 0;
3589
3590	if (len < (8 + offset + hdmi_3d_len - 1))
3591		goto out;
3592
3593	if (hdmi_3d_len < multi_len)
3594		goto out;
3595
3596	if (multi_present == 1 || multi_present == 2) {
3597		/* 3D_Structure_ALL */
3598		structure_all = (db[8 + offset] << 8) | db[9 + offset];
3599
3600		/* check if 3D_MASK is present */
3601		if (multi_present == 2)
3602			mask = (db[10 + offset] << 8) | db[11 + offset];
3603		else
3604			mask = 0xffff;
3605
3606		for (i = 0; i < 16; i++) {
3607			if (mask & (1 << i))
3608				modes += add_3d_struct_modes(connector,
3609						structure_all,
3610						video_db,
3611						video_len, i);
3612		}
3613	}
3614
3615	offset += multi_len;
3616
3617	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3618		int vic_index;
3619		struct drm_display_mode *newmode = NULL;
3620		unsigned int newflag = 0;
3621		bool detail_present;
3622
3623		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3624
3625		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3626			break;
3627
3628		/* 2D_VIC_order_X */
3629		vic_index = db[8 + offset + i] >> 4;
3630
3631		/* 3D_Structure_X */
3632		switch (db[8 + offset + i] & 0x0f) {
3633		case 0:
3634			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3635			break;
3636		case 6:
3637			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3638			break;
3639		case 8:
3640			/* 3D_Detail_X */
3641			if ((db[9 + offset + i] >> 4) == 1)
3642				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3643			break;
3644		}
3645
3646		if (newflag != 0) {
3647			newmode = drm_display_mode_from_vic_index(connector,
3648								  video_db,
3649								  video_len,
3650								  vic_index);
3651
3652			if (newmode) {
3653				newmode->flags |= newflag;
3654				drm_mode_probed_add(connector, newmode);
3655				modes++;
3656			}
3657		}
3658
3659		if (detail_present)
3660			i++;
3661	}
3662
3663out:
3664	if (modes > 0)
3665		info->has_hdmi_infoframe = true;
3666	return modes;
3667}
3668
3669static int
3670cea_db_payload_len(const u8 *db)
3671{
3672	return db[0] & 0x1f;
 
 
 
 
 
 
 
3673}
3674
3675static int
3676cea_db_extended_tag(const u8 *db)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3677{
3678	return db[1];
3679}
3680
3681static int
3682cea_db_tag(const u8 *db)
3683{
3684	return db[0] >> 5;
 
 
 
3685}
3686
3687static int
3688cea_revision(const u8 *cea)
3689{
3690	return cea[1];
3691}
3692
3693static int
3694cea_db_offsets(const u8 *cea, int *start, int *end)
3695{
3696	/* DisplayID CTA extension blocks and top-level CEA EDID
3697	 * block header definitions differ in the following bytes:
3698	 *   1) Byte 2 of the header specifies length differently,
3699	 *   2) Byte 3 is only present in the CEA top level block.
3700	 *
3701	 * The different definitions for byte 2 follow.
3702	 *
3703	 * DisplayID CTA extension block defines byte 2 as:
3704	 *   Number of payload bytes
3705	 *
3706	 * CEA EDID block defines byte 2 as:
3707	 *   Byte number (decimal) within this block where the 18-byte
3708	 *   DTDs begin. If no non-DTD data is present in this extension
3709	 *   block, the value should be set to 04h (the byte after next).
3710	 *   If set to 00h, there are no DTDs present in this block and
3711	 *   no non-DTD data.
3712	 */
3713	if (cea[0] == DATA_BLOCK_CTA) {
3714		*start = 3;
3715		*end = *start + cea[2];
3716	} else if (cea[0] == CEA_EXT) {
3717		/* Data block offset in CEA extension block */
3718		*start = 4;
3719		*end = cea[2];
3720		if (*end == 0)
3721			*end = 127;
3722		if (*end < 4 || *end > 127)
3723			return -ERANGE;
3724	} else {
3725		return -ENOTSUPP;
3726	}
3727
3728	return 0;
 
 
 
 
 
 
3729}
3730
3731static bool cea_db_is_hdmi_vsdb(const u8 *db)
 
3732{
3733	int hdmi_id;
3734
3735	if (cea_db_tag(db) != VENDOR_BLOCK)
3736		return false;
 
3737
3738	if (cea_db_payload_len(db) < 5)
3739		return false;
 
 
 
 
 
3740
3741	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3742
3743	return hdmi_id == HDMI_IEEE_OUI;
 
 
 
 
3744}
3745
3746static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
 
 
 
 
3747{
3748	unsigned int oui;
3749
3750	if (cea_db_tag(db) != VENDOR_BLOCK)
3751		return false;
3752
3753	if (cea_db_payload_len(db) < 7)
3754		return false;
 
 
 
 
 
 
 
 
 
 
 
 
3755
3756	oui = db[3] << 16 | db[2] << 8 | db[1];
 
 
 
 
 
 
3757
3758	return oui == HDMI_FORUM_IEEE_OUI;
 
 
 
 
 
 
3759}
3760
3761static bool cea_db_is_vcdb(const u8 *db)
 
 
 
 
 
 
 
 
3762{
3763	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3764		return false;
3765
3766	if (cea_db_payload_len(db) != 2)
3767		return false;
 
3768
3769	if (cea_db_extended_tag(db) != EXT_VIDEO_CAPABILITY_BLOCK)
3770		return false;
 
 
 
 
3771
3772	return true;
 
 
 
3773}
3774
3775static bool cea_db_is_y420cmdb(const u8 *db)
3776{
3777	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3778		return false;
3779
3780	if (!cea_db_payload_len(db))
3781		return false;
 
 
 
 
 
3782
3783	if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
3784		return false;
3785
3786	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3787}
3788
3789static bool cea_db_is_y420vdb(const u8 *db)
 
 
 
3790{
3791	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3792		return false;
3793
3794	if (!cea_db_payload_len(db))
3795		return false;
3796
3797	if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
3798		return false;
 
 
 
3799
3800	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3801}
3802
3803#define for_each_cea_db(cea, i, start, end) \
3804	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3805
3806static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
3807				      const u8 *db)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3808{
3809	struct drm_display_info *info = &connector->display_info;
3810	struct drm_hdmi_info *hdmi = &info->hdmi;
3811	u8 map_len = cea_db_payload_len(db) - 1;
3812	u8 count;
3813	u64 map = 0;
3814
3815	if (map_len == 0) {
3816		/* All CEA modes support ycbcr420 sampling also.*/
3817		hdmi->y420_cmdb_map = U64_MAX;
3818		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3819		return;
3820	}
3821
3822	/*
3823	 * This map indicates which of the existing CEA block modes
3824	 * from VDB can support YCBCR420 output too. So if bit=0 is
3825	 * set, first mode from VDB can support YCBCR420 output too.
3826	 * We will parse and keep this map, before parsing VDB itself
3827	 * to avoid going through the same block again and again.
3828	 *
3829	 * Spec is not clear about max possible size of this block.
3830	 * Clamping max bitmap block size at 8 bytes. Every byte can
3831	 * address 8 CEA modes, in this way this map can address
3832	 * 8*8 = first 64 SVDs.
3833	 */
3834	if (WARN_ON_ONCE(map_len > 8))
3835		map_len = 8;
3836
3837	for (count = 0; count < map_len; count++)
3838		map |= (u64)db[2 + count] << (8 * count);
3839
 
3840	if (map)
3841		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3842
3843	hdmi->y420_cmdb_map = map;
3844}
3845
3846static int
3847add_cea_modes(struct drm_connector *connector, struct edid *edid)
3848{
3849	const u8 *cea = drm_find_cea_extension(edid);
3850	const u8 *db, *hdmi = NULL, *video = NULL;
3851	u8 dbl, hdmi_len, video_len = 0;
3852	int modes = 0;
3853
3854	if (cea && cea_revision(cea) >= 3) {
3855		int i, start, end;
3856
3857		if (cea_db_offsets(cea, &start, &end))
3858			return 0;
3859
3860		for_each_cea_db(cea, i, start, end) {
3861			db = &cea[i];
3862			dbl = cea_db_payload_len(db);
3863
3864			if (cea_db_tag(db) == VIDEO_BLOCK) {
3865				video = db + 1;
3866				video_len = dbl;
3867				modes += do_cea_modes(connector, video, dbl);
3868			} else if (cea_db_is_hdmi_vsdb(db)) {
3869				hdmi = db;
3870				hdmi_len = dbl;
3871			} else if (cea_db_is_y420vdb(db)) {
3872				const u8 *vdb420 = &db[2];
3873
3874				/* Add 4:2:0(only) modes present in EDID */
3875				modes += do_y420vdb_modes(connector,
3876							  vdb420,
3877							  dbl - 1);
3878			}
3879		}
3880	}
3881
3882	/*
3883	 * We parse the HDMI VSDB after having added the cea modes as we will
3884	 * be patching their flags when the sink supports stereo 3D.
3885	 */
3886	if (hdmi)
3887		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3888					    video_len);
3889
3890	return modes;
3891}
3892
3893static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
 
3894{
3895	const struct drm_display_mode *cea_mode;
3896	int clock1, clock2, clock;
3897	u8 vic;
3898	const char *type;
3899
3900	/*
3901	 * allow 5kHz clock difference either way to account for
3902	 * the 10kHz clock resolution limit of detailed timings.
3903	 */
3904	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3905	if (drm_valid_cea_vic(vic)) {
3906		type = "CEA";
3907		cea_mode = &edid_cea_modes[vic];
3908		clock1 = cea_mode->clock;
3909		clock2 = cea_mode_alternate_clock(cea_mode);
3910	} else {
3911		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3912		if (drm_valid_hdmi_vic(vic)) {
3913			type = "HDMI";
3914			cea_mode = &edid_4k_modes[vic];
3915			clock1 = cea_mode->clock;
3916			clock2 = hdmi_mode_alternate_clock(cea_mode);
3917		} else {
3918			return;
3919		}
3920	}
3921
3922	/* pick whichever is closest */
3923	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3924		clock = clock1;
3925	else
3926		clock = clock2;
3927
3928	if (mode->clock == clock)
3929		return;
3930
3931	DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3932		  type, vic, mode->clock, clock);
 
 
3933	mode->clock = clock;
3934}
3935
3936static bool cea_db_is_hdmi_hdr_metadata_block(const u8 *db)
3937{
3938	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3939		return false;
 
 
 
 
 
 
3940
3941	if (db[1] != HDR_STATIC_METADATA_BLOCK)
3942		return false;
3943
3944	if (cea_db_payload_len(db) < 3)
3945		return false;
3946
3947	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3948}
3949
3950static uint8_t eotf_supported(const u8 *edid_ext)
3951{
3952	return edid_ext[2] &
3953		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
3954		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
3955		 BIT(HDMI_EOTF_SMPTE_ST2084) |
3956		 BIT(HDMI_EOTF_BT_2100_HLG));
3957}
3958
3959static uint8_t hdr_metadata_type(const u8 *edid_ext)
3960{
3961	return edid_ext[3] &
3962		BIT(HDMI_STATIC_METADATA_TYPE1);
3963}
3964
3965static void
3966drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
3967{
3968	u16 len;
3969
3970	len = cea_db_payload_len(db);
3971
3972	connector->hdr_sink_metadata.hdmi_type1.eotf =
3973						eotf_supported(db);
3974	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
3975						hdr_metadata_type(db);
3976
3977	if (len >= 4)
3978		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
3979	if (len >= 5)
3980		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
3981	if (len >= 6)
3982		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
 
 
 
 
3983}
3984
 
3985static void
3986drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
3987{
3988	u8 len = cea_db_payload_len(db);
3989
3990	if (len >= 6 && (db[6] & (1 << 7)))
3991		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
3992	if (len >= 8) {
3993		connector->latency_present[0] = db[8] >> 7;
3994		connector->latency_present[1] = (db[8] >> 6) & 1;
3995	}
3996	if (len >= 9)
3997		connector->video_latency[0] = db[9];
3998	if (len >= 10)
3999		connector->audio_latency[0] = db[10];
4000	if (len >= 11)
 
 
 
4001		connector->video_latency[1] = db[11];
4002	if (len >= 12)
4003		connector->audio_latency[1] = db[12];
 
4004
4005	DRM_DEBUG_KMS("HDMI: latency present %d %d, "
4006		      "video latency %d %d, "
4007		      "audio latency %d %d\n",
4008		      connector->latency_present[0],
4009		      connector->latency_present[1],
4010		      connector->video_latency[0],
4011		      connector->video_latency[1],
4012		      connector->audio_latency[0],
4013		      connector->audio_latency[1]);
4014}
4015
4016static void
4017monitor_name(struct detailed_timing *t, void *data)
4018{
4019	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
4020		*(u8 **)data = t->data.other_data.data.str.str;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4021}
4022
4023static int get_monitor_name(struct edid *edid, char name[13])
 
 
 
 
 
 
 
 
 
 
4024{
4025	char *edid_name = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4026	int mnl;
4027
4028	if (!edid || !name)
4029		return 0;
4030
4031	drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
4032	for (mnl = 0; edid_name && mnl < 13; mnl++) {
4033		if (edid_name[mnl] == 0x0a)
4034			break;
4035
4036		name[mnl] = edid_name[mnl];
4037	}
4038
4039	return mnl;
4040}
4041
4042/**
4043 * drm_edid_get_monitor_name - fetch the monitor name from the edid
4044 * @edid: monitor EDID information
4045 * @name: pointer to a character array to hold the name of the monitor
4046 * @bufsize: The size of the name buffer (should be at least 14 chars.)
4047 *
4048 */
4049void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
4050{
4051	int name_length;
4052	char buf[13];
4053	
4054	if (bufsize <= 0)
4055		return;
4056
4057	name_length = min(get_monitor_name(edid, buf), bufsize - 1);
4058	memcpy(name, buf, name_length);
 
 
 
 
 
 
 
 
 
4059	name[name_length] = '\0';
4060}
4061EXPORT_SYMBOL(drm_edid_get_monitor_name);
4062
4063static void clear_eld(struct drm_connector *connector)
4064{
 
4065	memset(connector->eld, 0, sizeof(connector->eld));
 
4066
4067	connector->latency_present[0] = false;
4068	connector->latency_present[1] = false;
4069	connector->video_latency[0] = 0;
4070	connector->audio_latency[0] = 0;
4071	connector->video_latency[1] = 0;
4072	connector->audio_latency[1] = 0;
4073}
4074
4075/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4076 * drm_edid_to_eld - build ELD from EDID
4077 * @connector: connector corresponding to the HDMI/DP sink
4078 * @edid: EDID to parse
4079 *
4080 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
4081 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
4082 */
4083static void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
 
4084{
 
 
 
4085	uint8_t *eld = connector->eld;
4086	u8 *cea;
4087	u8 *db;
4088	int total_sad_count = 0;
4089	int mnl;
4090	int dbl;
4091
4092	clear_eld(connector);
4093
4094	if (!edid)
4095		return;
4096
4097	cea = drm_find_cea_extension(edid);
4098	if (!cea) {
4099		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
4100		return;
4101	}
4102
4103	mnl = get_monitor_name(edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
4104	DRM_DEBUG_KMS("ELD monitor %s\n", &eld[DRM_ELD_MONITOR_NAME_STRING]);
 
 
4105
4106	eld[DRM_ELD_CEA_EDID_VER_MNL] = cea[1] << DRM_ELD_CEA_EDID_VER_SHIFT;
4107	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
4108
4109	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
4110
4111	eld[DRM_ELD_MANUFACTURER_NAME0] = edid->mfg_id[0];
4112	eld[DRM_ELD_MANUFACTURER_NAME1] = edid->mfg_id[1];
4113	eld[DRM_ELD_PRODUCT_CODE0] = edid->prod_code[0];
4114	eld[DRM_ELD_PRODUCT_CODE1] = edid->prod_code[1];
4115
4116	if (cea_revision(cea) >= 3) {
4117		int i, start, end;
4118
4119		if (cea_db_offsets(cea, &start, &end)) {
4120			start = 0;
4121			end = 0;
4122		}
4123
4124		for_each_cea_db(cea, i, start, end) {
4125			db = &cea[i];
4126			dbl = cea_db_payload_len(db);
4127
4128			switch (cea_db_tag(db)) {
4129				int sad_count;
4130
4131			case AUDIO_BLOCK:
4132				/* Audio Data Block, contains SADs */
4133				sad_count = min(dbl / 3, 15 - total_sad_count);
4134				if (sad_count >= 1)
4135					memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
4136					       &db[1], sad_count * 3);
4137				total_sad_count += sad_count;
4138				break;
4139			case SPEAKER_BLOCK:
4140				/* Speaker Allocation Data Block */
4141				if (dbl >= 1)
4142					eld[DRM_ELD_SPEAKER] = db[1];
4143				break;
4144			case VENDOR_BLOCK:
4145				/* HDMI Vendor-Specific Data Block */
4146				if (cea_db_is_hdmi_vsdb(db))
4147					drm_parse_hdmi_vsdb_audio(connector, db);
4148				break;
4149			default:
4150				break;
4151			}
4152		}
4153	}
 
 
4154	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
4155
4156	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
4157	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4158		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
4159	else
4160		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
4161
4162	eld[DRM_ELD_BASELINE_ELD_LEN] =
4163		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
4164
4165	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
4166		      drm_eld_size(eld), total_sad_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4167}
4168
4169/**
4170 * drm_edid_to_sad - extracts SADs from EDID
4171 * @edid: EDID to parse
4172 * @sads: pointer that will be set to the extracted SADs
4173 *
4174 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
4175 *
4176 * Note: The returned pointer needs to be freed using kfree().
4177 *
4178 * Return: The number of found SADs or negative number on error.
4179 */
4180int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
4181{
4182	int count = 0;
4183	int i, start, end, dbl;
4184	u8 *cea;
4185
4186	cea = drm_find_cea_extension(edid);
4187	if (!cea) {
4188		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4189		return -ENOENT;
4190	}
4191
4192	if (cea_revision(cea) < 3) {
4193		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4194		return -ENOTSUPP;
4195	}
4196
4197	if (cea_db_offsets(cea, &start, &end)) {
4198		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4199		return -EPROTO;
4200	}
4201
4202	for_each_cea_db(cea, i, start, end) {
4203		u8 *db = &cea[i];
4204
4205		if (cea_db_tag(db) == AUDIO_BLOCK) {
4206			int j;
4207			dbl = cea_db_payload_len(db);
 
 
 
4208
4209			count = dbl / 3; /* SAD is 3B */
4210			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
4211			if (!*sads)
 
 
 
 
4212				return -ENOMEM;
4213			for (j = 0; j < count; j++) {
4214				u8 *sad = &db[1 + j * 3];
4215
4216				(*sads)[j].format = (sad[0] & 0x78) >> 3;
4217				(*sads)[j].channels = sad[0] & 0x7;
4218				(*sads)[j].freq = sad[1] & 0x7F;
4219				(*sads)[j].byte2 = sad[2];
4220			}
4221			break;
4222		}
4223	}
 
 
 
4224
4225	return count;
4226}
4227EXPORT_SYMBOL(drm_edid_to_sad);
4228
4229/**
4230 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
4231 * @edid: EDID to parse
4232 * @sadb: pointer to the speaker block
4233 *
4234 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
4235 *
4236 * Note: The returned pointer needs to be freed using kfree().
4237 *
4238 * Return: The number of found Speaker Allocation Blocks or negative number on
4239 * error.
4240 */
4241int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
4242{
4243	int count = 0;
4244	int i, start, end, dbl;
4245	const u8 *cea;
4246
4247	cea = drm_find_cea_extension(edid);
4248	if (!cea) {
4249		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4250		return -ENOENT;
4251	}
4252
4253	if (cea_revision(cea) < 3) {
4254		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4255		return -ENOTSUPP;
4256	}
4257
4258	if (cea_db_offsets(cea, &start, &end)) {
4259		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4260		return -EPROTO;
4261	}
4262
4263	for_each_cea_db(cea, i, start, end) {
4264		const u8 *db = &cea[i];
4265
4266		if (cea_db_tag(db) == SPEAKER_BLOCK) {
4267			dbl = cea_db_payload_len(db);
4268
4269			/* Speaker Allocation Data Block */
4270			if (dbl == 3) {
4271				*sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
4272				if (!*sadb)
4273					return -ENOMEM;
4274				count = dbl;
4275				break;
4276			}
4277		}
4278	}
4279
4280	return count;
4281}
4282EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
4283
4284/**
4285 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
4286 * @connector: connector associated with the HDMI/DP sink
4287 * @mode: the display mode
4288 *
4289 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
4290 * the sink doesn't support audio or video.
4291 */
4292int drm_av_sync_delay(struct drm_connector *connector,
4293		      const struct drm_display_mode *mode)
4294{
4295	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
4296	int a, v;
4297
4298	if (!connector->latency_present[0])
4299		return 0;
4300	if (!connector->latency_present[1])
4301		i = 0;
4302
4303	a = connector->audio_latency[i];
4304	v = connector->video_latency[i];
4305
4306	/*
4307	 * HDMI/DP sink doesn't support audio or video?
4308	 */
4309	if (a == 255 || v == 255)
4310		return 0;
4311
4312	/*
4313	 * Convert raw EDID values to millisecond.
4314	 * Treat unknown latency as 0ms.
4315	 */
4316	if (a)
4317		a = min(2 * (a - 1), 500);
4318	if (v)
4319		v = min(2 * (v - 1), 500);
4320
4321	return max(v - a, 0);
4322}
4323EXPORT_SYMBOL(drm_av_sync_delay);
4324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4325/**
4326 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
4327 * @edid: monitor EDID information
4328 *
4329 * Parse the CEA extension according to CEA-861-B.
4330 *
 
 
 
4331 * Return: True if the monitor is HDMI, false if not or unknown.
4332 */
4333bool drm_detect_hdmi_monitor(struct edid *edid)
4334{
4335	u8 *edid_ext;
4336	int i;
4337	int start_offset, end_offset;
4338
4339	edid_ext = drm_find_cea_extension(edid);
4340	if (!edid_ext)
4341		return false;
4342
4343	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4344		return false;
 
 
 
 
 
4345
4346	/*
4347	 * Because HDMI identifier is in Vendor Specific Block,
4348	 * search it from all data blocks of CEA extension.
4349	 */
4350	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4351		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
4352			return true;
4353	}
 
4354
4355	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4356}
4357EXPORT_SYMBOL(drm_detect_hdmi_monitor);
4358
4359/**
4360 * drm_detect_monitor_audio - check monitor audio capability
4361 * @edid: EDID block to scan
4362 *
4363 * Monitor should have CEA extension block.
4364 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
4365 * audio' only. If there is any audio extension block and supported
4366 * audio format, assume at least 'basic audio' support, even if 'basic
4367 * audio' is not defined in EDID.
4368 *
4369 * Return: True if the monitor supports audio, false otherwise.
4370 */
4371bool drm_detect_monitor_audio(struct edid *edid)
4372{
4373	u8 *edid_ext;
4374	int i, j;
4375	bool has_audio = false;
4376	int start_offset, end_offset;
4377
4378	edid_ext = drm_find_cea_extension(edid);
4379	if (!edid_ext)
4380		goto end;
4381
4382	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
4383
4384	if (has_audio) {
4385		DRM_DEBUG_KMS("Monitor has basic audio support\n");
4386		goto end;
4387	}
4388
4389	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4390		goto end;
4391
4392	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4393		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
4394			has_audio = true;
4395			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
4396				DRM_DEBUG_KMS("CEA audio format %d\n",
4397					      (edid_ext[i + j] >> 3) & 0xf);
4398			goto end;
4399		}
4400	}
4401end:
4402	return has_audio;
4403}
4404EXPORT_SYMBOL(drm_detect_monitor_audio);
4405
4406
4407/**
4408 * drm_default_rgb_quant_range - default RGB quantization range
4409 * @mode: display mode
4410 *
4411 * Determine the default RGB quantization range for the mode,
4412 * as specified in CEA-861.
4413 *
4414 * Return: The default RGB quantization range for the mode
4415 */
4416enum hdmi_quantization_range
4417drm_default_rgb_quant_range(const struct drm_display_mode *mode)
4418{
4419	/* All CEA modes other than VIC 1 use limited quantization range. */
4420	return drm_match_cea_mode(mode) > 1 ?
4421		HDMI_QUANTIZATION_RANGE_LIMITED :
4422		HDMI_QUANTIZATION_RANGE_FULL;
4423}
4424EXPORT_SYMBOL(drm_default_rgb_quant_range);
4425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4426static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
4427{
4428	struct drm_display_info *info = &connector->display_info;
4429
4430	DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", db[2]);
 
4431
4432	if (db[2] & EDID_CEA_VCDB_QS)
4433		info->rgb_quant_range_selectable = true;
4434}
4435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4436static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
4437					       const u8 *db)
4438{
4439	u8 dc_mask;
4440	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4441
4442	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
4443	hdmi->y420_dc_modes = dc_mask;
4444}
4445
4446static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector,
4447				 const u8 *hf_vsdb)
4448{
4449	struct drm_display_info *display = &connector->display_info;
4450	struct drm_hdmi_info *hdmi = &display->hdmi;
 
 
4451
4452	display->has_hdmi_infoframe = true;
 
4453
4454	if (hf_vsdb[6] & 0x80) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4455		hdmi->scdc.supported = true;
4456		if (hf_vsdb[6] & 0x40)
4457			hdmi->scdc.read_request = true;
4458	}
4459
4460	/*
4461	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
4462	 * And as per the spec, three factors confirm this:
4463	 * * Availability of a HF-VSDB block in EDID (check)
4464	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
4465	 * * SCDC support available (let's check)
4466	 * Lets check it out.
4467	 */
4468
4469	if (hf_vsdb[5]) {
4470		/* max clock is 5000 KHz times block value */
4471		u32 max_tmds_clock = hf_vsdb[5] * 5000;
4472		struct drm_scdc *scdc = &hdmi->scdc;
4473
 
 
 
4474		if (max_tmds_clock > 340000) {
4475			display->max_tmds_clock = max_tmds_clock;
4476			DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n",
4477				display->max_tmds_clock);
4478		}
4479
4480		if (scdc->supported) {
4481			scdc->scrambling.supported = true;
4482
4483			/* Few sinks support scrambling for cloks < 340M */
4484			if ((hf_vsdb[6] & 0x8))
4485				scdc->scrambling.low_rates = true;
4486		}
4487	}
4488
4489	drm_parse_ycbcr420_deep_color_info(connector, hf_vsdb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4490}
4491
4492static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
4493					   const u8 *hdmi)
4494{
4495	struct drm_display_info *info = &connector->display_info;
4496	unsigned int dc_bpc = 0;
4497
4498	/* HDMI supports at least 8 bpc */
4499	info->bpc = 8;
4500
4501	if (cea_db_payload_len(hdmi) < 6)
4502		return;
4503
4504	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
4505		dc_bpc = 10;
4506		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
4507		DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
4508			  connector->name);
4509	}
4510
4511	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
4512		dc_bpc = 12;
4513		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
4514		DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
4515			  connector->name);
4516	}
4517
4518	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
4519		dc_bpc = 16;
4520		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
4521		DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
4522			  connector->name);
4523	}
4524
4525	if (dc_bpc == 0) {
4526		DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
4527			  connector->name);
4528		return;
4529	}
4530
4531	DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
4532		  connector->name, dc_bpc);
4533	info->bpc = dc_bpc;
4534
4535	/*
4536	 * Deep color support mandates RGB444 support for all video
4537	 * modes and forbids YCRCB422 support for all video modes per
4538	 * HDMI 1.3 spec.
4539	 */
4540	info->color_formats = DRM_COLOR_FORMAT_RGB444;
4541
4542	/* YCRCB444 is optional according to spec. */
4543	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
4544		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4545		DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
4546			  connector->name);
4547	}
4548
4549	/*
4550	 * Spec says that if any deep color mode is supported at all,
4551	 * then deep color 36 bit must be supported.
4552	 */
4553	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
4554		DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
4555			  connector->name);
4556	}
4557}
4558
 
4559static void
4560drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
4561{
4562	struct drm_display_info *info = &connector->display_info;
4563	u8 len = cea_db_payload_len(db);
4564
 
 
 
 
4565	if (len >= 6)
4566		info->dvi_dual = db[6] & 1;
4567	if (len >= 7)
4568		info->max_tmds_clock = db[7] * 5000;
4569
4570	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
4571		      "max TMDS clock %d kHz\n",
4572		      info->dvi_dual,
4573		      info->max_tmds_clock);
 
 
 
 
 
 
 
 
4574
4575	drm_parse_hdmi_deep_color_info(connector, db);
4576}
4577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4578static void drm_parse_cea_ext(struct drm_connector *connector,
4579			      const struct edid *edid)
4580{
4581	struct drm_display_info *info = &connector->display_info;
 
 
 
4582	const u8 *edid_ext;
4583	int i, start, end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4584
4585	edid_ext = drm_find_cea_extension(edid);
4586	if (!edid_ext)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4587		return;
4588
4589	info->cea_rev = edid_ext[1];
 
 
 
 
 
 
 
 
 
 
4590
4591	/* The existence of a CEA block should imply RGB support */
4592	info->color_formats = DRM_COLOR_FORMAT_RGB444;
4593	if (edid_ext[3] & EDID_CEA_YCRCB444)
4594		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4595	if (edid_ext[3] & EDID_CEA_YCRCB422)
4596		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4597
4598	if (cea_db_offsets(edid_ext, &start, &end))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4599		return;
4600
4601	for_each_cea_db(edid_ext, i, start, end) {
4602		const u8 *db = &edid_ext[i];
4603
4604		if (cea_db_is_hdmi_vsdb(db))
4605			drm_parse_hdmi_vsdb_video(connector, db);
4606		if (cea_db_is_hdmi_forum_vsdb(db))
4607			drm_parse_hdmi_forum_vsdb(connector, db);
4608		if (cea_db_is_y420cmdb(db))
4609			drm_parse_y420cmdb_bitmap(connector, db);
4610		if (cea_db_is_vcdb(db))
4611			drm_parse_vcdb(connector, db);
4612		if (cea_db_is_hdmi_hdr_metadata_block(db))
4613			drm_parse_hdr_metadata_block(connector, db);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4614	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4615}
4616
4617/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
4618 * all of the values which would have been set from EDID
4619 */
4620void
4621drm_reset_display_info(struct drm_connector *connector)
4622{
4623	struct drm_display_info *info = &connector->display_info;
4624
4625	info->width_mm = 0;
4626	info->height_mm = 0;
4627
4628	info->bpc = 0;
4629	info->color_formats = 0;
4630	info->cea_rev = 0;
4631	info->max_tmds_clock = 0;
4632	info->dvi_dual = false;
 
 
4633	info->has_hdmi_infoframe = false;
4634	info->rgb_quant_range_selectable = false;
4635	memset(&info->hdmi, 0, sizeof(info->hdmi));
4636
 
 
 
4637	info->non_desktop = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4638}
4639
4640u32 drm_add_display_info(struct drm_connector *connector, const struct edid *edid)
 
4641{
4642	struct drm_display_info *info = &connector->display_info;
 
 
4643
4644	u32 quirks = edid_get_quirks(edid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4645
4646	drm_reset_display_info(connector);
 
 
 
 
 
 
 
 
4647
4648	info->width_mm = edid->width_cm * 10;
4649	info->height_mm = edid->height_cm * 10;
4650
4651	info->non_desktop = !!(quirks & EDID_QUIRK_NON_DESKTOP);
4652
4653	DRM_DEBUG_KMS("non_desktop set to %d\n", info->non_desktop);
4654
4655	if (edid->revision < 3)
4656		return quirks;
4657
4658	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
4659		return quirks;
 
 
 
4660
4661	drm_parse_cea_ext(connector, edid);
4662
4663	/*
4664	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
4665	 *
4666	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
4667	 * tells us to assume 8 bpc color depth if the EDID doesn't have
4668	 * extensions which tell otherwise.
4669	 */
4670	if (info->bpc == 0 && edid->revision == 3 &&
4671	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
4672		info->bpc = 8;
4673		DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
4674			  connector->name, info->bpc);
 
4675	}
4676
4677	/* Only defined for 1.4 with digital displays */
4678	if (edid->revision < 4)
4679		return quirks;
4680
4681	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
4682	case DRM_EDID_DIGITAL_DEPTH_6:
4683		info->bpc = 6;
4684		break;
4685	case DRM_EDID_DIGITAL_DEPTH_8:
4686		info->bpc = 8;
4687		break;
4688	case DRM_EDID_DIGITAL_DEPTH_10:
4689		info->bpc = 10;
4690		break;
4691	case DRM_EDID_DIGITAL_DEPTH_12:
4692		info->bpc = 12;
4693		break;
4694	case DRM_EDID_DIGITAL_DEPTH_14:
4695		info->bpc = 14;
4696		break;
4697	case DRM_EDID_DIGITAL_DEPTH_16:
4698		info->bpc = 16;
4699		break;
4700	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
4701	default:
4702		info->bpc = 0;
4703		break;
4704	}
4705
4706	DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
4707			  connector->name, info->bpc);
 
4708
4709	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
4710	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
4711		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4712	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
4713		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4714	return quirks;
4715}
4716
4717static int validate_displayid(u8 *displayid, int length, int idx)
4718{
4719	int i;
4720	u8 csum = 0;
4721	struct displayid_hdr *base;
4722
4723	base = (struct displayid_hdr *)&displayid[idx];
 
 
 
 
 
 
4724
4725	DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
4726		      base->rev, base->bytes, base->prod_id, base->ext_count);
4727
4728	if (base->bytes + 5 > length - idx)
4729		return -EINVAL;
4730	for (i = idx; i <= base->bytes + 5; i++) {
4731		csum += displayid[i];
4732	}
4733	if (csum) {
4734		DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum);
4735		return -EINVAL;
4736	}
4737	return 0;
 
 
 
 
4738}
4739
4740static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
4741							    struct displayid_detailed_timings_1 *timings)
 
