Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Re-map IO memory to kernel address space so that we can access it.
  4 * This is needed for high PCI addresses that aren't mapped in the
  5 * 640k-1MB IO memory area on PC's
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 */
  9
 10#include <linux/memblock.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/ioport.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include <linux/mmiotrace.h>
 17#include <linux/mem_encrypt.h>
 18#include <linux/efi.h>
 19
 20#include <asm/set_memory.h>
 21#include <asm/e820/api.h>
 22#include <asm/efi.h>
 23#include <asm/fixmap.h>
 24#include <asm/pgtable.h>
 25#include <asm/tlbflush.h>
 26#include <asm/pgalloc.h>
 27#include <asm/pat.h>
 28#include <asm/setup.h>
 29
 30#include "physaddr.h"
 31
 32/*
 33 * Descriptor controlling ioremap() behavior.
 34 */
 35struct ioremap_desc {
 36	unsigned int flags;
 37};
 38
 39/*
 40 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 41 * conflicts.
 42 */
 43int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 44			enum page_cache_mode pcm)
 45{
 46	unsigned long nrpages = size >> PAGE_SHIFT;
 47	int err;
 48
 49	switch (pcm) {
 50	case _PAGE_CACHE_MODE_UC:
 51	default:
 52		err = _set_memory_uc(vaddr, nrpages);
 53		break;
 54	case _PAGE_CACHE_MODE_WC:
 55		err = _set_memory_wc(vaddr, nrpages);
 56		break;
 57	case _PAGE_CACHE_MODE_WT:
 58		err = _set_memory_wt(vaddr, nrpages);
 59		break;
 60	case _PAGE_CACHE_MODE_WB:
 61		err = _set_memory_wb(vaddr, nrpages);
 62		break;
 63	}
 64
 65	return err;
 66}
 67
 68/* Does the range (or a subset of) contain normal RAM? */
 69static unsigned int __ioremap_check_ram(struct resource *res)
 70{
 71	unsigned long start_pfn, stop_pfn;
 72	unsigned long i;
 73
 74	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
 75		return 0;
 76
 77	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 78	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
 79	if (stop_pfn > start_pfn) {
 80		for (i = 0; i < (stop_pfn - start_pfn); ++i)
 81			if (pfn_valid(start_pfn + i) &&
 82			    !PageReserved(pfn_to_page(start_pfn + i)))
 83				return IORES_MAP_SYSTEM_RAM;
 84	}
 85
 86	return 0;
 87}
 88
 89/*
 90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
 91 * there the whole memory is already encrypted.
 92 */
 93static unsigned int __ioremap_check_encrypted(struct resource *res)
 94{
 95	if (!sev_active())
 96		return 0;
 97
 98	switch (res->desc) {
 99	case IORES_DESC_NONE:
100	case IORES_DESC_RESERVED:
101		break;
102	default:
103		return IORES_MAP_ENCRYPTED;
104	}
105
106	return 0;
107}
108
109static int __ioremap_collect_map_flags(struct resource *res, void *arg)
110{
111	struct ioremap_desc *desc = arg;
112
113	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
114		desc->flags |= __ioremap_check_ram(res);
115
116	if (!(desc->flags & IORES_MAP_ENCRYPTED))
117		desc->flags |= __ioremap_check_encrypted(res);
118
119	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
120			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
121}
122
123/*
124 * To avoid multiple resource walks, this function walks resources marked as
125 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
126 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
127 */
128static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
129				struct ioremap_desc *desc)
130{
131	u64 start, end;
132
133	start = (u64)addr;
134	end = start + size - 1;
135	memset(desc, 0, sizeof(struct ioremap_desc));
136
137	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
138}
139
140/*
141 * Remap an arbitrary physical address space into the kernel virtual
142 * address space. It transparently creates kernel huge I/O mapping when
143 * the physical address is aligned by a huge page size (1GB or 2MB) and
144 * the requested size is at least the huge page size.
145 *
146 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
147 * Therefore, the mapping code falls back to use a smaller page toward 4KB
148 * when a mapping range is covered by non-WB type of MTRRs.
149 *
150 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
151 * have to convert them into an offset in a page-aligned mapping, but the
152 * caller shouldn't need to know that small detail.
153 */
154static void __iomem *
155__ioremap_caller(resource_size_t phys_addr, unsigned long size,
156		 enum page_cache_mode pcm, void *caller, bool encrypted)
157{
158	unsigned long offset, vaddr;
159	resource_size_t last_addr;
160	const resource_size_t unaligned_phys_addr = phys_addr;
161	const unsigned long unaligned_size = size;
162	struct ioremap_desc io_desc;
163	struct vm_struct *area;
164	enum page_cache_mode new_pcm;
165	pgprot_t prot;
166	int retval;
167	void __iomem *ret_addr;
168
169	/* Don't allow wraparound or zero size */
170	last_addr = phys_addr + size - 1;
171	if (!size || last_addr < phys_addr)
172		return NULL;
173
174	if (!phys_addr_valid(phys_addr)) {
175		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
176		       (unsigned long long)phys_addr);
177		WARN_ON_ONCE(1);
178		return NULL;
179	}
180
181	__ioremap_check_mem(phys_addr, size, &io_desc);
182
183	/*
184	 * Don't allow anybody to remap normal RAM that we're using..
185	 */
186	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
187		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
188			  &phys_addr, &last_addr);
189		return NULL;
190	}
191
192	/*
193	 * Mappings have to be page-aligned
194	 */
195	offset = phys_addr & ~PAGE_MASK;
196	phys_addr &= PHYSICAL_PAGE_MASK;
197	size = PAGE_ALIGN(last_addr+1) - phys_addr;
198
199	retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
200						pcm, &new_pcm);
201	if (retval) {
202		printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
203		return NULL;
204	}
205
206	if (pcm != new_pcm) {
207		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
208			printk(KERN_ERR
209		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
210				(unsigned long long)phys_addr,
211				(unsigned long long)(phys_addr + size),
212				pcm, new_pcm);
213			goto err_free_memtype;
214		}
215		pcm = new_pcm;
216	}
217
218	/*
219	 * If the page being mapped is in memory and SEV is active then
220	 * make sure the memory encryption attribute is enabled in the
