Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Re-map IO memory to kernel address space so that we can access it.
  4 * This is needed for high PCI addresses that aren't mapped in the
  5 * 640k-1MB IO memory area on PC's
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 */
  9
 10#include <linux/memblock.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/ioport.h>
 
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include <linux/mmiotrace.h>
 17#include <linux/mem_encrypt.h>
 18#include <linux/efi.h>
 
 
 19
 20#include <asm/set_memory.h>
 21#include <asm/e820/api.h>
 22#include <asm/efi.h>
 23#include <asm/fixmap.h>
 24#include <asm/pgtable.h>
 25#include <asm/tlbflush.h>
 26#include <asm/pgalloc.h>
 27#include <asm/pat.h>
 28#include <asm/setup.h>
 29
 30#include "physaddr.h"
 31
 32/*
 33 * Descriptor controlling ioremap() behavior.
 34 */
 35struct ioremap_desc {
 36	unsigned int flags;
 37};
 38
 39/*
 40 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 41 * conflicts.
 42 */
 43int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 44			enum page_cache_mode pcm)
 45{
 46	unsigned long nrpages = size >> PAGE_SHIFT;
 47	int err;
 48
 49	switch (pcm) {
 50	case _PAGE_CACHE_MODE_UC:
 51	default:
 52		err = _set_memory_uc(vaddr, nrpages);
 53		break;
 54	case _PAGE_CACHE_MODE_WC:
 55		err = _set_memory_wc(vaddr, nrpages);
 56		break;
 57	case _PAGE_CACHE_MODE_WT:
 58		err = _set_memory_wt(vaddr, nrpages);
 59		break;
 60	case _PAGE_CACHE_MODE_WB:
 61		err = _set_memory_wb(vaddr, nrpages);
 62		break;
 63	}
 64
 65	return err;
 66}
 67
 68/* Does the range (or a subset of) contain normal RAM? */
 69static unsigned int __ioremap_check_ram(struct resource *res)
 70{
 71	unsigned long start_pfn, stop_pfn;
 72	unsigned long i;
 73
 74	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
 75		return 0;
 76
 77	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 78	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
 79	if (stop_pfn > start_pfn) {
 80		for (i = 0; i < (stop_pfn - start_pfn); ++i)
 81			if (pfn_valid(start_pfn + i) &&
 82			    !PageReserved(pfn_to_page(start_pfn + i)))
 83				return IORES_MAP_SYSTEM_RAM;
 84	}
 85
 86	return 0;
 87}
 88
 89/*
 90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
 91 * there the whole memory is already encrypted.
 92 */
 93static unsigned int __ioremap_check_encrypted(struct resource *res)
 94{
 95	if (!sev_active())
 96		return 0;
 97
 98	switch (res->desc) {
 99	case IORES_DESC_NONE:
100	case IORES_DESC_RESERVED:
101		break;
102	default:
103		return IORES_MAP_ENCRYPTED;
104	}
105
106	return 0;
107}
108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109static int __ioremap_collect_map_flags(struct resource *res, void *arg)
110{
111	struct ioremap_desc *desc = arg;
112
113	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
114		desc->flags |= __ioremap_check_ram(res);
115
116	if (!(desc->flags & IORES_MAP_ENCRYPTED))
117		desc->flags |= __ioremap_check_encrypted(res);
118
119	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
120			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
121}
122
123/*
124 * To avoid multiple resource walks, this function walks resources marked as
125 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
126 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
 
 
 
127 */
128static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
129				struct ioremap_desc *desc)
130{
131	u64 start, end;
132
133	start = (u64)addr;
134	end = start + size - 1;
135	memset(desc, 0, sizeof(struct ioremap_desc));
136
137	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
 
 
138}
139
140/*
141 * Remap an arbitrary physical address space into the kernel virtual
142 * address space. It transparently creates kernel huge I/O mapping when
143 * the physical address is aligned by a huge page size (1GB or 2MB) and
144 * the requested size is at least the huge page size.
145 *
146 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
147 * Therefore, the mapping code falls back to use a smaller page toward 4KB
148 * when a mapping range is covered by non-WB type of MTRRs.
149 *
150 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
151 * have to convert them into an offset in a page-aligned mapping, but the
152 * caller shouldn't need to know that small detail.
153 */
154static void __iomem *
155__ioremap_caller(resource_size_t phys_addr, unsigned long size,
156		 enum page_cache_mode pcm, void *caller, bool encrypted)
157{
158	unsigned long offset, vaddr;
159	resource_size_t last_addr;
160	const resource_size_t unaligned_phys_addr = phys_addr;
161	const unsigned long unaligned_size = size;
162	struct ioremap_desc io_desc;
163	struct vm_struct *area;
164	enum page_cache_mode new_pcm;
165	pgprot_t prot;
166	int retval;
167	void __iomem *ret_addr;
168
169	/* Don't allow wraparound or zero size */
170	last_addr = phys_addr + size - 1;
171	if (!size || last_addr < phys_addr)
172		return NULL;
173
174	if (!phys_addr_valid(phys_addr)) {
175		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
176		       (unsigned long long)phys_addr);
177		WARN_ON_ONCE(1);
178		return NULL;
179	}
180
181	__ioremap_check_mem(phys_addr, size, &io_desc);
182
183	/*
184	 * Don't allow anybody to remap normal RAM that we're using..
185	 */
186	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
187		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
188			  &phys_addr, &last_addr);
189		return NULL;
190	}
191
192	/*
193	 * Mappings have to be page-aligned
194	 */
195	offset = phys_addr & ~PAGE_MASK;
196	phys_addr &= PHYSICAL_PAGE_MASK;
197	size = PAGE_ALIGN(last_addr+1) - phys_addr;
198
199	retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
 
 
 
 
 
 
200						pcm, &new_pcm);
201	if (retval) {
202		printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
203		return NULL;
204	}
205
206	if (pcm != new_pcm) {
207		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
208			printk(KERN_ERR
209		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
210				(unsigned long long)phys_addr,
211				(unsigned long long)(phys_addr + size),
212				pcm, new_pcm);
213			goto err_free_memtype;
214		}
215		pcm = new_pcm;
216	}
217
218	/*
219	 * If the page being mapped is in memory and SEV is active then
220	 * make sure the memory encryption attribute is enabled in the
221	 * resulting mapping.
 