4742{
4743	struct drm_display_mode *mode;
4744	unsigned pixel_clock = (timings->pixel_clock[0] |
4745				(timings->pixel_clock[1] << 8) |
4746				(timings->pixel_clock[2] << 16));
4747	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4748	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4749	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
4750	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4751	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
4752	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4753	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
4754	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4755	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4756	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
 
4757	mode = drm_mode_create(dev);
4758	if (!mode)
4759		return NULL;
4760
4761	mode->clock = pixel_clock * 10;
 
4762	mode->hdisplay = hactive;
4763	mode->hsync_start = mode->hdisplay + hsync;
4764	mode->hsync_end = mode->hsync_start + hsync_width;
4765	mode->htotal = mode->hdisplay + hblank;
4766
4767	mode->vdisplay = vactive;
4768	mode->vsync_start = mode->vdisplay + vsync;
4769	mode->vsync_end = mode->vsync_start + vsync_width;
4770	mode->vtotal = mode->vdisplay + vblank;
4771
4772	mode->flags = 0;
4773	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4774	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4775	mode->type = DRM_MODE_TYPE_DRIVER;
4776
4777	if (timings->flags & 0x80)
4778		mode->type |= DRM_MODE_TYPE_PREFERRED;
4779	mode->vrefresh = drm_mode_vrefresh(mode);
4780	drm_mode_set_name(mode);
4781
4782	return mode;
4783}
4784
4785static int add_displayid_detailed_1_modes(struct drm_connector *connector,
4786					  struct displayid_block *block)
4787{
4788	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
4789	int i;
4790	int num_timings;
4791	struct drm_display_mode *newmode;
4792	int num_modes = 0;
 
4793	/* blocks must be multiple of 20 bytes length */
4794	if (block->num_bytes % 20)
4795		return 0;
4796
4797	num_timings = block->num_bytes / 20;
4798	for (i = 0; i < num_timings; i++) {
4799		struct displayid_detailed_timings_1 *timings = &det->timings[i];
4800
4801		newmode = drm_mode_displayid_detailed(connector->dev, timings);
4802		if (!newmode)
4803			continue;
4804
4805		drm_mode_probed_add(connector, newmode);
4806		num_modes++;
4807	}
4808	return num_modes;
4809}
4810
4811static int add_displayid_detailed_modes(struct drm_connector *connector,
4812					struct edid *edid)
4813{
4814	u8 *displayid;
4815	int ret;
4816	int idx = 1;
4817	int length = EDID_LENGTH;
4818	struct displayid_block *block;
4819	int num_modes = 0;
4820
4821	displayid = drm_find_displayid_extension(edid);
4822	if (!displayid)
4823		return 0;
4824
4825	ret = validate_displayid(displayid, length, idx);
4826	if (ret)
4827		return 0;
4828
4829	idx += sizeof(struct displayid_hdr);
4830	for_each_displayid_db(displayid, block, idx, length) {
4831		switch (block->tag) {
4832		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4833			num_modes += add_displayid_detailed_1_modes(connector, block);
4834			break;
4835		}
4836	}
 
 
4837	return num_modes;
4838}
4839
4840/**
4841 * drm_add_edid_modes - add modes from EDID data, if available
4842 * @connector: connector we're probing
4843 * @edid: EDID data
4844 *
4845 * Add the specified modes to the connector's mode list. Also fills out the
4846 * &drm_display_info structure and ELD in @connector with any information which
4847 * can be derived from the edid.
4848 *
4849 * Return: The number of modes added or 0 if we couldn't find any.
4850 */
4851int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
4852{
 
4853	int num_modes = 0;
4854	u32 quirks;
4855
4856	if (edid == NULL) {
4857		clear_eld(connector);
4858		return 0;
4859	}
4860	if (!drm_edid_is_valid(edid)) {
4861		clear_eld(connector);
4862		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
4863			 connector->name);
4864		return 0;
4865	}
4866
4867	drm_edid_to_eld(connector, edid);
4868
4869	/*
4870	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
4871	 * To avoid multiple parsing of same block, lets parse that map
4872	 * from sink info, before parsing CEA modes.
4873	 */
4874	quirks = drm_add_display_info(connector, edid);
4875
4876	/*
4877	 * EDID spec says modes should be preferred in this order:
4878	 * - preferred detailed mode
4879	 * - other detailed modes from base block
4880	 * - detailed modes from extension blocks
4881	 * - CVT 3-byte code modes
4882	 * - standard timing codes
4883	 * - established timing codes
4884	 * - modes inferred from GTF or CVT range information
4885	 *
4886	 * We get this pretty much right.
4887	 *
4888	 * XXX order for additional mode types in extension blocks?
4889	 */
4890	num_modes += add_detailed_modes(connector, edid, quirks);
4891	num_modes += add_cvt_modes(connector, edid);
4892	num_modes += add_standard_modes(connector, edid);
4893	num_modes += add_established_modes(connector, edid);
4894	num_modes += add_cea_modes(connector, edid);
4895	num_modes += add_alternate_cea_modes(connector, edid);
4896	num_modes += add_displayid_detailed_modes(connector, edid);
4897	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
4898		num_modes += add_inferred_modes(connector, edid);
4899
4900	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
4901		edid_fixup_preferred(connector, quirks);
4902
4903	if (quirks & EDID_QUIRK_FORCE_6BPC)
4904		connector->display_info.bpc = 6;
4905
4906	if (quirks & EDID_QUIRK_FORCE_8BPC)
4907		connector->display_info.bpc = 8;
4908
4909	if (quirks & EDID_QUIRK_FORCE_10BPC)
4910		connector->display_info.bpc = 10;
4911
4912	if (quirks & EDID_QUIRK_FORCE_12BPC)
4913		connector->display_info.bpc = 12;
4914
4915	return num_modes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4916}
4917EXPORT_SYMBOL(drm_add_edid_modes);
4918
4919/**
4920 * drm_add_modes_noedid - add modes for the connectors without EDID
4921 * @connector: connector we're probing
4922 * @hdisplay: the horizontal display limit
4923 * @vdisplay: the vertical display limit
4924 *
4925 * Add the specified modes to the connector's mode list. Only when the
4926 * hdisplay/vdisplay is not beyond the given limit, it will be added.
4927 *
4928 * Return: The number of modes added or 0 if we couldn't find any.
4929 */
4930int drm_add_modes_noedid(struct drm_connector *connector,
4931			int hdisplay, int vdisplay)
4932{
4933	int i, count, num_modes = 0;
4934	struct drm_display_mode *mode;
4935	struct drm_device *dev = connector->dev;
4936
4937	count = ARRAY_SIZE(drm_dmt_modes);
4938	if (hdisplay < 0)
4939		hdisplay = 0;
4940	if (vdisplay < 0)
4941		vdisplay = 0;
4942
4943	for (i = 0; i < count; i++) {
4944		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
 
4945		if (hdisplay && vdisplay) {
4946			/*
4947			 * Only when two are valid, they will be used to check
4948			 * whether the mode should be added to the mode list of
4949			 * the connector.
4950			 */
4951			if (ptr->hdisplay > hdisplay ||
4952					ptr->vdisplay > vdisplay)
4953				continue;
4954		}
4955		if (drm_mode_vrefresh(ptr) > 61)
4956			continue;
4957		mode = drm_mode_duplicate(dev, ptr);
4958		if (mode) {
4959			drm_mode_probed_add(connector, mode);
4960			num_modes++;
4961		}
4962	}
4963	return num_modes;
4964}
4965EXPORT_SYMBOL(drm_add_modes_noedid);
4966
4967/**
4968 * drm_set_preferred_mode - Sets the preferred mode of a connector
4969 * @connector: connector whose mode list should be processed
4970 * @hpref: horizontal resolution of preferred mode
4971 * @vpref: vertical resolution of preferred mode
4972 *
4973 * Marks a mode as preferred if it matches the resolution specified by @hpref
4974 * and @vpref.
4975 */
4976void drm_set_preferred_mode(struct drm_connector *connector,
4977			   int hpref, int vpref)
4978{
4979	struct drm_display_mode *mode;
4980
4981	list_for_each_entry(mode, &connector->probed_modes, head) {
4982		if (mode->hdisplay == hpref &&
4983		    mode->vdisplay == vpref)
4984			mode->type |= DRM_MODE_TYPE_PREFERRED;
4985	}
4986}
4987EXPORT_SYMBOL(drm_set_preferred_mode);
4988
4989static bool is_hdmi2_sink(struct drm_connector *connector)
4990{
4991	/*
4992	 * FIXME: sil-sii8620 doesn't have a connector around when
4993	 * we need one, so we have to be prepared for a NULL connector.
4994	 */
4995	if (!connector)
4996		return true;
4997
4998	return connector->display_info.hdmi.scdc.supported ||
4999		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCRCB420;
5000}
5001
5002static inline bool is_eotf_supported(u8 output_eotf, u8 sink_eotf)
 
5003{
5004	return sink_eotf & BIT(output_eotf);
5005}
5006
5007/**
5008 * drm_hdmi_infoframe_set_hdr_metadata() - fill an HDMI DRM infoframe with
5009 *                                         HDR metadata from userspace
5010 * @frame: HDMI DRM infoframe
5011 * @conn_state: Connector state containing HDR metadata
5012 *
5013 * Return: 0 on success or a negative error code on failure.
5014 */
5015int
5016drm_hdmi_infoframe_set_hdr_metadata(struct hdmi_drm_infoframe *frame,
5017				    const struct drm_connector_state *conn_state)
5018{
5019	struct drm_connector *connector;
5020	struct hdr_output_metadata *hdr_metadata;
5021	int err;
5022
5023	if (!frame || !conn_state)
5024		return -EINVAL;
5025
5026	connector = conn_state->connector;
5027
5028	if (!conn_state->hdr_output_metadata)
5029		return -EINVAL;
5030
5031	hdr_metadata = conn_state->hdr_output_metadata->data;
 
5032
5033	if (!hdr_metadata || !connector)
5034		return -EINVAL;
 
5035
5036	/* Sink EOTF is Bit map while infoframe is absolute values */
5037	if (!is_eotf_supported(hdr_metadata->hdmi_metadata_type1.eotf,
5038	    connector->hdr_sink_metadata.hdmi_type1.eotf)) {
5039		DRM_DEBUG_KMS("EOTF Not Supported\n");
5040		return -EINVAL;
5041	}
5042
5043	err = hdmi_drm_infoframe_init(frame);
5044	if (err < 0)
5045		return err;
 
 
 
 
 
 
 
 
5046
5047	frame->eotf = hdr_metadata->hdmi_metadata_type1.eotf;
5048	frame->metadata_type = hdr_metadata->hdmi_metadata_type1.metadata_type;
5049
5050	BUILD_BUG_ON(sizeof(frame->display_primaries) !=
5051		     sizeof(hdr_metadata->hdmi_metadata_type1.display_primaries));
5052	BUILD_BUG_ON(sizeof(frame->white_point) !=
5053		     sizeof(hdr_metadata->hdmi_metadata_type1.white_point));
5054
5055	memcpy(&frame->display_primaries,
5056	       &hdr_metadata->hdmi_metadata_type1.display_primaries,
5057	       sizeof(frame->display_primaries));
5058
5059	memcpy(&frame->white_point,
5060	       &hdr_metadata->hdmi_metadata_type1.white_point,
5061	       sizeof(frame->white_point));
5062
5063	frame->max_display_mastering_luminance =
5064		hdr_metadata->hdmi_metadata_type1.max_display_mastering_luminance;
5065	frame->min_display_mastering_luminance =
5066		hdr_metadata->hdmi_metadata_type1.min_display_mastering_luminance;
5067	frame->max_fall = hdr_metadata->hdmi_metadata_type1.max_fall;
5068	frame->max_cll = hdr_metadata->hdmi_metadata_type1.max_cll;
5069
5070	return 0;
5071}
5072EXPORT_SYMBOL(drm_hdmi_infoframe_set_hdr_metadata);
5073
5074/**
5075 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
5076 *                                              data from a DRM display mode
5077 * @frame: HDMI AVI infoframe
5078 * @connector: the connector
5079 * @mode: DRM display mode
5080 *
5081 * Return: 0 on success or a negative error code on failure.
5082 */
5083int
5084drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
5085					 struct drm_connector *connector,
5086					 const struct drm_display_mode *mode)
5087{
5088	enum hdmi_picture_aspect picture_aspect;
5089	int err;
5090
5091	if (!frame || !mode)
5092		return -EINVAL;
5093
5094	err = hdmi_avi_infoframe_init(frame);
5095	if (err < 0)
5096		return err;
5097
5098	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
5099		frame->pixel_repeat = 1;
5100
5101	frame->video_code = drm_match_cea_mode(mode);
5102
5103	/*
5104	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
5105	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
5106	 * have to make sure we dont break HDMI 1.4 sinks.
5107	 */
5108	if (!is_hdmi2_sink(connector) && frame->video_code > 64)
5109		frame->video_code = 0;
5110
5111	/*
5112	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
5113	 * we should send its VIC in vendor infoframes, else send the
5114	 * VIC in AVI infoframes. Lets check if this mode is present in
5115	 * HDMI 1.4b 4K modes
5116	 */
5117	if (frame->video_code) {
5118		u8 vendor_if_vic = drm_match_hdmi_mode(mode);
5119		bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK;
5120
5121		if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d)
5122			frame->video_code = 0;
5123	}
5124
5125	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5126
5127	/*
5128	 * As some drivers don't support atomic, we can't use connector state.
5129	 * So just initialize the frame with default values, just the same way
5130	 * as it's done with other properties here.
5131	 */
5132	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
5133	frame->itc = 0;
5134
5135	/*
5136	 * Populate picture aspect ratio from either
5137	 * user input (if specified) or from the CEA mode list.
5138	 */
5139	picture_aspect = mode->picture_aspect_ratio;
5140	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE)
5141		picture_aspect = drm_get_cea_aspect_ratio(frame->video_code);
 
 
 
 
5142
5143	/*
5144	 * The infoframe can't convey anything but none, 4:3
5145	 * and 16:9, so if the user has asked for anything else
5146	 * we can only satisfy it by specifying the right VIC.
5147	 */
5148	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
5149		if (picture_aspect !=
5150		    drm_get_cea_aspect_ratio(frame->video_code))
 
 
 
 
 
5151			return -EINVAL;
 
 
5152		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5153	}
5154
 
5155	frame->picture_aspect = picture_aspect;
5156	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
5157	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
5158
5159	return 0;
5160}
5161EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
5162
5163/* HDMI Colorspace Spec Definitions */
5164#define FULL_COLORIMETRY_MASK		0x1FF
5165#define NORMAL_COLORIMETRY_MASK		0x3
5166#define EXTENDED_COLORIMETRY_MASK	0x7
5167#define EXTENDED_ACE_COLORIMETRY_MASK	0xF
5168
5169#define C(x) ((x) << 0)
5170#define EC(x) ((x) << 2)
5171#define ACE(x) ((x) << 5)
5172
5173#define HDMI_COLORIMETRY_NO_DATA		0x0
5174#define HDMI_COLORIMETRY_SMPTE_170M_YCC		(C(1) | EC(0) | ACE(0))
5175#define HDMI_COLORIMETRY_BT709_YCC		(C(2) | EC(0) | ACE(0))
5176#define HDMI_COLORIMETRY_XVYCC_601		(C(3) | EC(0) | ACE(0))
5177#define HDMI_COLORIMETRY_XVYCC_709		(C(3) | EC(1) | ACE(0))
5178#define HDMI_COLORIMETRY_SYCC_601		(C(3) | EC(2) | ACE(0))
5179#define HDMI_COLORIMETRY_OPYCC_601		(C(3) | EC(3) | ACE(0))
5180#define HDMI_COLORIMETRY_OPRGB			(C(3) | EC(4) | ACE(0))
5181#define HDMI_COLORIMETRY_BT2020_CYCC		(C(3) | EC(5) | ACE(0))
5182#define HDMI_COLORIMETRY_BT2020_RGB		(C(3) | EC(6) | ACE(0))
5183#define HDMI_COLORIMETRY_BT2020_YCC		(C(3) | EC(6) | ACE(0))
5184#define HDMI_COLORIMETRY_DCI_P3_RGB_D65		(C(3) | EC(7) | ACE(0))
5185#define HDMI_COLORIMETRY_DCI_P3_RGB_THEATER	(C(3) | EC(7) | ACE(1))
5186
5187static const u32 hdmi_colorimetry_val[] = {
5188	[DRM_MODE_COLORIMETRY_NO_DATA] = HDMI_COLORIMETRY_NO_DATA,
5189	[DRM_MODE_COLORIMETRY_SMPTE_170M_YCC] = HDMI_COLORIMETRY_SMPTE_170M_YCC,
5190	[DRM_MODE_COLORIMETRY_BT709_YCC] = HDMI_COLORIMETRY_BT709_YCC,
5191	[DRM_MODE_COLORIMETRY_XVYCC_601] = HDMI_COLORIMETRY_XVYCC_601,
5192	[DRM_MODE_COLORIMETRY_XVYCC_709] = HDMI_COLORIMETRY_XVYCC_709,
5193	[DRM_MODE_COLORIMETRY_SYCC_601] = HDMI_COLORIMETRY_SYCC_601,
5194	[DRM_MODE_COLORIMETRY_OPYCC_601] = HDMI_COLORIMETRY_OPYCC_601,
5195	[DRM_MODE_COLORIMETRY_OPRGB] = HDMI_COLORIMETRY_OPRGB,
5196	[DRM_MODE_COLORIMETRY_BT2020_CYCC] = HDMI_COLORIMETRY_BT2020_CYCC,
5197	[DRM_MODE_COLORIMETRY_BT2020_RGB] = HDMI_COLORIMETRY_BT2020_RGB,
5198	[DRM_MODE_COLORIMETRY_BT2020_YCC] = HDMI_COLORIMETRY_BT2020_YCC,
5199};
5200
5201#undef C
5202#undef EC
5203#undef ACE
5204
5205/**
5206 * drm_hdmi_avi_infoframe_colorspace() - fill the HDMI AVI infoframe
5207 *                                       colorspace information
5208 * @frame: HDMI AVI infoframe
5209 * @conn_state: connector state
5210 */
5211void
5212drm_hdmi_avi_infoframe_colorspace(struct hdmi_avi_infoframe *frame,
5213				  const struct drm_connector_state *conn_state)
5214{
5215	u32 colorimetry_val;
5216	u32 colorimetry_index = conn_state->colorspace & FULL_COLORIMETRY_MASK;
5217
5218	if (colorimetry_index >= ARRAY_SIZE(hdmi_colorimetry_val))
5219		colorimetry_val = HDMI_COLORIMETRY_NO_DATA;
5220	else
5221		colorimetry_val = hdmi_colorimetry_val[colorimetry_index];
5222
5223	frame->colorimetry = colorimetry_val & NORMAL_COLORIMETRY_MASK;
5224	/*
5225	 * ToDo: Extend it for ACE formats as well. Modify the infoframe
5226	 * structure and extend it in drivers/video/hdmi
5227	 */
5228	frame->extended_colorimetry = (colorimetry_val >> 2) &
5229					EXTENDED_COLORIMETRY_MASK;
5230}
5231EXPORT_SYMBOL(drm_hdmi_avi_infoframe_colorspace);
5232
5233/**
5234 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
5235 *                                        quantization range information
5236 * @frame: HDMI AVI infoframe
5237 * @connector: the connector
5238 * @mode: DRM display mode
5239 * @rgb_quant_range: RGB quantization range (Q)
5240 */
5241void
5242drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
5243				   struct drm_connector *connector,
5244				   const struct drm_display_mode *mode,
5245				   enum hdmi_quantization_range rgb_quant_range)
5246{
5247	const struct drm_display_info *info = &connector->display_info;
5248
5249	/*
5250	 * CEA-861:
5251	 * "A Source shall not send a non-zero Q value that does not correspond
5252	 *  to the default RGB Quantization Range for the transmitted Picture
5253	 *  unless the Sink indicates support for the Q bit in a Video
5254	 *  Capabilities Data Block."
5255	 *
5256	 * HDMI 2.0 recommends sending non-zero Q when it does match the
5257	 * default RGB quantization range for the mode, even when QS=0.
5258	 */
5259	if (info->rgb_quant_range_selectable ||
5260	    rgb_quant_range == drm_default_rgb_quant_range(mode))
5261		frame->quantization_range = rgb_quant_range;
5262	else
5263		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
5264
5265	/*
5266	 * CEA-861-F:
5267	 * "When transmitting any RGB colorimetry, the Source should set the
5268	 *  YQ-field to match the RGB Quantization Range being transmitted
5269	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
5270	 *  set YQ=1) and the Sink shall ignore the YQ-field."
5271	 *
5272	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
5273	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
5274	 * good way to tell which version of CEA-861 the sink supports, so
5275	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
5276	 * on on CEA-861-F.
5277	 */
5278	if (!is_hdmi2_sink(connector) ||
5279	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
5280		frame->ycc_quantization_range =
5281			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
5282	else
5283		frame->ycc_quantization_range =
5284			HDMI_YCC_QUANTIZATION_RANGE_FULL;
5285}
5286EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
5287
5288static enum hdmi_3d_structure
5289s3d_structure_from_display_mode(const struct drm_display_mode *mode)
5290{
5291	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
5292
5293	switch (layout) {
5294	case DRM_MODE_FLAG_3D_FRAME_PACKING:
5295		return HDMI_3D_STRUCTURE_FRAME_PACKING;
5296	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
5297		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
5298	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
5299		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
5300	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
5301		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
5302	case DRM_MODE_FLAG_3D_L_DEPTH:
5303		return HDMI_3D_STRUCTURE_L_DEPTH;
5304	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
5305		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
5306	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
5307		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
5308	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
5309		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
5310	default:
5311		return HDMI_3D_STRUCTURE_INVALID;
5312	}
5313}
5314
5315/**
5316 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
5317 * data from a DRM display mode
5318 * @frame: HDMI vendor infoframe
5319 * @connector: the connector
5320 * @mode: DRM display mode
5321 *
5322 * Note that there's is a need to send HDMI vendor infoframes only when using a
5323 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
5324 * function will return -EINVAL, error that can be safely ignored.
5325 *
5326 * Return: 0 on success or a negative error code on failure.
5327 */
5328int
5329drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
5330					    struct drm_connector *connector,
5331					    const struct drm_display_mode *mode)
5332{
5333	/*
5334	 * FIXME: sil-sii8620 doesn't have a connector around when
5335	 * we need one, so we have to be prepared for a NULL connector.
5336	 */
5337	bool has_hdmi_infoframe = connector ?
5338		connector->display_info.has_hdmi_infoframe : false;
5339	int err;
5340	u32 s3d_flags;
5341	u8 vic;
5342
5343	if (!frame || !mode)
5344		return -EINVAL;
5345
5346	if (!has_hdmi_infoframe)
5347		return -EINVAL;
5348
5349	vic = drm_match_hdmi_mode(mode);
5350	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
 
5351
5352	/*
5353	 * Even if it's not absolutely necessary to send the infoframe
5354	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
5355	 * know that the sink can handle it. This is based on a
5356	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
5357	 * have trouble realizing that they shuld switch from 3D to 2D
5358	 * mode if the source simply stops sending the infoframe when
5359	 * it wants to switch from 3D to 2D.
5360	 */
5361
5362	if (vic && s3d_flags)
5363		return -EINVAL;
5364
5365	err = hdmi_vendor_infoframe_init(frame);
5366	if (err < 0)
5367		return err;
5368
5369	frame->vic = vic;
5370	frame->s3d_struct = s3d_structure_from_display_mode(mode);
5371
5372	return 0;
5373}
5374EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
5375
5376static int drm_parse_tiled_block(struct drm_connector *connector,
5377				 struct displayid_block *block)
5378{
5379	struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
5380	u16 w, h;
5381	u8 tile_v_loc, tile_h_loc;
5382	u8 num_v_tile, num_h_tile;
5383	struct drm_tile_group *tg;
5384
5385	w = tile->tile_size[0] | tile->tile_size[1] << 8;
5386	h = tile->tile_size[2] | tile->tile_size[3] << 8;
5387
5388	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
5389	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
5390	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
5391	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
5392
5393	connector->has_tile = true;
5394	if (tile->tile_cap & 0x80)
5395		connector->tile_is_single_monitor = true;
5396
5397	connector->num_h_tile = num_h_tile + 1;
5398	connector->num_v_tile = num_v_tile + 1;
5399	connector->tile_h_loc = tile_h_loc;
5400	connector->tile_v_loc = tile_v_loc;
5401	connector->tile_h_size = w + 1;
5402	connector->tile_v_size = h + 1;
5403
5404	DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
5405	DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
5406	DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
5407		      num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
5408	DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
 
 
 
5409
5410	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
5411	if (!tg) {
5412		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
5413	}
5414	if (!tg)
5415		return -ENOMEM;
5416
5417	if (connector->tile_group != tg) {
5418		/* if we haven't got a pointer,
5419		   take the reference, drop ref to old tile group */
5420		if (connector->tile_group) {
5421			drm_mode_put_tile_group(connector->dev, connector->tile_group);
5422		}
5423		connector->tile_group = tg;
5424	} else
5425		/* if same tile group, then release the ref we just took. */
5426		drm_mode_put_tile_group(connector->dev, tg);
5427	return 0;
5428}
5429
5430static int drm_parse_display_id(struct drm_connector *connector,
5431				u8 *displayid, int length,
5432				bool is_edid_extension)
5433{
5434	/* if this is an EDID extension the first byte will be 0x70 */
5435	int idx = 0;
5436	struct displayid_block *block;
5437	int ret;
5438
5439	if (is_edid_extension)
5440		idx = 1;
5441
5442	ret = validate_displayid(displayid, length, idx);
5443	if (ret)
5444		return ret;
5445
5446	idx += sizeof(struct displayid_hdr);
5447	for_each_displayid_db(displayid, block, idx, length) {
5448		DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
5449			      block->tag, block->rev, block->num_bytes);
5450
5451		switch (block->tag) {
5452		case DATA_BLOCK_TILED_DISPLAY:
5453			ret = drm_parse_tiled_block(connector, block);
5454			if (ret)
5455				return ret;
5456			break;
5457		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5458			/* handled in mode gathering code. */
5459			break;
5460		case DATA_BLOCK_CTA:
5461			/* handled in the cea parser code. */
5462			break;
5463		default:
5464			DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
5465			break;
5466		}
5467	}
5468	return 0;
5469}
5470
5471static void drm_get_displayid(struct drm_connector *connector,
5472			      struct edid *edid)
5473{
5474	void *displayid = NULL;
5475	int ret;
 
5476	connector->has_tile = false;
5477	displayid = drm_find_displayid_extension(edid);
5478	if (!displayid) {
5479		/* drop reference to any tile group we had */
5480		goto out_drop_ref;
 
5481	}
 
5482
5483	ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
5484	if (ret < 0)
5485		goto out_drop_ref;
5486	if (!connector->has_tile)
5487		goto out_drop_ref;
5488	return;
5489out_drop_ref:
5490	if (connector->tile_group) {
5491		drm_mode_put_tile_group(connector->dev, connector->tile_group);
5492		connector->tile_group = NULL;
5493	}
5494	return;
5495}
v6.13.7
   1/*
   2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
   3 * Copyright (c) 2007-2008 Intel Corporation
   4 *   Jesse Barnes <jesse.barnes@intel.com>
   5 * Copyright 2010 Red Hat, Inc.
   6 *
   7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
   8 * FB layer.
   9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
  10 *
  11 * Permission is hereby granted, free of charge, to any person obtaining a
  12 * copy of this software and associated documentation files (the "Software"),
  13 * to deal in the Software without restriction, including without limitation
  14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
  15 * and/or sell copies of the Software, and to permit persons to whom the
  16 * Software is furnished to do so, subject to the following conditions:
  17 *
  18 * The above copyright notice and this permission notice (including the
  19 * next paragraph) shall be included in all copies or substantial portions
  20 * of the Software.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  28 * DEALINGS IN THE SOFTWARE.
  29 */
  30
  31#include <linux/bitfield.h>
  32#include <linux/byteorder/generic.h>
  33#include <linux/cec.h>
  34#include <linux/hdmi.h>
  35#include <linux/i2c.h>
  36#include <linux/kernel.h>
  37#include <linux/module.h>
  38#include <linux/pci.h>
  39#include <linux/seq_buf.h>
  40#include <linux/slab.h>
  41#include <linux/vga_switcheroo.h>
  42
 
  43#include <drm/drm_drv.h>
  44#include <drm/drm_edid.h>
  45#include <drm/drm_eld.h>
  46#include <drm/drm_encoder.h>
  47#include <drm/drm_print.h>
 
  48
  49#include "drm_crtc_internal.h"
  50#include "drm_displayid_internal.h"
  51#include "drm_internal.h"
  52
  53static int oui(u8 first, u8 second, u8 third)
  54{
  55	return (first << 16) | (second << 8) | third;
  56}
  57
  58#define EDID_EST_TIMINGS 16
  59#define EDID_STD_TIMINGS 8
  60#define EDID_DETAILED_TIMINGS 4
  61
  62/*
  63 * EDID blocks out in the wild have a variety of bugs, try to collect
  64 * them here (note that userspace may work around broken monitors first,
  65 * but fixes should make their way here so that the kernel "just works"
  66 * on as many displays as possible).
  67 */
  68
  69/* First detailed mode wrong, use largest 60Hz mode */
  70#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
  71/* Reported 135MHz pixel clock is too high, needs adjustment */
  72#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
  73/* Prefer the largest mode at 75 Hz */
  74#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
  75/* Detail timing is in cm not mm */
  76#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
  77/* Detailed timing descriptors have bogus size values, so just take the
  78 * maximum size and use that.
  79 */
  80#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
  81/* use +hsync +vsync for detailed mode */
  82#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
  83/* Force reduced-blanking timings for detailed modes */
  84#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
  85/* Force 8bpc */
  86#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
  87/* Force 12bpc */
  88#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
  89/* Force 6bpc */
  90#define EDID_QUIRK_FORCE_6BPC			(1 << 10)
  91/* Force 10bpc */
  92#define EDID_QUIRK_FORCE_10BPC			(1 << 11)
  93/* Non desktop display (i.e. HMD) */
  94#define EDID_QUIRK_NON_DESKTOP			(1 << 12)
  95/* Cap the DSC target bitrate to 15bpp */
  96#define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
  97
  98#define MICROSOFT_IEEE_OUI	0xca125c
  99
 100struct detailed_mode_closure {
 101	struct drm_connector *connector;
 102	const struct drm_edid *drm_edid;
 103	bool preferred;
 
 104	int modes;
 105};
 106
 107struct drm_edid_match_closure {
 108	const struct drm_edid_ident *ident;
 109	bool matched;
 110};
 111
 112#define LEVEL_DMT	0
 113#define LEVEL_GTF	1
 114#define LEVEL_GTF2	2
 115#define LEVEL_CVT	3
 116
 117#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
 118{ \
 119	.ident = { \
 120		.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, \
 121						     vend_chr_2, product_id), \
 122	}, \
 123	.quirks = _quirks \
 124}
 125
 126static const struct edid_quirk {
 127	const struct drm_edid_ident ident;
 
 128	u32 quirks;
 129} edid_quirk_list[] = {
 130	/* Acer AL1706 */
 131	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
 132	/* Acer F51 */
 133	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
 134
 135	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
 136	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
 137
 138	/* BenQ GW2765 */
 139	EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
 140
 141	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
 142	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
 143
 144	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
 145	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
 146
 147	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
 148	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
 149
 150	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
 151	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
 152
 153	/* Belinea 10 15 55 */
 154	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
 155	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
 156
 157	/* Envision Peripherals, Inc. EN-7100e */
 158	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
 159	/* Envision EN2028 */
 160	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
 161
 162	/* Funai Electronics PM36B */
 163	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
 164				       EDID_QUIRK_DETAILED_IN_CM),
 165
 166	/* LG 27GP950 */
 167	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
 168
 169	/* LG 27GN950 */
 170	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
 171
 172	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
 173	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
 174
 175	/* LG Philips LCD LP154W01-A5 */
 176	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 177	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 178
 179	/* Samsung SyncMaster 205BW.  Note: irony */
 180	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
 181	/* Samsung SyncMaster 22[5-6]BW */
 182	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
 183	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
 184
 185	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
 186	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
 187
 188	/* ViewSonic VA2026w */
 189	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
 190
 191	/* Medion MD 30217 PG */
 192	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
 193
 194	/* Lenovo G50 */
 195	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
 196
 197	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
 198	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
 199
 200	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
 201	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
 202
 203	/* Valve Index Headset */
 204	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
 205	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
 206	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
 207	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
 208	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
 209	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
 210	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
 211	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
 212	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
 213	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
 214	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
 215	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
 216	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
 217	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
 218	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
 219	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
 220	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
 221
 222	/* HTC Vive and Vive Pro VR Headsets */
 223	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
 224	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
 225
 226	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
 227	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
 228	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
 229	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
 230	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
 231
 232	/* Windows Mixed Reality Headsets */
 233	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 234	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
 235	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
 236	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 237	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
 238	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
 
