Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
   3 * Copyright (c) 2007-2008 Intel Corporation
   4 *   Jesse Barnes <jesse.barnes@intel.com>
   5 * Copyright 2010 Red Hat, Inc.
   6 *
   7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
   8 * FB layer.
   9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
  10 *
  11 * Permission is hereby granted, free of charge, to any person obtaining a
  12 * copy of this software and associated documentation files (the "Software"),
  13 * to deal in the Software without restriction, including without limitation
  14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
  15 * and/or sell copies of the Software, and to permit persons to whom the
  16 * Software is furnished to do so, subject to the following conditions:
  17 *
  18 * The above copyright notice and this permission notice (including the
  19 * next paragraph) shall be included in all copies or substantial portions
  20 * of the Software.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  28 * DEALINGS IN THE SOFTWARE.
  29 */
  30
 
 
  31#include <linux/hdmi.h>
  32#include <linux/i2c.h>
  33#include <linux/kernel.h>
  34#include <linux/module.h>
 
  35#include <linux/slab.h>
  36#include <linux/vga_switcheroo.h>
  37
  38#include <drm/drm_displayid.h>
  39#include <drm/drm_drv.h>
  40#include <drm/drm_edid.h>
 
  41#include <drm/drm_encoder.h>
  42#include <drm/drm_print.h>
  43#include <drm/drm_scdc_helper.h>
  44
  45#include "drm_crtc_internal.h"
 
  46
  47#define version_greater(edid, maj, min) \
  48	(((edid)->version > (maj)) || \
  49	 ((edid)->version == (maj) && (edid)->revision > (min)))
 
  50
  51#define EDID_EST_TIMINGS 16
  52#define EDID_STD_TIMINGS 8
  53#define EDID_DETAILED_TIMINGS 4
  54
  55/*
  56 * EDID blocks out in the wild have a variety of bugs, try to collect
  57 * them here (note that userspace may work around broken monitors first,
  58 * but fixes should make their way here so that the kernel "just works"
  59 * on as many displays as possible).
  60 */
  61
  62/* First detailed mode wrong, use largest 60Hz mode */
  63#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
  64/* Reported 135MHz pixel clock is too high, needs adjustment */
  65#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
  66/* Prefer the largest mode at 75 Hz */
  67#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
  68/* Detail timing is in cm not mm */
  69#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
  70/* Detailed timing descriptors have bogus size values, so just take the
  71 * maximum size and use that.
  72 */
  73#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
  74/* use +hsync +vsync for detailed mode */
  75#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
  76/* Force reduced-blanking timings for detailed modes */
  77#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
  78/* Force 8bpc */
  79#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
  80/* Force 12bpc */
  81#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
  82/* Force 6bpc */
  83#define EDID_QUIRK_FORCE_6BPC			(1 << 10)
  84/* Force 10bpc */
  85#define EDID_QUIRK_FORCE_10BPC			(1 << 11)
  86/* Non desktop display (i.e. HMD) */
  87#define EDID_QUIRK_NON_DESKTOP			(1 << 12)
 
 
 
 
  88
  89struct detailed_mode_closure {
  90	struct drm_connector *connector;
  91	struct edid *edid;
  92	bool preferred;
  93	u32 quirks;
  94	int modes;
  95};
  96
  97#define LEVEL_DMT	0
  98#define LEVEL_GTF	1
  99#define LEVEL_GTF2	2
 100#define LEVEL_CVT	3
 101
 
 
 
 
 
 
 
 102static const struct edid_quirk {
 103	char vendor[4];
 104	int product_id;
 105	u32 quirks;
 106} edid_quirk_list[] = {
 107	/* Acer AL1706 */
 108	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
 109	/* Acer F51 */
 110	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
 111
 112	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
 113	{ "AEO", 0, EDID_QUIRK_FORCE_6BPC },
 
 
 
 114
 115	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
 116	{ "BOE", 0x78b, EDID_QUIRK_FORCE_6BPC },
 117
 118	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
 119	{ "CPT", 0x17df, EDID_QUIRK_FORCE_6BPC },
 120
 121	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
 122	{ "SDC", 0x3652, EDID_QUIRK_FORCE_6BPC },
 123
 124	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
 125	{ "BOE", 0x0771, EDID_QUIRK_FORCE_6BPC },
 126
 127	/* Belinea 10 15 55 */
 128	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
 129	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
 130
 131	/* Envision Peripherals, Inc. EN-7100e */
 132	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
 133	/* Envision EN2028 */
 134	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
 135
 136	/* Funai Electronics PM36B */
 137	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
 138	  EDID_QUIRK_DETAILED_IN_CM },
 
 
 
 
 
 
 139
 140	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
 141	{ "LGD", 764, EDID_QUIRK_FORCE_10BPC },
 142
 143	/* LG Philips LCD LP154W01-A5 */
 144	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
 145	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
 146
 147	/* Samsung SyncMaster 205BW.  Note: irony */
 148	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
 149	/* Samsung SyncMaster 22[5-6]BW */
 150	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
 151	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
 152
 153	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
 154	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
 155
 156	/* ViewSonic VA2026w */
 157	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
 158
 159	/* Medion MD 30217 PG */
 160	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
 161
 162	/* Lenovo G50 */
 163	{ "SDC", 18514, EDID_QUIRK_FORCE_6BPC },
 164
 165	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
 166	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
 167
 168	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
 169	{ "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
 170
 171	/* Valve Index Headset */
 172	{ "VLV", 0x91a8, EDID_QUIRK_NON_DESKTOP },
 173	{ "VLV", 0x91b0, EDID_QUIRK_NON_DESKTOP },
 174	{ "VLV", 0x91b1, EDID_QUIRK_NON_DESKTOP },
 175	{ "VLV", 0x91b2, EDID_QUIRK_NON_DESKTOP },
 176	{ "VLV", 0x91b3, EDID_QUIRK_NON_DESKTOP },
 177	{ "VLV", 0x91b4, EDID_QUIRK_NON_DESKTOP },
 178	{ "VLV", 0x91b5, EDID_QUIRK_NON_DESKTOP },
 179	{ "VLV", 0x91b6, EDID_QUIRK_NON_DESKTOP },
 180	{ "VLV", 0x91b7, EDID_QUIRK_NON_DESKTOP },
 181	{ "VLV", 0x91b8, EDID_QUIRK_NON_DESKTOP },
 182	{ "VLV", 0x91b9, EDID_QUIRK_NON_DESKTOP },
 183	{ "VLV", 0x91ba, EDID_QUIRK_NON_DESKTOP },
 184	{ "VLV", 0x91bb, EDID_QUIRK_NON_DESKTOP },
 185	{ "VLV", 0x91bc, EDID_QUIRK_NON_DESKTOP },
 186	{ "VLV", 0x91bd, EDID_QUIRK_NON_DESKTOP },
 187	{ "VLV", 0x91be, EDID_QUIRK_NON_DESKTOP },
 188	{ "VLV", 0x91bf, EDID_QUIRK_NON_DESKTOP },
 189
 190	/* HTC Vive and Vive Pro VR Headsets */
 191	{ "HVR", 0xaa01, EDID_QUIRK_NON_DESKTOP },
 192	{ "HVR", 0xaa02, EDID_QUIRK_NON_DESKTOP },
 193
 194	/* Oculus Rift DK1, DK2, and CV1 VR Headsets */
 195	{ "OVR", 0x0001, EDID_QUIRK_NON_DESKTOP },
 196	{ "OVR", 0x0003, EDID_QUIRK_NON_DESKTOP },
 197	{ "OVR", 0x0004, EDID_QUIRK_NON_DESKTOP },
 
 198
 199	/* Windows Mixed Reality Headsets */
 200	{ "ACR", 0x7fce, EDID_QUIRK_NON_DESKTOP },
 201	{ "HPN", 0x3515, EDID_QUIRK_NON_DESKTOP },
 202	{ "LEN", 0x0408, EDID_QUIRK_NON_DESKTOP },
 203	{ "LEN", 0xb800, EDID_QUIRK_NON_DESKTOP },
 204	{ "FUJ", 0x1970, EDID_QUIRK_NON_DESKTOP },
 205	{ "DEL", 0x7fce, EDID_QUIRK_NON_DESKTOP },
 206	{ "SEC", 0x144a, EDID_QUIRK_NON_DESKTOP },
 207	{ "AUS", 0xc102, EDID_QUIRK_NON_DESKTOP },
 208
 209	/* Sony PlayStation VR Headset */
 210	{ "SNY", 0x0704, EDID_QUIRK_NON_DESKTOP },
 211
 212	/* Sensics VR Headsets */
 213	{ "SEN", 0x1019, EDID_QUIRK_NON_DESKTOP },
 214
 215	/* OSVR HDK and HDK2 VR Headsets */
 216	{ "SVR", 0x1019, EDID_QUIRK_NON_DESKTOP },
 
 217};
 218
 219/*
 220 * Autogenerated from the DMT spec.
 221 * This table is copied from xfree86/modes/xf86EdidModes.c.
 222 */
 223static const struct drm_display_mode drm_dmt_modes[] = {
 224	/* 0x01 - 640x350@85Hz */
 225	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 226		   736, 832, 0, 350, 382, 385, 445, 0,
 227		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 228	/* 0x02 - 640x400@85Hz */
 229	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 230		   736, 832, 0, 400, 401, 404, 445, 0,
 231		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 232	/* 0x03 - 720x400@85Hz */
 233	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
 234		   828, 936, 0, 400, 401, 404, 446, 0,
 235		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 236	/* 0x04 - 640x480@60Hz */
 237	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 238		   752, 800, 0, 480, 490, 492, 525, 0,
 239		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 240	/* 0x05 - 640x480@72Hz */
 241	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 242		   704, 832, 0, 480, 489, 492, 520, 0,
 243		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 244	/* 0x06 - 640x480@75Hz */
 245	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 246		   720, 840, 0, 480, 481, 484, 500, 0,
 247		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 248	/* 0x07 - 640x480@85Hz */
 249	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
 250		   752, 832, 0, 480, 481, 484, 509, 0,
 251		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 252	/* 0x08 - 800x600@56Hz */
 253	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 254		   896, 1024, 0, 600, 601, 603, 625, 0,
 255		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 256	/* 0x09 - 800x600@60Hz */
 257	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 258		   968, 1056, 0, 600, 601, 605, 628, 0,
 259		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 260	/* 0x0a - 800x600@72Hz */
 261	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 262		   976, 1040, 0, 600, 637, 643, 666, 0,
 263		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 264	/* 0x0b - 800x600@75Hz */
 265	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 266		   896, 1056, 0, 600, 601, 604, 625, 0,
 267		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 268	/* 0x0c - 800x600@85Hz */
 269	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
 270		   896, 1048, 0, 600, 601, 604, 631, 0,
 271		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 272	/* 0x0d - 800x600@120Hz RB */
 273	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
 274		   880, 960, 0, 600, 603, 607, 636, 0,
 275		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 276	/* 0x0e - 848x480@60Hz */
 277	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
 278		   976, 1088, 0, 480, 486, 494, 517, 0,
 279		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 280	/* 0x0f - 1024x768@43Hz, interlace */
 281	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
 282		   1208, 1264, 0, 768, 768, 776, 817, 0,
 283		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 284		   DRM_MODE_FLAG_INTERLACE) },
 285	/* 0x10 - 1024x768@60Hz */
 286	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 287		   1184, 1344, 0, 768, 771, 777, 806, 0,
 288		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 289	/* 0x11 - 1024x768@70Hz */
 290	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 291		   1184, 1328, 0, 768, 771, 777, 806, 0,
 292		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 293	/* 0x12 - 1024x768@75Hz */
 294	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 295		   1136, 1312, 0, 768, 769, 772, 800, 0,
 296		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 297	/* 0x13 - 1024x768@85Hz */
 298	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
 299		   1168, 1376, 0, 768, 769, 772, 808, 0,
 300		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 301	/* 0x14 - 1024x768@120Hz RB */
 302	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
 303		   1104, 1184, 0, 768, 771, 775, 813, 0,
 304		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 305	/* 0x15 - 1152x864@75Hz */
 306	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 307		   1344, 1600, 0, 864, 865, 868, 900, 0,
 308		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 309	/* 0x55 - 1280x720@60Hz */
 310	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 311		   1430, 1650, 0, 720, 725, 730, 750, 0,
 312		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 313	/* 0x16 - 1280x768@60Hz RB */
 314	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
 315		   1360, 1440, 0, 768, 771, 778, 790, 0,
 316		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 317	/* 0x17 - 1280x768@60Hz */
 318	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
 319		   1472, 1664, 0, 768, 771, 778, 798, 0,
 320		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 321	/* 0x18 - 1280x768@75Hz */
 322	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
 323		   1488, 1696, 0, 768, 771, 778, 805, 0,
 324		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 325	/* 0x19 - 1280x768@85Hz */
 326	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
 327		   1496, 1712, 0, 768, 771, 778, 809, 0,
 328		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 329	/* 0x1a - 1280x768@120Hz RB */
 330	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
 331		   1360, 1440, 0, 768, 771, 778, 813, 0,
 332		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 333	/* 0x1b - 1280x800@60Hz RB */
 334	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
 335		   1360, 1440, 0, 800, 803, 809, 823, 0,
 336		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 337	/* 0x1c - 1280x800@60Hz */
 338	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
 339		   1480, 1680, 0, 800, 803, 809, 831, 0,
 340		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 341	/* 0x1d - 1280x800@75Hz */
 342	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
 343		   1488, 1696, 0, 800, 803, 809, 838, 0,
 344		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 345	/* 0x1e - 1280x800@85Hz */
 346	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
 347		   1496, 1712, 0, 800, 803, 809, 843, 0,
 348		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 349	/* 0x1f - 1280x800@120Hz RB */
 350	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
 351		   1360, 1440, 0, 800, 803, 809, 847, 0,
 352		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 353	/* 0x20 - 1280x960@60Hz */
 354	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
 355		   1488, 1800, 0, 960, 961, 964, 1000, 0,
 356		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 357	/* 0x21 - 1280x960@85Hz */
 358	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
 359		   1504, 1728, 0, 960, 961, 964, 1011, 0,
 360		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 361	/* 0x22 - 1280x960@120Hz RB */
 362	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
 363		   1360, 1440, 0, 960, 963, 967, 1017, 0,
 364		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 365	/* 0x23 - 1280x1024@60Hz */
 366	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
 367		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 368		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 369	/* 0x24 - 1280x1024@75Hz */
 370	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 371		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 372		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 373	/* 0x25 - 1280x1024@85Hz */
 374	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
 375		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
 376		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 377	/* 0x26 - 1280x1024@120Hz RB */
 378	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
 379		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
 380		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 381	/* 0x27 - 1360x768@60Hz */
 382	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
 383		   1536, 1792, 0, 768, 771, 777, 795, 0,
 384		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 385	/* 0x28 - 1360x768@120Hz RB */
 386	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
 387		   1440, 1520, 0, 768, 771, 776, 813, 0,
 388		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 389	/* 0x51 - 1366x768@60Hz */
 390	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
 391		   1579, 1792, 0, 768, 771, 774, 798, 0,
 392		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 393	/* 0x56 - 1366x768@60Hz */
 394	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
 395		   1436, 1500, 0, 768, 769, 772, 800, 0,
 396		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 397	/* 0x29 - 1400x1050@60Hz RB */
 398	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
 399		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
 400		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 401	/* 0x2a - 1400x1050@60Hz */
 402	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
 403		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
 404		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 405	/* 0x2b - 1400x1050@75Hz */
 406	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
 407		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
 408		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 409	/* 0x2c - 1400x1050@85Hz */
 410	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
 411		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
 412		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 413	/* 0x2d - 1400x1050@120Hz RB */
 414	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
 415		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
 416		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 417	/* 0x2e - 1440x900@60Hz RB */
 418	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
 419		   1520, 1600, 0, 900, 903, 909, 926, 0,
 420		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 421	/* 0x2f - 1440x900@60Hz */
 422	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
 423		   1672, 1904, 0, 900, 903, 909, 934, 0,
 424		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 425	/* 0x30 - 1440x900@75Hz */
 426	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
 427		   1688, 1936, 0, 900, 903, 909, 942, 0,
 428		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 429	/* 0x31 - 1440x900@85Hz */
 430	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
 431		   1696, 1952, 0, 900, 903, 909, 948, 0,
 432		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 433	/* 0x32 - 1440x900@120Hz RB */
 434	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
 435		   1520, 1600, 0, 900, 903, 909, 953, 0,
 436		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 437	/* 0x53 - 1600x900@60Hz */
 438	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
 439		   1704, 1800, 0, 900, 901, 904, 1000, 0,
 440		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 441	/* 0x33 - 1600x1200@60Hz */
 442	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
 443		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 444		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 445	/* 0x34 - 1600x1200@65Hz */
 446	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
 447		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 448		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 449	/* 0x35 - 1600x1200@70Hz */
 450	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
 451		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 452		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 453	/* 0x36 - 1600x1200@75Hz */
 454	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
 455		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 456		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 457	/* 0x37 - 1600x1200@85Hz */
 458	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
 459		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 460		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 461	/* 0x38 - 1600x1200@120Hz RB */
 462	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
 463		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
 464		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 465	/* 0x39 - 1680x1050@60Hz RB */
 466	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
 467		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
 468		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 469	/* 0x3a - 1680x1050@60Hz */
 470	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
 471		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
 472		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 473	/* 0x3b - 1680x1050@75Hz */
 474	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
 475		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
 476		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 477	/* 0x3c - 1680x1050@85Hz */
 478	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
 479		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
 480		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 481	/* 0x3d - 1680x1050@120Hz RB */
 482	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
 483		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
 484		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 485	/* 0x3e - 1792x1344@60Hz */
 486	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
 487		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
 488		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 489	/* 0x3f - 1792x1344@75Hz */
 490	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
 491		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
 492		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 493	/* 0x40 - 1792x1344@120Hz RB */
 494	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
 495		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
 496		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 497	/* 0x41 - 1856x1392@60Hz */
 498	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
 499		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
 500		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 501	/* 0x42 - 1856x1392@75Hz */
 502	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
 503		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
 504		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 505	/* 0x43 - 1856x1392@120Hz RB */
 506	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
 507		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
 508		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 509	/* 0x52 - 1920x1080@60Hz */
 510	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 511		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 512		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 513	/* 0x44 - 1920x1200@60Hz RB */
 514	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
 515		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
 516		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 517	/* 0x45 - 1920x1200@60Hz */
 518	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
 519		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
 520		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 521	/* 0x46 - 1920x1200@75Hz */
 522	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
 523		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
 524		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 525	/* 0x47 - 1920x1200@85Hz */
 526	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
 527		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
 528		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 529	/* 0x48 - 1920x1200@120Hz RB */
 530	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
 531		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
 532		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 533	/* 0x49 - 1920x1440@60Hz */
 534	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
 535		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
 536		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 537	/* 0x4a - 1920x1440@75Hz */
 538	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
 539		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
 540		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 541	/* 0x4b - 1920x1440@120Hz RB */
 542	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
 543		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
 544		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 545	/* 0x54 - 2048x1152@60Hz */
 546	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
 547		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
 548		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 549	/* 0x4c - 2560x1600@60Hz RB */
 550	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
 551		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
 552		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 553	/* 0x4d - 2560x1600@60Hz */
 554	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
 555		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
 556		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 557	/* 0x4e - 2560x1600@75Hz */
 558	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
 559		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
 560		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 561	/* 0x4f - 2560x1600@85Hz */
 562	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
 563		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
 564		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 565	/* 0x50 - 2560x1600@120Hz RB */
 566	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
 567		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
 568		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 569	/* 0x57 - 4096x2160@60Hz RB */
 570	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
 571		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 572		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 573	/* 0x58 - 4096x2160@59.94Hz RB */
 574	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
 575		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 576		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 577};
 578
 579/*
 580 * These more or less come from the DMT spec.  The 720x400 modes are
 581 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
 582 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
 583 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
 584 * mode.
 585 *
 586 * The DMT modes have been fact-checked; the rest are mild guesses.
 587 */
 588static const struct drm_display_mode edid_est_modes[] = {
 589	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 590		   968, 1056, 0, 600, 601, 605, 628, 0,
 591		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
 592	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 593		   896, 1024, 0, 600, 601, 603,  625, 0,
 594		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
 595	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 596		   720, 840, 0, 480, 481, 484, 500, 0,
 597		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
 598	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 599		   704,  832, 0, 480, 489, 492, 520, 0,
 600		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
 601	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
 602		   768,  864, 0, 480, 483, 486, 525, 0,
 603		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
 604	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 605		   752, 800, 0, 480, 490, 492, 525, 0,
 606		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
 607	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
 608		   846, 900, 0, 400, 421, 423,  449, 0,
 609		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
 610	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
 611		   846,  900, 0, 400, 412, 414, 449, 0,
 612		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
 613	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 614		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 615		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
 616	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 617		   1136, 1312, 0,  768, 769, 772, 800, 0,
 618		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
 619	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 620		   1184, 1328, 0,  768, 771, 777, 806, 0,
 621		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
 622	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 623		   1184, 1344, 0,  768, 771, 777, 806, 0,
 624		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
 625	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
 626		   1208, 1264, 0, 768, 768, 776, 817, 0,
 627		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
 628	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
 629		   928, 1152, 0, 624, 625, 628, 667, 0,
 630		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
 631	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 632		   896, 1056, 0, 600, 601, 604,  625, 0,
 633		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
 634	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 635		   976, 1040, 0, 600, 637, 643, 666, 0,
 636		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
 637	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 638		   1344, 1600, 0,  864, 865, 868, 900, 0,
 639		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
 640};
 641
 642struct minimode {
 643	short w;
 644	short h;
 645	short r;
 646	short rb;
 647};
 648
 649static const struct minimode est3_modes[] = {
 650	/* byte 6 */
 651	{ 640, 350, 85, 0 },
 652	{ 640, 400, 85, 0 },
 653	{ 720, 400, 85, 0 },
 654	{ 640, 480, 85, 0 },
 655	{ 848, 480, 60, 0 },
 656	{ 800, 600, 85, 0 },
 657	{ 1024, 768, 85, 0 },
 658	{ 1152, 864, 75, 0 },
 659	/* byte 7 */
 660	{ 1280, 768, 60, 1 },
 661	{ 1280, 768, 60, 0 },
 662	{ 1280, 768, 75, 0 },
 663	{ 1280, 768, 85, 0 },
 664	{ 1280, 960, 60, 0 },
 665	{ 1280, 960, 85, 0 },
 666	{ 1280, 1024, 60, 0 },
 667	{ 1280, 1024, 85, 0 },
 668	/* byte 8 */
 669	{ 1360, 768, 60, 0 },
 670	{ 1440, 900, 60, 1 },
 671	{ 1440, 900, 60, 0 },
 672	{ 1440, 900, 75, 0 },
 673	{ 1440, 900, 85, 0 },
 674	{ 1400, 1050, 60, 1 },
 675	{ 1400, 1050, 60, 0 },
 676	{ 1400, 1050, 75, 0 },
 677	/* byte 9 */
 678	{ 1400, 1050, 85, 0 },
 679	{ 1680, 1050, 60, 1 },
 680	{ 1680, 1050, 60, 0 },
 681	{ 1680, 1050, 75, 0 },
 682	{ 1680, 1050, 85, 0 },
 683	{ 1600, 1200, 60, 0 },
 684	{ 1600, 1200, 65, 0 },
 685	{ 1600, 1200, 70, 0 },
 686	/* byte 10 */
 687	{ 1600, 1200, 75, 0 },
 688	{ 1600, 1200, 85, 0 },
 689	{ 1792, 1344, 60, 0 },
 690	{ 1792, 1344, 75, 0 },
 691	{ 1856, 1392, 60, 0 },
 692	{ 1856, 1392, 75, 0 },
 693	{ 1920, 1200, 60, 1 },
 694	{ 1920, 1200, 60, 0 },
 695	/* byte 11 */
 696	{ 1920, 1200, 75, 0 },
 697	{ 1920, 1200, 85, 0 },
 698	{ 1920, 1440, 60, 0 },
 699	{ 1920, 1440, 75, 0 },
 700};
 701
 702static const struct minimode extra_modes[] = {
 703	{ 1024, 576,  60, 0 },
 704	{ 1366, 768,  60, 0 },
 705	{ 1600, 900,  60, 0 },
 706	{ 1680, 945,  60, 0 },
 707	{ 1920, 1080, 60, 0 },
 708	{ 2048, 1152, 60, 0 },
 709	{ 2048, 1536, 60, 0 },
 710};
 711
 712/*
 713 * Probably taken from CEA-861 spec.
 714 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
 715 *
 716 * Index using the VIC.
 717 */
 718static const struct drm_display_mode edid_cea_modes[] = {
 719	/* 0 - dummy, VICs start at 1 */
 720	{ },
 721	/* 1 - 640x480@60Hz 4:3 */
 722	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 723		   752, 800, 0, 480, 490, 492, 525, 0,
 724		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 725	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 726	/* 2 - 720x480@60Hz 4:3 */
 727	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 728		   798, 858, 0, 480, 489, 495, 525, 0,
 729		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 730	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 731	/* 3 - 720x480@60Hz 16:9 */
 732	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 733		   798, 858, 0, 480, 489, 495, 525, 0,
 734		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 735	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 736	/* 4 - 1280x720@60Hz 16:9 */
 737	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 738		   1430, 1650, 0, 720, 725, 730, 750, 0,
 739		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 740	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 741	/* 5 - 1920x1080i@60Hz 16:9 */
 742	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 743		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 744		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 745		   DRM_MODE_FLAG_INTERLACE),
 746	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 747	/* 6 - 720(1440)x480i@60Hz 4:3 */
 748	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 749		   801, 858, 0, 480, 488, 494, 525, 0,
 750		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 751		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 752	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 753	/* 7 - 720(1440)x480i@60Hz 16:9 */
 754	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 755		   801, 858, 0, 480, 488, 494, 525, 0,
 756		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 757		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 758	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 759	/* 8 - 720(1440)x240@60Hz 4:3 */
 760	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 761		   801, 858, 0, 240, 244, 247, 262, 0,
 762		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 763		   DRM_MODE_FLAG_DBLCLK),
 764	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 765	/* 9 - 720(1440)x240@60Hz 16:9 */
 766	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 767		   801, 858, 0, 240, 244, 247, 262, 0,
 768		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 769		   DRM_MODE_FLAG_DBLCLK),
 770	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 771	/* 10 - 2880x480i@60Hz 4:3 */
 772	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 773		   3204, 3432, 0, 480, 488, 494, 525, 0,
 774		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 775		   DRM_MODE_FLAG_INTERLACE),
 776	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 777	/* 11 - 2880x480i@60Hz 16:9 */
 778	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 779		   3204, 3432, 0, 480, 488, 494, 525, 0,
 780		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 781		   DRM_MODE_FLAG_INTERLACE),
 782	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 783	/* 12 - 2880x240@60Hz 4:3 */
 784	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 785		   3204, 3432, 0, 240, 244, 247, 262, 0,
 786		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 787	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 788	/* 13 - 2880x240@60Hz 16:9 */
 789	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 790		   3204, 3432, 0, 240, 244, 247, 262, 0,
 791		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 792	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 793	/* 14 - 1440x480@60Hz 4:3 */
 794	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 795		   1596, 1716, 0, 480, 489, 495, 525, 0,
 796		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 797	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 798	/* 15 - 1440x480@60Hz 16:9 */
 799	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 800		   1596, 1716, 0, 480, 489, 495, 525, 0,
 801		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 802	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 803	/* 16 - 1920x1080@60Hz 16:9 */
 804	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 805		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 806		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 807	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 808	/* 17 - 720x576@50Hz 4:3 */
 809	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 810		   796, 864, 0, 576, 581, 586, 625, 0,
 811		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 812	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 813	/* 18 - 720x576@50Hz 16:9 */
 814	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 815		   796, 864, 0, 576, 581, 586, 625, 0,
 816		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 817	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 818	/* 19 - 1280x720@50Hz 16:9 */
 819	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
 820		   1760, 1980, 0, 720, 725, 730, 750, 0,
 821		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 822	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 823	/* 20 - 1920x1080i@50Hz 16:9 */
 824	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 825		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 826		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 827		   DRM_MODE_FLAG_INTERLACE),
 828	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 829	/* 21 - 720(1440)x576i@50Hz 4:3 */
 830	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 831		   795, 864, 0, 576, 580, 586, 625, 0,
 832		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 833		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 834	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 835	/* 22 - 720(1440)x576i@50Hz 16:9 */
 836	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 837		   795, 864, 0, 576, 580, 586, 625, 0,
 838		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 839		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 840	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 841	/* 23 - 720(1440)x288@50Hz 4:3 */
 842	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 843		   795, 864, 0, 288, 290, 293, 312, 0,
 844		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 845		   DRM_MODE_FLAG_DBLCLK),
 846	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 847	/* 24 - 720(1440)x288@50Hz 16:9 */
 848	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 849		   795, 864, 0, 288, 290, 293, 312, 0,
 850		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 851		   DRM_MODE_FLAG_DBLCLK),
 852	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 853	/* 25 - 2880x576i@50Hz 4:3 */
 854	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 855		   3180, 3456, 0, 576, 580, 586, 625, 0,
 856		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 857		   DRM_MODE_FLAG_INTERLACE),
 858	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 859	/* 26 - 2880x576i@50Hz 16:9 */
 860	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 861		   3180, 3456, 0, 576, 580, 586, 625, 0,
 862		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 863		   DRM_MODE_FLAG_INTERLACE),
 864	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 865	/* 27 - 2880x288@50Hz 4:3 */
 866	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 867		   3180, 3456, 0, 288, 290, 293, 312, 0,
 868		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 869	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 870	/* 28 - 2880x288@50Hz 16:9 */
 871	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 872		   3180, 3456, 0, 288, 290, 293, 312, 0,
 873		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 874	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 875	/* 29 - 1440x576@50Hz 4:3 */
 876	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 877		   1592, 1728, 0, 576, 581, 586, 625, 0,
 878		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 879	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 880	/* 30 - 1440x576@50Hz 16:9 */
 881	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 882		   1592, 1728, 0, 576, 581, 586, 625, 0,
 883		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 884	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 885	/* 31 - 1920x1080@50Hz 16:9 */
 886	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 887		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 888		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 889	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 890	/* 32 - 1920x1080@24Hz 16:9 */
 891	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
 892		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
 893		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 894	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 895	/* 33 - 1920x1080@25Hz 16:9 */
 896	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 897		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 898		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 899	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 900	/* 34 - 1920x1080@30Hz 16:9 */
 901	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 902		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 903		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 904	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 905	/* 35 - 2880x480@60Hz 4:3 */
 906	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 907		   3192, 3432, 0, 480, 489, 495, 525, 0,
 908		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 909	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 910	/* 36 - 2880x480@60Hz 16:9 */
 911	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 912		   3192, 3432, 0, 480, 489, 495, 525, 0,
 913		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 914	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 915	/* 37 - 2880x576@50Hz 4:3 */
 916	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 917		   3184, 3456, 0, 576, 581, 586, 625, 0,
 918		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 919	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 920	/* 38 - 2880x576@50Hz 16:9 */
 921	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 922		   3184, 3456, 0, 576, 581, 586, 625, 0,
 923		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 924	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 925	/* 39 - 1920x1080i@50Hz 16:9 */
 926	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
 927		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
 928		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
 929		   DRM_MODE_FLAG_INTERLACE),
 930	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 931	/* 40 - 1920x1080i@100Hz 16:9 */
 932	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 933		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 934		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 935		   DRM_MODE_FLAG_INTERLACE),
 936	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 937	/* 41 - 1280x720@100Hz 16:9 */
 938	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
 939		   1760, 1980, 0, 720, 725, 730, 750, 0,
 940		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 941	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 942	/* 42 - 720x576@100Hz 4:3 */
 943	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 944		   796, 864, 0, 576, 581, 586, 625, 0,
 945		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 946	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 947	/* 43 - 720x576@100Hz 16:9 */
 948	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 949		   796, 864, 0, 576, 581, 586, 625, 0,
 950		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 951	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 952	/* 44 - 720(1440)x576i@100Hz 4:3 */
 953	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 954		   795, 864, 0, 576, 580, 586, 625, 0,
 955		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 956		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 957	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 958	/* 45 - 720(1440)x576i@100Hz 16:9 */
 959	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 960		   795, 864, 0, 576, 580, 586, 625, 0,
 961		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 962		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 963	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 964	/* 46 - 1920x1080i@120Hz 16:9 */
 965	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 966		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 967		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 968		   DRM_MODE_FLAG_INTERLACE),
 969	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 970	/* 47 - 1280x720@120Hz 16:9 */
 971	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
 972		   1430, 1650, 0, 720, 725, 730, 750, 0,
 973		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 974	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 975	/* 48 - 720x480@120Hz 4:3 */
 976	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 977		   798, 858, 0, 480, 489, 495, 525, 0,
 978		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 979	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 980	/* 49 - 720x480@120Hz 16:9 */
 981	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 982		   798, 858, 0, 480, 489, 495, 525, 0,
 983		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 984	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 985	/* 50 - 720(1440)x480i@120Hz 4:3 */
 986	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
 987		   801, 858, 0, 480, 488, 494, 525, 0,
 988		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 989		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 990	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 991	/* 51 - 720(1440)x480i@120Hz 16:9 */
 992	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
 993		   801, 858, 0, 480, 488, 494, 525, 0,
 994		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 995		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 996	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 997	/* 52 - 720x576@200Hz 4:3 */
 998	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
 999		   796, 864, 0, 576, 581, 586, 625, 0,
1000		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1001	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1002	/* 53 - 720x576@200Hz 16:9 */
1003	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1004		   796, 864, 0, 576, 581, 586, 625, 0,
1005		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1006	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1007	/* 54 - 720(1440)x576i@200Hz 4:3 */
1008	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1009		   795, 864, 0, 576, 580, 586, 625, 0,
1010		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1011		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1012	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1013	/* 55 - 720(1440)x576i@200Hz 16:9 */
1014	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1015		   795, 864, 0, 576, 580, 586, 625, 0,
1016		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1017		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1018	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1019	/* 56 - 720x480@240Hz 4:3 */
1020	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1021		   798, 858, 0, 480, 489, 495, 525, 0,
1022		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1023	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1024	/* 57 - 720x480@240Hz 16:9 */
1025	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1026		   798, 858, 0, 480, 489, 495, 525, 0,
1027		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1028	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1029	/* 58 - 720(1440)x480i@240Hz 4:3 */
1030	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1031		   801, 858, 0, 480, 488, 494, 525, 0,
1032		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1033		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1034	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1035	/* 59 - 720(1440)x480i@240Hz 16:9 */
1036	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1037		   801, 858, 0, 480, 488, 494, 525, 0,
1038		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1039		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1040	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1041	/* 60 - 1280x720@24Hz 16:9 */
1042	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1043		   3080, 3300, 0, 720, 725, 730, 750, 0,
1044		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1045	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1046	/* 61 - 1280x720@25Hz 16:9 */
1047	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1048		   3740, 3960, 0, 720, 725, 730, 750, 0,
1049		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1050	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1051	/* 62 - 1280x720@30Hz 16:9 */
1052	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1053		   3080, 3300, 0, 720, 725, 730, 750, 0,
1054		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1055	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1056	/* 63 - 1920x1080@120Hz 16:9 */
1057	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1058		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1059		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1060	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061	/* 64 - 1920x1080@100Hz 16:9 */
1062	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1063		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1064		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066	/* 65 - 1280x720@24Hz 64:27 */
1067	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1068		   3080, 3300, 0, 720, 725, 730, 750, 0,
1069		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1071	/* 66 - 1280x720@25Hz 64:27 */
1072	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1073		   3740, 3960, 0, 720, 725, 730, 750, 0,
1074		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1076	/* 67 - 1280x720@30Hz 64:27 */
1077	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1078		   3080, 3300, 0, 720, 725, 730, 750, 0,
1079		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1081	/* 68 - 1280x720@50Hz 64:27 */
1082	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1083		   1760, 1980, 0, 720, 725, 730, 750, 0,
1084		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1086	/* 69 - 1280x720@60Hz 64:27 */
1087	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1088		   1430, 1650, 0, 720, 725, 730, 750, 0,
1089		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091	/* 70 - 1280x720@100Hz 64:27 */
1092	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1093		   1760, 1980, 0, 720, 725, 730, 750, 0,
1094		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096	/* 71 - 1280x720@120Hz 64:27 */
1097	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1098		   1430, 1650, 0, 720, 725, 730, 750, 0,
1099		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101	/* 72 - 1920x1080@24Hz 64:27 */
1102	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1103		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1104		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106	/* 73 - 1920x1080@25Hz 64:27 */
1107	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1108		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1109		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111	/* 74 - 1920x1080@30Hz 64:27 */
1112	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1113		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1114		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116	/* 75 - 1920x1080@50Hz 64:27 */
1117	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1118		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1119		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121	/* 76 - 1920x1080@60Hz 64:27 */
1122	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1123		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1124		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126	/* 77 - 1920x1080@100Hz 64:27 */
1127	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1128		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131	/* 78 - 1920x1080@120Hz 64:27 */
1132	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1133		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136	/* 79 - 1680x720@24Hz 64:27 */
1137	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1138		   3080, 3300, 0, 720, 725, 730, 750, 0,
1139		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141	/* 80 - 1680x720@25Hz 64:27 */
1142	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1143		   2948, 3168, 0, 720, 725, 730, 750, 0,
1144		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146	/* 81 - 1680x720@30Hz 64:27 */
1147	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1148		   2420, 2640, 0, 720, 725, 730, 750, 0,
1149		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151	/* 82 - 1680x720@50Hz 64:27 */
1152	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1153		   1980, 2200, 0, 720, 725, 730, 750, 0,
1154		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156	/* 83 - 1680x720@60Hz 64:27 */
1157	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1158		   1980, 2200, 0, 720, 725, 730, 750, 0,
1159		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161	/* 84 - 1680x720@100Hz 64:27 */
1162	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1163		   1780, 2000, 0, 720, 725, 730, 825, 0,
1164		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166	/* 85 - 1680x720@120Hz 64:27 */
1167	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1168		   1780, 2000, 0, 720, 725, 730, 825, 0,
1169		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171	/* 86 - 2560x1080@24Hz 64:27 */
1172	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1173		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1174		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176	/* 87 - 2560x1080@25Hz 64:27 */
1177	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1178		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1179		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181	/* 88 - 2560x1080@30Hz 64:27 */
1182	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1183		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1184		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186	/* 89 - 2560x1080@50Hz 64:27 */
1187	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1188		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1189		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191	/* 90 - 2560x1080@60Hz 64:27 */
1192	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1193		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1194		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196	/* 91 - 2560x1080@100Hz 64:27 */
1197	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1198		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1199		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201	/* 92 - 2560x1080@120Hz 64:27 */
1202	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1203		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1204		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206	/* 93 - 3840x2160@24Hz 16:9 */
1207	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1208		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1209		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1211	/* 94 - 3840x2160@25Hz 16:9 */
1212	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1213		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1214		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1216	/* 95 - 3840x2160@30Hz 16:9 */
1217	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1218		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1219		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1221	/* 96 - 3840x2160@50Hz 16:9 */
1222	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1223		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1224		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1226	/* 97 - 3840x2160@60Hz 16:9 */
1227	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1228		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1229		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231	/* 98 - 4096x2160@24Hz 256:135 */
1232	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1233		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1234		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1236	/* 99 - 4096x2160@25Hz 256:135 */
1237	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1238		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1239		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1241	/* 100 - 4096x2160@30Hz 256:135 */
1242	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1243		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1244		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1246	/* 101 - 4096x2160@50Hz 256:135 */
1247	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1248		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1249		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1251	/* 102 - 4096x2160@60Hz 256:135 */
1252	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1253		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1254		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256	/* 103 - 3840x2160@24Hz 64:27 */
1257	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1258		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1259		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1261	/* 104 - 3840x2160@25Hz 64:27 */
1262	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1263		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1264		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1266	/* 105 - 3840x2160@30Hz 64:27 */
1267	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1268		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1269		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1271	/* 106 - 3840x2160@50Hz 64:27 */
1272	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1273		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1274		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1276	/* 107 - 3840x2160@60Hz 64:27 */
1277	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1278		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1279		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1281};
1282
1283/*
1284 * HDMI 1.4 4k modes. Index using the VIC.
1285 */
1286static const struct drm_display_mode edid_4k_modes[] = {
1287	/* 0 - dummy, VICs start at 1 */
1288	{ },
1289	/* 1 - 3840x2160@30Hz */
1290	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1291		   3840, 4016, 4104, 4400, 0,
1292		   2160, 2168, 2178, 2250, 0,
1293		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1294	  .vrefresh = 30, },
1295	/* 2 - 3840x2160@25Hz */
1296	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1297		   3840, 4896, 4984, 5280, 0,
1298		   2160, 2168, 2178, 2250, 0,
1299		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300	  .vrefresh = 25, },
1301	/* 3 - 3840x2160@24Hz */
1302	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1303		   3840, 5116, 5204, 5500, 0,
1304		   2160, 2168, 2178, 2250, 0,
1305		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1306	  .vrefresh = 24, },
1307	/* 4 - 4096x2160@24Hz (SMPTE) */
1308	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1309		   4096, 5116, 5204, 5500, 0,
1310		   2160, 2168, 2178, 2250, 0,
1311		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1312	  .vrefresh = 24, },
1313};
1314
1315/*** DDC fetch and block validation ***/
1316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1317static const u8 edid_header[] = {
1318	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1319};
1320
 
 
 
 
 
1321/**
1322 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1323 * @raw_edid: pointer to raw base EDID block
1324 *
1325 * Sanity check the header of the base EDID block.
1326 *
1327 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1328 */
1329int drm_edid_header_is_valid(const u8 *raw_edid)
1330{
 
1331	int i, score = 0;
1332
1333	for (i = 0; i < sizeof(edid_header); i++)
1334		if (raw_edid[i] == edid_header[i])
1335			score++;
 
1336
1337	return score;
1338}
1339EXPORT_SYMBOL(drm_edid_header_is_valid);
1340
1341static int edid_fixup __read_mostly = 6;
1342module_param_named(edid_fixup, edid_fixup, int, 0400);
1343MODULE_PARM_DESC(edid_fixup,
1344		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1345
1346static void drm_get_displayid(struct drm_connector *connector,
1347			      struct edid *edid);
1348static int validate_displayid(u8 *displayid, int length, int idx);
1349
1350static int drm_edid_block_checksum(const u8 *raw_edid)
1351{
 
1352	int i;
1353	u8 csum = 0;
1354	for (i = 0; i < EDID_LENGTH; i++)
1355		csum += raw_edid[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
1356
1357	return csum;
 
 
 
 
1358}
1359
1360static bool drm_edid_is_zero(const u8 *in_edid, int length)
1361{
1362	if (memchr_inv(in_edid, 0, length))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1363		return false;
1364
 
 
 
 
 
 
 
 
 
 
 
1365	return true;
1366}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367
1368/**
1369 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1370 * @raw_edid: pointer to raw EDID block
1371 * @block: type of block to validate (0 for base, extension otherwise)
1372 * @print_bad_edid: if true, dump bad EDID blocks to the console
1373 * @edid_corrupt: if true, the header or checksum is invalid
1374 *
1375 * Validate a base or extension EDID block and optionally dump bad blocks to
1376 * the console.
1377 *
1378 * Return: True if the block is valid, false otherwise.
1379 */
1380bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1381			  bool *edid_corrupt)
1382{
1383	u8 csum;
1384	struct edid *edid = (struct edid *)raw_edid;
 
 
1385
1386	if (WARN_ON(!raw_edid))
1387		return false;
1388
1389	if (edid_fixup > 8 || edid_fixup < 0)
1390		edid_fixup = 6;
1391
1392	if (block == 0) {
1393		int score = drm_edid_header_is_valid(raw_edid);
1394		if (score == 8) {
1395			if (edid_corrupt)
1396				*edid_corrupt = false;
1397		} else if (score >= edid_fixup) {
1398			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1399			 * The corrupt flag needs to be set here otherwise, the
1400			 * fix-up code here will correct the problem, the
1401			 * checksum is correct and the test fails
1402			 */
1403			if (edid_corrupt)
1404				*edid_corrupt = true;
1405			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1406			memcpy(raw_edid, edid_header, sizeof(edid_header));
1407		} else {
1408			if (edid_corrupt)
1409				*edid_corrupt = true;
1410			goto bad;
1411		}
1412	}
1413
1414	csum = drm_edid_block_checksum(raw_edid);
1415	if (csum) {
1416		if (edid_corrupt)
 
 
 
 
 
 
1417			*edid_corrupt = true;
1418
1419		/* allow CEA to slide through, switches mangle this */
1420		if (raw_edid[0] == CEA_EXT) {
1421			DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum);
1422			DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n");
1423		} else {
1424			if (print_bad_edid)
1425				DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum);
1426
1427			goto bad;
1428		}
1429	}
1430
1431	/* per-block-type checks */
1432	switch (raw_edid[0]) {
1433	case 0: /* base */
1434		if (edid->version != 1) {
1435			DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version);
1436			goto bad;
1437		}
1438
1439		if (edid->revision > 4)
1440			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1441		break;
1442
1443	default:
1444		break;
 
1445	}
1446
1447	return true;
1448
1449bad:
1450	if (print_bad_edid) {
1451		if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1452			pr_notice("EDID block is all zeroes\n");
1453		} else {
1454			pr_notice("Raw EDID:\n");
1455			print_hex_dump(KERN_NOTICE,
1456				       " \t", DUMP_PREFIX_NONE, 16, 1,
1457				       raw_edid, EDID_LENGTH, false);
1458		}
1459	}
1460	return false;
1461}
1462EXPORT_SYMBOL(drm_edid_block_valid);
1463
1464/**
1465 * drm_edid_is_valid - sanity check EDID data
1466 * @edid: EDID data
1467 *
1468 * Sanity-check an entire EDID record (including extensions)
1469 *
1470 * Return: True if the EDID data is valid, false otherwise.
1471 */
1472bool drm_edid_is_valid(struct edid *edid)
1473{
1474	int i;
1475	u8 *raw = (u8 *)edid;
1476
1477	if (!edid)
1478		return false;
1479
1480	for (i = 0; i <= edid->extensions; i++)
1481		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
 
 
1482			return false;
 