221	 * resulting mapping.
222	 */
223	prot = PAGE_KERNEL_IO;
224	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
225		prot = pgprot_encrypted(prot);
226
227	switch (pcm) {
228	case _PAGE_CACHE_MODE_UC:
229	default:
230		prot = __pgprot(pgprot_val(prot) |
231				cachemode2protval(_PAGE_CACHE_MODE_UC));
232		break;
233	case _PAGE_CACHE_MODE_UC_MINUS:
234		prot = __pgprot(pgprot_val(prot) |
235				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
236		break;
237	case _PAGE_CACHE_MODE_WC:
238		prot = __pgprot(pgprot_val(prot) |
239				cachemode2protval(_PAGE_CACHE_MODE_WC));
240		break;
241	case _PAGE_CACHE_MODE_WT:
242		prot = __pgprot(pgprot_val(prot) |
243				cachemode2protval(_PAGE_CACHE_MODE_WT));
244		break;
245	case _PAGE_CACHE_MODE_WB:
246		break;
247	}
248
249	/*
250	 * Ok, go for it..
251	 */
252	area = get_vm_area_caller(size, VM_IOREMAP, caller);
253	if (!area)
254		goto err_free_memtype;
255	area->phys_addr = phys_addr;
256	vaddr = (unsigned long) area->addr;
257
258	if (kernel_map_sync_memtype(phys_addr, size, pcm))
259		goto err_free_area;
260
261	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
262		goto err_free_area;
263
264	ret_addr = (void __iomem *) (vaddr + offset);
265	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
266
267	/*
268	 * Check if the request spans more than any BAR in the iomem resource
269	 * tree.
270	 */
271	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
272		pr_warn("caller %pS mapping multiple BARs\n", caller);
273
274	return ret_addr;
275err_free_area:
276	free_vm_area(area);
277err_free_memtype:
278	free_memtype(phys_addr, phys_addr + size);
279	return NULL;
280}
281
282/**
283 * ioremap_nocache     -   map bus memory into CPU space
284 * @phys_addr:    bus address of the memory
285 * @size:      size of the resource to map
286 *
287 * ioremap_nocache performs a platform specific sequence of operations to
288 * make bus memory CPU accessible via the readb/readw/readl/writeb/
289 * writew/writel functions and the other mmio helpers. The returned
290 * address is not guaranteed to be usable directly as a virtual
291 * address.
292 *
293 * This version of ioremap ensures that the memory is marked uncachable
294 * on the CPU as well as honouring existing caching rules from things like
295 * the PCI bus. Note that there are other caches and buffers on many
296 * busses. In particular driver authors should read up on PCI writes
297 *
298 * It's useful if some control registers are in such an area and
299 * write combining or read caching is not desirable:
300 *
301 * Must be freed with iounmap.
302 */
303void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
304{
305	/*
306	 * Ideally, this should be:
307	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
308	 *
309	 * Till we fix all X drivers to use ioremap_wc(), we will use
310	 * UC MINUS. Drivers that are certain they need or can already
311	 * be converted over to strong UC can use ioremap_uc().
312	 */
313	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
314
315	return __ioremap_caller(phys_addr, size, pcm,
316				__builtin_return_address(0), false);
317}
318EXPORT_SYMBOL(ioremap_nocache);
319
320/**
321 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
322 * @phys_addr:    bus address of the memory
323 * @size:      size of the resource to map
324 *
325 * ioremap_uc performs a platform specific sequence of operations to
326 * make bus memory CPU accessible via the readb/readw/readl/writeb/
327 * writew/writel functions and the other mmio helpers. The returned
328 * address is not guaranteed to be usable directly as a virtual
329 * address.
330 *
331 * This version of ioremap ensures that the memory is marked with a strong
332 * preference as completely uncachable on the CPU when possible. For non-PAT
333 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
334 * systems this will set the PAT entry for the pages as strong UC.  This call
335 * will honor existing caching rules from things like the PCI bus. Note that
336 * there are other caches and buffers on many busses. In particular driver
337 * authors should read up on PCI writes.
338 *
339 * It's useful if some control registers are in such an area and
340 * write combining or read caching is not desirable:
341 *
342 * Must be freed with iounmap.
343 */
344void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
345{
346	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
347
348	return __ioremap_caller(phys_addr, size, pcm,
349				__builtin_return_address(0), false);
350}
351EXPORT_SYMBOL_GPL(ioremap_uc);
352
353/**
354 * ioremap_wc	-	map memory into CPU space write combined
355 * @phys_addr:	bus address of the memory
356 * @size:	size of the resource to map
357 *
358 * This version of ioremap ensures that the memory is marked write combining.
359 * Write combining allows faster writes to some hardware devices.
360 *
361 * Must be freed with iounmap.
362 */
363void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
364{
365	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
366					__builtin_return_address(0), false);
367}
368EXPORT_SYMBOL(ioremap_wc);
369
370/**
371 * ioremap_wt	-	map memory into CPU space write through
372 * @phys_addr:	bus address of the memory
373 * @size:	size of the resource to map
374 *
375 * This version of ioremap ensures that the memory is marked write through.
376 * Write through stores data into memory while keeping the cache up-to-date.
377 *
378 * Must be freed with iounmap.
379 */
380void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
381{
382	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
383					__builtin_return_address(0), false);
384}
385EXPORT_SYMBOL(ioremap_wt);
386
387void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
388{
389	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
390				__builtin_return_address(0), true);
391}
392EXPORT_SYMBOL(ioremap_encrypted);
393
394void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
395{
396	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
397				__builtin_return_address(0), false);
398}
399EXPORT_SYMBOL(ioremap_cache);
400
401void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
402				unsigned long prot_val)
403{
404	return __ioremap_caller(phys_addr, size,