 
 239
 240	/* Sony PlayStation VR Headset */
 241	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
 242
 243	/* Sensics VR Headsets */
 244	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
 245
 246	/* OSVR HDK and HDK2 VR Headsets */
 247	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
 248	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
 249};
 250
 251/*
 252 * Autogenerated from the DMT spec.
 253 * This table is copied from xfree86/modes/xf86EdidModes.c.
 254 */
 255static const struct drm_display_mode drm_dmt_modes[] = {
 256	/* 0x01 - 640x350@85Hz */
 257	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 258		   736, 832, 0, 350, 382, 385, 445, 0,
 259		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 260	/* 0x02 - 640x400@85Hz */
 261	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 262		   736, 832, 0, 400, 401, 404, 445, 0,
 263		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 264	/* 0x03 - 720x400@85Hz */
 265	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
 266		   828, 936, 0, 400, 401, 404, 446, 0,
 267		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 268	/* 0x04 - 640x480@60Hz */
 269	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 270		   752, 800, 0, 480, 490, 492, 525, 0,
 271		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 272	/* 0x05 - 640x480@72Hz */
 273	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 274		   704, 832, 0, 480, 489, 492, 520, 0,
 275		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 276	/* 0x06 - 640x480@75Hz */
 277	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 278		   720, 840, 0, 480, 481, 484, 500, 0,
 279		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 280	/* 0x07 - 640x480@85Hz */
 281	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
 282		   752, 832, 0, 480, 481, 484, 509, 0,
 283		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 284	/* 0x08 - 800x600@56Hz */
 285	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 286		   896, 1024, 0, 600, 601, 603, 625, 0,
 287		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 288	/* 0x09 - 800x600@60Hz */
 289	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 290		   968, 1056, 0, 600, 601, 605, 628, 0,
 291		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 292	/* 0x0a - 800x600@72Hz */
 293	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 294		   976, 1040, 0, 600, 637, 643, 666, 0,
 295		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 296	/* 0x0b - 800x600@75Hz */
 297	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 298		   896, 1056, 0, 600, 601, 604, 625, 0,
 299		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 300	/* 0x0c - 800x600@85Hz */
 301	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
 302		   896, 1048, 0, 600, 601, 604, 631, 0,
 303		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 304	/* 0x0d - 800x600@120Hz RB */
 305	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
 306		   880, 960, 0, 600, 603, 607, 636, 0,
 307		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 308	/* 0x0e - 848x480@60Hz */
 309	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
 310		   976, 1088, 0, 480, 486, 494, 517, 0,
 311		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 312	/* 0x0f - 1024x768@43Hz, interlace */
 313	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
 314		   1208, 1264, 0, 768, 768, 776, 817, 0,
 315		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 316		   DRM_MODE_FLAG_INTERLACE) },
 317	/* 0x10 - 1024x768@60Hz */
 318	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 319		   1184, 1344, 0, 768, 771, 777, 806, 0,
 320		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 321	/* 0x11 - 1024x768@70Hz */
 322	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 323		   1184, 1328, 0, 768, 771, 777, 806, 0,
 324		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 325	/* 0x12 - 1024x768@75Hz */
 326	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 327		   1136, 1312, 0, 768, 769, 772, 800, 0,
 328		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 329	/* 0x13 - 1024x768@85Hz */
 330	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
 331		   1168, 1376, 0, 768, 769, 772, 808, 0,
 332		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 333	/* 0x14 - 1024x768@120Hz RB */
 334	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
 335		   1104, 1184, 0, 768, 771, 775, 813, 0,
 336		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 337	/* 0x15 - 1152x864@75Hz */
 338	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 339		   1344, 1600, 0, 864, 865, 868, 900, 0,
 340		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 341	/* 0x55 - 1280x720@60Hz */
 342	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 343		   1430, 1650, 0, 720, 725, 730, 750, 0,
 344		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 345	/* 0x16 - 1280x768@60Hz RB */
 346	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
 347		   1360, 1440, 0, 768, 771, 778, 790, 0,
 348		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 349	/* 0x17 - 1280x768@60Hz */
 350	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
 351		   1472, 1664, 0, 768, 771, 778, 798, 0,
 352		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 353	/* 0x18 - 1280x768@75Hz */
 354	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
 355		   1488, 1696, 0, 768, 771, 778, 805, 0,
 356		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 357	/* 0x19 - 1280x768@85Hz */
 358	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
 359		   1496, 1712, 0, 768, 771, 778, 809, 0,
 360		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 361	/* 0x1a - 1280x768@120Hz RB */
 362	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
 363		   1360, 1440, 0, 768, 771, 778, 813, 0,
 364		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 365	/* 0x1b - 1280x800@60Hz RB */
 366	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
 367		   1360, 1440, 0, 800, 803, 809, 823, 0,
 368		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 369	/* 0x1c - 1280x800@60Hz */
 370	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
 371		   1480, 1680, 0, 800, 803, 809, 831, 0,
 372		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 373	/* 0x1d - 1280x800@75Hz */
 374	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
 375		   1488, 1696, 0, 800, 803, 809, 838, 0,
 376		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 377	/* 0x1e - 1280x800@85Hz */
 378	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
 379		   1496, 1712, 0, 800, 803, 809, 843, 0,
 380		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 381	/* 0x1f - 1280x800@120Hz RB */
 382	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
 383		   1360, 1440, 0, 800, 803, 809, 847, 0,
 384		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 385	/* 0x20 - 1280x960@60Hz */
 386	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
 387		   1488, 1800, 0, 960, 961, 964, 1000, 0,
 388		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 389	/* 0x21 - 1280x960@85Hz */
 390	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
 391		   1504, 1728, 0, 960, 961, 964, 1011, 0,
 392		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 393	/* 0x22 - 1280x960@120Hz RB */
 394	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
 395		   1360, 1440, 0, 960, 963, 967, 1017, 0,
 396		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 397	/* 0x23 - 1280x1024@60Hz */
 398	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
 399		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 400		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 401	/* 0x24 - 1280x1024@75Hz */
 402	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 403		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 404		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 405	/* 0x25 - 1280x1024@85Hz */
 406	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
 407		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
 408		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 409	/* 0x26 - 1280x1024@120Hz RB */
 410	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
 411		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
 412		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 413	/* 0x27 - 1360x768@60Hz */
 414	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
 415		   1536, 1792, 0, 768, 771, 777, 795, 0,
 416		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 417	/* 0x28 - 1360x768@120Hz RB */
 418	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
 419		   1440, 1520, 0, 768, 771, 776, 813, 0,
 420		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 421	/* 0x51 - 1366x768@60Hz */
 422	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
 423		   1579, 1792, 0, 768, 771, 774, 798, 0,
 424		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 425	/* 0x56 - 1366x768@60Hz */
 426	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
 427		   1436, 1500, 0, 768, 769, 772, 800, 0,
 428		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 429	/* 0x29 - 1400x1050@60Hz RB */
 430	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
 431		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
 432		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 433	/* 0x2a - 1400x1050@60Hz */
 434	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
 435		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
 436		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 437	/* 0x2b - 1400x1050@75Hz */
 438	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
 439		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
 440		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 441	/* 0x2c - 1400x1050@85Hz */
 442	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
 443		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
 444		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 445	/* 0x2d - 1400x1050@120Hz RB */
 446	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
 447		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
 448		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 449	/* 0x2e - 1440x900@60Hz RB */
 450	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
 451		   1520, 1600, 0, 900, 903, 909, 926, 0,
 452		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 453	/* 0x2f - 1440x900@60Hz */
 454	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
 455		   1672, 1904, 0, 900, 903, 909, 934, 0,
 456		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 457	/* 0x30 - 1440x900@75Hz */
 458	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
 459		   1688, 1936, 0, 900, 903, 909, 942, 0,
 460		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 461	/* 0x31 - 1440x900@85Hz */
 462	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
 463		   1696, 1952, 0, 900, 903, 909, 948, 0,
 464		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 465	/* 0x32 - 1440x900@120Hz RB */
 466	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
 467		   1520, 1600, 0, 900, 903, 909, 953, 0,
 468		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 469	/* 0x53 - 1600x900@60Hz */
 470	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
 471		   1704, 1800, 0, 900, 901, 904, 1000, 0,
 472		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 473	/* 0x33 - 1600x1200@60Hz */
 474	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
 475		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 476		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 477	/* 0x34 - 1600x1200@65Hz */
 478	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
 479		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 480		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 481	/* 0x35 - 1600x1200@70Hz */
 482	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
 483		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 484		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 485	/* 0x36 - 1600x1200@75Hz */
 486	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
 487		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 488		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 489	/* 0x37 - 1600x1200@85Hz */
 490	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
 491		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 492		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 493	/* 0x38 - 1600x1200@120Hz RB */
 494	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
 495		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
 496		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 497	/* 0x39 - 1680x1050@60Hz RB */
 498	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
 499		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
 500		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 501	/* 0x3a - 1680x1050@60Hz */
 502	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
 503		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
 504		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 505	/* 0x3b - 1680x1050@75Hz */
 506	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
 507		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
 508		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 509	/* 0x3c - 1680x1050@85Hz */
 510	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
 511		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
 512		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 513	/* 0x3d - 1680x1050@120Hz RB */
 514	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
 515		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
 516		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 517	/* 0x3e - 1792x1344@60Hz */
 518	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
 519		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
 520		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 521	/* 0x3f - 1792x1344@75Hz */
 522	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
 523		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
 524		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 525	/* 0x40 - 1792x1344@120Hz RB */
 526	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
 527		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
 528		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 529	/* 0x41 - 1856x1392@60Hz */
 530	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
 531		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
 532		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 533	/* 0x42 - 1856x1392@75Hz */
 534	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
 535		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
 536		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 537	/* 0x43 - 1856x1392@120Hz RB */
 538	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
 539		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
 540		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 541	/* 0x52 - 1920x1080@60Hz */
 542	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 543		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 544		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 545	/* 0x44 - 1920x1200@60Hz RB */
 546	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
 547		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
 548		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 549	/* 0x45 - 1920x1200@60Hz */
 550	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
 551		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
 552		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 553	/* 0x46 - 1920x1200@75Hz */
 554	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
 555		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
 556		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 557	/* 0x47 - 1920x1200@85Hz */
 558	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
 559		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
 560		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 561	/* 0x48 - 1920x1200@120Hz RB */
 562	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
 563		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
 564		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 565	/* 0x49 - 1920x1440@60Hz */
 566	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
 567		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
 568		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 569	/* 0x4a - 1920x1440@75Hz */
 570	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
 571		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
 572		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 573	/* 0x4b - 1920x1440@120Hz RB */
 574	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
 575		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
 576		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 577	/* 0x54 - 2048x1152@60Hz */
 578	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
 579		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
 580		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 581	/* 0x4c - 2560x1600@60Hz RB */
 582	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
 583		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
 584		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 585	/* 0x4d - 2560x1600@60Hz */
 586	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
 587		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
 588		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 589	/* 0x4e - 2560x1600@75Hz */
 590	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
 591		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
 592		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 593	/* 0x4f - 2560x1600@85Hz */
 594	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
 595		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
 596		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 597	/* 0x50 - 2560x1600@120Hz RB */
 598	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
 599		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
 600		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 601	/* 0x57 - 4096x2160@60Hz RB */
 602	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
 603		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 604		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 605	/* 0x58 - 4096x2160@59.94Hz RB */
 606	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
 607		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 608		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 609};
 610
 611/*
 612 * These more or less come from the DMT spec.  The 720x400 modes are
 613 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
 614 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
 615 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
 616 * mode.
 617 *
 618 * The DMT modes have been fact-checked; the rest are mild guesses.
 619 */
 620static const struct drm_display_mode edid_est_modes[] = {
 621	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 622		   968, 1056, 0, 600, 601, 605, 628, 0,
 623		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
 624	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 625		   896, 1024, 0, 600, 601, 603,  625, 0,
 626		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
 627	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 628		   720, 840, 0, 480, 481, 484, 500, 0,
 629		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
 630	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 631		   704,  832, 0, 480, 489, 492, 520, 0,
 632		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
 633	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
 634		   768,  864, 0, 480, 483, 486, 525, 0,
 635		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
 636	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 637		   752, 800, 0, 480, 490, 492, 525, 0,
 638		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
 639	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
 640		   846, 900, 0, 400, 421, 423,  449, 0,
 641		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
 642	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
 643		   846,  900, 0, 400, 412, 414, 449, 0,
 644		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
 645	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 646		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 647		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
 648	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 649		   1136, 1312, 0,  768, 769, 772, 800, 0,
 650		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
 651	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 652		   1184, 1328, 0,  768, 771, 777, 806, 0,
 653		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
 654	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 655		   1184, 1344, 0,  768, 771, 777, 806, 0,
 656		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
 657	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
 658		   1208, 1264, 0, 768, 768, 776, 817, 0,
 659		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
 660	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
 661		   928, 1152, 0, 624, 625, 628, 667, 0,
 662		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
 663	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 664		   896, 1056, 0, 600, 601, 604,  625, 0,
 665		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
 666	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 667		   976, 1040, 0, 600, 637, 643, 666, 0,
 668		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
 669	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 670		   1344, 1600, 0,  864, 865, 868, 900, 0,
 671		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
 672};
 673
 674struct minimode {
 675	short w;
 676	short h;
 677	short r;
 678	short rb;
 679};
 680
 681static const struct minimode est3_modes[] = {
 682	/* byte 6 */
 683	{ 640, 350, 85, 0 },
 684	{ 640, 400, 85, 0 },
 685	{ 720, 400, 85, 0 },
 686	{ 640, 480, 85, 0 },
 687	{ 848, 480, 60, 0 },
 688	{ 800, 600, 85, 0 },
 689	{ 1024, 768, 85, 0 },
 690	{ 1152, 864, 75, 0 },
 691	/* byte 7 */
 692	{ 1280, 768, 60, 1 },
 693	{ 1280, 768, 60, 0 },
 694	{ 1280, 768, 75, 0 },
 695	{ 1280, 768, 85, 0 },
 696	{ 1280, 960, 60, 0 },
 697	{ 1280, 960, 85, 0 },
 698	{ 1280, 1024, 60, 0 },
 699	{ 1280, 1024, 85, 0 },
 700	/* byte 8 */
 701	{ 1360, 768, 60, 0 },
 702	{ 1440, 900, 60, 1 },
 703	{ 1440, 900, 60, 0 },
 704	{ 1440, 900, 75, 0 },
 705	{ 1440, 900, 85, 0 },
 706	{ 1400, 1050, 60, 1 },
 707	{ 1400, 1050, 60, 0 },
 708	{ 1400, 1050, 75, 0 },
 709	/* byte 9 */
 710	{ 1400, 1050, 85, 0 },
 711	{ 1680, 1050, 60, 1 },
 712	{ 1680, 1050, 60, 0 },
 713	{ 1680, 1050, 75, 0 },
 714	{ 1680, 1050, 85, 0 },
 715	{ 1600, 1200, 60, 0 },
 716	{ 1600, 1200, 65, 0 },
 717	{ 1600, 1200, 70, 0 },
 718	/* byte 10 */
 719	{ 1600, 1200, 75, 0 },
 720	{ 1600, 1200, 85, 0 },
 721	{ 1792, 1344, 60, 0 },
 722	{ 1792, 1344, 75, 0 },
 723	{ 1856, 1392, 60, 0 },
 724	{ 1856, 1392, 75, 0 },
 725	{ 1920, 1200, 60, 1 },
 726	{ 1920, 1200, 60, 0 },
 727	/* byte 11 */
 728	{ 1920, 1200, 75, 0 },
 729	{ 1920, 1200, 85, 0 },
 730	{ 1920, 1440, 60, 0 },
 731	{ 1920, 1440, 75, 0 },
 732};
 733
 734static const struct minimode extra_modes[] = {
 735	{ 1024, 576,  60, 0 },
 736	{ 1366, 768,  60, 0 },
 737	{ 1600, 900,  60, 0 },
 738	{ 1680, 945,  60, 0 },
 739	{ 1920, 1080, 60, 0 },
 740	{ 2048, 1152, 60, 0 },
 741	{ 2048, 1536, 60, 0 },
 742};
 743
 744/*
 745 * From CEA/CTA-861 spec.
 
 746 *
 747 * Do not access directly, instead always use cea_mode_for_vic().
 748 */
 749static const struct drm_display_mode edid_cea_modes_1[] = {
 
 
 750	/* 1 - 640x480@60Hz 4:3 */
 751	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 752		   752, 800, 0, 480, 490, 492, 525, 0,
 753		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 754	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 755	/* 2 - 720x480@60Hz 4:3 */
 756	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 757		   798, 858, 0, 480, 489, 495, 525, 0,
 758		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 759	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 760	/* 3 - 720x480@60Hz 16:9 */
 761	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 762		   798, 858, 0, 480, 489, 495, 525, 0,
 763		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 764	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 765	/* 4 - 1280x720@60Hz 16:9 */
 766	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 767		   1430, 1650, 0, 720, 725, 730, 750, 0,
 768		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 769	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 770	/* 5 - 1920x1080i@60Hz 16:9 */
 771	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 772		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 773		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 774		   DRM_MODE_FLAG_INTERLACE),
 775	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 776	/* 6 - 720(1440)x480i@60Hz 4:3 */
 777	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 778		   801, 858, 0, 480, 488, 494, 525, 0,
 779		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 780		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 781	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 782	/* 7 - 720(1440)x480i@60Hz 16:9 */
 783	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 784		   801, 858, 0, 480, 488, 494, 525, 0,
 785		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 786		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 787	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 788	/* 8 - 720(1440)x240@60Hz 4:3 */
 789	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 790		   801, 858, 0, 240, 244, 247, 262, 0,
 791		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 792		   DRM_MODE_FLAG_DBLCLK),
 793	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 794	/* 9 - 720(1440)x240@60Hz 16:9 */
 795	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 796		   801, 858, 0, 240, 244, 247, 262, 0,
 797		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 798		   DRM_MODE_FLAG_DBLCLK),
 799	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 800	/* 10 - 2880x480i@60Hz 4:3 */
 801	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 802		   3204, 3432, 0, 480, 488, 494, 525, 0,
 803		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 804		   DRM_MODE_FLAG_INTERLACE),
 805	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 806	/* 11 - 2880x480i@60Hz 16:9 */
 807	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 808		   3204, 3432, 0, 480, 488, 494, 525, 0,
 809		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 810		   DRM_MODE_FLAG_INTERLACE),
 811	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 812	/* 12 - 2880x240@60Hz 4:3 */
 813	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 814		   3204, 3432, 0, 240, 244, 247, 262, 0,
 815		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 816	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 817	/* 13 - 2880x240@60Hz 16:9 */
 818	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 819		   3204, 3432, 0, 240, 244, 247, 262, 0,
 820		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 821	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 822	/* 14 - 1440x480@60Hz 4:3 */
 823	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 824		   1596, 1716, 0, 480, 489, 495, 525, 0,
 825		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 826	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 827	/* 15 - 1440x480@60Hz 16:9 */
 828	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 829		   1596, 1716, 0, 480, 489, 495, 525, 0,
 830		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 831	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 832	/* 16 - 1920x1080@60Hz 16:9 */
 833	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 834		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 835		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 836	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 837	/* 17 - 720x576@50Hz 4:3 */
 838	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 839		   796, 864, 0, 576, 581, 586, 625, 0,
 840		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 841	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 842	/* 18 - 720x576@50Hz 16:9 */
 843	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 844		   796, 864, 0, 576, 581, 586, 625, 0,
 845		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 846	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 847	/* 19 - 1280x720@50Hz 16:9 */
 848	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
 849		   1760, 1980, 0, 720, 725, 730, 750, 0,
 850		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 851	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 852	/* 20 - 1920x1080i@50Hz 16:9 */
 853	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 854		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 855		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 856		   DRM_MODE_FLAG_INTERLACE),
 857	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 858	/* 21 - 720(1440)x576i@50Hz 4:3 */
 859	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 860		   795, 864, 0, 576, 580, 586, 625, 0,
 861		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 862		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 863	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 864	/* 22 - 720(1440)x576i@50Hz 16:9 */
 865	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 866		   795, 864, 0, 576, 580, 586, 625, 0,
 867		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 868		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 869	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 870	/* 23 - 720(1440)x288@50Hz 4:3 */
 871	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 872		   795, 864, 0, 288, 290, 293, 312, 0,
 873		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 874		   DRM_MODE_FLAG_DBLCLK),
 875	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 876	/* 24 - 720(1440)x288@50Hz 16:9 */
 877	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 878		   795, 864, 0, 288, 290, 293, 312, 0,
 879		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 880		   DRM_MODE_FLAG_DBLCLK),
 881	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 882	/* 25 - 2880x576i@50Hz 4:3 */
 883	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 884		   3180, 3456, 0, 576, 580, 586, 625, 0,
 885		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 886		   DRM_MODE_FLAG_INTERLACE),
 887	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 888	/* 26 - 2880x576i@50Hz 16:9 */
 889	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 890		   3180, 3456, 0, 576, 580, 586, 625, 0,
 891		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 892		   DRM_MODE_FLAG_INTERLACE),
 893	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 894	/* 27 - 2880x288@50Hz 4:3 */
 895	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 896		   3180, 3456, 0, 288, 290, 293, 312, 0,
 897		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 898	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 899	/* 28 - 2880x288@50Hz 16:9 */
 900	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 901		   3180, 3456, 0, 288, 290, 293, 312, 0,
 902		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 903	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 904	/* 29 - 1440x576@50Hz 4:3 */
 905	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 906		   1592, 1728, 0, 576, 581, 586, 625, 0,
 907		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 908	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 909	/* 30 - 1440x576@50Hz 16:9 */
 910	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 911		   1592, 1728, 0, 576, 581, 586, 625, 0,
 912		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 913	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 914	/* 31 - 1920x1080@50Hz 16:9 */
 915	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 916		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 917		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 918	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 919	/* 32 - 1920x1080@24Hz 16:9 */
 920	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
 921		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
 922		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 923	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 924	/* 33 - 1920x1080@25Hz 16:9 */
 925	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 926		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 927		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 928	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 929	/* 34 - 1920x1080@30Hz 16:9 */
 930	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 931		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 932		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 933	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 934	/* 35 - 2880x480@60Hz 4:3 */
 935	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 936		   3192, 3432, 0, 480, 489, 495, 525, 0,
 937		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 938	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 939	/* 36 - 2880x480@60Hz 16:9 */
 940	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 941		   3192, 3432, 0, 480, 489, 495, 525, 0,
 942		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 943	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 944	/* 37 - 2880x576@50Hz 4:3 */
 945	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 946		   3184, 3456, 0, 576, 581, 586, 625, 0,
 947		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 948	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 949	/* 38 - 2880x576@50Hz 16:9 */
 950	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 951		   3184, 3456, 0, 576, 581, 586, 625, 0,
 952		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 953	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 954	/* 39 - 1920x1080i@50Hz 16:9 */
 955	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
 956		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
 957		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
 958		   DRM_MODE_FLAG_INTERLACE),
 959	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 960	/* 40 - 1920x1080i@100Hz 16:9 */
 961	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 962		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 963		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 964		   DRM_MODE_FLAG_INTERLACE),
 965	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 966	/* 41 - 1280x720@100Hz 16:9 */
 967	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
 968		   1760, 1980, 0, 720, 725, 730, 750, 0,
 969		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 970	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 971	/* 42 - 720x576@100Hz 4:3 */
 972	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 973		   796, 864, 0, 576, 581, 586, 625, 0,
 974		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 975	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 976	/* 43 - 720x576@100Hz 16:9 */
 977	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 978		   796, 864, 0, 576, 581, 586, 625, 0,
 979		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 980	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 981	/* 44 - 720(1440)x576i@100Hz 4:3 */
 982	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 983		   795, 864, 0, 576, 580, 586, 625, 0,
 984		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 985		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 986	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 987	/* 45 - 720(1440)x576i@100Hz 16:9 */
 988	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 989		   795, 864, 0, 576, 580, 586, 625, 0,
 990		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 991		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 992	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 993	/* 46 - 1920x1080i@120Hz 16:9 */
 994	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 995		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 996		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 997		   DRM_MODE_FLAG_INTERLACE),
 998	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 999	/* 47 - 1280x720@120Hz 16:9 */
1000	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1001		   1430, 1650, 0, 720, 725, 730, 750, 0,
1002		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1003	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1004	/* 48 - 720x480@120Hz 4:3 */
1005	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1006		   798, 858, 0, 480, 489, 495, 525, 0,
1007		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1008	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1009	/* 49 - 720x480@120Hz 16:9 */
1010	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1011		   798, 858, 0, 480, 489, 495, 525, 0,
1012		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1013	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1014	/* 50 - 720(1440)x480i@120Hz 4:3 */
1015	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1016		   801, 858, 0, 480, 488, 494, 525, 0,
1017		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1018		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1019	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1020	/* 51 - 720(1440)x480i@120Hz 16:9 */
1021	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1022		   801, 858, 0, 480, 488, 494, 525, 0,
1023		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1024		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1025	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1026	/* 52 - 720x576@200Hz 4:3 */
1027	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1028		   796, 864, 0, 576, 581, 586, 625, 0,
1029		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1030	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1031	/* 53 - 720x576@200Hz 16:9 */
1032	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1033		   796, 864, 0, 576, 581, 586, 625, 0,
1034		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1035	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1036	/* 54 - 720(1440)x576i@200Hz 4:3 */
1037	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1038		   795, 864, 0, 576, 580, 586, 625, 0,
1039		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1040		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1041	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1042	/* 55 - 720(1440)x576i@200Hz 16:9 */
1043	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1044		   795, 864, 0, 576, 580, 586, 625, 0,
1045		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1046		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1047	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1048	/* 56 - 720x480@240Hz 4:3 */
1049	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1050		   798, 858, 0, 480, 489, 495, 525, 0,
1051		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1052	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1053	/* 57 - 720x480@240Hz 16:9 */
1054	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1055		   798, 858, 0, 480, 489, 495, 525, 0,
1056		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1057	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1058	/* 58 - 720(1440)x480i@240Hz 4:3 */
1059	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1060		   801, 858, 0, 480, 488, 494, 525, 0,
1061		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1062		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1063	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1064	/* 59 - 720(1440)x480i@240Hz 16:9 */
1065	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1066		   801, 858, 0, 480, 488, 494, 525, 0,
1067		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1068		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1069	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1070	/* 60 - 1280x720@24Hz 16:9 */
1071	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1072		   3080, 3300, 0, 720, 725, 730, 750, 0,
1073		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1074	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1075	/* 61 - 1280x720@25Hz 16:9 */
1076	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1077		   3740, 3960, 0, 720, 725, 730, 750, 0,
1078		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1079	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1080	/* 62 - 1280x720@30Hz 16:9 */
1081	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1082		   3080, 3300, 0, 720, 725, 730, 750, 0,
1083		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1084	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1085	/* 63 - 1920x1080@120Hz 16:9 */
1086	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1087		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1088		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1089	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1090	/* 64 - 1920x1080@100Hz 16:9 */
1091	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1092		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1093		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1094	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1095	/* 65 - 1280x720@24Hz 64:27 */
1096	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1097		   3080, 3300, 0, 720, 725, 730, 750, 0,
1098		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1099	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1100	/* 66 - 1280x720@25Hz 64:27 */
1101	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1102		   3740, 3960, 0, 720, 725, 730, 750, 0,
1103		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1104	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1105	/* 67 - 1280x720@30Hz 64:27 */
1106	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1107		   3080, 3300, 0, 720, 725, 730, 750, 0,
1108		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1109	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1110	/* 68 - 1280x720@50Hz 64:27 */
1111	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1112		   1760, 1980, 0, 720, 725, 730, 750, 0,
1113		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1114	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1115	/* 69 - 1280x720@60Hz 64:27 */
1116	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1117		   1430, 1650, 0, 720, 725, 730, 750, 0,
1118		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1119	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1120	/* 70 - 1280x720@100Hz 64:27 */
1121	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1122		   1760, 1980, 0, 720, 725, 730, 750, 0,
1123		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1124	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1125	/* 71 - 1280x720@120Hz 64:27 */
1126	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1127		   1430, 1650, 0, 720, 725, 730, 750, 0,
1128		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1129	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1130	/* 72 - 1920x1080@24Hz 64:27 */
1131	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1132		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1133		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1134	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1135	/* 73 - 1920x1080@25Hz 64:27 */
1136	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1137		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1138		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1139	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1140	/* 74 - 1920x1080@30Hz 64:27 */
1141	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1142		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1143		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1144	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1145	/* 75 - 1920x1080@50Hz 64:27 */
1146	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1147		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1148		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1149	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1150	/* 76 - 1920x1080@60Hz 64:27 */
1151	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1152		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1153		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1154	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1155	/* 77 - 1920x1080@100Hz 64:27 */
1156	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1157		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1158		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1159	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1160	/* 78 - 1920x1080@120Hz 64:27 */
1161	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1162		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1163		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1164	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1165	/* 79 - 1680x720@24Hz 64:27 */
1166	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1167		   3080, 3300, 0, 720, 725, 730, 750, 0,
1168		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1169	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1170	/* 80 - 1680x720@25Hz 64:27 */
1171	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1172		   2948, 3168, 0, 720, 725, 730, 750, 0,
1173		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1174	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1175	/* 81 - 1680x720@30Hz 64:27 */
1176	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1177		   2420, 2640, 0, 720, 725, 730, 750, 0,
1178		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1179	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1180	/* 82 - 1680x720@50Hz 64:27 */
1181	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1182		   1980, 2200, 0, 720, 725, 730, 750, 0,
1183		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1184	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1185	/* 83 - 1680x720@60Hz 64:27 */
1186	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1187		   1980, 2200, 0, 720, 725, 730, 750, 0,
1188		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1189	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1190	/* 84 - 1680x720@100Hz 64:27 */
1191	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1192		   1780, 2000, 0, 720, 725, 730, 825, 0,
1193		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1194	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1195	/* 85 - 1680x720@120Hz 64:27 */
1196	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1197		   1780, 2000, 0, 720, 725, 730, 825, 0,
1198		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1199	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1200	/* 86 - 2560x1080@24Hz 64:27 */
1201	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1202		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1203		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1204	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1205	/* 87 - 2560x1080@25Hz 64:27 */
1206	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1207		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1208		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1209	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1210	/* 88 - 2560x1080@30Hz 64:27 */
1211	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1212		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1213		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1214	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1215	/* 89 - 2560x1080@50Hz 64:27 */
1216	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1217		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1218		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1219	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1220	/* 90 - 2560x1080@60Hz 64:27 */
1221	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1222		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1223		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1224	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1225	/* 91 - 2560x1080@100Hz 64:27 */
1226	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1227		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1228		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1229	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1230	/* 92 - 2560x1080@120Hz 64:27 */
1231	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1232		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1233		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1234	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1235	/* 93 - 3840x2160@24Hz 16:9 */
1236	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1237		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1238		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1239	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1240	/* 94 - 3840x2160@25Hz 16:9 */
1241	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1242		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1243		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1244	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1245	/* 95 - 3840x2160@30Hz 16:9 */
1246	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1247		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1248		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1249	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1250	/* 96 - 3840x2160@50Hz 16:9 */
1251	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1252		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1253		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1254	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1255	/* 97 - 3840x2160@60Hz 16:9 */
1256	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1257		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1258		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1259	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1260	/* 98 - 4096x2160@24Hz 256:135 */
1261	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1262		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1263		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1264	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1265	/* 99 - 4096x2160@25Hz 256:135 */
1266	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1267		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1268		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1269	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1270	/* 100 - 4096x2160@30Hz 256:135 */
1271	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1272		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1273		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1274	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1275	/* 101 - 4096x2160@50Hz 256:135 */
1276	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1277		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1278		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1279	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1280	/* 102 - 4096x2160@60Hz 256:135 */
1281	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1282		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1283		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1284	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1285	/* 103 - 3840x2160@24Hz 64:27 */
1286	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1287		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1288		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1289	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1290	/* 104 - 3840x2160@25Hz 64:27 */
1291	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1292		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1293		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1294	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1295	/* 105 - 3840x2160@30Hz 64:27 */
1296	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1297		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1298		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1299	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1300	/* 106 - 3840x2160@50Hz 64:27 */
1301	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1302		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1303		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1304	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1305	/* 107 - 3840x2160@60Hz 64:27 */
1306	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1307		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1308		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1309	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1310	/* 108 - 1280x720@48Hz 16:9 */
1311	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1312		   2280, 2500, 0, 720, 725, 730, 750, 0,
1313		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1314	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1315	/* 109 - 1280x720@48Hz 64:27 */
1316	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1317		   2280, 2500, 0, 720, 725, 730, 750, 0,
1318		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1319	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1320	/* 110 - 1680x720@48Hz 64:27 */
1321	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1322		   2530, 2750, 0, 720, 725, 730, 750, 0,
1323		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1324	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1325	/* 111 - 1920x1080@48Hz 16:9 */
1326	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1327		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1328		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1329	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1330	/* 112 - 1920x1080@48Hz 64:27 */
1331	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1332		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1333		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1334	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1335	/* 113 - 2560x1080@48Hz 64:27 */
1336	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1337		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1338		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1339	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1340	/* 114 - 3840x2160@48Hz 16:9 */
1341	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1342		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1343		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1344	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1345	/* 115 - 4096x2160@48Hz 256:135 */
1346	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1347		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1348		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1349	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1350	/* 116 - 3840x2160@48Hz 64:27 */
1351	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1352		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1353		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1354	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1355	/* 117 - 3840x2160@100Hz 16:9 */
1356	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1357		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1358		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1359	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1360	/* 118 - 3840x2160@120Hz 16:9 */
1361	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1362		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1363		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1364	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1365	/* 119 - 3840x2160@100Hz 64:27 */
1366	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1367		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1368		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1369	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1370	/* 120 - 3840x2160@120Hz 64:27 */
1371	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1372		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1373		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1374	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1375	/* 121 - 5120x2160@24Hz 64:27 */
1376	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1377		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1378		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1379	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1380	/* 122 - 5120x2160@25Hz 64:27 */
1381	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1382		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1383		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1384	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1385	/* 123 - 5120x2160@30Hz 64:27 */
1386	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1387		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1388		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1389	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1390	/* 124 - 5120x2160@48Hz 64:27 */
1391	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1392		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1393		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1394	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1395	/* 125 - 5120x2160@50Hz 64:27 */
1396	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1397		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1398		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1399	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1400	/* 126 - 5120x2160@60Hz 64:27 */
1401	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1402		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1403		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1404	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1405	/* 127 - 5120x2160@100Hz 64:27 */
1406	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1407		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1408		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1409	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1410};
1411
1412/*
1413 * From CEA/CTA-861 spec.
1414 *
1415 * Do not access directly, instead always use cea_mode_for_vic().
1416 */
1417static const struct drm_display_mode edid_cea_modes_193[] = {
1418	/* 193 - 5120x2160@120Hz 64:27 */
1419	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1420		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1421		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1422	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1423	/* 194 - 7680x4320@24Hz 16:9 */
1424	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1425		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1426		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1427	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1428	/* 195 - 7680x4320@25Hz 16:9 */
1429	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1430		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1431		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1432	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1433	/* 196 - 7680x4320@30Hz 16:9 */
1434	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1435		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1436		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1437	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1438	/* 197 - 7680x4320@48Hz 16:9 */
1439	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1440		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1441		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1442	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1443	/* 198 - 7680x4320@50Hz 16:9 */
1444	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1445		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1446		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1447	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1448	/* 199 - 7680x4320@60Hz 16:9 */
1449	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1450		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1451		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1452	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1453	/* 200 - 7680x4320@100Hz 16:9 */
1454	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1455		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1456		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1457	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1458	/* 201 - 7680x4320@120Hz 16:9 */
1459	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1460		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1461		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1462	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1463	/* 202 - 7680x4320@24Hz 64:27 */
1464	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1465		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1466		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1467	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1468	/* 203 - 7680x4320@25Hz 64:27 */
1469	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1470		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1471		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1472	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1473	/* 204 - 7680x4320@30Hz 64:27 */
1474	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1475		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1476		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1477	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1478	/* 205 - 7680x4320@48Hz 64:27 */
1479	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1480		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1481		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1482	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1483	/* 206 - 7680x4320@50Hz 64:27 */
1484	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1485		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1486		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1487	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1488	/* 207 - 7680x4320@60Hz 64:27 */
1489	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1490		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1491		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1492	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1493	/* 208 - 7680x4320@100Hz 64:27 */
1494	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1495		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1496		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1497	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1498	/* 209 - 7680x4320@120Hz 64:27 */
1499	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1500		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1501		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1502	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1503	/* 210 - 10240x4320@24Hz 64:27 */
1504	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1505		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1506		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1507	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1508	/* 211 - 10240x4320@25Hz 64:27 */
1509	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1510		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1511		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1512	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1513	/* 212 - 10240x4320@30Hz 64:27 */
1514	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1515		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1516		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1517	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1518	/* 213 - 10240x4320@48Hz 64:27 */
1519	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1520		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1521		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1522	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1523	/* 214 - 10240x4320@50Hz 64:27 */
1524	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1525		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1526		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1527	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1528	/* 215 - 10240x4320@60Hz 64:27 */
1529	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1530		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1531		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1532	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1533	/* 216 - 10240x4320@100Hz 64:27 */
1534	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1535		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1536		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1537	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1538	/* 217 - 10240x4320@120Hz 64:27 */
1539	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1540		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1541		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1542	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1543	/* 218 - 4096x2160@100Hz 256:135 */
1544	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1545		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1546		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1547	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1548	/* 219 - 4096x2160@120Hz 256:135 */
1549	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1550		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1551		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1552	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1553};
1554
1555/*
1556 * HDMI 1.4 4k modes. Index using the VIC.
1557 */
1558static const struct drm_display_mode edid_4k_modes[] = {
1559	/* 0 - dummy, VICs start at 1 */
1560	{ },
1561	/* 1 - 3840x2160@30Hz */
1562	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1563		   3840, 4016, 4104, 4400, 0,
1564		   2160, 2168, 2178, 2250, 0,
1565		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1566	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1567	/* 2 - 3840x2160@25Hz */
1568	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1569		   3840, 4896, 4984, 5280, 0,
1570		   2160, 2168, 2178, 2250, 0,
1571		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1572	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1573	/* 3 - 3840x2160@24Hz */
1574	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1575		   3840, 5116, 5204, 5500, 0,
1576		   2160, 2168, 2178, 2250, 0,
1577		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1578	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1579	/* 4 - 4096x2160@24Hz (SMPTE) */
1580	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1581		   4096, 5116, 5204, 5500, 0,
1582		   2160, 2168, 2178, 2250, 0,
1583		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1584	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1585};
1586
1587/*** DDC fetch and block validation ***/
1588
1589/*
1590 * The opaque EDID type, internal to drm_edid.c.
1591 */
1592struct drm_edid {
1593	/* Size allocated for edid */
1594	size_t size;
1595	const struct edid *edid;
1596};
1597
1598static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1599
1600static int edid_hfeeodb_block_count(const struct edid *edid)
1601{
1602	int eeodb = edid_hfeeodb_extension_block_count(edid);
1603
1604	return eeodb ? eeodb + 1 : 0;
1605}
1606
1607static int edid_extension_block_count(const struct edid *edid)
1608{
1609	return edid->extensions;
1610}
1611
1612static int edid_block_count(const struct edid *edid)
1613{
1614	return edid_extension_block_count(edid) + 1;
1615}
1616
1617static int edid_size_by_blocks(int num_blocks)
1618{
1619	return num_blocks * EDID_LENGTH;
1620}
1621
1622static int edid_size(const struct edid *edid)
1623{
1624	return edid_size_by_blocks(edid_block_count(edid));
1625}
1626
1627static const void *edid_block_data(const struct edid *edid, int index)
1628{
1629	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1630
1631	return edid + index;
1632}
1633
1634static const void *edid_extension_block_data(const struct edid *edid, int index)
1635{
1636	return edid_block_data(edid, index + 1);
1637}
1638
1639/* EDID block count indicated in EDID, may exceed allocated size */
1640static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1641{
1642	int num_blocks;
1643
1644	/* Starting point */
1645	num_blocks = edid_block_count(drm_edid->edid);
1646
1647	/* HF-EEODB override */
1648	if (drm_edid->size >= edid_size_by_blocks(2)) {
1649		int eeodb;
1650
1651		/*
1652		 * Note: HF-EEODB may specify a smaller extension count than the
1653		 * regular one. Unlike in buffer allocation, here we can use it.
1654		 */
1655		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1656		if (eeodb)
1657			num_blocks = eeodb;
1658	}
1659
1660	return num_blocks;
1661}
1662
1663/* EDID block count, limited by allocated size */
1664static int drm_edid_block_count(const struct drm_edid *drm_edid)
1665{
1666	/* Limit by allocated size */
1667	return min(__drm_edid_block_count(drm_edid),
1668		   (int)drm_edid->size / EDID_LENGTH);
1669}
1670
1671/* EDID extension block count, limited by allocated size */
1672static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1673{
1674	return drm_edid_block_count(drm_edid) - 1;
1675}
1676
1677static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1678{
1679	return edid_block_data(drm_edid->edid, index);
1680}
1681
1682static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1683						 int index)
1684{
1685	return edid_extension_block_data(drm_edid->edid, index);
1686}
1687
1688/*
1689 * Initializer helper for legacy interfaces, where we have no choice but to
1690 * trust edid size. Not for general purpose use.
1691 */
1692static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1693						   const struct edid *edid)
1694{
1695	if (!edid)
1696		return NULL;
1697
1698	memset(drm_edid, 0, sizeof(*drm_edid));
1699
1700	drm_edid->edid = edid;
1701	drm_edid->size = edid_size(edid);
1702
1703	return drm_edid;
1704}
1705
1706/*
1707 * EDID base and extension block iterator.
1708 *
1709 * struct drm_edid_iter iter;
1710 * const u8 *block;
1711 *
1712 * drm_edid_iter_begin(drm_edid, &iter);
1713 * drm_edid_iter_for_each(block, &iter) {
1714 *         // do stuff with block
1715 * }
1716 * drm_edid_iter_end(&iter);
1717 */
1718struct drm_edid_iter {
1719	const struct drm_edid *drm_edid;
1720
1721	/* Current block index. */
1722	int index;
1723};
1724
1725static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1726				struct drm_edid_iter *iter)
1727{
1728	memset(iter, 0, sizeof(*iter));
1729
1730	iter->drm_edid = drm_edid;
1731}
1732
1733static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1734{
1735	const void *block = NULL;
1736
1737	if (!iter->drm_edid)
1738		return NULL;
1739
1740	if (iter->index < drm_edid_block_count(iter->drm_edid))
1741		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1742
1743	return block;
1744}
1745
1746#define drm_edid_iter_for_each(__block, __iter)			\
1747	while (((__block) = __drm_edid_iter_next(__iter)))
1748
1749static void drm_edid_iter_end(struct drm_edid_iter *iter)
1750{
1751	memset(iter, 0, sizeof(*iter));
1752}
1753
1754static const u8 edid_header[] = {
1755	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1756};
1757
1758static void edid_header_fix(void *edid)
1759{
1760	memcpy(edid, edid_header, sizeof(edid_header));
1761}
1762
1763/**
1764 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1765 * @_edid: pointer to raw base EDID block
1766 *
1767 * Sanity check the header of the base EDID block.
1768 *
1769 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1770 */
1771int drm_edid_header_is_valid(const void *_edid)
1772{
1773	const struct edid *edid = _edid;
1774	int i, score = 0;
1775
1776	for (i = 0; i < sizeof(edid_header); i++) {
1777		if (edid->header[i] == edid_header[i])
1778			score++;
1779	}
1780
1781	return score;
1782}
1783EXPORT_SYMBOL(drm_edid_header_is_valid);
1784
1785static int edid_fixup __read_mostly = 6;
1786module_param_named(edid_fixup, edid_fixup, int, 0400);
1787MODULE_PARM_DESC(edid_fixup,
1788		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1789
1790static int edid_block_compute_checksum(const void *_block)
 