 
 
222	 */
223	prot = PAGE_KERNEL_IO;
224	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
225		prot = pgprot_encrypted(prot);
 
 
226
227	switch (pcm) {
228	case _PAGE_CACHE_MODE_UC:
229	default:
230		prot = __pgprot(pgprot_val(prot) |
231				cachemode2protval(_PAGE_CACHE_MODE_UC));
232		break;
233	case _PAGE_CACHE_MODE_UC_MINUS:
234		prot = __pgprot(pgprot_val(prot) |
235				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
236		break;
237	case _PAGE_CACHE_MODE_WC:
238		prot = __pgprot(pgprot_val(prot) |
239				cachemode2protval(_PAGE_CACHE_MODE_WC));
240		break;
241	case _PAGE_CACHE_MODE_WT:
242		prot = __pgprot(pgprot_val(prot) |
243				cachemode2protval(_PAGE_CACHE_MODE_WT));
244		break;
245	case _PAGE_CACHE_MODE_WB:
246		break;
247	}
248
249	/*
250	 * Ok, go for it..
251	 */
252	area = get_vm_area_caller(size, VM_IOREMAP, caller);
253	if (!area)
254		goto err_free_memtype;
255	area->phys_addr = phys_addr;
256	vaddr = (unsigned long) area->addr;
257
258	if (kernel_map_sync_memtype(phys_addr, size, pcm))
259		goto err_free_area;
260
261	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
262		goto err_free_area;
263
264	ret_addr = (void __iomem *) (vaddr + offset);
265	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
266
267	/*
268	 * Check if the request spans more than any BAR in the iomem resource
269	 * tree.
270	 */
271	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
272		pr_warn("caller %pS mapping multiple BARs\n", caller);
273
274	return ret_addr;
275err_free_area:
276	free_vm_area(area);
277err_free_memtype:
278	free_memtype(phys_addr, phys_addr + size);
279	return NULL;
280}
281
282/**
283 * ioremap_nocache     -   map bus memory into CPU space
284 * @phys_addr:    bus address of the memory
285 * @size:      size of the resource to map
286 *
287 * ioremap_nocache performs a platform specific sequence of operations to
288 * make bus memory CPU accessible via the readb/readw/readl/writeb/
289 * writew/writel functions and the other mmio helpers. The returned
290 * address is not guaranteed to be usable directly as a virtual
291 * address.
292 *
293 * This version of ioremap ensures that the memory is marked uncachable
294 * on the CPU as well as honouring existing caching rules from things like
295 * the PCI bus. Note that there are other caches and buffers on many
296 * busses. In particular driver authors should read up on PCI writes
297 *
298 * It's useful if some control registers are in such an area and
299 * write combining or read caching is not desirable:
300 *
301 * Must be freed with iounmap.
302 */
303void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
304{
305	/*
306	 * Ideally, this should be:
307	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
308	 *
309	 * Till we fix all X drivers to use ioremap_wc(), we will use
310	 * UC MINUS. Drivers that are certain they need or can already
311	 * be converted over to strong UC can use ioremap_uc().
312	 */
313	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
314
315	return __ioremap_caller(phys_addr, size, pcm,
316				__builtin_return_address(0), false);
317}
318EXPORT_SYMBOL(ioremap_nocache);
319
320/**
321 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
322 * @phys_addr:    bus address of the memory
323 * @size:      size of the resource to map
324 *
325 * ioremap_uc performs a platform specific sequence of operations to
326 * make bus memory CPU accessible via the readb/readw/readl/writeb/
327 * writew/writel functions and the other mmio helpers. The returned
328 * address is not guaranteed to be usable directly as a virtual
329 * address.
330 *
331 * This version of ioremap ensures that the memory is marked with a strong
332 * preference as completely uncachable on the CPU when possible. For non-PAT
333 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
334 * systems this will set the PAT entry for the pages as strong UC.  This call
335 * will honor existing caching rules from things like the PCI bus. Note that
336 * there are other caches and buffers on many busses. In particular driver
337 * authors should read up on PCI writes.
338 *
339 * It's useful if some control registers are in such an area and
340 * write combining or read caching is not desirable:
341 *
342 * Must be freed with iounmap.
343 */
344void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
345{
346	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
347
348	return __ioremap_caller(phys_addr, size, pcm,
349				__builtin_return_address(0), false);
350}
351EXPORT_SYMBOL_GPL(ioremap_uc);
352
353/**
354 * ioremap_wc	-	map memory into CPU space write combined
355 * @phys_addr:	bus address of the memory
356 * @size:	size of the resource to map
357 *
358 * This version of ioremap ensures that the memory is marked write combining.
359 * Write combining allows faster writes to some hardware devices.
360 *
361 * Must be freed with iounmap.
362 */
363void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
364{
365	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
366					__builtin_return_address(0), false);
367}
368EXPORT_SYMBOL(ioremap_wc);
369
370/**
371 * ioremap_wt	-	map memory into CPU space write through
372 * @phys_addr:	bus address of the memory
373 * @size:	size of the resource to map
374 *
375 * This version of ioremap ensures that the memory is marked write through.
376 * Write through stores data into memory while keeping the cache up-to-date.
377 *
378 * Must be freed with iounmap.
379 */
380void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
381{
382	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
383					__builtin_return_address(0), false);
384}
385EXPORT_SYMBOL(ioremap_wt);
386
387void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
388{
389	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
390				__builtin_return_address(0), true);
391}
392EXPORT_SYMBOL(ioremap_encrypted);
393
394void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
395{
396	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
397				__builtin_return_address(0), false);
398}
399EXPORT_SYMBOL(ioremap_cache);
400
401void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
402				unsigned long prot_val)
403{
404	return __ioremap_caller(phys_addr, size,
405				pgprot2cachemode(__pgprot(prot_val)),
406				__builtin_return_address(0), false);
407}
408EXPORT_SYMBOL(ioremap_prot);
409
410/**
411 * iounmap - Free a IO remapping
412 * @addr: virtual address from ioremap_*
413 *
414 * Caller must ensure there is only one unmapping for the same pointer.
415 */
416void iounmap(volatile void __iomem *addr)
417{
418	struct vm_struct *p, *o;
419
420	if ((void __force *)addr <= high_memory)
421		return;
422
423	/*
424	 * The PCI/ISA range special-casing was removed from __ioremap()
425	 * so this check, in theory, can be removed. However, there are
426	 * cases where iounmap() is called for addresses not obtained via
427	 * ioremap() (vga16fb for example). Add a warning so that these
428	 * cases can be caught and fixed.
429	 */
430	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
431	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
432		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
433		return;
434	}
435
436	mmiotrace_iounmap(addr);
437
438	addr = (volatile void __iomem *)
439		(PAGE_MASK & (unsigned long __force)addr);
440
441	/* Use the vm area unlocked, assuming the caller
442	   ensures there isn't another iounmap for the same address
443	   in parallel. Reuse of the virtual address is prevented by
444	   leaving it in the global lists until we're done with it.
445	   cpa takes care of the direct mappings. */
446	p = find_vm_area((void __force *)addr);
447
448	if (!p) {
449		printk(KERN_ERR "iounmap: bad address %p\n", addr);
450		dump_stack();
451		return;
452	}
453
454	free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
 