405				pgprot2cachemode(__pgprot(prot_val)),
406				__builtin_return_address(0), false);
407}
408EXPORT_SYMBOL(ioremap_prot);
409
410/**
411 * iounmap - Free a IO remapping
412 * @addr: virtual address from ioremap_*
413 *
414 * Caller must ensure there is only one unmapping for the same pointer.
415 */
416void iounmap(volatile void __iomem *addr)
417{
418	struct vm_struct *p, *o;
419
420	if ((void __force *)addr <= high_memory)
421		return;
422
423	/*
424	 * The PCI/ISA range special-casing was removed from __ioremap()
425	 * so this check, in theory, can be removed. However, there are
426	 * cases where iounmap() is called for addresses not obtained via
427	 * ioremap() (vga16fb for example). Add a warning so that these
428	 * cases can be caught and fixed.
429	 */
430	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
431	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
432		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
433		return;
434	}
435
436	mmiotrace_iounmap(addr);
437
438	addr = (volatile void __iomem *)
439		(PAGE_MASK & (unsigned long __force)addr);
440
441	/* Use the vm area unlocked, assuming the caller
442	   ensures there isn't another iounmap for the same address
443	   in parallel. Reuse of the virtual address is prevented by
444	   leaving it in the global lists until we're done with it.
445	   cpa takes care of the direct mappings. */
446	p = find_vm_area((void __force *)addr);
447
448	if (!p) {
449		printk(KERN_ERR "iounmap: bad address %p\n", addr);
450		dump_stack();
451		return;
452	}
453
454	free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
455
456	/* Finally remove it */
457	o = remove_vm_area((void __force *)addr);
458	BUG_ON(p != o || o == NULL);
459	kfree(p);
460}
461EXPORT_SYMBOL(iounmap);
462
463int __init arch_ioremap_p4d_supported(void)
464{
465	return 0;
466}
467
468int __init arch_ioremap_pud_supported(void)
469{
470#ifdef CONFIG_X86_64
471	return boot_cpu_has(X86_FEATURE_GBPAGES);
472#else
473	return 0;
474#endif
475}
476
477int __init arch_ioremap_pmd_supported(void)
478{
479	return boot_cpu_has(X86_FEATURE_PSE);
480}
481
482/*
483 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
484 * access
485 */
486void *xlate_dev_mem_ptr(phys_addr_t phys)
487{
488	unsigned long start  = phys &  PAGE_MASK;
489	unsigned long offset = phys & ~PAGE_MASK;
490	void *vaddr;
491
492	/* memremap() maps if RAM, otherwise falls back to ioremap() */
493	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
494
495	/* Only add the offset on success and return NULL if memremap() failed */
496	if (vaddr)
497		vaddr += offset;
498
499	return vaddr;
500}
501
502void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
503{
504	memunmap((void *)((unsigned long)addr & PAGE_MASK));
505}
506
507/*
508 * Examine the physical address to determine if it is an area of memory
509 * that should be mapped decrypted.  If the memory is not part of the
510 * kernel usable area it was accessed and created decrypted, so these
511 * areas should be mapped decrypted. And since the encryption key can
512 * change across reboots, persistent memory should also be mapped
513 * decrypted.
514 *
515 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
516 * only persistent memory should be mapped decrypted.
517 */
518static bool memremap_should_map_decrypted(resource_size_t phys_addr,
519					  unsigned long size)
520{
521	int is_pmem;
522
523	/*
524	 * Check if the address is part of a persistent memory region.
525	 * This check covers areas added by E820, EFI and ACPI.
526	 */
527	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
528				    IORES_DESC_PERSISTENT_MEMORY);
529	if (is_pmem != REGION_DISJOINT)
530		return true;
531
532	/*
533	 * Check if the non-volatile attribute is set for an EFI
534	 * reserved area.
535	 */
536	if (efi_enabled(EFI_BOOT)) {
537		switch (efi_mem_type(phys_addr)) {
538		case EFI_RESERVED_TYPE:
539			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
540				return true;
541			break;
542		default:
543			break;
544		}
545	}
546
547	/* Check if the address is outside kernel usable area */
548	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
549	case E820_TYPE_RESERVED:
550	case E820_TYPE_ACPI:
551	case E820_TYPE_NVS:
552	case E820_TYPE_UNUSABLE:
553		/* For SEV, these areas are encrypted */
554		if (sev_active())
555			break;
556		/* Fallthrough */
557
558	case E820_TYPE_PRAM:
559		return true;
560	default:
561		break;
562	}
563
564	return false;
565}
566
567/*
568 * Examine the physical address to determine if it is EFI data. Check
569 * it against the boot params structure and EFI tables and memory types.
570 */
571static bool memremap_is_efi_data(resource_size_t phys_addr,
572				 unsigned long size)
573{
574	u64 paddr;
575
576	/* Check if the address is part of EFI boot/runtime data */
577	if (!efi_enabled(EFI_BOOT))
578		return false;
579
580	paddr = boot_params.efi_info.efi_memmap_hi;
581	paddr <<= 32;
582	paddr |= boot_params.efi_info.efi_memmap;
583	if (phys_addr == paddr)
584		return true;
585
586	paddr = boot_params.efi_info.efi_systab_hi;
587	paddr <<= 32;
588	paddr |= boot_params.efi_info.efi_systab;
589	if (phys_addr == paddr)
590		return true;
591
592	if (efi_is_table_address(phys_addr))
593		return true;
594
595	switch (efi_mem_type(phys_addr)) {
596	case EFI_BOOT_SERVICES_DATA:
597	case EFI_RUNTIME_SERVICES_DATA:
598		return true;
599	default:
600		break;
601	}
602
603	return false;
604}
605
606/*
607 * Examine the physical address to determine if it is boot data by checking
608 * it against the boot params setup_data chain.
609 */
610static bool memremap_is_setup_data(resource_size_t phys_addr,
611				   unsigned long size)
612{
613	struct setup_data *data;
614	u64 paddr, paddr_next;
615
616	paddr = boot_params.hdr.setup_data;
617	while (paddr) {
618		unsigned int len;
619
620		if (phys_addr == paddr)
621			return true;
622
623		data = memremap(paddr, sizeof(*data),
624				MEMREMAP_WB | MEMREMAP_DEC);
625
626		paddr_next = data->next;
627		len = data->len;
628
629		memunmap(data);
630
631		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
632			return true;
633
634		paddr = paddr_next;
635	}
636
637	return false;
638}
639
640/*
641 * Examine the physical address to determine if it is boot data by checking