1483
1484	return true;
1485}
1486EXPORT_SYMBOL(drm_edid_is_valid);
1487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1488#define DDC_SEGMENT_ADDR 0x30
1489/**
1490 * drm_do_probe_ddc_edid() - get EDID information via I2C
1491 * @data: I2C device adapter
1492 * @buf: EDID data buffer to be filled
1493 * @block: 128 byte EDID block to start fetching from
1494 * @len: EDID data buffer length to fetch
1495 *
1496 * Try to fetch EDID information by calling I2C driver functions.
1497 *
1498 * Return: 0 on success or -1 on failure.
1499 */
1500static int
1501drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1502{
1503	struct i2c_adapter *adapter = data;
1504	unsigned char start = block * EDID_LENGTH;
1505	unsigned char segment = block >> 1;
1506	unsigned char xfers = segment ? 3 : 2;
1507	int ret, retries = 5;
1508
1509	/*
1510	 * The core I2C driver will automatically retry the transfer if the
1511	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1512	 * are susceptible to errors under a heavily loaded machine and
1513	 * generate spurious NAKs and timeouts. Retrying the transfer
1514	 * of the individual block a few times seems to overcome this.
1515	 */
1516	do {
1517		struct i2c_msg msgs[] = {
1518			{
1519				.addr	= DDC_SEGMENT_ADDR,
1520				.flags	= 0,
1521				.len	= 1,
1522				.buf	= &segment,
1523			}, {
1524				.addr	= DDC_ADDR,
1525				.flags	= 0,
1526				.len	= 1,
1527				.buf	= &start,
1528			}, {
1529				.addr	= DDC_ADDR,
1530				.flags	= I2C_M_RD,
1531				.len	= len,
1532				.buf	= buf,
1533			}
1534		};
1535
1536		/*
1537		 * Avoid sending the segment addr to not upset non-compliant
1538		 * DDC monitors.
1539		 */
1540		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1541
1542		if (ret == -ENXIO) {
1543			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1544					adapter->name);
1545			break;
1546		}
1547	} while (ret != xfers && --retries);
1548
1549	return ret == xfers ? 0 : -1;
1550}
1551
1552static void connector_bad_edid(struct drm_connector *connector,
1553			       u8 *edid, int num_blocks)
1554{
1555	int i;
 
1556
1557	if (connector->bad_edid_counter++ && !(drm_debug & DRM_UT_KMS))
1558		return;
 
 
 
 
 
1559
1560	dev_warn(connector->dev->dev,
1561		 "%s: EDID is invalid:\n",
1562		 connector->name);
1563	for (i = 0; i < num_blocks; i++) {
1564		u8 *block = edid + i * EDID_LENGTH;
1565		char prefix[20];
1566
1567		if (drm_edid_is_zero(block, EDID_LENGTH))
1568			sprintf(prefix, "\t[%02x] ZERO ", i);
1569		else if (!drm_edid_block_valid(block, i, false, NULL))
1570			sprintf(prefix, "\t[%02x] BAD  ", i);
1571		else
1572			sprintf(prefix, "\t[%02x] GOOD ", i);
1573
1574		print_hex_dump(KERN_WARNING,
1575			       prefix, DUMP_PREFIX_NONE, 16, 1,
1576			       block, EDID_LENGTH, false);
1577	}
 
 
 
1578}
1579
1580/* Get override or firmware EDID */
1581static struct edid *drm_get_override_edid(struct drm_connector *connector)
1582{
1583	struct edid *override = NULL;
 
 
1584
1585	if (connector->override_edid)
1586		override = drm_edid_duplicate(connector->edid_blob_ptr->data);
 
 
1587
1588	if (!override)
1589		override = drm_load_edid_firmware(connector);
1590
1591	return IS_ERR(override) ? NULL : override;
1592}
1593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594/**
1595 * drm_add_override_edid_modes - add modes from override/firmware EDID
1596 * @connector: connector we're probing
1597 *
1598 * Add modes from the override/firmware EDID, if available. Only to be used from
1599 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
1600 * failed during drm_get_edid() and caused the override/firmware EDID to be
1601 * skipped.
1602 *
1603 * Return: The number of modes added or 0 if we couldn't find any.
1604 */
1605int drm_add_override_edid_modes(struct drm_connector *connector)
1606{
1607	struct edid *override;
1608	int num_modes = 0;
1609
1610	override = drm_get_override_edid(connector);
1611	if (override) {
1612		drm_connector_update_edid_property(connector, override);
1613		num_modes = drm_add_edid_modes(connector, override);
1614		kfree(override);
1615
1616		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
1617			      connector->base.id, connector->name, num_modes);
 
 
 
1618	}
1619
1620	return num_modes;
1621}
1622EXPORT_SYMBOL(drm_add_override_edid_modes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1623
1624/**
1625 * drm_do_get_edid - get EDID data using a custom EDID block read function
1626 * @connector: connector we're probing
1627 * @get_edid_block: EDID block read function
1628 * @data: private data passed to the block read function
1629 *
1630 * When the I2C adapter connected to the DDC bus is hidden behind a device that
1631 * exposes a different interface to read EDID blocks this function can be used
1632 * to get EDID data using a custom block read function.
1633 *
1634 * As in the general case the DDC bus is accessible by the kernel at the I2C
1635 * level, drivers must make all reasonable efforts to expose it as an I2C
1636 * adapter and use drm_get_edid() instead of abusing this function.
1637 *
1638 * The EDID may be overridden using debugfs override_edid or firmare EDID
1639 * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
1640 * order. Having either of them bypasses actual EDID reads.
1641 *
1642 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1643 */
1644struct edid *drm_do_get_edid(struct drm_connector *connector,
1645	int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1646			      size_t len),
1647	void *data)
1648{
1649	int i, j = 0, valid_extensions = 0;
1650	u8 *edid, *new;
1651	struct edid *override;
1652
1653	override = drm_get_override_edid(connector);
1654	if (override)
1655		return override;
1656
1657	if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
1658		return NULL;
1659
1660	/* base block fetch */
1661	for (i = 0; i < 4; i++) {
1662		if (get_edid_block(data, edid, 0, EDID_LENGTH))
1663			goto out;
1664		if (drm_edid_block_valid(edid, 0, false,
1665					 &connector->edid_corrupt))
1666			break;
1667		if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) {
1668			connector->null_edid_counter++;
1669			goto carp;
1670		}
1671	}
1672	if (i == 4)
1673		goto carp;
1674
1675	/* if there's no extensions, we're done */
1676	valid_extensions = edid[0x7e];
1677	if (valid_extensions == 0)
1678		return (struct edid *)edid;
1679
1680	new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1681	if (!new)
1682		goto out;
1683	edid = new;
1684
1685	for (j = 1; j <= edid[0x7e]; j++) {
1686		u8 *block = edid + j * EDID_LENGTH;
 
 
1687
1688		for (i = 0; i < 4; i++) {
1689			if (get_edid_block(data, block, j, EDID_LENGTH))
1690				goto out;
1691			if (drm_edid_block_valid(block, j, false, NULL))
1692				break;
1693		}
1694
1695		if (i == 4)
1696			valid_extensions--;
 
 
1697	}
1698
1699	if (valid_extensions != edid[0x7e]) {
1700		u8 *base;
1701
1702		connector_bad_edid(connector, edid, edid[0x7e] + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703
1704		edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions;
1705		edid[0x7e] = valid_extensions;
1706
1707		new = kmalloc_array(valid_extensions + 1, EDID_LENGTH,
1708				    GFP_KERNEL);
1709		if (!new)
1710			goto out;
1711
1712		base = new;
1713		for (i = 0; i <= edid[0x7e]; i++) {
1714			u8 *block = edid + i * EDID_LENGTH;
1715
1716			if (!drm_edid_block_valid(block, i, false, NULL))
1717				continue;
 
1718
1719			memcpy(base, block, EDID_LENGTH);
1720			base += EDID_LENGTH;
1721		}
 
 
 
 
 
 
 
 
 
1722
1723		kfree(edid);
1724		edid = new;
1725	}
1726
1727	return (struct edid *)edid;
 
 
 
 
 
 
 
1728
1729carp:
1730	connector_bad_edid(connector, edid, 1);
1731out:
1732	kfree(edid);
1733	return NULL;
1734}
1735EXPORT_SYMBOL_GPL(drm_do_get_edid);
1736
1737/**
1738 * drm_probe_ddc() - probe DDC presence
1739 * @adapter: I2C adapter to probe
1740 *
1741 * Return: True on success, false on failure.
1742 */
1743bool
1744drm_probe_ddc(struct i2c_adapter *adapter)
1745{
1746	unsigned char out;
1747
1748	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1749}
1750EXPORT_SYMBOL(drm_probe_ddc);
1751
1752/**
1753 * drm_get_edid - get EDID data, if available
1754 * @connector: connector we're probing
1755 * @adapter: I2C adapter to use for DDC
1756 *
1757 * Poke the given I2C channel to grab EDID data if possible.  If found,
1758 * attach it to the connector.
1759 *
1760 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1761 */
1762struct edid *drm_get_edid(struct drm_connector *connector,
1763			  struct i2c_adapter *adapter)
1764{
1765	struct edid *edid;
1766
1767	if (connector->force == DRM_FORCE_OFF)
1768		return NULL;
1769
1770	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
1771		return NULL;
1772
1773	edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1774	if (edid)
1775		drm_get_displayid(connector, edid);
1776	return edid;
1777}
1778EXPORT_SYMBOL(drm_get_edid);
1779
1780/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
1782 * @connector: connector we're probing
1783 * @adapter: I2C adapter to use for DDC
1784 *
1785 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
1786 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
1787 * switch DDC to the GPU which is retrieving EDID.
1788 *
1789 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
1790 */
1791struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
1792				     struct i2c_adapter *adapter)
1793{
1794	struct pci_dev *pdev = connector->dev->pdev;
 
1795	struct edid *edid;
1796
 
 
 
1797	vga_switcheroo_lock_ddc(pdev);
1798	edid = drm_get_edid(connector, adapter);
1799	vga_switcheroo_unlock_ddc(pdev);
1800
1801	return edid;
1802}
1803EXPORT_SYMBOL(drm_get_edid_switcheroo);
1804
1805/**
1806 * drm_edid_duplicate - duplicate an EDID and the extensions
1807 * @edid: EDID to duplicate
 
1808 *
1809 * Return: Pointer to duplicated EDID or NULL on allocation failure.
 
 
 
 
1810 */
1811struct edid *drm_edid_duplicate(const struct edid *edid)
 
1812{
1813	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1814}
1815EXPORT_SYMBOL(drm_edid_duplicate);
1816
1817/*** EDID parsing ***/
 
 
 
 
 
 
 
 
 
1818
1819/**
1820 * edid_vendor - match a string against EDID's obfuscated vendor field
1821 * @edid: EDID to match
1822 * @vendor: vendor string
1823 *
1824 * Returns true if @vendor is in @edid, false otherwise
1825 */
1826static bool edid_vendor(const struct edid *edid, const char *vendor)
1827{
1828	char edid_vendor[3];
1829
1830	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1831	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1832			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1833	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1834
1835	return !strncmp(edid_vendor, vendor, 3);
1836}
 
 
 
1837
1838/**
1839 * edid_get_quirks - return quirk flags for a given EDID
1840 * @edid: EDID to process
1841 *
1842 * This tells subsequent routines what fixes they need to apply.
1843 */
1844static u32 edid_get_quirks(const struct edid *edid)
1845{
 
1846	const struct edid_quirk *quirk;
1847	int i;
1848
1849	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1850		quirk = &edid_quirk_list[i];
1851
1852		if (edid_vendor(edid, quirk->vendor) &&
1853		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1854			return quirk->quirks;
1855	}
1856
1857	return 0;
1858}
1859
1860#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1861#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1862
1863/**
1864 * edid_fixup_preferred - set preferred modes based on quirk list
1865 * @connector: has mode list to fix up
1866 * @quirks: quirks list
1867 *
1868 * Walk the mode list for @connector, clearing the preferred status
1869 * on existing modes and setting it anew for the right mode ala @quirks.
1870 */
1871static void edid_fixup_preferred(struct drm_connector *connector,
1872				 u32 quirks)
1873{
 
1874	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1875	int target_refresh = 0;
1876	int cur_vrefresh, preferred_vrefresh;
1877
1878	if (list_empty(&connector->probed_modes))
1879		return;
1880
1881	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1882		target_refresh = 60;
1883	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1884		target_refresh = 75;
1885
1886	preferred_mode = list_first_entry(&connector->probed_modes,
1887					  struct drm_display_mode, head);
1888
1889	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1890		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1891
1892		if (cur_mode == preferred_mode)
1893			continue;
1894
1895		/* Largest mode is preferred */
1896		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1897			preferred_mode = cur_mode;
1898
1899		cur_vrefresh = cur_mode->vrefresh ?
1900			cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1901		preferred_vrefresh = preferred_mode->vrefresh ?
1902			preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1903		/* At a given size, try to get closest to target refresh */
1904		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1905		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1906		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1907			preferred_mode = cur_mode;
1908		}
1909	}
1910
1911	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1912}
1913
1914static bool
1915mode_is_rb(const struct drm_display_mode *mode)
1916{
1917	return (mode->htotal - mode->hdisplay == 160) &&
1918	       (mode->hsync_end - mode->hdisplay == 80) &&
1919	       (mode->hsync_end - mode->hsync_start == 32) &&
1920	       (mode->vsync_start - mode->vdisplay == 3);
1921}
1922
1923/*
1924 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1925 * @dev: Device to duplicate against
1926 * @hsize: Mode width
1927 * @vsize: Mode height
1928 * @fresh: Mode refresh rate
1929 * @rb: Mode reduced-blanking-ness
1930 *
1931 * Walk the DMT mode list looking for a match for the given parameters.
1932 *
1933 * Return: A newly allocated copy of the mode, or NULL if not found.
1934 */
1935struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1936					   int hsize, int vsize, int fresh,
1937					   bool rb)
1938{
1939	int i;
1940
1941	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1942		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
 
1943		if (hsize != ptr->hdisplay)
1944			continue;
1945		if (vsize != ptr->vdisplay)
1946			continue;
1947		if (fresh != drm_mode_vrefresh(ptr))
1948			continue;
1949		if (rb != mode_is_rb(ptr))
1950			continue;
1951
1952		return drm_mode_duplicate(dev, ptr);
1953	}
1954
1955	return NULL;
1956}
1957EXPORT_SYMBOL(drm_mode_find_dmt);
1958
1959typedef void detailed_cb(struct detailed_timing *timing, void *closure);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1960
1961static void
1962cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1963{
1964	int i, n = 0;
1965	u8 d = ext[0x02];
1966	u8 *det_base = ext + d;
 
 
 
1967
1968	n = (127 - d) / 18;
1969	for (i = 0; i < n; i++)
1970		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1971}
1972
1973static void
1974vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1975{
1976	unsigned int i, n = min((int)ext[0x02], 6);
1977	u8 *det_base = ext + 5;
1978
1979	if (ext[0x01] != 1)
1980		return; /* unknown version */
1981
1982	for (i = 0; i < n; i++)
1983		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1984}
1985
1986static void
1987drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1988{
 
 
1989	int i;
1990	struct edid *edid = (struct edid *)raw_edid;
1991
1992	if (edid == NULL)
1993		return;
1994
1995	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1996		cb(&(edid->detailed_timings[i]), closure);
1997
1998	for (i = 1; i <= raw_edid[0x7e]; i++) {
1999		u8 *ext = raw_edid + (i * EDID_LENGTH);
2000		switch (*ext) {
2001		case CEA_EXT:
2002			cea_for_each_detailed_block(ext, cb, closure);
2003			break;
2004		case VTB_EXT:
2005			vtb_for_each_detailed_block(ext, cb, closure);
2006			break;
2007		default:
2008			break;
2009		}
2010	}
 
2011}
2012
2013static void
2014is_rb(struct detailed_timing *t, void *data)
2015{
2016	u8 *r = (u8 *)t;
2017	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
2018		if (r[15] & 0x10)
2019			*(bool *)data = true;
 
 
 
 
 
 
 
2020}
2021
2022/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
2023static bool
2024drm_monitor_supports_rb(struct edid *edid)
2025{
2026	if (edid->revision >= 4) {
2027		bool ret = false;
2028		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
 
2029		return ret;
2030	}
2031
2032	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
2033}
2034
2035static void
2036find_gtf2(struct detailed_timing *t, void *data)
2037{
2038	u8 *r = (u8 *)t;
2039	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
2040		*(u8 **)data = r;
 
 
 
 
 
 
2041}
2042
2043/* Secondary GTF curve kicks in above some break frequency */
2044static int
2045drm_gtf2_hbreak(struct edid *edid)
2046{
2047	u8 *r = NULL;
2048	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2049	return r ? (r[12] * 2) : 0;
 
 
 
 
2050}
2051
2052static int
2053drm_gtf2_2c(struct edid *edid)
2054{
2055	u8 *r = NULL;
2056	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2057	return r ? r[13] : 0;
 
 
 
 
2058}
2059
2060static int
2061drm_gtf2_m(struct edid *edid)
2062{
2063	u8 *r = NULL;
2064	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2065	return r ? (r[15] << 8) + r[14] : 0;
 
 
 
 
2066}
2067
2068static int
2069drm_gtf2_k(struct edid *edid)
2070{
2071	u8 *r = NULL;
2072	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2073	return r ? r[16] : 0;
 
 
 
 
2074}
2075
2076static int
2077drm_gtf2_2j(struct edid *edid)
2078{
2079	u8 *r = NULL;
2080	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2081	return r ? r[17] : 0;
 
 
 
 
2082}
2083
2084/**
2085 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
2086 * @edid: EDID block to scan
2087 */
2088static int standard_timing_level(struct edid *edid)
2089{
2090	if (edid->revision >= 2) {
2091		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
2092			return LEVEL_CVT;
2093		if (drm_gtf2_hbreak(edid))
2094			return LEVEL_GTF2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095		return LEVEL_GTF;
 
 
2096	}
2097	return LEVEL_DMT;
2098}
2099
2100/*
2101 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
2102 * monitors fill with ascii space (0x20) instead.
2103 */
2104static int
2105bad_std_timing(u8 a, u8 b)
2106{
2107	return (a == 0x00 && b == 0x00) ||
2108	       (a == 0x01 && b == 0x01) ||
2109	       (a == 0x20 && b == 0x20);
2110}
2111
2112/**
2113 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
2114 * @connector: connector of for the EDID block
2115 * @edid: EDID block to scan
2116 * @t: standard timing params
2117 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118 * Take the standard timing params (in this case width, aspect, and refresh)
2119 * and convert them into a real mode using CVT/GTF/DMT.
2120 */
2121static struct drm_display_mode *
2122drm_mode_std(struct drm_connector *connector, struct edid *edid,
2123	     struct std_timing *t)
2124{
2125	struct drm_device *dev = connector->dev;
2126	struct drm_display_mode *m, *mode = NULL;
2127	int hsize, vsize;
2128	int vrefresh_rate;
2129	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
2130		>> EDID_TIMING_ASPECT_SHIFT;
2131	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
2132		>> EDID_TIMING_VFREQ_SHIFT;
2133	int timing_level = standard_timing_level(edid);
2134
2135	if (bad_std_timing(t->hsize, t->vfreq_aspect))
2136		return NULL;
2137
2138	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
2139	hsize = t->hsize * 8 + 248;
2140	/* vrefresh_rate = vfreq + 60 */
2141	vrefresh_rate = vfreq + 60;
2142	/* the vdisplay is calculated based on the aspect ratio */
2143	if (aspect_ratio == 0) {
2144		if (edid->revision < 3)
2145			vsize = hsize;
2146		else
2147			vsize = (hsize * 10) / 16;
2148	} else if (aspect_ratio == 1)
2149		vsize = (hsize * 3) / 4;
2150	else if (aspect_ratio == 2)
2151		vsize = (hsize * 4) / 5;
2152	else
2153		vsize = (hsize * 9) / 16;
2154
2155	/* HDTV hack, part 1 */
2156	if (vrefresh_rate == 60 &&
2157	    ((hsize == 1360 && vsize == 765) ||
2158	     (hsize == 1368 && vsize == 769))) {
2159		hsize = 1366;
2160		vsize = 768;
2161	}
2162
2163	/*
2164	 * If this connector already has a mode for this size and refresh
2165	 * rate (because it came from detailed or CVT info), use that
2166	 * instead.  This way we don't have to guess at interlace or
2167	 * reduced blanking.
2168	 */
2169	list_for_each_entry(m, &connector->probed_modes, head)
2170		if (m->hdisplay == hsize && m->vdisplay == vsize &&
2171		    drm_mode_vrefresh(m) == vrefresh_rate)
2172			return NULL;
2173
2174	/* HDTV hack, part 2 */
2175	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
2176		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
2177				    false);
2178		if (!mode)
2179			return NULL;
2180		mode->hdisplay = 1366;
2181		mode->hsync_start = mode->hsync_start - 1;
2182		mode->hsync_end = mode->hsync_end - 1;
2183		return mode;
2184	}
2185
2186	/* check whether it can be found in default mode table */
2187	if (drm_monitor_supports_rb(edid)) {
2188		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
2189					 true);
2190		if (mode)
2191			return mode;
2192	}
2193	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
2194	if (mode)
2195		return mode;
2196
2197	/* okay, generate it */
2198	switch (timing_level) {
2199	case LEVEL_DMT:
2200		break;
2201	case LEVEL_GTF:
2202		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2203		break;
2204	case LEVEL_GTF2:
2205		/*
2206		 * This is potentially wrong if there's ever a monitor with
2207		 * more than one ranges section, each claiming a different
2208		 * secondary GTF curve.  Please don't do that.
2209		 */
2210		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2211		if (!mode)
2212			return NULL;
2213		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
2214			drm_mode_destroy(dev, mode);
2215			mode = drm_gtf_mode_complex(dev, hsize, vsize,
2216						    vrefresh_rate, 0, 0,
2217						    drm_gtf2_m(edid),
2218						    drm_gtf2_2c(edid),
2219						    drm_gtf2_k(edid),
2220						    drm_gtf2_2j(edid));
2221		}
2222		break;
2223	case LEVEL_CVT:
2224		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
2225				    false);
2226		break;
2227	}
2228	return mode;
2229}
2230
2231/*
2232 * EDID is delightfully ambiguous about how interlaced modes are to be
2233 * encoded.  Our internal representation is of frame height, but some
2234 * HDTV detailed timings are encoded as field height.
2235 *
2236 * The format list here is from CEA, in frame size.  Technically we
2237 * should be checking refresh rate too.  Whatever.
2238 */
2239static void
2240drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
2241			    struct detailed_pixel_timing *pt)
2242{
2243	int i;
2244	static const struct {
2245		int w, h;
2246	} cea_interlaced[] = {
2247		{ 1920, 1080 },
2248		{  720,  480 },
2249		{ 1440,  480 },
2250		{ 2880,  480 },
2251		{  720,  576 },
2252		{ 1440,  576 },
2253		{ 2880,  576 },
2254	};
2255
2256	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
2257		return;
2258
2259	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
2260		if ((mode->hdisplay == cea_interlaced[i].w) &&
2261		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
2262			mode->vdisplay *= 2;
2263			mode->vsync_start *= 2;
2264			mode->vsync_end *= 2;
2265			mode->vtotal *= 2;
2266			mode->vtotal |= 1;
2267		}
2268	}
2269
2270	mode->flags |= DRM_MODE_FLAG_INTERLACE;
2271}
2272
2273/**
2274 * drm_mode_detailed - create a new mode from an EDID detailed timing section
2275 * @dev: DRM device (needed to create new mode)
2276 * @edid: EDID block
2277 * @timing: EDID detailed timing info
2278 * @quirks: quirks to apply
2279 *
2280 * An EDID detailed timing block contains enough info for us to create and
2281 * return a new struct drm_display_mode.
2282 */
2283static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
2284						  struct edid *edid,
2285						  struct detailed_timing *timing,
2286						  u32 quirks)
2287{
 
 
2288	struct drm_display_mode *mode;
2289	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
2290	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
2291	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
2292	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
2293	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
2294	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
2295	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
2296	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
2297	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
2298
2299	/* ignore tiny modes */
2300	if (hactive < 64 || vactive < 64)
2301		return NULL;
2302
2303	if (pt->misc & DRM_EDID_PT_STEREO) {
2304		DRM_DEBUG_KMS("stereo mode not supported\n");
 
2305		return NULL;
2306	}
2307	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
2308		DRM_DEBUG_KMS("composite sync not supported\n");
 
2309	}
2310
2311	/* it is incorrect if hsync/vsync width is zero */
2312	if (!hsync_pulse_width || !vsync_pulse_width) {
2313		DRM_DEBUG_KMS("Incorrect Detailed timing. "
2314				"Wrong Hsync/Vsync pulse width\n");
2315		return NULL;
2316	}
2317
2318	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
2319		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
2320		if (!mode)
2321			return NULL;
2322
2323		goto set_size;
2324	}
2325
2326	mode = drm_mode_create(dev);
2327	if (!mode)
2328		return NULL;
2329
2330	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
2331		timing->pixel_clock = cpu_to_le16(1088);
2332
2333	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
2334
2335	mode->hdisplay = hactive;
2336	mode->hsync_start = mode->hdisplay + hsync_offset;
2337	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
2338	mode->htotal = mode->hdisplay + hblank;
2339
2340	mode->vdisplay = vactive;
2341	mode->vsync_start = mode->vdisplay + vsync_offset;
2342	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
2343	mode->vtotal = mode->vdisplay + vblank;
2344
2345	/* Some EDIDs have bogus h/vtotal values */
2346	if (mode->hsync_end > mode->htotal)
2347		mode->htotal = mode->hsync_end + 1;
2348	if (mode->vsync_end > mode->vtotal)
2349		mode->vtotal = mode->vsync_end + 1;
 
 
 
 
 
 
 
 
2350
2351	drm_mode_do_interlace_quirk(mode, pt);
2352
2353	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
2354		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
 
 
 
 
 
2355	}
2356
2357	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
2358		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
2359	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
2360		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
2361
2362set_size:
2363	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
2364	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
2365
2366	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
2367		mode->width_mm *= 10;
2368		mode->height_mm *= 10;
2369	}
2370
2371	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
2372		mode->width_mm = edid->width_cm * 10;
2373		mode->height_mm = edid->height_cm * 10;
2374	}
2375
2376	mode->type = DRM_MODE_TYPE_DRIVER;
2377	mode->vrefresh = drm_mode_vrefresh(mode);
2378	drm_mode_set_name(mode);
2379
2380	return mode;
2381}
2382
2383static bool
2384mode_in_hsync_range(const struct drm_display_mode *mode,
2385		    struct edid *edid, u8 *t)
2386{
2387	int hsync, hmin, hmax;
2388
2389	hmin = t[7];
2390	if (edid->revision >= 4)
2391	    hmin += ((t[4] & 0x04) ? 255 : 0);
2392	hmax = t[8];
2393	if (edid->revision >= 4)
2394	    hmax += ((t[4] & 0x08) ? 255 : 0);
2395	hsync = drm_mode_hsync(mode);
2396
2397	return (hsync <= hmax && hsync >= hmin);
2398}
2399
2400static bool
2401mode_in_vsync_range(const struct drm_display_mode *mode,
2402		    struct edid *edid, u8 *t)
2403{
2404	int vsync, vmin, vmax;
2405
2406	vmin = t[5];
2407	if (edid->revision >= 4)
2408	    vmin += ((t[4] & 0x01) ? 255 : 0);
2409	vmax = t[6];
2410	if (edid->revision >= 4)
2411	    vmax += ((t[4] & 0x02) ? 255 : 0);
2412	vsync = drm_mode_vrefresh(mode);
2413
2414	return (vsync <= vmax && vsync >= vmin);
2415}
2416
2417static u32
2418range_pixel_clock(struct edid *edid, u8 *t)
2419{
2420	/* unspecified */
2421	if (t[9] == 0 || t[9] == 255)
2422		return 0;
2423
2424	/* 1.4 with CVT support gives us real precision, yay */
2425	if (edid->revision >= 4 && t[10] == 0x04)
2426		return (t[9] * 10000) - ((t[12] >> 2) * 250);
2427
2428	/* 1.3 is pathetic, so fuzz up a bit */
2429	return t[9] * 10000 + 5001;
2430}
2431
2432static bool
2433mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2434	      struct detailed_timing *timing)
2435{
 
2436	u32 max_clock;
2437	u8 *t = (u8 *)timing;
2438
2439	if (!mode_in_hsync_range(mode, edid, t))
2440		return false;
2441
2442	if (!mode_in_vsync_range(mode, edid, t))
2443		return false;
2444
2445	if ((max_clock = range_pixel_clock(edid, t)))
 
2446		if (mode->clock > max_clock)
2447			return false;
2448
2449	/* 1.4 max horizontal check */
2450	if (edid->revision >= 4 && t[10] == 0x04)
2451		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2452			return false;
2453
2454	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2455		return false;
2456
2457	return true;
2458}
2459
2460static bool valid_inferred_mode(const struct drm_connector *connector,
2461				const struct drm_display_mode *mode)
2462{
2463	const struct drm_display_mode *m;
2464	bool ok = false;
2465
2466	list_for_each_entry(m, &connector->probed_modes, head) {
2467		if (mode->hdisplay == m->hdisplay &&
2468		    mode->vdisplay == m->vdisplay &&
2469		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2470			return false; /* duplicated */
2471		if (mode->hdisplay <= m->hdisplay &&
2472		    mode->vdisplay <= m->vdisplay)
2473			ok = true;
2474	}
2475	return ok;
2476}
2477
2478static int
2479drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2480			struct detailed_timing *timing)
2481{
2482	int i, modes = 0;
2483	struct drm_display_mode *newmode;
2484	struct drm_device *dev = connector->dev;
2485
2486	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2487		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2488		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
2489			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2490			if (newmode) {
2491				drm_mode_probed_add(connector, newmode);
2492				modes++;
2493			}
2494		}
2495	}
2496
2497	return modes;
2498}
2499
2500/* fix up 1366x768 mode from 1368x768;
2501 * GFT/CVT can't express 1366 width which isn't dividable by 8
2502 */
2503void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
2504{
2505	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2506		mode->hdisplay = 1366;
2507		mode->hsync_start--;
2508		mode->hsync_end--;
2509		drm_mode_set_name(mode);
2510	}
2511}
2512
2513static int
2514drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2515			struct detailed_timing *timing)
2516{
2517	int i, modes = 0;
2518	struct drm_display_mode *newmode;
2519	struct drm_device *dev = connector->dev;
2520
2521	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2522		const struct minimode *m = &extra_modes[i];
 
2523		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2524		if (!newmode)
2525			return modes;
2526
2527		drm_mode_fixup_1366x768(newmode);
2528		if (!mode_in_range(newmode, edid, timing) ||
2529		    !valid_inferred_mode(connector, newmode)) {
2530			drm_mode_destroy(dev, newmode);
2531			continue;
2532		}
2533
2534		drm_mode_probed_add(connector, newmode);
2535		modes++;
2536	}
2537
2538	return modes;
2539}
2540
2541static int
2542drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2543			struct detailed_timing *timing)
2544{
2545	int i, modes = 0;
2546	struct drm_display_mode *newmode;
2547	struct drm_device *dev = connector->dev;
2548	bool rb = drm_monitor_supports_rb(edid);
2549
2550	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2551		const struct minimode *m = &extra_modes[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2552		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2553		if (!newmode)
2554			return modes;
2555
2556		drm_mode_fixup_1366x768(newmode);
2557		if (!mode_in_range(newmode, edid, timing) ||
2558		    !valid_inferred_mode(connector, newmode)) {
2559			drm_mode_destroy(dev, newmode);
2560			continue;
2561		}
2562
2563		drm_mode_probed_add(connector, newmode);
2564		modes++;
2565	}
2566
2567	return modes;
2568}
2569
2570static void
2571do_inferred_modes(struct detailed_timing *timing, void *c)
2572{
2573	struct detailed_mode_closure *closure = c;
2574	struct detailed_non_pixel *data = &timing->data.other_data;
2575	struct detailed_data_monitor_range *range = &data->data.range;
2576
2577	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2578		return;
2579
2580	closure->modes += drm_dmt_modes_for_range(closure->connector,
2581						  closure->edid,
2582						  timing);
2583	
2584	if (!version_greater(closure->edid, 1, 1))
2585		return; /* GTF not defined yet */
2586
2587	switch (range->flags) {
2588	case 0x02: /* secondary gtf, XXX could do more */
2589	case 0x00: /* default gtf */
 
 
 
 
2590		closure->modes += drm_gtf_modes_for_range(closure->connector,
2591							  closure->edid,
2592							  timing);
2593		break;
2594	case 0x04: /* cvt, only in 1.4+ */
2595		if (!version_greater(closure->edid, 1, 3))
2596			break;
2597
2598		closure->modes += drm_cvt_modes_for_range(closure->connector,
2599							  closure->edid,
2600							  timing);
2601		break;
2602	case 0x01: /* just the ranges, no formula */
2603	default:
2604		break;
2605	}
2606}
2607
2608static int
2609add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2610{
2611	struct detailed_mode_closure closure = {
2612		.connector = connector,
2613		.edid = edid,
2614	};
2615
2616	if (version_greater(edid, 1, 0))
2617		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2618					    &closure);
2619
2620	return closure.modes;
2621}
2622
2623static int
2624drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2625{
2626	int i, j, m, modes = 0;
2627	struct drm_display_mode *mode;
2628	u8 *est = ((u8 *)timing) + 6;
2629
2630	for (i = 0; i < 6; i++) {
2631		for (j = 7; j >= 0; j--) {
2632			m = (i * 8) + (7 - j);
2633			if (m >= ARRAY_SIZE(est3_modes))
2634				break;
2635			if (est[i] & (1 << j)) {
2636				mode = drm_mode_find_dmt(connector->dev,
2637							 est3_modes[m].w,
2638							 est3_modes[m].h,
2639							 est3_modes[m].r,
2640							 est3_modes[m].rb);
2641				if (mode) {
2642					drm_mode_probed_add(connector, mode);
2643					modes++;
2644				}
2645			}
2646		}
2647	}
2648
2649	return modes;
2650}
2651
2652static void
2653do_established_modes(struct detailed_timing *timing, void *c)
2654{
2655	struct detailed_mode_closure *closure = c;
2656	struct detailed_non_pixel *data = &timing->data.other_data;
2657
2658	if (data->type == EDID_DETAIL_EST_TIMINGS)
2659		closure->modes += drm_est3_modes(closure->connector, timing);
 
 
2660}
2661
2662/**
2663 * add_established_modes - get est. modes from EDID and add them
2664 * @connector: connector to add mode(s) to
2665 * @edid: EDID block to scan
2666 *
2667 * Each EDID block contains a bitmap of the supported "established modes" list
2668 * (defined above).  Tease them out and add them to the global modes list.
2669 */
2670static int
2671add_established_modes(struct drm_connector *connector, struct edid *edid)
2672{
2673	struct drm_device *dev = connector->dev;
 
2674	unsigned long est_bits = edid->established_timings.t1 |
2675		(edid->established_timings.t2 << 8) |
2676		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2677	int i, modes = 0;
2678	struct detailed_mode_closure closure = {
2679		.connector = connector,
2680		.edid = edid,
2681	};
2682
2683	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2684		if (est_bits & (1<<i)) {
2685			struct drm_display_mode *newmode;
 
2686			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2687			if (newmode) {
2688				drm_mode_probed_add(connector, newmode);
2689				modes++;
2690			}
2691		}
2692	}
2693
2694	if (version_greater(edid, 1, 0))
2695		    drm_for_each_detailed_block((u8 *)edid,
2696						do_established_modes, &closure);
2697
2698	return modes + closure.modes;
2699}
2700
2701static void
2702do_standard_modes(struct detailed_timing *timing, void *c)
2703{
2704	struct detailed_mode_closure *closure = c;
2705	struct detailed_non_pixel *data = &timing->data.other_data;
2706	struct drm_connector *connector = closure->connector;
2707	struct edid *edid = closure->edid;
2708
2709	if (data->type == EDID_DETAIL_STD_MODES) {
2710		int i;
2711		for (i = 0; i < 6; i++) {
2712			struct std_timing *std;
2713			struct drm_display_mode *newmode;
2714
2715			std = &data->data.timings[i];
2716			newmode = drm_mode_std(connector, edid, std);
2717			if (newmode) {
2718				drm_mode_probed_add(connector, newmode);
2719				closure->modes++;
2720			}
 
 
2721		}
2722	}
2723}
2724
2725/**
2726 * add_standard_modes - get std. modes from EDID and add them
2727 * @connector: connector to add mode(s) to
2728 * @edid: EDID block to scan
2729 *
2730 * Standard modes can be calculated using the appropriate standard (DMT,
2731 * GTF or CVT. Grab them from @edid and add them to the list.
2732 */
2733static int
2734add_standard_modes(struct drm_connector *connector, struct edid *edid)
2735{
2736	int i, modes = 0;
2737	struct detailed_mode_closure closure = {
2738		.connector = connector,
2739		.edid = edid,
2740	};
2741
2742	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2743		struct drm_display_mode *newmode;
2744
2745		newmode = drm_mode_std(connector, edid,
2746				       &edid->standard_timings[i]);
2747		if (newmode) {
2748			drm_mode_probed_add(connector, newmode);
2749			modes++;
2750		}
2751	}
2752
2753	if (version_greater(edid, 1, 0))
2754		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2755					    &closure);
2756
2757	/* XXX should also look for standard codes in VTB blocks */
2758
2759	return modes + closure.modes;
2760}
2761
2762static int drm_cvt_modes(struct drm_connector *connector,
2763			 struct detailed_timing *timing)
2764{
2765	int i, j, modes = 0;
2766	struct drm_display_mode *newmode;
2767	struct drm_device *dev = connector->dev;
2768	struct cvt_timing *cvt;
2769	const int rates[] = { 60, 85, 75, 60, 50 };
2770	const u8 empty[3] = { 0, 0, 0 };
2771
2772	for (i = 0; i < 4; i++) {
2773		int uninitialized_var(width), height;
 
2774		cvt = &(timing->data.other_data.data.cvt[i]);
2775
2776		if (!memcmp(cvt->code, empty, 3))
2777			continue;
2778
2779		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2780		switch (cvt->code[1] & 0x0c) {
 
 
2781		case 0x00:
2782			width = height * 4 / 3;
2783			break;
2784		case 0x04:
2785			width = height * 16 / 9;
2786			break;
2787		case 0x08:
2788			width = height * 16 / 10;
2789			break;
2790		case 0x0c:
2791			width = height * 15 / 9;
2792			break;
2793		}
2794
2795		for (j = 1; j < 5; j++) {
2796			if (cvt->code[2] & (1 << j)) {
2797				newmode = drm_cvt_mode(dev, width, height,
2798						       rates[j], j == 0,
2799						       false, false);
2800				if (newmode) {
2801					drm_mode_probed_add(connector, newmode);
2802					modes++;
2803				}
2804			}
2805		}
2806	}
2807
2808	return modes;
2809}
2810
2811static void
2812do_cvt_mode(struct detailed_timing *timing, void *c)
2813{
2814	struct detailed_mode_closure *closure = c;
2815	struct detailed_non_pixel *data = &timing->data.other_data;
2816
2817	if (data->type == EDID_DETAIL_CVT_3BYTE)
2818		closure->modes += drm_cvt_modes(closure->connector, timing);
 
 
2819}
2820
2821static int
2822add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2823{	
2824	struct detailed_mode_closure closure = {
2825		.connector = connector,
2826		.edid = edid,
2827	};
2828
2829	if (version_greater(edid, 1, 2))
2830		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2831
2832	/* XXX should also look for CVT codes in VTB blocks */
2833
2834	return closure.modes;
2835}
2836
2837static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
 
2838
2839static void
2840do_detailed_mode(struct detailed_timing *timing, void *c)
2841{
2842	struct detailed_mode_closure *closure = c;
2843	struct drm_display_mode *newmode;
2844
2845	if (timing->pixel_clock) {
2846		newmode = drm_mode_detailed(closure->connector->dev,
2847					    closure->edid, timing,
2848					    closure->quirks);
2849		if (!newmode)
2850			return;
2851
2852		if (closure->preferred)
2853			newmode->type |= DRM_MODE_TYPE_PREFERRED;
 
 
2854
2855		/*
2856		 * Detailed modes are limited to 10kHz pixel clock resolution,
2857		 * so fix up anything that looks like CEA/HDMI mode, but the clock
2858		 * is just slightly off.
2859		 */
2860		fixup_detailed_cea_mode_clock(newmode);
2861
2862		drm_mode_probed_add(closure->connector, newmode);
2863		closure->modes++;
2864		closure->preferred = false;
2865	}
 
 
 
 
 
 
2866}
2867
2868/*
2869 * add_detailed_modes - Add modes from detailed timings
2870 * @connector: attached connector
2871 * @edid: EDID block to scan
2872 * @quirks: quirks to apply
2873 */
2874static int
2875add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2876		   u32 quirks)
2877{
2878	struct detailed_mode_closure closure = {
2879		.connector = connector,
2880		.edid = edid,
2881		.preferred = true,
2882		.quirks = quirks,
2883	};
2884
2885	if (closure.preferred && !version_greater(edid, 1, 3))
 
 
2886		closure.preferred =
2887		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2888
2889	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2890
2891	return closure.modes;
2892}
2893
2894#define AUDIO_BLOCK	0x01
2895#define VIDEO_BLOCK     0x02
2896#define VENDOR_BLOCK    0x03
2897#define SPEAKER_BLOCK	0x04
2898#define HDR_STATIC_METADATA_BLOCK	0x6
2899#define USE_EXTENDED_TAG 0x07
2900#define EXT_VIDEO_CAPABILITY_BLOCK 0x00
2901#define EXT_VIDEO_DATA_BLOCK_420	0x0E
2902#define EXT_VIDEO_CAP_BLOCK_Y420CMDB 0x0F
 
 
 
 
 
 
 
2903#define EDID_BASIC_AUDIO	(1 << 6)
2904#define EDID_CEA_YCRCB444	(1 << 5)
2905#define EDID_CEA_YCRCB422	(1 << 4)
2906#define EDID_CEA_VCDB_QS	(1 << 6)
2907
2908/*
2909 * Search EDID for CEA extension block.
 