 
455
456	/* Finally remove it */
457	o = remove_vm_area((void __force *)addr);
458	BUG_ON(p != o || o == NULL);
459	kfree(p);
460}
461EXPORT_SYMBOL(iounmap);
462
463int __init arch_ioremap_p4d_supported(void)
464{
465	return 0;
466}
467
468int __init arch_ioremap_pud_supported(void)
469{
470#ifdef CONFIG_X86_64
471	return boot_cpu_has(X86_FEATURE_GBPAGES);
472#else
473	return 0;
474#endif
475}
476
477int __init arch_ioremap_pmd_supported(void)
478{
479	return boot_cpu_has(X86_FEATURE_PSE);
480}
481
482/*
483 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
484 * access
485 */
486void *xlate_dev_mem_ptr(phys_addr_t phys)
487{
488	unsigned long start  = phys &  PAGE_MASK;
489	unsigned long offset = phys & ~PAGE_MASK;
490	void *vaddr;
491
492	/* memremap() maps if RAM, otherwise falls back to ioremap() */
493	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
494
495	/* Only add the offset on success and return NULL if memremap() failed */
496	if (vaddr)
497		vaddr += offset;
498
499	return vaddr;
500}
501
502void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
503{
504	memunmap((void *)((unsigned long)addr & PAGE_MASK));
505}
506
 
507/*
508 * Examine the physical address to determine if it is an area of memory
509 * that should be mapped decrypted.  If the memory is not part of the
510 * kernel usable area it was accessed and created decrypted, so these
511 * areas should be mapped decrypted. And since the encryption key can
512 * change across reboots, persistent memory should also be mapped
513 * decrypted.
514 *
515 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
516 * only persistent memory should be mapped decrypted.
517 */
518static bool memremap_should_map_decrypted(resource_size_t phys_addr,
519					  unsigned long size)
520{
521	int is_pmem;
522
523	/*
524	 * Check if the address is part of a persistent memory region.
525	 * This check covers areas added by E820, EFI and ACPI.
526	 */
527	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
528				    IORES_DESC_PERSISTENT_MEMORY);
529	if (is_pmem != REGION_DISJOINT)
530		return true;
531
532	/*
533	 * Check if the non-volatile attribute is set for an EFI
534	 * reserved area.
535	 */
536	if (efi_enabled(EFI_BOOT)) {
537		switch (efi_mem_type(phys_addr)) {
538		case EFI_RESERVED_TYPE:
539			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
540				return true;
541			break;
542		default:
543			break;
544		}
545	}
546
547	/* Check if the address is outside kernel usable area */
548	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
549	case E820_TYPE_RESERVED:
550	case E820_TYPE_ACPI:
551	case E820_TYPE_NVS:
552	case E820_TYPE_UNUSABLE:
553		/* For SEV, these areas are encrypted */
554		if (sev_active())
555			break;
556		/* Fallthrough */
557
558	case E820_TYPE_PRAM:
559		return true;
560	default:
561		break;
562	}
563
564	return false;
565}
566
567/*
568 * Examine the physical address to determine if it is EFI data. Check
569 * it against the boot params structure and EFI tables and memory types.
570 */
571static bool memremap_is_efi_data(resource_size_t phys_addr,
572				 unsigned long size)
573{
574	u64 paddr;
575
576	/* Check if the address is part of EFI boot/runtime data */
577	if (!efi_enabled(EFI_BOOT))
578		return false;
579
580	paddr = boot_params.efi_info.efi_memmap_hi;
581	paddr <<= 32;
582	paddr |= boot_params.efi_info.efi_memmap;
583	if (phys_addr == paddr)
584		return true;
585
586	paddr = boot_params.efi_info.efi_systab_hi;
587	paddr <<= 32;
588	paddr |= boot_params.efi_info.efi_systab;
589	if (phys_addr == paddr)
590		return true;
591
592	if (efi_is_table_address(phys_addr))
593		return true;
594
595	switch (efi_mem_type(phys_addr)) {
596	case EFI_BOOT_SERVICES_DATA:
597	case EFI_RUNTIME_SERVICES_DATA:
598		return true;
599	default:
600		break;
601	}
602
603	return false;
604}
605
606/*
607 * Examine the physical address to determine if it is boot data by checking
608 * it against the boot params setup_data chain.
609 */
610static bool memremap_is_setup_data(resource_size_t phys_addr,
611				   unsigned long size)
612{
 
613	struct setup_data *data;
614	u64 paddr, paddr_next;
615
616	paddr = boot_params.hdr.setup_data;
617	while (paddr) {
618		unsigned int len;
619
620		if (phys_addr == paddr)
621			return true;
622
623		data = memremap(paddr, sizeof(*data),
624				MEMREMAP_WB | MEMREMAP_DEC);
 
 
 
 
625
626		paddr_next = data->next;
627		len = data->len;
628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629		memunmap(data);
630
631		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
632			return true;
633
634		paddr = paddr_next;
635	}
636
637	return false;
638}
639
640/*
641 * Examine the physical address to determine if it is boot data by checking
642 * it against the boot params setup_data chain (early boot version).
643 */
644static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
645						unsigned long size)
646{
 
647	struct setup_data *data;
648	u64 paddr, paddr_next;
649
650	paddr = boot_params.hdr.setup_data;
651	while (paddr) {
652		unsigned int len;
653
654		if (phys_addr == paddr)
655			return true;
656
657		data = early_memremap_decrypted(paddr, sizeof(*data));
 
 
 
 
 