642 * it against the boot params setup_data chain (early boot version).
643 */
644static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
645						unsigned long size)
646{
647	struct setup_data *data;
648	u64 paddr, paddr_next;
649
650	paddr = boot_params.hdr.setup_data;
651	while (paddr) {
652		unsigned int len;
653
654		if (phys_addr == paddr)
655			return true;
656
657		data = early_memremap_decrypted(paddr, sizeof(*data));
658
659		paddr_next = data->next;
660		len = data->len;
661
662		early_memunmap(data, sizeof(*data));
663
664		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
665			return true;
666
667		paddr = paddr_next;
668	}
669
670	return false;
671}
672
673/*
674 * Architecture function to determine if RAM remap is allowed. By default, a
675 * RAM remap will map the data as encrypted. Determine if a RAM remap should
676 * not be done so that the data will be mapped decrypted.
677 */
678bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
679				 unsigned long flags)
680{
681	if (!mem_encrypt_active())
682		return true;
683
684	if (flags & MEMREMAP_ENC)
685		return true;
686
687	if (flags & MEMREMAP_DEC)
688		return false;
689
690	if (sme_active()) {
691		if (memremap_is_setup_data(phys_addr, size) ||
692		    memremap_is_efi_data(phys_addr, size))
693			return false;
694	}
695
696	return !memremap_should_map_decrypted(phys_addr, size);
697}
698
699/*
700 * Architecture override of __weak function to adjust the protection attributes
701 * used when remapping memory. By default, early_memremap() will map the data
702 * as encrypted. Determine if an encrypted mapping should not be done and set
703 * the appropriate protection attributes.
704 */
705pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
706					     unsigned long size,
707					     pgprot_t prot)
708{
709	bool encrypted_prot;
710
711	if (!mem_encrypt_active())
712		return prot;
713
714	encrypted_prot = true;
715
716	if (sme_active()) {
717		if (early_memremap_is_setup_data(phys_addr, size) ||
718		    memremap_is_efi_data(phys_addr, size))
719			encrypted_prot = false;
720	}
721
722	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
723		encrypted_prot = false;
724
725	return encrypted_prot ? pgprot_encrypted(prot)
726			      : pgprot_decrypted(prot);
727}
728
729bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
730{
731	return arch_memremap_can_ram_remap(phys_addr, size, 0);
732}
733
734#ifdef CONFIG_AMD_MEM_ENCRYPT
735/* Remap memory with encryption */
736void __init *early_memremap_encrypted(resource_size_t phys_addr,
737				      unsigned long size)
738{
739	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
740}
741
742/*
743 * Remap memory with encryption and write-protected - cannot be called
744 * before pat_init() is called
745 */
746void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
747					 unsigned long size)
748{
749	/* Be sure the write-protect PAT entry is set for write-protect */
750	if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
751		return NULL;
752
753	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
754}
755
756/* Remap memory without encryption */
757void __init *early_memremap_decrypted(resource_size_t phys_addr,
758				      unsigned long size)
759{
760	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
761}
762
763/*
764 * Remap memory without encryption and write-protected - cannot be called
765 * before pat_init() is called
766 */
767void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
768					 unsigned long size)
769{
770	/* Be sure the write-protect PAT entry is set for write-protect */
771	if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
772		return NULL;
773
774	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
775}
776#endif	/* CONFIG_AMD_MEM_ENCRYPT */
777
778static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
779
780static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
781{
782	/* Don't assume we're using swapper_pg_dir at this point */
783	pgd_t *base = __va(read_cr3_pa());
784	pgd_t *pgd = &base[pgd_index(addr)];
785	p4d_t *p4d = p4d_offset(pgd, addr);
786	pud_t *pud = pud_offset(p4d, addr);
787	pmd_t *pmd = pmd_offset(pud, addr);
788
789	return pmd;
790}
791
792static inline pte_t * __init early_ioremap_pte(unsigned long addr)
793{
794	return &bm_pte[pte_index(addr)];
795}
796
797bool __init is_early_ioremap_ptep(pte_t *ptep)
798{
799	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
800}
801
802void __init early_ioremap_init(void)
803{
804	pmd_t *pmd;
805
806#ifdef CONFIG_X86_64
807	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
808#else
809	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
810#endif
811
812	early_ioremap_setup();
813
814	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
815	memset(bm_pte, 0, sizeof(bm_pte));
816	pmd_populate_kernel(&init_mm, pmd, bm_pte);
817
818	/*
819	 * The boot-ioremap range spans multiple pmds, for which
820	 * we are not prepared:
821	 */
822#define __FIXADDR_TOP (-PAGE_SIZE)
823	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
824		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
825#undef __FIXADDR_TOP
826	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
827		WARN_ON(1);
828		printk(KERN_WARNING "pmd %p != %p\n",
829		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
830		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
831			fix_to_virt(FIX_BTMAP_BEGIN));
832		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
833			fix_to_virt(FIX_BTMAP_END));
834
835		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
836		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
837		       FIX_BTMAP_BEGIN);
838	}
839}
840
841void __init __early_set_fixmap(enum fixed_addresses idx,
842			       phys_addr_t phys, pgprot_t flags)
843{
844	unsigned long addr = __fix_to_virt(idx);
845	pte_t *pte;
846
847	if (idx >= __end_of_fixed_addresses) {
848		BUG();
849		return;
850	}
851	pte = early_ioremap_pte(addr);
852
853	/* Sanitize 'prot' against any unsupported bits: */
854	pgprot_val(flags) &= __supported_pte_mask;
855
856	if (pgprot_val(flags))
857		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
858	else
859		pte_clear(&init_mm, addr, pte);
860	__flush_tlb_one_kernel(addr);
861}
v4.17
 