 
 
 
1791{
1792	const u8 *block = _block;
1793	int i;
1794	u8 csum = 0, crc = 0;
1795
1796	for (i = 0; i < EDID_LENGTH - 1; i++)
1797		csum += block[i];
1798
1799	crc = 0x100 - csum;
1800
1801	return crc;
1802}
1803
1804static int edid_block_get_checksum(const void *_block)
1805{
1806	const struct edid *block = _block;
 
1807
1808	return block->checksum;
1809}
1810
1811static int edid_block_tag(const void *_block)
 
 
 
 
 
 
 
 
 
 
 
 
 
1812{
1813	const u8 *block = _block;
 
1814
1815	return block[0];
1816}
1817
1818static bool edid_block_is_zero(const void *edid)
1819{
1820	return mem_is_zero(edid, EDID_LENGTH);
1821}
1822
1823static bool drm_edid_eq(const struct drm_edid *drm_edid,
1824			const void *raw_edid, size_t raw_edid_size)
1825{
1826	bool edid1_present = drm_edid && drm_edid->edid && drm_edid->size;
1827	bool edid2_present = raw_edid && raw_edid_size;
1828
1829	if (edid1_present != edid2_present)
1830		return false;
1831
1832	if (edid1_present) {
1833		if (drm_edid->size != raw_edid_size)
1834			return false;
1835
1836		if (memcmp(drm_edid->edid, raw_edid, drm_edid->size))
1837			return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838	}
1839
1840	return true;
1841}
 
 
1842
1843enum edid_block_status {
1844	EDID_BLOCK_OK = 0,
1845	EDID_BLOCK_READ_FAIL,
1846	EDID_BLOCK_NULL,
1847	EDID_BLOCK_ZERO,
1848	EDID_BLOCK_HEADER_CORRUPT,
1849	EDID_BLOCK_HEADER_REPAIR,
1850	EDID_BLOCK_HEADER_FIXED,
1851	EDID_BLOCK_CHECKSUM,
1852	EDID_BLOCK_VERSION,
1853};
1854
1855static enum edid_block_status edid_block_check(const void *_block,
1856					       bool is_base_block)
1857{
1858	const struct edid *block = _block;
1859
1860	if (!block)
1861		return EDID_BLOCK_NULL;
1862
1863	if (is_base_block) {
1864		int score = drm_edid_header_is_valid(block);
1865
1866		if (score < clamp(edid_fixup, 0, 8)) {
1867			if (edid_block_is_zero(block))
1868				return EDID_BLOCK_ZERO;
1869			else
1870				return EDID_BLOCK_HEADER_CORRUPT;
1871		}
1872
1873		if (score < 8)
1874			return EDID_BLOCK_HEADER_REPAIR;
1875	}
1876
1877	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1878		if (edid_block_is_zero(block))
1879			return EDID_BLOCK_ZERO;
1880		else
1881			return EDID_BLOCK_CHECKSUM;
1882	}
 
1883
1884	if (is_base_block) {
1885		if (block->version != 1)
1886			return EDID_BLOCK_VERSION;
1887	}
1888
1889	return EDID_BLOCK_OK;
1890}
1891
1892static bool edid_block_status_valid(enum edid_block_status status, int tag)
1893{
1894	return status == EDID_BLOCK_OK ||
1895		status == EDID_BLOCK_HEADER_FIXED ||
1896		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1897}
1898
1899static bool edid_block_valid(const void *block, bool base)
1900{
1901	return edid_block_status_valid(edid_block_check(block, base),
1902				       edid_block_tag(block));
1903}
1904
1905static void edid_block_status_print(enum edid_block_status status,
1906				    const struct edid *block,
1907				    int block_num)
1908{
1909	switch (status) {
1910	case EDID_BLOCK_OK:
1911		break;
1912	case EDID_BLOCK_READ_FAIL:
1913		pr_debug("EDID block %d read failed\n", block_num);
1914		break;
1915	case EDID_BLOCK_NULL:
1916		pr_debug("EDID block %d pointer is NULL\n", block_num);
1917		break;
1918	case EDID_BLOCK_ZERO:
1919		pr_notice("EDID block %d is all zeroes\n", block_num);
1920		break;
1921	case EDID_BLOCK_HEADER_CORRUPT:
1922		pr_notice("EDID has corrupt header\n");
1923		break;
1924	case EDID_BLOCK_HEADER_REPAIR:
1925		pr_debug("EDID corrupt header needs repair\n");
1926		break;
1927	case EDID_BLOCK_HEADER_FIXED:
1928		pr_debug("EDID corrupt header fixed\n");
1929		break;
1930	case EDID_BLOCK_CHECKSUM:
1931		if (edid_block_status_valid(status, edid_block_tag(block))) {
1932			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1933				 block_num, edid_block_tag(block),
1934				 edid_block_compute_checksum(block));
1935		} else {
1936			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1937				  block_num, edid_block_tag(block),
1938				  edid_block_compute_checksum(block));
1939		}
1940		break;
1941	case EDID_BLOCK_VERSION:
1942		pr_notice("EDID has major version %d, instead of 1\n",
1943			  block->version);
1944		break;
1945	default:
1946		WARN(1, "EDID block %d unknown edid block status code %d\n",
1947		     block_num, status);
1948		break;
1949	}
1950}
1951
1952static void edid_block_dump(const char *level, const void *block, int block_num)
1953{
1954	enum edid_block_status status;
1955	char prefix[20];
1956
1957	status = edid_block_check(block, block_num == 0);
1958	if (status == EDID_BLOCK_ZERO)
1959		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1960	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1961		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1962	else
1963		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1964
1965	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1966		       block, EDID_LENGTH, false);
1967}
1968
1969/*
1970 * Validate a base or extension EDID block and optionally dump bad blocks to
1971 * the console.
1972 */
1973static bool drm_edid_block_valid(void *_block, int block_num, bool print_bad_edid,
1974				 bool *edid_corrupt)
1975{
1976	struct edid *block = _block;
1977	enum edid_block_status status;
1978	bool is_base_block = block_num == 0;
1979	bool valid;
1980
1981	if (WARN_ON(!block))
1982		return false;
1983
1984	status = edid_block_check(block, is_base_block);
1985	if (status == EDID_BLOCK_HEADER_REPAIR) {
1986		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1987		edid_header_fix(block);
1988
1989		/* Retry with fixed header, update status if that worked. */
1990		status = edid_block_check(block, is_base_block);
1991		if (status == EDID_BLOCK_OK)
1992			status = EDID_BLOCK_HEADER_FIXED;
1993	}
1994
1995	if (edid_corrupt) {
1996		/*
1997		 * Unknown major version isn't corrupt but we can't use it. Only
1998		 * the base block can reset edid_corrupt to false.
1999		 */
2000		if (is_base_block &&
2001		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2002			*edid_corrupt = false;
2003		else if (status != EDID_BLOCK_OK)
2004			*edid_corrupt = true;
2005	}
2006
2007	edid_block_status_print(status, block, block_num);
2008
2009	/* Determine whether we can use this block with this status. */
2010	valid = edid_block_status_valid(status, edid_block_tag(block));
2011
2012	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2013		pr_notice("Raw EDID:\n");
2014		edid_block_dump(KERN_NOTICE, block, block_num);
2015	}
2016
2017	return valid;
2018}
 
2019
2020/**
2021 * drm_edid_is_valid - sanity check EDID data
2022 * @edid: EDID data
2023 *
2024 * Sanity-check an entire EDID record (including extensions)
2025 *
2026 * Return: True if the EDID data is valid, false otherwise.
2027 */
2028bool drm_edid_is_valid(struct edid *edid)
2029{
2030	int i;
 
2031
2032	if (!edid)
2033		return false;
2034
2035	for (i = 0; i < edid_block_count(edid); i++) {
2036		void *block = (void *)edid_block_data(edid, i);
2037
2038		if (!drm_edid_block_valid(block, i, true, NULL))
2039			return false;
2040	}
2041
2042	return true;
2043}
2044EXPORT_SYMBOL(drm_edid_is_valid);
2045
2046/**
2047 * drm_edid_valid - sanity check EDID data
2048 * @drm_edid: EDID data
2049 *
2050 * Sanity check an EDID. Cross check block count against allocated size and
2051 * checksum the blocks.
2052 *
2053 * Return: True if the EDID data is valid, false otherwise.
2054 */
2055bool drm_edid_valid(const struct drm_edid *drm_edid)
2056{
2057	int i;
2058
2059	if (!drm_edid)
2060		return false;
2061
2062	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2063		return false;
2064
2065	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2066		const void *block = drm_edid_block_data(drm_edid, i);
2067
2068		if (!edid_block_valid(block, i == 0))
2069			return false;
2070	}
2071
2072	return true;
2073}
2074EXPORT_SYMBOL(drm_edid_valid);
2075
2076static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2077					       size_t *alloc_size)
2078{
2079	struct edid *new;
2080	int i, valid_blocks = 0;
2081
2082	/*
2083	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2084	 * back to regular extension count here. We don't want to start
2085	 * modifying the HF-EEODB extension too.
2086	 */
2087	for (i = 0; i < edid_block_count(edid); i++) {
2088		const void *src_block = edid_block_data(edid, i);
2089
2090		if (edid_block_valid(src_block, i == 0)) {
2091			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2092
2093			memmove(dst_block, src_block, EDID_LENGTH);
2094			valid_blocks++;
2095		}
2096	}
2097
2098	/* We already trusted the base block to be valid here... */
2099	if (WARN_ON(!valid_blocks)) {
2100		kfree(edid);
2101		return NULL;
2102	}
2103
2104	edid->extensions = valid_blocks - 1;
2105	edid->checksum = edid_block_compute_checksum(edid);
2106
2107	*alloc_size = edid_size_by_blocks(valid_blocks);
2108
2109	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2110	if (!new)
2111		kfree(edid);
2112
2113	return new;
2114}
2115
2116#define DDC_SEGMENT_ADDR 0x30
2117/**
2118 * drm_do_probe_ddc_edid() - get EDID information via I2C
2119 * @data: I2C device adapter
2120 * @buf: EDID data buffer to be filled
2121 * @block: 128 byte EDID block to start fetching from
2122 * @len: EDID data buffer length to fetch
2123 *
2124 * Try to fetch EDID information by calling I2C driver functions.
2125 *
2126 * Return: 0 on success or -1 on failure.
2127 */
2128static int
2129drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2130{
2131	struct i2c_adapter *adapter = data;
2132	unsigned char start = block * EDID_LENGTH;
2133	unsigned char segment = block >> 1;
2134	unsigned char xfers = segment ? 3 : 2;
2135	int ret, retries = 5;
2136
2137	/*
2138	 * The core I2C driver will automatically retry the transfer if the
2139	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2140	 * are susceptible to errors under a heavily loaded machine and
2141	 * generate spurious NAKs and timeouts. Retrying the transfer
2142	 * of the individual block a few times seems to overcome this.
2143	 */
2144	do {
2145		struct i2c_msg msgs[] = {
2146			{
2147				.addr	= DDC_SEGMENT_ADDR,
2148				.flags	= 0,
2149				.len	= 1,
2150				.buf	= &segment,
2151			}, {
2152				.addr	= DDC_ADDR,
2153				.flags	= 0,
2154				.len	= 1,
2155				.buf	= &start,
2156			}, {
2157				.addr	= DDC_ADDR,
2158				.flags	= I2C_M_RD,
2159				.len	= len,
2160				.buf	= buf,
2161			}
2162		};
2163
2164		/*
2165		 * Avoid sending the segment addr to not upset non-compliant
2166		 * DDC monitors.
2167		 */
2168		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2169
2170		if (ret == -ENXIO) {
2171			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2172					adapter->name);
2173			break;
2174		}
2175	} while (ret != xfers && --retries);
2176
2177	return ret == xfers ? 0 : -1;
2178}
2179
2180static void connector_bad_edid(struct drm_connector *connector,
2181			       const struct edid *edid, int num_blocks)
2182{
2183	int i;
2184	u8 last_block;
2185
2186	/*
2187	 * 0x7e in the EDID is the number of extension blocks. The EDID
2188	 * is 1 (base block) + num_ext_blocks big. That means we can think
2189	 * of 0x7e in the EDID of the _index_ of the last block in the
2190	 * combined chunk of memory.
2191	 */
2192	last_block = edid->extensions;
2193
2194	/* Calculate real checksum for the last edid extension block data */
2195	if (last_block < num_blocks)
2196		connector->real_edid_checksum =
2197			edid_block_compute_checksum(edid + last_block);
 
 
 
 
 
 
 
 
 
2198
2199	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2200		return;
2201
2202	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2203		    connector->base.id, connector->name);
2204	for (i = 0; i < num_blocks; i++)
2205		edid_block_dump(KERN_DEBUG, edid + i, i);
2206}
2207
2208/* Get override or firmware EDID */
2209static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2210{
2211	const struct drm_edid *override = NULL;
2212
2213	mutex_lock(&connector->edid_override_mutex);
2214
2215	if (connector->edid_override)
2216		override = drm_edid_dup(connector->edid_override);
2217
2218	mutex_unlock(&connector->edid_override_mutex);
2219
2220	if (!override)
2221		override = drm_edid_load_firmware(connector);
2222
2223	return IS_ERR(override) ? NULL : override;
2224}
2225
2226/* For debugfs edid_override implementation */
2227int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2228{
2229	const struct drm_edid *drm_edid;
2230
2231	mutex_lock(&connector->edid_override_mutex);
2232
2233	drm_edid = connector->edid_override;
2234	if (drm_edid)
2235		seq_write(m, drm_edid->edid, drm_edid->size);
2236
2237	mutex_unlock(&connector->edid_override_mutex);
2238
2239	return 0;
2240}
2241
2242/* For debugfs edid_override implementation */
2243int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2244			  size_t size)
2245{
2246	const struct drm_edid *drm_edid;
2247
2248	drm_edid = drm_edid_alloc(edid, size);
2249	if (!drm_edid_valid(drm_edid)) {
2250		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2251			    connector->base.id, connector->name);
2252		drm_edid_free(drm_edid);
2253		return -EINVAL;
2254	}
2255
2256	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2257		    connector->base.id, connector->name);
2258
2259	mutex_lock(&connector->edid_override_mutex);
2260
2261	drm_edid_free(connector->edid_override);
2262	connector->edid_override = drm_edid;
2263
2264	mutex_unlock(&connector->edid_override_mutex);
2265
2266	return 0;
2267}
2268
2269/* For debugfs edid_override implementation */
2270int drm_edid_override_reset(struct drm_connector *connector)
2271{
2272	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2273		    connector->base.id, connector->name);
2274
2275	mutex_lock(&connector->edid_override_mutex);
2276
2277	drm_edid_free(connector->edid_override);
2278	connector->edid_override = NULL;
2279
2280	mutex_unlock(&connector->edid_override_mutex);
2281
2282	return 0;
2283}
2284
2285/**
2286 * drm_edid_override_connector_update - add modes from override/firmware EDID
2287 * @connector: connector we're probing
2288 *
2289 * Add modes from the override/firmware EDID, if available. Only to be used from
2290 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2291 * failed during drm_get_edid() and caused the override/firmware EDID to be
2292 * skipped.
2293 *
2294 * Return: The number of modes added or 0 if we couldn't find any.
2295 */
2296int drm_edid_override_connector_update(struct drm_connector *connector)
2297{
2298	const struct drm_edid *override;
2299	int num_modes = 0;
2300
2301	override = drm_edid_override_get(connector);
2302	if (override) {
2303		if (drm_edid_connector_update(connector, override) == 0)
2304			num_modes = drm_edid_connector_add_modes(connector);
2305
2306		drm_edid_free(override);
2307
2308		drm_dbg_kms(connector->dev,
2309			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2310			    connector->base.id, connector->name, num_modes);
2311	}
2312
2313	return num_modes;
2314}
2315EXPORT_SYMBOL(drm_edid_override_connector_update);
2316
2317typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2318
2319static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2320					      read_block_fn read_block,
2321					      void *context)
2322{
2323	enum edid_block_status status;
2324	bool is_base_block = block_num == 0;
2325	int try;
2326
2327	for (try = 0; try < 4; try++) {
2328		if (read_block(context, block, block_num, EDID_LENGTH))
2329			return EDID_BLOCK_READ_FAIL;
2330
2331		status = edid_block_check(block, is_base_block);
2332		if (status == EDID_BLOCK_HEADER_REPAIR) {
2333			edid_header_fix(block);
2334
2335			/* Retry with fixed header, update status if that worked. */
2336			status = edid_block_check(block, is_base_block);
2337			if (status == EDID_BLOCK_OK)
2338				status = EDID_BLOCK_HEADER_FIXED;
2339		}
2340
2341		if (edid_block_status_valid(status, edid_block_tag(block)))
2342			break;
2343
2344		/* Fail early for unrepairable base block all zeros. */
2345		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2346			break;
2347	}
2348
2349	return status;
2350}
2351
2352static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2353				     read_block_fn read_block, void *context,
2354				     size_t *size)
2355{
2356	enum edid_block_status status;
2357	int i, num_blocks, invalid_blocks = 0;
2358	const struct drm_edid *override;
2359	struct edid *edid, *new;
2360	size_t alloc_size = EDID_LENGTH;
2361
2362	override = drm_edid_override_get(connector);
2363	if (override) {
2364		alloc_size = override->size;
2365		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2366		drm_edid_free(override);
2367		if (!edid)
2368			return NULL;
2369		goto ok;
2370	}
2371
2372	edid = kmalloc(alloc_size, GFP_KERNEL);
2373	if (!edid)
2374		return NULL;
2375
2376	status = edid_block_read(edid, 0, read_block, context);
2377
2378	edid_block_status_print(status, edid, 0);
2379
2380	if (status == EDID_BLOCK_READ_FAIL)
2381		goto fail;
2382
2383	/* FIXME: Clarify what a corrupt EDID actually means. */
2384	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2385		connector->edid_corrupt = false;
2386	else
2387		connector->edid_corrupt = true;
2388
2389	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2390		if (status == EDID_BLOCK_ZERO)
2391			connector->null_edid_counter++;
2392
2393		connector_bad_edid(connector, edid, 1);
2394		goto fail;
2395	}
 
 
2396
2397	if (!edid_extension_block_count(edid))
2398		goto ok;
 
 
2399
2400	alloc_size = edid_size(edid);
2401	new = krealloc(edid, alloc_size, GFP_KERNEL);
2402	if (!new)
2403		goto fail;
2404	edid = new;
2405
2406	num_blocks = edid_block_count(edid);
2407	for (i = 1; i < num_blocks; i++) {
2408		void *block = (void *)edid_block_data(edid, i);
2409
2410		status = edid_block_read(block, i, read_block, context);
2411
2412		edid_block_status_print(status, block, i);
2413
2414		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2415			if (status == EDID_BLOCK_READ_FAIL)
2416				goto fail;
2417			invalid_blocks++;
2418		} else if (i == 1) {
2419			/*
2420			 * If the first EDID extension is a CTA extension, and
2421			 * the first Data Block is HF-EEODB, override the
2422			 * extension block count.
2423			 *
2424			 * Note: HF-EEODB could specify a smaller extension
2425			 * count too, but we can't risk allocating a smaller
2426			 * amount.
2427			 */
2428			int eeodb = edid_hfeeodb_block_count(edid);
2429
2430			if (eeodb > num_blocks) {
2431				num_blocks = eeodb;
2432				alloc_size = edid_size_by_blocks(num_blocks);
2433				new = krealloc(edid, alloc_size, GFP_KERNEL);
2434				if (!new)
2435					goto fail;
2436				edid = new;
2437			}
2438		}
2439	}
2440
2441	if (invalid_blocks) {
2442		connector_bad_edid(connector, edid, num_blocks);
2443
2444		edid = edid_filter_invalid_blocks(edid, &alloc_size);
 
2445	}
2446
2447ok:
2448	if (size)
2449		*size = alloc_size;
2450
2451	return edid;
2452
2453fail:
2454	kfree(edid);
2455	return NULL;
2456}
2457
2458/**
2459 * drm_edid_raw - Get a pointer to the raw EDID data.
2460 * @drm_edid: drm_edid container
2461 *
2462 * Get a pointer to the raw EDID data.
2463 *
2464 * This is for transition only. Avoid using this like the plague.
2465 *
2466 * Return: Pointer to raw EDID data.
2467 */
2468const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2469{
2470	if (!drm_edid || !drm_edid->size)
2471		return NULL;
2472
2473	/*
2474	 * Do not return pointers where relying on EDID extension count would
2475	 * lead to buffer overflow.
2476	 */
2477	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2478		return NULL;
2479
2480	return drm_edid->edid;
2481}
2482EXPORT_SYMBOL(drm_edid_raw);
2483
2484/* Allocate struct drm_edid container *without* duplicating the edid data */
2485static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2486{
2487	struct drm_edid *drm_edid;
2488
2489	if (!edid || !size || size < EDID_LENGTH)
2490		return NULL;
2491
2492	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2493	if (drm_edid) {
2494		drm_edid->edid = edid;
2495		drm_edid->size = size;
2496	}
2497
2498	return drm_edid;
2499}
2500
2501/**
2502 * drm_edid_alloc - Allocate a new drm_edid container
2503 * @edid: Pointer to raw EDID data
2504 * @size: Size of memory allocated for EDID
2505 *
2506 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2507 * the actual size that has been allocated for the data. There is no validation
2508 * of the raw EDID data against the size, but at least the EDID base block must
2509 * fit in the buffer.
2510 *
2511 * The returned pointer must be freed using drm_edid_free().
2512 *
2513 * Return: drm_edid container, or NULL on errors
2514 */
2515const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2516{
2517	const struct drm_edid *drm_edid;
2518
2519	if (!edid || !size || size < EDID_LENGTH)
2520		return NULL;
2521
2522	edid = kmemdup(edid, size, GFP_KERNEL);
2523	if (!edid)
2524		return NULL;
2525
2526	drm_edid = _drm_edid_alloc(edid, size);
2527	if (!drm_edid)
2528		kfree(edid);
2529
2530	return drm_edid;
2531}
2532EXPORT_SYMBOL(drm_edid_alloc);
2533
2534/**
2535 * drm_edid_dup - Duplicate a drm_edid container
2536 * @drm_edid: EDID to duplicate
2537 *
2538 * The returned pointer must be freed using drm_edid_free().
2539 *
2540 * Returns: drm_edid container copy, or NULL on errors
2541 */
2542const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2543{
2544	if (!drm_edid)
2545		return NULL;
2546
2547	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2548}
2549EXPORT_SYMBOL(drm_edid_dup);
2550
2551/**
2552 * drm_edid_free - Free the drm_edid container
2553 * @drm_edid: EDID to free
2554 */
2555void drm_edid_free(const struct drm_edid *drm_edid)
2556{
2557	if (!drm_edid)
2558		return;
2559
2560	kfree(drm_edid->edid);
2561	kfree(drm_edid);
2562}
2563EXPORT_SYMBOL(drm_edid_free);
2564
2565/**
2566 * drm_probe_ddc() - probe DDC presence
2567 * @adapter: I2C adapter to probe
2568 *
2569 * Return: True on success, false on failure.
2570 */
2571bool
2572drm_probe_ddc(struct i2c_adapter *adapter)
2573{
2574	unsigned char out;
2575
2576	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2577}
2578EXPORT_SYMBOL(drm_probe_ddc);
2579
2580/**
2581 * drm_get_edid - get EDID data, if available
2582 * @connector: connector we're probing
2583 * @adapter: I2C adapter to use for DDC
2584 *
2585 * Poke the given I2C channel to grab EDID data if possible.  If found,
2586 * attach it to the connector.
2587 *
2588 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2589 */
2590struct edid *drm_get_edid(struct drm_connector *connector,
2591			  struct i2c_adapter *adapter)
2592{
2593	struct edid *edid;
2594
2595	if (connector->force == DRM_FORCE_OFF)
2596		return NULL;
2597
2598	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2599		return NULL;
2600
2601	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2602	drm_connector_update_edid_property(connector, edid);
 