 
2910 */
2911static u8 *drm_find_edid_extension(const struct edid *edid, int ext_id)
 
2912{
2913	u8 *edid_ext = NULL;
2914	int i;
2915
2916	/* No EDID or EDID extensions */
2917	if (edid == NULL || edid->extensions == 0)
2918		return NULL;
2919
2920	/* Find CEA extension */
2921	for (i = 0; i < edid->extensions; i++) {
2922		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2923		if (edid_ext[0] == ext_id)
2924			break;
2925	}
2926
2927	if (i == edid->extensions)
2928		return NULL;
2929
2930	return edid_ext;
2931}
2932
2933
2934static u8 *drm_find_displayid_extension(const struct edid *edid)
2935{
2936	return drm_find_edid_extension(edid, DISPLAYID_EXT);
2937}
2938
2939static u8 *drm_find_cea_extension(const struct edid *edid)
 
2940{
2941	int ret;
2942	int idx = 1;
2943	int length = EDID_LENGTH;
2944	struct displayid_block *block;
2945	u8 *cea;
2946	u8 *displayid;
2947
2948	/* Look for a top level CEA extension block */
2949	cea = drm_find_edid_extension(edid, CEA_EXT);
2950	if (cea)
2951		return cea;
2952
2953	/* CEA blocks can also be found embedded in a DisplayID block */
2954	displayid = drm_find_displayid_extension(edid);
2955	if (!displayid)
2956		return NULL;
2957
2958	ret = validate_displayid(displayid, length, idx);
2959	if (ret)
2960		return NULL;
2961
2962	idx += sizeof(struct displayid_hdr);
2963	for_each_displayid_db(displayid, block, idx, length) {
2964		if (block->tag == DATA_BLOCK_CTA) {
2965			cea = (u8 *)block;
2966			break;
2967		}
2968	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2969
2970	return cea;
 
 
 
 
2971}
2972
2973/*
2974 * Calculate the alternate clock for the CEA mode
2975 * (60Hz vs. 59.94Hz etc.)
2976 */
2977static unsigned int
2978cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2979{
2980	unsigned int clock = cea_mode->clock;
2981
2982	if (cea_mode->vrefresh % 6 != 0)
2983		return clock;
2984
2985	/*
2986	 * edid_cea_modes contains the 59.94Hz
2987	 * variant for 240 and 480 line modes,
2988	 * and the 60Hz variant otherwise.
2989	 */
2990	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2991		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2992	else
2993		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2994
2995	return clock;
2996}
2997
2998static bool
2999cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
3000{
3001	/*
3002	 * For certain VICs the spec allows the vertical
3003	 * front porch to vary by one or two lines.
3004	 *
3005	 * cea_modes[] stores the variant with the shortest
3006	 * vertical front porch. We can adjust the mode to
3007	 * get the other variants by simply increasing the
3008	 * vertical front porch length.
3009	 */
3010	BUILD_BUG_ON(edid_cea_modes[8].vtotal != 262 ||
3011		     edid_cea_modes[9].vtotal != 262 ||
3012		     edid_cea_modes[12].vtotal != 262 ||
3013		     edid_cea_modes[13].vtotal != 262 ||
3014		     edid_cea_modes[23].vtotal != 312 ||
3015		     edid_cea_modes[24].vtotal != 312 ||
3016		     edid_cea_modes[27].vtotal != 312 ||
3017		     edid_cea_modes[28].vtotal != 312);
3018
3019	if (((vic == 8 || vic == 9 ||
3020	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
3021	    ((vic == 23 || vic == 24 ||
3022	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
3023		mode->vsync_start++;
3024		mode->vsync_end++;
3025		mode->vtotal++;
3026
3027		return true;
3028	}
3029
3030	return false;
3031}
3032
3033static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
3034					     unsigned int clock_tolerance)
3035{
3036	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3037	u8 vic;
3038
3039	if (!to_match->clock)
3040		return 0;
3041
3042	if (to_match->picture_aspect_ratio)
3043		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3044
3045	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
3046		struct drm_display_mode cea_mode = edid_cea_modes[vic];
3047		unsigned int clock1, clock2;
3048
 
 
3049		/* Check both 60Hz and 59.94Hz */
3050		clock1 = cea_mode.clock;
3051		clock2 = cea_mode_alternate_clock(&cea_mode);
3052
3053		if (abs(to_match->clock - clock1) > clock_tolerance &&
3054		    abs(to_match->clock - clock2) > clock_tolerance)
3055			continue;
3056
3057		do {
3058			if (drm_mode_match(to_match, &cea_mode, match_flags))
3059				return vic;
3060		} while (cea_mode_alternate_timings(vic, &cea_mode));
3061	}
3062
3063	return 0;
3064}
3065
3066/**
3067 * drm_match_cea_mode - look for a CEA mode matching given mode
3068 * @to_match: display mode
3069 *
3070 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
3071 * mode.
3072 */
3073u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
3074{
3075	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3076	u8 vic;
3077
3078	if (!to_match->clock)
3079		return 0;
3080
3081	if (to_match->picture_aspect_ratio)
3082		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3083
3084	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
3085		struct drm_display_mode cea_mode = edid_cea_modes[vic];
3086		unsigned int clock1, clock2;
3087
 
 
3088		/* Check both 60Hz and 59.94Hz */
3089		clock1 = cea_mode.clock;
3090		clock2 = cea_mode_alternate_clock(&cea_mode);
3091
3092		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
3093		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
3094			continue;
3095
3096		do {
3097			if (drm_mode_match(to_match, &cea_mode, match_flags))
3098				return vic;
3099		} while (cea_mode_alternate_timings(vic, &cea_mode));
3100	}
3101
3102	return 0;
3103}
3104EXPORT_SYMBOL(drm_match_cea_mode);
3105
3106static bool drm_valid_cea_vic(u8 vic)
3107{
3108	return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
3109}
3110
3111/**
3112 * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
3113 * the input VIC from the CEA mode list
3114 * @video_code: ID given to each of the CEA modes
3115 *
3116 * Returns picture aspect ratio
3117 */
3118enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
 
 
 
3119{
3120	return edid_cea_modes[video_code].picture_aspect_ratio;
3121}
3122EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
3123
3124/*
3125 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
3126 * specific block).
3127 *
3128 * It's almost like cea_mode_alternate_clock(), we just need to add an
3129 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
3130 * one.
3131 */
3132static unsigned int
3133hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3134{
3135	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
3136		return hdmi_mode->clock;
3137
3138	return cea_mode_alternate_clock(hdmi_mode);
3139}
3140
3141static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3142					      unsigned int clock_tolerance)
3143{
3144	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3145	u8 vic;
3146
3147	if (!to_match->clock)
3148		return 0;
3149
 
 
 
3150	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3151		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3152		unsigned int clock1, clock2;
3153
3154		/* Make sure to also match alternate clocks */
3155		clock1 = hdmi_mode->clock;
3156		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3157
3158		if (abs(to_match->clock - clock1) > clock_tolerance &&
3159		    abs(to_match->clock - clock2) > clock_tolerance)
3160			continue;
3161
3162		if (drm_mode_match(to_match, hdmi_mode, match_flags))
3163			return vic;
3164	}
3165
3166	return 0;
3167}
3168
3169/*
3170 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
3171 * @to_match: display mode
3172 *
3173 * An HDMI mode is one defined in the HDMI vendor specific block.
3174 *
3175 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
3176 */
3177static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
3178{
3179	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3180	u8 vic;
3181
3182	if (!to_match->clock)
3183		return 0;
3184
 
 
 
3185	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3186		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3187		unsigned int clock1, clock2;
3188
3189		/* Make sure to also match alternate clocks */
3190		clock1 = hdmi_mode->clock;
3191		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3192
3193		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
3194		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
3195		    drm_mode_match(to_match, hdmi_mode, match_flags))
3196			return vic;
3197	}
3198	return 0;
3199}
3200
3201static bool drm_valid_hdmi_vic(u8 vic)
3202{
3203	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
3204}
3205
3206static int
3207add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
3208{
3209	struct drm_device *dev = connector->dev;
3210	struct drm_display_mode *mode, *tmp;
3211	LIST_HEAD(list);
3212	int modes = 0;
3213
3214	/* Don't add CEA modes if the CEA extension block is missing */
3215	if (!drm_find_cea_extension(edid))
3216		return 0;
3217
3218	/*
3219	 * Go through all probed modes and create a new mode
3220	 * with the alternate clock for certain CEA modes.
3221	 */
3222	list_for_each_entry(mode, &connector->probed_modes, head) {
3223		const struct drm_display_mode *cea_mode = NULL;
3224		struct drm_display_mode *newmode;
3225		u8 vic = drm_match_cea_mode(mode);
3226		unsigned int clock1, clock2;
3227
3228		if (drm_valid_cea_vic(vic)) {
3229			cea_mode = &edid_cea_modes[vic];
3230			clock2 = cea_mode_alternate_clock(cea_mode);
3231		} else {
3232			vic = drm_match_hdmi_mode(mode);
3233			if (drm_valid_hdmi_vic(vic)) {
3234				cea_mode = &edid_4k_modes[vic];
3235				clock2 = hdmi_mode_alternate_clock(cea_mode);
3236			}
3237		}
3238
3239		if (!cea_mode)
3240			continue;
3241
3242		clock1 = cea_mode->clock;
3243
3244		if (clock1 == clock2)
3245			continue;
3246
3247		if (mode->clock != clock1 && mode->clock != clock2)
3248			continue;
3249
3250		newmode = drm_mode_duplicate(dev, cea_mode);
3251		if (!newmode)
3252			continue;
3253
3254		/* Carry over the stereo flags */
3255		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
3256
3257		/*
3258		 * The current mode could be either variant. Make
3259		 * sure to pick the "other" clock for the new mode.
3260		 */
3261		if (mode->clock != clock1)
3262			newmode->clock = clock1;
3263		else
3264			newmode->clock = clock2;
3265
3266		list_add_tail(&newmode->head, &list);
3267	}
3268
3269	list_for_each_entry_safe(mode, tmp, &list, head) {
3270		list_del(&mode->head);
3271		drm_mode_probed_add(connector, mode);
3272		modes++;
3273	}
3274
3275	return modes;
3276}
3277
3278static u8 svd_to_vic(u8 svd)
3279{
3280	/* 0-6 bit vic, 7th bit native mode indicator */
3281	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
3282		return svd & 127;
3283
3284	return svd;
3285}
3286
 
 
 
 
3287static struct drm_display_mode *
3288drm_display_mode_from_vic_index(struct drm_connector *connector,
3289				const u8 *video_db, u8 video_len,
3290				u8 video_index)
3291{
 
3292	struct drm_device *dev = connector->dev;
3293	struct drm_display_mode *newmode;
3294	u8 vic;
3295
3296	if (video_db == NULL || video_index >= video_len)
3297		return NULL;
3298
3299	/* CEA modes are numbered 1..127 */
3300	vic = svd_to_vic(video_db[video_index]);
3301	if (!drm_valid_cea_vic(vic))
3302		return NULL;
3303
3304	newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3305	if (!newmode)
3306		return NULL;
3307
3308	newmode->vrefresh = 0;
3309
3310	return newmode;
3311}
3312
3313/*
3314 * do_y420vdb_modes - Parse YCBCR 420 only modes
3315 * @connector: connector corresponding to the HDMI sink
3316 * @svds: start of the data block of CEA YCBCR 420 VDB
3317 * @len: length of the CEA YCBCR 420 VDB
3318 *
3319 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
3320 * which contains modes which can be supported in YCBCR 420
3321 * output format only.
3322 */
3323static int do_y420vdb_modes(struct drm_connector *connector,
3324			    const u8 *svds, u8 svds_len)
3325{
3326	int modes = 0, i;
3327	struct drm_device *dev = connector->dev;
3328	struct drm_display_info *info = &connector->display_info;
3329	struct drm_hdmi_info *hdmi = &info->hdmi;
3330
3331	for (i = 0; i < svds_len; i++) {
3332		u8 vic = svd_to_vic(svds[i]);
3333		struct drm_display_mode *newmode;
3334
3335		if (!drm_valid_cea_vic(vic))
3336			continue;
3337
3338		newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3339		if (!newmode)
3340			break;
3341		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
3342		drm_mode_probed_add(connector, newmode);
3343		modes++;
3344	}
3345
3346	if (modes > 0)
3347		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3348	return modes;
3349}
3350
3351/*
3352 * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
3353 * @connector: connector corresponding to the HDMI sink
3354 * @vic: CEA vic for the video mode to be added in the map
3355 *
3356 * Makes an entry for a videomode in the YCBCR 420 bitmap
 
 
3357 */
3358static void
3359drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
 
3360{
3361	u8 vic = svd_to_vic(svd);
3362	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3363
3364	if (!drm_valid_cea_vic(vic))
3365		return;
 
 
 
 
 
3366
3367	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
3368}
 
3369
3370static int
3371do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
3372{
 
3373	int i, modes = 0;
3374	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3375
3376	for (i = 0; i < len; i++) {
 
 
 
3377		struct drm_display_mode *mode;
3378		mode = drm_display_mode_from_vic_index(connector, db, len, i);
3379		if (mode) {
3380			/*
3381			 * YCBCR420 capability block contains a bitmap which
3382			 * gives the index of CEA modes from CEA VDB, which
3383			 * can support YCBCR 420 sampling output also (apart
3384			 * from RGB/YCBCR444 etc).
3385			 * For example, if the bit 0 in bitmap is set,
3386			 * first mode in VDB can support YCBCR420 output too.
3387			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
3388			 */
3389			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
3390				drm_add_cmdb_modes(connector, db[i]);
3391
 
 
3392			drm_mode_probed_add(connector, mode);
3393			modes++;
3394		}
3395	}
3396
3397	return modes;
3398}
3399
3400struct stereo_mandatory_mode {
3401	int width, height, vrefresh;
3402	unsigned int flags;
3403};
3404
3405static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
3406	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3407	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
3408	{ 1920, 1080, 50,
3409	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3410	{ 1920, 1080, 60,
3411	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3412	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3413	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
3414	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3415	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
3416};
3417
3418static bool
3419stereo_match_mandatory(const struct drm_display_mode *mode,
3420		       const struct stereo_mandatory_mode *stereo_mode)
3421{
3422	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
3423
3424	return mode->hdisplay == stereo_mode->width &&
3425	       mode->vdisplay == stereo_mode->height &&
3426	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
3427	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
3428}
3429
3430static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
3431{
3432	struct drm_device *dev = connector->dev;
3433	const struct drm_display_mode *mode;
3434	struct list_head stereo_modes;
3435	int modes = 0, i;
3436
3437	INIT_LIST_HEAD(&stereo_modes);
3438
3439	list_for_each_entry(mode, &connector->probed_modes, head) {
3440		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
3441			const struct stereo_mandatory_mode *mandatory;
3442			struct drm_display_mode *new_mode;
3443
3444			if (!stereo_match_mandatory(mode,
3445						    &stereo_mandatory_modes[i]))
3446				continue;
3447
3448			mandatory = &stereo_mandatory_modes[i];
3449			new_mode = drm_mode_duplicate(dev, mode);
3450			if (!new_mode)
3451				continue;
3452
3453			new_mode->flags |= mandatory->flags;
3454			list_add_tail(&new_mode->head, &stereo_modes);
3455			modes++;
3456		}
3457	}
3458
3459	list_splice_tail(&stereo_modes, &connector->probed_modes);
3460
3461	return modes;
3462}
3463
3464static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
3465{
3466	struct drm_device *dev = connector->dev;
3467	struct drm_display_mode *newmode;
3468
3469	if (!drm_valid_hdmi_vic(vic)) {
3470		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
 
3471		return 0;
3472	}
3473
3474	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
3475	if (!newmode)
3476		return 0;
3477
3478	drm_mode_probed_add(connector, newmode);
3479
3480	return 1;
3481}
3482
3483static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
3484			       const u8 *video_db, u8 video_len, u8 video_index)
3485{
3486	struct drm_display_mode *newmode;
3487	int modes = 0;
3488
3489	if (structure & (1 << 0)) {
3490		newmode = drm_display_mode_from_vic_index(connector, video_db,
3491							  video_len,
3492							  video_index);
3493		if (newmode) {
3494			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
3495			drm_mode_probed_add(connector, newmode);
3496			modes++;
3497		}
3498	}
3499	if (structure & (1 << 6)) {
3500		newmode = drm_display_mode_from_vic_index(connector, video_db,
3501							  video_len,
3502							  video_index);
3503		if (newmode) {
3504			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3505			drm_mode_probed_add(connector, newmode);
3506			modes++;
3507		}
3508	}
3509	if (structure & (1 << 8)) {
3510		newmode = drm_display_mode_from_vic_index(connector, video_db,
3511							  video_len,
3512							  video_index);
3513		if (newmode) {
3514			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3515			drm_mode_probed_add(connector, newmode);
3516			modes++;
3517		}
3518	}
3519
3520	return modes;
3521}
3522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3523/*
3524 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
3525 * @connector: connector corresponding to the HDMI sink
3526 * @db: start of the CEA vendor specific block
3527 * @len: length of the CEA block payload, ie. one can access up to db[len]
3528 *
3529 * Parses the HDMI VSDB looking for modes to add to @connector. This function
3530 * also adds the stereo 3d modes when applicable.
3531 */
3532static int
3533do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
3534		   const u8 *video_db, u8 video_len)
3535{
3536	struct drm_display_info *info = &connector->display_info;
3537	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
3538	u8 vic_len, hdmi_3d_len = 0;
3539	u16 mask;
3540	u16 structure_all;
3541
3542	if (len < 8)
3543		goto out;
3544
3545	/* no HDMI_Video_Present */
3546	if (!(db[8] & (1 << 5)))
3547		goto out;
3548
3549	/* Latency_Fields_Present */
3550	if (db[8] & (1 << 7))
3551		offset += 2;
3552
3553	/* I_Latency_Fields_Present */
3554	if (db[8] & (1 << 6))
3555		offset += 2;
3556
3557	/* the declared length is not long enough for the 2 first bytes
3558	 * of additional video format capabilities */
3559	if (len < (8 + offset + 2))
3560		goto out;
3561
3562	/* 3D_Present */
3563	offset++;
3564	if (db[8 + offset] & (1 << 7)) {
3565		modes += add_hdmi_mandatory_stereo_modes(connector);
3566
3567		/* 3D_Multi_present */
3568		multi_present = (db[8 + offset] & 0x60) >> 5;
3569	}
3570
3571	offset++;
3572	vic_len = db[8 + offset] >> 5;
3573	hdmi_3d_len = db[8 + offset] & 0x1f;
3574
3575	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3576		u8 vic;
3577
3578		vic = db[9 + offset + i];
3579		modes += add_hdmi_mode(connector, vic);
3580	}
3581	offset += 1 + vic_len;
3582
3583	if (multi_present == 1)
3584		multi_len = 2;
3585	else if (multi_present == 2)
3586		multi_len = 4;
3587	else
3588		multi_len = 0;
3589
3590	if (len < (8 + offset + hdmi_3d_len - 1))
3591		goto out;
3592
3593	if (hdmi_3d_len < multi_len)
3594		goto out;
3595
3596	if (multi_present == 1 || multi_present == 2) {
3597		/* 3D_Structure_ALL */
3598		structure_all = (db[8 + offset] << 8) | db[9 + offset];
3599
3600		/* check if 3D_MASK is present */
3601		if (multi_present == 2)
3602			mask = (db[10 + offset] << 8) | db[11 + offset];
3603		else
3604			mask = 0xffff;
3605
3606		for (i = 0; i < 16; i++) {
3607			if (mask & (1 << i))
3608				modes += add_3d_struct_modes(connector,
3609						structure_all,
3610						video_db,
3611						video_len, i);
3612		}
3613	}
3614
3615	offset += multi_len;
3616
3617	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3618		int vic_index;
3619		struct drm_display_mode *newmode = NULL;
3620		unsigned int newflag = 0;
3621		bool detail_present;
3622
3623		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3624
3625		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3626			break;
3627
3628		/* 2D_VIC_order_X */
3629		vic_index = db[8 + offset + i] >> 4;
3630
3631		/* 3D_Structure_X */
3632		switch (db[8 + offset + i] & 0x0f) {
3633		case 0:
3634			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3635			break;
3636		case 6:
3637			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3638			break;
3639		case 8:
3640			/* 3D_Detail_X */
3641			if ((db[9 + offset + i] >> 4) == 1)
3642				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3643			break;
3644		}
3645
3646		if (newflag != 0) {
3647			newmode = drm_display_mode_from_vic_index(connector,
3648								  video_db,
3649								  video_len,
3650								  vic_index);
3651
3652			if (newmode) {
3653				newmode->flags |= newflag;
3654				drm_mode_probed_add(connector, newmode);
3655				modes++;
3656			}
3657		}
3658
3659		if (detail_present)
3660			i++;
3661	}
3662
3663out:
3664	if (modes > 0)
3665		info->has_hdmi_infoframe = true;
3666	return modes;
3667}
3668
3669static int
3670cea_db_payload_len(const u8 *db)
3671{
3672	return db[0] & 0x1f;
 
 
 
 
 
 
 
3673}
3674
3675static int
3676cea_db_extended_tag(const u8 *db)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3677{
3678	return db[1];
3679}
3680
3681static int
3682cea_db_tag(const u8 *db)
3683{
3684	return db[0] >> 5;
 
 
 
3685}
3686
3687static int
3688cea_revision(const u8 *cea)
3689{
3690	return cea[1];
3691}
3692
3693static int
3694cea_db_offsets(const u8 *cea, int *start, int *end)
3695{
3696	/* DisplayID CTA extension blocks and top-level CEA EDID
3697	 * block header definitions differ in the following bytes:
3698	 *   1) Byte 2 of the header specifies length differently,
3699	 *   2) Byte 3 is only present in the CEA top level block.
3700	 *
3701	 * The different definitions for byte 2 follow.
3702	 *
3703	 * DisplayID CTA extension block defines byte 2 as:
3704	 *   Number of payload bytes
3705	 *
3706	 * CEA EDID block defines byte 2 as:
3707	 *   Byte number (decimal) within this block where the 18-byte
3708	 *   DTDs begin. If no non-DTD data is present in this extension
3709	 *   block, the value should be set to 04h (the byte after next).
3710	 *   If set to 00h, there are no DTDs present in this block and
3711	 *   no non-DTD data.
3712	 */
3713	if (cea[0] == DATA_BLOCK_CTA) {
3714		*start = 3;
3715		*end = *start + cea[2];
3716	} else if (cea[0] == CEA_EXT) {
3717		/* Data block offset in CEA extension block */
3718		*start = 4;
3719		*end = cea[2];
3720		if (*end == 0)
3721			*end = 127;
3722		if (*end < 4 || *end > 127)
3723			return -ERANGE;
3724	} else {
3725		return -ENOTSUPP;
3726	}
3727
3728	return 0;
 
 
 
 
 
 
3729}
3730
3731static bool cea_db_is_hdmi_vsdb(const u8 *db)
 
3732{
3733	int hdmi_id;
3734
3735	if (cea_db_tag(db) != VENDOR_BLOCK)
3736		return false;
 
3737
3738	if (cea_db_payload_len(db) < 5)
3739		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3740
3741	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
 
3742
3743	return hdmi_id == HDMI_IEEE_OUI;
3744}
3745
3746static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
 
 
 
 
 
3747{
3748	unsigned int oui;
3749
3750	if (cea_db_tag(db) != VENDOR_BLOCK)
3751		return false;
3752
3753	if (cea_db_payload_len(db) < 7)
3754		return false;
 
 
 
 
 
 
 
 
3755
3756	oui = db[3] << 16 | db[2] << 8 | db[1];
 
3757
3758	return oui == HDMI_FORUM_IEEE_OUI;
3759}
3760
3761static bool cea_db_is_vcdb(const u8 *db)
 
 
 
 
 
 
 
 
3762{
3763	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3764		return false;
3765
3766	if (cea_db_payload_len(db) != 2)
3767		return false;
 
3768
3769	if (cea_db_extended_tag(db) != EXT_VIDEO_CAPABILITY_BLOCK)
3770		return false;
 
 
 
 
3771
3772	return true;
 
 
 
3773}
3774
3775static bool cea_db_is_y420cmdb(const u8 *db)
3776{
3777	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3778		return false;
3779
3780	if (!cea_db_payload_len(db))
3781		return false;
 
 
 
 
 
3782
3783	if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
3784		return false;
3785
3786	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3787}
3788
3789static bool cea_db_is_y420vdb(const u8 *db)
 
 
 
3790{
3791	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3792		return false;
3793
3794	if (!cea_db_payload_len(db))
3795		return false;
3796
3797	if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
3798		return false;
 
 
 
3799
3800	return true;
 
 
 
 
 
 
 
 
 
3801}
3802
3803#define for_each_cea_db(cea, i, start, end) \
3804	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
 
 
 
 
 
 
 
 
 
3805
3806static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
3807				      const u8 *db)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3808{
3809	struct drm_display_info *info = &connector->display_info;
3810	struct drm_hdmi_info *hdmi = &info->hdmi;
3811	u8 map_len = cea_db_payload_len(db) - 1;
3812	u8 count;
3813	u64 map = 0;
3814
3815	if (map_len == 0) {
3816		/* All CEA modes support ycbcr420 sampling also.*/
3817		hdmi->y420_cmdb_map = U64_MAX;
3818		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3819		return;
3820	}
3821
3822	/*
3823	 * This map indicates which of the existing CEA block modes
3824	 * from VDB can support YCBCR420 output too. So if bit=0 is
3825	 * set, first mode from VDB can support YCBCR420 output too.
3826	 * We will parse and keep this map, before parsing VDB itself
3827	 * to avoid going through the same block again and again.
3828	 *
3829	 * Spec is not clear about max possible size of this block.
3830	 * Clamping max bitmap block size at 8 bytes. Every byte can
3831	 * address 8 CEA modes, in this way this map can address
3832	 * 8*8 = first 64 SVDs.
3833	 */
3834	if (WARN_ON_ONCE(map_len > 8))
3835		map_len = 8;
3836
3837	for (count = 0; count < map_len; count++)
3838		map |= (u64)db[2 + count] << (8 * count);
3839
 
3840	if (map)
3841		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3842
3843	hdmi->y420_cmdb_map = map;
3844}
3845
3846static int
3847add_cea_modes(struct drm_connector *connector, struct edid *edid)
3848{
3849	const u8 *cea = drm_find_cea_extension(edid);
3850	const u8 *db, *hdmi = NULL, *video = NULL;
3851	u8 dbl, hdmi_len, video_len = 0;
3852	int modes = 0;
3853
3854	if (cea && cea_revision(cea) >= 3) {
3855		int i, start, end;
3856
3857		if (cea_db_offsets(cea, &start, &end))
3858			return 0;
3859
3860		for_each_cea_db(cea, i, start, end) {
3861			db = &cea[i];
3862			dbl = cea_db_payload_len(db);
3863
3864			if (cea_db_tag(db) == VIDEO_BLOCK) {
3865				video = db + 1;
3866				video_len = dbl;
3867				modes += do_cea_modes(connector, video, dbl);
3868			} else if (cea_db_is_hdmi_vsdb(db)) {
3869				hdmi = db;
3870				hdmi_len = dbl;
3871			} else if (cea_db_is_y420vdb(db)) {
3872				const u8 *vdb420 = &db[2];
3873
3874				/* Add 4:2:0(only) modes present in EDID */
3875				modes += do_y420vdb_modes(connector,
3876							  vdb420,
3877							  dbl - 1);
3878			}
3879		}
3880	}
3881
3882	/*
3883	 * We parse the HDMI VSDB after having added the cea modes as we will
3884	 * be patching their flags when the sink supports stereo 3D.
3885	 */
3886	if (hdmi)
3887		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3888					    video_len);
3889
3890	return modes;
3891}
3892
3893static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
 
3894{
3895	const struct drm_display_mode *cea_mode;
3896	int clock1, clock2, clock;
3897	u8 vic;
3898	const char *type;
3899
3900	/*
3901	 * allow 5kHz clock difference either way to account for
3902	 * the 10kHz clock resolution limit of detailed timings.
3903	 */
3904	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3905	if (drm_valid_cea_vic(vic)) {
3906		type = "CEA";
3907		cea_mode = &edid_cea_modes[vic];
3908		clock1 = cea_mode->clock;
3909		clock2 = cea_mode_alternate_clock(cea_mode);
3910	} else {
3911		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3912		if (drm_valid_hdmi_vic(vic)) {
3913			type = "HDMI";
3914			cea_mode = &edid_4k_modes[vic];
3915			clock1 = cea_mode->clock;
3916			clock2 = hdmi_mode_alternate_clock(cea_mode);
3917		} else {
3918			return;
3919		}
3920	}
3921
3922	/* pick whichever is closest */
3923	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3924		clock = clock1;
3925	else
3926		clock = clock2;
3927
3928	if (mode->clock == clock)
3929		return;
3930
3931	DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3932		  type, vic, mode->clock, clock);
 
 
3933	mode->clock = clock;
3934}
3935
3936static bool cea_db_is_hdmi_hdr_metadata_block(const u8 *db)
3937{
3938	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3939		return false;
 
 
 
 
 
 
3940
3941	if (db[1] != HDR_STATIC_METADATA_BLOCK)
3942		return false;
3943
3944	if (cea_db_payload_len(db) < 3)
3945		return false;
3946
3947	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3948}
3949
3950static uint8_t eotf_supported(const u8 *edid_ext)
3951{
3952	return edid_ext[2] &
3953		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
3954		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
3955		 BIT(HDMI_EOTF_SMPTE_ST2084) |
3956		 BIT(HDMI_EOTF_BT_2100_HLG));
3957}
3958
3959static uint8_t hdr_metadata_type(const u8 *edid_ext)
3960{
3961	return edid_ext[3] &
3962		BIT(HDMI_STATIC_METADATA_TYPE1);
3963}
3964
3965static void
3966drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
3967{
3968	u16 len;
3969
3970	len = cea_db_payload_len(db);
3971
3972	connector->hdr_sink_metadata.hdmi_type1.eotf =
3973						eotf_supported(db);
3974	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
3975						hdr_metadata_type(db);
3976
3977	if (len >= 4)
3978		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
3979	if (len >= 5)
3980		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
3981	if (len >= 6)
3982		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
 
 
 
 
3983}
3984
 
3985static void
3986drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
3987{
3988	u8 len = cea_db_payload_len(db);
3989
3990	if (len >= 6 && (db[6] & (1 << 7)))
3991		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
3992	if (len >= 8) {
3993		connector->latency_present[0] = db[8] >> 7;
3994		connector->latency_present[1] = (db[8] >> 6) & 1;
3995	}
3996	if (len >= 9)
3997		connector->video_latency[0] = db[9];
3998	if (len >= 10)
3999		connector->audio_latency[0] = db[10];
4000	if (len >= 11)
 
 
 
4001		connector->video_latency[1] = db[11];
4002	if (len >= 12)
4003		connector->audio_latency[1] = db[12];
 
4004
4005	DRM_DEBUG_KMS("HDMI: latency present %d %d, "
4006		      "video latency %d %d, "
4007		      "audio latency %d %d\n",
4008		      connector->latency_present[0],
4009		      connector->latency_present[1],
4010		      connector->video_latency[0],
4011		      connector->video_latency[1],
4012		      connector->audio_latency[0],
4013		      connector->audio_latency[1]);
4014}
4015
4016static void
4017monitor_name(struct detailed_timing *t, void *data)
4018{
4019	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
4020		*(u8 **)data = t->data.other_data.data.str.str;
 
 
 
 
4021}
4022
4023static int get_monitor_name(struct edid *edid, char name[13])
4024{
4025	char *edid_name = NULL;
4026	int mnl;
4027
4028	if (!edid || !name)
4029		return 0;
4030
4031	drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
4032	for (mnl = 0; edid_name && mnl < 13; mnl++) {
4033		if (edid_name[mnl] == 0x0a)
4034			break;
4035
4036		name[mnl] = edid_name[mnl];
4037	}
4038
4039	return mnl;
4040}
4041
4042/**
4043 * drm_edid_get_monitor_name - fetch the monitor name from the edid
4044 * @edid: monitor EDID information
4045 * @name: pointer to a character array to hold the name of the monitor
4046 * @bufsize: The size of the name buffer (should be at least 14 chars.)
4047 *
4048 */
4049void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
4050{
4051	int name_length;
4052	char buf[13];
4053	
4054	if (bufsize <= 0)
4055		return;
4056
4057	name_length = min(get_monitor_name(edid, buf), bufsize - 1);
4058	memcpy(name, buf, name_length);
 
 
 
 
 
 
 
 
 
4059	name[name_length] = '\0';
4060}
4061EXPORT_SYMBOL(drm_edid_get_monitor_name);
4062
4063static void clear_eld(struct drm_connector *connector)
4064{
4065	memset(connector->eld, 0, sizeof(connector->eld));
4066
4067	connector->latency_present[0] = false;
4068	connector->latency_present[1] = false;
4069	connector->video_latency[0] = 0;
4070	connector->audio_latency[0] = 0;
4071	connector->video_latency[1] = 0;
4072	connector->audio_latency[1] = 0;
4073}
4074
4075/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4076 * drm_edid_to_eld - build ELD from EDID
4077 * @connector: connector corresponding to the HDMI/DP sink
4078 * @edid: EDID to parse
4079 *
4080 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
4081 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
4082 */
4083static void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
 
4084{
 
 
 
4085	uint8_t *eld = connector->eld;
4086	u8 *cea;
4087	u8 *db;
4088	int total_sad_count = 0;
4089	int mnl;
4090	int dbl;
4091
4092	clear_eld(connector);
4093
4094	if (!edid)
4095		return;
4096
4097	cea = drm_find_cea_extension(edid);
4098	if (!cea) {
4099		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
4100		return;
4101	}
4102
4103	mnl = get_monitor_name(edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
4104	DRM_DEBUG_KMS("ELD monitor %s\n", &eld[DRM_ELD_MONITOR_NAME_STRING]);
4105
4106	eld[DRM_ELD_CEA_EDID_VER_MNL] = cea[1] << DRM_ELD_CEA_EDID_VER_SHIFT;
4107	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
4108
4109	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
4110
4111	eld[DRM_ELD_MANUFACTURER_NAME0] = edid->mfg_id[0];
4112	eld[DRM_ELD_MANUFACTURER_NAME1] = edid->mfg_id[1];
4113	eld[DRM_ELD_PRODUCT_CODE0] = edid->prod_code[0];
4114	eld[DRM_ELD_PRODUCT_CODE1] = edid->prod_code[1];
4115
4116	if (cea_revision(cea) >= 3) {
4117		int i, start, end;
4118
4119		if (cea_db_offsets(cea, &start, &end)) {
4120			start = 0;
4121			end = 0;
4122		}
4123
4124		for_each_cea_db(cea, i, start, end) {
4125			db = &cea[i];
4126			dbl = cea_db_payload_len(db);
4127
4128			switch (cea_db_tag(db)) {
4129				int sad_count;
4130
4131			case AUDIO_BLOCK:
4132				/* Audio Data Block, contains SADs */
4133				sad_count = min(dbl / 3, 15 - total_sad_count);
4134				if (sad_count >= 1)
4135					memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
4136					       &db[1], sad_count * 3);
4137				total_sad_count += sad_count;
4138				break;
4139			case SPEAKER_BLOCK:
4140				/* Speaker Allocation Data Block */
4141				if (dbl >= 1)
4142					eld[DRM_ELD_SPEAKER] = db[1];
4143				break;
4144			case VENDOR_BLOCK:
4145				/* HDMI Vendor-Specific Data Block */
4146				if (cea_db_is_hdmi_vsdb(db))
4147					drm_parse_hdmi_vsdb_audio(connector, db);
4148				break;
4149			default:
4150				break;
4151			}
4152		}
4153	}
 
 
4154	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
4155
4156	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
4157	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4158		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
4159	else
4160		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
4161
4162	eld[DRM_ELD_BASELINE_ELD_LEN] =
4163		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
4164
4165	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
4166		      drm_eld_size(eld), total_sad_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4167}
4168
4169/**
4170 * drm_edid_to_sad - extracts SADs from EDID
4171 * @edid: EDID to parse
4172 * @sads: pointer that will be set to the extracted SADs
4173 *
4174 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
4175 *
4176 * Note: The returned pointer needs to be freed using kfree().
4177 *
4178 * Return: The number of found SADs or negative number on error.
4179 */
4180int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
4181{
4182	int count = 0;
4183	int i, start, end, dbl;
4184	u8 *cea;
4185
4186	cea = drm_find_cea_extension(edid);
4187	if (!cea) {
4188		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4189		return -ENOENT;
4190	}
4191
4192	if (cea_revision(cea) < 3) {
4193		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4194		return -ENOTSUPP;
4195	}
4196
4197	if (cea_db_offsets(cea, &start, &end)) {
4198		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4199		return -EPROTO;
4200	}
4201
4202	for_each_cea_db(cea, i, start, end) {
4203		u8 *db = &cea[i];
4204
4205		if (cea_db_tag(db) == AUDIO_BLOCK) {
4206			int j;
4207			dbl = cea_db_payload_len(db);
 
 
 
4208
4209			count = dbl / 3; /* SAD is 3B */
4210			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
4211			if (!*sads)
 
 
 
 
4212				return -ENOMEM;
4213			for (j = 0; j < count; j++) {
4214				u8 *sad = &db[1 + j * 3];
4215
4216				(*sads)[j].format = (sad[0] & 0x78) >> 3;
4217				(*sads)[j].channels = sad[0] & 0x7;
4218				(*sads)[j].freq = sad[1] & 0x7F;
4219				(*sads)[j].byte2 = sad[2];
4220			}
4221			break;
4222		}
4223	}
 
 
 
4224
4225	return count;
4226}
4227EXPORT_SYMBOL(drm_edid_to_sad);
4228
4229/**
4230 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
4231 * @edid: EDID to parse
4232 * @sadb: pointer to the speaker block
4233 *
4234 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
4235 *
4236 * Note: The returned pointer needs to be freed using kfree().
4237 *
4238 * Return: The number of found Speaker Allocation Blocks or negative number on
4239 * error.
4240 */
4241int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
4242{
4243	int count = 0;
4244	int i, start, end, dbl;
4245	const u8 *cea;
4246
4247	cea = drm_find_cea_extension(edid);
4248	if (!cea) {
4249		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4250		return -ENOENT;
4251	}
4252
4253	if (cea_revision(cea) < 3) {
4254		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4255		return -ENOTSUPP;
4256	}
4257
4258	if (cea_db_offsets(cea, &start, &end)) {
4259		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4260		return -EPROTO;
4261	}
4262
4263	for_each_cea_db(cea, i, start, end) {
4264		const u8 *db = &cea[i];
4265
4266		if (cea_db_tag(db) == SPEAKER_BLOCK) {
4267			dbl = cea_db_payload_len(db);
4268
4269			/* Speaker Allocation Data Block */
4270			if (dbl == 3) {
4271				*sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
4272				if (!*sadb)
4273					return -ENOMEM;
4274				count = dbl;
4275				break;
4276			}
4277		}
4278	}
4279
4280	return count;
 
4281}
4282EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
4283
4284/**
4285 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
4286 * @connector: connector associated with the HDMI/DP sink
4287 * @mode: the display mode
4288 *
4289 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
4290 * the sink doesn't support audio or video.
4291 */
4292int drm_av_sync_delay(struct drm_connector *connector,
4293		      const struct drm_display_mode *mode)
4294{
4295	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
4296	int a, v;
4297
4298	if (!connector->latency_present[0])
4299		return 0;
4300	if (!connector->latency_present[1])
4301		i = 0;
4302
4303	a = connector->audio_latency[i];
4304	v = connector->video_latency[i];
4305
4306	/*
4307	 * HDMI/DP sink doesn't support audio or video?
4308	 */
4309	if (a == 255 || v == 255)
4310		return 0;
4311
4312	/*
4313	 * Convert raw EDID values to millisecond.
4314	 * Treat unknown latency as 0ms.
4315	 */
4316	if (a)
4317		a = min(2 * (a - 1), 500);
4318	if (v)
4319		v = min(2 * (v - 1), 500);
4320
4321	return max(v - a, 0);
4322}
4323EXPORT_SYMBOL(drm_av_sync_delay);
4324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4325/**
4326 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
4327 * @edid: monitor EDID information
4328 *
4329 * Parse the CEA extension according to CEA-861-B.
4330 *
 
 
 
4331 * Return: True if the monitor is HDMI, false if not or unknown.
4332 */
4333bool drm_detect_hdmi_monitor(struct edid *edid)
4334{
4335	u8 *edid_ext;
4336	int i;
4337	int start_offset, end_offset;
4338
4339	edid_ext = drm_find_cea_extension(edid);
4340	if (!edid_ext)
4341		return false;
4342
4343	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4344		return false;
 
 
 
 
 
4345
4346	/*
4347	 * Because HDMI identifier is in Vendor Specific Block,
4348	 * search it from all data blocks of CEA extension.
4349	 */
4350	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4351		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
4352			return true;
4353	}
 
4354
4355	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4356}
4357EXPORT_SYMBOL(drm_detect_hdmi_monitor);
4358
4359/**
4360 * drm_detect_monitor_audio - check monitor audio capability
4361 * @edid: EDID block to scan
4362 *
4363 * Monitor should have CEA extension block.
4364 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
4365 * audio' only. If there is any audio extension block and supported
4366 * audio format, assume at least 'basic audio' support, even if 'basic
4367 * audio' is not defined in EDID.
4368 *
4369 * Return: True if the monitor supports audio, false otherwise.
4370 */
4371bool drm_detect_monitor_audio(struct edid *edid)
4372{
4373	u8 *edid_ext;
4374	int i, j;
4375	bool has_audio = false;
4376	int start_offset, end_offset;
4377
4378	edid_ext = drm_find_cea_extension(edid);
4379	if (!edid_ext)
4380		goto end;
4381
4382	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
4383
4384	if (has_audio) {
4385		DRM_DEBUG_KMS("Monitor has basic audio support\n");
4386		goto end;
4387	}
4388
4389	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4390		goto end;
4391
4392	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4393		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
4394			has_audio = true;
4395			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
4396				DRM_DEBUG_KMS("CEA audio format %d\n",
4397					      (edid_ext[i + j] >> 3) & 0xf);
4398			goto end;
4399		}
4400	}
4401end:
4402	return has_audio;
4403}
4404EXPORT_SYMBOL(drm_detect_monitor_audio);
4405
4406
4407/**
4408 * drm_default_rgb_quant_range - default RGB quantization range
4409 * @mode: display mode
4410 *
4411 * Determine the default RGB quantization range for the mode,
4412 * as specified in CEA-861.
4413 *
4414 * Return: The default RGB quantization range for the mode
4415 */
4416enum hdmi_quantization_range
4417drm_default_rgb_quant_range(const struct drm_display_mode *mode)
4418{
4419	/* All CEA modes other than VIC 1 use limited quantization range. */
4420	return drm_match_cea_mode(mode) > 1 ?
4421		HDMI_QUANTIZATION_RANGE_LIMITED :
4422		HDMI_QUANTIZATION_RANGE_FULL;
4423}
4424EXPORT_SYMBOL(drm_default_rgb_quant_range);
4425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4426static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
4427{
4428	struct drm_display_info *info = &connector->display_info;
4429
4430	DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", db[2]);
 
4431
4432	if (db[2] & EDID_CEA_VCDB_QS)
4433		info->rgb_quant_range_selectable = true;
4434}
4435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4436static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
4437					       const u8 *db)
4438{
4439	u8 dc_mask;
4440	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4441
4442	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
4443	hdmi->y420_dc_modes = dc_mask;
4444}
4445
4446static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector,
4447				 const u8 *hf_vsdb)
4448{
4449	struct drm_display_info *display = &connector->display_info;
4450	struct drm_hdmi_info *hdmi = &display->hdmi;
4451
4452	display->has_hdmi_infoframe = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4453
4454	if (hf_vsdb[6] & 0x80) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4455		hdmi->scdc.supported = true;
4456		if (hf_vsdb[6] & 0x40)
4457			hdmi->scdc.read_request = true;
4458	}
4459
4460	/*
4461	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
4462	 * And as per the spec, three factors confirm this:
4463	 * * Availability of a HF-VSDB block in EDID (check)
4464	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
4465	 * * SCDC support available (let's check)
4466	 * Lets check it out.
4467	 */
4468
4469	if (hf_vsdb[5]) {
4470		/* max clock is 5000 KHz times block value */
4471		u32 max_tmds_clock = hf_vsdb[5] * 5000;
4472		struct drm_scdc *scdc = &hdmi->scdc;
4473
 
 
 
4474		if (max_tmds_clock > 340000) {
4475			display->max_tmds_clock = max_tmds_clock;
4476			DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n",
4477				display->max_tmds_clock);
4478		}
4479
4480		if (scdc->supported) {
4481			scdc->scrambling.supported = true;
4482
4483			/* Few sinks support scrambling for cloks < 340M */
4484			if ((hf_vsdb[6] & 0x8))
4485				scdc->scrambling.low_rates = true;
4486		}
4487	}
4488
4489	drm_parse_ycbcr420_deep_color_info(connector, hf_vsdb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4490}
4491
4492static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
4493					   const u8 *hdmi)
4494{
4495	struct drm_display_info *info = &connector->display_info;
4496	unsigned int dc_bpc = 0;
4497
4498	/* HDMI supports at least 8 bpc */
4499	info->bpc = 8;
4500
4501	if (cea_db_payload_len(hdmi) < 6)
4502		return;
4503
4504	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
4505		dc_bpc = 10;
4506		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
4507		DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
4508			  connector->name);
4509	}
4510
4511	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
4512		dc_bpc = 12;
4513		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
4514		DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
4515			  connector->name);
4516	}
4517
4518	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
4519		dc_bpc = 16;
4520		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
4521		DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
4522			  connector->name);
4523	}
4524
4525	if (dc_bpc == 0) {
4526		DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
4527			  connector->name);
4528		return;
4529	}
4530
4531	DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
4532		  connector->name, dc_bpc);
4533	info->bpc = dc_bpc;
4534
4535	/*
4536	 * Deep color support mandates RGB444 support for all video
4537	 * modes and forbids YCRCB422 support for all video modes per
4538	 * HDMI 1.3 spec.
4539	 */
4540	info->color_formats = DRM_COLOR_FORMAT_RGB444;
4541
4542	/* YCRCB444 is optional according to spec. */
4543	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
4544		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4545		DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
4546			  connector->name);
4547	}
4548
4549	/*
4550	 * Spec says that if any deep color mode is supported at all,
4551	 * then deep color 36 bit must be supported.
4552	 */
4553	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
4554		DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
4555			  connector->name);
4556	}
4557}
4558
 
4559static void
4560drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
4561{
4562	struct drm_display_info *info = &connector->display_info;
4563	u8 len = cea_db_payload_len(db);
4564
 
 
 
 
4565	if (len >= 6)
4566		info->dvi_dual = db[6] & 1;
4567	if (len >= 7)
4568		info->max_tmds_clock = db[7] * 5000;
4569
4570	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
4571		      "max TMDS clock %d kHz\n",
4572		      info->dvi_dual,
4573		      info->max_tmds_clock);
 
 
 
 
 
 
 
 
4574
4575	drm_parse_hdmi_deep_color_info(connector, db);
4576}
4577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4578static void drm_parse_cea_ext(struct drm_connector *connector,
4579			      const struct edid *edid)
4580{
4581	struct drm_display_info *info = &connector->display_info;
 
 
 
4582	const u8 *edid_ext;
4583	int i, start, end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4584
4585	edid_ext = drm_find_cea_extension(edid);
4586	if (!edid_ext)
4587		return;
4588
4589	info->cea_rev = edid_ext[1];
 
 
 
 
 
 
 
 
 
 
 
 
 
4590
4591	/* The existence of a CEA block should imply RGB support */
4592	info->color_formats = DRM_COLOR_FORMAT_RGB444;
4593	if (edid_ext[3] & EDID_CEA_YCRCB444)
4594		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4595	if (edid_ext[3] & EDID_CEA_YCRCB422)
4596		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4597
4598	if (cea_db_offsets(edid_ext, &start, &end))
4599		return;
4600
4601	for_each_cea_db(edid_ext, i, start, end) {
4602		const u8 *db = &edid_ext[i];
 
 
 
 
4603
4604		if (cea_db_is_hdmi_vsdb(db))
4605			drm_parse_hdmi_vsdb_video(connector, db);
4606		if (cea_db_is_hdmi_forum_vsdb(db))
4607			drm_parse_hdmi_forum_vsdb(connector, db);
4608		if (cea_db_is_y420cmdb(db))
4609			drm_parse_y420cmdb_bitmap(connector, db);
4610		if (cea_db_is_vcdb(db))
4611			drm_parse_vcdb(connector, db);
4612		if (cea_db_is_hdmi_hdr_metadata_block(db))
4613			drm_parse_hdr_metadata_block(connector, db);
 
 
 
 
4614	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4615}
4616
4617/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
4618 * all of the values which would have been set from EDID
4619 */
4620void
4621drm_reset_display_info(struct drm_connector *connector)
4622{
4623	struct drm_display_info *info = &connector->display_info;
4624
4625	info->width_mm = 0;
4626	info->height_mm = 0;
4627
4628	info->bpc = 0;
4629	info->color_formats = 0;
4630	info->cea_rev = 0;
4631	info->max_tmds_clock = 0;
4632	info->dvi_dual = false;
 
 
4633	info->has_hdmi_infoframe = false;
4634	info->rgb_quant_range_selectable = false;
4635	memset(&info->hdmi, 0, sizeof(info->hdmi));
4636
 
 
 
4637	info->non_desktop = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4638}
4639
4640u32 drm_add_display_info(struct drm_connector *connector, const struct edid *edid)
 
4641{
4642	struct drm_display_info *info = &connector->display_info;
 
 
 
 
 
 
 
 
 
4643
4644	u32 quirks = edid_get_quirks(edid);
 
 
 
 
 
 
 
 
 
 
 
 
 
4645
4646	drm_reset_display_info(connector);
 
 
 
 
 
 
 
 
4647
4648	info->width_mm = edid->width_cm * 10;
4649	info->height_mm = edid->height_cm * 10;
4650
4651	info->non_desktop = !!(quirks & EDID_QUIRK_NON_DESKTOP);
4652
4653	DRM_DEBUG_KMS("non_desktop set to %d\n", info->non_desktop);
4654
4655	if (edid->revision < 3)
4656		return quirks;
 
 
 
4657
4658	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
4659		return quirks;
4660
4661	drm_parse_cea_ext(connector, edid);
4662
4663	/*
4664	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
4665	 *
4666	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
4667	 * tells us to assume 8 bpc color depth if the EDID doesn't have
4668	 * extensions which tell otherwise.
4669	 */
4670	if (info->bpc == 0 && edid->revision == 3 &&
4671	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
4672		info->bpc = 8;
4673		DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
4674			  connector->name, info->bpc);
 