  1/*
  2 * Re-map IO memory to kernel address space so that we can access it.
  3 * This is needed for high PCI addresses that aren't mapped in the
  4 * 640k-1MB IO memory area on PC's
  5 *
  6 * (C) Copyright 1995 1996 Linus Torvalds
  7 */
  8
  9#include <linux/bootmem.h>
 10#include <linux/init.h>
 11#include <linux/io.h>
 12#include <linux/ioport.h>
 13#include <linux/slab.h>
 14#include <linux/vmalloc.h>
 15#include <linux/mmiotrace.h>
 16#include <linux/mem_encrypt.h>
 17#include <linux/efi.h>
 18
 19#include <asm/set_memory.h>
 20#include <asm/e820/api.h>
 
 21#include <asm/fixmap.h>
 22#include <asm/pgtable.h>
 23#include <asm/tlbflush.h>
 24#include <asm/pgalloc.h>
 25#include <asm/pat.h>
 26#include <asm/setup.h>
 27
 28#include "physaddr.h"
 29
 30struct ioremap_mem_flags {
 31	bool system_ram;
 32	bool desc_other;
 
 
 33};
 34
 35/*
 36 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 37 * conflicts.
 38 */
 39int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 40			enum page_cache_mode pcm)
 41{
 42	unsigned long nrpages = size >> PAGE_SHIFT;
 43	int err;
 44
 45	switch (pcm) {
 46	case _PAGE_CACHE_MODE_UC:
 47	default:
 48		err = _set_memory_uc(vaddr, nrpages);
 49		break;
 50	case _PAGE_CACHE_MODE_WC:
 51		err = _set_memory_wc(vaddr, nrpages);
 52		break;
 53	case _PAGE_CACHE_MODE_WT:
 54		err = _set_memory_wt(vaddr, nrpages);
 55		break;
 56	case _PAGE_CACHE_MODE_WB:
 57		err = _set_memory_wb(vaddr, nrpages);
 58		break;
 59	}
 60
 61	return err;
 62}
 63
 64static bool __ioremap_check_ram(struct resource *res)
 