2603	return edid;
2604}
2605EXPORT_SYMBOL(drm_get_edid);
2606
2607/**
2608 * drm_edid_read_custom - Read EDID data using given EDID block read function
2609 * @connector: Connector to use
2610 * @read_block: EDID block read function
2611 * @context: Private data passed to the block read function
2612 *
2613 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2614 * exposes a different interface to read EDID blocks this function can be used
2615 * to get EDID data using a custom block read function.
2616 *
2617 * As in the general case the DDC bus is accessible by the kernel at the I2C
2618 * level, drivers must make all reasonable efforts to expose it as an I2C
2619 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2620 * this function.
2621 *
2622 * The EDID may be overridden using debugfs override_edid or firmware EDID
2623 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2624 * order. Having either of them bypasses actual EDID reads.
2625 *
2626 * The returned pointer must be freed using drm_edid_free().
2627 *
2628 * Return: Pointer to EDID, or NULL if probe/read failed.
2629 */
2630const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2631					    read_block_fn read_block,
2632					    void *context)
2633{
2634	const struct drm_edid *drm_edid;
2635	struct edid *edid;
2636	size_t size = 0;
2637
2638	edid = _drm_do_get_edid(connector, read_block, context, &size);
2639	if (!edid)
2640		return NULL;
2641
2642	/* Sanity check for now */
2643	drm_WARN_ON(connector->dev, !size);
2644
2645	drm_edid = _drm_edid_alloc(edid, size);
2646	if (!drm_edid)
2647		kfree(edid);
2648
2649	return drm_edid;
2650}
2651EXPORT_SYMBOL(drm_edid_read_custom);
2652
2653/**
2654 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2655 * @connector: Connector to use
2656 * @adapter: I2C adapter to use for DDC
2657 *
2658 * Read EDID using the given I2C adapter.
2659 *
2660 * The EDID may be overridden using debugfs override_edid or firmware EDID
2661 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2662 * order. Having either of them bypasses actual EDID reads.
2663 *
2664 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2665 * using drm_edid_read() instead of this function.
2666 *
2667 * The returned pointer must be freed using drm_edid_free().
2668 *
2669 * Return: Pointer to EDID, or NULL if probe/read failed.
2670 */
2671const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2672					 struct i2c_adapter *adapter)
2673{
2674	const struct drm_edid *drm_edid;
2675
2676	if (connector->force == DRM_FORCE_OFF)
2677		return NULL;
2678
2679	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2680		return NULL;
2681
2682	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2683
2684	/* Note: Do *not* call connector updates here. */
2685
2686	return drm_edid;
2687}
2688EXPORT_SYMBOL(drm_edid_read_ddc);
2689
2690/**
2691 * drm_edid_read - Read EDID data using connector's I2C adapter
2692 * @connector: Connector to use
2693 *
2694 * Read EDID using the connector's I2C adapter.
2695 *
2696 * The EDID may be overridden using debugfs override_edid or firmware EDID
2697 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2698 * order. Having either of them bypasses actual EDID reads.
2699 *
2700 * The returned pointer must be freed using drm_edid_free().
2701 *
2702 * Return: Pointer to EDID, or NULL if probe/read failed.
2703 */
2704const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2705{
2706	if (drm_WARN_ON(connector->dev, !connector->ddc))
2707		return NULL;
2708
2709	return drm_edid_read_ddc(connector, connector->ddc);
2710}
2711EXPORT_SYMBOL(drm_edid_read);
2712
2713/**
2714 * drm_edid_get_product_id - Get the vendor and product identification
2715 * @drm_edid: EDID
2716 * @id: Where to place the product id
2717 */
2718void drm_edid_get_product_id(const struct drm_edid *drm_edid,
2719			     struct drm_edid_product_id *id)
2720{
2721	if (drm_edid && drm_edid->edid && drm_edid->size >= EDID_LENGTH)
2722		memcpy(id, &drm_edid->edid->product_id, sizeof(*id));
2723	else
2724		memset(id, 0, sizeof(*id));
2725}
2726EXPORT_SYMBOL(drm_edid_get_product_id);
2727
2728static void decode_date(struct seq_buf *s, const struct drm_edid_product_id *id)
2729{
2730	int week = id->week_of_manufacture;
2731	int year = id->year_of_manufacture + 1990;
2732
2733	if (week == 0xff)
2734		seq_buf_printf(s, "model year: %d", year);
2735	else if (!week)
2736		seq_buf_printf(s, "year of manufacture: %d", year);
2737	else
2738		seq_buf_printf(s, "week/year of manufacture: %d/%d", week, year);
2739}
2740
2741/**
2742 * drm_edid_print_product_id - Print decoded product id to printer
2743 * @p: drm printer
2744 * @id: EDID product id
2745 * @raw: If true, also print the raw hex
2746 *
2747 * See VESA E-EDID 1.4 section 3.4.
2748 */
2749void drm_edid_print_product_id(struct drm_printer *p,
2750			       const struct drm_edid_product_id *id, bool raw)
2751{
2752	DECLARE_SEQ_BUF(date, 40);
2753	char vend[4];
2754
2755	drm_edid_decode_mfg_id(be16_to_cpu(id->manufacturer_name), vend);
2756
2757	decode_date(&date, id);
2758
2759	drm_printf(p, "manufacturer name: %s, product code: %u, serial number: %u, %s\n",
2760		   vend, le16_to_cpu(id->product_code),
2761		   le32_to_cpu(id->serial_number), seq_buf_str(&date));
2762
2763	if (raw)
2764		drm_printf(p, "raw product id: %*ph\n", (int)sizeof(*id), id);
2765
2766	WARN_ON(seq_buf_has_overflowed(&date));
2767}
2768EXPORT_SYMBOL(drm_edid_print_product_id);
2769
2770/**
2771 * drm_edid_get_panel_id - Get a panel's ID from EDID
2772 * @drm_edid: EDID that contains panel ID.
2773 *
2774 * This function uses the first block of the EDID of a panel and (assuming
2775 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2776 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2777 * supposed to be different for each different modem of panel.
2778 *
2779 * Return: A 32-bit ID that should be different for each make/model of panel.
2780 *         See the functions drm_edid_encode_panel_id() and
2781 *         drm_edid_decode_panel_id() for some details on the structure of this
2782 *         ID. Return 0 if the EDID size is less than a base block.
2783 */
2784u32 drm_edid_get_panel_id(const struct drm_edid *drm_edid)
2785{
2786	const struct edid *edid = drm_edid->edid;
2787
2788	if (drm_edid->size < EDID_LENGTH)
2789		return 0;
2790
2791	/*
2792	 * We represent the ID as a 32-bit number so it can easily be compared
2793	 * with "==".
2794	 *
2795	 * NOTE that we deal with endianness differently for the top half
2796	 * of this ID than for the bottom half. The bottom half (the product
2797	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2798	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2799	 * gets stored as big endian because that makes
2800	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2801	 * to write (it's easier to extract the ASCII). It doesn't really
2802	 * matter, though, as long as the number here is unique.
2803	 */
2804	return (u32)edid->mfg_id[0] << 24   |
2805	       (u32)edid->mfg_id[1] << 16   |
2806	       (u32)EDID_PRODUCT_ID(edid);
2807}
2808EXPORT_SYMBOL(drm_edid_get_panel_id);
2809
2810/**
2811 * drm_edid_read_base_block - Get a panel's EDID base block
2812 * @adapter: I2C adapter to use for DDC
2813 *
2814 * This function returns the drm_edid containing the first block of the EDID of
2815 * a panel.
2816 *
2817 * This function is intended to be used during early probing on devices where
2818 * more than one panel might be present. Because of its intended use it must
2819 * assume that the EDID of the panel is correct, at least as far as the base
2820 * block is concerned (in other words, we don't process any overrides here).
2821 *
2822 * Caller should call drm_edid_free() after use.
2823 *
2824 * NOTE: it's expected that this function and drm_do_get_edid() will both
2825 * be read the EDID, but there is no caching between them. Since we're only
2826 * reading the first block, hopefully this extra overhead won't be too big.
2827 *
2828 * WARNING: Only use this function when the connector is unknown. For example,
2829 * during the early probe of panel. The EDID read from the function is temporary
2830 * and should be replaced by the full EDID returned from other drm_edid_read.
2831 *
2832 * Return: Pointer to allocated EDID base block, or NULL on any failure.
2833 */
2834const struct drm_edid *drm_edid_read_base_block(struct i2c_adapter *adapter)
2835{
2836	enum edid_block_status status;
2837	void *base_block;
2838
2839	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2840	if (!base_block)
2841		return NULL;
2842
2843	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2844
2845	edid_block_status_print(status, base_block, 0);
2846
2847	if (!edid_block_status_valid(status, edid_block_tag(base_block))) {
2848		edid_block_dump(KERN_NOTICE, base_block, 0);
2849		kfree(base_block);
2850		return NULL;
2851	}
2852
2853	return _drm_edid_alloc(base_block, EDID_LENGTH);
2854}
2855EXPORT_SYMBOL(drm_edid_read_base_block);
2856
2857/**
2858 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2859 * @connector: connector we're probing
2860 * @adapter: I2C adapter to use for DDC
2861 *
2862 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2863 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2864 * switch DDC to the GPU which is retrieving EDID.
2865 *
2866 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2867 */
2868struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2869				     struct i2c_adapter *adapter)
2870{
2871	struct drm_device *dev = connector->dev;
2872	struct pci_dev *pdev = to_pci_dev(dev->dev);
2873	struct edid *edid;
2874
2875	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2876		return NULL;
2877
2878	vga_switcheroo_lock_ddc(pdev);
2879	edid = drm_get_edid(connector, adapter);
2880	vga_switcheroo_unlock_ddc(pdev);
2881
2882	return edid;
2883}
2884EXPORT_SYMBOL(drm_get_edid_switcheroo);
2885
2886/**
2887 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2888 * @connector: connector we're probing
2889 * @adapter: I2C adapter to use for DDC
2890 *
2891 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2892 * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2893 * temporarily switch DDC to the GPU which is retrieving EDID.
2894 *
2895 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2896 */
2897const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2898						struct i2c_adapter *adapter)
2899{
2900	struct drm_device *dev = connector->dev;
2901	struct pci_dev *pdev = to_pci_dev(dev->dev);
2902	const struct drm_edid *drm_edid;
2903
2904	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2905		return NULL;
2906
2907	vga_switcheroo_lock_ddc(pdev);
2908	drm_edid = drm_edid_read_ddc(connector, adapter);
2909	vga_switcheroo_unlock_ddc(pdev);
2910
2911	return drm_edid;
2912}
2913EXPORT_SYMBOL(drm_edid_read_switcheroo);
2914
2915/**
2916 * drm_edid_duplicate - duplicate an EDID and the extensions
2917 * @edid: EDID to duplicate
 
2918 *
2919 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2920 */
2921struct edid *drm_edid_duplicate(const struct edid *edid)
2922{
2923	if (!edid)
2924		return NULL;
 
 
 
 
2925
2926	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2927}
2928EXPORT_SYMBOL(drm_edid_duplicate);
2929
2930/*** EDID parsing ***/
2931
2932/**
2933 * edid_get_quirks - return quirk flags for a given EDID
2934 * @drm_edid: EDID to process
2935 *
2936 * This tells subsequent routines what fixes they need to apply.
2937 *
2938 * Return: A u32 represents the quirks to apply.
2939 */
2940static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2941{
2942	const struct edid_quirk *quirk;
2943	int i;
2944
2945	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2946		quirk = &edid_quirk_list[i];
2947		if (drm_edid_match(drm_edid, &quirk->ident))
 
 
2948			return quirk->quirks;
2949	}
2950
2951	return 0;
2952}
2953
2954#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2955#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2956
2957/*
2958 * Walk the mode list for connector, clearing the preferred status on existing
2959 * modes and setting it anew for the right mode ala quirks.
 
 
 
 
2960 */
2961static void edid_fixup_preferred(struct drm_connector *connector)
 
2962{
2963	const struct drm_display_info *info = &connector->display_info;
2964	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2965	int target_refresh = 0;
2966	int cur_vrefresh, preferred_vrefresh;
2967
2968	if (list_empty(&connector->probed_modes))
2969		return;
2970
2971	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2972		target_refresh = 60;
2973	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2974		target_refresh = 75;
2975
2976	preferred_mode = list_first_entry(&connector->probed_modes,
2977					  struct drm_display_mode, head);
2978
2979	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2980		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2981
2982		if (cur_mode == preferred_mode)
2983			continue;
2984
2985		/* Largest mode is preferred */
2986		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2987			preferred_mode = cur_mode;
2988
2989		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2990		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
 
 
2991		/* At a given size, try to get closest to target refresh */
2992		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2993		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2994		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2995			preferred_mode = cur_mode;
2996		}
2997	}
2998
2999	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
3000}
3001
3002static bool
3003mode_is_rb(const struct drm_display_mode *mode)
3004{
3005	return (mode->htotal - mode->hdisplay == 160) &&
3006	       (mode->hsync_end - mode->hdisplay == 80) &&
3007	       (mode->hsync_end - mode->hsync_start == 32) &&
3008	       (mode->vsync_start - mode->vdisplay == 3);
3009}
3010
3011/*
3012 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
3013 * @dev: Device to duplicate against
3014 * @hsize: Mode width
3015 * @vsize: Mode height
3016 * @fresh: Mode refresh rate
3017 * @rb: Mode reduced-blanking-ness
3018 *
3019 * Walk the DMT mode list looking for a match for the given parameters.
3020 *
3021 * Return: A newly allocated copy of the mode, or NULL if not found.
3022 */
3023struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
3024					   int hsize, int vsize, int fresh,
3025					   bool rb)
3026{
3027	int i;
3028
3029	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3030		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3031
3032		if (hsize != ptr->hdisplay)
3033			continue;
3034		if (vsize != ptr->vdisplay)
3035			continue;
3036		if (fresh != drm_mode_vrefresh(ptr))
3037			continue;
3038		if (rb != mode_is_rb(ptr))
3039			continue;
3040
3041		return drm_mode_duplicate(dev, ptr);
3042	}
3043
3044	return NULL;
3045}
3046EXPORT_SYMBOL(drm_mode_find_dmt);
3047
3048static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3049{
3050	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3051	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3052	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3053
3054	return descriptor->pixel_clock == 0 &&
3055		descriptor->data.other_data.pad1 == 0 &&
3056		descriptor->data.other_data.type == type;
3057}
3058
3059static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3060{
3061	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3062
3063	return descriptor->pixel_clock != 0;
3064}
3065
3066typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3067
3068static void
3069cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3070{
3071	int i, n;
3072	u8 d = ext[0x02];
3073	const u8 *det_base = ext + d;
3074
3075	if (d < 4 || d > 127)
3076		return;
3077
3078	n = (127 - d) / 18;
3079	for (i = 0; i < n; i++)
3080		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3081}
3082
3083static void
3084vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3085{
3086	unsigned int i, n = min((int)ext[0x02], 6);
3087	const u8 *det_base = ext + 5;
3088
3089	if (ext[0x01] != 1)
3090		return; /* unknown version */
3091
3092	for (i = 0; i < n; i++)
3093		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3094}
3095
3096static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3097					detailed_cb *cb, void *closure)
3098{
3099	struct drm_edid_iter edid_iter;
3100	const u8 *ext;
3101	int i;
 
3102
3103	if (!drm_edid)
3104		return;
3105
3106	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3107		cb(&drm_edid->edid->detailed_timings[i], closure);
3108
3109	drm_edid_iter_begin(drm_edid, &edid_iter);
3110	drm_edid_iter_for_each(ext, &edid_iter) {
3111		switch (*ext) {
3112		case CEA_EXT:
3113			cea_for_each_detailed_block(ext, cb, closure);
3114			break;
3115		case VTB_EXT:
3116			vtb_for_each_detailed_block(ext, cb, closure);
3117			break;
3118		default:
3119			break;
3120		}
3121	}
3122	drm_edid_iter_end(&edid_iter);
3123}
3124
3125static void
3126is_rb(const struct detailed_timing *descriptor, void *data)
3127{
3128	bool *res = data;
3129
3130	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3131		return;
3132
3133	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3134	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3135
3136	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3137	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3138		*res = true;
3139}
3140
3141/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3142static bool
3143drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3144{
3145	if (drm_edid->edid->revision >= 4) {
3146		bool ret = false;
3147
3148		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3149		return ret;
3150	}
3151
3152	return drm_edid_is_digital(drm_edid);
3153}
3154
3155static void
3156find_gtf2(const struct detailed_timing *descriptor, void *data)
3157{
3158	const struct detailed_timing **res = data;
3159
3160	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3161		return;
3162
3163	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3164
3165	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3166		*res = descriptor;
3167}
3168
3169/* Secondary GTF curve kicks in above some break frequency */
3170static int
3171drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3172{
3173	const struct detailed_timing *descriptor = NULL;
3174
3175	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3176
3177	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3178
3179	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3180}
3181
3182static int
3183drm_gtf2_2c(const struct drm_edid *drm_edid)
3184{
3185	const struct detailed_timing *descriptor = NULL;
3186
3187	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3188
3189	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3190
3191	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3192}
3193
3194static int
3195drm_gtf2_m(const struct drm_edid *drm_edid)
3196{
3197	const struct detailed_timing *descriptor = NULL;
3198
3199	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3200
3201	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3202
3203	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3204}
3205
3206static int
3207drm_gtf2_k(const struct drm_edid *drm_edid)
3208{
3209	const struct detailed_timing *descriptor = NULL;
3210
3211	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3212
3213	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3214
3215	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3216}
3217
3218static int
3219drm_gtf2_2j(const struct drm_edid *drm_edid)
3220{
3221	const struct detailed_timing *descriptor = NULL;
3222
3223	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3224
3225	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3226
3227	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3228}
3229
3230static void
3231get_timing_level(const struct detailed_timing *descriptor, void *data)
3232{
3233	int *res = data;
3234
3235	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3236		return;
3237
3238	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3239
3240	switch (descriptor->data.other_data.data.range.flags) {
3241	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3242		*res = LEVEL_GTF;
3243		break;
3244	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3245		*res = LEVEL_GTF2;
3246		break;
3247	case DRM_EDID_CVT_SUPPORT_FLAG:
3248		*res = LEVEL_CVT;
3249		break;
3250	default:
3251		break;
3252	}
3253}
3254
3255/* Get standard timing level (CVT/GTF/DMT). */
3256static int standard_timing_level(const struct drm_edid *drm_edid)
 
 
 
3257{
3258	const struct edid *edid = drm_edid->edid;
3259
3260	if (edid->revision >= 4) {
3261		/*
3262		 * If the range descriptor doesn't
3263		 * indicate otherwise default to CVT
3264		 */
3265		int ret = LEVEL_CVT;
3266
3267		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3268
3269		return ret;
3270	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3271		return LEVEL_GTF2;
3272	} else if (edid->revision >= 2) {
3273		return LEVEL_GTF;
3274	} else {
3275		return LEVEL_DMT;
3276	}
 
3277}
3278
3279/*
3280 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3281 * monitors fill with ascii space (0x20) instead.
3282 */
3283static int
3284bad_std_timing(u8 a, u8 b)
3285{
3286	return (a == 0x00 && b == 0x00) ||
3287	       (a == 0x01 && b == 0x01) ||
3288	       (a == 0x20 && b == 0x20);
3289}
3290
3291static int drm_mode_hsync(const struct drm_display_mode *mode)
3292{
3293	if (mode->htotal <= 0)
3294		return 0;
3295
3296	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3297}
3298
3299static struct drm_display_mode *
3300drm_gtf2_mode(struct drm_device *dev,
3301	      const struct drm_edid *drm_edid,
3302	      int hsize, int vsize, int vrefresh_rate)
3303{
3304	struct drm_display_mode *mode;
3305
3306	/*
3307	 * This is potentially wrong if there's ever a monitor with
3308	 * more than one ranges section, each claiming a different
3309	 * secondary GTF curve.  Please don't do that.
3310	 */
3311	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3312	if (!mode)
3313		return NULL;
3314
3315	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3316		drm_mode_destroy(dev, mode);
3317		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3318					    vrefresh_rate, 0, 0,
3319					    drm_gtf2_m(drm_edid),
3320					    drm_gtf2_2c(drm_edid),
3321					    drm_gtf2_k(drm_edid),
3322					    drm_gtf2_2j(drm_edid));
3323	}
3324
3325	return mode;
3326}
3327
3328/*
3329 * Take the standard timing params (in this case width, aspect, and refresh)
3330 * and convert them into a real mode using CVT/GTF/DMT.
3331 */
3332static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3333					     const struct drm_edid *drm_edid,
3334					     const struct std_timing *t)
3335{
3336	struct drm_device *dev = connector->dev;
3337	struct drm_display_mode *m, *mode = NULL;
3338	int hsize, vsize;
3339	int vrefresh_rate;
3340	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3341		>> EDID_TIMING_ASPECT_SHIFT;
3342	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3343		>> EDID_TIMING_VFREQ_SHIFT;
3344	int timing_level = standard_timing_level(drm_edid);
3345
3346	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3347		return NULL;
3348
3349	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3350	hsize = t->hsize * 8 + 248;
3351	/* vrefresh_rate = vfreq + 60 */
3352	vrefresh_rate = vfreq + 60;
3353	/* the vdisplay is calculated based on the aspect ratio */
3354	if (aspect_ratio == 0) {
3355		if (drm_edid->edid->revision < 3)
3356			vsize = hsize;
3357		else
3358			vsize = (hsize * 10) / 16;
3359	} else if (aspect_ratio == 1)
3360		vsize = (hsize * 3) / 4;
3361	else if (aspect_ratio == 2)
3362		vsize = (hsize * 4) / 5;
3363	else
3364		vsize = (hsize * 9) / 16;
3365
3366	/* HDTV hack, part 1 */
3367	if (vrefresh_rate == 60 &&
3368	    ((hsize == 1360 && vsize == 765) ||
3369	     (hsize == 1368 && vsize == 769))) {
3370		hsize = 1366;
3371		vsize = 768;
3372	}
3373
3374	/*
3375	 * If this connector already has a mode for this size and refresh
3376	 * rate (because it came from detailed or CVT info), use that
3377	 * instead.  This way we don't have to guess at interlace or
3378	 * reduced blanking.
3379	 */
3380	list_for_each_entry(m, &connector->probed_modes, head)
3381		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3382		    drm_mode_vrefresh(m) == vrefresh_rate)
3383			return NULL;
3384
3385	/* HDTV hack, part 2 */
3386	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3387		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3388				    false);
3389		if (!mode)
3390			return NULL;
3391		mode->hdisplay = 1366;
3392		mode->hsync_start = mode->hsync_start - 1;
3393		mode->hsync_end = mode->hsync_end - 1;
3394		return mode;
3395	}
3396
3397	/* check whether it can be found in default mode table */
3398	if (drm_monitor_supports_rb(drm_edid)) {
3399		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3400					 true);
3401		if (mode)
3402			return mode;
3403	}
3404	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3405	if (mode)
3406		return mode;
3407
3408	/* okay, generate it */
3409	switch (timing_level) {
3410	case LEVEL_DMT:
3411		break;
3412	case LEVEL_GTF:
3413		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3414		break;
3415	case LEVEL_GTF2:
3416		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3417		break;
3418	case LEVEL_CVT:
3419		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3420				    false);
3421		break;
3422	}
3423	return mode;
3424}
3425
3426/*
3427 * EDID is delightfully ambiguous about how interlaced modes are to be
3428 * encoded.  Our internal representation is of frame height, but some
3429 * HDTV detailed timings are encoded as field height.
3430 *
3431 * The format list here is from CEA, in frame size.  Technically we
3432 * should be checking refresh rate too.  Whatever.
3433 */
3434static void
3435drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3436			    const struct detailed_pixel_timing *pt)
3437{
3438	int i;
3439	static const struct {
3440		int w, h;
3441	} cea_interlaced[] = {
3442		{ 1920, 1080 },
3443		{  720,  480 },
3444		{ 1440,  480 },
3445		{ 2880,  480 },
3446		{  720,  576 },
3447		{ 1440,  576 },
3448		{ 2880,  576 },
3449	};
3450
3451	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3452		return;
3453
3454	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3455		if ((mode->hdisplay == cea_interlaced[i].w) &&
3456		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3457			mode->vdisplay *= 2;
3458			mode->vsync_start *= 2;
3459			mode->vsync_end *= 2;
3460			mode->vtotal *= 2;
3461			mode->vtotal |= 1;
3462		}
3463	}
3464
3465	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3466}
3467
3468/*
3469 * Create a new mode from an EDID detailed timing section. An EDID detailed
3470 * timing block contains enough info for us to create and return a new struct
3471 * drm_display_mode.
3472 */
3473static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3474						  const struct drm_edid *drm_edid,
3475						  const struct detailed_timing *timing)
 
 
 
 
 
 
3476{
3477	const struct drm_display_info *info = &connector->display_info;
3478	struct drm_device *dev = connector->dev;
3479	struct drm_display_mode *mode;
3480	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3481	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3482	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3483	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3484	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3485	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3486	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3487	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3488	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3489
3490	/* ignore tiny modes */
3491	if (hactive < 64 || vactive < 64)
3492		return NULL;
3493
3494	if (pt->misc & DRM_EDID_PT_STEREO) {
3495		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3496			    connector->base.id, connector->name);
3497		return NULL;
3498	}
3499	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3500		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3501			    connector->base.id, connector->name);
3502	}
3503
3504	/* it is incorrect if hsync/vsync width is zero */
3505	if (!hsync_pulse_width || !vsync_pulse_width) {
3506		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3507			    connector->base.id, connector->name);
3508		return NULL;
3509	}
3510
3511	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3512		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3513		if (!mode)
3514			return NULL;
3515
3516		goto set_size;
3517	}
3518
3519	mode = drm_mode_create(dev);
3520	if (!mode)
3521		return NULL;
3522
3523	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3524		mode->clock = 1088 * 10;
3525	else
3526		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3527
3528	mode->hdisplay = hactive;
3529	mode->hsync_start = mode->hdisplay + hsync_offset;
3530	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3531	mode->htotal = mode->hdisplay + hblank;
3532
3533	mode->vdisplay = vactive;
3534	mode->vsync_start = mode->vdisplay + vsync_offset;
3535	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3536	mode->vtotal = mode->vdisplay + vblank;
3537
3538	/* Some EDIDs have bogus h/vsync_end values */
3539	if (mode->hsync_end > mode->htotal) {
3540		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3541			    connector->base.id, connector->name,
3542			    mode->hsync_end, mode->htotal);
3543		mode->hsync_end = mode->htotal;
3544	}
3545	if (mode->vsync_end > mode->vtotal) {
3546		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3547			    connector->base.id, connector->name,
3548			    mode->vsync_end, mode->vtotal);
3549		mode->vsync_end = mode->vtotal;
3550	}
3551
3552	drm_mode_do_interlace_quirk(mode, pt);
3553
3554	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3555		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3556	} else {
3557		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3558			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3559		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3560			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3561	}
3562
 
 
 
 
 
3563set_size:
3564	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3565	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3566
3567	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3568		mode->width_mm *= 10;
3569		mode->height_mm *= 10;
3570	}
3571
3572	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3573		mode->width_mm = drm_edid->edid->width_cm * 10;
3574		mode->height_mm = drm_edid->edid->height_cm * 10;
3575	}
3576
3577	mode->type = DRM_MODE_TYPE_DRIVER;
 
3578	drm_mode_set_name(mode);
3579
3580	return mode;
3581}
3582
3583static bool
3584mode_in_hsync_range(const struct drm_display_mode *mode,
3585		    const struct edid *edid, const u8 *t)
3586{
3587	int hsync, hmin, hmax;
3588
3589	hmin = t[7];
3590	if (edid->revision >= 4)
3591	    hmin += ((t[4] & 0x04) ? 255 : 0);
3592	hmax = t[8];
3593	if (edid->revision >= 4)
3594	    hmax += ((t[4] & 0x08) ? 255 : 0);
3595	hsync = drm_mode_hsync(mode);
3596
3597	return (hsync <= hmax && hsync >= hmin);
3598}
3599
3600static bool
3601mode_in_vsync_range(const struct drm_display_mode *mode,
3602		    const struct edid *edid, const u8 *t)
3603{
3604	int vsync, vmin, vmax;
3605
3606	vmin = t[5];
3607	if (edid->revision >= 4)
3608	    vmin += ((t[4] & 0x01) ? 255 : 0);
3609	vmax = t[6];
3610	if (edid->revision >= 4)
3611	    vmax += ((t[4] & 0x02) ? 255 : 0);
3612	vsync = drm_mode_vrefresh(mode);
3613
3614	return (vsync <= vmax && vsync >= vmin);
3615}
3616
3617static u32
3618range_pixel_clock(const struct edid *edid, const u8 *t)
3619{
3620	/* unspecified */
3621	if (t[9] == 0 || t[9] == 255)
3622		return 0;
3623
3624	/* 1.4 with CVT support gives us real precision, yay */
3625	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3626		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3627
3628	/* 1.3 is pathetic, so fuzz up a bit */
3629	return t[9] * 10000 + 5001;
3630}
3631
3632static bool mode_in_range(const struct drm_display_mode *mode,
3633			  const struct drm_edid *drm_edid,
3634			  const struct detailed_timing *timing)
3635{
3636	const struct edid *edid = drm_edid->edid;
3637	u32 max_clock;
3638	const u8 *t = (const u8 *)timing;
3639
3640	if (!mode_in_hsync_range(mode, edid, t))
3641		return false;
3642
3643	if (!mode_in_vsync_range(mode, edid, t))
3644		return false;
3645
3646	max_clock = range_pixel_clock(edid, t);
3647	if (max_clock)
3648		if (mode->clock > max_clock)
3649			return false;
3650
3651	/* 1.4 max horizontal check */
3652	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3653		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3654			return false;
3655
3656	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3657		return false;
3658
3659	return true;
3660}
3661
3662static bool valid_inferred_mode(const struct drm_connector *connector,
3663				const struct drm_display_mode *mode)
3664{
3665	const struct drm_display_mode *m;
3666	bool ok = false;
3667
3668	list_for_each_entry(m, &connector->probed_modes, head) {
3669		if (mode->hdisplay == m->hdisplay &&
3670		    mode->vdisplay == m->vdisplay &&
3671		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3672			return false; /* duplicated */
3673		if (mode->hdisplay <= m->hdisplay &&
3674		    mode->vdisplay <= m->vdisplay)
3675			ok = true;
3676	}
3677	return ok;
3678}
3679
3680static int drm_dmt_modes_for_range(struct drm_connector *connector,
3681				   const struct drm_edid *drm_edid,
3682				   const struct detailed_timing *timing)
3683{
3684	int i, modes = 0;
3685	struct drm_display_mode *newmode;
3686	struct drm_device *dev = connector->dev;
3687
3688	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3689		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3690		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3691			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3692			if (newmode) {
3693				drm_mode_probed_add(connector, newmode);
3694				modes++;
3695			}
3696		}
3697	}
3698
3699	return modes;
3700}
3701
3702/* fix up 1366x768 mode from 1368x768;
3703 * GFT/CVT can't express 1366 width which isn't dividable by 8
3704 */
3705void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3706{
3707	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3708		mode->hdisplay = 1366;
3709		mode->hsync_start--;
3710		mode->hsync_end--;
3711		drm_mode_set_name(mode);
3712	}
3713}
3714
3715static int drm_gtf_modes_for_range(struct drm_connector *connector,
3716				   const struct drm_edid *drm_edid,
3717				   const struct detailed_timing *timing)
3718{
3719	int i, modes = 0;
3720	struct drm_display_mode *newmode;
3721	struct drm_device *dev = connector->dev;
3722
3723	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3724		const struct minimode *m = &extra_modes[i];
3725
3726		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3727		if (!newmode)
3728			return modes;
3729
3730		drm_mode_fixup_1366x768(newmode);
3731		if (!mode_in_range(newmode, drm_edid, timing) ||
3732		    !valid_inferred_mode(connector, newmode)) {
3733			drm_mode_destroy(dev, newmode);
3734			continue;
3735		}
3736
3737		drm_mode_probed_add(connector, newmode);
3738		modes++;
3739	}
3740
3741	return modes;
3742}
3743
3744static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3745				    const struct drm_edid *drm_edid,
3746				    const struct detailed_timing *timing)
3747{
3748	int i, modes = 0;
3749	struct drm_display_mode *newmode;
3750	struct drm_device *dev = connector->dev;
 
3751
3752	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3753		const struct minimode *m = &extra_modes[i];
3754
3755		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3756		if (!newmode)
3757			return modes;
3758
3759		drm_mode_fixup_1366x768(newmode);
3760		if (!mode_in_range(newmode, drm_edid, timing) ||
3761		    !valid_inferred_mode(connector, newmode)) {
3762			drm_mode_destroy(dev, newmode);
3763			continue;
3764		}
3765
3766		drm_mode_probed_add(connector, newmode);
3767		modes++;
3768	}
3769
3770	return modes;
3771}
3772
3773static int drm_cvt_modes_for_range(struct drm_connector *connector,
3774				   const struct drm_edid *drm_edid,
3775				   const struct detailed_timing *timing)
3776{
3777	int i, modes = 0;
3778	struct drm_display_mode *newmode;
3779	struct drm_device *dev = connector->dev;
3780	bool rb = drm_monitor_supports_rb(drm_edid);
3781
3782	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3783		const struct minimode *m = &extra_modes[i];
3784
3785		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3786		if (!newmode)
3787			return modes;
3788
3789		drm_mode_fixup_1366x768(newmode);
3790		if (!mode_in_range(newmode, drm_edid, timing) ||
3791		    !valid_inferred_mode(connector, newmode)) {
3792			drm_mode_destroy(dev, newmode);
3793			continue;
3794		}
3795
3796		drm_mode_probed_add(connector, newmode);
3797		modes++;
3798	}
3799
3800	return modes;
3801}
3802
3803static void
3804do_inferred_modes(const struct detailed_timing *timing, void *c)
3805{
3806	struct detailed_mode_closure *closure = c;
3807	const struct detailed_non_pixel *data = &timing->data.other_data;
3808	const struct detailed_data_monitor_range *range = &data->data.range;
3809
3810	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3811		return;
3812
3813	closure->modes += drm_dmt_modes_for_range(closure->connector,
3814						  closure->drm_edid,
3815						  timing);
3816
3817	if (closure->drm_edid->edid->revision < 2)
3818		return; /* GTF not defined yet */
3819
3820	switch (range->flags) {
3821	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3822		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3823							   closure->drm_edid,
3824							   timing);
3825		break;
3826	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3827		closure->modes += drm_gtf_modes_for_range(closure->connector,
3828							  closure->drm_edid,
3829							  timing);
3830		break;
3831	case DRM_EDID_CVT_SUPPORT_FLAG:
3832		if (closure->drm_edid->edid->revision < 4)
3833			break;
3834
3835		closure->modes += drm_cvt_modes_for_range(closure->connector,
3836							  closure->drm_edid,
3837							  timing);
3838		break;
3839	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3840	default:
3841		break;
3842	}
3843}
3844
3845static int add_inferred_modes(struct drm_connector *connector,
3846			      const struct drm_edid *drm_edid)
3847{
3848	struct detailed_mode_closure closure = {
3849		.connector = connector,
3850		.drm_edid = drm_edid,
3851	};
3852
3853	if (drm_edid->edid->revision >= 1)
3854		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
 
3855
3856	return closure.modes;
3857}
3858
3859static int
3860drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3861{
3862	int i, j, m, modes = 0;
3863	struct drm_display_mode *mode;
3864	const u8 *est = ((const u8 *)timing) + 6;
3865
3866	for (i = 0; i < 6; i++) {
3867		for (j = 7; j >= 0; j--) {
3868			m = (i * 8) + (7 - j);
3869			if (m >= ARRAY_SIZE(est3_modes))
3870				break;
3871			if (est[i] & (1 << j)) {
3872				mode = drm_mode_find_dmt(connector->dev,
3873							 est3_modes[m].w,
3874							 est3_modes[m].h,
3875							 est3_modes[m].r,
3876							 est3_modes[m].rb);
3877				if (mode) {
3878					drm_mode_probed_add(connector, mode);
3879					modes++;
3880				}
3881			}
3882		}
3883	}
3884
3885	return modes;
3886}
3887
3888static void
3889do_established_modes(const struct detailed_timing *timing, void *c)
3890{
3891	struct detailed_mode_closure *closure = c;
 
3892
3893	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3894		return;
3895
3896	closure->modes += drm_est3_modes(closure->connector, timing);
3897}
3898
3899/*
3900 * Get established modes from EDID and add them. Each EDID block contains a
3901 * bitmap of the supported "established modes" list (defined above). Tease them
3902 * out and add them to the global modes list.
 