4675	}
4676
4677	/* Only defined for 1.4 with digital displays */
4678	if (edid->revision < 4)
4679		return quirks;
4680
4681	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
4682	case DRM_EDID_DIGITAL_DEPTH_6:
4683		info->bpc = 6;
4684		break;
4685	case DRM_EDID_DIGITAL_DEPTH_8:
4686		info->bpc = 8;
4687		break;
4688	case DRM_EDID_DIGITAL_DEPTH_10:
4689		info->bpc = 10;
4690		break;
4691	case DRM_EDID_DIGITAL_DEPTH_12:
4692		info->bpc = 12;
4693		break;
4694	case DRM_EDID_DIGITAL_DEPTH_14:
4695		info->bpc = 14;
4696		break;
4697	case DRM_EDID_DIGITAL_DEPTH_16:
4698		info->bpc = 16;
4699		break;
4700	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
4701	default:
4702		info->bpc = 0;
4703		break;
4704	}
4705
4706	DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
4707			  connector->name, info->bpc);
 
4708
4709	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
4710	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
4711		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4712	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
4713		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4714	return quirks;
4715}
4716
4717static int validate_displayid(u8 *displayid, int length, int idx)
4718{
4719	int i;
4720	u8 csum = 0;
4721	struct displayid_hdr *base;
4722
4723	base = (struct displayid_hdr *)&displayid[idx];
 
 
 
 
 
 
4724
4725	DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
4726		      base->rev, base->bytes, base->prod_id, base->ext_count);
4727
4728	if (base->bytes + 5 > length - idx)
4729		return -EINVAL;
4730	for (i = idx; i <= base->bytes + 5; i++) {
4731		csum += displayid[i];
4732	}
4733	if (csum) {
4734		DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum);
4735		return -EINVAL;
4736	}
4737	return 0;
 
 
 
 
4738}
4739
4740static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
4741							    struct displayid_detailed_timings_1 *timings)
 
4742{
4743	struct drm_display_mode *mode;
4744	unsigned pixel_clock = (timings->pixel_clock[0] |
4745				(timings->pixel_clock[1] << 8) |
4746				(timings->pixel_clock[2] << 16));
4747	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4748	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4749	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
4750	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4751	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
4752	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4753	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
4754	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4755	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4756	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
 
4757	mode = drm_mode_create(dev);
4758	if (!mode)
4759		return NULL;
4760
4761	mode->clock = pixel_clock * 10;
 
4762	mode->hdisplay = hactive;
4763	mode->hsync_start = mode->hdisplay + hsync;
4764	mode->hsync_end = mode->hsync_start + hsync_width;
4765	mode->htotal = mode->hdisplay + hblank;
4766
4767	mode->vdisplay = vactive;
4768	mode->vsync_start = mode->vdisplay + vsync;
4769	mode->vsync_end = mode->vsync_start + vsync_width;
4770	mode->vtotal = mode->vdisplay + vblank;
4771
4772	mode->flags = 0;
4773	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4774	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4775	mode->type = DRM_MODE_TYPE_DRIVER;
4776
4777	if (timings->flags & 0x80)
4778		mode->type |= DRM_MODE_TYPE_PREFERRED;
4779	mode->vrefresh = drm_mode_vrefresh(mode);
4780	drm_mode_set_name(mode);
4781
4782	return mode;
4783}
4784
4785static int add_displayid_detailed_1_modes(struct drm_connector *connector,
4786					  struct displayid_block *block)
4787{
4788	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
4789	int i;
4790	int num_timings;
4791	struct drm_display_mode *newmode;
4792	int num_modes = 0;
 
4793	/* blocks must be multiple of 20 bytes length */
4794	if (block->num_bytes % 20)
4795		return 0;
4796
4797	num_timings = block->num_bytes / 20;
4798	for (i = 0; i < num_timings; i++) {
4799		struct displayid_detailed_timings_1 *timings = &det->timings[i];
4800
4801		newmode = drm_mode_displayid_detailed(connector->dev, timings);
4802		if (!newmode)
4803			continue;
4804
4805		drm_mode_probed_add(connector, newmode);
4806		num_modes++;
4807	}
4808	return num_modes;
4809}
4810
4811static int add_displayid_detailed_modes(struct drm_connector *connector,
4812					struct edid *edid)
4813{
4814	u8 *displayid;
4815	int ret;
4816	int idx = 1;
4817	int length = EDID_LENGTH;
4818	struct displayid_block *block;
4819	int num_modes = 0;
4820
4821	displayid = drm_find_displayid_extension(edid);
4822	if (!displayid)
4823		return 0;
4824
4825	ret = validate_displayid(displayid, length, idx);
4826	if (ret)
4827		return 0;
4828
4829	idx += sizeof(struct displayid_hdr);
4830	for_each_displayid_db(displayid, block, idx, length) {
4831		switch (block->tag) {
4832		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4833			num_modes += add_displayid_detailed_1_modes(connector, block);
4834			break;
4835		}
4836	}
 
 
4837	return num_modes;
4838}
4839
4840/**
4841 * drm_add_edid_modes - add modes from EDID data, if available
4842 * @connector: connector we're probing
4843 * @edid: EDID data
4844 *
4845 * Add the specified modes to the connector's mode list. Also fills out the
4846 * &drm_display_info structure and ELD in @connector with any information which
4847 * can be derived from the edid.
4848 *
4849 * Return: The number of modes added or 0 if we couldn't find any.
4850 */
4851int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
4852{
 
4853	int num_modes = 0;
4854	u32 quirks;
4855
4856	if (edid == NULL) {
4857		clear_eld(connector);
4858		return 0;
4859	}
4860	if (!drm_edid_is_valid(edid)) {
4861		clear_eld(connector);
4862		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
4863			 connector->name);
4864		return 0;
4865	}
4866
4867	drm_edid_to_eld(connector, edid);
4868
4869	/*
4870	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
4871	 * To avoid multiple parsing of same block, lets parse that map
4872	 * from sink info, before parsing CEA modes.
4873	 */
4874	quirks = drm_add_display_info(connector, edid);
4875
4876	/*
4877	 * EDID spec says modes should be preferred in this order:
4878	 * - preferred detailed mode
4879	 * - other detailed modes from base block
4880	 * - detailed modes from extension blocks
4881	 * - CVT 3-byte code modes
4882	 * - standard timing codes
4883	 * - established timing codes
4884	 * - modes inferred from GTF or CVT range information
4885	 *
4886	 * We get this pretty much right.
4887	 *
4888	 * XXX order for additional mode types in extension blocks?
4889	 */
4890	num_modes += add_detailed_modes(connector, edid, quirks);
4891	num_modes += add_cvt_modes(connector, edid);
4892	num_modes += add_standard_modes(connector, edid);
4893	num_modes += add_established_modes(connector, edid);
4894	num_modes += add_cea_modes(connector, edid);
4895	num_modes += add_alternate_cea_modes(connector, edid);
4896	num_modes += add_displayid_detailed_modes(connector, edid);
4897	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
4898		num_modes += add_inferred_modes(connector, edid);
4899
4900	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
4901		edid_fixup_preferred(connector, quirks);
4902
4903	if (quirks & EDID_QUIRK_FORCE_6BPC)
4904		connector->display_info.bpc = 6;
4905
4906	if (quirks & EDID_QUIRK_FORCE_8BPC)
4907		connector->display_info.bpc = 8;
4908
4909	if (quirks & EDID_QUIRK_FORCE_10BPC)
4910		connector->display_info.bpc = 10;
4911
4912	if (quirks & EDID_QUIRK_FORCE_12BPC)
4913		connector->display_info.bpc = 12;
4914
4915	return num_modes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4916}
4917EXPORT_SYMBOL(drm_add_edid_modes);
4918
4919/**
4920 * drm_add_modes_noedid - add modes for the connectors without EDID
4921 * @connector: connector we're probing
4922 * @hdisplay: the horizontal display limit
4923 * @vdisplay: the vertical display limit
4924 *
4925 * Add the specified modes to the connector's mode list. Only when the
4926 * hdisplay/vdisplay is not beyond the given limit, it will be added.
4927 *
4928 * Return: The number of modes added or 0 if we couldn't find any.
4929 */
4930int drm_add_modes_noedid(struct drm_connector *connector,
4931			int hdisplay, int vdisplay)
4932{
4933	int i, count, num_modes = 0;
4934	struct drm_display_mode *mode;
4935	struct drm_device *dev = connector->dev;
4936
4937	count = ARRAY_SIZE(drm_dmt_modes);
4938	if (hdisplay < 0)
4939		hdisplay = 0;
4940	if (vdisplay < 0)
4941		vdisplay = 0;
4942
4943	for (i = 0; i < count; i++) {
4944		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
 
4945		if (hdisplay && vdisplay) {
4946			/*
4947			 * Only when two are valid, they will be used to check
4948			 * whether the mode should be added to the mode list of
4949			 * the connector.
4950			 */
4951			if (ptr->hdisplay > hdisplay ||
4952					ptr->vdisplay > vdisplay)
4953				continue;
4954		}
4955		if (drm_mode_vrefresh(ptr) > 61)
4956			continue;
4957		mode = drm_mode_duplicate(dev, ptr);
4958		if (mode) {
4959			drm_mode_probed_add(connector, mode);
4960			num_modes++;
4961		}
4962	}
4963	return num_modes;
4964}
4965EXPORT_SYMBOL(drm_add_modes_noedid);
4966
4967/**
4968 * drm_set_preferred_mode - Sets the preferred mode of a connector
4969 * @connector: connector whose mode list should be processed
4970 * @hpref: horizontal resolution of preferred mode
4971 * @vpref: vertical resolution of preferred mode
4972 *
4973 * Marks a mode as preferred if it matches the resolution specified by @hpref
4974 * and @vpref.
4975 */
4976void drm_set_preferred_mode(struct drm_connector *connector,
4977			   int hpref, int vpref)
4978{
4979	struct drm_display_mode *mode;
4980
4981	list_for_each_entry(mode, &connector->probed_modes, head) {
4982		if (mode->hdisplay == hpref &&
4983		    mode->vdisplay == vpref)
4984			mode->type |= DRM_MODE_TYPE_PREFERRED;
4985	}
4986}
4987EXPORT_SYMBOL(drm_set_preferred_mode);
4988
4989static bool is_hdmi2_sink(struct drm_connector *connector)
4990{
4991	/*
4992	 * FIXME: sil-sii8620 doesn't have a connector around when
4993	 * we need one, so we have to be prepared for a NULL connector.
4994	 */
4995	if (!connector)
4996		return true;
4997
4998	return connector->display_info.hdmi.scdc.supported ||
4999		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCRCB420;
5000}
5001
5002static inline bool is_eotf_supported(u8 output_eotf, u8 sink_eotf)
5003{
5004	return sink_eotf & BIT(output_eotf);
5005}
5006
5007/**
5008 * drm_hdmi_infoframe_set_hdr_metadata() - fill an HDMI DRM infoframe with
5009 *                                         HDR metadata from userspace
5010 * @frame: HDMI DRM infoframe
5011 * @conn_state: Connector state containing HDR metadata
5012 *
5013 * Return: 0 on success or a negative error code on failure.
5014 */
5015int
5016drm_hdmi_infoframe_set_hdr_metadata(struct hdmi_drm_infoframe *frame,
5017				    const struct drm_connector_state *conn_state)
5018{
5019	struct drm_connector *connector;
5020	struct hdr_output_metadata *hdr_metadata;
5021	int err;
5022
5023	if (!frame || !conn_state)
5024		return -EINVAL;
5025
5026	connector = conn_state->connector;
5027
5028	if (!conn_state->hdr_output_metadata)
5029		return -EINVAL;
5030
5031	hdr_metadata = conn_state->hdr_output_metadata->data;
 
5032
5033	if (!hdr_metadata || !connector)
5034		return -EINVAL;
 
5035
5036	/* Sink EOTF is Bit map while infoframe is absolute values */
5037	if (!is_eotf_supported(hdr_metadata->hdmi_metadata_type1.eotf,
5038	    connector->hdr_sink_metadata.hdmi_type1.eotf)) {
5039		DRM_DEBUG_KMS("EOTF Not Supported\n");
5040		return -EINVAL;
5041	}
5042
5043	err = hdmi_drm_infoframe_init(frame);
5044	if (err < 0)
5045		return err;
 
 
 
 
 
 
 
 
5046
5047	frame->eotf = hdr_metadata->hdmi_metadata_type1.eotf;
5048	frame->metadata_type = hdr_metadata->hdmi_metadata_type1.metadata_type;
5049
5050	BUILD_BUG_ON(sizeof(frame->display_primaries) !=
5051		     sizeof(hdr_metadata->hdmi_metadata_type1.display_primaries));
5052	BUILD_BUG_ON(sizeof(frame->white_point) !=
5053		     sizeof(hdr_metadata->hdmi_metadata_type1.white_point));
5054
5055	memcpy(&frame->display_primaries,
5056	       &hdr_metadata->hdmi_metadata_type1.display_primaries,
5057	       sizeof(frame->display_primaries));
5058
5059	memcpy(&frame->white_point,
5060	       &hdr_metadata->hdmi_metadata_type1.white_point,
5061	       sizeof(frame->white_point));
5062
5063	frame->max_display_mastering_luminance =
5064		hdr_metadata->hdmi_metadata_type1.max_display_mastering_luminance;
5065	frame->min_display_mastering_luminance =
5066		hdr_metadata->hdmi_metadata_type1.min_display_mastering_luminance;
5067	frame->max_fall = hdr_metadata->hdmi_metadata_type1.max_fall;
5068	frame->max_cll = hdr_metadata->hdmi_metadata_type1.max_cll;
5069
5070	return 0;
5071}
5072EXPORT_SYMBOL(drm_hdmi_infoframe_set_hdr_metadata);
5073
5074/**
5075 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
5076 *                                              data from a DRM display mode
5077 * @frame: HDMI AVI infoframe
5078 * @connector: the connector
5079 * @mode: DRM display mode
5080 *
5081 * Return: 0 on success or a negative error code on failure.
5082 */
5083int
5084drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
5085					 struct drm_connector *connector,
5086					 const struct drm_display_mode *mode)
5087{
5088	enum hdmi_picture_aspect picture_aspect;
5089	int err;
5090
5091	if (!frame || !mode)
5092		return -EINVAL;
5093
5094	err = hdmi_avi_infoframe_init(frame);
5095	if (err < 0)
5096		return err;
5097
5098	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
5099		frame->pixel_repeat = 1;
5100
5101	frame->video_code = drm_match_cea_mode(mode);
5102
5103	/*
5104	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
5105	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
5106	 * have to make sure we dont break HDMI 1.4 sinks.
5107	 */
5108	if (!is_hdmi2_sink(connector) && frame->video_code > 64)
5109		frame->video_code = 0;
5110
5111	/*
5112	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
5113	 * we should send its VIC in vendor infoframes, else send the
5114	 * VIC in AVI infoframes. Lets check if this mode is present in
5115	 * HDMI 1.4b 4K modes
5116	 */
5117	if (frame->video_code) {
5118		u8 vendor_if_vic = drm_match_hdmi_mode(mode);
5119		bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK;
5120
5121		if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d)
5122			frame->video_code = 0;
5123	}
5124
5125	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5126
5127	/*
5128	 * As some drivers don't support atomic, we can't use connector state.
5129	 * So just initialize the frame with default values, just the same way
5130	 * as it's done with other properties here.
5131	 */
5132	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
5133	frame->itc = 0;
5134
5135	/*
5136	 * Populate picture aspect ratio from either
5137	 * user input (if specified) or from the CEA mode list.
5138	 */
5139	picture_aspect = mode->picture_aspect_ratio;
5140	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE)
5141		picture_aspect = drm_get_cea_aspect_ratio(frame->video_code);
 
 
 
 
5142
5143	/*
5144	 * The infoframe can't convey anything but none, 4:3
5145	 * and 16:9, so if the user has asked for anything else
5146	 * we can only satisfy it by specifying the right VIC.
5147	 */
5148	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
5149		if (picture_aspect !=
5150		    drm_get_cea_aspect_ratio(frame->video_code))
 
 
 
 
 
5151			return -EINVAL;
 
 
5152		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5153	}
5154
 
5155	frame->picture_aspect = picture_aspect;
5156	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
5157	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
5158
5159	return 0;
5160}
5161EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
5162
5163/* HDMI Colorspace Spec Definitions */
5164#define FULL_COLORIMETRY_MASK		0x1FF
5165#define NORMAL_COLORIMETRY_MASK		0x3
5166#define EXTENDED_COLORIMETRY_MASK	0x7
5167#define EXTENDED_ACE_COLORIMETRY_MASK	0xF
5168
5169#define C(x) ((x) << 0)
5170#define EC(x) ((x) << 2)
5171#define ACE(x) ((x) << 5)
5172
5173#define HDMI_COLORIMETRY_NO_DATA		0x0
5174#define HDMI_COLORIMETRY_SMPTE_170M_YCC		(C(1) | EC(0) | ACE(0))
5175#define HDMI_COLORIMETRY_BT709_YCC		(C(2) | EC(0) | ACE(0))
5176#define HDMI_COLORIMETRY_XVYCC_601		(C(3) | EC(0) | ACE(0))
5177#define HDMI_COLORIMETRY_XVYCC_709		(C(3) | EC(1) | ACE(0))
5178#define HDMI_COLORIMETRY_SYCC_601		(C(3) | EC(2) | ACE(0))
5179#define HDMI_COLORIMETRY_OPYCC_601		(C(3) | EC(3) | ACE(0))
5180#define HDMI_COLORIMETRY_OPRGB			(C(3) | EC(4) | ACE(0))
5181#define HDMI_COLORIMETRY_BT2020_CYCC		(C(3) | EC(5) | ACE(0))
5182#define HDMI_COLORIMETRY_BT2020_RGB		(C(3) | EC(6) | ACE(0))
5183#define HDMI_COLORIMETRY_BT2020_YCC		(C(3) | EC(6) | ACE(0))
5184#define HDMI_COLORIMETRY_DCI_P3_RGB_D65		(C(3) | EC(7) | ACE(0))
5185#define HDMI_COLORIMETRY_DCI_P3_RGB_THEATER	(C(3) | EC(7) | ACE(1))
5186
5187static const u32 hdmi_colorimetry_val[] = {
5188	[DRM_MODE_COLORIMETRY_NO_DATA] = HDMI_COLORIMETRY_NO_DATA,
5189	[DRM_MODE_COLORIMETRY_SMPTE_170M_YCC] = HDMI_COLORIMETRY_SMPTE_170M_YCC,
5190	[DRM_MODE_COLORIMETRY_BT709_YCC] = HDMI_COLORIMETRY_BT709_YCC,
5191	[DRM_MODE_COLORIMETRY_XVYCC_601] = HDMI_COLORIMETRY_XVYCC_601,
5192	[DRM_MODE_COLORIMETRY_XVYCC_709] = HDMI_COLORIMETRY_XVYCC_709,
5193	[DRM_MODE_COLORIMETRY_SYCC_601] = HDMI_COLORIMETRY_SYCC_601,
5194	[DRM_MODE_COLORIMETRY_OPYCC_601] = HDMI_COLORIMETRY_OPYCC_601,
5195	[DRM_MODE_COLORIMETRY_OPRGB] = HDMI_COLORIMETRY_OPRGB,
5196	[DRM_MODE_COLORIMETRY_BT2020_CYCC] = HDMI_COLORIMETRY_BT2020_CYCC,
5197	[DRM_MODE_COLORIMETRY_BT2020_RGB] = HDMI_COLORIMETRY_BT2020_RGB,
5198	[DRM_MODE_COLORIMETRY_BT2020_YCC] = HDMI_COLORIMETRY_BT2020_YCC,
5199};
5200
5201#undef C
5202#undef EC
5203#undef ACE
5204
5205/**
5206 * drm_hdmi_avi_infoframe_colorspace() - fill the HDMI AVI infoframe
5207 *                                       colorspace information
5208 * @frame: HDMI AVI infoframe
5209 * @conn_state: connector state
5210 */
5211void
5212drm_hdmi_avi_infoframe_colorspace(struct hdmi_avi_infoframe *frame,
5213				  const struct drm_connector_state *conn_state)
5214{
5215	u32 colorimetry_val;
5216	u32 colorimetry_index = conn_state->colorspace & FULL_COLORIMETRY_MASK;
5217
5218	if (colorimetry_index >= ARRAY_SIZE(hdmi_colorimetry_val))
5219		colorimetry_val = HDMI_COLORIMETRY_NO_DATA;
5220	else
5221		colorimetry_val = hdmi_colorimetry_val[colorimetry_index];
5222
5223	frame->colorimetry = colorimetry_val & NORMAL_COLORIMETRY_MASK;
5224	/*
5225	 * ToDo: Extend it for ACE formats as well. Modify the infoframe
5226	 * structure and extend it in drivers/video/hdmi
5227	 */
5228	frame->extended_colorimetry = (colorimetry_val >> 2) &
5229					EXTENDED_COLORIMETRY_MASK;
5230}
5231EXPORT_SYMBOL(drm_hdmi_avi_infoframe_colorspace);
5232
5233/**
5234 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
5235 *                                        quantization range information
5236 * @frame: HDMI AVI infoframe
5237 * @connector: the connector
5238 * @mode: DRM display mode
5239 * @rgb_quant_range: RGB quantization range (Q)
5240 */
5241void
5242drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
5243				   struct drm_connector *connector,
5244				   const struct drm_display_mode *mode,
5245				   enum hdmi_quantization_range rgb_quant_range)
5246{
5247	const struct drm_display_info *info = &connector->display_info;
5248
5249	/*
5250	 * CEA-861:
5251	 * "A Source shall not send a non-zero Q value that does not correspond
5252	 *  to the default RGB Quantization Range for the transmitted Picture
5253	 *  unless the Sink indicates support for the Q bit in a Video
5254	 *  Capabilities Data Block."
5255	 *
5256	 * HDMI 2.0 recommends sending non-zero Q when it does match the
5257	 * default RGB quantization range for the mode, even when QS=0.
5258	 */
5259	if (info->rgb_quant_range_selectable ||
5260	    rgb_quant_range == drm_default_rgb_quant_range(mode))
5261		frame->quantization_range = rgb_quant_range;
5262	else
5263		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
5264
5265	/*
5266	 * CEA-861-F:
5267	 * "When transmitting any RGB colorimetry, the Source should set the
5268	 *  YQ-field to match the RGB Quantization Range being transmitted
5269	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
5270	 *  set YQ=1) and the Sink shall ignore the YQ-field."
5271	 *
5272	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
5273	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
5274	 * good way to tell which version of CEA-861 the sink supports, so
5275	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
5276	 * on on CEA-861-F.
5277	 */
5278	if (!is_hdmi2_sink(connector) ||
5279	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
5280		frame->ycc_quantization_range =
5281			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
5282	else
5283		frame->ycc_quantization_range =
5284			HDMI_YCC_QUANTIZATION_RANGE_FULL;
5285}
5286EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
5287
5288static enum hdmi_3d_structure
5289s3d_structure_from_display_mode(const struct drm_display_mode *mode)
5290{
5291	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
5292
5293	switch (layout) {
5294	case DRM_MODE_FLAG_3D_FRAME_PACKING:
5295		return HDMI_3D_STRUCTURE_FRAME_PACKING;
5296	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
5297		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
5298	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
5299		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
5300	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
5301		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
5302	case DRM_MODE_FLAG_3D_L_DEPTH:
5303		return HDMI_3D_STRUCTURE_L_DEPTH;
5304	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
5305		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
5306	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
5307		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
5308	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
5309		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
5310	default:
5311		return HDMI_3D_STRUCTURE_INVALID;
5312	}
5313}
5314
5315/**
5316 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
5317 * data from a DRM display mode
5318 * @frame: HDMI vendor infoframe
5319 * @connector: the connector
5320 * @mode: DRM display mode
5321 *
5322 * Note that there's is a need to send HDMI vendor infoframes only when using a
5323 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
5324 * function will return -EINVAL, error that can be safely ignored.
5325 *
5326 * Return: 0 on success or a negative error code on failure.
5327 */
5328int
5329drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
5330					    struct drm_connector *connector,
5331					    const struct drm_display_mode *mode)
5332{
5333	/*
5334	 * FIXME: sil-sii8620 doesn't have a connector around when
5335	 * we need one, so we have to be prepared for a NULL connector.
5336	 */
5337	bool has_hdmi_infoframe = connector ?
5338		connector->display_info.has_hdmi_infoframe : false;
5339	int err;
5340	u32 s3d_flags;
5341	u8 vic;
5342
5343	if (!frame || !mode)
5344		return -EINVAL;
5345
5346	if (!has_hdmi_infoframe)
5347		return -EINVAL;
5348
5349	vic = drm_match_hdmi_mode(mode);
5350	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
 
5351
5352	/*
5353	 * Even if it's not absolutely necessary to send the infoframe
5354	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
5355	 * know that the sink can handle it. This is based on a
5356	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
5357	 * have trouble realizing that they shuld switch from 3D to 2D
5358	 * mode if the source simply stops sending the infoframe when
5359	 * it wants to switch from 3D to 2D.
5360	 */
5361
5362	if (vic && s3d_flags)
5363		return -EINVAL;
5364
5365	err = hdmi_vendor_infoframe_init(frame);
5366	if (err < 0)
5367		return err;
5368
5369	frame->vic = vic;
5370	frame->s3d_struct = s3d_structure_from_display_mode(mode);
5371
5372	return 0;
5373}
5374EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
5375
5376static int drm_parse_tiled_block(struct drm_connector *connector,
5377				 struct displayid_block *block)
5378{
5379	struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
5380	u16 w, h;
5381	u8 tile_v_loc, tile_h_loc;
5382	u8 num_v_tile, num_h_tile;
5383	struct drm_tile_group *tg;
5384
5385	w = tile->tile_size[0] | tile->tile_size[1] << 8;
5386	h = tile->tile_size[2] | tile->tile_size[3] << 8;
5387
5388	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
5389	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
5390	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
5391	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
5392
5393	connector->has_tile = true;
5394	if (tile->tile_cap & 0x80)
5395		connector->tile_is_single_monitor = true;
5396
5397	connector->num_h_tile = num_h_tile + 1;
5398	connector->num_v_tile = num_v_tile + 1;
5399	connector->tile_h_loc = tile_h_loc;
5400	connector->tile_v_loc = tile_v_loc;
5401	connector->tile_h_size = w + 1;
5402	connector->tile_v_size = h + 1;
5403
5404	DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
5405	DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
5406	DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
5407		      num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
5408	DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
 
 
 
5409
5410	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
5411	if (!tg) {
5412		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
5413	}
5414	if (!tg)
5415		return -ENOMEM;
5416
5417	if (connector->tile_group != tg) {
5418		/* if we haven't got a pointer,
5419		   take the reference, drop ref to old tile group */
5420		if (connector->tile_group) {
5421			drm_mode_put_tile_group(connector->dev, connector->tile_group);
5422		}
5423		connector->tile_group = tg;
5424	} else
5425		/* if same tile group, then release the ref we just took. */
5426		drm_mode_put_tile_group(connector->dev, tg);
5427	return 0;
5428}
5429
5430static int drm_parse_display_id(struct drm_connector *connector,
5431				u8 *displayid, int length,
5432				bool is_edid_extension)
5433{
5434	/* if this is an EDID extension the first byte will be 0x70 */
5435	int idx = 0;
5436	struct displayid_block *block;
5437	int ret;
5438
5439	if (is_edid_extension)
5440		idx = 1;
5441
5442	ret = validate_displayid(displayid, length, idx);
5443	if (ret)
5444		return ret;
5445
5446	idx += sizeof(struct displayid_hdr);
5447	for_each_displayid_db(displayid, block, idx, length) {
5448		DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
5449			      block->tag, block->rev, block->num_bytes);
5450
5451		switch (block->tag) {
5452		case DATA_BLOCK_TILED_DISPLAY:
5453			ret = drm_parse_tiled_block(connector, block);
5454			if (ret)
5455				return ret;
5456			break;
5457		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5458			/* handled in mode gathering code. */
5459			break;
5460		case DATA_BLOCK_CTA:
5461			/* handled in the cea parser code. */
5462			break;
5463		default:
5464			DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
5465			break;
5466		}
5467	}
5468	return 0;
5469}
5470
5471static void drm_get_displayid(struct drm_connector *connector,
5472			      struct edid *edid)
5473{
5474	void *displayid = NULL;
5475	int ret;
 
5476	connector->has_tile = false;
5477	displayid = drm_find_displayid_extension(edid);
5478	if (!displayid) {
5479		/* drop reference to any tile group we had */
5480		goto out_drop_ref;
 
5481	}
 
5482
5483	ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
5484	if (ret < 0)
5485		goto out_drop_ref;
5486	if (!connector->has_tile)
5487		goto out_drop_ref;
5488	return;
5489out_drop_ref:
5490	if (connector->tile_group) {
5491		drm_mode_put_tile_group(connector->dev, connector->tile_group);
5492		connector->tile_group = NULL;
5493	}
5494	return;
5495}
v6.9.4
   1/*
   2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
   3 * Copyright (c) 2007-2008 Intel Corporation
   4 *   Jesse Barnes <jesse.barnes@intel.com>
   5 * Copyright 2010 Red Hat, Inc.
   6 *
   7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
   8 * FB layer.
   9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
  10 *
  11 * Permission is hereby granted, free of charge, to any person obtaining a
  12 * copy of this software and associated documentation files (the "Software"),
  13 * to deal in the Software without restriction, including without limitation
  14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
  15 * and/or sell copies of the Software, and to permit persons to whom the
  16 * Software is furnished to do so, subject to the following conditions:
  17 *
  18 * The above copyright notice and this permission notice (including the
  19 * next paragraph) shall be included in all copies or substantial portions
  20 * of the Software.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  28 * DEALINGS IN THE SOFTWARE.
  29 */
  30
  31#include <linux/bitfield.h>
  32#include <linux/cec.h>
  33#include <linux/hdmi.h>
  34#include <linux/i2c.h>
  35#include <linux/kernel.h>
  36#include <linux/module.h>
  37#include <linux/pci.h>
  38#include <linux/slab.h>
  39#include <linux/vga_switcheroo.h>
  40
  41#include <drm/drm_displayid.h>
  42#include <drm/drm_drv.h>
  43#include <drm/drm_edid.h>
  44#include <drm/drm_eld.h>
  45#include <drm/drm_encoder.h>
  46#include <drm/drm_print.h>
 
  47
  48#include "drm_crtc_internal.h"
  49#include "drm_internal.h"
  50
  51static int oui(u8 first, u8 second, u8 third)
  52{
  53	return (first << 16) | (second << 8) | third;
  54}
  55
  56#define EDID_EST_TIMINGS 16
  57#define EDID_STD_TIMINGS 8
  58#define EDID_DETAILED_TIMINGS 4
  59
  60/*
  61 * EDID blocks out in the wild have a variety of bugs, try to collect
  62 * them here (note that userspace may work around broken monitors first,
  63 * but fixes should make their way here so that the kernel "just works"
  64 * on as many displays as possible).
  65 */
  66
  67/* First detailed mode wrong, use largest 60Hz mode */
  68#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
  69/* Reported 135MHz pixel clock is too high, needs adjustment */
  70#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
  71/* Prefer the largest mode at 75 Hz */
  72#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
  73/* Detail timing is in cm not mm */
  74#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
  75/* Detailed timing descriptors have bogus size values, so just take the
  76 * maximum size and use that.
  77 */
  78#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
  79/* use +hsync +vsync for detailed mode */
  80#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
  81/* Force reduced-blanking timings for detailed modes */
  82#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
  83/* Force 8bpc */
  84#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
  85/* Force 12bpc */
  86#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
  87/* Force 6bpc */
  88#define EDID_QUIRK_FORCE_6BPC			(1 << 10)
  89/* Force 10bpc */
  90#define EDID_QUIRK_FORCE_10BPC			(1 << 11)
  91/* Non desktop display (i.e. HMD) */
  92#define EDID_QUIRK_NON_DESKTOP			(1 << 12)
  93/* Cap the DSC target bitrate to 15bpp */
  94#define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
  95
  96#define MICROSOFT_IEEE_OUI	0xca125c
  97
  98struct detailed_mode_closure {
  99	struct drm_connector *connector;
 100	const struct drm_edid *drm_edid;
 101	bool preferred;
 
 102	int modes;
 103};
 104
 105#define LEVEL_DMT	0
 106#define LEVEL_GTF	1
 107#define LEVEL_GTF2	2
 108#define LEVEL_CVT	3
 109
 110#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
 111{ \
 112	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
 113					     product_id), \
 114	.quirks = _quirks \
 115}
 116
 117static const struct edid_quirk {
 118	u32 panel_id;
 
 119	u32 quirks;
 120} edid_quirk_list[] = {
 121	/* Acer AL1706 */
 122	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
 123	/* Acer F51 */
 124	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
 125
 126	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
 127	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
 128
 129	/* BenQ GW2765 */
 130	EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
 131
 132	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
 133	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
 134
 135	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
 136	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
 137
 138	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
 139	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
 140
 141	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
 142	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
 143
 144	/* Belinea 10 15 55 */
 145	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
 146	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
 147
 148	/* Envision Peripherals, Inc. EN-7100e */
 149	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
 150	/* Envision EN2028 */
 151	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
 152
 153	/* Funai Electronics PM36B */
 154	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
 155				       EDID_QUIRK_DETAILED_IN_CM),
 156
 157	/* LG 27GP950 */
 158	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
 159
 160	/* LG 27GN950 */
 161	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
 162
 163	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
 164	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
 165
 166	/* LG Philips LCD LP154W01-A5 */
 167	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 168	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 169
 170	/* Samsung SyncMaster 205BW.  Note: irony */
 171	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
 172	/* Samsung SyncMaster 22[5-6]BW */
 173	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
 174	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
 175
 176	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
 177	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
 178
 179	/* ViewSonic VA2026w */
 180	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
 181
 182	/* Medion MD 30217 PG */
 183	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
 184
 185	/* Lenovo G50 */
 186	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
 187
 188	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
 189	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
 190
 191	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
 192	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
 193
 194	/* Valve Index Headset */
 195	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
 196	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
 197	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
 198	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
 199	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
 200	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
 201	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
 202	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
 203	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
 204	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
 205	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
 206	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
 207	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
 208	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
 209	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
 210	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
 211	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
 212
 213	/* HTC Vive and Vive Pro VR Headsets */
 214	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
 215	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
 216
 217	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
 218	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
 219	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
 220	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
 221	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
 222
 223	/* Windows Mixed Reality Headsets */
 224	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 225	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
 226	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
 227	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 228	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
 229	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
 
 
 230
 231	/* Sony PlayStation VR Headset */
 232	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
 233
 234	/* Sensics VR Headsets */
 235	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
 236
 237	/* OSVR HDK and HDK2 VR Headsets */
 238	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
 239	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
 240};
 241
 242/*
 243 * Autogenerated from the DMT spec.
 244 * This table is copied from xfree86/modes/xf86EdidModes.c.
 245 */
 246static const struct drm_display_mode drm_dmt_modes[] = {
 247	/* 0x01 - 640x350@85Hz */
 248	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 249		   736, 832, 0, 350, 382, 385, 445, 0,
 250		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 251	/* 0x02 - 640x400@85Hz */
 252	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 253		   736, 832, 0, 400, 401, 404, 445, 0,
 254		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 255	/* 0x03 - 720x400@85Hz */
 256	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
 257		   828, 936, 0, 400, 401, 404, 446, 0,
 258		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 259	/* 0x04 - 640x480@60Hz */
 260	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 261		   752, 800, 0, 480, 490, 492, 525, 0,
 262		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 263	/* 0x05 - 640x480@72Hz */
 264	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 265		   704, 832, 0, 480, 489, 492, 520, 0,
 266		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 267	/* 0x06 - 640x480@75Hz */
 268	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 269		   720, 840, 0, 480, 481, 484, 500, 0,
 270		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 271	/* 0x07 - 640x480@85Hz */
 272	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
 273		   752, 832, 0, 480, 481, 484, 509, 0,
 274		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 275	/* 0x08 - 800x600@56Hz */
 276	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 277		   896, 1024, 0, 600, 601, 603, 625, 0,
 278		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 279	/* 0x09 - 800x600@60Hz */
 280	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 281		   968, 1056, 0, 600, 601, 605, 628, 0,
 282		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 283	/* 0x0a - 800x600@72Hz */
 284	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 285		   976, 1040, 0, 600, 637, 643, 666, 0,
 286		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 287	/* 0x0b - 800x600@75Hz */
 288	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 289		   896, 1056, 0, 600, 601, 604, 625, 0,
 290		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 291	/* 0x0c - 800x600@85Hz */
 292	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
 293		   896, 1048, 0, 600, 601, 604, 631, 0,
 294		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 295	/* 0x0d - 800x600@120Hz RB */
 296	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
 297		   880, 960, 0, 600, 603, 607, 636, 0,
 298		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 299	/* 0x0e - 848x480@60Hz */
 300	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
 301		   976, 1088, 0, 480, 486, 494, 517, 0,
 302		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 303	/* 0x0f - 1024x768@43Hz, interlace */
 304	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
 305		   1208, 1264, 0, 768, 768, 776, 817, 0,
 306		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 307		   DRM_MODE_FLAG_INTERLACE) },
 308	/* 0x10 - 1024x768@60Hz */
 309	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 310		   1184, 1344, 0, 768, 771, 777, 806, 0,
 311		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 312	/* 0x11 - 1024x768@70Hz */
 313	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 314		   1184, 1328, 0, 768, 771, 777, 806, 0,
 315		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 316	/* 0x12 - 1024x768@75Hz */
 317	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 318		   1136, 1312, 0, 768, 769, 772, 800, 0,
 319		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 320	/* 0x13 - 1024x768@85Hz */
 321	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
 322		   1168, 1376, 0, 768, 769, 772, 808, 0,
 323		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 324	/* 0x14 - 1024x768@120Hz RB */
 325	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
 326		   1104, 1184, 0, 768, 771, 775, 813, 0,
 327		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 328	/* 0x15 - 1152x864@75Hz */
 329	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 330		   1344, 1600, 0, 864, 865, 868, 900, 0,
 331		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 332	/* 0x55 - 1280x720@60Hz */
 333	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 334		   1430, 1650, 0, 720, 725, 730, 750, 0,
 335		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 336	/* 0x16 - 1280x768@60Hz RB */
 337	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
 338		   1360, 1440, 0, 768, 771, 778, 790, 0,
 339		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 340	/* 0x17 - 1280x768@60Hz */
 341	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
 342		   1472, 1664, 0, 768, 771, 778, 798, 0,
 343		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 344	/* 0x18 - 1280x768@75Hz */
 345	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
 346		   1488, 1696, 0, 768, 771, 778, 805, 0,
 347		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 348	/* 0x19 - 1280x768@85Hz */
 349	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
 350		   1496, 1712, 0, 768, 771, 778, 809, 0,
 351		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 352	/* 0x1a - 1280x768@120Hz RB */
 353	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
 354		   1360, 1440, 0, 768, 771, 778, 813, 0,
 355		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 356	/* 0x1b - 1280x800@60Hz RB */
 357	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
 358		   1360, 1440, 0, 800, 803, 809, 823, 0,
 359		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 360	/* 0x1c - 1280x800@60Hz */
 361	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
 362		   1480, 1680, 0, 800, 803, 809, 831, 0,
 363		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 364	/* 0x1d - 1280x800@75Hz */
 365	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
 366		   1488, 1696, 0, 800, 803, 809, 838, 0,
 367		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 368	/* 0x1e - 1280x800@85Hz */
 369	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
 370		   1496, 1712, 0, 800, 803, 809, 843, 0,
 371		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 372	/* 0x1f - 1280x800@120Hz RB */
 373	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
 374		   1360, 1440, 0, 800, 803, 809, 847, 0,
 375		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 376	/* 0x20 - 1280x960@60Hz */
 377	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
 378		   1488, 1800, 0, 960, 961, 964, 1000, 0,
 379		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 380	/* 0x21 - 1280x960@85Hz */
 381	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
 382		   1504, 1728, 0, 960, 961, 964, 1011, 0,
 383		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 384	/* 0x22 - 1280x960@120Hz RB */
 385	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
 386		   1360, 1440, 0, 960, 963, 967, 1017, 0,
 387		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 388	/* 0x23 - 1280x1024@60Hz */
 389	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
 390		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 391		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 392	/* 0x24 - 1280x1024@75Hz */
 393	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 394		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 395		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 396	/* 0x25 - 1280x1024@85Hz */
 397	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
 398		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
 399		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 400	/* 0x26 - 1280x1024@120Hz RB */
 401	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
 402		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
 403		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 404	/* 0x27 - 1360x768@60Hz */
 405	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
 406		   1536, 1792, 0, 768, 771, 777, 795, 0,
 407		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 408	/* 0x28 - 1360x768@120Hz RB */
 409	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
 410		   1440, 1520, 0, 768, 771, 776, 813, 0,
 411		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 412	/* 0x51 - 1366x768@60Hz */
 413	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
 414		   1579, 1792, 0, 768, 771, 774, 798, 0,
 415		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 416	/* 0x56 - 1366x768@60Hz */
 417	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
 418		   1436, 1500, 0, 768, 769, 772, 800, 0,
 419		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 420	/* 0x29 - 1400x1050@60Hz RB */
 421	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
 422		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
 423		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 424	/* 0x2a - 1400x1050@60Hz */
 425	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
 426		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
 427		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 428	/* 0x2b - 1400x1050@75Hz */
 429	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
 430		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
 431		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 432	/* 0x2c - 1400x1050@85Hz */
 433	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
 434		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
 435		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 436	/* 0x2d - 1400x1050@120Hz RB */
 437	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
 438		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
 439		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 440	/* 0x2e - 1440x900@60Hz RB */
 441	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
 442		   1520, 1600, 0, 900, 903, 909, 926, 0,
 443		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 444	/* 0x2f - 1440x900@60Hz */
 445	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
 446		   1672, 1904, 0, 900, 903, 909, 934, 0,
 447		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 448	/* 0x30 - 1440x900@75Hz */
 449	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
 450		   1688, 1936, 0, 900, 903, 909, 942, 0,
 451		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 452	/* 0x31 - 1440x900@85Hz */
 453	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
 454		   1696, 1952, 0, 900, 903, 909, 948, 0,
 455		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 456	/* 0x32 - 1440x900@120Hz RB */
 457	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
 458		   1520, 1600, 0, 900, 903, 909, 953, 0,
 459		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 460	/* 0x53 - 1600x900@60Hz */
 461	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
 462		   1704, 1800, 0, 900, 901, 904, 1000, 0,
 463		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 464	/* 0x33 - 1600x1200@60Hz */
 465	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
 466		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 467		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 468	/* 0x34 - 1600x1200@65Hz */
 469	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
 470		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 471		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 472	/* 0x35 - 1600x1200@70Hz */
 473	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
 474		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 475		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 476	/* 0x36 - 1600x1200@75Hz */
 477	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
 478		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 479		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 480	/* 0x37 - 1600x1200@85Hz */
 481	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
 482		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 483		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 484	/* 0x38 - 1600x1200@120Hz RB */
 485	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
 486		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
 487		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 488	/* 0x39 - 1680x1050@60Hz RB */
 489	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
 490		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
 491		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 492	/* 0x3a - 1680x1050@60Hz */
 493	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
 494		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
 495		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 496	/* 0x3b - 1680x1050@75Hz */
 497	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
 498		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
 499		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 500	/* 0x3c - 1680x1050@85Hz */
 501	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
 502		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
 503		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 504	/* 0x3d - 1680x1050@120Hz RB */
 505	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
 506		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
 507		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 508	/* 0x3e - 1792x1344@60Hz */
 509	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
 510		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
 511		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 512	/* 0x3f - 1792x1344@75Hz */
 513	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
 514		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
 515		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 516	/* 0x40 - 1792x1344@120Hz RB */
 517	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
 518		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
 519		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 520	/* 0x41 - 1856x1392@60Hz */
 521	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
 522		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
 523		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 524	/* 0x42 - 1856x1392@75Hz */
 525	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
 526		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
 527		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 528	/* 0x43 - 1856x1392@120Hz RB */
 529	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
 530		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
 531		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 532	/* 0x52 - 1920x1080@60Hz */
 533	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 534		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 535		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 536	/* 0x44 - 1920x1200@60Hz RB */
 537	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
 538		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
 539		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 540	/* 0x45 - 1920x1200@60Hz */
 541	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
 542		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
 543		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 544	/* 0x46 - 1920x1200@75Hz */
 545	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
 546		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
 547		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 548	/* 0x47 - 1920x1200@85Hz */
 549	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
 550		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
 551		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 552	/* 0x48 - 1920x1200@120Hz RB */
 553	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
 554		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
 555		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 556	/* 0x49 - 1920x1440@60Hz */
 557	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
 558		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
 559		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 560	/* 0x4a - 1920x1440@75Hz */
 561	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
 562		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
 563		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 564	/* 0x4b - 1920x1440@120Hz RB */
 565	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
 566		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
 567		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 568	/* 0x54 - 2048x1152@60Hz */
 569	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
 570		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
 571		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 572	/* 0x4c - 2560x1600@60Hz RB */
 573	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
 574		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
 575		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 576	/* 0x4d - 2560x1600@60Hz */
 577	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
 578		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
 579		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 580	/* 0x4e - 2560x1600@75Hz */
 581	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
 582		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
 583		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 584	/* 0x4f - 2560x1600@85Hz */
 585	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
 586		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
 587		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 588	/* 0x50 - 2560x1600@120Hz RB */
 589	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
 590		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
 591		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 592	/* 0x57 - 4096x2160@60Hz RB */
 593	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
 594		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 595		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 596	/* 0x58 - 4096x2160@59.94Hz RB */
 597	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
 598		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 599		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 600};
 601
 602/*
 603 * These more or less come from the DMT spec.  The 720x400 modes are
 604 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
 605 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
 606 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
 607 * mode.
 608 *
 609 * The DMT modes have been fact-checked; the rest are mild guesses.
 610 */
 611static const struct drm_display_mode edid_est_modes[] = {
 612	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 613		   968, 1056, 0, 600, 601, 605, 628, 0,
 614		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
 615	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 616		   896, 1024, 0, 600, 601, 603,  625, 0,
 617		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
 618	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 619		   720, 840, 0, 480, 481, 484, 500, 0,
 620		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
 621	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 622		   704,  832, 0, 480, 489, 492, 520, 0,
 623		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
 624	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
 625		   768,  864, 0, 480, 483, 486, 525, 0,
 626		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
 627	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 628		   752, 800, 0, 480, 490, 492, 525, 0,
 629		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
 630	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
 631		   846, 900, 0, 400, 421, 423,  449, 0,
 632		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
 633	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
 634		   846,  900, 0, 400, 412, 414, 449, 0,
 635		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
 636	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 637		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 638		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
 639	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 640		   1136, 1312, 0,  768, 769, 772, 800, 0,
 641		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
 642	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 643		   1184, 1328, 0,  768, 771, 777, 806, 0,
 644		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
 645	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 646		   1184, 1344, 0,  768, 771, 777, 806, 0,
 647		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
 648	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
 649		   1208, 1264, 0, 768, 768, 776, 817, 0,
 650		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
 651	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
 652		   928, 1152, 0, 624, 625, 628, 667, 0,
 653		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
 654	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 655		   896, 1056, 0, 600, 601, 604,  625, 0,
 656		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
 657	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 658		   976, 1040, 0, 600, 637, 643, 666, 0,
 659		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
 660	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 661		   1344, 1600, 0,  864, 865, 868, 900, 0,
 662		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
 663};
 664
 665struct minimode {
 666	short w;
 667	short h;
 668	short r;
 669	short rb;
 670};
 671
 672static const struct minimode est3_modes[] = {
 673	/* byte 6 */
 674	{ 640, 350, 85, 0 },
 675	{ 640, 400, 85, 0 },
 676	{ 720, 400, 85, 0 },
 677	{ 640, 480, 85, 0 },
 678	{ 848, 480, 60, 0 },
 679	{ 800, 600, 85, 0 },
 680	{ 1024, 768, 85, 0 },
 681	{ 1152, 864, 75, 0 },
 682	/* byte 7 */
 683	{ 1280, 768, 60, 1 },
 684	{ 1280, 768, 60, 0 },
 685	{ 1280, 768, 75, 0 },
 686	{ 1280, 768, 85, 0 },
 687	{ 1280, 960, 60, 0 },
 688	{ 1280, 960, 85, 0 },
 689	{ 1280, 1024, 60, 0 },
 690	{ 1280, 1024, 85, 0 },
 691	/* byte 8 */
 692	{ 1360, 768, 60, 0 },
 693	{ 1440, 900, 60, 1 },
 694	{ 1440, 900, 60, 0 },
 695	{ 1440, 900, 75, 0 },
 696	{ 1440, 900, 85, 0 },
 697	{ 1400, 1050, 60, 1 },
 698	{ 1400, 1050, 60, 0 },
 699	{ 1400, 1050, 75, 0 },
 700	/* byte 9 */
 701	{ 1400, 1050, 85, 0 },
 702	{ 1680, 1050, 60, 1 },
 703	{ 1680, 1050, 60, 0 },
 704	{ 1680, 1050, 75, 0 },
 705	{ 1680, 1050, 85, 0 },
 706	{ 1600, 1200, 60, 0 },
 707	{ 1600, 1200, 65, 0 },
 708	{ 1600, 1200, 70, 0 },
 709	/* byte 10 */
 710	{ 1600, 1200, 75, 0 },
 711	{ 1600, 1200, 85, 0 },
 712	{ 1792, 1344, 60, 0 },
 713	{ 1792, 1344, 75, 0 },
 714	{ 1856, 1392, 60, 0 },
 715	{ 1856, 1392, 75, 0 },
 716	{ 1920, 1200, 60, 1 },
 717	{ 1920, 1200, 60, 0 },
 718	/* byte 11 */
 719	{ 1920, 1200, 75, 0 },
 720	{ 1920, 1200, 85, 0 },
 721	{ 1920, 1440, 60, 0 },
 722	{ 1920, 1440, 75, 0 },
 723};
 724
 725static const struct minimode extra_modes[] = {
 726	{ 1024, 576,  60, 0 },
 727	{ 1366, 768,  60, 0 },
 728	{ 1600, 900,  60, 0 },
 729	{ 1680, 945,  60, 0 },
 730	{ 1920, 1080, 60, 0 },
 731	{ 2048, 1152, 60, 0 },
 732	{ 2048, 1536, 60, 0 },
 733};
 734
 735/*
 736 * From CEA/CTA-861 spec.
 