 65{
 66	unsigned long start_pfn, stop_pfn;
 67	unsigned long i;
 68
 69	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
 70		return false;
 71
 72	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 73	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
 74	if (stop_pfn > start_pfn) {
 75		for (i = 0; i < (stop_pfn - start_pfn); ++i)
 76			if (pfn_valid(start_pfn + i) &&
 77			    !PageReserved(pfn_to_page(start_pfn + i)))
 78				return true;
 79	}
 80
 81	return false;
 82}
 83
 84static int __ioremap_check_desc_other(struct resource *res)
 
 
 
 
 85{
 86	return (res->desc != IORES_DESC_NONE);
 
 
 
 
 
 
 
 
 
 
 
 87}
 88
 89static int __ioremap_res_check(struct resource *res, void *arg)
 90{
 91	struct ioremap_mem_flags *flags = arg;
 92
 93	if (!flags->system_ram)
 94		flags->system_ram = __ioremap_check_ram(res);
 95
 96	if (!flags->desc_other)
 97		flags->desc_other = __ioremap_check_desc_other(res);
 98
 99	return flags->system_ram && flags->desc_other;
 
100}
101
102/*
103 * To avoid multiple resource walks, this function walks resources marked as
104 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
105 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
106 */
107static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
108				struct ioremap_mem_flags *flags)
109{
110	u64 start, end;
111
112	start = (u64)addr;
113	end = start + size - 1;
114	memset(flags, 0, sizeof(*flags));
115
116	walk_mem_res(start, end, flags, __ioremap_res_check);
117}
118
119/*
120 * Remap an arbitrary physical address space into the kernel virtual
121 * address space. It transparently creates kernel huge I/O mapping when
122 * the physical address is aligned by a huge page size (1GB or 2MB) and
123 * the requested size is at least the huge page size.
124 *
125 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
126 * Therefore, the mapping code falls back to use a smaller page toward 4KB
127 * when a mapping range is covered by non-WB type of MTRRs.
128 *
129 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
130 * have to convert them into an offset in a page-aligned mapping, but the
131 * caller shouldn't need to know that small detail.
132 */
133static void __iomem *__ioremap_caller(resource_size_t phys_addr,
134		unsigned long size, enum page_cache_mode pcm, void *caller)
 