 
658
659		paddr_next = data->next;
660		len = data->len;
661
662		early_memunmap(data, sizeof(*data));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
663
664		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
665			return true;
666
667		paddr = paddr_next;
668	}
669
670	return false;
671}
672
673/*
674 * Architecture function to determine if RAM remap is allowed. By default, a
675 * RAM remap will map the data as encrypted. Determine if a RAM remap should
676 * not be done so that the data will be mapped decrypted.
677 */
678bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
679				 unsigned long flags)
680{
681	if (!mem_encrypt_active())
682		return true;
683
684	if (flags & MEMREMAP_ENC)
685		return true;
686
687	if (flags & MEMREMAP_DEC)
688		return false;
689
690	if (sme_active()) {
691		if (memremap_is_setup_data(phys_addr, size) ||
692		    memremap_is_efi_data(phys_addr, size))
693			return false;
694	}
695
696	return !memremap_should_map_decrypted(phys_addr, size);
697}
698
699/*
700 * Architecture override of __weak function to adjust the protection attributes
701 * used when remapping memory. By default, early_memremap() will map the data
702 * as encrypted. Determine if an encrypted mapping should not be done and set
703 * the appropriate protection attributes.
704 */
705pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
706					     unsigned long size,
707					     pgprot_t prot)
708{
709	bool encrypted_prot;
710
711	if (!mem_encrypt_active())
712		return prot;
713
714	encrypted_prot = true;
715
716	if (sme_active()) {
717		if (early_memremap_is_setup_data(phys_addr, size) ||
718		    memremap_is_efi_data(phys_addr, size))
719			encrypted_prot = false;
720	}
721
722	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
723		encrypted_prot = false;
724
725	return encrypted_prot ? pgprot_encrypted(prot)
726			      : pgprot_decrypted(prot);
727}
728
729bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
730{
731	return arch_memremap_can_ram_remap(phys_addr, size, 0);
732}
733
734#ifdef CONFIG_AMD_MEM_ENCRYPT
735/* Remap memory with encryption */
736void __init *early_memremap_encrypted(resource_size_t phys_addr,
737				      unsigned long size)
738{
739	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
740}
741
742/*
743 * Remap memory with encryption and write-protected - cannot be called
744 * before pat_init() is called
745 */
746void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
747					 unsigned long size)
748{
749	/* Be sure the write-protect PAT entry is set for write-protect */
750	if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
751		return NULL;
752
753	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
754}
755
756/* Remap memory without encryption */
757void __init *early_memremap_decrypted(resource_size_t phys_addr,
758				      unsigned long size)
759{
760	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
761}
762
763/*
764 * Remap memory without encryption and write-protected - cannot be called
765 * before pat_init() is called
766 */
767void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
768					 unsigned long size)
769{
770	/* Be sure the write-protect PAT entry is set for write-protect */
771	if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
772		return NULL;
773
774	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
775}
776#endif	/* CONFIG_AMD_MEM_ENCRYPT */
777
778static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
779
780static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
781{
782	/* Don't assume we're using swapper_pg_dir at this point */
783	pgd_t *base = __va(read_cr3_pa());
784	pgd_t *pgd = &base[pgd_index(addr)];
785	p4d_t *p4d = p4d_offset(pgd, addr);
786	pud_t *pud = pud_offset(p4d, addr);
787	pmd_t *pmd = pmd_offset(pud, addr);
788
789	return pmd;
790}
791
792static inline pte_t * __init early_ioremap_pte(unsigned long addr)
793{
794	return &bm_pte[pte_index(addr)];
795}
796
797bool __init is_early_ioremap_ptep(pte_t *ptep)
798{
799	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
800}
801
802void __init early_ioremap_init(void)
803{
804	pmd_t *pmd;
805
806#ifdef CONFIG_X86_64
807	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
808#else
809	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
810#endif
811
812	early_ioremap_setup();
813
814	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
815	memset(bm_pte, 0, sizeof(bm_pte));
816	pmd_populate_kernel(&init_mm, pmd, bm_pte);
817
818	/*
819	 * The boot-ioremap range spans multiple pmds, for which
820	 * we are not prepared:
821	 */
822#define __FIXADDR_TOP (-PAGE_SIZE)
823	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
824		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
825#undef __FIXADDR_TOP
826	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
827		WARN_ON(1);
828		printk(KERN_WARNING "pmd %p != %p\n",
829		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
830		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
831			fix_to_virt(FIX_BTMAP_BEGIN));
832		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
833			fix_to_virt(FIX_BTMAP_END));
834
835		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
836		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
837		       FIX_BTMAP_BEGIN);
838	}
839}
840
841void __init __early_set_fixmap(enum fixed_addresses idx,
842			       phys_addr_t phys, pgprot_t flags)
843{
844	unsigned long addr = __fix_to_virt(idx);
845	pte_t *pte;
846
847	if (idx >= __end_of_fixed_addresses) {
848		BUG();
849		return;
850	}
851	pte = early_ioremap_pte(addr);
852
853	/* Sanitize 'prot' against any unsupported bits: */
854	pgprot_val(flags) &= __supported_pte_mask;
855
856	if (pgprot_val(flags))
857		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
858	else
859		pte_clear(&init_mm, addr, pte);
860	__flush_tlb_one_kernel(addr);
861}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Re-map IO memory to kernel address space so that we can access it.
  4 * This is needed for high PCI addresses that aren't mapped in the
  5 * 640k-1MB IO memory area on PC's
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 */
  9
 10#include <linux/memblock.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/ioport.h>
 14#include <linux/ioremap.h>
 15#include <linux/slab.h>
 16#include <linux/vmalloc.h>
 17#include <linux/mmiotrace.h>
 18#include <linux/cc_platform.h>
 19#include <linux/efi.h>
 20#include <linux/pgtable.h>
 21#include <linux/kmsan.h>
 22
 23#include <asm/set_memory.h>
 24#include <asm/e820/api.h>
 25#include <asm/efi.h>
 26#include <asm/fixmap.h>
 