 737 *
 738 * Do not access directly, instead always use cea_mode_for_vic().
 739 */
 740static const struct drm_display_mode edid_cea_modes_1[] = {
 
 
 741	/* 1 - 640x480@60Hz 4:3 */
 742	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 743		   752, 800, 0, 480, 490, 492, 525, 0,
 744		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 745	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 746	/* 2 - 720x480@60Hz 4:3 */
 747	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 748		   798, 858, 0, 480, 489, 495, 525, 0,
 749		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 750	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 751	/* 3 - 720x480@60Hz 16:9 */
 752	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 753		   798, 858, 0, 480, 489, 495, 525, 0,
 754		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 755	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 756	/* 4 - 1280x720@60Hz 16:9 */
 757	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 758		   1430, 1650, 0, 720, 725, 730, 750, 0,
 759		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 760	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 761	/* 5 - 1920x1080i@60Hz 16:9 */
 762	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 763		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 764		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 765		   DRM_MODE_FLAG_INTERLACE),
 766	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 767	/* 6 - 720(1440)x480i@60Hz 4:3 */
 768	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 769		   801, 858, 0, 480, 488, 494, 525, 0,
 770		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 771		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 772	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 773	/* 7 - 720(1440)x480i@60Hz 16:9 */
 774	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 775		   801, 858, 0, 480, 488, 494, 525, 0,
 776		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 777		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 778	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 779	/* 8 - 720(1440)x240@60Hz 4:3 */
 780	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 781		   801, 858, 0, 240, 244, 247, 262, 0,
 782		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 783		   DRM_MODE_FLAG_DBLCLK),
 784	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 785	/* 9 - 720(1440)x240@60Hz 16:9 */
 786	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 787		   801, 858, 0, 240, 244, 247, 262, 0,
 788		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 789		   DRM_MODE_FLAG_DBLCLK),
 790	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 791	/* 10 - 2880x480i@60Hz 4:3 */
 792	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 793		   3204, 3432, 0, 480, 488, 494, 525, 0,
 794		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 795		   DRM_MODE_FLAG_INTERLACE),
 796	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 797	/* 11 - 2880x480i@60Hz 16:9 */
 798	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 799		   3204, 3432, 0, 480, 488, 494, 525, 0,
 800		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 801		   DRM_MODE_FLAG_INTERLACE),
 802	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 803	/* 12 - 2880x240@60Hz 4:3 */
 804	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 805		   3204, 3432, 0, 240, 244, 247, 262, 0,
 806		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 807	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 808	/* 13 - 2880x240@60Hz 16:9 */
 809	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 810		   3204, 3432, 0, 240, 244, 247, 262, 0,
 811		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 812	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 813	/* 14 - 1440x480@60Hz 4:3 */
 814	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 815		   1596, 1716, 0, 480, 489, 495, 525, 0,
 816		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 817	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 818	/* 15 - 1440x480@60Hz 16:9 */
 819	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 820		   1596, 1716, 0, 480, 489, 495, 525, 0,
 821		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 822	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 823	/* 16 - 1920x1080@60Hz 16:9 */
 824	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 825		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 826		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 827	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 828	/* 17 - 720x576@50Hz 4:3 */
 829	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 830		   796, 864, 0, 576, 581, 586, 625, 0,
 831		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 832	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 833	/* 18 - 720x576@50Hz 16:9 */
 834	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 835		   796, 864, 0, 576, 581, 586, 625, 0,
 836		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 837	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 838	/* 19 - 1280x720@50Hz 16:9 */
 839	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
 840		   1760, 1980, 0, 720, 725, 730, 750, 0,
 841		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 842	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 843	/* 20 - 1920x1080i@50Hz 16:9 */
 844	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 845		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 846		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 847		   DRM_MODE_FLAG_INTERLACE),
 848	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 849	/* 21 - 720(1440)x576i@50Hz 4:3 */
 850	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 851		   795, 864, 0, 576, 580, 586, 625, 0,
 852		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 853		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 854	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 855	/* 22 - 720(1440)x576i@50Hz 16:9 */
 856	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 857		   795, 864, 0, 576, 580, 586, 625, 0,
 858		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 859		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 860	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 861	/* 23 - 720(1440)x288@50Hz 4:3 */
 862	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 863		   795, 864, 0, 288, 290, 293, 312, 0,
 864		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 865		   DRM_MODE_FLAG_DBLCLK),
 866	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 867	/* 24 - 720(1440)x288@50Hz 16:9 */
 868	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 869		   795, 864, 0, 288, 290, 293, 312, 0,
 870		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 871		   DRM_MODE_FLAG_DBLCLK),
 872	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 873	/* 25 - 2880x576i@50Hz 4:3 */
 874	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 875		   3180, 3456, 0, 576, 580, 586, 625, 0,
 876		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 877		   DRM_MODE_FLAG_INTERLACE),
 878	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 879	/* 26 - 2880x576i@50Hz 16:9 */
 880	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 881		   3180, 3456, 0, 576, 580, 586, 625, 0,
 882		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 883		   DRM_MODE_FLAG_INTERLACE),
 884	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 885	/* 27 - 2880x288@50Hz 4:3 */
 886	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 887		   3180, 3456, 0, 288, 290, 293, 312, 0,
 888		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 889	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 890	/* 28 - 2880x288@50Hz 16:9 */
 891	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 892		   3180, 3456, 0, 288, 290, 293, 312, 0,
 893		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 894	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 895	/* 29 - 1440x576@50Hz 4:3 */
 896	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 897		   1592, 1728, 0, 576, 581, 586, 625, 0,
 898		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 899	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 900	/* 30 - 1440x576@50Hz 16:9 */
 901	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 902		   1592, 1728, 0, 576, 581, 586, 625, 0,
 903		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 904	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 905	/* 31 - 1920x1080@50Hz 16:9 */
 906	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 907		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 908		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 909	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 910	/* 32 - 1920x1080@24Hz 16:9 */
 911	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
 912		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
 913		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 914	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 915	/* 33 - 1920x1080@25Hz 16:9 */
 916	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 917		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 918		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 919	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 920	/* 34 - 1920x1080@30Hz 16:9 */
 921	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 922		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 923		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 924	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 925	/* 35 - 2880x480@60Hz 4:3 */
 926	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 927		   3192, 3432, 0, 480, 489, 495, 525, 0,
 928		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 929	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 930	/* 36 - 2880x480@60Hz 16:9 */
 931	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 932		   3192, 3432, 0, 480, 489, 495, 525, 0,
 933		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 934	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 935	/* 37 - 2880x576@50Hz 4:3 */
 936	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 937		   3184, 3456, 0, 576, 581, 586, 625, 0,
 938		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 939	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 940	/* 38 - 2880x576@50Hz 16:9 */
 941	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 942		   3184, 3456, 0, 576, 581, 586, 625, 0,
 943		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 944	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 945	/* 39 - 1920x1080i@50Hz 16:9 */
 946	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
 947		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
 948		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
 949		   DRM_MODE_FLAG_INTERLACE),
 950	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 951	/* 40 - 1920x1080i@100Hz 16:9 */
 952	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 953		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 954		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 955		   DRM_MODE_FLAG_INTERLACE),
 956	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 957	/* 41 - 1280x720@100Hz 16:9 */
 958	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
 959		   1760, 1980, 0, 720, 725, 730, 750, 0,
 960		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 961	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 962	/* 42 - 720x576@100Hz 4:3 */
 963	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 964		   796, 864, 0, 576, 581, 586, 625, 0,
 965		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 966	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 967	/* 43 - 720x576@100Hz 16:9 */
 968	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 969		   796, 864, 0, 576, 581, 586, 625, 0,
 970		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 971	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 972	/* 44 - 720(1440)x576i@100Hz 4:3 */
 973	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 974		   795, 864, 0, 576, 580, 586, 625, 0,
 975		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 976		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 977	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 978	/* 45 - 720(1440)x576i@100Hz 16:9 */
 979	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 980		   795, 864, 0, 576, 580, 586, 625, 0,
 981		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 982		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 983	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 984	/* 46 - 1920x1080i@120Hz 16:9 */
 985	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 986		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 987		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 988		   DRM_MODE_FLAG_INTERLACE),
 989	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 990	/* 47 - 1280x720@120Hz 16:9 */
 991	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
 992		   1430, 1650, 0, 720, 725, 730, 750, 0,
 993		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 994	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 995	/* 48 - 720x480@120Hz 4:3 */
 996	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 997		   798, 858, 0, 480, 489, 495, 525, 0,
 998		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 999	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1000	/* 49 - 720x480@120Hz 16:9 */
1001	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1002		   798, 858, 0, 480, 489, 495, 525, 0,
1003		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1004	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005	/* 50 - 720(1440)x480i@120Hz 4:3 */
1006	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007		   801, 858, 0, 480, 488, 494, 525, 0,
1008		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1011	/* 51 - 720(1440)x480i@120Hz 16:9 */
1012	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1013		   801, 858, 0, 480, 488, 494, 525, 0,
1014		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1015		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1016	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1017	/* 52 - 720x576@200Hz 4:3 */
1018	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1019		   796, 864, 0, 576, 581, 586, 625, 0,
1020		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1021	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1022	/* 53 - 720x576@200Hz 16:9 */
1023	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1024		   796, 864, 0, 576, 581, 586, 625, 0,
1025		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1026	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1027	/* 54 - 720(1440)x576i@200Hz 4:3 */
1028	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029		   795, 864, 0, 576, 580, 586, 625, 0,
1030		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1033	/* 55 - 720(1440)x576i@200Hz 16:9 */
1034	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1035		   795, 864, 0, 576, 580, 586, 625, 0,
1036		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1037		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1038	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1039	/* 56 - 720x480@240Hz 4:3 */
1040	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1041		   798, 858, 0, 480, 489, 495, 525, 0,
1042		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1043	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1044	/* 57 - 720x480@240Hz 16:9 */
1045	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1046		   798, 858, 0, 480, 489, 495, 525, 0,
1047		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1048	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1049	/* 58 - 720(1440)x480i@240Hz 4:3 */
1050	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051		   801, 858, 0, 480, 488, 494, 525, 0,
1052		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1055	/* 59 - 720(1440)x480i@240Hz 16:9 */
1056	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1057		   801, 858, 0, 480, 488, 494, 525, 0,
1058		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1059		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1060	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061	/* 60 - 1280x720@24Hz 16:9 */
1062	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1063		   3080, 3300, 0, 720, 725, 730, 750, 0,
1064		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066	/* 61 - 1280x720@25Hz 16:9 */
1067	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1068		   3740, 3960, 0, 720, 725, 730, 750, 0,
1069		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1071	/* 62 - 1280x720@30Hz 16:9 */
1072	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1073		   3080, 3300, 0, 720, 725, 730, 750, 0,
1074		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1076	/* 63 - 1920x1080@120Hz 16:9 */
1077	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1078		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1079		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1081	/* 64 - 1920x1080@100Hz 16:9 */
1082	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1083		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1084		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1086	/* 65 - 1280x720@24Hz 64:27 */
1087	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1088		   3080, 3300, 0, 720, 725, 730, 750, 0,
1089		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091	/* 66 - 1280x720@25Hz 64:27 */
1092	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1093		   3740, 3960, 0, 720, 725, 730, 750, 0,
1094		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096	/* 67 - 1280x720@30Hz 64:27 */
1097	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1098		   3080, 3300, 0, 720, 725, 730, 750, 0,
1099		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101	/* 68 - 1280x720@50Hz 64:27 */
1102	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1103		   1760, 1980, 0, 720, 725, 730, 750, 0,
1104		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106	/* 69 - 1280x720@60Hz 64:27 */
1107	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1108		   1430, 1650, 0, 720, 725, 730, 750, 0,
1109		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111	/* 70 - 1280x720@100Hz 64:27 */
1112	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1113		   1760, 1980, 0, 720, 725, 730, 750, 0,
1114		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116	/* 71 - 1280x720@120Hz 64:27 */
1117	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1118		   1430, 1650, 0, 720, 725, 730, 750, 0,
1119		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121	/* 72 - 1920x1080@24Hz 64:27 */
1122	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1123		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1124		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126	/* 73 - 1920x1080@25Hz 64:27 */
1127	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1128		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131	/* 74 - 1920x1080@30Hz 64:27 */
1132	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1133		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136	/* 75 - 1920x1080@50Hz 64:27 */
1137	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1138		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1139		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141	/* 76 - 1920x1080@60Hz 64:27 */
1142	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1143		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1144		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146	/* 77 - 1920x1080@100Hz 64:27 */
1147	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1148		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1149		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151	/* 78 - 1920x1080@120Hz 64:27 */
1152	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1153		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1154		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156	/* 79 - 1680x720@24Hz 64:27 */
1157	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1158		   3080, 3300, 0, 720, 725, 730, 750, 0,
1159		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161	/* 80 - 1680x720@25Hz 64:27 */
1162	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1163		   2948, 3168, 0, 720, 725, 730, 750, 0,
1164		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166	/* 81 - 1680x720@30Hz 64:27 */
1167	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1168		   2420, 2640, 0, 720, 725, 730, 750, 0,
1169		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171	/* 82 - 1680x720@50Hz 64:27 */
1172	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1173		   1980, 2200, 0, 720, 725, 730, 750, 0,
1174		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176	/* 83 - 1680x720@60Hz 64:27 */
1177	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1178		   1980, 2200, 0, 720, 725, 730, 750, 0,
1179		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181	/* 84 - 1680x720@100Hz 64:27 */
1182	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1183		   1780, 2000, 0, 720, 725, 730, 825, 0,
1184		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186	/* 85 - 1680x720@120Hz 64:27 */
1187	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1188		   1780, 2000, 0, 720, 725, 730, 825, 0,
1189		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191	/* 86 - 2560x1080@24Hz 64:27 */
1192	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1193		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1194		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196	/* 87 - 2560x1080@25Hz 64:27 */
1197	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1198		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1199		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201	/* 88 - 2560x1080@30Hz 64:27 */
1202	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1203		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1204		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206	/* 89 - 2560x1080@50Hz 64:27 */
1207	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1208		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1209		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1211	/* 90 - 2560x1080@60Hz 64:27 */
1212	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1213		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1214		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1216	/* 91 - 2560x1080@100Hz 64:27 */
1217	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1218		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1219		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1221	/* 92 - 2560x1080@120Hz 64:27 */
1222	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1223		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1224		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1226	/* 93 - 3840x2160@24Hz 16:9 */
1227	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1228		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1229		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231	/* 94 - 3840x2160@25Hz 16:9 */
1232	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1233		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1234		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1236	/* 95 - 3840x2160@30Hz 16:9 */
1237	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1238		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1239		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1241	/* 96 - 3840x2160@50Hz 16:9 */
1242	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1243		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1244		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1246	/* 97 - 3840x2160@60Hz 16:9 */
1247	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1248		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1249		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1251	/* 98 - 4096x2160@24Hz 256:135 */
1252	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1253		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1254		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256	/* 99 - 4096x2160@25Hz 256:135 */
1257	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1258		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1259		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1261	/* 100 - 4096x2160@30Hz 256:135 */
1262	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1263		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1264		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1266	/* 101 - 4096x2160@50Hz 256:135 */
1267	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1268		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1269		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1271	/* 102 - 4096x2160@60Hz 256:135 */
1272	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1273		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1274		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1276	/* 103 - 3840x2160@24Hz 64:27 */
1277	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1278		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1279		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1281	/* 104 - 3840x2160@25Hz 64:27 */
1282	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1283		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1284		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1285	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1286	/* 105 - 3840x2160@30Hz 64:27 */
1287	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1288		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1289		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1290	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1291	/* 106 - 3840x2160@50Hz 64:27 */
1292	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1293		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1294		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1295	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1296	/* 107 - 3840x2160@60Hz 64:27 */
1297	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1298		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1299		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1301	/* 108 - 1280x720@48Hz 16:9 */
1302	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1303		   2280, 2500, 0, 720, 725, 730, 750, 0,
1304		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1305	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1306	/* 109 - 1280x720@48Hz 64:27 */
1307	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1308		   2280, 2500, 0, 720, 725, 730, 750, 0,
1309		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1310	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1311	/* 110 - 1680x720@48Hz 64:27 */
1312	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1313		   2530, 2750, 0, 720, 725, 730, 750, 0,
1314		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1315	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1316	/* 111 - 1920x1080@48Hz 16:9 */
1317	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1318		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1319		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1320	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1321	/* 112 - 1920x1080@48Hz 64:27 */
1322	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1323		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1324		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1325	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1326	/* 113 - 2560x1080@48Hz 64:27 */
1327	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1328		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1329		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1330	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1331	/* 114 - 3840x2160@48Hz 16:9 */
1332	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1333		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1334		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1335	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1336	/* 115 - 4096x2160@48Hz 256:135 */
1337	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1338		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1339		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1340	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1341	/* 116 - 3840x2160@48Hz 64:27 */
1342	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1343		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1344		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1345	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1346	/* 117 - 3840x2160@100Hz 16:9 */
1347	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1348		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1349		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1350	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1351	/* 118 - 3840x2160@120Hz 16:9 */
1352	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1353		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1354		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1355	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1356	/* 119 - 3840x2160@100Hz 64:27 */
1357	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1358		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1359		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1360	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1361	/* 120 - 3840x2160@120Hz 64:27 */
1362	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1363		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1364		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1365	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1366	/* 121 - 5120x2160@24Hz 64:27 */
1367	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1368		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1369		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1370	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1371	/* 122 - 5120x2160@25Hz 64:27 */
1372	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1373		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1374		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1375	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1376	/* 123 - 5120x2160@30Hz 64:27 */
1377	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1378		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1379		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1380	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1381	/* 124 - 5120x2160@48Hz 64:27 */
1382	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1383		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1384		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1385	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1386	/* 125 - 5120x2160@50Hz 64:27 */
1387	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1388		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1389		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1390	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1391	/* 126 - 5120x2160@60Hz 64:27 */
1392	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1393		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1394		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1395	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1396	/* 127 - 5120x2160@100Hz 64:27 */
1397	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1398		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1399		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1400	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1401};
1402
1403/*
1404 * From CEA/CTA-861 spec.
1405 *
1406 * Do not access directly, instead always use cea_mode_for_vic().
1407 */
1408static const struct drm_display_mode edid_cea_modes_193[] = {
1409	/* 193 - 5120x2160@120Hz 64:27 */
1410	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1411		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1412		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1413	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1414	/* 194 - 7680x4320@24Hz 16:9 */
1415	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1416		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1417		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1418	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1419	/* 195 - 7680x4320@25Hz 16:9 */
1420	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1421		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1422		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1423	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1424	/* 196 - 7680x4320@30Hz 16:9 */
1425	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1426		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1427		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1428	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1429	/* 197 - 7680x4320@48Hz 16:9 */
1430	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1431		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1432		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1433	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1434	/* 198 - 7680x4320@50Hz 16:9 */
1435	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1436		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1437		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1438	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1439	/* 199 - 7680x4320@60Hz 16:9 */
1440	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1441		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1442		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1443	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1444	/* 200 - 7680x4320@100Hz 16:9 */
1445	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1446		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1447		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1448	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1449	/* 201 - 7680x4320@120Hz 16:9 */
1450	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1451		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1452		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454	/* 202 - 7680x4320@24Hz 64:27 */
1455	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1456		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1457		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1458	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1459	/* 203 - 7680x4320@25Hz 64:27 */
1460	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1461		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1462		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1463	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1464	/* 204 - 7680x4320@30Hz 64:27 */
1465	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1466		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1467		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1468	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1469	/* 205 - 7680x4320@48Hz 64:27 */
1470	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1471		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1472		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1473	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1474	/* 206 - 7680x4320@50Hz 64:27 */
1475	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1476		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1477		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1478	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1479	/* 207 - 7680x4320@60Hz 64:27 */
1480	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1481		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1482		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1483	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1484	/* 208 - 7680x4320@100Hz 64:27 */
1485	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1486		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1487		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1488	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1489	/* 209 - 7680x4320@120Hz 64:27 */
1490	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1491		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1492		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1493	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1494	/* 210 - 10240x4320@24Hz 64:27 */
1495	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1496		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1497		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1498	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1499	/* 211 - 10240x4320@25Hz 64:27 */
1500	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1501		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1502		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1503	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1504	/* 212 - 10240x4320@30Hz 64:27 */
1505	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1506		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1507		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1508	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1509	/* 213 - 10240x4320@48Hz 64:27 */
1510	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1511		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1512		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1513	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1514	/* 214 - 10240x4320@50Hz 64:27 */
1515	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1516		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1517		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1518	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1519	/* 215 - 10240x4320@60Hz 64:27 */
1520	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1521		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1522		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1523	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1524	/* 216 - 10240x4320@100Hz 64:27 */
1525	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1526		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1527		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1529	/* 217 - 10240x4320@120Hz 64:27 */
1530	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1531		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1532		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1534	/* 218 - 4096x2160@100Hz 256:135 */
1535	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1536		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1537		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1539	/* 219 - 4096x2160@120Hz 256:135 */
1540	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1541		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1542		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1544};
1545
1546/*
1547 * HDMI 1.4 4k modes. Index using the VIC.
1548 */
1549static const struct drm_display_mode edid_4k_modes[] = {
1550	/* 0 - dummy, VICs start at 1 */
1551	{ },
1552	/* 1 - 3840x2160@30Hz */
1553	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554		   3840, 4016, 4104, 4400, 0,
1555		   2160, 2168, 2178, 2250, 0,
1556		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558	/* 2 - 3840x2160@25Hz */
1559	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560		   3840, 4896, 4984, 5280, 0,
1561		   2160, 2168, 2178, 2250, 0,
1562		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564	/* 3 - 3840x2160@24Hz */
1565	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566		   3840, 5116, 5204, 5500, 0,
1567		   2160, 2168, 2178, 2250, 0,
1568		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1570	/* 4 - 4096x2160@24Hz (SMPTE) */
1571	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1572		   4096, 5116, 5204, 5500, 0,
1573		   2160, 2168, 2178, 2250, 0,
1574		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1575	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1576};
1577
1578/*** DDC fetch and block validation ***/
1579
1580/*
1581 * The opaque EDID type, internal to drm_edid.c.
1582 */
1583struct drm_edid {
1584	/* Size allocated for edid */
1585	size_t size;
1586	const struct edid *edid;
1587};
1588
1589static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1590
1591static int edid_hfeeodb_block_count(const struct edid *edid)
1592{
1593	int eeodb = edid_hfeeodb_extension_block_count(edid);
1594
1595	return eeodb ? eeodb + 1 : 0;
1596}
1597
1598static int edid_extension_block_count(const struct edid *edid)
1599{
1600	return edid->extensions;
1601}
1602
1603static int edid_block_count(const struct edid *edid)
1604{
1605	return edid_extension_block_count(edid) + 1;
1606}
1607
1608static int edid_size_by_blocks(int num_blocks)
1609{
1610	return num_blocks * EDID_LENGTH;
1611}
1612
1613static int edid_size(const struct edid *edid)
1614{
1615	return edid_size_by_blocks(edid_block_count(edid));
1616}
1617
1618static const void *edid_block_data(const struct edid *edid, int index)
1619{
1620	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1621
1622	return edid + index;
1623}
1624
1625static const void *edid_extension_block_data(const struct edid *edid, int index)
1626{
1627	return edid_block_data(edid, index + 1);
1628}
1629
1630/* EDID block count indicated in EDID, may exceed allocated size */
1631static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1632{
1633	int num_blocks;
1634
1635	/* Starting point */
1636	num_blocks = edid_block_count(drm_edid->edid);
1637
1638	/* HF-EEODB override */
1639	if (drm_edid->size >= edid_size_by_blocks(2)) {
1640		int eeodb;
1641
1642		/*
1643		 * Note: HF-EEODB may specify a smaller extension count than the
1644		 * regular one. Unlike in buffer allocation, here we can use it.
1645		 */
1646		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1647		if (eeodb)
1648			num_blocks = eeodb;
1649	}
1650
1651	return num_blocks;
1652}
1653
1654/* EDID block count, limited by allocated size */
1655static int drm_edid_block_count(const struct drm_edid *drm_edid)
1656{
1657	/* Limit by allocated size */
1658	return min(__drm_edid_block_count(drm_edid),
1659		   (int)drm_edid->size / EDID_LENGTH);
1660}
1661
1662/* EDID extension block count, limited by allocated size */
1663static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1664{
1665	return drm_edid_block_count(drm_edid) - 1;
1666}
1667
1668static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1669{
1670	return edid_block_data(drm_edid->edid, index);
1671}
1672
1673static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1674						 int index)
1675{
1676	return edid_extension_block_data(drm_edid->edid, index);
1677}
1678
1679/*
1680 * Initializer helper for legacy interfaces, where we have no choice but to
1681 * trust edid size. Not for general purpose use.
1682 */
1683static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1684						   const struct edid *edid)
1685{
1686	if (!edid)
1687		return NULL;
1688
1689	memset(drm_edid, 0, sizeof(*drm_edid));
1690
1691	drm_edid->edid = edid;
1692	drm_edid->size = edid_size(edid);
1693
1694	return drm_edid;
1695}
1696
1697/*
1698 * EDID base and extension block iterator.
1699 *
1700 * struct drm_edid_iter iter;
1701 * const u8 *block;
1702 *
1703 * drm_edid_iter_begin(drm_edid, &iter);
1704 * drm_edid_iter_for_each(block, &iter) {
1705 *         // do stuff with block
1706 * }
1707 * drm_edid_iter_end(&iter);
1708 */
1709struct drm_edid_iter {
1710	const struct drm_edid *drm_edid;
1711
1712	/* Current block index. */
1713	int index;
1714};
1715
1716static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1717				struct drm_edid_iter *iter)
1718{
1719	memset(iter, 0, sizeof(*iter));
1720
1721	iter->drm_edid = drm_edid;
1722}
1723
1724static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1725{
1726	const void *block = NULL;
1727
1728	if (!iter->drm_edid)
1729		return NULL;
1730
1731	if (iter->index < drm_edid_block_count(iter->drm_edid))
1732		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1733
1734	return block;
1735}
1736
1737#define drm_edid_iter_for_each(__block, __iter)			\
1738	while (((__block) = __drm_edid_iter_next(__iter)))
1739
1740static void drm_edid_iter_end(struct drm_edid_iter *iter)
1741{
1742	memset(iter, 0, sizeof(*iter));
1743}
1744
1745static const u8 edid_header[] = {
1746	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1747};
1748
1749static void edid_header_fix(void *edid)
1750{
1751	memcpy(edid, edid_header, sizeof(edid_header));
1752}
1753
1754/**
1755 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1756 * @_edid: pointer to raw base EDID block
1757 *
1758 * Sanity check the header of the base EDID block.
1759 *
1760 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1761 */
1762int drm_edid_header_is_valid(const void *_edid)
1763{
1764	const struct edid *edid = _edid;
1765	int i, score = 0;
1766
1767	for (i = 0; i < sizeof(edid_header); i++) {
1768		if (edid->header[i] == edid_header[i])
1769			score++;
1770	}
1771
1772	return score;
1773}
1774EXPORT_SYMBOL(drm_edid_header_is_valid);
1775
1776static int edid_fixup __read_mostly = 6;
1777module_param_named(edid_fixup, edid_fixup, int, 0400);
1778MODULE_PARM_DESC(edid_fixup,
1779		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1780
1781static int edid_block_compute_checksum(const void *_block)
 
 
 
 
1782{
1783	const u8 *block = _block;
1784	int i;
1785	u8 csum = 0, crc = 0;
1786
1787	for (i = 0; i < EDID_LENGTH - 1; i++)
1788		csum += block[i];
1789
1790	crc = 0x100 - csum;
1791
1792	return crc;
1793}
1794
1795static int edid_block_get_checksum(const void *_block)
1796{
1797	const struct edid *block = _block;
1798
1799	return block->checksum;
1800}
1801
1802static int edid_block_tag(const void *_block)
1803{
1804	const u8 *block = _block;
1805
1806	return block[0];
1807}
1808
1809static bool edid_block_is_zero(const void *edid)
1810{
1811	return !memchr_inv(edid, 0, EDID_LENGTH);
1812}
1813
1814/**
1815 * drm_edid_are_equal - compare two edid blobs.
1816 * @edid1: pointer to first blob
1817 * @edid2: pointer to second blob
1818 * This helper can be used during probing to determine if
1819 * edid had changed.
1820 */
1821bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1822{
1823	int edid1_len, edid2_len;
1824	bool edid1_present = edid1 != NULL;
1825	bool edid2_present = edid2 != NULL;
1826
1827	if (edid1_present != edid2_present)
1828		return false;
1829
1830	if (edid1) {
1831		edid1_len = edid_size(edid1);
1832		edid2_len = edid_size(edid2);
1833
1834		if (edid1_len != edid2_len)
1835			return false;
1836
1837		if (memcmp(edid1, edid2, edid1_len))
1838			return false;
1839	}
1840
1841	return true;
1842}
1843EXPORT_SYMBOL(drm_edid_are_equal);
1844
1845enum edid_block_status {
1846	EDID_BLOCK_OK = 0,
1847	EDID_BLOCK_READ_FAIL,
1848	EDID_BLOCK_NULL,
1849	EDID_BLOCK_ZERO,
1850	EDID_BLOCK_HEADER_CORRUPT,
1851	EDID_BLOCK_HEADER_REPAIR,
1852	EDID_BLOCK_HEADER_FIXED,
1853	EDID_BLOCK_CHECKSUM,
1854	EDID_BLOCK_VERSION,
1855};
1856
1857static enum edid_block_status edid_block_check(const void *_block,
1858					       bool is_base_block)
1859{
1860	const struct edid *block = _block;
1861
1862	if (!block)
1863		return EDID_BLOCK_NULL;
1864
1865	if (is_base_block) {
1866		int score = drm_edid_header_is_valid(block);
1867
1868		if (score < clamp(edid_fixup, 0, 8)) {
1869			if (edid_block_is_zero(block))
1870				return EDID_BLOCK_ZERO;
1871			else
1872				return EDID_BLOCK_HEADER_CORRUPT;
1873		}
1874
1875		if (score < 8)
1876			return EDID_BLOCK_HEADER_REPAIR;
1877	}
1878
1879	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1880		if (edid_block_is_zero(block))
1881			return EDID_BLOCK_ZERO;
1882		else
1883			return EDID_BLOCK_CHECKSUM;
1884	}
1885
1886	if (is_base_block) {
1887		if (block->version != 1)
1888			return EDID_BLOCK_VERSION;
1889	}
1890
1891	return EDID_BLOCK_OK;
1892}
1893
1894static bool edid_block_status_valid(enum edid_block_status status, int tag)
1895{
1896	return status == EDID_BLOCK_OK ||
1897		status == EDID_BLOCK_HEADER_FIXED ||
1898		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1899}
1900
1901static bool edid_block_valid(const void *block, bool base)
1902{
1903	return edid_block_status_valid(edid_block_check(block, base),
1904				       edid_block_tag(block));
1905}
1906
1907static void edid_block_status_print(enum edid_block_status status,
1908				    const struct edid *block,
1909				    int block_num)
1910{
1911	switch (status) {
1912	case EDID_BLOCK_OK:
1913		break;
1914	case EDID_BLOCK_READ_FAIL:
1915		pr_debug("EDID block %d read failed\n", block_num);
1916		break;
1917	case EDID_BLOCK_NULL:
1918		pr_debug("EDID block %d pointer is NULL\n", block_num);
1919		break;
1920	case EDID_BLOCK_ZERO:
1921		pr_notice("EDID block %d is all zeroes\n", block_num);
1922		break;
1923	case EDID_BLOCK_HEADER_CORRUPT:
1924		pr_notice("EDID has corrupt header\n");
1925		break;
1926	case EDID_BLOCK_HEADER_REPAIR:
1927		pr_debug("EDID corrupt header needs repair\n");
1928		break;
1929	case EDID_BLOCK_HEADER_FIXED:
1930		pr_debug("EDID corrupt header fixed\n");
1931		break;
1932	case EDID_BLOCK_CHECKSUM:
1933		if (edid_block_status_valid(status, edid_block_tag(block))) {
1934			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1935				 block_num, edid_block_tag(block),
1936				 edid_block_compute_checksum(block));
1937		} else {
1938			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1939				  block_num, edid_block_tag(block),
1940				  edid_block_compute_checksum(block));
1941		}
1942		break;
1943	case EDID_BLOCK_VERSION:
1944		pr_notice("EDID has major version %d, instead of 1\n",
1945			  block->version);
1946		break;
1947	default:
1948		WARN(1, "EDID block %d unknown edid block status code %d\n",
1949		     block_num, status);
1950		break;
1951	}
1952}
1953
1954static void edid_block_dump(const char *level, const void *block, int block_num)
1955{
1956	enum edid_block_status status;
1957	char prefix[20];
1958
1959	status = edid_block_check(block, block_num == 0);
1960	if (status == EDID_BLOCK_ZERO)
1961		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1962	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1963		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1964	else
1965		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1966
1967	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1968		       block, EDID_LENGTH, false);
1969}
1970
1971/**
1972 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1973 * @_block: pointer to raw EDID block
1974 * @block_num: type of block to validate (0 for base, extension otherwise)
1975 * @print_bad_edid: if true, dump bad EDID blocks to the console
1976 * @edid_corrupt: if true, the header or checksum is invalid
1977 *
1978 * Validate a base or extension EDID block and optionally dump bad blocks to
1979 * the console.
1980 *
1981 * Return: True if the block is valid, false otherwise.
1982 */
1983bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1984			  bool *edid_corrupt)
1985{
1986	struct edid *block = (struct edid *)_block;
1987	enum edid_block_status status;
1988	bool is_base_block = block_num == 0;
1989	bool valid;
1990
1991	if (WARN_ON(!block))
1992		return false;
1993
1994	status = edid_block_check(block, is_base_block);
1995	if (status == EDID_BLOCK_HEADER_REPAIR) {
1996		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1997		edid_header_fix(block);
1998
1999		/* Retry with fixed header, update status if that worked. */
2000		status = edid_block_check(block, is_base_block);
2001		if (status == EDID_BLOCK_OK)
2002			status = EDID_BLOCK_HEADER_FIXED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2003	}
2004
2005	if (edid_corrupt) {
2006		/*
2007		 * Unknown major version isn't corrupt but we can't use it. Only
2008		 * the base block can reset edid_corrupt to false.
2009		 */
2010		if (is_base_block &&
2011		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2012			*edid_corrupt = false;
2013		else if (status != EDID_BLOCK_OK)
2014			*edid_corrupt = true;
 
 
 
 
 
 
 
 
 
 
 
2015	}
2016
2017	edid_block_status_print(status, block, block_num);
 
 
 
 
 
 
2018
2019	/* Determine whether we can use this block with this status. */
2020	valid = edid_block_status_valid(status, edid_block_tag(block));
 
2021
2022	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2023		pr_notice("Raw EDID:\n");
2024		edid_block_dump(KERN_NOTICE, block, block_num);
2025	}
2026
2027	return valid;
 
 
 
 
 
 
 
 
 
 
 
 
 
2028}
2029EXPORT_SYMBOL(drm_edid_block_valid);
2030
2031/**
2032 * drm_edid_is_valid - sanity check EDID data
2033 * @edid: EDID data
2034 *
2035 * Sanity-check an entire EDID record (including extensions)
2036 *
2037 * Return: True if the EDID data is valid, false otherwise.
2038 */
2039bool drm_edid_is_valid(struct edid *edid)
2040{
2041	int i;
 
2042
2043	if (!edid)
2044		return false;
2045
2046	for (i = 0; i < edid_block_count(edid); i++) {
2047		void *block = (void *)edid_block_data(edid, i);
2048
2049		if (!drm_edid_block_valid(block, i, true, NULL))
2050			return false;
2051	}
2052
2053	return true;
2054}
2055EXPORT_SYMBOL(drm_edid_is_valid);
2056
2057/**
2058 * drm_edid_valid - sanity check EDID data
2059 * @drm_edid: EDID data
2060 *
2061 * Sanity check an EDID. Cross check block count against allocated size and
2062 * checksum the blocks.
2063 *
2064 * Return: True if the EDID data is valid, false otherwise.
2065 */
2066bool drm_edid_valid(const struct drm_edid *drm_edid)
2067{
2068	int i;
2069
2070	if (!drm_edid)
2071		return false;
2072
2073	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2074		return false;
2075
2076	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2077		const void *block = drm_edid_block_data(drm_edid, i);
2078
2079		if (!edid_block_valid(block, i == 0))
2080			return false;
2081	}
2082
2083	return true;
2084}
2085EXPORT_SYMBOL(drm_edid_valid);
2086
2087static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2088					       size_t *alloc_size)
2089{
2090	struct edid *new;
2091	int i, valid_blocks = 0;
2092
2093	/*
2094	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2095	 * back to regular extension count here. We don't want to start
2096	 * modifying the HF-EEODB extension too.
2097	 */
2098	for (i = 0; i < edid_block_count(edid); i++) {
2099		const void *src_block = edid_block_data(edid, i);
2100
2101		if (edid_block_valid(src_block, i == 0)) {
2102			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2103
2104			memmove(dst_block, src_block, EDID_LENGTH);
2105			valid_blocks++;
2106		}
2107	}
2108
2109	/* We already trusted the base block to be valid here... */
2110	if (WARN_ON(!valid_blocks)) {
2111		kfree(edid);
2112		return NULL;
2113	}
2114
2115	edid->extensions = valid_blocks - 1;
2116	edid->checksum = edid_block_compute_checksum(edid);
2117
2118	*alloc_size = edid_size_by_blocks(valid_blocks);
2119
2120	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2121	if (!new)
2122		kfree(edid);
2123
2124	return new;
2125}
2126
2127#define DDC_SEGMENT_ADDR 0x30
2128/**
2129 * drm_do_probe_ddc_edid() - get EDID information via I2C
2130 * @data: I2C device adapter
2131 * @buf: EDID data buffer to be filled
2132 * @block: 128 byte EDID block to start fetching from
2133 * @len: EDID data buffer length to fetch
2134 *
2135 * Try to fetch EDID information by calling I2C driver functions.
2136 *
2137 * Return: 0 on success or -1 on failure.
2138 */
2139static int
2140drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2141{
2142	struct i2c_adapter *adapter = data;
2143	unsigned char start = block * EDID_LENGTH;
2144	unsigned char segment = block >> 1;
2145	unsigned char xfers = segment ? 3 : 2;
2146	int ret, retries = 5;
2147
2148	/*
2149	 * The core I2C driver will automatically retry the transfer if the
2150	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2151	 * are susceptible to errors under a heavily loaded machine and
2152	 * generate spurious NAKs and timeouts. Retrying the transfer
2153	 * of the individual block a few times seems to overcome this.
2154	 */
2155	do {
2156		struct i2c_msg msgs[] = {
2157			{
2158				.addr	= DDC_SEGMENT_ADDR,
2159				.flags	= 0,
2160				.len	= 1,
2161				.buf	= &segment,
2162			}, {
2163				.addr	= DDC_ADDR,
2164				.flags	= 0,
2165				.len	= 1,
2166				.buf	= &start,
2167			}, {
2168				.addr	= DDC_ADDR,
2169				.flags	= I2C_M_RD,
2170				.len	= len,
2171				.buf	= buf,
2172			}
2173		};
2174
2175		/*
2176		 * Avoid sending the segment addr to not upset non-compliant
2177		 * DDC monitors.
2178		 */
2179		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2180
2181		if (ret == -ENXIO) {
2182			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2183					adapter->name);
2184			break;
2185		}
2186	} while (ret != xfers && --retries);
2187
2188	return ret == xfers ? 0 : -1;
2189}
2190
2191static void connector_bad_edid(struct drm_connector *connector,
2192			       const struct edid *edid, int num_blocks)
2193{
2194	int i;
2195	u8 last_block;
2196
2197	/*
2198	 * 0x7e in the EDID is the number of extension blocks. The EDID
2199	 * is 1 (base block) + num_ext_blocks big. That means we can think
2200	 * of 0x7e in the EDID of the _index_ of the last block in the
2201	 * combined chunk of memory.
2202	 */
2203	last_block = edid->extensions;
2204
2205	/* Calculate real checksum for the last edid extension block data */
2206	if (last_block < num_blocks)
2207		connector->real_edid_checksum =
2208			edid_block_compute_checksum(edid + last_block);
 
 
 
 
 
 
 
 
 
2209
2210	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2211		return;
2212
2213	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2214		    connector->base.id, connector->name);
2215	for (i = 0; i < num_blocks; i++)
2216		edid_block_dump(KERN_DEBUG, edid + i, i);
2217}
2218
2219/* Get override or firmware EDID */
2220static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2221{
2222	const struct drm_edid *override = NULL;
2223
2224	mutex_lock(&connector->edid_override_mutex);
2225
2226	if (connector->edid_override)
2227		override = drm_edid_dup(connector->edid_override);
2228
2229	mutex_unlock(&connector->edid_override_mutex);
2230
2231	if (!override)
2232		override = drm_edid_load_firmware(connector);
2233
2234	return IS_ERR(override) ? NULL : override;
2235}
2236
2237/* For debugfs edid_override implementation */
2238int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2239{
2240	const struct drm_edid *drm_edid;
2241
2242	mutex_lock(&connector->edid_override_mutex);
2243
2244	drm_edid = connector->edid_override;
2245	if (drm_edid)
2246		seq_write(m, drm_edid->edid, drm_edid->size);
2247
2248	mutex_unlock(&connector->edid_override_mutex);
2249
2250	return 0;
2251}
2252
2253/* For debugfs edid_override implementation */
2254int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2255			  size_t size)
2256{
2257	const struct drm_edid *drm_edid;
2258
2259	drm_edid = drm_edid_alloc(edid, size);
2260	if (!drm_edid_valid(drm_edid)) {
2261		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2262			    connector->base.id, connector->name);
2263		drm_edid_free(drm_edid);
2264		return -EINVAL;
2265	}
2266
2267	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2268		    connector->base.id, connector->name);
2269
2270	mutex_lock(&connector->edid_override_mutex);
2271
2272	drm_edid_free(connector->edid_override);
2273	connector->edid_override = drm_edid;
2274
2275	mutex_unlock(&connector->edid_override_mutex);
2276
2277	return 0;
2278}
2279
2280/* For debugfs edid_override implementation */
2281int drm_edid_override_reset(struct drm_connector *connector)
2282{
2283	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2284		    connector->base.id, connector->name);
2285
2286	mutex_lock(&connector->edid_override_mutex);
2287
2288	drm_edid_free(connector->edid_override);
2289	connector->edid_override = NULL;
2290
2291	mutex_unlock(&connector->edid_override_mutex);
2292
2293	return 0;
2294}
2295
2296/**
2297 * drm_edid_override_connector_update - add modes from override/firmware EDID
2298 * @connector: connector we're probing
2299 *
2300 * Add modes from the override/firmware EDID, if available. Only to be used from
2301 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2302 * failed during drm_get_edid() and caused the override/firmware EDID to be
2303 * skipped.
2304 *
2305 * Return: The number of modes added or 0 if we couldn't find any.
2306 */
2307int drm_edid_override_connector_update(struct drm_connector *connector)
2308{
2309	const struct drm_edid *override;
2310	int num_modes = 0;
2311
2312	override = drm_edid_override_get(connector);
2313	if (override) {
2314		if (drm_edid_connector_update(connector, override) == 0)
2315			num_modes = drm_edid_connector_add_modes(connector);
 