 
 
3903 */
3904static int add_established_modes(struct drm_connector *connector,
3905				 const struct drm_edid *drm_edid)
3906{
3907	struct drm_device *dev = connector->dev;
3908	const struct edid *edid = drm_edid->edid;
3909	unsigned long est_bits = edid->established_timings.t1 |
3910		(edid->established_timings.t2 << 8) |
3911		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3912	int i, modes = 0;
3913	struct detailed_mode_closure closure = {
3914		.connector = connector,
3915		.drm_edid = drm_edid,
3916	};
3917
3918	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3919		if (est_bits & (1<<i)) {
3920			struct drm_display_mode *newmode;
3921
3922			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3923			if (newmode) {
3924				drm_mode_probed_add(connector, newmode);
3925				modes++;
3926			}
3927		}
3928	}
3929
3930	if (edid->revision >= 1)
3931		drm_for_each_detailed_block(drm_edid, do_established_modes,
3932					    &closure);
3933
3934	return modes + closure.modes;
3935}
3936
3937static void
3938do_standard_modes(const struct detailed_timing *timing, void *c)
3939{
3940	struct detailed_mode_closure *closure = c;
3941	const struct detailed_non_pixel *data = &timing->data.other_data;
3942	struct drm_connector *connector = closure->connector;
3943	int i;
3944
3945	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3946		return;
 
 
 
3947
3948	for (i = 0; i < 6; i++) {
3949		const struct std_timing *std = &data->data.timings[i];
3950		struct drm_display_mode *newmode;
3951
3952		newmode = drm_mode_std(connector, closure->drm_edid, std);
3953		if (newmode) {
3954			drm_mode_probed_add(connector, newmode);
3955			closure->modes++;
3956		}
3957	}
3958}
3959
3960/*
3961 * Get standard modes from EDID and add them. Standard modes can be calculated
3962 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3963 * add them to the list.
 
 
 
3964 */
3965static int add_standard_modes(struct drm_connector *connector,
3966			      const struct drm_edid *drm_edid)
3967{
3968	int i, modes = 0;
3969	struct detailed_mode_closure closure = {
3970		.connector = connector,
3971		.drm_edid = drm_edid,
3972	};
3973
3974	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3975		struct drm_display_mode *newmode;
3976
3977		newmode = drm_mode_std(connector, drm_edid,
3978				       &drm_edid->edid->standard_timings[i]);
3979		if (newmode) {
3980			drm_mode_probed_add(connector, newmode);
3981			modes++;
3982		}
3983	}
3984
3985	if (drm_edid->edid->revision >= 1)
3986		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3987					    &closure);
3988
3989	/* XXX should also look for standard codes in VTB blocks */
3990
3991	return modes + closure.modes;
3992}
3993
3994static int drm_cvt_modes(struct drm_connector *connector,
3995			 const struct detailed_timing *timing)
3996{
3997	int i, j, modes = 0;
3998	struct drm_display_mode *newmode;
3999	struct drm_device *dev = connector->dev;
4000	const struct cvt_timing *cvt;
4001	static const int rates[] = { 60, 85, 75, 60, 50 };
4002	const u8 empty[3] = { 0, 0, 0 };
4003
4004	for (i = 0; i < 4; i++) {
4005		int width, height;
4006
4007		cvt = &(timing->data.other_data.data.cvt[i]);
4008
4009		if (!memcmp(cvt->code, empty, 3))
4010			continue;
4011
4012		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
4013		switch (cvt->code[1] & 0x0c) {
4014		/* default - because compiler doesn't see that we've enumerated all cases */
4015		default:
4016		case 0x00:
4017			width = height * 4 / 3;
4018			break;
4019		case 0x04:
4020			width = height * 16 / 9;
4021			break;
4022		case 0x08:
4023			width = height * 16 / 10;
4024			break;
4025		case 0x0c:
4026			width = height * 15 / 9;
4027			break;
4028		}
4029
4030		for (j = 1; j < 5; j++) {
4031			if (cvt->code[2] & (1 << j)) {
4032				newmode = drm_cvt_mode(dev, width, height,
4033						       rates[j], j == 0,
4034						       false, false);
4035				if (newmode) {
4036					drm_mode_probed_add(connector, newmode);
4037					modes++;
4038				}
4039			}
4040		}
4041	}
4042
4043	return modes;
4044}
4045
4046static void
4047do_cvt_mode(const struct detailed_timing *timing, void *c)
4048{
4049	struct detailed_mode_closure *closure = c;
 
4050
4051	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4052		return;
4053
4054	closure->modes += drm_cvt_modes(closure->connector, timing);
4055}
4056
4057static int
4058add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4059{
4060	struct detailed_mode_closure closure = {
4061		.connector = connector,
4062		.drm_edid = drm_edid,
4063	};
4064
4065	if (drm_edid->edid->revision >= 3)
4066		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4067
4068	/* XXX should also look for CVT codes in VTB blocks */
4069
4070	return closure.modes;
4071}
4072
4073static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4074					  struct drm_display_mode *mode);
4075
4076static void
4077do_detailed_mode(const struct detailed_timing *timing, void *c)
4078{
4079	struct detailed_mode_closure *closure = c;
4080	struct drm_display_mode *newmode;
4081
4082	if (!is_detailed_timing_descriptor(timing))
4083		return;
 
 
 
 
4084
4085	newmode = drm_mode_detailed(closure->connector,
4086				    closure->drm_edid, timing);
4087	if (!newmode)
4088		return;
4089
4090	if (closure->preferred)
4091		newmode->type |= DRM_MODE_TYPE_PREFERRED;
 
 
 
 
4092
4093	/*
4094	 * Detailed modes are limited to 10kHz pixel clock resolution,
4095	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4096	 * is just slightly off.
4097	 */
4098	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4099
4100	drm_mode_probed_add(closure->connector, newmode);
4101	closure->modes++;
4102	closure->preferred = false;
4103}
4104
4105/*
4106 * add_detailed_modes - Add modes from detailed timings
4107 * @connector: attached connector
4108 * @drm_edid: EDID block to scan
 
4109 */
4110static int add_detailed_modes(struct drm_connector *connector,
4111			      const struct drm_edid *drm_edid)
 
4112{
4113	struct detailed_mode_closure closure = {
4114		.connector = connector,
4115		.drm_edid = drm_edid,
 
 
4116	};
4117
4118	if (drm_edid->edid->revision >= 4)
4119		closure.preferred = true; /* first detailed timing is always preferred */
4120	else
4121		closure.preferred =
4122			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4123
4124	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4125
4126	return closure.modes;
4127}
4128
4129/* CTA-861-H Table 60 - CTA Tag Codes */
4130#define CTA_DB_AUDIO			1
4131#define CTA_DB_VIDEO			2
4132#define CTA_DB_VENDOR			3
4133#define CTA_DB_SPEAKER			4
4134#define CTA_DB_EXTENDED_TAG		7
4135
4136/* CTA-861-H Table 62 - CTA Extended Tag Codes */
4137#define CTA_EXT_DB_VIDEO_CAP		0
4138#define CTA_EXT_DB_VENDOR		1
4139#define CTA_EXT_DB_HDR_STATIC_METADATA	6
4140#define CTA_EXT_DB_420_VIDEO_DATA	14
4141#define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4142#define CTA_EXT_DB_HF_EEODB		0x78
4143#define CTA_EXT_DB_HF_SCDB		0x79
4144
4145#define EDID_BASIC_AUDIO	(1 << 6)
4146#define EDID_CEA_YCRCB444	(1 << 5)
4147#define EDID_CEA_YCRCB422	(1 << 4)
4148#define EDID_CEA_VCDB_QS	(1 << 6)
4149
4150/*
4151 * Search EDID for CEA extension block.
4152 *
4153 * FIXME: Prefer not returning pointers to raw EDID data.
4154 */
4155const u8 *drm_edid_find_extension(const struct drm_edid *drm_edid,
4156				  int ext_id, int *ext_index)
4157{
4158	const u8 *edid_ext = NULL;
4159	int i;
4160
4161	/* No EDID or EDID extensions */
4162	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4163		return NULL;
4164
4165	/* Find CEA extension */
4166	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4167		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4168		if (edid_block_tag(edid_ext) == ext_id)
4169			break;
4170	}
4171
4172	if (i >= drm_edid_extension_block_count(drm_edid))
4173		return NULL;
4174
4175	*ext_index = i + 1;
 
4176
4177	return edid_ext;
 
 
 
4178}
4179
4180/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4181static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4182{
4183	const struct displayid_block *block;
4184	struct displayid_iter iter;
4185	struct drm_edid_iter edid_iter;
4186	const u8 *ext;
4187	bool found = false;
 
4188
4189	/* Look for a top level CEA extension block */
4190	drm_edid_iter_begin(drm_edid, &edid_iter);
4191	drm_edid_iter_for_each(ext, &edid_iter) {
4192		if (ext[0] == CEA_EXT) {
4193			found = true;
4194			break;
4195		}
4196	}
4197	drm_edid_iter_end(&edid_iter);
4198
4199	if (found)
4200		return true;
 
4201
4202	/* CEA blocks can also be found embedded in a DisplayID block */
4203	displayid_iter_edid_begin(drm_edid, &iter);
4204	displayid_iter_for_each(block, &iter) {
4205		if (block->tag == DATA_BLOCK_CTA) {
4206			found = true;
4207			break;
4208		}
4209	}
4210	displayid_iter_end(&iter);
4211
4212	return found;
4213}
4214
4215static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4216{
4217	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4218	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4219
4220	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4221		return &edid_cea_modes_1[vic - 1];
4222	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4223		return &edid_cea_modes_193[vic - 193];
4224	return NULL;
4225}
4226
4227static u8 cea_num_vics(void)
4228{
4229	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4230}
4231
4232static u8 cea_next_vic(u8 vic)
4233{
4234	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4235		vic = 193;
4236	return vic;
4237}
4238
4239/*
4240 * Calculate the alternate clock for the CEA mode
4241 * (60Hz vs. 59.94Hz etc.)
4242 */
4243static unsigned int
4244cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4245{
4246	unsigned int clock = cea_mode->clock;
4247
4248	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4249		return clock;
4250
4251	/*
4252	 * edid_cea_modes contains the 59.94Hz
4253	 * variant for 240 and 480 line modes,
4254	 * and the 60Hz variant otherwise.
4255	 */
4256	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4257		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4258	else
4259		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4260
4261	return clock;
4262}
4263
4264static bool
4265cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4266{
4267	/*
4268	 * For certain VICs the spec allows the vertical
4269	 * front porch to vary by one or two lines.
4270	 *
4271	 * cea_modes[] stores the variant with the shortest
4272	 * vertical front porch. We can adjust the mode to
4273	 * get the other variants by simply increasing the
4274	 * vertical front porch length.
4275	 */
4276	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4277		     cea_mode_for_vic(9)->vtotal != 262 ||
4278		     cea_mode_for_vic(12)->vtotal != 262 ||
4279		     cea_mode_for_vic(13)->vtotal != 262 ||
4280		     cea_mode_for_vic(23)->vtotal != 312 ||
4281		     cea_mode_for_vic(24)->vtotal != 312 ||
4282		     cea_mode_for_vic(27)->vtotal != 312 ||
4283		     cea_mode_for_vic(28)->vtotal != 312);
4284
4285	if (((vic == 8 || vic == 9 ||
4286	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4287	    ((vic == 23 || vic == 24 ||
4288	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4289		mode->vsync_start++;
4290		mode->vsync_end++;
4291		mode->vtotal++;
4292
4293		return true;
4294	}
4295
4296	return false;
4297}
4298
4299static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4300					     unsigned int clock_tolerance)
4301{
4302	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4303	u8 vic;
4304
4305	if (!to_match->clock)
4306		return 0;
4307
4308	if (to_match->picture_aspect_ratio)
4309		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4310
4311	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4312		struct drm_display_mode cea_mode;
4313		unsigned int clock1, clock2;
4314
4315		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4316
4317		/* Check both 60Hz and 59.94Hz */
4318		clock1 = cea_mode.clock;
4319		clock2 = cea_mode_alternate_clock(&cea_mode);
4320
4321		if (abs(to_match->clock - clock1) > clock_tolerance &&
4322		    abs(to_match->clock - clock2) > clock_tolerance)
4323			continue;
4324
4325		do {
4326			if (drm_mode_match(to_match, &cea_mode, match_flags))
4327				return vic;
4328		} while (cea_mode_alternate_timings(vic, &cea_mode));
4329	}
4330
4331	return 0;
4332}
4333
4334/**
4335 * drm_match_cea_mode - look for a CEA mode matching given mode
4336 * @to_match: display mode
4337 *
4338 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4339 * mode.
4340 */
4341u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4342{
4343	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4344	u8 vic;
4345
4346	if (!to_match->clock)
4347		return 0;
4348
4349	if (to_match->picture_aspect_ratio)
4350		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4351
4352	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4353		struct drm_display_mode cea_mode;
4354		unsigned int clock1, clock2;
4355
4356		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4357
4358		/* Check both 60Hz and 59.94Hz */
4359		clock1 = cea_mode.clock;
4360		clock2 = cea_mode_alternate_clock(&cea_mode);
4361
4362		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4363		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4364			continue;
4365
4366		do {
4367			if (drm_mode_match(to_match, &cea_mode, match_flags))
4368				return vic;
4369		} while (cea_mode_alternate_timings(vic, &cea_mode));
4370	}
4371
4372	return 0;
4373}
4374EXPORT_SYMBOL(drm_match_cea_mode);
4375
4376static bool drm_valid_cea_vic(u8 vic)
4377{
4378	return cea_mode_for_vic(vic) != NULL;
4379}
4380
4381static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
 
 
 
 
 
 
 
4382{
4383	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4384
4385	if (mode)
4386		return mode->picture_aspect_ratio;
4387
4388	return HDMI_PICTURE_ASPECT_NONE;
4389}
4390
4391static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4392{
4393	return edid_4k_modes[video_code].picture_aspect_ratio;
4394}
 
4395
4396/*
4397 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4398 * specific block).
 
 
 
 
4399 */
4400static unsigned int
4401hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4402{
 
 
 
4403	return cea_mode_alternate_clock(hdmi_mode);
4404}
4405
4406static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4407					      unsigned int clock_tolerance)
4408{
4409	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4410	u8 vic;
4411
4412	if (!to_match->clock)
4413		return 0;
4414
4415	if (to_match->picture_aspect_ratio)
4416		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4417
4418	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4419		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4420		unsigned int clock1, clock2;
4421
4422		/* Make sure to also match alternate clocks */
4423		clock1 = hdmi_mode->clock;
4424		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4425
4426		if (abs(to_match->clock - clock1) > clock_tolerance &&
4427		    abs(to_match->clock - clock2) > clock_tolerance)
4428			continue;
4429
4430		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4431			return vic;
4432	}
4433
4434	return 0;
4435}
4436
4437/*
4438 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4439 * @to_match: display mode
4440 *
4441 * An HDMI mode is one defined in the HDMI vendor specific block.
4442 *
4443 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4444 */
4445static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4446{
4447	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4448	u8 vic;
4449
4450	if (!to_match->clock)
4451		return 0;
4452
4453	if (to_match->picture_aspect_ratio)
4454		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4455
4456	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4457		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4458		unsigned int clock1, clock2;
4459
4460		/* Make sure to also match alternate clocks */
4461		clock1 = hdmi_mode->clock;
4462		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4463
4464		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4465		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4466		    drm_mode_match(to_match, hdmi_mode, match_flags))
4467			return vic;
4468	}
4469	return 0;
4470}
4471
4472static bool drm_valid_hdmi_vic(u8 vic)
4473{
4474	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4475}
4476
4477static int add_alternate_cea_modes(struct drm_connector *connector,
4478				   const struct drm_edid *drm_edid)
4479{
4480	struct drm_device *dev = connector->dev;
4481	struct drm_display_mode *mode, *tmp;
4482	LIST_HEAD(list);
4483	int modes = 0;
4484
4485	/* Don't add CTA modes if the CTA extension block is missing */
4486	if (!drm_edid_has_cta_extension(drm_edid))
4487		return 0;
4488
4489	/*
4490	 * Go through all probed modes and create a new mode
4491	 * with the alternate clock for certain CEA modes.
4492	 */
4493	list_for_each_entry(mode, &connector->probed_modes, head) {
4494		const struct drm_display_mode *cea_mode = NULL;
4495		struct drm_display_mode *newmode;
4496		u8 vic = drm_match_cea_mode(mode);
4497		unsigned int clock1, clock2;
4498
4499		if (drm_valid_cea_vic(vic)) {
4500			cea_mode = cea_mode_for_vic(vic);
4501			clock2 = cea_mode_alternate_clock(cea_mode);
4502		} else {
4503			vic = drm_match_hdmi_mode(mode);
4504			if (drm_valid_hdmi_vic(vic)) {
4505				cea_mode = &edid_4k_modes[vic];
4506				clock2 = hdmi_mode_alternate_clock(cea_mode);
4507			}
4508		}
4509
4510		if (!cea_mode)
4511			continue;
4512
4513		clock1 = cea_mode->clock;
4514
4515		if (clock1 == clock2)
4516			continue;
4517
4518		if (mode->clock != clock1 && mode->clock != clock2)
4519			continue;
4520
4521		newmode = drm_mode_duplicate(dev, cea_mode);
4522		if (!newmode)
4523			continue;
4524
4525		/* Carry over the stereo flags */
4526		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4527
4528		/*
4529		 * The current mode could be either variant. Make
4530		 * sure to pick the "other" clock for the new mode.
4531		 */
4532		if (mode->clock != clock1)
4533			newmode->clock = clock1;
4534		else
4535			newmode->clock = clock2;
4536
4537		list_add_tail(&newmode->head, &list);
4538	}
4539
4540	list_for_each_entry_safe(mode, tmp, &list, head) {
4541		list_del(&mode->head);
4542		drm_mode_probed_add(connector, mode);
4543		modes++;
4544	}
4545
4546	return modes;
4547}
4548
4549static u8 svd_to_vic(u8 svd)
4550{
4551	/* 0-6 bit vic, 7th bit native mode indicator */
4552	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4553		return svd & 127;
4554
4555	return svd;
4556}
4557
4558/*
4559 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4560 * the EDID, or NULL on errors.
4561 */
4562static struct drm_display_mode *
4563drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
 
 
4564{
4565	const struct drm_display_info *info = &connector->display_info;
4566	struct drm_device *dev = connector->dev;
 
 
 
 
 
 
 
 
 
 
4567
4568	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
 
4569		return NULL;
4570
4571	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
 
 
4572}
4573
4574/*
4575 * do_y420vdb_modes - Parse YCBCR 420 only modes
4576 * @connector: connector corresponding to the HDMI sink
4577 * @svds: start of the data block of CEA YCBCR 420 VDB
4578 * @len: length of the CEA YCBCR 420 VDB
4579 *
4580 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4581 * which contains modes which can be supported in YCBCR 420
4582 * output format only.
4583 */
4584static int do_y420vdb_modes(struct drm_connector *connector,
4585			    const u8 *svds, u8 svds_len)
4586{
 
4587	struct drm_device *dev = connector->dev;
4588	int modes = 0, i;
 
4589
4590	for (i = 0; i < svds_len; i++) {
4591		u8 vic = svd_to_vic(svds[i]);
4592		struct drm_display_mode *newmode;
4593
4594		if (!drm_valid_cea_vic(vic))
4595			continue;
4596
4597		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4598		if (!newmode)
4599			break;
 
4600		drm_mode_probed_add(connector, newmode);
4601		modes++;
4602	}
4603
 
 
4604	return modes;
4605}
4606
4607/**
4608 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4609 * @dev: DRM device
4610 * @video_code: CEA VIC of the mode
4611 *
4612 * Creates a new mode matching the specified CEA VIC.
4613 *
4614 * Returns: A new drm_display_mode on success or NULL on failure
4615 */
4616struct drm_display_mode *
4617drm_display_mode_from_cea_vic(struct drm_device *dev,
4618			      u8 video_code)
4619{
4620	const struct drm_display_mode *cea_mode;
4621	struct drm_display_mode *newmode;
4622
4623	cea_mode = cea_mode_for_vic(video_code);
4624	if (!cea_mode)
4625		return NULL;
4626
4627	newmode = drm_mode_duplicate(dev, cea_mode);
4628	if (!newmode)
4629		return NULL;
4630
4631	return newmode;
4632}
4633EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4634
4635/* Add modes based on VICs parsed in parse_cta_vdb() */
4636static int add_cta_vdb_modes(struct drm_connector *connector)
4637{
4638	const struct drm_display_info *info = &connector->display_info;
4639	int i, modes = 0;
 
4640
4641	if (!info->vics)
4642		return 0;
4643
4644	for (i = 0; i < info->vics_len; i++) {
4645		struct drm_display_mode *mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
4646
4647		mode = drm_display_mode_from_vic_index(connector, i);
4648		if (mode) {
4649			drm_mode_probed_add(connector, mode);
4650			modes++;
4651		}
4652	}
4653
4654	return modes;
4655}
4656
4657struct stereo_mandatory_mode {
4658	int width, height, vrefresh;
4659	unsigned int flags;
4660};
4661
4662static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4663	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4664	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4665	{ 1920, 1080, 50,
4666	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4667	{ 1920, 1080, 60,
4668	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4669	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4670	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4671	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4672	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4673};
4674
4675static bool
4676stereo_match_mandatory(const struct drm_display_mode *mode,
4677		       const struct stereo_mandatory_mode *stereo_mode)
4678{
4679	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4680
4681	return mode->hdisplay == stereo_mode->width &&
4682	       mode->vdisplay == stereo_mode->height &&
4683	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4684	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4685}
4686
4687static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4688{
4689	struct drm_device *dev = connector->dev;
4690	const struct drm_display_mode *mode;
4691	struct list_head stereo_modes;
4692	int modes = 0, i;
4693
4694	INIT_LIST_HEAD(&stereo_modes);
4695
4696	list_for_each_entry(mode, &connector->probed_modes, head) {
4697		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4698			const struct stereo_mandatory_mode *mandatory;
4699			struct drm_display_mode *new_mode;
4700
4701			if (!stereo_match_mandatory(mode,
4702						    &stereo_mandatory_modes[i]))
4703				continue;
4704
4705			mandatory = &stereo_mandatory_modes[i];
4706			new_mode = drm_mode_duplicate(dev, mode);
4707			if (!new_mode)
4708				continue;
4709
4710			new_mode->flags |= mandatory->flags;
4711			list_add_tail(&new_mode->head, &stereo_modes);
4712			modes++;
4713		}
4714	}
4715
4716	list_splice_tail(&stereo_modes, &connector->probed_modes);
4717
4718	return modes;
4719}
4720
4721static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4722{
4723	struct drm_device *dev = connector->dev;
4724	struct drm_display_mode *newmode;
4725
4726	if (!drm_valid_hdmi_vic(vic)) {
4727		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4728			connector->base.id, connector->name, vic);
4729		return 0;
4730	}
4731
4732	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4733	if (!newmode)
4734		return 0;
4735
4736	drm_mode_probed_add(connector, newmode);
4737
4738	return 1;
4739}
4740
4741static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4742			       int vic_index)
4743{
4744	struct drm_display_mode *newmode;
4745	int modes = 0;
4746
4747	if (structure & (1 << 0)) {
4748		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4749		if (newmode) {
4750			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4751			drm_mode_probed_add(connector, newmode);
4752			modes++;
4753		}
4754	}
4755	if (structure & (1 << 6)) {
4756		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4757		if (newmode) {
4758			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4759			drm_mode_probed_add(connector, newmode);
4760			modes++;
4761		}
4762	}
4763	if (structure & (1 << 8)) {
4764		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4765		if (newmode) {
4766			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4767			drm_mode_probed_add(connector, newmode);
4768			modes++;
4769		}
4770	}
4771
4772	return modes;
4773}
4774
4775static bool hdmi_vsdb_latency_present(const u8 *db)
4776{
4777	return db[8] & BIT(7);
4778}
4779
4780static bool hdmi_vsdb_i_latency_present(const u8 *db)
4781{
4782	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4783}
4784
4785static int hdmi_vsdb_latency_length(const u8 *db)
4786{
4787	if (hdmi_vsdb_i_latency_present(db))
4788		return 4;
4789	else if (hdmi_vsdb_latency_present(db))
4790		return 2;
4791	else
4792		return 0;
4793}
4794
4795/*
4796 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4797 * @connector: connector corresponding to the HDMI sink
4798 * @db: start of the CEA vendor specific block
4799 * @len: length of the CEA block payload, ie. one can access up to db[len]
4800 *
4801 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4802 * also adds the stereo 3d modes when applicable.
4803 */
4804static int
4805do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
 
4806{
 
4807	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4808	u8 vic_len, hdmi_3d_len = 0;
4809	u16 mask;
4810	u16 structure_all;
4811
4812	if (len < 8)
4813		goto out;
4814
4815	/* no HDMI_Video_Present */
4816	if (!(db[8] & (1 << 5)))
4817		goto out;
4818
4819	offset += hdmi_vsdb_latency_length(db);
 
 
 
 
 
 
4820
4821	/* the declared length is not long enough for the 2 first bytes
4822	 * of additional video format capabilities */
4823	if (len < (8 + offset + 2))
4824		goto out;
4825
4826	/* 3D_Present */
4827	offset++;
4828	if (db[8 + offset] & (1 << 7)) {
4829		modes += add_hdmi_mandatory_stereo_modes(connector);
4830
4831		/* 3D_Multi_present */
4832		multi_present = (db[8 + offset] & 0x60) >> 5;
4833	}
4834
4835	offset++;
4836	vic_len = db[8 + offset] >> 5;
4837	hdmi_3d_len = db[8 + offset] & 0x1f;
4838
4839	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4840		u8 vic;
4841
4842		vic = db[9 + offset + i];
4843		modes += add_hdmi_mode(connector, vic);
4844	}
4845	offset += 1 + vic_len;
4846
4847	if (multi_present == 1)
4848		multi_len = 2;
4849	else if (multi_present == 2)
4850		multi_len = 4;
4851	else
4852		multi_len = 0;
4853
4854	if (len < (8 + offset + hdmi_3d_len - 1))
4855		goto out;
4856
4857	if (hdmi_3d_len < multi_len)
4858		goto out;
4859
4860	if (multi_present == 1 || multi_present == 2) {
4861		/* 3D_Structure_ALL */
4862		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4863
4864		/* check if 3D_MASK is present */
4865		if (multi_present == 2)
4866			mask = (db[10 + offset] << 8) | db[11 + offset];
4867		else
4868			mask = 0xffff;
4869
4870		for (i = 0; i < 16; i++) {
4871			if (mask & (1 << i))
4872				modes += add_3d_struct_modes(connector,
4873							     structure_all, i);
 
 
4874		}
4875	}
4876
4877	offset += multi_len;
4878
4879	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4880		int vic_index;
4881		struct drm_display_mode *newmode = NULL;
4882		unsigned int newflag = 0;
4883		bool detail_present;
4884
4885		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4886
4887		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4888			break;
4889
4890		/* 2D_VIC_order_X */
4891		vic_index = db[8 + offset + i] >> 4;
4892
4893		/* 3D_Structure_X */
4894		switch (db[8 + offset + i] & 0x0f) {
4895		case 0:
4896			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4897			break;
4898		case 6:
4899			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4900			break;
4901		case 8:
4902			/* 3D_Detail_X */
4903			if ((db[9 + offset + i] >> 4) == 1)
4904				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4905			break;
4906		}
4907
4908		if (newflag != 0) {
4909			newmode = drm_display_mode_from_vic_index(connector,
 
 
4910								  vic_index);
4911
4912			if (newmode) {
4913				newmode->flags |= newflag;
4914				drm_mode_probed_add(connector, newmode);
4915				modes++;
4916			}
4917		}
4918
4919		if (detail_present)
4920			i++;
4921	}
4922
4923out:
 
 
4924	return modes;
4925}
4926
4927static int
4928cea_revision(const u8 *cea)
4929{
4930	/*
4931	 * FIXME is this correct for the DispID variant?
4932	 * The DispID spec doesn't really specify whether
4933	 * this is the revision of the CEA extension or
4934	 * the DispID CEA data block. And the only value
4935	 * given as an example is 0.
4936	 */
4937	return cea[1];
4938}
4939
4940/*
4941 * CTA Data Block iterator.
4942 *
4943 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4944 * CTA Data Blocks.
4945 *
4946 * struct cea_db *db:
4947 * struct cea_db_iter iter;
4948 *
4949 * cea_db_iter_edid_begin(edid, &iter);
4950 * cea_db_iter_for_each(db, &iter) {
4951 *         // do stuff with db
4952 * }
4953 * cea_db_iter_end(&iter);
4954 */
4955struct cea_db_iter {
4956	struct drm_edid_iter edid_iter;
4957	struct displayid_iter displayid_iter;
4958
4959	/* Current Data Block Collection. */
4960	const u8 *collection;
4961
4962	/* Current Data Block index in current collection. */
4963	int index;
4964
4965	/* End index in current collection. */
4966	int end;
4967};
4968
4969/* CTA-861-H section 7.4 CTA Data BLock Collection */
4970struct cea_db {
4971	u8 tag_length;
4972	u8 data[];
4973} __packed;
4974
4975static int cea_db_tag(const struct cea_db *db)
4976{
4977	return db->tag_length >> 5;
4978}
4979
4980static int cea_db_payload_len(const void *_db)
 
4981{
4982	/* FIXME: Transition to passing struct cea_db * everywhere. */
4983	const struct cea_db *db = _db;
4984
4985	return db->tag_length & 0x1f;
4986}
4987
4988static const void *cea_db_data(const struct cea_db *db)
 
4989{
4990	return db->data;
4991}
4992
4993static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
 
4994{
4995	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4996		cea_db_payload_len(db) >= 1 &&
4997		db->data[0] == tag;
4998}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4999
5000static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
5001{
5002	const u8 *data = cea_db_data(db);
5003
5004	return cea_db_tag(db) == CTA_DB_VENDOR &&
5005		cea_db_payload_len(db) >= 3 &&
5006		oui(data[2], data[1], data[0]) == vendor_oui;
5007}
5008
5009static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
5010				   struct cea_db_iter *iter)
5011{
5012	memset(iter, 0, sizeof(*iter));
5013
5014	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
5015	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
5016}
5017
5018static const struct cea_db *
5019__cea_db_iter_current_block(const struct cea_db_iter *iter)
5020{
5021	const struct cea_db *db;
5022
5023	if (!iter->collection)
5024		return NULL;
5025
5026	db = (const struct cea_db *)&iter->collection[iter->index];
5027
5028	if (iter->index + sizeof(*db) <= iter->end &&
5029	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
5030		return db;
5031
5032	return NULL;
5033}
5034
5035/*
5036 * References:
5037 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5038 */
5039static int cea_db_collection_size(const u8 *cta)
5040{
5041	u8 d = cta[2];
5042
5043	if (d < 4 || d > 127)
5044		return 0;
5045
5046	return d - 4;
5047}
5048
5049/*
5050 * References:
5051 * - VESA E-EDID v1.4
5052 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5053 */
5054static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5055{
5056	const u8 *ext;
5057
5058	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5059		int size;
5060
5061		/* Only support CTA Extension revision 3+ */
5062		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5063			continue;
5064
5065		size = cea_db_collection_size(ext);
5066		if (!size)
5067			continue;
5068
5069		iter->index = 4;
5070		iter->end = iter->index + size;
5071
5072		return ext;
5073	}
5074
5075	return NULL;
5076}
5077
5078/*
5079 * References:
5080 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5081 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5082 *
5083 * Note that the above do not specify any connection between DisplayID Data
5084 * Block revision and CTA Extension versions.
5085 */
5086static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5087{
5088	const struct displayid_block *block;
 
5089
5090	displayid_iter_for_each(block, &iter->displayid_iter) {
5091		if (block->tag != DATA_BLOCK_CTA)
5092			continue;
5093
5094		/*
5095		 * The displayid iterator has already verified the block bounds
5096		 * in displayid_iter_block().
5097		 */
5098		iter->index = sizeof(*block);
5099		iter->end = iter->index + block->num_bytes;
5100
5101		return block;
5102	}
5103
5104	return NULL;
5105}
5106
5107static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5108{
5109	const struct cea_db *db;
 