 27#include <asm/tlbflush.h>
 28#include <asm/pgalloc.h>
 29#include <asm/memtype.h>
 30#include <asm/setup.h>
 31
 32#include "physaddr.h"
 33
 34/*
 35 * Descriptor controlling ioremap() behavior.
 36 */
 37struct ioremap_desc {
 38	unsigned int flags;
 39};
 40
 41/*
 42 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 43 * conflicts.
 44 */
 45int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 46			enum page_cache_mode pcm)
 47{
 48	unsigned long nrpages = size >> PAGE_SHIFT;
 49	int err;
 50
 51	switch (pcm) {
 52	case _PAGE_CACHE_MODE_UC:
 53	default:
 54		err = _set_memory_uc(vaddr, nrpages);
 55		break;
 56	case _PAGE_CACHE_MODE_WC:
 57		err = _set_memory_wc(vaddr, nrpages);
 58		break;
 59	case _PAGE_CACHE_MODE_WT:
 60		err = _set_memory_wt(vaddr, nrpages);
 61		break;
 62	case _PAGE_CACHE_MODE_WB:
 63		err = _set_memory_wb(vaddr, nrpages);
 64		break;
 65	}
 66
 67	return err;
 68}
 69
 70/* Does the range (or a subset of) contain normal RAM? */
 71static unsigned int __ioremap_check_ram(struct resource *res)
 72{
 73	unsigned long start_pfn, stop_pfn;
 74	unsigned long i;
 75
 76	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
 77		return 0;
 78
 79	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 80	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
 81	if (stop_pfn > start_pfn) {
 82		for (i = 0; i < (stop_pfn - start_pfn); ++i)
 83			if (pfn_valid(start_pfn + i) &&
 84			    !PageReserved(pfn_to_page(start_pfn + i)))
 85				return IORES_MAP_SYSTEM_RAM;
 86	}
 87
 88	return 0;
 89}
 90
 91/*
 92 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
 93 * there the whole memory is already encrypted.
 94 */
 95static unsigned int __ioremap_check_encrypted(struct resource *res)
 96{
 97	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
 98		return 0;
 99
100	switch (res->desc) {
101	case IORES_DESC_NONE:
102	case IORES_DESC_RESERVED:
103		break;
104	default:
105		return IORES_MAP_ENCRYPTED;
106	}
107
108	return 0;
109}
110
111/*
112 * The EFI runtime services data area is not covered by walk_mem_res(), but must
113 * be mapped encrypted when SEV is active.
114 */
115static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
116{
117	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
118		return;
119
120	if (x86_platform.hyper.is_private_mmio(addr)) {
121		desc->flags |= IORES_MAP_ENCRYPTED;
122		return;
123	}
124
125	if (!IS_ENABLED(CONFIG_EFI))
126		return;
127
128	if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
129	    (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
130	     efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
131		desc->flags |= IORES_MAP_ENCRYPTED;
132}
133
134static int __ioremap_collect_map_flags(struct resource *res, void *arg)
135{
136	struct ioremap_desc *desc = arg;
137
138	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
139		desc->flags |= __ioremap_check_ram(res);
140
141	if (!(desc->flags & IORES_MAP_ENCRYPTED))
142		desc->flags |= __ioremap_check_encrypted(res);
143
144	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
145			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
146}
147
148/*
149 * To avoid multiple resource walks, this function walks resources marked as
150 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
151 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
152 *
153 * After that, deal with misc other ranges in __ioremap_check_other() which do
154 * not fall into the above category.
155 */
156static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
157				struct ioremap_desc *desc)
158{
159	u64 start, end;
160
161	start = (u64)addr;
162	end = start + size - 1;
163	memset(desc, 0, sizeof(struct ioremap_desc));
164
165	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
166
167	__ioremap_check_other(addr, desc);
168}
169
170/*
171 * Remap an arbitrary physical address space into the kernel virtual
172 * address space. It transparently creates kernel huge I/O mapping when
173 * the physical address is aligned by a huge page size (1GB or 2MB) and
174 * the requested size is at least the huge page size.
175 *
176 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
177 * Therefore, the mapping code falls back to use a smaller page toward 4KB
178 * when a mapping range is covered by non-WB type of MTRRs.
179 *
180 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
181 * have to convert them into an offset in a page-aligned mapping, but the
182 * caller shouldn't need to know that small detail.
183 */
184static void __iomem *
185__ioremap_caller(resource_size_t phys_addr, unsigned long size,
186		 enum page_cache_mode pcm, void *caller, bool encrypted)
187{
188	unsigned long offset, vaddr;
189	resource_size_t last_addr;
190	const resource_size_t unaligned_phys_addr = phys_addr;
191	const unsigned long unaligned_size = size;
192	struct ioremap_desc io_desc;
193	struct vm_struct *area;
194	enum page_cache_mode new_pcm;
195	pgprot_t prot;
196	int retval;
197	void __iomem *ret_addr;
198
199	/* Don't allow wraparound or zero size */
200	last_addr = phys_addr + size - 1;
201	if (!size || last_addr < phys_addr)
202		return NULL;
203
204	if (!phys_addr_valid(phys_addr)) {
205		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
206		       (unsigned long long)phys_addr);
207		WARN_ON_ONCE(1);
208		return NULL;
209	}
210
211	__ioremap_check_mem(phys_addr, size, &io_desc);
212
213	/*
214	 * Don't allow anybody to remap normal RAM that we're using..
215	 */
216	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
217		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
218			  &phys_addr, &last_addr);
219		return NULL;
220	}
221
222	/*
223	 * Mappings have to be page-aligned
224	 */
225	offset = phys_addr & ~PAGE_MASK;
226	phys_addr &= PAGE_MASK;
227	size = PAGE_ALIGN(last_addr+1) - phys_addr;
228
229	/*
230	 * Mask out any bits not part of the actual physical
231	 * address, like memory encryption bits.
232	 */
233	phys_addr &= PHYSICAL_PAGE_MASK;
234
235	retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
236						pcm, &new_pcm);
237	if (retval) {
238		printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
239		return NULL;
240	}
241
242	if (pcm != new_pcm) {
243		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
244			printk(KERN_ERR
245		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
246				(unsigned long long)phys_addr,
247				(unsigned long long)(phys_addr + size),
248				pcm, new_pcm);
249			goto err_free_memtype;
250		}
251		pcm = new_pcm;
252	}
253
254	/*
255	 * If the page being mapped is in memory and SEV is active then
256	 * make sure the memory encryption attribute is enabled in the
257	 * resulting mapping.
258	 * In TDX guests, memory is marked private by default. If encryption
259	 * is not requested (using encrypted), explicitly set decrypt
260	 * attribute in all IOREMAPPED memory.
261	 */
262	prot = PAGE_KERNEL_IO;
263	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
264		prot = pgprot_encrypted(prot);
265	else
266		prot = pgprot_decrypted(prot);
267
268	switch (pcm) {
269	case _PAGE_CACHE_MODE_UC:
270	default:
271		prot = __pgprot(pgprot_val(prot) |
272				cachemode2protval(_PAGE_CACHE_MODE_UC));
273		break;
274	case _PAGE_CACHE_MODE_UC_MINUS:
275		prot = __pgprot(pgprot_val(prot) |
276				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
277		break;
278	case _PAGE_CACHE_MODE_WC:
279		prot = __pgprot(pgprot_val(prot) |
280				cachemode2protval(_PAGE_CACHE_MODE_WC));
281		break;
282	case _PAGE_CACHE_MODE_WT:
283		prot = __pgprot(pgprot_val(prot) |
284				cachemode2protval(_PAGE_CACHE_MODE_WT));
285		break;
286	case _PAGE_CACHE_MODE_WB:
287		break;
288	}
289
290	/*
291	 * Ok, go for it..
292	 */
293	area = get_vm_area_caller(size, VM_IOREMAP, caller);
294	if (!area)
295		goto err_free_memtype;