2316
2317		drm_edid_free(override);
2318
2319		drm_dbg_kms(connector->dev,
2320			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2321			    connector->base.id, connector->name, num_modes);
2322	}
2323
2324	return num_modes;
2325}
2326EXPORT_SYMBOL(drm_edid_override_connector_update);
2327
2328typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2329
2330static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2331					      read_block_fn read_block,
2332					      void *context)
2333{
2334	enum edid_block_status status;
2335	bool is_base_block = block_num == 0;
2336	int try;
2337
2338	for (try = 0; try < 4; try++) {
2339		if (read_block(context, block, block_num, EDID_LENGTH))
2340			return EDID_BLOCK_READ_FAIL;
2341
2342		status = edid_block_check(block, is_base_block);
2343		if (status == EDID_BLOCK_HEADER_REPAIR) {
2344			edid_header_fix(block);
2345
2346			/* Retry with fixed header, update status if that worked. */
2347			status = edid_block_check(block, is_base_block);
2348			if (status == EDID_BLOCK_OK)
2349				status = EDID_BLOCK_HEADER_FIXED;
2350		}
2351
2352		if (edid_block_status_valid(status, edid_block_tag(block)))
2353			break;
2354
2355		/* Fail early for unrepairable base block all zeros. */
2356		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2357			break;
2358	}
2359
2360	return status;
2361}
2362
2363static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2364				     read_block_fn read_block, void *context,
2365				     size_t *size)
2366{
2367	enum edid_block_status status;
2368	int i, num_blocks, invalid_blocks = 0;
2369	const struct drm_edid *override;
2370	struct edid *edid, *new;
2371	size_t alloc_size = EDID_LENGTH;
2372
2373	override = drm_edid_override_get(connector);
2374	if (override) {
2375		alloc_size = override->size;
2376		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2377		drm_edid_free(override);
2378		if (!edid)
2379			return NULL;
2380		goto ok;
2381	}
2382
2383	edid = kmalloc(alloc_size, GFP_KERNEL);
2384	if (!edid)
2385		return NULL;
2386
2387	status = edid_block_read(edid, 0, read_block, context);
2388
2389	edid_block_status_print(status, edid, 0);
2390
2391	if (status == EDID_BLOCK_READ_FAIL)
2392		goto fail;
2393
2394	/* FIXME: Clarify what a corrupt EDID actually means. */
2395	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2396		connector->edid_corrupt = false;
2397	else
2398		connector->edid_corrupt = true;
2399
2400	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2401		if (status == EDID_BLOCK_ZERO)
2402			connector->null_edid_counter++;
2403
2404		connector_bad_edid(connector, edid, 1);
2405		goto fail;
2406	}
2407
2408	if (!edid_extension_block_count(edid))
2409		goto ok;
2410
2411	alloc_size = edid_size(edid);
2412	new = krealloc(edid, alloc_size, GFP_KERNEL);
2413	if (!new)
2414		goto fail;
2415	edid = new;
2416
2417	num_blocks = edid_block_count(edid);
2418	for (i = 1; i < num_blocks; i++) {
2419		void *block = (void *)edid_block_data(edid, i);
2420
2421		status = edid_block_read(block, i, read_block, context);
2422
2423		edid_block_status_print(status, block, i);
2424
2425		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2426			if (status == EDID_BLOCK_READ_FAIL)
2427				goto fail;
2428			invalid_blocks++;
2429		} else if (i == 1) {
2430			/*
2431			 * If the first EDID extension is a CTA extension, and
2432			 * the first Data Block is HF-EEODB, override the
2433			 * extension block count.
2434			 *
2435			 * Note: HF-EEODB could specify a smaller extension
2436			 * count too, but we can't risk allocating a smaller
2437			 * amount.
2438			 */
2439			int eeodb = edid_hfeeodb_block_count(edid);
2440
2441			if (eeodb > num_blocks) {
2442				num_blocks = eeodb;
2443				alloc_size = edid_size_by_blocks(num_blocks);
2444				new = krealloc(edid, alloc_size, GFP_KERNEL);
2445				if (!new)
2446					goto fail;
2447				edid = new;
2448			}
2449		}
2450	}
2451
2452	if (invalid_blocks) {
2453		connector_bad_edid(connector, edid, num_blocks);
2454
2455		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2456	}
2457
2458ok:
2459	if (size)
2460		*size = alloc_size;
2461
2462	return edid;
2463
2464fail:
2465	kfree(edid);
2466	return NULL;
2467}
2468
2469/**
2470 * drm_do_get_edid - get EDID data using a custom EDID block read function
2471 * @connector: connector we're probing
2472 * @read_block: EDID block read function
2473 * @context: private data passed to the block read function
2474 *
2475 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2476 * exposes a different interface to read EDID blocks this function can be used
2477 * to get EDID data using a custom block read function.
2478 *
2479 * As in the general case the DDC bus is accessible by the kernel at the I2C
2480 * level, drivers must make all reasonable efforts to expose it as an I2C
2481 * adapter and use drm_get_edid() instead of abusing this function.
2482 *
2483 * The EDID may be overridden using debugfs override_edid or firmware EDID
2484 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2485 * order. Having either of them bypasses actual EDID reads.
2486 *
2487 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2488 */
2489struct edid *drm_do_get_edid(struct drm_connector *connector,
2490			     read_block_fn read_block,
2491			     void *context)
2492{
2493	return _drm_do_get_edid(connector, read_block, context, NULL);
2494}
2495EXPORT_SYMBOL_GPL(drm_do_get_edid);
 
 
 
 
 
2496
2497/**
2498 * drm_edid_raw - Get a pointer to the raw EDID data.
2499 * @drm_edid: drm_edid container
2500 *
2501 * Get a pointer to the raw EDID data.
2502 *
2503 * This is for transition only. Avoid using this like the plague.
2504 *
2505 * Return: Pointer to raw EDID data.
2506 */
2507const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2508{
2509	if (!drm_edid || !drm_edid->size)
2510		return NULL;
2511
2512	/*
2513	 * Do not return pointers where relying on EDID extension count would
2514	 * lead to buffer overflow.
2515	 */
2516	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2517		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
2518
2519	return drm_edid->edid;
2520}
2521EXPORT_SYMBOL(drm_edid_raw);
 
2522
2523/* Allocate struct drm_edid container *without* duplicating the edid data */
2524static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2525{
2526	struct drm_edid *drm_edid;
2527
2528	if (!edid || !size || size < EDID_LENGTH)
2529		return NULL;
 
 
 
 
2530
2531	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2532	if (drm_edid) {
2533		drm_edid->edid = edid;
2534		drm_edid->size = size;
2535	}
2536
2537	return drm_edid;
2538}
2539
2540/**
2541 * drm_edid_alloc - Allocate a new drm_edid container
2542 * @edid: Pointer to raw EDID data
2543 * @size: Size of memory allocated for EDID
2544 *
2545 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2546 * the actual size that has been allocated for the data. There is no validation
2547 * of the raw EDID data against the size, but at least the EDID base block must
2548 * fit in the buffer.
2549 *
2550 * The returned pointer must be freed using drm_edid_free().
2551 *
2552 * Return: drm_edid container, or NULL on errors
2553 */
2554const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2555{
2556	const struct drm_edid *drm_edid;
2557
2558	if (!edid || !size || size < EDID_LENGTH)
2559		return NULL;
2560
2561	edid = kmemdup(edid, size, GFP_KERNEL);
2562	if (!edid)
2563		return NULL;
 
2564
2565	drm_edid = _drm_edid_alloc(edid, size);
2566	if (!drm_edid)
2567		kfree(edid);
2568
2569	return drm_edid;
2570}
2571EXPORT_SYMBOL(drm_edid_alloc);
2572
2573/**
2574 * drm_edid_dup - Duplicate a drm_edid container
2575 * @drm_edid: EDID to duplicate
2576 *
2577 * The returned pointer must be freed using drm_edid_free().
2578 *
2579 * Returns: drm_edid container copy, or NULL on errors
2580 */
2581const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2582{
2583	if (!drm_edid)
2584		return NULL;
2585
2586	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2587}
2588EXPORT_SYMBOL(drm_edid_dup);
2589
2590/**
2591 * drm_edid_free - Free the drm_edid container
2592 * @drm_edid: EDID to free
2593 */
2594void drm_edid_free(const struct drm_edid *drm_edid)
2595{
2596	if (!drm_edid)
2597		return;
2598
2599	kfree(drm_edid->edid);
2600	kfree(drm_edid);
 
 
 
2601}
2602EXPORT_SYMBOL(drm_edid_free);
2603
2604/**
2605 * drm_probe_ddc() - probe DDC presence
2606 * @adapter: I2C adapter to probe
2607 *
2608 * Return: True on success, false on failure.
2609 */
2610bool
2611drm_probe_ddc(struct i2c_adapter *adapter)
2612{
2613	unsigned char out;
2614
2615	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2616}
2617EXPORT_SYMBOL(drm_probe_ddc);
2618
2619/**
2620 * drm_get_edid - get EDID data, if available
2621 * @connector: connector we're probing
2622 * @adapter: I2C adapter to use for DDC
2623 *
2624 * Poke the given I2C channel to grab EDID data if possible.  If found,
2625 * attach it to the connector.
2626 *
2627 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2628 */
2629struct edid *drm_get_edid(struct drm_connector *connector,
2630			  struct i2c_adapter *adapter)
2631{
2632	struct edid *edid;
2633
2634	if (connector->force == DRM_FORCE_OFF)
2635		return NULL;
2636
2637	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2638		return NULL;
2639
2640	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2641	drm_connector_update_edid_property(connector, edid);
 
2642	return edid;
2643}
2644EXPORT_SYMBOL(drm_get_edid);
2645
2646/**
2647 * drm_edid_read_custom - Read EDID data using given EDID block read function
2648 * @connector: Connector to use
2649 * @read_block: EDID block read function
2650 * @context: Private data passed to the block read function
2651 *
2652 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2653 * exposes a different interface to read EDID blocks this function can be used
2654 * to get EDID data using a custom block read function.
2655 *
2656 * As in the general case the DDC bus is accessible by the kernel at the I2C
2657 * level, drivers must make all reasonable efforts to expose it as an I2C
2658 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2659 * this function.
2660 *
2661 * The EDID may be overridden using debugfs override_edid or firmware EDID
2662 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2663 * order. Having either of them bypasses actual EDID reads.
2664 *
2665 * The returned pointer must be freed using drm_edid_free().
2666 *
2667 * Return: Pointer to EDID, or NULL if probe/read failed.
2668 */
2669const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2670					    read_block_fn read_block,
2671					    void *context)
2672{
2673	const struct drm_edid *drm_edid;
2674	struct edid *edid;
2675	size_t size = 0;
2676
2677	edid = _drm_do_get_edid(connector, read_block, context, &size);
2678	if (!edid)
2679		return NULL;
2680
2681	/* Sanity check for now */
2682	drm_WARN_ON(connector->dev, !size);
2683
2684	drm_edid = _drm_edid_alloc(edid, size);
2685	if (!drm_edid)
2686		kfree(edid);
2687
2688	return drm_edid;
2689}
2690EXPORT_SYMBOL(drm_edid_read_custom);
2691
2692/**
2693 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2694 * @connector: Connector to use
2695 * @adapter: I2C adapter to use for DDC
2696 *
2697 * Read EDID using the given I2C adapter.
2698 *
2699 * The EDID may be overridden using debugfs override_edid or firmware EDID
2700 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2701 * order. Having either of them bypasses actual EDID reads.
2702 *
2703 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2704 * using drm_edid_read() instead of this function.
2705 *
2706 * The returned pointer must be freed using drm_edid_free().
2707 *
2708 * Return: Pointer to EDID, or NULL if probe/read failed.
2709 */
2710const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2711					 struct i2c_adapter *adapter)
2712{
2713	const struct drm_edid *drm_edid;
2714
2715	if (connector->force == DRM_FORCE_OFF)
2716		return NULL;
2717
2718	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2719		return NULL;
2720
2721	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2722
2723	/* Note: Do *not* call connector updates here. */
2724
2725	return drm_edid;
2726}
2727EXPORT_SYMBOL(drm_edid_read_ddc);
2728
2729/**
2730 * drm_edid_read - Read EDID data using connector's I2C adapter
2731 * @connector: Connector to use
2732 *
2733 * Read EDID using the connector's I2C adapter.
2734 *
2735 * The EDID may be overridden using debugfs override_edid or firmware EDID
2736 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2737 * order. Having either of them bypasses actual EDID reads.
2738 *
2739 * The returned pointer must be freed using drm_edid_free().
2740 *
2741 * Return: Pointer to EDID, or NULL if probe/read failed.
2742 */
2743const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2744{
2745	if (drm_WARN_ON(connector->dev, !connector->ddc))
2746		return NULL;
2747
2748	return drm_edid_read_ddc(connector, connector->ddc);
2749}
2750EXPORT_SYMBOL(drm_edid_read);
2751
2752static u32 edid_extract_panel_id(const struct edid *edid)
2753{
2754	/*
2755	 * We represent the ID as a 32-bit number so it can easily be compared
2756	 * with "==".
2757	 *
2758	 * NOTE that we deal with endianness differently for the top half
2759	 * of this ID than for the bottom half. The bottom half (the product
2760	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2761	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2762	 * gets stored as big endian because that makes
2763	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2764	 * to write (it's easier to extract the ASCII). It doesn't really
2765	 * matter, though, as long as the number here is unique.
2766	 */
2767	return (u32)edid->mfg_id[0] << 24   |
2768	       (u32)edid->mfg_id[1] << 16   |
2769	       (u32)EDID_PRODUCT_ID(edid);
2770}
2771
2772/**
2773 * drm_edid_get_panel_id - Get a panel's ID through DDC
2774 * @adapter: I2C adapter to use for DDC
2775 *
2776 * This function reads the first block of the EDID of a panel and (assuming
2777 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2778 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2779 * supposed to be different for each different modem of panel.
2780 *
2781 * This function is intended to be used during early probing on devices where
2782 * more than one panel might be present. Because of its intended use it must
2783 * assume that the EDID of the panel is correct, at least as far as the ID
2784 * is concerned (in other words, we don't process any overrides here).
2785 *
2786 * NOTE: it's expected that this function and drm_do_get_edid() will both
2787 * be read the EDID, but there is no caching between them. Since we're only
2788 * reading the first block, hopefully this extra overhead won't be too big.
2789 *
2790 * Return: A 32-bit ID that should be different for each make/model of panel.
2791 *         See the functions drm_edid_encode_panel_id() and
2792 *         drm_edid_decode_panel_id() for some details on the structure of this
2793 *         ID.
2794 */
2795
2796u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2797{
2798	enum edid_block_status status;
2799	void *base_block;
2800	u32 panel_id = 0;
2801
2802	/*
2803	 * There are no manufacturer IDs of 0, so if there is a problem reading
2804	 * the EDID then we'll just return 0.
2805	 */
2806
2807	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2808	if (!base_block)
2809		return 0;
2810
2811	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2812
2813	edid_block_status_print(status, base_block, 0);
2814
2815	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2816		panel_id = edid_extract_panel_id(base_block);
2817	else
2818		edid_block_dump(KERN_NOTICE, base_block, 0);
2819
2820	kfree(base_block);
2821
2822	return panel_id;
2823}
2824EXPORT_SYMBOL(drm_edid_get_panel_id);
2825
2826/**
2827 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2828 * @connector: connector we're probing
2829 * @adapter: I2C adapter to use for DDC
2830 *
2831 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2832 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2833 * switch DDC to the GPU which is retrieving EDID.
2834 *
2835 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2836 */
2837struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2838				     struct i2c_adapter *adapter)
2839{
2840	struct drm_device *dev = connector->dev;
2841	struct pci_dev *pdev = to_pci_dev(dev->dev);
2842	struct edid *edid;
2843
2844	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2845		return NULL;
2846
2847	vga_switcheroo_lock_ddc(pdev);
2848	edid = drm_get_edid(connector, adapter);
2849	vga_switcheroo_unlock_ddc(pdev);
2850
2851	return edid;
2852}
2853EXPORT_SYMBOL(drm_get_edid_switcheroo);
2854
2855/**
2856 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2857 * @connector: connector we're probing
2858 * @adapter: I2C adapter to use for DDC
2859 *
2860 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2861 * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2862 * temporarily switch DDC to the GPU which is retrieving EDID.
2863 *
2864 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2865 */
2866const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2867						struct i2c_adapter *adapter)
2868{
2869	struct drm_device *dev = connector->dev;
2870	struct pci_dev *pdev = to_pci_dev(dev->dev);
2871	const struct drm_edid *drm_edid;
2872
2873	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2874		return NULL;
2875
2876	vga_switcheroo_lock_ddc(pdev);
2877	drm_edid = drm_edid_read_ddc(connector, adapter);
2878	vga_switcheroo_unlock_ddc(pdev);
2879
2880	return drm_edid;
2881}
2882EXPORT_SYMBOL(drm_edid_read_switcheroo);
2883
2884/**
2885 * drm_edid_duplicate - duplicate an EDID and the extensions
2886 * @edid: EDID to duplicate
 
2887 *
2888 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2889 */
2890struct edid *drm_edid_duplicate(const struct edid *edid)
2891{
2892	if (!edid)
2893		return NULL;
 
 
 
 
2894
2895	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2896}
2897EXPORT_SYMBOL(drm_edid_duplicate);
2898
2899/*** EDID parsing ***/
2900
2901/**
2902 * edid_get_quirks - return quirk flags for a given EDID
2903 * @drm_edid: EDID to process
2904 *
2905 * This tells subsequent routines what fixes they need to apply.
2906 */
2907static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2908{
2909	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2910	const struct edid_quirk *quirk;
2911	int i;
2912
2913	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2914		quirk = &edid_quirk_list[i];
2915		if (quirk->panel_id == panel_id)
 
 
2916			return quirk->quirks;
2917	}
2918
2919	return 0;
2920}
2921
2922#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2923#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2924
2925/*
2926 * Walk the mode list for connector, clearing the preferred status on existing
2927 * modes and setting it anew for the right mode ala quirks.
 
 
 
 
2928 */
2929static void edid_fixup_preferred(struct drm_connector *connector)
 
2930{
2931	const struct drm_display_info *info = &connector->display_info;
2932	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2933	int target_refresh = 0;
2934	int cur_vrefresh, preferred_vrefresh;
2935
2936	if (list_empty(&connector->probed_modes))
2937		return;
2938
2939	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2940		target_refresh = 60;
2941	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2942		target_refresh = 75;
2943
2944	preferred_mode = list_first_entry(&connector->probed_modes,
2945					  struct drm_display_mode, head);
2946
2947	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2948		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2949
2950		if (cur_mode == preferred_mode)
2951			continue;
2952
2953		/* Largest mode is preferred */
2954		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2955			preferred_mode = cur_mode;
2956
2957		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2958		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
 
 
2959		/* At a given size, try to get closest to target refresh */
2960		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2961		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2962		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2963			preferred_mode = cur_mode;
2964		}
2965	}
2966
2967	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2968}
2969
2970static bool
2971mode_is_rb(const struct drm_display_mode *mode)
2972{
2973	return (mode->htotal - mode->hdisplay == 160) &&
2974	       (mode->hsync_end - mode->hdisplay == 80) &&
2975	       (mode->hsync_end - mode->hsync_start == 32) &&
2976	       (mode->vsync_start - mode->vdisplay == 3);
2977}
2978
2979/*
2980 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2981 * @dev: Device to duplicate against
2982 * @hsize: Mode width
2983 * @vsize: Mode height
2984 * @fresh: Mode refresh rate
2985 * @rb: Mode reduced-blanking-ness
2986 *
2987 * Walk the DMT mode list looking for a match for the given parameters.
2988 *
2989 * Return: A newly allocated copy of the mode, or NULL if not found.
2990 */
2991struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2992					   int hsize, int vsize, int fresh,
2993					   bool rb)
2994{
2995	int i;
2996
2997	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2998		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2999
3000		if (hsize != ptr->hdisplay)
3001			continue;
3002		if (vsize != ptr->vdisplay)
3003			continue;
3004		if (fresh != drm_mode_vrefresh(ptr))
3005			continue;
3006		if (rb != mode_is_rb(ptr))
3007			continue;
3008
3009		return drm_mode_duplicate(dev, ptr);
3010	}
3011
3012	return NULL;
3013}
3014EXPORT_SYMBOL(drm_mode_find_dmt);
3015
3016static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3017{
3018	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3019	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3020	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3021
3022	return descriptor->pixel_clock == 0 &&
3023		descriptor->data.other_data.pad1 == 0 &&
3024		descriptor->data.other_data.type == type;
3025}
3026
3027static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3028{
3029	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3030
3031	return descriptor->pixel_clock != 0;
3032}
3033
3034typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3035
3036static void
3037cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3038{
3039	int i, n;
3040	u8 d = ext[0x02];
3041	const u8 *det_base = ext + d;
3042
3043	if (d < 4 || d > 127)
3044		return;
3045
3046	n = (127 - d) / 18;
3047	for (i = 0; i < n; i++)
3048		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3049}
3050
3051static void
3052vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3053{
3054	unsigned int i, n = min((int)ext[0x02], 6);
3055	const u8 *det_base = ext + 5;
3056
3057	if (ext[0x01] != 1)
3058		return; /* unknown version */
3059
3060	for (i = 0; i < n; i++)
3061		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3062}
3063
3064static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3065					detailed_cb *cb, void *closure)
3066{
3067	struct drm_edid_iter edid_iter;
3068	const u8 *ext;
3069	int i;
 
3070
3071	if (!drm_edid)
3072		return;
3073
3074	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3075		cb(&drm_edid->edid->detailed_timings[i], closure);
3076
3077	drm_edid_iter_begin(drm_edid, &edid_iter);
3078	drm_edid_iter_for_each(ext, &edid_iter) {
3079		switch (*ext) {
3080		case CEA_EXT:
3081			cea_for_each_detailed_block(ext, cb, closure);
3082			break;
3083		case VTB_EXT:
3084			vtb_for_each_detailed_block(ext, cb, closure);
3085			break;
3086		default:
3087			break;
3088		}
3089	}
3090	drm_edid_iter_end(&edid_iter);
3091}
3092
3093static void
3094is_rb(const struct detailed_timing *descriptor, void *data)
3095{
3096	bool *res = data;
3097
3098	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3099		return;
3100
3101	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3102	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3103
3104	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3105	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3106		*res = true;
3107}
3108
3109/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3110static bool
3111drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3112{
3113	if (drm_edid->edid->revision >= 4) {
3114		bool ret = false;
3115
3116		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3117		return ret;
3118	}
3119
3120	return drm_edid_is_digital(drm_edid);
3121}
3122
3123static void
3124find_gtf2(const struct detailed_timing *descriptor, void *data)
3125{
3126	const struct detailed_timing **res = data;
3127
3128	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3129		return;
3130
3131	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3132
3133	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3134		*res = descriptor;
3135}
3136
3137/* Secondary GTF curve kicks in above some break frequency */
3138static int
3139drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3140{
3141	const struct detailed_timing *descriptor = NULL;
3142
3143	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3144
3145	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3146
3147	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3148}
3149
3150static int
3151drm_gtf2_2c(const struct drm_edid *drm_edid)
3152{
3153	const struct detailed_timing *descriptor = NULL;
3154
3155	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3156
3157	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3158
3159	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3160}
3161
3162static int
3163drm_gtf2_m(const struct drm_edid *drm_edid)
3164{
3165	const struct detailed_timing *descriptor = NULL;
3166
3167	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3168
3169	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3170
3171	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3172}
3173
3174static int
3175drm_gtf2_k(const struct drm_edid *drm_edid)
3176{
3177	const struct detailed_timing *descriptor = NULL;
3178
3179	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3180
3181	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3182
3183	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3184}
3185
3186static int
3187drm_gtf2_2j(const struct drm_edid *drm_edid)
3188{
3189	const struct detailed_timing *descriptor = NULL;
3190
3191	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3192
3193	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3194
3195	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3196}
3197
3198static void
3199get_timing_level(const struct detailed_timing *descriptor, void *data)
 
 
 
3200{
3201	int *res = data;
3202
3203	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3204		return;
3205
3206	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3207
3208	switch (descriptor->data.other_data.data.range.flags) {
3209	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3210		*res = LEVEL_GTF;
3211		break;
3212	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3213		*res = LEVEL_GTF2;
3214		break;
3215	case DRM_EDID_CVT_SUPPORT_FLAG:
3216		*res = LEVEL_CVT;
3217		break;
3218	default:
3219		break;
3220	}
3221}
3222
3223/* Get standard timing level (CVT/GTF/DMT). */
3224static int standard_timing_level(const struct drm_edid *drm_edid)
3225{
3226	const struct edid *edid = drm_edid->edid;
3227
3228	if (edid->revision >= 4) {
3229		/*
3230		 * If the range descriptor doesn't
3231		 * indicate otherwise default to CVT
3232		 */
3233		int ret = LEVEL_CVT;
3234
3235		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3236
3237		return ret;
3238	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3239		return LEVEL_GTF2;
3240	} else if (edid->revision >= 2) {
3241		return LEVEL_GTF;
3242	} else {
3243		return LEVEL_DMT;
3244	}
 
3245}
3246
3247/*
3248 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3249 * monitors fill with ascii space (0x20) instead.
3250 */
3251static int
3252bad_std_timing(u8 a, u8 b)
3253{
3254	return (a == 0x00 && b == 0x00) ||
3255	       (a == 0x01 && b == 0x01) ||
3256	       (a == 0x20 && b == 0x20);
3257}
3258
3259static int drm_mode_hsync(const struct drm_display_mode *mode)
3260{
3261	if (mode->htotal <= 0)
3262		return 0;
3263
3264	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3265}
3266
3267static struct drm_display_mode *
3268drm_gtf2_mode(struct drm_device *dev,
3269	      const struct drm_edid *drm_edid,
3270	      int hsize, int vsize, int vrefresh_rate)
3271{
3272	struct drm_display_mode *mode;
3273
3274	/*
3275	 * This is potentially wrong if there's ever a monitor with
3276	 * more than one ranges section, each claiming a different
3277	 * secondary GTF curve.  Please don't do that.
3278	 */
3279	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3280	if (!mode)
3281		return NULL;
3282
3283	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3284		drm_mode_destroy(dev, mode);
3285		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3286					    vrefresh_rate, 0, 0,
3287					    drm_gtf2_m(drm_edid),
3288					    drm_gtf2_2c(drm_edid),
3289					    drm_gtf2_k(drm_edid),
3290					    drm_gtf2_2j(drm_edid));
3291	}
3292
3293	return mode;
3294}
3295
3296/*
3297 * Take the standard timing params (in this case width, aspect, and refresh)
3298 * and convert them into a real mode using CVT/GTF/DMT.
3299 */
3300static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3301					     const struct drm_edid *drm_edid,
3302					     const struct std_timing *t)
3303{
3304	struct drm_device *dev = connector->dev;
3305	struct drm_display_mode *m, *mode = NULL;
3306	int hsize, vsize;
3307	int vrefresh_rate;
3308	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3309		>> EDID_TIMING_ASPECT_SHIFT;
3310	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3311		>> EDID_TIMING_VFREQ_SHIFT;
3312	int timing_level = standard_timing_level(drm_edid);
3313
3314	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3315		return NULL;
3316
3317	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3318	hsize = t->hsize * 8 + 248;
3319	/* vrefresh_rate = vfreq + 60 */
3320	vrefresh_rate = vfreq + 60;
3321	/* the vdisplay is calculated based on the aspect ratio */
3322	if (aspect_ratio == 0) {
3323		if (drm_edid->edid->revision < 3)
3324			vsize = hsize;
3325		else
3326			vsize = (hsize * 10) / 16;
3327	} else if (aspect_ratio == 1)
3328		vsize = (hsize * 3) / 4;
3329	else if (aspect_ratio == 2)
3330		vsize = (hsize * 4) / 5;
3331	else
3332		vsize = (hsize * 9) / 16;
3333
3334	/* HDTV hack, part 1 */
3335	if (vrefresh_rate == 60 &&
3336	    ((hsize == 1360 && vsize == 765) ||
3337	     (hsize == 1368 && vsize == 769))) {
3338		hsize = 1366;
3339		vsize = 768;
3340	}
3341
3342	/*
3343	 * If this connector already has a mode for this size and refresh
3344	 * rate (because it came from detailed or CVT info), use that
3345	 * instead.  This way we don't have to guess at interlace or
3346	 * reduced blanking.
3347	 */
3348	list_for_each_entry(m, &connector->probed_modes, head)
3349		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3350		    drm_mode_vrefresh(m) == vrefresh_rate)
3351			return NULL;
3352
3353	/* HDTV hack, part 2 */
3354	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3355		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3356				    false);
3357		if (!mode)
3358			return NULL;
3359		mode->hdisplay = 1366;
3360		mode->hsync_start = mode->hsync_start - 1;
3361		mode->hsync_end = mode->hsync_end - 1;
3362		return mode;
3363	}
3364
3365	/* check whether it can be found in default mode table */
3366	if (drm_monitor_supports_rb(drm_edid)) {
3367		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3368					 true);
3369		if (mode)
3370			return mode;
3371	}
3372	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3373	if (mode)
3374		return mode;
3375
3376	/* okay, generate it */
3377	switch (timing_level) {
3378	case LEVEL_DMT:
3379		break;
3380	case LEVEL_GTF:
3381		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3382		break;
3383	case LEVEL_GTF2:
3384		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3385		break;
3386	case LEVEL_CVT:
3387		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3388				    false);
3389		break;
3390	}
3391	return mode;
3392}
3393
3394/*
3395 * EDID is delightfully ambiguous about how interlaced modes are to be
3396 * encoded.  Our internal representation is of frame height, but some
3397 * HDTV detailed timings are encoded as field height.
3398 *
3399 * The format list here is from CEA, in frame size.  Technically we
3400 * should be checking refresh rate too.  Whatever.
3401 */
3402static void
3403drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3404			    const struct detailed_pixel_timing *pt)
3405{
3406	int i;
3407	static const struct {
3408		int w, h;
3409	} cea_interlaced[] = {
3410		{ 1920, 1080 },
3411		{  720,  480 },
3412		{ 1440,  480 },
3413		{ 2880,  480 },
3414		{  720,  576 },
3415		{ 1440,  576 },
3416		{ 2880,  576 },
3417	};
3418
3419	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3420		return;
3421
3422	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3423		if ((mode->hdisplay == cea_interlaced[i].w) &&
3424		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3425			mode->vdisplay *= 2;
3426			mode->vsync_start *= 2;
3427			mode->vsync_end *= 2;
3428			mode->vtotal *= 2;
3429			mode->vtotal |= 1;
3430		}
3431	}
3432
3433	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3434}
3435
3436/*
3437 * Create a new mode from an EDID detailed timing section. An EDID detailed
3438 * timing block contains enough info for us to create and return a new struct
3439 * drm_display_mode.
3440 */
3441static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3442						  const struct drm_edid *drm_edid,
3443						  const struct detailed_timing *timing)
 
 
 
 
 
 
3444{
3445	const struct drm_display_info *info = &connector->display_info;
3446	struct drm_device *dev = connector->dev;
3447	struct drm_display_mode *mode;
3448	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3449	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3450	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3451	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3452	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3453	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3454	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3455	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3456	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3457
3458	/* ignore tiny modes */
3459	if (hactive < 64 || vactive < 64)
3460		return NULL;
3461
3462	if (pt->misc & DRM_EDID_PT_STEREO) {
3463		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3464			    connector->base.id, connector->name);
3465		return NULL;
3466	}
3467	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3468		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3469			    connector->base.id, connector->name);
3470	}
3471
3472	/* it is incorrect if hsync/vsync width is zero */
3473	if (!hsync_pulse_width || !vsync_pulse_width) {
3474		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3475			    connector->base.id, connector->name);
3476		return NULL;
3477	}
3478
3479	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3480		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3481		if (!mode)
3482			return NULL;
3483
3484		goto set_size;
3485	}
3486
3487	mode = drm_mode_create(dev);
3488	if (!mode)
3489		return NULL;
3490
3491	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3492		mode->clock = 1088 * 10;
3493	else
3494		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3495
3496	mode->hdisplay = hactive;
3497	mode->hsync_start = mode->hdisplay + hsync_offset;
3498	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3499	mode->htotal = mode->hdisplay + hblank;
3500
3501	mode->vdisplay = vactive;
3502	mode->vsync_start = mode->vdisplay + vsync_offset;
3503	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3504	mode->vtotal = mode->vdisplay + vblank;
3505
3506	/* Some EDIDs have bogus h/vsync_end values */
3507	if (mode->hsync_end > mode->htotal) {
3508		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3509			    connector->base.id, connector->name,
3510			    mode->hsync_end, mode->htotal);
3511		mode->hsync_end = mode->htotal;
3512	}
3513	if (mode->vsync_end > mode->vtotal) {
3514		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3515			    connector->base.id, connector->name,
3516			    mode->vsync_end, mode->vtotal);
3517		mode->vsync_end = mode->vtotal;
3518	}
3519
3520	drm_mode_do_interlace_quirk(mode, pt);
3521
3522	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3523		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3524	} else {
3525		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3526			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3527		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3528			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3529	}
3530
 
 
 
 
 
3531set_size:
3532	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3533	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3534
3535	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3536		mode->width_mm *= 10;
3537		mode->height_mm *= 10;
3538	}
3539
3540	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3541		mode->width_mm = drm_edid->edid->width_cm * 10;
3542		mode->height_mm = drm_edid->edid->height_cm * 10;
3543	}
3544
3545	mode->type = DRM_MODE_TYPE_DRIVER;
 
3546	drm_mode_set_name(mode);
3547
3548	return mode;
3549}
3550
3551static bool
3552mode_in_hsync_range(const struct drm_display_mode *mode,
3553		    const struct edid *edid, const u8 *t)
3554{
3555	int hsync, hmin, hmax;
3556
3557	hmin = t[7];
3558	if (edid->revision >= 4)
3559	    hmin += ((t[4] & 0x04) ? 255 : 0);
3560	hmax = t[8];
3561	if (edid->revision >= 4)
3562	    hmax += ((t[4] & 0x08) ? 255 : 0);
3563	hsync = drm_mode_hsync(mode);
3564
3565	return (hsync <= hmax && hsync >= hmin);
3566}
3567
3568static bool
3569mode_in_vsync_range(const struct drm_display_mode *mode,
3570		    const struct edid *edid, const u8 *t)
3571{
3572	int vsync, vmin, vmax;
3573
3574	vmin = t[5];
3575	if (edid->revision >= 4)
3576	    vmin += ((t[4] & 0x01) ? 255 : 0);
3577	vmax = t[6];
3578	if (edid->revision >= 4)
3579	    vmax += ((t[4] & 0x02) ? 255 : 0);
3580	vsync = drm_mode_vrefresh(mode);
3581
3582	return (vsync <= vmax && vsync >= vmin);
3583}
3584
3585static u32
3586range_pixel_clock(const struct edid *edid, const u8 *t)
3587{
3588	/* unspecified */
3589	if (t[9] == 0 || t[9] == 255)
3590		return 0;
3591
3592	/* 1.4 with CVT support gives us real precision, yay */
3593	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3594		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3595
3596	/* 1.3 is pathetic, so fuzz up a bit */
3597	return t[9] * 10000 + 5001;
3598}
3599
3600static bool mode_in_range(const struct drm_display_mode *mode,
3601			  const struct drm_edid *drm_edid,
3602			  const struct detailed_timing *timing)
3603{
3604	const struct edid *edid = drm_edid->edid;
3605	u32 max_clock;
3606	const u8 *t = (const u8 *)timing;
3607
3608	if (!mode_in_hsync_range(mode, edid, t))
3609		return false;
3610
3611	if (!mode_in_vsync_range(mode, edid, t))
3612		return false;
3613
3614	max_clock = range_pixel_clock(edid, t);
3615	if (max_clock)
3616		if (mode->clock > max_clock)
3617			return false;
3618
3619	/* 1.4 max horizontal check */
3620	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3621		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3622			return false;
3623
3624	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3625		return false;
3626
3627	return true;
3628}
3629
3630static bool valid_inferred_mode(const struct drm_connector *connector,
3631				const struct drm_display_mode *mode)
3632{
3633	const struct drm_display_mode *m;
3634	bool ok = false;
3635
3636	list_for_each_entry(m, &connector->probed_modes, head) {
3637		if (mode->hdisplay == m->hdisplay &&
3638		    mode->vdisplay == m->vdisplay &&
3639		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3640			return false; /* duplicated */
3641		if (mode->hdisplay <= m->hdisplay &&
3642		    mode->vdisplay <= m->vdisplay)
3643			ok = true;
3644	}
3645	return ok;
3646}
3647
3648static int drm_dmt_modes_for_range(struct drm_connector *connector,
3649				   const struct drm_edid *drm_edid,
3650				   const struct detailed_timing *timing)
3651{
3652	int i, modes = 0;
3653	struct drm_display_mode *newmode;
3654	struct drm_device *dev = connector->dev;
3655
3656	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3657		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3658		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3659			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3660			if (newmode) {
3661				drm_mode_probed_add(connector, newmode);
3662				modes++;
3663			}
3664		}
3665	}
3666
3667	return modes;
3668}
3669
3670/* fix up 1366x768 mode from 1368x768;
3671 * GFT/CVT can't express 1366 width which isn't dividable by 8
3672 */
3673void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3674{
3675	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3676		mode->hdisplay = 1366;
3677		mode->hsync_start--;
3678		mode->hsync_end--;
3679		drm_mode_set_name(mode);
3680	}
3681}
3682
3683static int drm_gtf_modes_for_range(struct drm_connector *connector,
3684				   const struct drm_edid *drm_edid,
3685				   const struct detailed_timing *timing)
3686{
3687	int i, modes = 0;
3688	struct drm_display_mode *newmode;
3689	struct drm_device *dev = connector->dev;
3690
3691	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3692		const struct minimode *m = &extra_modes[i];
3693
3694		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3695		if (!newmode)
3696			return modes;
3697
3698		drm_mode_fixup_1366x768(newmode);
3699		if (!mode_in_range(newmode, drm_edid, timing) ||
3700		    !valid_inferred_mode(connector, newmode)) {
3701			drm_mode_destroy(dev, newmode);
3702			continue;
3703		}
3704
3705		drm_mode_probed_add(connector, newmode);
3706		modes++;
3707	}
3708
3709	return modes;
3710}
3711
3712static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3713				    const struct drm_edid *drm_edid,
3714				    const struct detailed_timing *timing)
3715{
3716	int i, modes = 0;
3717	struct drm_display_mode *newmode;
3718	struct drm_device *dev = connector->dev;
 
3719
3720	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3721		const struct minimode *m = &extra_modes[i];
3722
3723		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3724		if (!newmode)
3725			return modes;
3726
3727		drm_mode_fixup_1366x768(newmode);
3728		if (!mode_in_range(newmode, drm_edid, timing) ||
3729		    !valid_inferred_mode(connector, newmode)) {
3730			drm_mode_destroy(dev, newmode);
3731			continue;
3732		}
3733
3734		drm_mode_probed_add(connector, newmode);
3735		modes++;
3736	}
3737
3738	return modes;
3739}
3740
3741static int drm_cvt_modes_for_range(struct drm_connector *connector,
3742				   const struct drm_edid *drm_edid,
3743				   const struct detailed_timing *timing)
3744{
3745	int i, modes = 0;
3746	struct drm_display_mode *newmode;
3747	struct drm_device *dev = connector->dev;
3748	bool rb = drm_monitor_supports_rb(drm_edid);
3749
3750	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3751		const struct minimode *m = &extra_modes[i];
3752
3753		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3754		if (!newmode)
3755			return modes;
3756
3757		drm_mode_fixup_1366x768(newmode);
3758		if (!mode_in_range(newmode, drm_edid, timing) ||
3759		    !valid_inferred_mode(connector, newmode)) {
3760			drm_mode_destroy(dev, newmode);
3761			continue;
3762		}
3763
3764		drm_mode_probed_add(connector, newmode);
3765		modes++;
3766	}
3767
3768	return modes;
3769}
3770
3771static void
3772do_inferred_modes(const struct detailed_timing *timing, void *c)
3773{
3774	struct detailed_mode_closure *closure = c;
3775	const struct detailed_non_pixel *data = &timing->data.other_data;
3776	const struct detailed_data_monitor_range *range = &data->data.range;
3777
3778	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3779		return;
3780
3781	closure->modes += drm_dmt_modes_for_range(closure->connector,
3782						  closure->drm_edid,
3783						  timing);
3784
3785	if (closure->drm_edid->edid->revision < 2)
3786		return; /* GTF not defined yet */
3787
3788	switch (range->flags) {
3789	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3790		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3791							   closure->drm_edid,
3792							   timing);
3793		break;
3794	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3795		closure->modes += drm_gtf_modes_for_range(closure->connector,
3796							  closure->drm_edid,
3797							  timing);
3798		break;
3799	case DRM_EDID_CVT_SUPPORT_FLAG:
3800		if (closure->drm_edid->edid->revision < 4)
3801			break;
3802
3803		closure->modes += drm_cvt_modes_for_range(closure->connector,
3804							  closure->drm_edid,
3805							  timing);
3806		break;
3807	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3808	default:
3809		break;
3810	}
3811}
3812
3813static int add_inferred_modes(struct drm_connector *connector,
3814			      const struct drm_edid *drm_edid)
3815{
3816	struct detailed_mode_closure closure = {
3817		.connector = connector,
3818		.drm_edid = drm_edid,
3819	};
3820
3821	if (drm_edid->edid->revision >= 1)
3822		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
 
3823
3824	return closure.modes;
3825}
3826
3827static int
3828drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3829{
3830	int i, j, m, modes = 0;
3831	struct drm_display_mode *mode;
3832	const u8 *est = ((const u8 *)timing) + 6;
3833
3834	for (i = 0; i < 6; i++) {
3835		for (j = 7; j >= 0; j--) {
3836			m = (i * 8) + (7 - j);
3837			if (m >= ARRAY_SIZE(est3_modes))
3838				break;
3839			if (est[i] & (1 << j)) {
3840				mode = drm_mode_find_dmt(connector->dev,
3841							 est3_modes[m].w,
3842							 est3_modes[m].h,
3843							 est3_modes[m].r,
3844							 est3_modes[m].rb);
3845				if (mode) {
3846					drm_mode_probed_add(connector, mode);
3847					modes++;
3848				}
3849			}
3850		}
3851	}
3852
3853	return modes;
3854}
3855
3856static void
3857do_established_modes(const struct detailed_timing *timing, void *c)
3858{
3859	struct detailed_mode_closure *closure = c;
 
3860
3861	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3862		return;
3863
3864	closure->modes += drm_est3_modes(closure->connector, timing);
3865}
3866
3867/*
3868 * Get established modes from EDID and add them. Each EDID block contains a
3869 * bitmap of the supported "established modes" list (defined above). Tease them
3870 * out and add them to the global modes list.
 
 
 
3871 */
3872static int add_established_modes(struct drm_connector *connector,
3873				 const struct drm_edid *drm_edid)
3874{
3875	struct drm_device *dev = connector->dev;
3876	const struct edid *edid = drm_edid->edid;
3877	unsigned long est_bits = edid->established_timings.t1 |
3878		(edid->established_timings.t2 << 8) |
3879		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3880	int i, modes = 0;
3881	struct detailed_mode_closure closure = {
3882		.connector = connector,
3883		.drm_edid = drm_edid,
3884	};
3885
3886	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3887		if (est_bits & (1<<i)) {
3888			struct drm_display_mode *newmode;
3889
3890			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3891			if (newmode) {
3892				drm_mode_probed_add(connector, newmode);
3893				modes++;
3894			}
3895		}
3896	}
3897
3898	if (edid->revision >= 1)
3899		drm_for_each_detailed_block(drm_edid, do_established_modes,
3900					    &closure);
3901
3902	return modes + closure.modes;
3903}
3904
3905static void
3906do_standard_modes(const struct detailed_timing *timing, void *c)
3907{
3908	struct detailed_mode_closure *closure = c;
3909	const struct detailed_non_pixel *data = &timing->data.other_data;
3910	struct drm_connector *connector = closure->connector;
3911	int i;
3912
3913	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3914		return;
 
 
 
3915
3916	for (i = 0; i < 6; i++) {
3917		const struct std_timing *std = &data->data.timings[i];
3918		struct drm_display_mode *newmode;
3919
3920		newmode = drm_mode_std(connector, closure->drm_edid, std);
3921		if (newmode) {
3922			drm_mode_probed_add(connector, newmode);
3923			closure->modes++;
3924		}
3925	}
3926}
3927
3928/*
3929 * Get standard modes from EDID and add them. Standard modes can be calculated
3930 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3931 * add them to the list.
 