5110
5111	if (iter->collection) {
5112		/* Current collection should always be valid. */
5113		db = __cea_db_iter_current_block(iter);
5114		if (WARN_ON(!db)) {
5115			iter->collection = NULL;
5116			return NULL;
5117		}
5118
5119		/* Next block in CTA Data Block Collection */
5120		iter->index += sizeof(*db) + cea_db_payload_len(db);
5121
5122		db = __cea_db_iter_current_block(iter);
5123		if (db)
5124			return db;
5125	}
5126
5127	for (;;) {
5128		/*
5129		 * Find the next CTA Data Block Collection. First iterate all
5130		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5131		 *
5132		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5133		 * Extension, it's recommended that DisplayID extensions are
5134		 * exposed after all of the CTA Extensions.
5135		 */
5136		iter->collection = __cea_db_iter_edid_next(iter);
5137		if (!iter->collection)
5138			iter->collection = __cea_db_iter_displayid_next(iter);
5139
5140		if (!iter->collection)
5141			return NULL;
5142
5143		db = __cea_db_iter_current_block(iter);
5144		if (db)
5145			return db;
5146	}
5147}
5148
5149#define cea_db_iter_for_each(__db, __iter) \
5150	while (((__db) = __cea_db_iter_next(__iter)))
5151
5152static void cea_db_iter_end(struct cea_db_iter *iter)
5153{
5154	displayid_iter_end(&iter->displayid_iter);
5155	drm_edid_iter_end(&iter->edid_iter);
5156
5157	memset(iter, 0, sizeof(*iter));
5158}
5159
5160static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5161{
5162	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5163		cea_db_payload_len(db) >= 5;
5164}
5165
5166static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5167{
5168	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5169		cea_db_payload_len(db) >= 7;
5170}
5171
5172static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5173{
5174	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5175		cea_db_payload_len(db) >= 2;
5176}
5177
5178static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5179{
5180	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5181		cea_db_payload_len(db) == 21;
5182}
5183
5184static bool cea_db_is_vcdb(const struct cea_db *db)
5185{
5186	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5187		cea_db_payload_len(db) == 2;
5188}
5189
5190static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5191{
5192	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5193		cea_db_payload_len(db) >= 7;
5194}
5195
5196static bool cea_db_is_y420cmdb(const struct cea_db *db)
5197{
5198	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5199}
5200
5201static bool cea_db_is_y420vdb(const struct cea_db *db)
5202{
5203	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5204}
5205
5206static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5207{
5208	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5209		cea_db_payload_len(db) >= 3;
5210}
5211
5212/*
5213 * Get the HF-EEODB override extension block count from EDID.
5214 *
5215 * The passed in EDID may be partially read, as long as it has at least two
5216 * blocks (base block and one extension block) if EDID extension count is > 0.
5217 *
5218 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5219 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5220 * iterators instead.
5221 *
5222 * References:
5223 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5224 */
5225static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5226{
5227	const u8 *cta;
5228
5229	/* No extensions according to base block, no HF-EEODB. */
5230	if (!edid_extension_block_count(edid))
5231		return 0;
5232
5233	/* HF-EEODB is always in the first EDID extension block only */
5234	cta = edid_extension_block_data(edid, 0);
5235	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5236		return 0;
5237
5238	/* Need to have the data block collection, and at least 3 bytes. */
5239	if (cea_db_collection_size(cta) < 3)
5240		return 0;
5241
5242	/*
5243	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5244	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5245	 * through 6 of Block 1 of the E-EDID.
5246	 */
5247	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5248		return 0;
5249
5250	return cta[4 + 2];
5251}
5252
5253/*
5254 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5255 *
5256 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5257 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5258 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5259 * support YCBCR420 output too.
5260 */
5261static void parse_cta_y420cmdb(struct drm_connector *connector,
5262			       const struct cea_db *db, u64 *y420cmdb_map)
5263{
5264	struct drm_display_info *info = &connector->display_info;
5265	int i, map_len = cea_db_payload_len(db) - 1;
5266	const u8 *data = cea_db_data(db) + 1;
 
5267	u64 map = 0;
5268
5269	if (map_len == 0) {
5270		/* All CEA modes support ycbcr420 sampling also.*/
5271		map = U64_MAX;
5272		goto out;
 
5273	}
5274
5275	/*
5276	 * This map indicates which of the existing CEA block modes
5277	 * from VDB can support YCBCR420 output too. So if bit=0 is
5278	 * set, first mode from VDB can support YCBCR420 output too.
5279	 * We will parse and keep this map, before parsing VDB itself
5280	 * to avoid going through the same block again and again.
5281	 *
5282	 * Spec is not clear about max possible size of this block.
5283	 * Clamping max bitmap block size at 8 bytes. Every byte can
5284	 * address 8 CEA modes, in this way this map can address
5285	 * 8*8 = first 64 SVDs.
5286	 */
5287	if (WARN_ON_ONCE(map_len > 8))
5288		map_len = 8;
5289
5290	for (i = 0; i < map_len; i++)
5291		map |= (u64)data[i] << (8 * i);
5292
5293out:
5294	if (map)
5295		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5296
5297	*y420cmdb_map = map;
5298}
5299
5300static int add_cea_modes(struct drm_connector *connector,
5301			 const struct drm_edid *drm_edid)
5302{
5303	const struct cea_db *db;
5304	struct cea_db_iter iter;
5305	int modes;
 
 
 
 
5306
5307	/* CTA VDB block VICs parsed earlier */
5308	modes = add_cta_vdb_modes(connector);
5309
5310	cea_db_iter_edid_begin(drm_edid, &iter);
5311	cea_db_iter_for_each(db, &iter) {
5312		if (cea_db_is_hdmi_vsdb(db)) {
5313			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5314						    cea_db_payload_len(db));
5315		} else if (cea_db_is_y420vdb(db)) {
5316			const u8 *vdb420 = cea_db_data(db) + 1;
5317
5318			/* Add 4:2:0(only) modes present in EDID */
5319			modes += do_y420vdb_modes(connector, vdb420,
5320						  cea_db_payload_len(db) - 1);
 
 
 
 
 
 
 
 
5321		}
5322	}
5323	cea_db_iter_end(&iter);
 
 
 
 
 
 
 
5324
5325	return modes;
5326}
5327
5328static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5329					  struct drm_display_mode *mode)
5330{
5331	const struct drm_display_mode *cea_mode;
5332	int clock1, clock2, clock;
5333	u8 vic;
5334	const char *type;
5335
5336	/*
5337	 * allow 5kHz clock difference either way to account for
5338	 * the 10kHz clock resolution limit of detailed timings.
5339	 */
5340	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5341	if (drm_valid_cea_vic(vic)) {
5342		type = "CEA";
5343		cea_mode = cea_mode_for_vic(vic);
5344		clock1 = cea_mode->clock;
5345		clock2 = cea_mode_alternate_clock(cea_mode);
5346	} else {
5347		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5348		if (drm_valid_hdmi_vic(vic)) {
5349			type = "HDMI";
5350			cea_mode = &edid_4k_modes[vic];
5351			clock1 = cea_mode->clock;
5352			clock2 = hdmi_mode_alternate_clock(cea_mode);
5353		} else {
5354			return;
5355		}
5356	}
5357
5358	/* pick whichever is closest */
5359	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5360		clock = clock1;
5361	else
5362		clock = clock2;
5363
5364	if (mode->clock == clock)
5365		return;
5366
5367	drm_dbg_kms(connector->dev,
5368		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5369		    connector->base.id, connector->name,
5370		    type, vic, mode->clock, clock);
5371	mode->clock = clock;
5372}
5373
5374static void drm_calculate_luminance_range(struct drm_connector *connector)
5375{
5376	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5377	struct drm_luminance_range_info *luminance_range =
5378		&connector->display_info.luminance_range;
5379	static const u8 pre_computed_values[] = {
5380		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5381		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5382	};
5383	u32 max_avg, min_cll, max, min, q, r;
5384
5385	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5386		return;
5387
5388	max_avg = hdr_metadata->max_fall;
5389	min_cll = hdr_metadata->min_cll;
5390
5391	/*
5392	 * From the specification (CTA-861-G), for calculating the maximum
5393	 * luminance we need to use:
5394	 *	Luminance = 50*2**(CV/32)
5395	 * Where CV is a one-byte value.
5396	 * For calculating this expression we may need float point precision;
5397	 * to avoid this complexity level, we take advantage that CV is divided
5398	 * by a constant. From the Euclids division algorithm, we know that CV
5399	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5400	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5401	 * need to pre-compute the value of r/32. For pre-computing the values
5402	 * We just used the following Ruby line:
5403	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5404	 * The results of the above expressions can be verified at
5405	 * pre_computed_values.
5406	 */
5407	q = max_avg >> 5;
5408	r = max_avg % 32;
5409	max = (1 << q) * pre_computed_values[r];
5410
5411	/* min luminance: maxLum * (CV/255)^2 / 100 */
5412	q = DIV_ROUND_CLOSEST(min_cll, 255);
5413	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5414
5415	luminance_range->min_luminance = min;
5416	luminance_range->max_luminance = max;
5417}
5418
5419static uint8_t eotf_supported(const u8 *edid_ext)
5420{
5421	return edid_ext[2] &
5422		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5423		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5424		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5425		 BIT(HDMI_EOTF_BT_2100_HLG));
5426}
5427
5428static uint8_t hdr_metadata_type(const u8 *edid_ext)
5429{
5430	return edid_ext[3] &
5431		BIT(HDMI_STATIC_METADATA_TYPE1);
5432}
5433
5434static void
5435drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5436{
5437	u16 len;
5438
5439	len = cea_db_payload_len(db);
5440
5441	connector->hdr_sink_metadata.hdmi_type1.eotf =
5442						eotf_supported(db);
5443	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5444						hdr_metadata_type(db);
5445
5446	if (len >= 4)
5447		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5448	if (len >= 5)
5449		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5450	if (len >= 6) {
5451		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5452
5453		/* Calculate only when all values are available */
5454		drm_calculate_luminance_range(connector);
5455	}
5456}
5457
5458/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5459static void
5460drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5461{
5462	u8 len = cea_db_payload_len(db);
5463
5464	if (len >= 6 && (db[6] & (1 << 7)))
5465		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5466
5467	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5468		connector->latency_present[0] = true;
 
 
5469		connector->video_latency[0] = db[9];
 
5470		connector->audio_latency[0] = db[10];
5471	}
5472
5473	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5474		connector->latency_present[1] = true;
5475		connector->video_latency[1] = db[11];
 
5476		connector->audio_latency[1] = db[12];
5477	}
5478
5479	drm_dbg_kms(connector->dev,
5480		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5481		    connector->base.id, connector->name,
5482		    connector->latency_present[0], connector->latency_present[1],
5483		    connector->video_latency[0], connector->video_latency[1],
5484		    connector->audio_latency[0], connector->audio_latency[1]);
 
 
 
5485}
5486
5487static void
5488match_identity(const struct detailed_timing *timing, void *data)
5489{
5490	struct drm_edid_match_closure *closure = data;
5491	unsigned int i;
5492	const char *name = closure->ident->name;
5493	unsigned int name_len = strlen(name);
5494	const char *desc = timing->data.other_data.data.str.str;
5495	unsigned int desc_len = ARRAY_SIZE(timing->data.other_data.data.str.str);
5496
5497	if (name_len > desc_len ||
5498	    !(is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME) ||
5499	      is_display_descriptor(timing, EDID_DETAIL_MONITOR_STRING)))
5500		return;
5501
5502	if (strncmp(name, desc, name_len))
5503		return;
5504
5505	for (i = name_len; i < desc_len; i++) {
5506		if (desc[i] == '\n')
5507			break;
5508		/* Allow white space before EDID string terminator. */
5509		if (!isspace(desc[i]))
5510			return;
5511	}
5512
5513	closure->matched = true;
5514}
5515
5516/**
5517 * drm_edid_match - match drm_edid with given identity
5518 * @drm_edid: EDID
5519 * @ident: the EDID identity to match with
5520 *
5521 * Check if the EDID matches with the given identity.
5522 *
5523 * Return: True if the given identity matched with EDID, false otherwise.
5524 */
5525bool drm_edid_match(const struct drm_edid *drm_edid,
5526		    const struct drm_edid_ident *ident)
5527{
5528	if (!drm_edid || drm_edid_get_panel_id(drm_edid) != ident->panel_id)
5529		return false;
5530
5531	/* Match with name only if it's not NULL. */
5532	if (ident->name) {
5533		struct drm_edid_match_closure closure = {
5534			.ident = ident,
5535			.matched = false,
5536		};
5537
5538		drm_for_each_detailed_block(drm_edid, match_identity, &closure);
5539
5540		return closure.matched;
5541	}
5542
5543	return true;
5544}
5545EXPORT_SYMBOL(drm_edid_match);
5546
5547static void
5548monitor_name(const struct detailed_timing *timing, void *data)
5549{
5550	const char **res = data;
5551
5552	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5553		return;
5554
5555	*res = timing->data.other_data.data.str.str;
5556}
5557
5558static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5559{
5560	const char *edid_name = NULL;
5561	int mnl;
5562
5563	if (!drm_edid || !name)
5564		return 0;
5565
5566	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5567	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5568		if (edid_name[mnl] == 0x0a)
5569			break;
5570
5571		name[mnl] = edid_name[mnl];
5572	}
5573
5574	return mnl;
5575}
5576
5577/**
5578 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5579 * @edid: monitor EDID information
5580 * @name: pointer to a character array to hold the name of the monitor
5581 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5582 *
5583 */
5584void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5585{
5586	int name_length = 0;
5587
 
5588	if (bufsize <= 0)
5589		return;
5590
5591	if (edid) {
5592		char buf[13];
5593		struct drm_edid drm_edid = {
5594			.edid = edid,
5595			.size = edid_size(edid),
5596		};
5597
5598		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5599		memcpy(name, buf, name_length);
5600	}
5601
5602	name[name_length] = '\0';
5603}
5604EXPORT_SYMBOL(drm_edid_get_monitor_name);
5605
5606static void clear_eld(struct drm_connector *connector)
5607{
5608	mutex_lock(&connector->eld_mutex);
5609	memset(connector->eld, 0, sizeof(connector->eld));
5610	mutex_unlock(&connector->eld_mutex);
5611
5612	connector->latency_present[0] = false;
5613	connector->latency_present[1] = false;
5614	connector->video_latency[0] = 0;
5615	connector->audio_latency[0] = 0;
5616	connector->video_latency[1] = 0;
5617	connector->audio_latency[1] = 0;
5618}
5619
5620/*
5621 * Get 3-byte SAD buffer from struct cea_sad.
5622 */
5623void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5624{
5625	sad[0] = cta_sad->format << 3 | cta_sad->channels;
5626	sad[1] = cta_sad->freq;
5627	sad[2] = cta_sad->byte2;
5628}
5629
5630/*
5631 * Set struct cea_sad from 3-byte SAD buffer.
5632 */
5633void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5634{
5635	cta_sad->format = (sad[0] & 0x78) >> 3;
5636	cta_sad->channels = sad[0] & 0x07;
5637	cta_sad->freq = sad[1] & 0x7f;
5638	cta_sad->byte2 = sad[2];
5639}
5640
5641/*
5642 * drm_edid_to_eld - build ELD from EDID
5643 * @connector: connector corresponding to the HDMI/DP sink
5644 * @drm_edid: EDID to parse
5645 *
5646 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5647 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5648 */
5649static void drm_edid_to_eld(struct drm_connector *connector,
5650			    const struct drm_edid *drm_edid)
5651{
5652	const struct drm_display_info *info = &connector->display_info;
5653	const struct cea_db *db;
5654	struct cea_db_iter iter;
5655	uint8_t *eld = connector->eld;
 
 
5656	int total_sad_count = 0;
5657	int mnl;
 
5658
5659	if (!drm_edid)
 
 
5660		return;
5661
5662	mutex_lock(&connector->eld_mutex);
 
 
 
 
5663
5664	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5665	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5666		    connector->base.id, connector->name,
5667		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5668
5669	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5670	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5671
5672	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5673
5674	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5675	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5676	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5677	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5678
5679	cea_db_iter_edid_begin(drm_edid, &iter);
5680	cea_db_iter_for_each(db, &iter) {
5681		const u8 *data = cea_db_data(db);
5682		int len = cea_db_payload_len(db);
5683		int sad_count;
5684
5685		switch (cea_db_tag(db)) {
5686		case CTA_DB_AUDIO:
5687			/* Audio Data Block, contains SADs */
5688			sad_count = min(len / 3, 15 - total_sad_count);
5689			if (sad_count >= 1)
5690				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5691				       data, sad_count * 3);
5692			total_sad_count += sad_count;
5693			break;
5694		case CTA_DB_SPEAKER:
5695			/* Speaker Allocation Data Block */
5696			if (len >= 1)
5697				eld[DRM_ELD_SPEAKER] = data[0];
5698			break;
5699		case CTA_DB_VENDOR:
5700			/* HDMI Vendor-Specific Data Block */
5701			if (cea_db_is_hdmi_vsdb(db))
5702				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5703			break;
5704		default:
5705			break;
 
 
 
 
 
 
 
 
 
5706		}
5707	}
5708	cea_db_iter_end(&iter);
5709
5710	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5711
5712	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5713	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5714		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5715	else
5716		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5717
5718	eld[DRM_ELD_BASELINE_ELD_LEN] =
5719		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5720
5721	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5722		    connector->base.id, connector->name,
5723		    drm_eld_size(eld), total_sad_count);
5724
5725	mutex_unlock(&connector->eld_mutex);
5726}
5727
5728static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5729			    struct cea_sad **psads)
5730{
5731	const struct cea_db *db;
5732	struct cea_db_iter iter;
5733	int count = 0;
5734
5735	cea_db_iter_edid_begin(drm_edid, &iter);
5736	cea_db_iter_for_each(db, &iter) {
5737		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5738			struct cea_sad *sads;
5739			int i;
5740
5741			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5742			sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5743			*psads = sads;
5744			if (!sads)
5745				return -ENOMEM;
5746			for (i = 0; i < count; i++)
5747				drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5748			break;
5749		}
5750	}
5751	cea_db_iter_end(&iter);
5752
5753	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5754
5755	return count;
5756}
5757
5758/**
5759 * drm_edid_to_sad - extracts SADs from EDID
5760 * @edid: EDID to parse
5761 * @sads: pointer that will be set to the extracted SADs
5762 *
5763 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5764 *
5765 * Note: The returned pointer needs to be freed using kfree().
5766 *
5767 * Return: The number of found SADs or negative number on error.
5768 */
5769int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5770{
5771	struct drm_edid drm_edid;
 
 
5772
5773	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5774}
5775EXPORT_SYMBOL(drm_edid_to_sad);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5776
5777static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5778					   u8 **sadb)
5779{
5780	const struct cea_db *db;
5781	struct cea_db_iter iter;
5782	int count = 0;
5783
5784	cea_db_iter_edid_begin(drm_edid, &iter);
5785	cea_db_iter_for_each(db, &iter) {
5786		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5787		    cea_db_payload_len(db) == 3) {
5788			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5789					GFP_KERNEL);
5790			if (!*sadb)
5791				return -ENOMEM;
5792			count = cea_db_payload_len(db);
 
 
 
 
 
 
 
5793			break;
5794		}
5795	}
5796	cea_db_iter_end(&iter);
5797
5798	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5799
5800	return count;
5801}
 
5802
5803/**
5804 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5805 * @edid: EDID to parse
5806 * @sadb: pointer to the speaker block
5807 *
5808 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5809 *
5810 * Note: The returned pointer needs to be freed using kfree().
5811 *
5812 * Return: The number of found Speaker Allocation Blocks or negative number on
5813 * error.
5814 */
5815int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5816{
5817	struct drm_edid drm_edid;
 
 
 
 
 
 
 
 
 
 
 
 
 
5818
5819	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5820					       sadb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5821}
5822EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5823
5824/**
5825 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5826 * @connector: connector associated with the HDMI/DP sink
5827 * @mode: the display mode
5828 *
5829 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5830 * the sink doesn't support audio or video.
5831 */
5832int drm_av_sync_delay(struct drm_connector *connector,
5833		      const struct drm_display_mode *mode)
5834{
5835	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5836	int a, v;
5837
5838	if (!connector->latency_present[0])
5839		return 0;
5840	if (!connector->latency_present[1])
5841		i = 0;
5842
5843	a = connector->audio_latency[i];
5844	v = connector->video_latency[i];
5845
5846	/*
5847	 * HDMI/DP sink doesn't support audio or video?
5848	 */
5849	if (a == 255 || v == 255)
5850		return 0;
5851
5852	/*
5853	 * Convert raw EDID values to millisecond.
5854	 * Treat unknown latency as 0ms.
5855	 */
5856	if (a)
5857		a = min(2 * (a - 1), 500);
5858	if (v)
5859		v = min(2 * (v - 1), 500);
5860
5861	return max(v - a, 0);
5862}
5863EXPORT_SYMBOL(drm_av_sync_delay);
5864
5865static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5866{
5867	const struct cea_db *db;
5868	struct cea_db_iter iter;
5869	bool hdmi = false;
5870
5871	/*
5872	 * Because HDMI identifier is in Vendor Specific Block,
5873	 * search it from all data blocks of CEA extension.
5874	 */
5875	cea_db_iter_edid_begin(drm_edid, &iter);
5876	cea_db_iter_for_each(db, &iter) {
5877		if (cea_db_is_hdmi_vsdb(db)) {
5878			hdmi = true;
5879			break;
5880		}
5881	}
5882	cea_db_iter_end(&iter);
5883
5884	return hdmi;
5885}
5886
5887/**
5888 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5889 * @edid: monitor EDID information
5890 *
5891 * Parse the CEA extension according to CEA-861-B.
5892 *
5893 * Drivers that have added the modes parsed from EDID to drm_display_info
5894 * should use &drm_display_info.is_hdmi instead of calling this function.
5895 *
5896 * Return: True if the monitor is HDMI, false if not or unknown.
5897 */
5898bool drm_detect_hdmi_monitor(const struct edid *edid)
5899{
5900	struct drm_edid drm_edid;
 
 
5901
5902	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5903}
5904EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5905
5906static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5907{
5908	struct drm_edid_iter edid_iter;
5909	const struct cea_db *db;
5910	struct cea_db_iter iter;
5911	const u8 *edid_ext;
5912	bool has_audio = false;
5913
5914	drm_edid_iter_begin(drm_edid, &edid_iter);
5915	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5916		if (edid_ext[0] == CEA_EXT) {
5917			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5918			if (has_audio)
5919				break;
5920		}
5921	}
5922	drm_edid_iter_end(&edid_iter);
5923
5924	if (has_audio) {
5925		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5926		goto end;
5927	}
5928
5929	cea_db_iter_edid_begin(drm_edid, &iter);
5930	cea_db_iter_for_each(db, &iter) {
5931		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5932			const u8 *data = cea_db_data(db);
5933			int i;
5934
5935			for (i = 0; i < cea_db_payload_len(db); i += 3)
5936				DRM_DEBUG_KMS("CEA audio format %d\n",
5937					      (data[i] >> 3) & 0xf);
5938			has_audio = true;
5939			break;
5940		}
5941	}
5942	cea_db_iter_end(&iter);
5943
5944end:
5945	return has_audio;
5946}
 
5947
5948/**
5949 * drm_detect_monitor_audio - check monitor audio capability
5950 * @edid: EDID block to scan
5951 *
5952 * Monitor should have CEA extension block.
5953 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5954 * audio' only. If there is any audio extension block and supported
5955 * audio format, assume at least 'basic audio' support, even if 'basic
5956 * audio' is not defined in EDID.
5957 *
5958 * Return: True if the monitor supports audio, false otherwise.
5959 */
5960bool drm_detect_monitor_audio(const struct edid *edid)
5961{
5962	struct drm_edid drm_edid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5963
5964	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
 
 
 
 
 
 
 
 
 
 
 
 
 
5965}
5966EXPORT_SYMBOL(drm_detect_monitor_audio);
5967
5968
5969/**
5970 * drm_default_rgb_quant_range - default RGB quantization range
5971 * @mode: display mode
5972 *
5973 * Determine the default RGB quantization range for the mode,
5974 * as specified in CEA-861.
5975 *
5976 * Return: The default RGB quantization range for the mode
5977 */
5978enum hdmi_quantization_range
5979drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5980{
5981	/* All CEA modes other than VIC 1 use limited quantization range. */
5982	return drm_match_cea_mode(mode) > 1 ?
5983		HDMI_QUANTIZATION_RANGE_LIMITED :
5984		HDMI_QUANTIZATION_RANGE_FULL;
5985}
5986EXPORT_SYMBOL(drm_default_rgb_quant_range);
5987
5988/* CTA-861 Video Data Block (CTA VDB) */
5989static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5990{
5991	struct drm_display_info *info = &connector->display_info;
5992	int i, vic_index, len = cea_db_payload_len(db);
5993	const u8 *svds = cea_db_data(db);
5994	u8 *vics;
5995
5996	if (!len)
5997		return;
5998
5999	/* Gracefully handle multiple VDBs, however unlikely that is */
6000	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
6001	if (!vics)
6002		return;
6003
6004	vic_index = info->vics_len;
6005	info->vics_len += len;
6006	info->vics = vics;
6007
6008	for (i = 0; i < len; i++) {
6009		u8 vic = svd_to_vic(svds[i]);
6010
6011		if (!drm_valid_cea_vic(vic))
6012			vic = 0;
6013
6014		info->vics[vic_index++] = vic;
6015	}
6016}
6017
6018/*
6019 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
6020 *
6021 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
6022 * using the VICs themselves.
6023 */
6024static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
6025{
6026	struct drm_display_info *info = &connector->display_info;
6027	struct drm_hdmi_info *hdmi = &info->hdmi;
6028	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
6029
6030	for (i = 0; i < len; i++) {
6031		u8 vic = info->vics[i];
6032
6033		if (vic && y420cmdb_map & BIT_ULL(i))
6034			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
6035	}
6036}
6037
6038static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
6039{
6040	const struct drm_display_info *info = &connector->display_info;
6041	int i;
6042
6043	if (!vic || !info->vics)
6044		return false;
6045
6046	for (i = 0; i < info->vics_len; i++) {
6047		if (info->vics[i] == vic)
6048			return true;
6049	}
6050
6051	return false;
6052}
6053
6054/* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
6055static void parse_cta_y420vdb(struct drm_connector *connector,
6056			      const struct cea_db *db)
6057{
6058	struct drm_display_info *info = &connector->display_info;
6059	struct drm_hdmi_info *hdmi = &info->hdmi;
6060	const u8 *svds = cea_db_data(db) + 1;
6061	int i;
6062
6063	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
6064		u8 vic = svd_to_vic(svds[i]);
6065
6066		if (!drm_valid_cea_vic(vic))
6067			continue;
6068
6069		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
6070		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
6071	}
6072}
6073
6074static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
6075{
6076	struct drm_display_info *info = &connector->display_info;
6077
6078	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
6079		    connector->base.id, connector->name, db[2]);
6080
6081	if (db[2] & EDID_CEA_VCDB_QS)
6082		info->rgb_quant_range_selectable = true;
6083}
6084
6085static
6086void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
6087{
6088	switch (max_frl_rate) {
6089	case 1:
6090		*max_lanes = 3;
6091		*max_rate_per_lane = 3;
6092		break;
6093	case 2:
6094		*max_lanes = 3;
6095		*max_rate_per_lane = 6;
6096		break;
6097	case 3:
6098		*max_lanes = 4;
6099		*max_rate_per_lane = 6;
6100		break;
6101	case 4:
6102		*max_lanes = 4;
6103		*max_rate_per_lane = 8;
6104		break;
6105	case 5:
6106		*max_lanes = 4;
6107		*max_rate_per_lane = 10;
6108		break;
6109	case 6:
6110		*max_lanes = 4;
6111		*max_rate_per_lane = 12;
6112		break;
6113	case 0:
6114	default:
6115		*max_lanes = 0;
6116		*max_rate_per_lane = 0;
6117	}
6118}
6119
6120static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6121					       const u8 *db)
6122{
6123	u8 dc_mask;
6124	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6125
6126	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6127	hdmi->y420_dc_modes = dc_mask;
6128}
6129
6130static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6131			       const u8 *hf_scds)
6132{
6133	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6134
6135	if (!hdmi_dsc->v_1p2)
6136		return;
6137
6138	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6139	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6140
6141	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6142		hdmi_dsc->bpc_supported = 16;
6143	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6144		hdmi_dsc->bpc_supported = 12;
6145	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6146		hdmi_dsc->bpc_supported = 10;
6147	else
6148		/* Supports min 8 BPC if DSC 1.2 is supported*/
6149		hdmi_dsc->bpc_supported = 8;
6150
6151	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6152		u8 dsc_max_slices;
6153		u8 dsc_max_frl_rate;
6154
6155		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6156		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6157				     &hdmi_dsc->max_frl_rate_per_lane);
6158
6159		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6160
6161		switch (dsc_max_slices) {
6162		case 1:
6163			hdmi_dsc->max_slices = 1;
6164			hdmi_dsc->clk_per_slice = 340;
6165			break;
6166		case 2:
6167			hdmi_dsc->max_slices = 2;
6168			hdmi_dsc->clk_per_slice = 340;
6169			break;
6170		case 3:
6171			hdmi_dsc->max_slices = 4;
6172			hdmi_dsc->clk_per_slice = 340;
6173			break;
6174		case 4:
6175			hdmi_dsc->max_slices = 8;
6176			hdmi_dsc->clk_per_slice = 340;
6177			break;
6178		case 5:
6179			hdmi_dsc->max_slices = 8;
6180			hdmi_dsc->clk_per_slice = 400;
6181			break;
6182		case 6:
6183			hdmi_dsc->max_slices = 12;
6184			hdmi_dsc->clk_per_slice = 400;
6185			break;
6186		case 7:
6187			hdmi_dsc->max_slices = 16;
6188			hdmi_dsc->clk_per_slice = 400;
6189			break;
6190		case 0:
6191		default:
6192			hdmi_dsc->max_slices = 0;
6193			hdmi_dsc->clk_per_slice = 0;
6194		}
6195	}
6196
6197	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6198		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6199}
6200
6201/* Sink Capability Data Structure */
6202static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6203				      const u8 *hf_scds)
6204{
6205	struct drm_display_info *info = &connector->display_info;
6206	struct drm_hdmi_info *hdmi = &info->hdmi;
6207	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6208	int max_tmds_clock = 0;
6209	u8 max_frl_rate = 0;
6210	bool dsc_support = false;
6211
6212	info->has_hdmi_infoframe = true;
6213
6214	if (hf_scds[6] & 0x80) {
6215		hdmi->scdc.supported = true;
6216		if (hf_scds[6] & 0x40)
6217			hdmi->scdc.read_request = true;
6218	}
6219
6220	/*
6221	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6222	 * And as per the spec, three factors confirm this:
6223	 * * Availability of a HF-VSDB block in EDID (check)
6224	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6225	 * * SCDC support available (let's check)
6226	 * Lets check it out.
6227	 */
6228
6229	if (hf_scds[5]) {
 
 
6230		struct drm_scdc *scdc = &hdmi->scdc;
6231
6232		/* max clock is 5000 KHz times block value */
6233		max_tmds_clock = hf_scds[5] * 5000;
6234
6235		if (max_tmds_clock > 340000) {
6236			info->max_tmds_clock = max_tmds_clock;
 
 
6237		}
6238
6239		if (scdc->supported) {
6240			scdc->scrambling.supported = true;
6241
6242			/* Few sinks support scrambling for clocks < 340M */
6243			if ((hf_scds[6] & 0x8))
6244				scdc->scrambling.low_rates = true;
6245		}
6246	}
6247
6248	if (hf_scds[7]) {
6249		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6250		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6251				     &hdmi->max_frl_rate_per_lane);
6252	}
6253
6254	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6255
6256	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6257		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6258		dsc_support = true;
6259	}
6260
6261	drm_dbg_kms(connector->dev,
6262		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6263		    connector->base.id, connector->name,
6264		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6265}
6266
6267static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6268					   const u8 *hdmi)
6269{
6270	struct drm_display_info *info = &connector->display_info;
6271	unsigned int dc_bpc = 0;
6272
6273	/* HDMI supports at least 8 bpc */
6274	info->bpc = 8;
6275
6276	if (cea_db_payload_len(hdmi) < 6)
6277		return;
6278
6279	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6280		dc_bpc = 10;
6281		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6282		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6283			    connector->base.id, connector->name);
6284	}
6285
6286	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6287		dc_bpc = 12;
6288		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6289		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6290			    connector->base.id, connector->name);
6291	}
6292
6293	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6294		dc_bpc = 16;
6295		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6296		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6297			    connector->base.id, connector->name);
6298	}
6299
6300	if (dc_bpc == 0) {
6301		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6302			    connector->base.id, connector->name);
6303		return;
6304	}
6305
6306	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6307		    connector->base.id, connector->name, dc_bpc);
6308	info->bpc = dc_bpc;
6309
 
 
 
 
 
 
 