296	area->phys_addr = phys_addr;
297	vaddr = (unsigned long) area->addr;
298
299	if (memtype_kernel_map_sync(phys_addr, size, pcm))
300		goto err_free_area;
301
302	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
303		goto err_free_area;
304
305	ret_addr = (void __iomem *) (vaddr + offset);
306	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
307
308	/*
309	 * Check if the request spans more than any BAR in the iomem resource
310	 * tree.
311	 */
312	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
313		pr_warn("caller %pS mapping multiple BARs\n", caller);
314
315	return ret_addr;
316err_free_area:
317	free_vm_area(area);
318err_free_memtype:
319	memtype_free(phys_addr, phys_addr + size);
320	return NULL;
321}
322
323/**
324 * ioremap     -   map bus memory into CPU space
325 * @phys_addr:    bus address of the memory
326 * @size:      size of the resource to map
327 *
328 * ioremap performs a platform specific sequence of operations to
329 * make bus memory CPU accessible via the readb/readw/readl/writeb/
330 * writew/writel functions and the other mmio helpers. The returned
331 * address is not guaranteed to be usable directly as a virtual
332 * address.
333 *
334 * This version of ioremap ensures that the memory is marked uncachable
335 * on the CPU as well as honouring existing caching rules from things like
336 * the PCI bus. Note that there are other caches and buffers on many
337 * busses. In particular driver authors should read up on PCI writes
338 *
339 * It's useful if some control registers are in such an area and
340 * write combining or read caching is not desirable:
341 *
342 * Must be freed with iounmap.
343 */
344void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
345{
346	/*
347	 * Ideally, this should be:
348	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
349	 *
350	 * Till we fix all X drivers to use ioremap_wc(), we will use
351	 * UC MINUS. Drivers that are certain they need or can already
352	 * be converted over to strong UC can use ioremap_uc().
353	 */
354	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
355
356	return __ioremap_caller(phys_addr, size, pcm,
357				__builtin_return_address(0), false);
358}
359EXPORT_SYMBOL(ioremap);
360
361/**
362 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
363 * @phys_addr:    bus address of the memory
364 * @size:      size of the resource to map
365 *
366 * ioremap_uc performs a platform specific sequence of operations to
367 * make bus memory CPU accessible via the readb/readw/readl/writeb/
368 * writew/writel functions and the other mmio helpers. The returned
369 * address is not guaranteed to be usable directly as a virtual
370 * address.
371 *
372 * This version of ioremap ensures that the memory is marked with a strong
373 * preference as completely uncachable on the CPU when possible. For non-PAT
374 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
375 * systems this will set the PAT entry for the pages as strong UC.  This call
376 * will honor existing caching rules from things like the PCI bus. Note that
377 * there are other caches and buffers on many busses. In particular driver
378 * authors should read up on PCI writes.
379 *
380 * It's useful if some control registers are in such an area and
381 * write combining or read caching is not desirable:
382 *
383 * Must be freed with iounmap.
384 */
385void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
386{
387	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
388
389	return __ioremap_caller(phys_addr, size, pcm,
390				__builtin_return_address(0), false);
391}
392EXPORT_SYMBOL_GPL(ioremap_uc);
393
394/**
395 * ioremap_wc	-	map memory into CPU space write combined
396 * @phys_addr:	bus address of the memory
397 * @size:	size of the resource to map
398 *
399 * This version of ioremap ensures that the memory is marked write combining.
400 * Write combining allows faster writes to some hardware devices.
401 *
402 * Must be freed with iounmap.
403 */
404void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
405{
406	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
407					__builtin_return_address(0), false);
408}
409EXPORT_SYMBOL(ioremap_wc);
410
411/**
412 * ioremap_wt	-	map memory into CPU space write through
413 * @phys_addr:	bus address of the memory
414 * @size:	size of the resource to map
415 *
416 * This version of ioremap ensures that the memory is marked write through.
417 * Write through stores data into memory while keeping the cache up-to-date.
418 *
419 * Must be freed with iounmap.
420 */
421void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
422{
423	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
424					__builtin_return_address(0), false);
425}
426EXPORT_SYMBOL(ioremap_wt);
427
428void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
429{
430	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
431				__builtin_return_address(0), true);
432}
433EXPORT_SYMBOL(ioremap_encrypted);
434
435void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
436{
437	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
438				__builtin_return_address(0), false);
439}
440EXPORT_SYMBOL(ioremap_cache);
441
442void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
443				unsigned long prot_val)
444{
445	return __ioremap_caller(phys_addr, size,
446				pgprot2cachemode(__pgprot(prot_val)),
447				__builtin_return_address(0), false);
448}
449EXPORT_SYMBOL(ioremap_prot);
450
451/**
452 * iounmap - Free a IO remapping
453 * @addr: virtual address from ioremap_*
454 *
455 * Caller must ensure there is only one unmapping for the same pointer.
456 */
457void iounmap(volatile void __iomem *addr)
458{
459	struct vm_struct *p, *o;
460
461	if (WARN_ON_ONCE(!is_ioremap_addr((void __force *)addr)))
462		return;
463
464	/*
465	 * The PCI/ISA range special-casing was removed from __ioremap()
466	 * so this check, in theory, can be removed. However, there are
467	 * cases where iounmap() is called for addresses not obtained via
468	 * ioremap() (vga16fb for example). Add a warning so that these
469	 * cases can be caught and fixed.
470	 */
471	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
472	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
473		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
474		return;
475	}
476
477	mmiotrace_iounmap(addr);
478
479	addr = (volatile void __iomem *)
480		(PAGE_MASK & (unsigned long __force)addr);
481
482	/* Use the vm area unlocked, assuming the caller
483	   ensures there isn't another iounmap for the same address
484	   in parallel. Reuse of the virtual address is prevented by
485	   leaving it in the global lists until we're done with it.
486	   cpa takes care of the direct mappings. */
487	p = find_vm_area((void __force *)addr);
488
489	if (!p) {
490		printk(KERN_ERR "iounmap: bad address %p\n", addr);
491		dump_stack();
492		return;
493	}
494
495	kmsan_iounmap_page_range((unsigned long)addr,
496		(unsigned long)addr + get_vm_area_size(p));
497	memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
498
499	/* Finally remove it */
500	o = remove_vm_area((void __force *)addr);
501	BUG_ON(p != o || o == NULL);
502	kfree(p);
503}
504EXPORT_SYMBOL(iounmap);
505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506/*
507 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
508 * access
509 */
510void *xlate_dev_mem_ptr(phys_addr_t phys)
511{
512	unsigned long start  = phys &  PAGE_MASK;
513	unsigned long offset = phys & ~PAGE_MASK;
514	void *vaddr;
515
516	/* memremap() maps if RAM, otherwise falls back to ioremap() */
517	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
518
519	/* Only add the offset on success and return NULL if memremap() failed */
520	if (vaddr)
521		vaddr += offset;
522
523	return vaddr;
524}