 
 
3932 */
3933static int add_standard_modes(struct drm_connector *connector,
3934			      const struct drm_edid *drm_edid)
3935{
3936	int i, modes = 0;
3937	struct detailed_mode_closure closure = {
3938		.connector = connector,
3939		.drm_edid = drm_edid,
3940	};
3941
3942	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3943		struct drm_display_mode *newmode;
3944
3945		newmode = drm_mode_std(connector, drm_edid,
3946				       &drm_edid->edid->standard_timings[i]);
3947		if (newmode) {
3948			drm_mode_probed_add(connector, newmode);
3949			modes++;
3950		}
3951	}
3952
3953	if (drm_edid->edid->revision >= 1)
3954		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3955					    &closure);
3956
3957	/* XXX should also look for standard codes in VTB blocks */
3958
3959	return modes + closure.modes;
3960}
3961
3962static int drm_cvt_modes(struct drm_connector *connector,
3963			 const struct detailed_timing *timing)
3964{
3965	int i, j, modes = 0;
3966	struct drm_display_mode *newmode;
3967	struct drm_device *dev = connector->dev;
3968	const struct cvt_timing *cvt;
3969	static const int rates[] = { 60, 85, 75, 60, 50 };
3970	const u8 empty[3] = { 0, 0, 0 };
3971
3972	for (i = 0; i < 4; i++) {
3973		int width, height;
3974
3975		cvt = &(timing->data.other_data.data.cvt[i]);
3976
3977		if (!memcmp(cvt->code, empty, 3))
3978			continue;
3979
3980		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3981		switch (cvt->code[1] & 0x0c) {
3982		/* default - because compiler doesn't see that we've enumerated all cases */
3983		default:
3984		case 0x00:
3985			width = height * 4 / 3;
3986			break;
3987		case 0x04:
3988			width = height * 16 / 9;
3989			break;
3990		case 0x08:
3991			width = height * 16 / 10;
3992			break;
3993		case 0x0c:
3994			width = height * 15 / 9;
3995			break;
3996		}
3997
3998		for (j = 1; j < 5; j++) {
3999			if (cvt->code[2] & (1 << j)) {
4000				newmode = drm_cvt_mode(dev, width, height,
4001						       rates[j], j == 0,
4002						       false, false);
4003				if (newmode) {
4004					drm_mode_probed_add(connector, newmode);
4005					modes++;
4006				}
4007			}
4008		}
4009	}
4010
4011	return modes;
4012}
4013
4014static void
4015do_cvt_mode(const struct detailed_timing *timing, void *c)
4016{
4017	struct detailed_mode_closure *closure = c;
 
4018
4019	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4020		return;
4021
4022	closure->modes += drm_cvt_modes(closure->connector, timing);
4023}
4024
4025static int
4026add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4027{
4028	struct detailed_mode_closure closure = {
4029		.connector = connector,
4030		.drm_edid = drm_edid,
4031	};
4032
4033	if (drm_edid->edid->revision >= 3)
4034		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4035
4036	/* XXX should also look for CVT codes in VTB blocks */
4037
4038	return closure.modes;
4039}
4040
4041static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4042					  struct drm_display_mode *mode);
4043
4044static void
4045do_detailed_mode(const struct detailed_timing *timing, void *c)
4046{
4047	struct detailed_mode_closure *closure = c;
4048	struct drm_display_mode *newmode;
4049
4050	if (!is_detailed_timing_descriptor(timing))
4051		return;
 
 
 
 
4052
4053	newmode = drm_mode_detailed(closure->connector,
4054				    closure->drm_edid, timing);
4055	if (!newmode)
4056		return;
4057
4058	if (closure->preferred)
4059		newmode->type |= DRM_MODE_TYPE_PREFERRED;
 
 
 
 
4060
4061	/*
4062	 * Detailed modes are limited to 10kHz pixel clock resolution,
4063	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4064	 * is just slightly off.
4065	 */
4066	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4067
4068	drm_mode_probed_add(closure->connector, newmode);
4069	closure->modes++;
4070	closure->preferred = false;
4071}
4072
4073/*
4074 * add_detailed_modes - Add modes from detailed timings
4075 * @connector: attached connector
4076 * @drm_edid: EDID block to scan
 
4077 */
4078static int add_detailed_modes(struct drm_connector *connector,
4079			      const struct drm_edid *drm_edid)
 
4080{
4081	struct detailed_mode_closure closure = {
4082		.connector = connector,
4083		.drm_edid = drm_edid,
 
 
4084	};
4085
4086	if (drm_edid->edid->revision >= 4)
4087		closure.preferred = true; /* first detailed timing is always preferred */
4088	else
4089		closure.preferred =
4090			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4091
4092	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4093
4094	return closure.modes;
4095}
4096
4097/* CTA-861-H Table 60 - CTA Tag Codes */
4098#define CTA_DB_AUDIO			1
4099#define CTA_DB_VIDEO			2
4100#define CTA_DB_VENDOR			3
4101#define CTA_DB_SPEAKER			4
4102#define CTA_DB_EXTENDED_TAG		7
4103
4104/* CTA-861-H Table 62 - CTA Extended Tag Codes */
4105#define CTA_EXT_DB_VIDEO_CAP		0
4106#define CTA_EXT_DB_VENDOR		1
4107#define CTA_EXT_DB_HDR_STATIC_METADATA	6
4108#define CTA_EXT_DB_420_VIDEO_DATA	14
4109#define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4110#define CTA_EXT_DB_HF_EEODB		0x78
4111#define CTA_EXT_DB_HF_SCDB		0x79
4112
4113#define EDID_BASIC_AUDIO	(1 << 6)
4114#define EDID_CEA_YCRCB444	(1 << 5)
4115#define EDID_CEA_YCRCB422	(1 << 4)
4116#define EDID_CEA_VCDB_QS	(1 << 6)
4117
4118/*
4119 * Search EDID for CEA extension block.
4120 *
4121 * FIXME: Prefer not returning pointers to raw EDID data.
4122 */
4123const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4124				  int ext_id, int *ext_index)
4125{
4126	const u8 *edid_ext = NULL;
4127	int i;
4128
4129	/* No EDID or EDID extensions */
4130	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4131		return NULL;
4132
4133	/* Find CEA extension */
4134	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4135		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4136		if (edid_block_tag(edid_ext) == ext_id)
4137			break;
4138	}
4139
4140	if (i >= drm_edid_extension_block_count(drm_edid))
4141		return NULL;
4142
4143	*ext_index = i + 1;
 
 
4144
4145	return edid_ext;
 
 
4146}
4147
4148/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4149static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4150{
4151	const struct displayid_block *block;
4152	struct displayid_iter iter;
4153	int ext_index = 0;
4154	bool found = false;
 
 
4155
4156	/* Look for a top level CEA extension block */
4157	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4158		return true;
 
4159
4160	/* CEA blocks can also be found embedded in a DisplayID block */
4161	displayid_iter_edid_begin(drm_edid, &iter);
4162	displayid_iter_for_each(block, &iter) {
 
 
 
 
 
 
 
 
4163		if (block->tag == DATA_BLOCK_CTA) {
4164			found = true;
4165			break;
4166		}
4167	}
4168	displayid_iter_end(&iter);
4169
4170	return found;
4171}
4172
4173static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4174{
4175	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4176	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4177
4178	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4179		return &edid_cea_modes_1[vic - 1];
4180	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4181		return &edid_cea_modes_193[vic - 193];
4182	return NULL;
4183}
4184
4185static u8 cea_num_vics(void)
4186{
4187	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4188}
4189
4190static u8 cea_next_vic(u8 vic)
4191{
4192	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4193		vic = 193;
4194	return vic;
4195}
4196
4197/*
4198 * Calculate the alternate clock for the CEA mode
4199 * (60Hz vs. 59.94Hz etc.)
4200 */
4201static unsigned int
4202cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4203{
4204	unsigned int clock = cea_mode->clock;
4205
4206	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4207		return clock;
4208
4209	/*
4210	 * edid_cea_modes contains the 59.94Hz
4211	 * variant for 240 and 480 line modes,
4212	 * and the 60Hz variant otherwise.
4213	 */
4214	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4215		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4216	else
4217		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4218
4219	return clock;
4220}
4221
4222static bool
4223cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4224{
4225	/*
4226	 * For certain VICs the spec allows the vertical
4227	 * front porch to vary by one or two lines.
4228	 *
4229	 * cea_modes[] stores the variant with the shortest
4230	 * vertical front porch. We can adjust the mode to
4231	 * get the other variants by simply increasing the
4232	 * vertical front porch length.
4233	 */
4234	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4235		     cea_mode_for_vic(9)->vtotal != 262 ||
4236		     cea_mode_for_vic(12)->vtotal != 262 ||
4237		     cea_mode_for_vic(13)->vtotal != 262 ||
4238		     cea_mode_for_vic(23)->vtotal != 312 ||
4239		     cea_mode_for_vic(24)->vtotal != 312 ||
4240		     cea_mode_for_vic(27)->vtotal != 312 ||
4241		     cea_mode_for_vic(28)->vtotal != 312);
4242
4243	if (((vic == 8 || vic == 9 ||
4244	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4245	    ((vic == 23 || vic == 24 ||
4246	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4247		mode->vsync_start++;
4248		mode->vsync_end++;
4249		mode->vtotal++;
4250
4251		return true;
4252	}
4253
4254	return false;
4255}
4256
4257static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4258					     unsigned int clock_tolerance)
4259{
4260	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4261	u8 vic;
4262
4263	if (!to_match->clock)
4264		return 0;
4265
4266	if (to_match->picture_aspect_ratio)
4267		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4268
4269	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4270		struct drm_display_mode cea_mode;
4271		unsigned int clock1, clock2;
4272
4273		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4274
4275		/* Check both 60Hz and 59.94Hz */
4276		clock1 = cea_mode.clock;
4277		clock2 = cea_mode_alternate_clock(&cea_mode);
4278
4279		if (abs(to_match->clock - clock1) > clock_tolerance &&
4280		    abs(to_match->clock - clock2) > clock_tolerance)
4281			continue;
4282
4283		do {
4284			if (drm_mode_match(to_match, &cea_mode, match_flags))
4285				return vic;
4286		} while (cea_mode_alternate_timings(vic, &cea_mode));
4287	}
4288
4289	return 0;
4290}
4291
4292/**
4293 * drm_match_cea_mode - look for a CEA mode matching given mode
4294 * @to_match: display mode
4295 *
4296 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4297 * mode.
4298 */
4299u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4300{
4301	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4302	u8 vic;
4303
4304	if (!to_match->clock)
4305		return 0;
4306
4307	if (to_match->picture_aspect_ratio)
4308		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4309
4310	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4311		struct drm_display_mode cea_mode;
4312		unsigned int clock1, clock2;
4313
4314		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4315
4316		/* Check both 60Hz and 59.94Hz */
4317		clock1 = cea_mode.clock;
4318		clock2 = cea_mode_alternate_clock(&cea_mode);
4319
4320		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4321		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4322			continue;
4323
4324		do {
4325			if (drm_mode_match(to_match, &cea_mode, match_flags))
4326				return vic;
4327		} while (cea_mode_alternate_timings(vic, &cea_mode));
4328	}
4329
4330	return 0;
4331}
4332EXPORT_SYMBOL(drm_match_cea_mode);
4333
4334static bool drm_valid_cea_vic(u8 vic)
4335{
4336	return cea_mode_for_vic(vic) != NULL;
4337}
4338
4339static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4340{
4341	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4342
4343	if (mode)
4344		return mode->picture_aspect_ratio;
4345
4346	return HDMI_PICTURE_ASPECT_NONE;
4347}
4348
4349static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4350{
4351	return edid_4k_modes[video_code].picture_aspect_ratio;
4352}
 
4353
4354/*
4355 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4356 * specific block).
 
 
 
 
4357 */
4358static unsigned int
4359hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4360{
 
 
 
4361	return cea_mode_alternate_clock(hdmi_mode);
4362}
4363
4364static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4365					      unsigned int clock_tolerance)
4366{
4367	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4368	u8 vic;
4369
4370	if (!to_match->clock)
4371		return 0;
4372
4373	if (to_match->picture_aspect_ratio)
4374		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4375
4376	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4377		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4378		unsigned int clock1, clock2;
4379
4380		/* Make sure to also match alternate clocks */
4381		clock1 = hdmi_mode->clock;
4382		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4383
4384		if (abs(to_match->clock - clock1) > clock_tolerance &&
4385		    abs(to_match->clock - clock2) > clock_tolerance)
4386			continue;
4387
4388		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4389			return vic;
4390	}
4391
4392	return 0;
4393}
4394
4395/*
4396 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4397 * @to_match: display mode
4398 *
4399 * An HDMI mode is one defined in the HDMI vendor specific block.
4400 *
4401 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4402 */
4403static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4404{
4405	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4406	u8 vic;
4407
4408	if (!to_match->clock)
4409		return 0;
4410
4411	if (to_match->picture_aspect_ratio)
4412		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4413
4414	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4415		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4416		unsigned int clock1, clock2;
4417
4418		/* Make sure to also match alternate clocks */
4419		clock1 = hdmi_mode->clock;
4420		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4421
4422		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4423		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4424		    drm_mode_match(to_match, hdmi_mode, match_flags))
4425			return vic;
4426	}
4427	return 0;
4428}
4429
4430static bool drm_valid_hdmi_vic(u8 vic)
4431{
4432	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4433}
4434
4435static int add_alternate_cea_modes(struct drm_connector *connector,
4436				   const struct drm_edid *drm_edid)
4437{
4438	struct drm_device *dev = connector->dev;
4439	struct drm_display_mode *mode, *tmp;
4440	LIST_HEAD(list);
4441	int modes = 0;
4442
4443	/* Don't add CTA modes if the CTA extension block is missing */
4444	if (!drm_edid_has_cta_extension(drm_edid))
4445		return 0;
4446
4447	/*
4448	 * Go through all probed modes and create a new mode
4449	 * with the alternate clock for certain CEA modes.
4450	 */
4451	list_for_each_entry(mode, &connector->probed_modes, head) {
4452		const struct drm_display_mode *cea_mode = NULL;
4453		struct drm_display_mode *newmode;
4454		u8 vic = drm_match_cea_mode(mode);
4455		unsigned int clock1, clock2;
4456
4457		if (drm_valid_cea_vic(vic)) {
4458			cea_mode = cea_mode_for_vic(vic);
4459			clock2 = cea_mode_alternate_clock(cea_mode);
4460		} else {
4461			vic = drm_match_hdmi_mode(mode);
4462			if (drm_valid_hdmi_vic(vic)) {
4463				cea_mode = &edid_4k_modes[vic];
4464				clock2 = hdmi_mode_alternate_clock(cea_mode);
4465			}
4466		}
4467
4468		if (!cea_mode)
4469			continue;
4470
4471		clock1 = cea_mode->clock;
4472
4473		if (clock1 == clock2)
4474			continue;
4475
4476		if (mode->clock != clock1 && mode->clock != clock2)
4477			continue;
4478
4479		newmode = drm_mode_duplicate(dev, cea_mode);
4480		if (!newmode)
4481			continue;
4482
4483		/* Carry over the stereo flags */
4484		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4485
4486		/*
4487		 * The current mode could be either variant. Make
4488		 * sure to pick the "other" clock for the new mode.
4489		 */
4490		if (mode->clock != clock1)
4491			newmode->clock = clock1;
4492		else
4493			newmode->clock = clock2;
4494
4495		list_add_tail(&newmode->head, &list);
4496	}
4497
4498	list_for_each_entry_safe(mode, tmp, &list, head) {
4499		list_del(&mode->head);
4500		drm_mode_probed_add(connector, mode);
4501		modes++;
4502	}
4503
4504	return modes;
4505}
4506
4507static u8 svd_to_vic(u8 svd)
4508{
4509	/* 0-6 bit vic, 7th bit native mode indicator */
4510	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4511		return svd & 127;
4512
4513	return svd;
4514}
4515
4516/*
4517 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4518 * the EDID, or NULL on errors.
4519 */
4520static struct drm_display_mode *
4521drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
 
 
4522{
4523	const struct drm_display_info *info = &connector->display_info;
4524	struct drm_device *dev = connector->dev;
 
 
4525
4526	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4527		return NULL;
4528
4529	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
 
 
 
 
 
 
 
 
 
 
 
4530}
4531
4532/*
4533 * do_y420vdb_modes - Parse YCBCR 420 only modes
4534 * @connector: connector corresponding to the HDMI sink
4535 * @svds: start of the data block of CEA YCBCR 420 VDB
4536 * @len: length of the CEA YCBCR 420 VDB
4537 *
4538 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4539 * which contains modes which can be supported in YCBCR 420
4540 * output format only.
4541 */
4542static int do_y420vdb_modes(struct drm_connector *connector,
4543			    const u8 *svds, u8 svds_len)
4544{
 
4545	struct drm_device *dev = connector->dev;
4546	int modes = 0, i;
 
4547
4548	for (i = 0; i < svds_len; i++) {
4549		u8 vic = svd_to_vic(svds[i]);
4550		struct drm_display_mode *newmode;
4551
4552		if (!drm_valid_cea_vic(vic))
4553			continue;
4554
4555		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4556		if (!newmode)
4557			break;
 
4558		drm_mode_probed_add(connector, newmode);
4559		modes++;
4560	}
4561
 
 
4562	return modes;
4563}
4564
4565/**
4566 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4567 * @dev: DRM device
4568 * @video_code: CEA VIC of the mode
4569 *
4570 * Creates a new mode matching the specified CEA VIC.
4571 *
4572 * Returns: A new drm_display_mode on success or NULL on failure
4573 */
4574struct drm_display_mode *
4575drm_display_mode_from_cea_vic(struct drm_device *dev,
4576			      u8 video_code)
4577{
4578	const struct drm_display_mode *cea_mode;
4579	struct drm_display_mode *newmode;
4580
4581	cea_mode = cea_mode_for_vic(video_code);
4582	if (!cea_mode)
4583		return NULL;
4584
4585	newmode = drm_mode_duplicate(dev, cea_mode);
4586	if (!newmode)
4587		return NULL;
4588
4589	return newmode;
4590}
4591EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4592
4593/* Add modes based on VICs parsed in parse_cta_vdb() */
4594static int add_cta_vdb_modes(struct drm_connector *connector)
4595{
4596	const struct drm_display_info *info = &connector->display_info;
4597	int i, modes = 0;
 
4598
4599	if (!info->vics)
4600		return 0;
4601
4602	for (i = 0; i < info->vics_len; i++) {
4603		struct drm_display_mode *mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
4604
4605		mode = drm_display_mode_from_vic_index(connector, i);
4606		if (mode) {
4607			drm_mode_probed_add(connector, mode);
4608			modes++;
4609		}
4610	}
4611
4612	return modes;
4613}
4614
4615struct stereo_mandatory_mode {
4616	int width, height, vrefresh;
4617	unsigned int flags;
4618};
4619
4620static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4621	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4622	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4623	{ 1920, 1080, 50,
4624	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4625	{ 1920, 1080, 60,
4626	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4627	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4628	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4629	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4630	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4631};
4632
4633static bool
4634stereo_match_mandatory(const struct drm_display_mode *mode,
4635		       const struct stereo_mandatory_mode *stereo_mode)
4636{
4637	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4638
4639	return mode->hdisplay == stereo_mode->width &&
4640	       mode->vdisplay == stereo_mode->height &&
4641	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4642	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4643}
4644
4645static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4646{
4647	struct drm_device *dev = connector->dev;
4648	const struct drm_display_mode *mode;
4649	struct list_head stereo_modes;
4650	int modes = 0, i;
4651
4652	INIT_LIST_HEAD(&stereo_modes);
4653
4654	list_for_each_entry(mode, &connector->probed_modes, head) {
4655		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4656			const struct stereo_mandatory_mode *mandatory;
4657			struct drm_display_mode *new_mode;
4658
4659			if (!stereo_match_mandatory(mode,
4660						    &stereo_mandatory_modes[i]))
4661				continue;
4662
4663			mandatory = &stereo_mandatory_modes[i];
4664			new_mode = drm_mode_duplicate(dev, mode);
4665			if (!new_mode)
4666				continue;
4667
4668			new_mode->flags |= mandatory->flags;
4669			list_add_tail(&new_mode->head, &stereo_modes);
4670			modes++;
4671		}
4672	}
4673
4674	list_splice_tail(&stereo_modes, &connector->probed_modes);
4675
4676	return modes;
4677}
4678
4679static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4680{
4681	struct drm_device *dev = connector->dev;
4682	struct drm_display_mode *newmode;
4683
4684	if (!drm_valid_hdmi_vic(vic)) {
4685		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4686			connector->base.id, connector->name, vic);
4687		return 0;
4688	}
4689
4690	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4691	if (!newmode)
4692		return 0;
4693
4694	drm_mode_probed_add(connector, newmode);
4695
4696	return 1;
4697}
4698
4699static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4700			       int vic_index)
4701{
4702	struct drm_display_mode *newmode;
4703	int modes = 0;
4704
4705	if (structure & (1 << 0)) {
4706		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4707		if (newmode) {
4708			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4709			drm_mode_probed_add(connector, newmode);
4710			modes++;
4711		}
4712	}
4713	if (structure & (1 << 6)) {
4714		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4715		if (newmode) {
4716			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4717			drm_mode_probed_add(connector, newmode);
4718			modes++;
4719		}
4720	}
4721	if (structure & (1 << 8)) {
4722		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4723		if (newmode) {
4724			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4725			drm_mode_probed_add(connector, newmode);
4726			modes++;
4727		}
4728	}
4729
4730	return modes;
4731}
4732
4733static bool hdmi_vsdb_latency_present(const u8 *db)
4734{
4735	return db[8] & BIT(7);
4736}
4737
4738static bool hdmi_vsdb_i_latency_present(const u8 *db)
4739{
4740	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4741}
4742
4743static int hdmi_vsdb_latency_length(const u8 *db)
4744{
4745	if (hdmi_vsdb_i_latency_present(db))
4746		return 4;
4747	else if (hdmi_vsdb_latency_present(db))
4748		return 2;
4749	else
4750		return 0;
4751}
4752
4753/*
4754 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4755 * @connector: connector corresponding to the HDMI sink
4756 * @db: start of the CEA vendor specific block
4757 * @len: length of the CEA block payload, ie. one can access up to db[len]
4758 *
4759 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4760 * also adds the stereo 3d modes when applicable.
4761 */
4762static int
4763do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
 
4764{
 
4765	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4766	u8 vic_len, hdmi_3d_len = 0;
4767	u16 mask;
4768	u16 structure_all;
4769
4770	if (len < 8)
4771		goto out;
4772
4773	/* no HDMI_Video_Present */
4774	if (!(db[8] & (1 << 5)))
4775		goto out;
4776
4777	offset += hdmi_vsdb_latency_length(db);
 
 
 
 
 
 
4778
4779	/* the declared length is not long enough for the 2 first bytes
4780	 * of additional video format capabilities */
4781	if (len < (8 + offset + 2))
4782		goto out;
4783
4784	/* 3D_Present */
4785	offset++;
4786	if (db[8 + offset] & (1 << 7)) {
4787		modes += add_hdmi_mandatory_stereo_modes(connector);
4788
4789		/* 3D_Multi_present */
4790		multi_present = (db[8 + offset] & 0x60) >> 5;
4791	}
4792
4793	offset++;
4794	vic_len = db[8 + offset] >> 5;
4795	hdmi_3d_len = db[8 + offset] & 0x1f;
4796
4797	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4798		u8 vic;
4799
4800		vic = db[9 + offset + i];
4801		modes += add_hdmi_mode(connector, vic);
4802	}
4803	offset += 1 + vic_len;
4804
4805	if (multi_present == 1)
4806		multi_len = 2;
4807	else if (multi_present == 2)
4808		multi_len = 4;
4809	else
4810		multi_len = 0;
4811
4812	if (len < (8 + offset + hdmi_3d_len - 1))
4813		goto out;
4814
4815	if (hdmi_3d_len < multi_len)
4816		goto out;
4817
4818	if (multi_present == 1 || multi_present == 2) {
4819		/* 3D_Structure_ALL */
4820		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4821
4822		/* check if 3D_MASK is present */
4823		if (multi_present == 2)
4824			mask = (db[10 + offset] << 8) | db[11 + offset];
4825		else
4826			mask = 0xffff;
4827
4828		for (i = 0; i < 16; i++) {
4829			if (mask & (1 << i))
4830				modes += add_3d_struct_modes(connector,
4831							     structure_all, i);
 
 
4832		}
4833	}
4834
4835	offset += multi_len;
4836
4837	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4838		int vic_index;
4839		struct drm_display_mode *newmode = NULL;
4840		unsigned int newflag = 0;
4841		bool detail_present;
4842
4843		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4844
4845		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4846			break;
4847
4848		/* 2D_VIC_order_X */
4849		vic_index = db[8 + offset + i] >> 4;
4850
4851		/* 3D_Structure_X */
4852		switch (db[8 + offset + i] & 0x0f) {
4853		case 0:
4854			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4855			break;
4856		case 6:
4857			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4858			break;
4859		case 8:
4860			/* 3D_Detail_X */
4861			if ((db[9 + offset + i] >> 4) == 1)
4862				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4863			break;
4864		}
4865
4866		if (newflag != 0) {
4867			newmode = drm_display_mode_from_vic_index(connector,
 
 
4868								  vic_index);
4869
4870			if (newmode) {
4871				newmode->flags |= newflag;
4872				drm_mode_probed_add(connector, newmode);
4873				modes++;
4874			}
4875		}
4876
4877		if (detail_present)
4878			i++;
4879	}
4880
4881out:
 
 
4882	return modes;
4883}
4884
4885static int
4886cea_revision(const u8 *cea)
4887{
4888	/*
4889	 * FIXME is this correct for the DispID variant?
4890	 * The DispID spec doesn't really specify whether
4891	 * this is the revision of the CEA extension or
4892	 * the DispID CEA data block. And the only value
4893	 * given as an example is 0.
4894	 */
4895	return cea[1];
4896}
4897
4898/*
4899 * CTA Data Block iterator.
4900 *
4901 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4902 * CTA Data Blocks.
4903 *
4904 * struct cea_db *db:
4905 * struct cea_db_iter iter;
4906 *
4907 * cea_db_iter_edid_begin(edid, &iter);
4908 * cea_db_iter_for_each(db, &iter) {
4909 *         // do stuff with db
4910 * }
4911 * cea_db_iter_end(&iter);
4912 */
4913struct cea_db_iter {
4914	struct drm_edid_iter edid_iter;
4915	struct displayid_iter displayid_iter;
4916
4917	/* Current Data Block Collection. */
4918	const u8 *collection;
4919
4920	/* Current Data Block index in current collection. */
4921	int index;
4922
4923	/* End index in current collection. */
4924	int end;
4925};
4926
4927/* CTA-861-H section 7.4 CTA Data BLock Collection */
4928struct cea_db {
4929	u8 tag_length;
4930	u8 data[];
4931} __packed;
4932
4933static int cea_db_tag(const struct cea_db *db)
4934{
4935	return db->tag_length >> 5;
4936}
4937
4938static int cea_db_payload_len(const void *_db)
 
4939{
4940	/* FIXME: Transition to passing struct cea_db * everywhere. */
4941	const struct cea_db *db = _db;
4942
4943	return db->tag_length & 0x1f;
4944}
4945
4946static const void *cea_db_data(const struct cea_db *db)
 
4947{
4948	return db->data;
4949}
4950
4951static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
 
4952{
4953	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4954		cea_db_payload_len(db) >= 1 &&
4955		db->data[0] == tag;
4956}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4957
4958static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4959{
4960	const u8 *data = cea_db_data(db);
4961
4962	return cea_db_tag(db) == CTA_DB_VENDOR &&
4963		cea_db_payload_len(db) >= 3 &&
4964		oui(data[2], data[1], data[0]) == vendor_oui;
4965}
4966
4967static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4968				   struct cea_db_iter *iter)
4969{
4970	memset(iter, 0, sizeof(*iter));
4971
4972	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4973	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4974}
4975
4976static const struct cea_db *
4977__cea_db_iter_current_block(const struct cea_db_iter *iter)
4978{
4979	const struct cea_db *db;
4980
4981	if (!iter->collection)
4982		return NULL;
4983
4984	db = (const struct cea_db *)&iter->collection[iter->index];
4985
4986	if (iter->index + sizeof(*db) <= iter->end &&
4987	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4988		return db;
4989
4990	return NULL;
4991}
4992
4993/*
4994 * References:
4995 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4996 */
4997static int cea_db_collection_size(const u8 *cta)
4998{
4999	u8 d = cta[2];
5000
5001	if (d < 4 || d > 127)
5002		return 0;
5003
5004	return d - 4;
5005}
5006
5007/*
5008 * References:
5009 * - VESA E-EDID v1.4
5010 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5011 */
5012static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5013{
5014	const u8 *ext;
5015
5016	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5017		int size;
5018
5019		/* Only support CTA Extension revision 3+ */
5020		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5021			continue;
5022
5023		size = cea_db_collection_size(ext);
5024		if (!size)
5025			continue;
5026
5027		iter->index = 4;
5028		iter->end = iter->index + size;
5029
5030		return ext;
5031	}
5032
5033	return NULL;
5034}
5035
5036/*
5037 * References:
5038 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5039 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5040 *
5041 * Note that the above do not specify any connection between DisplayID Data
5042 * Block revision and CTA Extension versions.
5043 */
5044static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5045{
5046	const struct displayid_block *block;
 
5047
5048	displayid_iter_for_each(block, &iter->displayid_iter) {
5049		if (block->tag != DATA_BLOCK_CTA)
5050			continue;
5051
5052		/*
5053		 * The displayid iterator has already verified the block bounds
5054		 * in displayid_iter_block().
5055		 */
5056		iter->index = sizeof(*block);
5057		iter->end = iter->index + block->num_bytes;
5058
5059		return block;
5060	}
5061
5062	return NULL;
5063}
5064
5065static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5066{
5067	const struct cea_db *db;
 
5068
5069	if (iter->collection) {
5070		/* Current collection should always be valid. */
5071		db = __cea_db_iter_current_block(iter);
5072		if (WARN_ON(!db)) {
5073			iter->collection = NULL;
5074			return NULL;
5075		}
5076
5077		/* Next block in CTA Data Block Collection */
5078		iter->index += sizeof(*db) + cea_db_payload_len(db);
5079
5080		db = __cea_db_iter_current_block(iter);
5081		if (db)
5082			return db;
5083	}
5084
5085	for (;;) {
5086		/*
5087		 * Find the next CTA Data Block Collection. First iterate all
5088		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5089		 *
5090		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5091		 * Extension, it's recommended that DisplayID extensions are
5092		 * exposed after all of the CTA Extensions.
5093		 */
5094		iter->collection = __cea_db_iter_edid_next(iter);
5095		if (!iter->collection)
5096			iter->collection = __cea_db_iter_displayid_next(iter);
5097
5098		if (!iter->collection)
5099			return NULL;
5100
5101		db = __cea_db_iter_current_block(iter);
5102		if (db)
5103			return db;
5104	}
5105}
5106
5107#define cea_db_iter_for_each(__db, __iter) \
5108	while (((__db) = __cea_db_iter_next(__iter)))
5109
5110static void cea_db_iter_end(struct cea_db_iter *iter)
5111{
5112	displayid_iter_end(&iter->displayid_iter);
5113	drm_edid_iter_end(&iter->edid_iter);
5114
5115	memset(iter, 0, sizeof(*iter));
5116}
5117
5118static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5119{
5120	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5121		cea_db_payload_len(db) >= 5;
5122}
5123
5124static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5125{
5126	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5127		cea_db_payload_len(db) >= 7;
5128}
5129
5130static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5131{
5132	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5133		cea_db_payload_len(db) >= 2;
5134}
5135
5136static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5137{
5138	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5139		cea_db_payload_len(db) == 21;
5140}
5141
5142static bool cea_db_is_vcdb(const struct cea_db *db)
5143{
5144	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5145		cea_db_payload_len(db) == 2;
5146}
5147
5148static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5149{
5150	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5151		cea_db_payload_len(db) >= 7;
5152}
5153
5154static bool cea_db_is_y420cmdb(const struct cea_db *db)
5155{
5156	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5157}
5158
5159static bool cea_db_is_y420vdb(const struct cea_db *db)
5160{
5161	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5162}
5163
5164static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5165{
5166	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5167		cea_db_payload_len(db) >= 3;
5168}
5169
5170/*
5171 * Get the HF-EEODB override extension block count from EDID.
5172 *
5173 * The passed in EDID may be partially read, as long as it has at least two
5174 * blocks (base block and one extension block) if EDID extension count is > 0.
5175 *
5176 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5177 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5178 * iterators instead.
5179 *
5180 * References:
5181 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5182 */
5183static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5184{
5185	const u8 *cta;
5186
5187	/* No extensions according to base block, no HF-EEODB. */
5188	if (!edid_extension_block_count(edid))
5189		return 0;
5190
5191	/* HF-EEODB is always in the first EDID extension block only */
5192	cta = edid_extension_block_data(edid, 0);
5193	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5194		return 0;
5195
5196	/* Need to have the data block collection, and at least 3 bytes. */
5197	if (cea_db_collection_size(cta) < 3)
5198		return 0;
5199
5200	/*
5201	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5202	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5203	 * through 6 of Block 1 of the E-EDID.
5204	 */
5205	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5206		return 0;
5207
5208	return cta[4 + 2];
5209}
5210
5211/*
5212 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5213 *
5214 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5215 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5216 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5217 * support YCBCR420 output too.
5218 */
5219static void parse_cta_y420cmdb(struct drm_connector *connector,
5220			       const struct cea_db *db, u64 *y420cmdb_map)
5221{
5222	struct drm_display_info *info = &connector->display_info;
5223	int i, map_len = cea_db_payload_len(db) - 1;
5224	const u8 *data = cea_db_data(db) + 1;
 
5225	u64 map = 0;
5226
5227	if (map_len == 0) {
5228		/* All CEA modes support ycbcr420 sampling also.*/
5229		map = U64_MAX;
5230		goto out;
 
5231	}
5232
5233	/*
5234	 * This map indicates which of the existing CEA block modes
5235	 * from VDB can support YCBCR420 output too. So if bit=0 is
5236	 * set, first mode from VDB can support YCBCR420 output too.
5237	 * We will parse and keep this map, before parsing VDB itself
5238	 * to avoid going through the same block again and again.
5239	 *
5240	 * Spec is not clear about max possible size of this block.
5241	 * Clamping max bitmap block size at 8 bytes. Every byte can
5242	 * address 8 CEA modes, in this way this map can address
5243	 * 8*8 = first 64 SVDs.
5244	 */
5245	if (WARN_ON_ONCE(map_len > 8))
5246		map_len = 8;
5247
5248	for (i = 0; i < map_len; i++)
5249		map |= (u64)data[i] << (8 * i);
5250
5251out:
5252	if (map)
5253		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5254
5255	*y420cmdb_map = map;
5256}
5257
5258static int add_cea_modes(struct drm_connector *connector,
5259			 const struct drm_edid *drm_edid)
5260{
5261	const struct cea_db *db;
5262	struct cea_db_iter iter;
5263	int modes;
 
 
 
 
5264
5265	/* CTA VDB block VICs parsed earlier */
5266	modes = add_cta_vdb_modes(connector);
5267
5268	cea_db_iter_edid_begin(drm_edid, &iter);
5269	cea_db_iter_for_each(db, &iter) {
5270		if (cea_db_is_hdmi_vsdb(db)) {
5271			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5272						    cea_db_payload_len(db));
5273		} else if (cea_db_is_y420vdb(db)) {
5274			const u8 *vdb420 = cea_db_data(db) + 1;
5275
5276			/* Add 4:2:0(only) modes present in EDID */
5277			modes += do_y420vdb_modes(connector, vdb420,
5278						  cea_db_payload_len(db) - 1);
 
 
 
 
 
 
 
 
5279		}
5280	}
5281	cea_db_iter_end(&iter);
 
 
 
 
 
 
 
5282
5283	return modes;
5284}
5285
5286static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5287					  struct drm_display_mode *mode)
5288{
5289	const struct drm_display_mode *cea_mode;
5290	int clock1, clock2, clock;
5291	u8 vic;
5292	const char *type;
5293
5294	/*
5295	 * allow 5kHz clock difference either way to account for
5296	 * the 10kHz clock resolution limit of detailed timings.
5297	 */
5298	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5299	if (drm_valid_cea_vic(vic)) {
5300		type = "CEA";
5301		cea_mode = cea_mode_for_vic(vic);
5302		clock1 = cea_mode->clock;
5303		clock2 = cea_mode_alternate_clock(cea_mode);
5304	} else {
5305		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5306		if (drm_valid_hdmi_vic(vic)) {
5307			type = "HDMI";
5308			cea_mode = &edid_4k_modes[vic];
5309			clock1 = cea_mode->clock;
5310			clock2 = hdmi_mode_alternate_clock(cea_mode);
5311		} else {
5312			return;
5313		}
5314	}
5315
5316	/* pick whichever is closest */
5317	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5318		clock = clock1;
5319	else
5320		clock = clock2;
5321
5322	if (mode->clock == clock)
5323		return;
5324
5325	drm_dbg_kms(connector->dev,
5326		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5327		    connector->base.id, connector->name,
5328		    type, vic, mode->clock, clock);
5329	mode->clock = clock;
5330}
5331
5332static void drm_calculate_luminance_range(struct drm_connector *connector)
5333{
5334	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5335	struct drm_luminance_range_info *luminance_range =
5336		&connector->display_info.luminance_range;
5337	static const u8 pre_computed_values[] = {
5338		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5339		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5340	};
5341	u32 max_avg, min_cll, max, min, q, r;
5342
5343	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5344		return;
5345
5346	max_avg = hdr_metadata->max_fall;
5347	min_cll = hdr_metadata->min_cll;
5348
5349	/*
5350	 * From the specification (CTA-861-G), for calculating the maximum
5351	 * luminance we need to use:
5352	 *	Luminance = 50*2**(CV/32)
5353	 * Where CV is a one-byte value.
5354	 * For calculating this expression we may need float point precision;
5355	 * to avoid this complexity level, we take advantage that CV is divided
5356	 * by a constant. From the Euclids division algorithm, we know that CV
5357	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5358	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5359	 * need to pre-compute the value of r/32. For pre-computing the values
5360	 * We just used the following Ruby line:
5361	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5362	 * The results of the above expressions can be verified at
5363	 * pre_computed_values.
5364	 */
5365	q = max_avg >> 5;
5366	r = max_avg % 32;
5367	max = (1 << q) * pre_computed_values[r];
5368
5369	/* min luminance: maxLum * (CV/255)^2 / 100 */
5370	q = DIV_ROUND_CLOSEST(min_cll, 255);
5371	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5372
5373	luminance_range->min_luminance = min;
5374	luminance_range->max_luminance = max;
5375}
5376
5377static uint8_t eotf_supported(const u8 *edid_ext)
5378{
5379	return edid_ext[2] &
5380		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5381		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5382		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5383		 BIT(HDMI_EOTF_BT_2100_HLG));
5384}
5385
5386static uint8_t hdr_metadata_type(const u8 *edid_ext)
5387{
5388	return edid_ext[3] &
5389		BIT(HDMI_STATIC_METADATA_TYPE1);
5390}
5391
5392static void
5393drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5394{
5395	u16 len;
5396
5397	len = cea_db_payload_len(db);
5398
5399	connector->hdr_sink_metadata.hdmi_type1.eotf =
5400						eotf_supported(db);
5401	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5402						hdr_metadata_type(db);
5403
5404	if (len >= 4)
5405		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5406	if (len >= 5)
5407		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5408	if (len >= 6) {
5409		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5410
5411		/* Calculate only when all values are available */
5412		drm_calculate_luminance_range(connector);
5413	}
5414}
5415
5416/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5417static void
5418drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5419{
5420	u8 len = cea_db_payload_len(db);
5421
5422	if (len >= 6 && (db[6] & (1 << 7)))
5423		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5424
5425	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5426		connector->latency_present[0] = true;
 
 
5427		connector->video_latency[0] = db[9];
 
5428		connector->audio_latency[0] = db[10];
5429	}
5430
5431	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5432		connector->latency_present[1] = true;
5433		connector->video_latency[1] = db[11];
 
5434		connector->audio_latency[1] = db[12];
5435	}
5436
5437	drm_dbg_kms(connector->dev,
5438		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5439		    connector->base.id, connector->name,
5440		    connector->latency_present[0], connector->latency_present[1],
5441		    connector->video_latency[0], connector->video_latency[1],
5442		    connector->audio_latency[0], connector->audio_latency[1]);
 
 
 
5443}
5444
5445static void
5446monitor_name(const struct detailed_timing *timing, void *data)
5447{
5448	const char **res = data;
5449
5450	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5451		return;
5452
5453	*res = timing->data.other_data.data.str.str;
5454}
5455
5456static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5457{
5458	const char *edid_name = NULL;
5459	int mnl;
5460
5461	if (!drm_edid || !name)
5462		return 0;
5463
5464	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5465	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5466		if (edid_name[mnl] == 0x0a)
5467			break;
5468
5469		name[mnl] = edid_name[mnl];
5470	}
5471
5472	return mnl;
5473}
5474
5475/**
5476 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5477 * @edid: monitor EDID information
5478 * @name: pointer to a character array to hold the name of the monitor
5479 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5480 *
5481 */
5482void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5483{
5484	int name_length = 0;
5485
 
5486	if (bufsize <= 0)
5487		return;
5488
5489	if (edid) {
5490		char buf[13];
5491		struct drm_edid drm_edid = {
5492			.edid = edid,
5493			.size = edid_size(edid),
5494		};
5495
5496		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5497		memcpy(name, buf, name_length);
5498	}
5499
5500	name[name_length] = '\0';
5501}
5502EXPORT_SYMBOL(drm_edid_get_monitor_name);
5503
5504static void clear_eld(struct drm_connector *connector)
5505{
5506	memset(connector->eld, 0, sizeof(connector->eld));
5507
5508	connector->latency_present[0] = false;
5509	connector->latency_present[1] = false;
5510	connector->video_latency[0] = 0;
5511	connector->audio_latency[0] = 0;
5512	connector->video_latency[1] = 0;
5513	connector->audio_latency[1] = 0;
5514}
5515
5516/*
5517 * Get 3-byte SAD buffer from struct cea_sad.
5518 */
5519void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5520{
5521	sad[0] = cta_sad->format << 3 | cta_sad->channels;
5522	sad[1] = cta_sad->freq;
5523	sad[2] = cta_sad->byte2;
5524}
5525
5526/*
5527 * Set struct cea_sad from 3-byte SAD buffer.
5528 */
5529void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5530{
5531	cta_sad->format = (sad[0] & 0x78) >> 3;
5532	cta_sad->channels = sad[0] & 0x07;
5533	cta_sad->freq = sad[1] & 0x7f;
5534	cta_sad->byte2 = sad[2];
5535}
5536
5537/*
5538 * drm_edid_to_eld - build ELD from EDID
5539 * @connector: connector corresponding to the HDMI/DP sink
5540 * @drm_edid: EDID to parse
5541 *
5542 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5543 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5544 */
5545static void drm_edid_to_eld(struct drm_connector *connector,
5546			    const struct drm_edid *drm_edid)
5547{
5548	const struct drm_display_info *info = &connector->display_info;
5549	const struct cea_db *db;
5550	struct cea_db_iter iter;
5551	uint8_t *eld = connector->eld;
 
 
5552	int total_sad_count = 0;
5553	int mnl;
 
5554
5555	if (!drm_edid)
 
 
5556		return;
5557
5558	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5559	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5560		    connector->base.id, connector->name,
5561		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
 
 
 
 
5562
5563	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5564	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5565
5566	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5567
5568	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5569	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5570	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5571	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5572
5573	cea_db_iter_edid_begin(drm_edid, &iter);
5574	cea_db_iter_for_each(db, &iter) {
5575		const u8 *data = cea_db_data(db);
5576		int len = cea_db_payload_len(db);
5577		int sad_count;
5578
5579		switch (cea_db_tag(db)) {
5580		case CTA_DB_AUDIO:
5581			/* Audio Data Block, contains SADs */
5582			sad_count = min(len / 3, 15 - total_sad_count);
5583			if (sad_count >= 1)
5584				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5585				       data, sad_count * 3);
5586			total_sad_count += sad_count;
5587			break;
5588		case CTA_DB_SPEAKER:
5589			/* Speaker Allocation Data Block */
5590			if (len >= 1)
5591				eld[DRM_ELD_SPEAKER] = data[0];
5592			break;
5593		case CTA_DB_VENDOR:
5594			/* HDMI Vendor-Specific Data Block */
5595			if (cea_db_is_hdmi_vsdb(db))
5596				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5597			break;
5598		default:
5599			break;
 
 
 
 
 
 
 
 
 
5600		}
5601	}
5602	cea_db_iter_end(&iter);
5603
5604	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5605
5606	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5607	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5608		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5609	else
5610		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5611
5612	eld[DRM_ELD_BASELINE_ELD_LEN] =
5613		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5614
5615	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5616		    connector->base.id, connector->name,
5617		    drm_eld_size(eld), total_sad_count);
5618}
5619
5620static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5621			    struct cea_sad **psads)
5622{
5623	const struct cea_db *db;
5624	struct cea_db_iter iter;
5625	int count = 0;
5626
5627	cea_db_iter_edid_begin(drm_edid, &iter);
5628	cea_db_iter_for_each(db, &iter) {
5629		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5630			struct cea_sad *sads;
5631			int i;
5632
5633			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5634			sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5635			*psads = sads;
5636			if (!sads)
5637				return -ENOMEM;
5638			for (i = 0; i < count; i++)
5639				drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5640			break;
5641		}
5642	}
5643	cea_db_iter_end(&iter);
5644
5645	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5646
5647	return count;
5648}
5649
5650/**
5651 * drm_edid_to_sad - extracts SADs from EDID
5652 * @edid: EDID to parse
5653 * @sads: pointer that will be set to the extracted SADs
5654 *
5655 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5656 *
5657 * Note: The returned pointer needs to be freed using kfree().
5658 *
5659 * Return: The number of found SADs or negative number on error.
5660 */
5661int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5662{
5663	struct drm_edid drm_edid;
 
 
 
 
 
 
 
 
5664
5665	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5666}
5667EXPORT_SYMBOL(drm_edid_to_sad);
 
 
 
 
 
 
 
 
 
5668
5669static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5670					   u8 **sadb)
5671{
5672	const struct cea_db *db;
5673	struct cea_db_iter iter;
5674	int count = 0;
5675
5676	cea_db_iter_edid_begin(drm_edid, &iter);
5677	cea_db_iter_for_each(db, &iter) {
5678		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5679		    cea_db_payload_len(db) == 3) {
5680			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5681					GFP_KERNEL);
5682			if (!*sadb)
5683				return -ENOMEM;
5684			count = cea_db_payload_len(db);
 
 
 
 
 
 
 
5685			break;
5686		}
5687	}
5688	cea_db_iter_end(&iter);
5689
5690	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5691
5692	return count;
5693}
 