6310	/* YCRCB444 is optional according to spec. */
6311	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6312		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6313		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6314			    connector->base.id, connector->name);
6315	}
6316
6317	/*
6318	 * Spec says that if any deep color mode is supported at all,
6319	 * then deep color 36 bit must be supported.
6320	 */
6321	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6322		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6323			    connector->base.id, connector->name);
6324	}
6325}
6326
6327/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6328static void
6329drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6330{
6331	struct drm_display_info *info = &connector->display_info;
6332	u8 len = cea_db_payload_len(db);
6333
6334	info->is_hdmi = true;
6335
6336	info->source_physical_address = (db[4] << 8) | db[5];
6337
6338	if (len >= 6)
6339		info->dvi_dual = db[6] & 1;
6340	if (len >= 7)
6341		info->max_tmds_clock = db[7] * 5000;
6342
6343	/*
6344	 * Try to infer whether the sink supports HDMI infoframes.
6345	 *
6346	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6347	 * supports infoframes if HDMI_Video_present is set.
6348	 */
6349	if (len >= 8 && db[8] & BIT(5))
6350		info->has_hdmi_infoframe = true;
6351
6352	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6353		    connector->base.id, connector->name,
6354		    info->dvi_dual, info->max_tmds_clock);
6355
6356	drm_parse_hdmi_deep_color_info(connector, db);
6357}
6358
6359/*
6360 * See EDID extension for head-mounted and specialized monitors, specified at:
6361 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6362 */
6363static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6364				     const u8 *db)
6365{
6366	struct drm_display_info *info = &connector->display_info;
6367	u8 version = db[4];
6368	bool desktop_usage = db[5] & BIT(6);
6369
6370	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6371	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6372		info->non_desktop = true;
6373
6374	drm_dbg_kms(connector->dev,
6375		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6376		    connector->base.id, connector->name, version, db[5]);
6377}
6378
6379static void drm_parse_cea_ext(struct drm_connector *connector,
6380			      const struct drm_edid *drm_edid)
6381{
6382	struct drm_display_info *info = &connector->display_info;
6383	struct drm_edid_iter edid_iter;
6384	const struct cea_db *db;
6385	struct cea_db_iter iter;
6386	const u8 *edid_ext;
6387	u64 y420cmdb_map = 0;
6388
6389	drm_edid_iter_begin(drm_edid, &edid_iter);
6390	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6391		if (edid_ext[0] != CEA_EXT)
6392			continue;
6393
6394		if (!info->cea_rev)
6395			info->cea_rev = edid_ext[1];
6396
6397		if (info->cea_rev != edid_ext[1])
6398			drm_dbg_kms(connector->dev,
6399				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6400				    connector->base.id, connector->name,
6401				    info->cea_rev, edid_ext[1]);
6402
6403		/* The existence of a CTA extension should imply RGB support */
6404		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6405		if (edid_ext[3] & EDID_CEA_YCRCB444)
6406			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6407		if (edid_ext[3] & EDID_CEA_YCRCB422)
6408			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6409		if (edid_ext[3] & EDID_BASIC_AUDIO)
6410			info->has_audio = true;
6411
6412	}
6413	drm_edid_iter_end(&edid_iter);
6414
6415	cea_db_iter_edid_begin(drm_edid, &iter);
6416	cea_db_iter_for_each(db, &iter) {
6417		/* FIXME: convert parsers to use struct cea_db */
6418		const u8 *data = (const u8 *)db;
6419
6420		if (cea_db_is_hdmi_vsdb(db))
6421			drm_parse_hdmi_vsdb_video(connector, data);
6422		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6423			 cea_db_is_hdmi_forum_scdb(db))
6424			drm_parse_hdmi_forum_scds(connector, data);
6425		else if (cea_db_is_microsoft_vsdb(db))
6426			drm_parse_microsoft_vsdb(connector, data);
6427		else if (cea_db_is_y420cmdb(db))
6428			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6429		else if (cea_db_is_y420vdb(db))
6430			parse_cta_y420vdb(connector, db);
6431		else if (cea_db_is_vcdb(db))
6432			drm_parse_vcdb(connector, data);
6433		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6434			drm_parse_hdr_metadata_block(connector, data);
6435		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6436			parse_cta_vdb(connector, db);
6437		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6438			info->has_audio = true;
6439	}
6440	cea_db_iter_end(&iter);
6441
6442	if (y420cmdb_map)
6443		update_cta_y420cmdb(connector, y420cmdb_map);
6444}
6445
6446static
6447void get_monitor_range(const struct detailed_timing *timing, void *c)
6448{
6449	struct detailed_mode_closure *closure = c;
6450	struct drm_display_info *info = &closure->connector->display_info;
6451	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6452	const struct detailed_non_pixel *data = &timing->data.other_data;
6453	const struct detailed_data_monitor_range *range = &data->data.range;
6454	const struct edid *edid = closure->drm_edid->edid;
6455
6456	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6457		return;
6458
6459	/*
6460	 * These limits are used to determine the VRR refresh
6461	 * rate range. Only the "range limits only" variant
6462	 * of the range descriptor seems to guarantee that
6463	 * any and all timings are accepted by the sink, as
6464	 * opposed to just timings conforming to the indicated
6465	 * formula (GTF/GTF2/CVT). Thus other variants of the
6466	 * range descriptor are not accepted here.
6467	 */
6468	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6469		return;
6470
6471	monitor_range->min_vfreq = range->min_vfreq;
6472	monitor_range->max_vfreq = range->max_vfreq;
 
 
 
 
6473
6474	if (edid->revision >= 4) {
6475		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6476			monitor_range->min_vfreq += 255;
6477		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6478			monitor_range->max_vfreq += 255;
6479	}
6480}
6481
6482static void drm_get_monitor_range(struct drm_connector *connector,
6483				  const struct drm_edid *drm_edid)
6484{
6485	const struct drm_display_info *info = &connector->display_info;
6486	struct detailed_mode_closure closure = {
6487		.connector = connector,
6488		.drm_edid = drm_edid,
6489	};
6490
6491	if (drm_edid->edid->revision < 4)
6492		return;
6493
6494	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6495		return;
6496
6497	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6498
6499	drm_dbg_kms(connector->dev,
6500		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6501		    connector->base.id, connector->name,
6502		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6503}
6504
6505static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6506				    const struct displayid_block *block)
6507{
6508	struct displayid_vesa_vendor_specific_block *vesa =
6509		(struct displayid_vesa_vendor_specific_block *)block;
6510	struct drm_display_info *info = &connector->display_info;
6511
6512	if (block->num_bytes < 3) {
6513		drm_dbg_kms(connector->dev,
6514			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6515			    connector->base.id, connector->name, block->num_bytes);
6516		return;
6517	}
6518
6519	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6520		return;
6521
6522	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6523		drm_dbg_kms(connector->dev,
6524			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6525			    connector->base.id, connector->name);
6526		return;
6527	}
6528
6529	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6530	default:
6531		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6532			    connector->base.id, connector->name);
6533		fallthrough;
6534	case 0:
6535		info->mso_stream_count = 0;
6536		break;
6537	case 1:
6538		info->mso_stream_count = 2; /* 2 or 4 links */
6539		break;
6540	case 2:
6541		info->mso_stream_count = 4; /* 4 links */
6542		break;
6543	}
6544
6545	if (!info->mso_stream_count) {
6546		info->mso_pixel_overlap = 0;
6547		return;
6548	}
6549
6550	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6551	if (info->mso_pixel_overlap > 8) {
6552		drm_dbg_kms(connector->dev,
6553			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6554			    connector->base.id, connector->name,
6555			    info->mso_pixel_overlap);
6556		info->mso_pixel_overlap = 8;
6557	}
6558
6559	drm_dbg_kms(connector->dev,
6560		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6561		    connector->base.id, connector->name,
6562		    info->mso_stream_count, info->mso_pixel_overlap);
6563}
6564
6565static void drm_update_mso(struct drm_connector *connector,
6566			   const struct drm_edid *drm_edid)
6567{
6568	const struct displayid_block *block;
6569	struct displayid_iter iter;
6570
6571	displayid_iter_edid_begin(drm_edid, &iter);
6572	displayid_iter_for_each(block, &iter) {
6573		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6574			drm_parse_vesa_mso_data(connector, block);
6575	}
6576	displayid_iter_end(&iter);
6577}
6578
6579/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6580 * all of the values which would have been set from EDID
6581 */
6582static void drm_reset_display_info(struct drm_connector *connector)
 
6583{
6584	struct drm_display_info *info = &connector->display_info;
6585
6586	info->width_mm = 0;
6587	info->height_mm = 0;
6588
6589	info->bpc = 0;
6590	info->color_formats = 0;
6591	info->cea_rev = 0;
6592	info->max_tmds_clock = 0;
6593	info->dvi_dual = false;
6594	info->is_hdmi = false;
6595	info->has_audio = false;
6596	info->has_hdmi_infoframe = false;
6597	info->rgb_quant_range_selectable = false;
6598	memset(&info->hdmi, 0, sizeof(info->hdmi));
6599
6600	info->edid_hdmi_rgb444_dc_modes = 0;
6601	info->edid_hdmi_ycbcr444_dc_modes = 0;
6602
6603	info->non_desktop = 0;
6604	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6605	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6606
6607	info->mso_stream_count = 0;
6608	info->mso_pixel_overlap = 0;
6609	info->max_dsc_bpp = 0;
6610
6611	kfree(info->vics);
6612	info->vics = NULL;
6613	info->vics_len = 0;
6614
6615	info->quirks = 0;
6616
6617	info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6618}
6619
6620static void update_displayid_info(struct drm_connector *connector,
6621				  const struct drm_edid *drm_edid)
6622{
6623	struct drm_display_info *info = &connector->display_info;
6624	const struct displayid_block *block;
6625	struct displayid_iter iter;
6626
6627	displayid_iter_edid_begin(drm_edid, &iter);
6628	displayid_iter_for_each(block, &iter) {
6629		drm_dbg_kms(connector->dev,
6630			    "[CONNECTOR:%d:%s] DisplayID extension version 0x%02x, primary use 0x%02x\n",
6631			    connector->base.id, connector->name,
6632			    displayid_version(&iter),
6633			    displayid_primary_use(&iter));
6634		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6635		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6636		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6637			info->non_desktop = true;
6638
6639		/*
6640		 * We're only interested in the base section here, no need to
6641		 * iterate further.
6642		 */
6643		break;
6644	}
6645	displayid_iter_end(&iter);
6646}
6647
6648static void update_display_info(struct drm_connector *connector,
6649				const struct drm_edid *drm_edid)
6650{
6651	struct drm_display_info *info = &connector->display_info;
6652	const struct edid *edid;
6653
6654	drm_reset_display_info(connector);
6655	clear_eld(connector);
6656
6657	if (!drm_edid)
6658		return;
6659
6660	edid = drm_edid->edid;
6661
6662	info->quirks = edid_get_quirks(drm_edid);
6663
6664	info->width_mm = edid->width_cm * 10;
6665	info->height_mm = edid->height_cm * 10;
6666
6667	drm_get_monitor_range(connector, drm_edid);
 
 
6668
6669	if (edid->revision < 3)
6670		goto out;
6671
6672	if (!drm_edid_is_digital(drm_edid))
6673		goto out;
6674
6675	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6676	drm_parse_cea_ext(connector, drm_edid);
6677
6678	update_displayid_info(connector, drm_edid);
6679
6680	/*
6681	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6682	 *
6683	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6684	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6685	 * extensions which tell otherwise.
6686	 */
6687	if (info->bpc == 0 && edid->revision == 3 &&
6688	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6689		info->bpc = 8;
6690		drm_dbg_kms(connector->dev,
6691			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6692			    connector->base.id, connector->name, info->bpc);
6693	}
6694
6695	/* Only defined for 1.4 with digital displays */
6696	if (edid->revision < 4)
6697		goto out;
6698
6699	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6700	case DRM_EDID_DIGITAL_DEPTH_6:
6701		info->bpc = 6;
6702		break;
6703	case DRM_EDID_DIGITAL_DEPTH_8:
6704		info->bpc = 8;
6705		break;
6706	case DRM_EDID_DIGITAL_DEPTH_10:
6707		info->bpc = 10;
6708		break;
6709	case DRM_EDID_DIGITAL_DEPTH_12:
6710		info->bpc = 12;
6711		break;
6712	case DRM_EDID_DIGITAL_DEPTH_14:
6713		info->bpc = 14;
6714		break;
6715	case DRM_EDID_DIGITAL_DEPTH_16:
6716		info->bpc = 16;
6717		break;
6718	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6719	default:
6720		info->bpc = 0;
6721		break;
6722	}
6723
6724	drm_dbg_kms(connector->dev,
6725		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6726		    connector->base.id, connector->name, info->bpc);
6727
 
6728	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6729		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6730	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6731		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
 
 
6732
6733	drm_update_mso(connector, drm_edid);
 
 
 
 
6734
6735out:
6736	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6737		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6738			    connector->base.id, connector->name,
6739			    info->non_desktop ? " (redundant quirk)" : "");
6740		info->non_desktop = true;
6741	}
6742
6743	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6744		info->max_dsc_bpp = 15;
6745
6746	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6747		info->bpc = 6;
6748
6749	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6750		info->bpc = 8;
6751
6752	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6753		info->bpc = 10;
6754
6755	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6756		info->bpc = 12;
6757
6758	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6759	drm_edid_to_eld(connector, drm_edid);
6760}
6761
6762static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6763							    struct displayid_detailed_timings_1 *timings,
6764							    bool type_7)
6765{
6766	struct drm_display_mode *mode;
6767	unsigned pixel_clock = (timings->pixel_clock[0] |
6768				(timings->pixel_clock[1] << 8) |
6769				(timings->pixel_clock[2] << 16)) + 1;
6770	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6771	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6772	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6773	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6774	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6775	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6776	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6777	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6778	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6779	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6780
6781	mode = drm_mode_create(dev);
6782	if (!mode)
6783		return NULL;
6784
6785	/* resolution is kHz for type VII, and 10 kHz for type I */
6786	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6787	mode->hdisplay = hactive;
6788	mode->hsync_start = mode->hdisplay + hsync;
6789	mode->hsync_end = mode->hsync_start + hsync_width;
6790	mode->htotal = mode->hdisplay + hblank;
6791
6792	mode->vdisplay = vactive;
6793	mode->vsync_start = mode->vdisplay + vsync;
6794	mode->vsync_end = mode->vsync_start + vsync_width;
6795	mode->vtotal = mode->vdisplay + vblank;
6796
6797	mode->flags = 0;
6798	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6799	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6800	mode->type = DRM_MODE_TYPE_DRIVER;
6801
6802	if (timings->flags & 0x80)
6803		mode->type |= DRM_MODE_TYPE_PREFERRED;
 
6804	drm_mode_set_name(mode);
6805
6806	return mode;
6807}
6808
6809static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6810					  const struct displayid_block *block)
6811{
6812	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6813	int i;
6814	int num_timings;
6815	struct drm_display_mode *newmode;
6816	int num_modes = 0;
6817	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6818	/* blocks must be multiple of 20 bytes length */
6819	if (block->num_bytes % 20)
6820		return 0;
6821
6822	num_timings = block->num_bytes / 20;
6823	for (i = 0; i < num_timings; i++) {
6824		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6825
6826		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6827		if (!newmode)
6828			continue;
6829
6830		drm_mode_probed_add(connector, newmode);
6831		num_modes++;
6832	}
6833	return num_modes;
6834}
6835
6836static int add_displayid_detailed_modes(struct drm_connector *connector,
6837					const struct drm_edid *drm_edid)
6838{
6839	const struct displayid_block *block;
6840	struct displayid_iter iter;
 
 
 
6841	int num_modes = 0;
6842
6843	displayid_iter_edid_begin(drm_edid, &iter);
6844	displayid_iter_for_each(block, &iter) {
6845		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6846		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
 
 
 
 
 
 
 
 
6847			num_modes += add_displayid_detailed_1_modes(connector, block);
 
 
6848	}
6849	displayid_iter_end(&iter);
6850
6851	return num_modes;
6852}
6853
6854static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6855					 const struct drm_edid *drm_edid)
 
 
 
 
 
 
 
 
 
 
6856{
6857	const struct drm_display_info *info = &connector->display_info;
6858	int num_modes = 0;
 
6859
6860	if (!drm_edid)
 
6861		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6862
6863	/*
6864	 * EDID spec says modes should be preferred in this order:
6865	 * - preferred detailed mode
6866	 * - other detailed modes from base block
6867	 * - detailed modes from extension blocks
6868	 * - CVT 3-byte code modes
6869	 * - standard timing codes
6870	 * - established timing codes
6871	 * - modes inferred from GTF or CVT range information
6872	 *
6873	 * We get this pretty much right.
6874	 *
6875	 * XXX order for additional mode types in extension blocks?
6876	 */
6877	num_modes += add_detailed_modes(connector, drm_edid);
6878	num_modes += add_cvt_modes(connector, drm_edid);
6879	num_modes += add_standard_modes(connector, drm_edid);
6880	num_modes += add_established_modes(connector, drm_edid);
6881	num_modes += add_cea_modes(connector, drm_edid);
6882	num_modes += add_alternate_cea_modes(connector, drm_edid);
6883	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6884	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6885		num_modes += add_inferred_modes(connector, drm_edid);
 
 
 
 
 
 
6886
6887	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6888		edid_fixup_preferred(connector);
6889
6890	return num_modes;
6891}
6892
6893static void _drm_update_tile_info(struct drm_connector *connector,
6894				  const struct drm_edid *drm_edid);
6895
6896static int _drm_edid_connector_property_update(struct drm_connector *connector,
6897					       const struct drm_edid *drm_edid)
6898{
6899	struct drm_device *dev = connector->dev;
6900	int ret;
6901
6902	if (connector->edid_blob_ptr) {
6903		const void *old_edid = connector->edid_blob_ptr->data;
6904		size_t old_edid_size = connector->edid_blob_ptr->length;
6905
6906		if (old_edid && !drm_edid_eq(drm_edid, old_edid, old_edid_size)) {
6907			connector->epoch_counter++;
6908			drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6909				    connector->base.id, connector->name,
6910				    connector->epoch_counter);
6911		}
6912	}
6913
6914	ret = drm_property_replace_global_blob(dev,
6915					       &connector->edid_blob_ptr,
6916					       drm_edid ? drm_edid->size : 0,
6917					       drm_edid ? drm_edid->edid : NULL,
6918					       &connector->base,
6919					       dev->mode_config.edid_property);
6920	if (ret) {
6921		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6922			    connector->base.id, connector->name, ret);
6923		goto out;
6924	}
6925
6926	ret = drm_object_property_set_value(&connector->base,
6927					    dev->mode_config.non_desktop_property,
6928					    connector->display_info.non_desktop);
6929	if (ret) {
6930		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6931			    connector->base.id, connector->name, ret);
6932		goto out;
6933	}
6934
6935	ret = drm_connector_set_tile_property(connector);
6936	if (ret) {
6937		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6938			    connector->base.id, connector->name, ret);
6939		goto out;
6940	}
6941
6942out:
6943	return ret;
6944}
6945
6946/* For sysfs edid show implementation */
6947ssize_t drm_edid_connector_property_show(struct drm_connector *connector,
6948					 char *buf, loff_t off, size_t count)
6949{
6950	const void *edid;
6951	size_t size;
6952	ssize_t ret = 0;
6953
6954	mutex_lock(&connector->dev->mode_config.mutex);
6955
6956	if (!connector->edid_blob_ptr)
6957		goto unlock;
6958
6959	edid = connector->edid_blob_ptr->data;
6960	size = connector->edid_blob_ptr->length;
6961	if (!edid)
6962		goto unlock;
6963
6964	if (off >= size)
6965		goto unlock;
6966
6967	if (off + count > size)
6968		count = size - off;
6969
6970	memcpy(buf, edid + off, count);
6971
6972	ret = count;
6973unlock:
6974	mutex_unlock(&connector->dev->mode_config.mutex);
6975
6976	return ret;
6977}
6978
6979/**
6980 * drm_edid_connector_update - Update connector information from EDID
6981 * @connector: Connector
6982 * @drm_edid: EDID
6983 *
6984 * Update the connector display info, ELD, HDR metadata, relevant properties,
6985 * etc. from the passed in EDID.
6986 *
6987 * If EDID is NULL, reset the information.
6988 *
6989 * Must be called before calling drm_edid_connector_add_modes().
6990 *
6991 * Return: 0 on success, negative error on errors.
6992 */
6993int drm_edid_connector_update(struct drm_connector *connector,
6994			      const struct drm_edid *drm_edid)
6995{
6996	update_display_info(connector, drm_edid);
6997
6998	_drm_update_tile_info(connector, drm_edid);
6999
7000	return _drm_edid_connector_property_update(connector, drm_edid);
7001}
7002EXPORT_SYMBOL(drm_edid_connector_update);
7003
7004/**
7005 * drm_edid_connector_add_modes - Update probed modes from the EDID property
7006 * @connector: Connector
7007 *
7008 * Add the modes from the previously updated EDID property to the connector
7009 * probed modes list.
7010 *
7011 * drm_edid_connector_update() must have been called before this to update the
7012 * EDID property.
7013 *
7014 * Return: The number of modes added, or 0 if we couldn't find any.
7015 */
7016int drm_edid_connector_add_modes(struct drm_connector *connector)
7017{
7018	const struct drm_edid *drm_edid = NULL;
7019	int count;
7020
7021	if (connector->edid_blob_ptr)
7022		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
7023					  connector->edid_blob_ptr->length);
7024
7025	count = _drm_edid_connector_add_modes(connector, drm_edid);
7026
7027	drm_edid_free(drm_edid);
7028
7029	return count;
7030}
7031EXPORT_SYMBOL(drm_edid_connector_add_modes);
7032
7033/**
7034 * drm_connector_update_edid_property - update the edid property of a connector
7035 * @connector: drm connector
7036 * @edid: new value of the edid property
7037 *
7038 * This function creates a new blob modeset object and assigns its id to the
7039 * connector's edid property.
7040 * Since we also parse tile information from EDID's displayID block, we also
7041 * set the connector's tile property here. See drm_connector_set_tile_property()
7042 * for more details.
7043 *
7044 * This function is deprecated. Use drm_edid_connector_update() instead.
7045 *
7046 * Returns:
7047 * Zero on success, negative errno on failure.
7048 */
7049int drm_connector_update_edid_property(struct drm_connector *connector,
7050				       const struct edid *edid)
7051{
7052	struct drm_edid drm_edid;
7053
7054	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
7055}
7056EXPORT_SYMBOL(drm_connector_update_edid_property);
7057
7058/**
7059 * drm_add_edid_modes - add modes from EDID data, if available
7060 * @connector: connector we're probing
7061 * @edid: EDID data
7062 *
7063 * Add the specified modes to the connector's mode list. Also fills out the
7064 * &drm_display_info structure and ELD in @connector with any information which
7065 * can be derived from the edid.
7066 *
7067 * This function is deprecated. Use drm_edid_connector_add_modes() instead.
7068 *
7069 * Return: The number of modes added or 0 if we couldn't find any.
7070 */
7071int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
7072{
7073	struct drm_edid _drm_edid;
7074	const struct drm_edid *drm_edid;
7075
7076	if (edid && !drm_edid_is_valid(edid)) {
7077		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
7078			 connector->base.id, connector->name);
7079		edid = NULL;
7080	}
7081
7082	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
7083
7084	update_display_info(connector, drm_edid);
7085
7086	return _drm_edid_connector_add_modes(connector, drm_edid);
7087}
7088EXPORT_SYMBOL(drm_add_edid_modes);
7089
7090/**
7091 * drm_add_modes_noedid - add modes for the connectors without EDID
7092 * @connector: connector we're probing
7093 * @hdisplay: the horizontal display limit
7094 * @vdisplay: the vertical display limit
7095 *
7096 * Add the specified modes to the connector's mode list. Only when the
7097 * hdisplay/vdisplay is not beyond the given limit, it will be added.
7098 *
7099 * Return: The number of modes added or 0 if we couldn't find any.
7100 */
7101int drm_add_modes_noedid(struct drm_connector *connector,
7102			int hdisplay, int vdisplay)
7103{
7104	int i, count, num_modes = 0;
7105	struct drm_display_mode *mode;
7106	struct drm_device *dev = connector->dev;
7107
7108	count = ARRAY_SIZE(drm_dmt_modes);
7109	if (hdisplay < 0)
7110		hdisplay = 0;
7111	if (vdisplay < 0)
7112		vdisplay = 0;
7113
7114	for (i = 0; i < count; i++) {
7115		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
7116
7117		if (hdisplay && vdisplay) {
7118			/*
7119			 * Only when two are valid, they will be used to check
7120			 * whether the mode should be added to the mode list of
7121			 * the connector.
7122			 */
7123			if (ptr->hdisplay > hdisplay ||
7124					ptr->vdisplay > vdisplay)
7125				continue;
7126		}
7127		if (drm_mode_vrefresh(ptr) > 61)
7128			continue;
7129		mode = drm_mode_duplicate(dev, ptr);
7130		if (mode) {
7131			drm_mode_probed_add(connector, mode);
7132			num_modes++;
7133		}
7134	}
7135	return num_modes;
7136}
7137EXPORT_SYMBOL(drm_add_modes_noedid);
7138
7139static bool is_hdmi2_sink(const struct drm_connector *connector)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7140{
7141	/*
7142	 * FIXME: sil-sii8620 doesn't have a connector around when
7143	 * we need one, so we have to be prepared for a NULL connector.
7144	 */
7145	if (!connector)
7146		return true;
7147
7148	return connector->display_info.hdmi.scdc.supported ||
7149		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7150}
7151
7152static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7153			    const struct drm_display_mode *mode)
7154{
7155	bool has_hdmi_infoframe = connector ?
7156		connector->display_info.has_hdmi_infoframe : false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7157
7158	if (!has_hdmi_infoframe)
7159		return 0;
7160
7161	/* No HDMI VIC when signalling 3D video format */
7162	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7163		return 0;
7164
7165	return drm_match_hdmi_mode(mode);
7166}
 
 
 
 
7167
7168static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7169			   const struct drm_display_mode *mode)
7170{
7171	/*
7172	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7173	 * we should send its VIC in vendor infoframes, else send the
7174	 * VIC in AVI infoframes. Lets check if this mode is present in
7175	 * HDMI 1.4b 4K modes
7176	 */
7177	if (drm_mode_hdmi_vic(connector, mode))
7178		return 0;
7179
7180	return drm_match_cea_mode(mode);
7181}
7182
7183/*
7184 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7185 * conform to HDMI 1.4.
7186 *
7187 * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7188 * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7189 *
7190 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7191 * version.
7192 */
7193static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7194{
7195	if (!is_hdmi2_sink(connector) && vic > 64 &&
7196	    !cta_vdb_has_vic(connector, vic))
7197		return 0;
 
 
 
 
7198
7199	return vic;
7200}
 
7201
7202/**
7203 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7204 *                                              data from a DRM display mode
7205 * @frame: HDMI AVI infoframe
7206 * @connector: the connector
7207 * @mode: DRM display mode
7208 *
7209 * Return: 0 on success or a negative error code on failure.
7210 */
7211int
7212drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7213					 const struct drm_connector *connector,
7214					 const struct drm_display_mode *mode)
7215{
7216	enum hdmi_picture_aspect picture_aspect;
7217	u8 vic, hdmi_vic;
7218
7219	if (!frame || !mode)
7220		return -EINVAL;
7221
7222	hdmi_avi_infoframe_init(frame);
 
 
7223
7224	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7225		frame->pixel_repeat = 1;
7226
7227	vic = drm_mode_cea_vic(connector, mode);
7228	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7229
7230	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7231
7232	/*
7233	 * As some drivers don't support atomic, we can't use connector state.
7234	 * So just initialize the frame with default values, just the same way
7235	 * as it's done with other properties here.
7236	 */
7237	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7238	frame->itc = 0;
7239
7240	/*
7241	 * Populate picture aspect ratio from either
7242	 * user input (if specified) or from the CEA/HDMI mode lists.
7243	 */
7244	picture_aspect = mode->picture_aspect_ratio;
7245	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7246		if (vic)
7247			picture_aspect = drm_get_cea_aspect_ratio(vic);
7248		else if (hdmi_vic)
7249			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7250	}
7251
7252	/*
7253	 * The infoframe can't convey anything but none, 4:3
7254	 * and 16:9, so if the user has asked for anything else
7255	 * we can only satisfy it by specifying the right VIC.
7256	 */
7257	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7258		if (vic) {
7259			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7260				return -EINVAL;
7261		} else if (hdmi_vic) {
7262			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7263				return -EINVAL;
7264		} else {
7265			return -EINVAL;
7266		}
7267
7268		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7269	}
7270
7271	frame->video_code = vic_for_avi_infoframe(connector, vic);
7272	frame->picture_aspect = picture_aspect;
7273	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7274	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7275
7276	return 0;
7277}
7278EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7280/**
7281 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7282 *                                        quantization range information
7283 * @frame: HDMI AVI infoframe
7284 * @connector: the connector
7285 * @mode: DRM display mode
7286 * @rgb_quant_range: RGB quantization range (Q)
7287 */
7288void
7289drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7290				   const struct drm_connector *connector,
7291				   const struct drm_display_mode *mode,
7292				   enum hdmi_quantization_range rgb_quant_range)
7293{
7294	const struct drm_display_info *info = &connector->display_info;
7295
7296	/*
7297	 * CEA-861:
7298	 * "A Source shall not send a non-zero Q value that does not correspond
7299	 *  to the default RGB Quantization Range for the transmitted Picture
7300	 *  unless the Sink indicates support for the Q bit in a Video
7301	 *  Capabilities Data Block."
7302	 *
7303	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7304	 * default RGB quantization range for the mode, even when QS=0.
7305	 */
7306	if (info->rgb_quant_range_selectable ||
7307	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7308		frame->quantization_range = rgb_quant_range;
7309	else
7310		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7311
7312	/*
7313	 * CEA-861-F:
7314	 * "When transmitting any RGB colorimetry, the Source should set the
7315	 *  YQ-field to match the RGB Quantization Range being transmitted
7316	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7317	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7318	 *
7319	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7320	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7321	 * good way to tell which version of CEA-861 the sink supports, so
7322	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7323	 * on CEA-861-F.
7324	 */
7325	if (!is_hdmi2_sink(connector) ||
7326	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7327		frame->ycc_quantization_range =
7328			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7329	else
7330		frame->ycc_quantization_range =
7331			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7332}
7333EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7334
7335static enum hdmi_3d_structure
7336s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7337{
7338	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7339
7340	switch (layout) {
7341	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7342		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7343	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7344		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7345	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7346		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7347	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7348		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7349	case DRM_MODE_FLAG_3D_L_DEPTH:
7350		return HDMI_3D_STRUCTURE_L_DEPTH;
7351	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7352		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7353	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7354		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7355	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7356		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7357	default:
7358		return HDMI_3D_STRUCTURE_INVALID;
7359	}
7360}
7361
7362/**
7363 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7364 * data from a DRM display mode
7365 * @frame: HDMI vendor infoframe
7366 * @connector: the connector
7367 * @mode: DRM display mode
7368 *
7369 * Note that there's is a need to send HDMI vendor infoframes only when using a
7370 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7371 * function will return -EINVAL, error that can be safely ignored.
7372 *
7373 * Return: 0 on success or a negative error code on failure.
7374 */
7375int
7376drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7377					    const struct drm_connector *connector,
7378					    const struct drm_display_mode *mode)
7379{
7380	/*
7381	 * FIXME: sil-sii8620 doesn't have a connector around when
7382	 * we need one, so we have to be prepared for a NULL connector.
7383	 */
7384	bool has_hdmi_infoframe = connector ?
7385		connector->display_info.has_hdmi_infoframe : false;
7386	int err;
 
 
7387
7388	if (!frame || !mode)
7389		return -EINVAL;
7390
7391	if (!has_hdmi_infoframe)
7392		return -EINVAL;
7393
7394	err = hdmi_vendor_infoframe_init(frame);
7395	if (err < 0)
7396		return err;
7397
7398	/*
7399	 * Even if it's not absolutely necessary to send the infoframe
7400	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7401	 * know that the sink can handle it. This is based on a
7402	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7403	 * have trouble realizing that they should switch from 3D to 2D
7404	 * mode if the source simply stops sending the infoframe when
7405	 * it wants to switch from 3D to 2D.
7406	 */
7407	frame->vic = drm_mode_hdmi_vic(connector, mode);
 
 
 
 
 
 
 
 
7408	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7409
7410	return 0;
7411}
7412EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7413
7414static void drm_parse_tiled_block(struct drm_connector *connector,
7415				  const struct displayid_block *block)
7416{
7417	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7418	u16 w, h;
7419	u8 tile_v_loc, tile_h_loc;
7420	u8 num_v_tile, num_h_tile;
7421	struct drm_tile_group *tg;
7422
7423	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7424	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7425
7426	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7427	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7428	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7429	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7430
7431	connector->has_tile = true;
7432	if (tile->tile_cap & 0x80)
7433		connector->tile_is_single_monitor = true;
7434
7435	connector->num_h_tile = num_h_tile + 1;
7436	connector->num_v_tile = num_v_tile + 1;
7437	connector->tile_h_loc = tile_h_loc;
7438	connector->tile_v_loc = tile_v_loc;
7439	connector->tile_h_size = w + 1;
7440	connector->tile_v_size = h + 1;
7441
7442	drm_dbg_kms(connector->dev,
7443		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7444		    connector->base.id, connector->name,
7445		    tile->tile_cap,
7446		    connector->tile_h_size, connector->tile_v_size,
7447		    connector->num_h_tile, connector->num_v_tile,
7448		    connector->tile_h_loc, connector->tile_v_loc,
7449		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7450
7451	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7452	if (!tg)
7453		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
 
7454	if (!tg)
7455		return;
7456
7457	if (connector->tile_group != tg) {
7458		/* if we haven't got a pointer,
7459		   take the reference, drop ref to old tile group */
7460		if (connector->tile_group)
7461			drm_mode_put_tile_group(connector->dev, connector->tile_group);
 
7462		connector->tile_group = tg;
7463	} else {
7464		/* if same tile group, then release the ref we just took. */
7465		drm_mode_put_tile_group(connector->dev, tg);
7466	}
7467}
7468
7469static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7470				     const struct displayid_block *block)
7471{
7472	return (displayid_version(iter) < DISPLAY_ID_STRUCTURE_VER_20 &&
7473		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7474		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7475		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7476}
7477
7478static void _drm_update_tile_info(struct drm_connector *connector,
7479				  const struct drm_edid *drm_edid)
7480{
7481	const struct displayid_block *block;
7482	struct displayid_iter iter;
7483
7484	connector->has_tile = false;
7485
7486	displayid_iter_edid_begin(drm_edid, &iter);
7487	displayid_iter_for_each(block, &iter) {
7488		if (displayid_is_tiled_block(&iter, block))
7489			drm_parse_tiled_block(connector, block);
7490	}
7491	displayid_iter_end(&iter);
7492
7493	if (!connector->has_tile && connector->tile_group) {
 
 
 
 
 
 
 
7494		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7495		connector->tile_group = NULL;
7496	}
 
7497}
7498
7499/**
7500 * drm_edid_is_digital - is digital?
7501 * @drm_edid: The EDID
7502 *
7503 * Return true if input is digital.
7504 */
7505bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7506{
7507	return drm_edid && drm_edid->edid &&
7508		drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7509}
7510EXPORT_SYMBOL(drm_edid_is_digital);