525
526void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
527{
528	memunmap((void *)((unsigned long)addr & PAGE_MASK));
529}
530
531#ifdef CONFIG_AMD_MEM_ENCRYPT
532/*
533 * Examine the physical address to determine if it is an area of memory
534 * that should be mapped decrypted.  If the memory is not part of the
535 * kernel usable area it was accessed and created decrypted, so these
536 * areas should be mapped decrypted. And since the encryption key can
537 * change across reboots, persistent memory should also be mapped
538 * decrypted.
539 *
540 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
541 * only persistent memory should be mapped decrypted.
542 */
543static bool memremap_should_map_decrypted(resource_size_t phys_addr,
544					  unsigned long size)
545{
546	int is_pmem;
547
548	/*
549	 * Check if the address is part of a persistent memory region.
550	 * This check covers areas added by E820, EFI and ACPI.
551	 */
552	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
553				    IORES_DESC_PERSISTENT_MEMORY);
554	if (is_pmem != REGION_DISJOINT)
555		return true;
556
557	/*
558	 * Check if the non-volatile attribute is set for an EFI
559	 * reserved area.
560	 */
561	if (efi_enabled(EFI_BOOT)) {
562		switch (efi_mem_type(phys_addr)) {
563		case EFI_RESERVED_TYPE:
564			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
565				return true;
566			break;
567		default:
568			break;
569		}
570	}
571
572	/* Check if the address is outside kernel usable area */
573	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
574	case E820_TYPE_RESERVED:
575	case E820_TYPE_ACPI:
576	case E820_TYPE_NVS:
577	case E820_TYPE_UNUSABLE:
578		/* For SEV, these areas are encrypted */
579		if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
580			break;
581		fallthrough;
582
583	case E820_TYPE_PRAM:
584		return true;
585	default:
586		break;
587	}
588
589	return false;
590}
591
592/*
593 * Examine the physical address to determine if it is EFI data. Check
594 * it against the boot params structure and EFI tables and memory types.
595 */
596static bool memremap_is_efi_data(resource_size_t phys_addr,
597				 unsigned long size)
598{
599	u64 paddr;
600
601	/* Check if the address is part of EFI boot/runtime data */
602	if (!efi_enabled(EFI_BOOT))
603		return false;
604
605	paddr = boot_params.efi_info.efi_memmap_hi;
606	paddr <<= 32;
607	paddr |= boot_params.efi_info.efi_memmap;
608	if (phys_addr == paddr)
609		return true;
610
611	paddr = boot_params.efi_info.efi_systab_hi;
612	paddr <<= 32;
613	paddr |= boot_params.efi_info.efi_systab;
614	if (phys_addr == paddr)
615		return true;
616
617	if (efi_is_table_address(phys_addr))
618		return true;
619
620	switch (efi_mem_type(phys_addr)) {
621	case EFI_BOOT_SERVICES_DATA:
622	case EFI_RUNTIME_SERVICES_DATA:
623		return true;
624	default:
625		break;
626	}
627
628	return false;
629}
630
631/*
632 * Examine the physical address to determine if it is boot data by checking
633 * it against the boot params setup_data chain.
634 */
635static bool memremap_is_setup_data(resource_size_t phys_addr,
636				   unsigned long size)
637{
638	struct setup_indirect *indirect;
639	struct setup_data *data;
640	u64 paddr, paddr_next;
641
642	paddr = boot_params.hdr.setup_data;
643	while (paddr) {
644		unsigned int len;
645
646		if (phys_addr == paddr)
647			return true;
648
649		data = memremap(paddr, sizeof(*data),
650				MEMREMAP_WB | MEMREMAP_DEC);
651		if (!data) {
652			pr_warn("failed to memremap setup_data entry\n");
653			return false;
654		}
655
656		paddr_next = data->next;
657		len = data->len;
658
659		if ((phys_addr > paddr) &&
660		    (phys_addr < (paddr + sizeof(struct setup_data) + len))) {
661			memunmap(data);
662			return true;
663		}
664
665		if (data->type == SETUP_INDIRECT) {
666			memunmap(data);
667			data = memremap(paddr, sizeof(*data) + len,
668					MEMREMAP_WB | MEMREMAP_DEC);
669			if (!data) {
670				pr_warn("failed to memremap indirect setup_data\n");
671				return false;
672			}
673
674			indirect = (struct setup_indirect *)data->data;
675
676			if (indirect->type != SETUP_INDIRECT) {
677				paddr = indirect->addr;
678				len = indirect->len;
679			}
680		}
681
682		memunmap(data);
683
684		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
685			return true;
686
687		paddr = paddr_next;
688	}
689
690	return false;
691}
692
693/*
694 * Examine the physical address to determine if it is boot data by checking
695 * it against the boot params setup_data chain (early boot version).
696 */
697static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
698						unsigned long size)
699{
700	struct setup_indirect *indirect;
701	struct setup_data *data;
702	u64 paddr, paddr_next;
703
704	paddr = boot_params.hdr.setup_data;
705	while (paddr) {
706		unsigned int len, size;
707
708		if (phys_addr == paddr)
709			return true;
710
711		data = early_memremap_decrypted(paddr, sizeof(*data));
712		if (!data) {
713			pr_warn("failed to early memremap setup_data entry\n");
714			return false;
715		}
716
717		size = sizeof(*data);
718
719		paddr_next = data->next;
720		len = data->len;
721
722		if ((phys_addr > paddr) &&
723		    (phys_addr < (paddr + sizeof(struct setup_data) + len))) {
724			early_memunmap(data, sizeof(*data));
725			return true;
726		}
727
728		if (data->type == SETUP_INDIRECT) {
729			size += len;
730			early_memunmap(data, sizeof(*data));
731			data = early_memremap_decrypted(paddr, size);
732			if (!data) {
733				pr_warn("failed to early memremap indirect setup_data\n");
734				return false;
735			}
736
737			indirect = (struct setup_indirect *)data->data;
738
739			if (indirect->type != SETUP_INDIRECT) {
740				paddr = indirect->addr;
741				len = indirect->len;
742			}
743		}
744
745		early_memunmap(data, size);
746
747		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
748			return true;
749
750		paddr = paddr_next;
751	}
752
753	return false;
754}
755
756/*
757 * Architecture function to determine if RAM remap is allowed. By default, a
758 * RAM remap will map the data as encrypted. Determine if a RAM remap should
759 * not be done so that the data will be mapped decrypted.
760 */
761bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
762				 unsigned long flags)
763{
764	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
765		return true;
766
767	if (flags & MEMREMAP_ENC)
768		return true;
769
770	if (flags & MEMREMAP_DEC)
771		return false;
772
773	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
774		if (memremap_is_setup_data(phys_addr, size) ||
775		    memremap_is_efi_data(phys_addr, size))
776			return false;
777	}
778
779	return !memremap_should_map_decrypted(phys_addr, size);
780}
781
782/*
783 * Architecture override of __weak function to adjust the protection attributes
784 * used when remapping memory. By default, early_memremap() will map the data
785 * as encrypted. Determine if an encrypted mapping should not be done and set
786 * the appropriate protection attributes.
787 */
788pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
789					     unsigned long size,
790					     pgprot_t prot)
791{
792	bool encrypted_prot;
793
794	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
795		return prot;
796
797	encrypted_prot = true;
798
799	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
800		if (early_memremap_is_setup_data(phys_addr, size) ||
801		    memremap_is_efi_data(phys_addr, size))
802			encrypted_prot = false;
803	}
804
805	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
806		encrypted_prot = false;
807
808	return encrypted_prot ? pgprot_encrypted(prot)
809			      : pgprot_decrypted(prot);
810}
811
812bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
813{
814	return arch_memremap_can_ram_remap(phys_addr, size, 0);
815}
816
 