5694
5695/**
5696 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5697 * @edid: EDID to parse
5698 * @sadb: pointer to the speaker block
5699 *
5700 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5701 *
5702 * Note: The returned pointer needs to be freed using kfree().
5703 *
5704 * Return: The number of found Speaker Allocation Blocks or negative number on
5705 * error.
5706 */
5707int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5708{
5709	struct drm_edid drm_edid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5710
5711	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5712					       sadb);
5713}
5714EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5715
5716/**
5717 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5718 * @connector: connector associated with the HDMI/DP sink
5719 * @mode: the display mode
5720 *
5721 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5722 * the sink doesn't support audio or video.
5723 */
5724int drm_av_sync_delay(struct drm_connector *connector,
5725		      const struct drm_display_mode *mode)
5726{
5727	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5728	int a, v;
5729
5730	if (!connector->latency_present[0])
5731		return 0;
5732	if (!connector->latency_present[1])
5733		i = 0;
5734
5735	a = connector->audio_latency[i];
5736	v = connector->video_latency[i];
5737
5738	/*
5739	 * HDMI/DP sink doesn't support audio or video?
5740	 */
5741	if (a == 255 || v == 255)
5742		return 0;
5743
5744	/*
5745	 * Convert raw EDID values to millisecond.
5746	 * Treat unknown latency as 0ms.
5747	 */
5748	if (a)
5749		a = min(2 * (a - 1), 500);
5750	if (v)
5751		v = min(2 * (v - 1), 500);
5752
5753	return max(v - a, 0);
5754}
5755EXPORT_SYMBOL(drm_av_sync_delay);
5756
5757static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5758{
5759	const struct cea_db *db;
5760	struct cea_db_iter iter;
5761	bool hdmi = false;
5762
5763	/*
5764	 * Because HDMI identifier is in Vendor Specific Block,
5765	 * search it from all data blocks of CEA extension.
5766	 */
5767	cea_db_iter_edid_begin(drm_edid, &iter);
5768	cea_db_iter_for_each(db, &iter) {
5769		if (cea_db_is_hdmi_vsdb(db)) {
5770			hdmi = true;
5771			break;
5772		}
5773	}
5774	cea_db_iter_end(&iter);
5775
5776	return hdmi;
5777}
5778
5779/**
5780 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5781 * @edid: monitor EDID information
5782 *
5783 * Parse the CEA extension according to CEA-861-B.
5784 *
5785 * Drivers that have added the modes parsed from EDID to drm_display_info
5786 * should use &drm_display_info.is_hdmi instead of calling this function.
5787 *
5788 * Return: True if the monitor is HDMI, false if not or unknown.
5789 */
5790bool drm_detect_hdmi_monitor(const struct edid *edid)
5791{
5792	struct drm_edid drm_edid;
 
 
5793
5794	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5795}
5796EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5797
5798static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5799{
5800	struct drm_edid_iter edid_iter;
5801	const struct cea_db *db;
5802	struct cea_db_iter iter;
5803	const u8 *edid_ext;
5804	bool has_audio = false;
5805
5806	drm_edid_iter_begin(drm_edid, &edid_iter);
5807	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5808		if (edid_ext[0] == CEA_EXT) {
5809			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5810			if (has_audio)
5811				break;
5812		}
5813	}
5814	drm_edid_iter_end(&edid_iter);
5815
5816	if (has_audio) {
5817		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5818		goto end;
5819	}
5820
5821	cea_db_iter_edid_begin(drm_edid, &iter);
5822	cea_db_iter_for_each(db, &iter) {
5823		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5824			const u8 *data = cea_db_data(db);
5825			int i;
5826
5827			for (i = 0; i < cea_db_payload_len(db); i += 3)
5828				DRM_DEBUG_KMS("CEA audio format %d\n",
5829					      (data[i] >> 3) & 0xf);
5830			has_audio = true;
5831			break;
5832		}
5833	}
5834	cea_db_iter_end(&iter);
5835
5836end:
5837	return has_audio;
5838}
 
5839
5840/**
5841 * drm_detect_monitor_audio - check monitor audio capability
5842 * @edid: EDID block to scan
5843 *
5844 * Monitor should have CEA extension block.
5845 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5846 * audio' only. If there is any audio extension block and supported
5847 * audio format, assume at least 'basic audio' support, even if 'basic
5848 * audio' is not defined in EDID.
5849 *
5850 * Return: True if the monitor supports audio, false otherwise.
5851 */
5852bool drm_detect_monitor_audio(const struct edid *edid)
5853{
5854	struct drm_edid drm_edid;
 
 
 
5855
5856	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5857}
5858EXPORT_SYMBOL(drm_detect_monitor_audio);
5859
5860
5861/**
5862 * drm_default_rgb_quant_range - default RGB quantization range
5863 * @mode: display mode
5864 *
5865 * Determine the default RGB quantization range for the mode,
5866 * as specified in CEA-861.
5867 *
5868 * Return: The default RGB quantization range for the mode
5869 */
5870enum hdmi_quantization_range
5871drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5872{
5873	/* All CEA modes other than VIC 1 use limited quantization range. */
5874	return drm_match_cea_mode(mode) > 1 ?
5875		HDMI_QUANTIZATION_RANGE_LIMITED :
5876		HDMI_QUANTIZATION_RANGE_FULL;
5877}
5878EXPORT_SYMBOL(drm_default_rgb_quant_range);
5879
5880/* CTA-861 Video Data Block (CTA VDB) */
5881static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5882{
5883	struct drm_display_info *info = &connector->display_info;
5884	int i, vic_index, len = cea_db_payload_len(db);
5885	const u8 *svds = cea_db_data(db);
5886	u8 *vics;
5887
5888	if (!len)
5889		return;
5890
5891	/* Gracefully handle multiple VDBs, however unlikely that is */
5892	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5893	if (!vics)
5894		return;
5895
5896	vic_index = info->vics_len;
5897	info->vics_len += len;
5898	info->vics = vics;
5899
5900	for (i = 0; i < len; i++) {
5901		u8 vic = svd_to_vic(svds[i]);
5902
5903		if (!drm_valid_cea_vic(vic))
5904			vic = 0;
5905
5906		info->vics[vic_index++] = vic;
5907	}
5908}
5909
5910/*
5911 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5912 *
5913 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5914 * using the VICs themselves.
5915 */
5916static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5917{
5918	struct drm_display_info *info = &connector->display_info;
5919	struct drm_hdmi_info *hdmi = &info->hdmi;
5920	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5921
5922	for (i = 0; i < len; i++) {
5923		u8 vic = info->vics[i];
5924
5925		if (vic && y420cmdb_map & BIT_ULL(i))
5926			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5927	}
5928}
5929
5930static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5931{
5932	const struct drm_display_info *info = &connector->display_info;
5933	int i;
5934
5935	if (!vic || !info->vics)
5936		return false;
5937
5938	for (i = 0; i < info->vics_len; i++) {
5939		if (info->vics[i] == vic)
5940			return true;
5941	}
5942
5943	return false;
5944}
5945
5946/* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5947static void parse_cta_y420vdb(struct drm_connector *connector,
5948			      const struct cea_db *db)
5949{
5950	struct drm_display_info *info = &connector->display_info;
5951	struct drm_hdmi_info *hdmi = &info->hdmi;
5952	const u8 *svds = cea_db_data(db) + 1;
5953	int i;
5954
5955	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5956		u8 vic = svd_to_vic(svds[i]);
5957
5958		if (!drm_valid_cea_vic(vic))
5959			continue;
5960
5961		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5962		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5963	}
5964}
5965
5966static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5967{
5968	struct drm_display_info *info = &connector->display_info;
5969
5970	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5971		    connector->base.id, connector->name, db[2]);
5972
5973	if (db[2] & EDID_CEA_VCDB_QS)
5974		info->rgb_quant_range_selectable = true;
5975}
5976
5977static
5978void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5979{
5980	switch (max_frl_rate) {
5981	case 1:
5982		*max_lanes = 3;
5983		*max_rate_per_lane = 3;
5984		break;
5985	case 2:
5986		*max_lanes = 3;
5987		*max_rate_per_lane = 6;
5988		break;
5989	case 3:
5990		*max_lanes = 4;
5991		*max_rate_per_lane = 6;
5992		break;
5993	case 4:
5994		*max_lanes = 4;
5995		*max_rate_per_lane = 8;
5996		break;
5997	case 5:
5998		*max_lanes = 4;
5999		*max_rate_per_lane = 10;
6000		break;
6001	case 6:
6002		*max_lanes = 4;
6003		*max_rate_per_lane = 12;
6004		break;
6005	case 0:
6006	default:
6007		*max_lanes = 0;
6008		*max_rate_per_lane = 0;
6009	}
6010}
6011
6012static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6013					       const u8 *db)
6014{
6015	u8 dc_mask;
6016	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6017
6018	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6019	hdmi->y420_dc_modes = dc_mask;
6020}
6021
6022static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6023			       const u8 *hf_scds)
6024{
6025	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
 
6026
6027	if (!hdmi_dsc->v_1p2)
6028		return;
6029
6030	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6031	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6032
6033	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6034		hdmi_dsc->bpc_supported = 16;
6035	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6036		hdmi_dsc->bpc_supported = 12;
6037	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6038		hdmi_dsc->bpc_supported = 10;
6039	else
6040		/* Supports min 8 BPC if DSC 1.2 is supported*/
6041		hdmi_dsc->bpc_supported = 8;
6042
6043	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6044		u8 dsc_max_slices;
6045		u8 dsc_max_frl_rate;
6046
6047		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6048		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6049				     &hdmi_dsc->max_frl_rate_per_lane);
6050
6051		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6052
6053		switch (dsc_max_slices) {
6054		case 1:
6055			hdmi_dsc->max_slices = 1;
6056			hdmi_dsc->clk_per_slice = 340;
6057			break;
6058		case 2:
6059			hdmi_dsc->max_slices = 2;
6060			hdmi_dsc->clk_per_slice = 340;
6061			break;
6062		case 3:
6063			hdmi_dsc->max_slices = 4;
6064			hdmi_dsc->clk_per_slice = 340;
6065			break;
6066		case 4:
6067			hdmi_dsc->max_slices = 8;
6068			hdmi_dsc->clk_per_slice = 340;
6069			break;
6070		case 5:
6071			hdmi_dsc->max_slices = 8;
6072			hdmi_dsc->clk_per_slice = 400;
6073			break;
6074		case 6:
6075			hdmi_dsc->max_slices = 12;
6076			hdmi_dsc->clk_per_slice = 400;
6077			break;
6078		case 7:
6079			hdmi_dsc->max_slices = 16;
6080			hdmi_dsc->clk_per_slice = 400;
6081			break;
6082		case 0:
6083		default:
6084			hdmi_dsc->max_slices = 0;
6085			hdmi_dsc->clk_per_slice = 0;
6086		}
6087	}
6088
6089	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6090		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6091}
6092
6093/* Sink Capability Data Structure */
6094static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6095				      const u8 *hf_scds)
6096{
6097	struct drm_display_info *info = &connector->display_info;
6098	struct drm_hdmi_info *hdmi = &info->hdmi;
6099	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6100	int max_tmds_clock = 0;
6101	u8 max_frl_rate = 0;
6102	bool dsc_support = false;
6103
6104	info->has_hdmi_infoframe = true;
6105
6106	if (hf_scds[6] & 0x80) {
6107		hdmi->scdc.supported = true;
6108		if (hf_scds[6] & 0x40)
6109			hdmi->scdc.read_request = true;
6110	}
6111
6112	/*
6113	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6114	 * And as per the spec, three factors confirm this:
6115	 * * Availability of a HF-VSDB block in EDID (check)
6116	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6117	 * * SCDC support available (let's check)
6118	 * Lets check it out.
6119	 */
6120
6121	if (hf_scds[5]) {
 
 
6122		struct drm_scdc *scdc = &hdmi->scdc;
6123
6124		/* max clock is 5000 KHz times block value */
6125		max_tmds_clock = hf_scds[5] * 5000;
6126
6127		if (max_tmds_clock > 340000) {
6128			info->max_tmds_clock = max_tmds_clock;
 
 
6129		}
6130
6131		if (scdc->supported) {
6132			scdc->scrambling.supported = true;
6133
6134			/* Few sinks support scrambling for clocks < 340M */
6135			if ((hf_scds[6] & 0x8))
6136				scdc->scrambling.low_rates = true;
6137		}
6138	}
6139
6140	if (hf_scds[7]) {
6141		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6142		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6143				     &hdmi->max_frl_rate_per_lane);
6144	}
6145
6146	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6147
6148	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6149		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6150		dsc_support = true;
6151	}
6152
6153	drm_dbg_kms(connector->dev,
6154		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6155		    connector->base.id, connector->name,
6156		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6157}
6158
6159static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6160					   const u8 *hdmi)
6161{
6162	struct drm_display_info *info = &connector->display_info;
6163	unsigned int dc_bpc = 0;
6164
6165	/* HDMI supports at least 8 bpc */
6166	info->bpc = 8;
6167
6168	if (cea_db_payload_len(hdmi) < 6)
6169		return;
6170
6171	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6172		dc_bpc = 10;
6173		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6174		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6175			    connector->base.id, connector->name);
6176	}
6177
6178	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6179		dc_bpc = 12;
6180		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6181		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6182			    connector->base.id, connector->name);
6183	}
6184
6185	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6186		dc_bpc = 16;
6187		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6188		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6189			    connector->base.id, connector->name);
6190	}
6191
6192	if (dc_bpc == 0) {
6193		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6194			    connector->base.id, connector->name);
6195		return;
6196	}
6197
6198	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6199		    connector->base.id, connector->name, dc_bpc);
6200	info->bpc = dc_bpc;
6201
 
 
 
 
 
 
 
6202	/* YCRCB444 is optional according to spec. */
6203	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6204		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6205		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6206			    connector->base.id, connector->name);
6207	}
6208
6209	/*
6210	 * Spec says that if any deep color mode is supported at all,
6211	 * then deep color 36 bit must be supported.
6212	 */
6213	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6214		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6215			    connector->base.id, connector->name);
6216	}
6217}
6218
6219/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6220static void
6221drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6222{
6223	struct drm_display_info *info = &connector->display_info;
6224	u8 len = cea_db_payload_len(db);
6225
6226	info->is_hdmi = true;
6227
6228	info->source_physical_address = (db[4] << 8) | db[5];
6229
6230	if (len >= 6)
6231		info->dvi_dual = db[6] & 1;
6232	if (len >= 7)
6233		info->max_tmds_clock = db[7] * 5000;
6234
6235	/*
6236	 * Try to infer whether the sink supports HDMI infoframes.
6237	 *
6238	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6239	 * supports infoframes if HDMI_Video_present is set.
6240	 */
6241	if (len >= 8 && db[8] & BIT(5))
6242		info->has_hdmi_infoframe = true;
6243
6244	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6245		    connector->base.id, connector->name,
6246		    info->dvi_dual, info->max_tmds_clock);
6247
6248	drm_parse_hdmi_deep_color_info(connector, db);
6249}
6250
6251/*
6252 * See EDID extension for head-mounted and specialized monitors, specified at:
6253 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6254 */
6255static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6256				     const u8 *db)
6257{
6258	struct drm_display_info *info = &connector->display_info;
6259	u8 version = db[4];
6260	bool desktop_usage = db[5] & BIT(6);
6261
6262	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6263	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6264		info->non_desktop = true;
6265
6266	drm_dbg_kms(connector->dev,
6267		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6268		    connector->base.id, connector->name, version, db[5]);
6269}
6270
6271static void drm_parse_cea_ext(struct drm_connector *connector,
6272			      const struct drm_edid *drm_edid)
6273{
6274	struct drm_display_info *info = &connector->display_info;
6275	struct drm_edid_iter edid_iter;
6276	const struct cea_db *db;
6277	struct cea_db_iter iter;
6278	const u8 *edid_ext;
6279	u64 y420cmdb_map = 0;
6280
6281	drm_edid_iter_begin(drm_edid, &edid_iter);
6282	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6283		if (edid_ext[0] != CEA_EXT)
6284			continue;
6285
6286		if (!info->cea_rev)
6287			info->cea_rev = edid_ext[1];
6288
6289		if (info->cea_rev != edid_ext[1])
6290			drm_dbg_kms(connector->dev,
6291				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6292				    connector->base.id, connector->name,
6293				    info->cea_rev, edid_ext[1]);
6294
6295		/* The existence of a CTA extension should imply RGB support */
6296		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6297		if (edid_ext[3] & EDID_CEA_YCRCB444)
6298			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6299		if (edid_ext[3] & EDID_CEA_YCRCB422)
6300			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6301		if (edid_ext[3] & EDID_BASIC_AUDIO)
6302			info->has_audio = true;
6303
6304	}
6305	drm_edid_iter_end(&edid_iter);
6306
6307	cea_db_iter_edid_begin(drm_edid, &iter);
6308	cea_db_iter_for_each(db, &iter) {
6309		/* FIXME: convert parsers to use struct cea_db */
6310		const u8 *data = (const u8 *)db;
6311
6312		if (cea_db_is_hdmi_vsdb(db))
6313			drm_parse_hdmi_vsdb_video(connector, data);
6314		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6315			 cea_db_is_hdmi_forum_scdb(db))
6316			drm_parse_hdmi_forum_scds(connector, data);
6317		else if (cea_db_is_microsoft_vsdb(db))
6318			drm_parse_microsoft_vsdb(connector, data);
6319		else if (cea_db_is_y420cmdb(db))
6320			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6321		else if (cea_db_is_y420vdb(db))
6322			parse_cta_y420vdb(connector, db);
6323		else if (cea_db_is_vcdb(db))
6324			drm_parse_vcdb(connector, data);
6325		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6326			drm_parse_hdr_metadata_block(connector, data);
6327		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6328			parse_cta_vdb(connector, db);
6329		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6330			info->has_audio = true;
6331	}
6332	cea_db_iter_end(&iter);
6333
6334	if (y420cmdb_map)
6335		update_cta_y420cmdb(connector, y420cmdb_map);
6336}
6337
6338static
6339void get_monitor_range(const struct detailed_timing *timing, void *c)
6340{
6341	struct detailed_mode_closure *closure = c;
6342	struct drm_display_info *info = &closure->connector->display_info;
6343	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6344	const struct detailed_non_pixel *data = &timing->data.other_data;
6345	const struct detailed_data_monitor_range *range = &data->data.range;
6346	const struct edid *edid = closure->drm_edid->edid;
6347
6348	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6349		return;
6350
6351	/*
6352	 * These limits are used to determine the VRR refresh
6353	 * rate range. Only the "range limits only" variant
6354	 * of the range descriptor seems to guarantee that
6355	 * any and all timings are accepted by the sink, as
6356	 * opposed to just timings conforming to the indicated
6357	 * formula (GTF/GTF2/CVT). Thus other variants of the
6358	 * range descriptor are not accepted here.
6359	 */
6360	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6361		return;
6362
6363	monitor_range->min_vfreq = range->min_vfreq;
6364	monitor_range->max_vfreq = range->max_vfreq;
6365
6366	if (edid->revision >= 4) {
6367		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6368			monitor_range->min_vfreq += 255;
6369		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6370			monitor_range->max_vfreq += 255;
6371	}
6372}
6373
6374static void drm_get_monitor_range(struct drm_connector *connector,
6375				  const struct drm_edid *drm_edid)
6376{
6377	const struct drm_display_info *info = &connector->display_info;
6378	struct detailed_mode_closure closure = {
6379		.connector = connector,
6380		.drm_edid = drm_edid,
6381	};
6382
6383	if (drm_edid->edid->revision < 4)
6384		return;
6385
6386	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
 
6387		return;
6388
6389	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6390
6391	drm_dbg_kms(connector->dev,
6392		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6393		    connector->base.id, connector->name,
6394		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6395}
6396
6397static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6398				    const struct displayid_block *block)
6399{
6400	struct displayid_vesa_vendor_specific_block *vesa =
6401		(struct displayid_vesa_vendor_specific_block *)block;
6402	struct drm_display_info *info = &connector->display_info;
6403
6404	if (block->num_bytes < 3) {
6405		drm_dbg_kms(connector->dev,
6406			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6407			    connector->base.id, connector->name, block->num_bytes);
6408		return;
6409	}
6410
6411	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6412		return;
6413
6414	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6415		drm_dbg_kms(connector->dev,
6416			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6417			    connector->base.id, connector->name);
6418		return;
6419	}
6420
6421	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6422	default:
6423		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6424			    connector->base.id, connector->name);
6425		fallthrough;
6426	case 0:
6427		info->mso_stream_count = 0;
6428		break;
6429	case 1:
6430		info->mso_stream_count = 2; /* 2 or 4 links */
6431		break;
6432	case 2:
6433		info->mso_stream_count = 4; /* 4 links */
6434		break;
6435	}
6436
6437	if (!info->mso_stream_count) {
6438		info->mso_pixel_overlap = 0;
6439		return;
6440	}
6441
6442	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6443	if (info->mso_pixel_overlap > 8) {
6444		drm_dbg_kms(connector->dev,
6445			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6446			    connector->base.id, connector->name,
6447			    info->mso_pixel_overlap);
6448		info->mso_pixel_overlap = 8;
6449	}
6450
6451	drm_dbg_kms(connector->dev,
6452		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6453		    connector->base.id, connector->name,
6454		    info->mso_stream_count, info->mso_pixel_overlap);
6455}
6456
6457static void drm_update_mso(struct drm_connector *connector,
6458			   const struct drm_edid *drm_edid)
6459{
6460	const struct displayid_block *block;
6461	struct displayid_iter iter;
6462
6463	displayid_iter_edid_begin(drm_edid, &iter);
6464	displayid_iter_for_each(block, &iter) {
6465		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6466			drm_parse_vesa_mso_data(connector, block);
6467	}
6468	displayid_iter_end(&iter);
6469}
6470
6471/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6472 * all of the values which would have been set from EDID
6473 */
6474static void drm_reset_display_info(struct drm_connector *connector)
 
6475{
6476	struct drm_display_info *info = &connector->display_info;
6477
6478	info->width_mm = 0;
6479	info->height_mm = 0;
6480
6481	info->bpc = 0;
6482	info->color_formats = 0;
6483	info->cea_rev = 0;
6484	info->max_tmds_clock = 0;
6485	info->dvi_dual = false;
6486	info->is_hdmi = false;
6487	info->has_audio = false;
6488	info->has_hdmi_infoframe = false;
6489	info->rgb_quant_range_selectable = false;
6490	memset(&info->hdmi, 0, sizeof(info->hdmi));
6491
6492	info->edid_hdmi_rgb444_dc_modes = 0;
6493	info->edid_hdmi_ycbcr444_dc_modes = 0;
6494
6495	info->non_desktop = 0;
6496	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6497	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6498
6499	info->mso_stream_count = 0;
6500	info->mso_pixel_overlap = 0;
6501	info->max_dsc_bpp = 0;
6502
6503	kfree(info->vics);
6504	info->vics = NULL;
6505	info->vics_len = 0;
6506
6507	info->quirks = 0;
6508
6509	info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6510}
6511
6512static void update_displayid_info(struct drm_connector *connector,
6513				  const struct drm_edid *drm_edid)
6514{
6515	struct drm_display_info *info = &connector->display_info;
6516	const struct displayid_block *block;
6517	struct displayid_iter iter;
6518
6519	displayid_iter_edid_begin(drm_edid, &iter);
6520	displayid_iter_for_each(block, &iter) {
6521		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6522		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6523		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6524			info->non_desktop = true;
6525
6526		/*
6527		 * We're only interested in the base section here, no need to
6528		 * iterate further.
6529		 */
6530		break;
6531	}
6532	displayid_iter_end(&iter);
6533}
6534
6535static void update_display_info(struct drm_connector *connector,
6536				const struct drm_edid *drm_edid)
6537{
6538	struct drm_display_info *info = &connector->display_info;
6539	const struct edid *edid;
6540
6541	drm_reset_display_info(connector);
6542	clear_eld(connector);
6543
6544	if (!drm_edid)
6545		return;
6546
6547	edid = drm_edid->edid;
6548
6549	info->quirks = edid_get_quirks(drm_edid);
6550
6551	info->width_mm = edid->width_cm * 10;
6552	info->height_mm = edid->height_cm * 10;
6553
6554	drm_get_monitor_range(connector, drm_edid);
 
 
6555
6556	if (edid->revision < 3)
6557		goto out;
6558
6559	if (!drm_edid_is_digital(drm_edid))
6560		goto out;
6561
6562	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6563	drm_parse_cea_ext(connector, drm_edid);
6564
6565	update_displayid_info(connector, drm_edid);
6566
6567	/*
6568	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6569	 *
6570	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6571	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6572	 * extensions which tell otherwise.
6573	 */
6574	if (info->bpc == 0 && edid->revision == 3 &&
6575	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6576		info->bpc = 8;
6577		drm_dbg_kms(connector->dev,
6578			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6579			    connector->base.id, connector->name, info->bpc);
6580	}
6581
6582	/* Only defined for 1.4 with digital displays */
6583	if (edid->revision < 4)
6584		goto out;
6585
6586	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6587	case DRM_EDID_DIGITAL_DEPTH_6:
6588		info->bpc = 6;
6589		break;
6590	case DRM_EDID_DIGITAL_DEPTH_8:
6591		info->bpc = 8;
6592		break;
6593	case DRM_EDID_DIGITAL_DEPTH_10:
6594		info->bpc = 10;
6595		break;
6596	case DRM_EDID_DIGITAL_DEPTH_12:
6597		info->bpc = 12;
6598		break;
6599	case DRM_EDID_DIGITAL_DEPTH_14:
6600		info->bpc = 14;
6601		break;
6602	case DRM_EDID_DIGITAL_DEPTH_16:
6603		info->bpc = 16;
6604		break;
6605	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6606	default:
6607		info->bpc = 0;
6608		break;
6609	}
6610
6611	drm_dbg_kms(connector->dev,
6612		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6613		    connector->base.id, connector->name, info->bpc);
6614
 
6615	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6616		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6617	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6618		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
 
 
6619
6620	drm_update_mso(connector, drm_edid);
 
 
 
 
6621
6622out:
6623	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6624		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6625			    connector->base.id, connector->name,
6626			    info->non_desktop ? " (redundant quirk)" : "");
6627		info->non_desktop = true;
6628	}
6629
6630	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6631		info->max_dsc_bpp = 15;
6632
6633	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6634		info->bpc = 6;
6635
6636	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6637		info->bpc = 8;
6638
6639	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6640		info->bpc = 10;
6641
6642	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6643		info->bpc = 12;
6644
6645	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6646	drm_edid_to_eld(connector, drm_edid);
6647}
6648
6649static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6650							    struct displayid_detailed_timings_1 *timings,
6651							    bool type_7)
6652{
6653	struct drm_display_mode *mode;
6654	unsigned pixel_clock = (timings->pixel_clock[0] |
6655				(timings->pixel_clock[1] << 8) |
6656				(timings->pixel_clock[2] << 16)) + 1;
6657	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6658	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6659	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6660	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6661	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6662	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6663	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6664	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6665	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6666	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6667
6668	mode = drm_mode_create(dev);
6669	if (!mode)
6670		return NULL;
6671
6672	/* resolution is kHz for type VII, and 10 kHz for type I */
6673	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6674	mode->hdisplay = hactive;
6675	mode->hsync_start = mode->hdisplay + hsync;
6676	mode->hsync_end = mode->hsync_start + hsync_width;
6677	mode->htotal = mode->hdisplay + hblank;
6678
6679	mode->vdisplay = vactive;
6680	mode->vsync_start = mode->vdisplay + vsync;
6681	mode->vsync_end = mode->vsync_start + vsync_width;
6682	mode->vtotal = mode->vdisplay + vblank;
6683
6684	mode->flags = 0;
6685	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6686	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6687	mode->type = DRM_MODE_TYPE_DRIVER;
6688
6689	if (timings->flags & 0x80)
6690		mode->type |= DRM_MODE_TYPE_PREFERRED;
 
6691	drm_mode_set_name(mode);
6692
6693	return mode;
6694}
6695
6696static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6697					  const struct displayid_block *block)
6698{
6699	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6700	int i;
6701	int num_timings;
6702	struct drm_display_mode *newmode;
6703	int num_modes = 0;
6704	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6705	/* blocks must be multiple of 20 bytes length */
6706	if (block->num_bytes % 20)
6707		return 0;
6708
6709	num_timings = block->num_bytes / 20;
6710	for (i = 0; i < num_timings; i++) {
6711		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6712
6713		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6714		if (!newmode)
6715			continue;
6716
6717		drm_mode_probed_add(connector, newmode);
6718		num_modes++;
6719	}
6720	return num_modes;
6721}
6722
6723static int add_displayid_detailed_modes(struct drm_connector *connector,
6724					const struct drm_edid *drm_edid)
6725{
6726	const struct displayid_block *block;
6727	struct displayid_iter iter;
 
 
 
6728	int num_modes = 0;
6729
6730	displayid_iter_edid_begin(drm_edid, &iter);
6731	displayid_iter_for_each(block, &iter) {
6732		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6733		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
 
 
 
 
 
 
 
 
6734			num_modes += add_displayid_detailed_1_modes(connector, block);
 
 
6735	}
6736	displayid_iter_end(&iter);
6737
6738	return num_modes;
6739}
6740
6741static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6742					 const struct drm_edid *drm_edid)
 
 
 
 
 
 
 
 
 
 
6743{
6744	const struct drm_display_info *info = &connector->display_info;
6745	int num_modes = 0;
 
6746
6747	if (!drm_edid)
 
6748		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6749
6750	/*
6751	 * EDID spec says modes should be preferred in this order:
6752	 * - preferred detailed mode
6753	 * - other detailed modes from base block
6754	 * - detailed modes from extension blocks
6755	 * - CVT 3-byte code modes
6756	 * - standard timing codes
6757	 * - established timing codes
6758	 * - modes inferred from GTF or CVT range information
6759	 *
6760	 * We get this pretty much right.
6761	 *
6762	 * XXX order for additional mode types in extension blocks?
6763	 */
6764	num_modes += add_detailed_modes(connector, drm_edid);
6765	num_modes += add_cvt_modes(connector, drm_edid);
6766	num_modes += add_standard_modes(connector, drm_edid);
6767	num_modes += add_established_modes(connector, drm_edid);
6768	num_modes += add_cea_modes(connector, drm_edid);
6769	num_modes += add_alternate_cea_modes(connector, drm_edid);
6770	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6771	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6772		num_modes += add_inferred_modes(connector, drm_edid);
 
 
 
 
 
 
6773
6774	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6775		edid_fixup_preferred(connector);
6776
6777	return num_modes;
6778}
6779
6780static void _drm_update_tile_info(struct drm_connector *connector,
6781				  const struct drm_edid *drm_edid);
6782
6783static int _drm_edid_connector_property_update(struct drm_connector *connector,
6784					       const struct drm_edid *drm_edid)
6785{
6786	struct drm_device *dev = connector->dev;
6787	int ret;
6788
6789	if (connector->edid_blob_ptr) {
6790		const struct edid *old_edid = connector->edid_blob_ptr->data;
6791
6792		if (old_edid) {
6793			if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6794				connector->epoch_counter++;
6795				drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6796					    connector->base.id, connector->name,
6797					    connector->epoch_counter);
6798			}
6799		}
6800	}
6801
6802	ret = drm_property_replace_global_blob(dev,
6803					       &connector->edid_blob_ptr,
6804					       drm_edid ? drm_edid->size : 0,
6805					       drm_edid ? drm_edid->edid : NULL,
6806					       &connector->base,
6807					       dev->mode_config.edid_property);
6808	if (ret) {
6809		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6810			    connector->base.id, connector->name, ret);
6811		goto out;
6812	}
6813
6814	ret = drm_object_property_set_value(&connector->base,
6815					    dev->mode_config.non_desktop_property,
6816					    connector->display_info.non_desktop);
6817	if (ret) {
6818		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6819			    connector->base.id, connector->name, ret);
6820		goto out;
6821	}
6822
6823	ret = drm_connector_set_tile_property(connector);
6824	if (ret) {
6825		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6826			    connector->base.id, connector->name, ret);
6827		goto out;
6828	}
6829
6830out:
6831	return ret;
6832}
6833
6834/**
6835 * drm_edid_connector_update - Update connector information from EDID
6836 * @connector: Connector
6837 * @drm_edid: EDID
6838 *
6839 * Update the connector display info, ELD, HDR metadata, relevant properties,
6840 * etc. from the passed in EDID.
6841 *
6842 * If EDID is NULL, reset the information.
6843 *
6844 * Must be called before calling drm_edid_connector_add_modes().
6845 *
6846 * Return: 0 on success, negative error on errors.
6847 */
6848int drm_edid_connector_update(struct drm_connector *connector,
6849			      const struct drm_edid *drm_edid)
6850{
6851	update_display_info(connector, drm_edid);
6852
6853	_drm_update_tile_info(connector, drm_edid);
6854
6855	return _drm_edid_connector_property_update(connector, drm_edid);
6856}
6857EXPORT_SYMBOL(drm_edid_connector_update);
6858
6859/**
6860 * drm_edid_connector_add_modes - Update probed modes from the EDID property
6861 * @connector: Connector
6862 *
6863 * Add the modes from the previously updated EDID property to the connector
6864 * probed modes list.
6865 *
6866 * drm_edid_connector_update() must have been called before this to update the
6867 * EDID property.
6868 *
6869 * Return: The number of modes added, or 0 if we couldn't find any.
6870 */
6871int drm_edid_connector_add_modes(struct drm_connector *connector)
6872{
6873	const struct drm_edid *drm_edid = NULL;
6874	int count;
6875
6876	if (connector->edid_blob_ptr)
6877		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6878					  connector->edid_blob_ptr->length);
6879
6880	count = _drm_edid_connector_add_modes(connector, drm_edid);
6881
6882	drm_edid_free(drm_edid);
6883
6884	return count;
6885}
6886EXPORT_SYMBOL(drm_edid_connector_add_modes);
6887
6888/**
6889 * drm_connector_update_edid_property - update the edid property of a connector
6890 * @connector: drm connector
6891 * @edid: new value of the edid property
6892 *
6893 * This function creates a new blob modeset object and assigns its id to the
6894 * connector's edid property.
6895 * Since we also parse tile information from EDID's displayID block, we also
6896 * set the connector's tile property here. See drm_connector_set_tile_property()
6897 * for more details.
6898 *
6899 * This function is deprecated. Use drm_edid_connector_update() instead.
6900 *
6901 * Returns:
6902 * Zero on success, negative errno on failure.
6903 */
6904int drm_connector_update_edid_property(struct drm_connector *connector,
6905				       const struct edid *edid)
6906{
6907	struct drm_edid drm_edid;
6908
6909	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6910}
6911EXPORT_SYMBOL(drm_connector_update_edid_property);
6912
6913/**
6914 * drm_add_edid_modes - add modes from EDID data, if available
6915 * @connector: connector we're probing
6916 * @edid: EDID data
6917 *
6918 * Add the specified modes to the connector's mode list. Also fills out the
6919 * &drm_display_info structure and ELD in @connector with any information which
6920 * can be derived from the edid.
6921 *
6922 * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6923 *
6924 * Return: The number of modes added or 0 if we couldn't find any.
6925 */
6926int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6927{
6928	struct drm_edid _drm_edid;
6929	const struct drm_edid *drm_edid;
6930
6931	if (edid && !drm_edid_is_valid(edid)) {
6932		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6933			 connector->base.id, connector->name);
6934		edid = NULL;
6935	}
6936
6937	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6938
6939	update_display_info(connector, drm_edid);
6940
6941	return _drm_edid_connector_add_modes(connector, drm_edid);
6942}
6943EXPORT_SYMBOL(drm_add_edid_modes);
6944
6945/**
6946 * drm_add_modes_noedid - add modes for the connectors without EDID
6947 * @connector: connector we're probing
6948 * @hdisplay: the horizontal display limit
6949 * @vdisplay: the vertical display limit
6950 *
6951 * Add the specified modes to the connector's mode list. Only when the
6952 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6953 *
6954 * Return: The number of modes added or 0 if we couldn't find any.
6955 */
6956int drm_add_modes_noedid(struct drm_connector *connector,
6957			int hdisplay, int vdisplay)
6958{
6959	int i, count, num_modes = 0;
6960	struct drm_display_mode *mode;
6961	struct drm_device *dev = connector->dev;
6962
6963	count = ARRAY_SIZE(drm_dmt_modes);
6964	if (hdisplay < 0)
6965		hdisplay = 0;
6966	if (vdisplay < 0)
6967		vdisplay = 0;
6968
6969	for (i = 0; i < count; i++) {
6970		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6971
6972		if (hdisplay && vdisplay) {
6973			/*
6974			 * Only when two are valid, they will be used to check
6975			 * whether the mode should be added to the mode list of
6976			 * the connector.
6977			 */
6978			if (ptr->hdisplay > hdisplay ||
6979					ptr->vdisplay > vdisplay)
6980				continue;
6981		}
6982		if (drm_mode_vrefresh(ptr) > 61)
6983			continue;
6984		mode = drm_mode_duplicate(dev, ptr);
6985		if (mode) {
6986			drm_mode_probed_add(connector, mode);
6987			num_modes++;
6988		}
6989	}
6990	return num_modes;
6991}
6992EXPORT_SYMBOL(drm_add_modes_noedid);
6993
6994static bool is_hdmi2_sink(const struct drm_connector *connector)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6995{
6996	/*
6997	 * FIXME: sil-sii8620 doesn't have a connector around when
6998	 * we need one, so we have to be prepared for a NULL connector.
6999	 */
7000	if (!connector)
7001		return true;
7002
7003	return connector->display_info.hdmi.scdc.supported ||
7004		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
 
 
 
 
 
7005}
7006
7007static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7008			    const struct drm_display_mode *mode)
 
 
 
 
 
 
 
 
 
7009{
7010	bool has_hdmi_infoframe = connector ?
7011		connector->display_info.has_hdmi_infoframe : false;
 
 
 
 
 
 
 
 
 
7012
7013	if (!has_hdmi_infoframe)
7014		return 0;
7015
7016	/* No HDMI VIC when signalling 3D video format */
7017	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7018		return 0;
7019
7020	return drm_match_hdmi_mode(mode);
7021}
 
 
 
 
7022
7023static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7024			   const struct drm_display_mode *mode)
7025{
7026	/*
7027	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7028	 * we should send its VIC in vendor infoframes, else send the
7029	 * VIC in AVI infoframes. Lets check if this mode is present in
7030	 * HDMI 1.4b 4K modes
7031	 */
7032	if (drm_mode_hdmi_vic(connector, mode))
7033		return 0;
7034
7035	return drm_match_cea_mode(mode);
7036}
7037
7038/*
7039 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7040 * conform to HDMI 1.4.
7041 *
7042 * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7043 * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7044 *
7045 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7046 * version.
7047 */
7048static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7049{
7050	if (!is_hdmi2_sink(connector) && vic > 64 &&
7051	    !cta_vdb_has_vic(connector, vic))
7052		return 0;
 
 
 
 
7053
7054	return vic;
7055}
 
7056
7057/**
7058 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7059 *                                              data from a DRM display mode
7060 * @frame: HDMI AVI infoframe
7061 * @connector: the connector
7062 * @mode: DRM display mode
7063 *
7064 * Return: 0 on success or a negative error code on failure.
7065 */
7066int
7067drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7068					 const struct drm_connector *connector,
7069					 const struct drm_display_mode *mode)
7070{
7071	enum hdmi_picture_aspect picture_aspect;
7072	u8 vic, hdmi_vic;
7073
7074	if (!frame || !mode)
7075		return -EINVAL;
7076
7077	hdmi_avi_infoframe_init(frame);
 
 
7078
7079	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7080		frame->pixel_repeat = 1;
7081
7082	vic = drm_mode_cea_vic(connector, mode);
7083	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7084
7085	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7086
7087	/*
7088	 * As some drivers don't support atomic, we can't use connector state.
7089	 * So just initialize the frame with default values, just the same way
7090	 * as it's done with other properties here.
7091	 */
7092	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7093	frame->itc = 0;
7094
7095	/*
7096	 * Populate picture aspect ratio from either
7097	 * user input (if specified) or from the CEA/HDMI mode lists.
7098	 */
7099	picture_aspect = mode->picture_aspect_ratio;
7100	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7101		if (vic)
7102			picture_aspect = drm_get_cea_aspect_ratio(vic);
7103		else if (hdmi_vic)
7104			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7105	}
7106
7107	/*
7108	 * The infoframe can't convey anything but none, 4:3
7109	 * and 16:9, so if the user has asked for anything else
7110	 * we can only satisfy it by specifying the right VIC.
7111	 */
7112	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7113		if (vic) {
7114			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7115				return -EINVAL;
7116		} else if (hdmi_vic) {
7117			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7118				return -EINVAL;
7119		} else {
7120			return -EINVAL;
7121		}
7122
7123		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7124	}
7125
7126	frame->video_code = vic_for_avi_infoframe(connector, vic);
7127	frame->picture_aspect = picture_aspect;
7128	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7129	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7130
7131	return 0;
7132}
7133EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7135/**
7136 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7137 *                                        quantization range information
7138 * @frame: HDMI AVI infoframe
7139 * @connector: the connector
7140 * @mode: DRM display mode
7141 * @rgb_quant_range: RGB quantization range (Q)
7142 */
7143void
7144drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7145				   const struct drm_connector *connector,
7146				   const struct drm_display_mode *mode,
7147				   enum hdmi_quantization_range rgb_quant_range)
7148{
7149	const struct drm_display_info *info = &connector->display_info;
7150
7151	/*
7152	 * CEA-861:
7153	 * "A Source shall not send a non-zero Q value that does not correspond
7154	 *  to the default RGB Quantization Range for the transmitted Picture
7155	 *  unless the Sink indicates support for the Q bit in a Video
7156	 *  Capabilities Data Block."
7157	 *
7158	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7159	 * default RGB quantization range for the mode, even when QS=0.
7160	 */
7161	if (info->rgb_quant_range_selectable ||
7162	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7163		frame->quantization_range = rgb_quant_range;
7164	else
7165		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7166
7167	/*
7168	 * CEA-861-F:
7169	 * "When transmitting any RGB colorimetry, the Source should set the
7170	 *  YQ-field to match the RGB Quantization Range being transmitted
7171	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7172	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7173	 *
7174	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7175	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7176	 * good way to tell which version of CEA-861 the sink supports, so
7177	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7178	 * on CEA-861-F.
7179	 */
7180	if (!is_hdmi2_sink(connector) ||
7181	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7182		frame->ycc_quantization_range =
7183			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7184	else
7185		frame->ycc_quantization_range =
7186			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7187}
7188EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7189
7190static enum hdmi_3d_structure
7191s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7192{
7193	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7194
7195	switch (layout) {
7196	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7197		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7198	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7199		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7200	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7201		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7202	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7203		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7204	case DRM_MODE_FLAG_3D_L_DEPTH:
7205		return HDMI_3D_STRUCTURE_L_DEPTH;
7206	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7207		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7208	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7209		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7210	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7211		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7212	default:
7213		return HDMI_3D_STRUCTURE_INVALID;
7214	}
7215}
7216
7217/**
7218 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7219 * data from a DRM display mode
7220 * @frame: HDMI vendor infoframe
7221 * @connector: the connector
7222 * @mode: DRM display mode
7223 *
7224 * Note that there's is a need to send HDMI vendor infoframes only when using a
7225 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7226 * function will return -EINVAL, error that can be safely ignored.
7227 *
7228 * Return: 0 on success or a negative error code on failure.
7229 */
7230int
7231drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7232					    const struct drm_connector *connector,
7233					    const struct drm_display_mode *mode)
7234{
7235	/*
7236	 * FIXME: sil-sii8620 doesn't have a connector around when
7237	 * we need one, so we have to be prepared for a NULL connector.
7238	 */
7239	bool has_hdmi_infoframe = connector ?
7240		connector->display_info.has_hdmi_infoframe : false;
7241	int err;
 
 
7242
7243	if (!frame || !mode)
7244		return -EINVAL;
7245
7246	if (!has_hdmi_infoframe)
7247		return -EINVAL;
7248
7249	err = hdmi_vendor_infoframe_init(frame);
7250	if (err < 0)
7251		return err;
7252
7253	/*
7254	 * Even if it's not absolutely necessary to send the infoframe
7255	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7256	 * know that the sink can handle it. This is based on a
7257	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7258	 * have trouble realizing that they should switch from 3D to 2D
7259	 * mode if the source simply stops sending the infoframe when
7260	 * it wants to switch from 3D to 2D.
7261	 */
7262	frame->vic = drm_mode_hdmi_vic(connector, mode);
 
 
 
 
 
 
 
 
7263	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7264
7265	return 0;
7266}
7267EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7268
7269static void drm_parse_tiled_block(struct drm_connector *connector,
7270				  const struct displayid_block *block)
7271{
7272	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7273	u16 w, h;
7274	u8 tile_v_loc, tile_h_loc;
7275	u8 num_v_tile, num_h_tile;
7276	struct drm_tile_group *tg;
7277
7278	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7279	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7280
7281	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7282	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7283	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7284	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7285
7286	connector->has_tile = true;
7287	if (tile->tile_cap & 0x80)
7288		connector->tile_is_single_monitor = true;
7289
7290	connector->num_h_tile = num_h_tile + 1;
7291	connector->num_v_tile = num_v_tile + 1;
7292	connector->tile_h_loc = tile_h_loc;
7293	connector->tile_v_loc = tile_v_loc;
7294	connector->tile_h_size = w + 1;
7295	connector->tile_v_size = h + 1;
7296
7297	drm_dbg_kms(connector->dev,
7298		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7299		    connector->base.id, connector->name,
7300		    tile->tile_cap,
7301		    connector->tile_h_size, connector->tile_v_size,
7302		    connector->num_h_tile, connector->num_v_tile,
7303		    connector->tile_h_loc, connector->tile_v_loc,
7304		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7305
7306	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7307	if (!tg)
7308		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
 
7309	if (!tg)
7310		return;
7311
7312	if (connector->tile_group != tg) {
7313		/* if we haven't got a pointer,
7314		   take the reference, drop ref to old tile group */
7315		if (connector->tile_group)
7316			drm_mode_put_tile_group(connector->dev, connector->tile_group);
 
7317		connector->tile_group = tg;
7318	} else {
7319		/* if same tile group, then release the ref we just took. */
7320		drm_mode_put_tile_group(connector->dev, tg);
7321	}
7322}
7323
7324static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7325				     const struct displayid_block *block)
7326{
7327	return (displayid_version(iter) < DISPLAY_ID_STRUCTURE_VER_20 &&
7328		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7329		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7330		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7331}
7332
7333static void _drm_update_tile_info(struct drm_connector *connector,
7334				  const struct drm_edid *drm_edid)
7335{
7336	const struct displayid_block *block;
7337	struct displayid_iter iter;
7338
7339	connector->has_tile = false;
7340
7341	displayid_iter_edid_begin(drm_edid, &iter);
7342	displayid_iter_for_each(block, &iter) {
7343		if (displayid_is_tiled_block(&iter, block))
7344			drm_parse_tiled_block(connector, block);
7345	}
7346	displayid_iter_end(&iter);
7347
7348	if (!connector->has_tile && connector->tile_group) {
 
 
 
 
 
 
 
7349		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7350		connector->tile_group = NULL;
7351	}
 
7352}
7353
7354/**
7355 * drm_edid_is_digital - is digital?
7356 * @drm_edid: The EDID
7357 *
7358 * Return true if input is digital.
7359 */
7360bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7361{
7362	return drm_edid && drm_edid->edid &&
7363		drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7364}
7365EXPORT_SYMBOL(drm_edid_is_digital);