135{
136	unsigned long offset, vaddr;
137	resource_size_t last_addr;
138	const resource_size_t unaligned_phys_addr = phys_addr;
139	const unsigned long unaligned_size = size;
140	struct ioremap_mem_flags mem_flags;
141	struct vm_struct *area;
142	enum page_cache_mode new_pcm;
143	pgprot_t prot;
144	int retval;
145	void __iomem *ret_addr;
146
147	/* Don't allow wraparound or zero size */
148	last_addr = phys_addr + size - 1;
149	if (!size || last_addr < phys_addr)
150		return NULL;
151
152	if (!phys_addr_valid(phys_addr)) {
153		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
154		       (unsigned long long)phys_addr);
155		WARN_ON_ONCE(1);
156		return NULL;
157	}
158
159	__ioremap_check_mem(phys_addr, size, &mem_flags);
160
161	/*
162	 * Don't allow anybody to remap normal RAM that we're using..
163	 */
164	if (mem_flags.system_ram) {
165		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
166			  &phys_addr, &last_addr);
167		return NULL;
168	}
169
170	/*
171	 * Mappings have to be page-aligned
172	 */
173	offset = phys_addr & ~PAGE_MASK;
174	phys_addr &= PHYSICAL_PAGE_MASK;
175	size = PAGE_ALIGN(last_addr+1) - phys_addr;
176
177	retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
178						pcm, &new_pcm);
179	if (retval) {
180		printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
181		return NULL;
182	}
183
184	if (pcm != new_pcm) {
185		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
186			printk(KERN_ERR
187		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
188				(unsigned long long)phys_addr,
189				(unsigned long long)(phys_addr + size),
190				pcm, new_pcm);
191			goto err_free_memtype;
192		}
193		pcm = new_pcm;
194	}
195
196	/*
197	 * If the page being mapped is in memory and SEV is active then
198	 * make sure the memory encryption attribute is enabled in the
199	 * resulting mapping.
200	 */
201	prot = PAGE_KERNEL_IO;
202	if (sev_active() && mem_flags.desc_other)
203		prot = pgprot_encrypted(prot);
204
205	switch (pcm) {
206	case _PAGE_CACHE_MODE_UC:
207	default:
208		prot = __pgprot(pgprot_val(prot) |
209				cachemode2protval(_PAGE_CACHE_MODE_UC));
210		break;
211	case _PAGE_CACHE_MODE_UC_MINUS:
212		prot = __pgprot(pgprot_val(prot) |
213				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
214		break;
215	case _PAGE_CACHE_MODE_WC:
216		prot = __pgprot(pgprot_val(prot) |
217				cachemode2protval(_PAGE_CACHE_MODE_WC));
218		break;
219	case _PAGE_CACHE_MODE_WT:
220		prot = __pgprot(pgprot_val(prot) |
221				cachemode2protval(_PAGE_CACHE_MODE_WT));
222		break;
223	case _PAGE_CACHE_MODE_WB:
224		break;
225	}
226
227	/*
228	 * Ok, go for it..
229	 */
230	area = get_vm_area_caller(size, VM_IOREMAP, caller);
231	if (!area)
232		goto err_free_memtype;
233	area->phys_addr = phys_addr;
234	vaddr = (unsigned long) area->addr;
235
236	if (kernel_map_sync_memtype(phys_addr, size, pcm))
237		goto err_free_area;
238
239	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
240		goto err_free_area;
241
242	ret_addr = (void __iomem *) (vaddr + offset);
243	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
244
245	/*
246	 * Check if the request spans more than any BAR in the iomem resource
247	 * tree.
248	 */
249	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
250		pr_warn("caller %pS mapping multiple BARs\n", caller);
251
252	return ret_addr;
253err_free_area:
254	free_vm_area(area);
255err_free_memtype:
256	free_memtype(phys_addr, phys_addr + size);
257	return NULL;
258}
259
260/**
261 * ioremap_nocache     -   map bus memory into CPU space
262 * @phys_addr:    bus address of the memory
263 * @size:      size of the resource to map
264 *
265 * ioremap_nocache performs a platform specific sequence of operations to
266 * make bus memory CPU accessible via the readb/readw/readl/writeb/
267 * writew/writel functions and the other mmio helpers. The returned
268 * address is not guaranteed to be usable directly as a virtual
269 * address.
270 *
271 * This version of ioremap ensures that the memory is marked uncachable
272 * on the CPU as well as honouring existing caching rules from things like
273 * the PCI bus. Note that there are other caches and buffers on many
274 * busses. In particular driver authors should read up on PCI writes
275 *
276 * It's useful if some control registers are in such an area and
277 * write combining or read caching is not desirable:
278 *
279 * Must be freed with iounmap.
280 */
281void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
282{
283	/*
284	 * Ideally, this should be:
285	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
286	 *
287	 * Till we fix all X drivers to use ioremap_wc(), we will use
288	 * UC MINUS. Drivers that are certain they need or can already
289	 * be converted over to strong UC can use ioremap_uc().
290	 */
291	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
292
293	return __ioremap_caller(phys_addr, size, pcm,
294				__builtin_return_address(0));
295}
296EXPORT_SYMBOL(ioremap_nocache);
297
298/**
299 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
300 * @phys_addr:    bus address of the memory
301 * @size:      size of the resource to map
302 *
303 * ioremap_uc performs a platform specific sequence of operations to
304 * make bus memory CPU accessible via the readb/readw/readl/writeb/
305 * writew/writel functions and the other mmio helpers. The returned
306 * address is not guaranteed to be usable directly as a virtual
307 * address.
308 *
309 * This version of ioremap ensures that the memory is marked with a strong
310 * preference as completely uncachable on the CPU when possible. For non-PAT
311 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
312 * systems this will set the PAT entry for the pages as strong UC.  This call
313 * will honor existing caching rules from things like the PCI bus. Note that
314 * there are other caches and buffers on many busses. In particular driver
315 * authors should read up on PCI writes.
316 *
317 * It's useful if some control registers are in such an area and
318 * write combining or read caching is not desirable:
319 *
320 * Must be freed with iounmap.
321 */
322void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
323{
324	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
325
326	return __ioremap_caller(phys_addr, size, pcm,
327				__builtin_return_address(0));
328}
329EXPORT_SYMBOL_GPL(ioremap_uc);
330
331/**
332 * ioremap_wc	-	map memory into CPU space write combined
333 * @phys_addr:	bus address of the memory
334 * @size:	size of the resource to map
335 *
336 * This version of ioremap ensures that the memory is marked write combining.
337 * Write combining allows faster writes to some hardware devices.
338 *
339 * Must be freed with iounmap.
340 */
341void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
342{
343	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
344					__builtin_return_address(0));
345}
346EXPORT_SYMBOL(ioremap_wc);
347
348/**
349 * ioremap_wt	-	map memory into CPU space write through
350 * @phys_addr:	bus address of the memory
351 * @size:	size of the resource to map
352 *
353 * This version of ioremap ensures that the memory is marked write through.
354 * Write through stores data into memory while keeping the cache up-to-date.
355 *
356 * Must be freed with iounmap.
357 */
358void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
359{
360	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
361					__builtin_return_address(0));
362}
363EXPORT_SYMBOL(ioremap_wt);
364
 
 
 
 
 
 
 