817/* Remap memory with encryption */
818void __init *early_memremap_encrypted(resource_size_t phys_addr,
819				      unsigned long size)
820{
821	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
822}
823
824/*
825 * Remap memory with encryption and write-protected - cannot be called
826 * before pat_init() is called
827 */
828void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
829					 unsigned long size)
830{
831	if (!x86_has_pat_wp())
 
832		return NULL;
 
833	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
834}
835
836/* Remap memory without encryption */
837void __init *early_memremap_decrypted(resource_size_t phys_addr,
838				      unsigned long size)
839{
840	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
841}
842
843/*
844 * Remap memory without encryption and write-protected - cannot be called
845 * before pat_init() is called
846 */
847void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
848					 unsigned long size)
849{
850	if (!x86_has_pat_wp())
 
851		return NULL;
 
852	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
853}
854#endif	/* CONFIG_AMD_MEM_ENCRYPT */
855
856static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
857
858static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
859{
860	/* Don't assume we're using swapper_pg_dir at this point */
861	pgd_t *base = __va(read_cr3_pa());
862	pgd_t *pgd = &base[pgd_index(addr)];
863	p4d_t *p4d = p4d_offset(pgd, addr);
864	pud_t *pud = pud_offset(p4d, addr);
865	pmd_t *pmd = pmd_offset(pud, addr);
866
867	return pmd;
868}
869
870static inline pte_t * __init early_ioremap_pte(unsigned long addr)
871{
872	return &bm_pte[pte_index(addr)];
873}
874
875bool __init is_early_ioremap_ptep(pte_t *ptep)
876{
877	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
878}
879
880void __init early_ioremap_init(void)
881{
882	pmd_t *pmd;
883
884#ifdef CONFIG_X86_64
885	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
886#else
887	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
888#endif
889
890	early_ioremap_setup();
891
892	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
893	memset(bm_pte, 0, sizeof(bm_pte));
894	pmd_populate_kernel(&init_mm, pmd, bm_pte);
895
896	/*
897	 * The boot-ioremap range spans multiple pmds, for which
898	 * we are not prepared:
899	 */
900#define __FIXADDR_TOP (-PAGE_SIZE)
901	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
902		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
903#undef __FIXADDR_TOP
904	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
905		WARN_ON(1);
906		printk(KERN_WARNING "pmd %p != %p\n",
907		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
908		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
909			fix_to_virt(FIX_BTMAP_BEGIN));
910		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
911			fix_to_virt(FIX_BTMAP_END));
912
913		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
914		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
915		       FIX_BTMAP_BEGIN);
916	}
917}
918
919void __init __early_set_fixmap(enum fixed_addresses idx,
920			       phys_addr_t phys, pgprot_t flags)
921{
922	unsigned long addr = __fix_to_virt(idx);
923	pte_t *pte;
924
925	if (idx >= __end_of_fixed_addresses) {
926		BUG();
927		return;
928	}
929	pte = early_ioremap_pte(addr);
930
931	/* Sanitize 'prot' against any unsupported bits: */
932	pgprot_val(flags) &= __supported_pte_mask;
933
934	if (pgprot_val(flags))
935		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
936	else
937		pte_clear(&init_mm, addr, pte);
938	flush_tlb_one_kernel(addr);
939}