365void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
366{
367	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
368				__builtin_return_address(0));
369}
370EXPORT_SYMBOL(ioremap_cache);
371
372void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
373				unsigned long prot_val)
374{
375	return __ioremap_caller(phys_addr, size,
376				pgprot2cachemode(__pgprot(prot_val)),
377				__builtin_return_address(0));
378}
379EXPORT_SYMBOL(ioremap_prot);
380
381/**
382 * iounmap - Free a IO remapping
383 * @addr: virtual address from ioremap_*
384 *
385 * Caller must ensure there is only one unmapping for the same pointer.
386 */
387void iounmap(volatile void __iomem *addr)
388{
389	struct vm_struct *p, *o;
390
391	if ((void __force *)addr <= high_memory)
392		return;
393
394	/*
395	 * The PCI/ISA range special-casing was removed from __ioremap()
396	 * so this check, in theory, can be removed. However, there are
397	 * cases where iounmap() is called for addresses not obtained via
398	 * ioremap() (vga16fb for example). Add a warning so that these
399	 * cases can be caught and fixed.
400	 */
401	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
402	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
403		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
404		return;
405	}
406
407	mmiotrace_iounmap(addr);
408
409	addr = (volatile void __iomem *)
410		(PAGE_MASK & (unsigned long __force)addr);
411
412	/* Use the vm area unlocked, assuming the caller
413	   ensures there isn't another iounmap for the same address
414	   in parallel. Reuse of the virtual address is prevented by
415	   leaving it in the global lists until we're done with it.
416	   cpa takes care of the direct mappings. */
417	p = find_vm_area((void __force *)addr);
418
419	if (!p) {
420		printk(KERN_ERR "iounmap: bad address %p\n", addr);
421		dump_stack();
422		return;
423	}
424
425	free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
426
427	/* Finally remove it */
428	o = remove_vm_area((void __force *)addr);
429	BUG_ON(p != o || o == NULL);
430	kfree(p);
431}
432EXPORT_SYMBOL(iounmap);
433
 
 
 
 
 
434int __init arch_ioremap_pud_supported(void)
435{
436#ifdef CONFIG_X86_64
437	return boot_cpu_has(X86_FEATURE_GBPAGES);
438#else
439	return 0;
440#endif
441}
442
443int __init arch_ioremap_pmd_supported(void)
444{
445	return boot_cpu_has(X86_FEATURE_PSE);
446}
447
448/*
449 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
450 * access
451 */
452void *xlate_dev_mem_ptr(phys_addr_t phys)
453{
454	unsigned long start  = phys &  PAGE_MASK;
455	unsigned long offset = phys & ~PAGE_MASK;
456	void *vaddr;
457
458	/* memremap() maps if RAM, otherwise falls back to ioremap() */
459	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
460
461	/* Only add the offset on success and return NULL if memremap() failed */
462	if (vaddr)
463		vaddr += offset;
464
465	return vaddr;
466}
467
468void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
469{
470	memunmap((void *)((unsigned long)addr & PAGE_MASK));
471}
472
473/*
474 * Examine the physical address to determine if it is an area of memory
475 * that should be mapped decrypted.  If the memory is not part of the
476 * kernel usable area it was accessed and created decrypted, so these
477 * areas should be mapped decrypted. And since the encryption key can
478 * change across reboots, persistent memory should also be mapped
479 * decrypted.
480 *
481 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
482 * only persistent memory should be mapped decrypted.
483 */
484static bool memremap_should_map_decrypted(resource_size_t phys_addr,
485					  unsigned long size)
486{
487	int is_pmem;
488
489	/*
490	 * Check if the address is part of a persistent memory region.
491	 * This check covers areas added by E820, EFI and ACPI.
492	 */
493	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
494				    IORES_DESC_PERSISTENT_MEMORY);
495	if (is_pmem != REGION_DISJOINT)
496		return true;
497
498	/*
499	 * Check if the non-volatile attribute is set for an EFI
500	 * reserved area.
501	 */
502	if (efi_enabled(EFI_BOOT)) {
503		switch (efi_mem_type(phys_addr)) {
504		case EFI_RESERVED_TYPE:
505			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
506				return true;
507			break;
508		default:
509			break;
510		}
511	}
512
513	/* Check if the address is outside kernel usable area */
514	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
515	case E820_TYPE_RESERVED:
516	case E820_TYPE_ACPI:
517	case E820_TYPE_NVS:
518	case E820_TYPE_UNUSABLE:
519		/* For SEV, these areas are encrypted */
520		if (sev_active())
521			break;
522		/* Fallthrough */
523
524	case E820_TYPE_PRAM:
525		return true;
526	default:
527		break;
528	}
529
530	return false;
531}
532
533/*
534 * Examine the physical address to determine if it is EFI data. Check
535 * it against the boot params structure and EFI tables and memory types.
536 */
537static bool memremap_is_efi_data(resource_size_t phys_addr,
538				 unsigned long size)
539{
540	u64 paddr;
541
542	/* Check if the address is part of EFI boot/runtime data */
543	if (!efi_enabled(EFI_BOOT))
544		return false;
545
546	paddr = boot_params.efi_info.efi_memmap_hi;
547	paddr <<= 32;
548	paddr |= boot_params.efi_info.efi_memmap;
549	if (phys_addr == paddr)
550		return true;
551
552	paddr = boot_params.efi_info.efi_systab_hi;
553	paddr <<= 32;
554	paddr |= boot_params.efi_info.efi_systab;
555	if (phys_addr == paddr)
556		return true;
557
558	if (efi_is_table_address(phys_addr))
559		return true;
560
561	switch (efi_mem_type(phys_addr)) {
562	case EFI_BOOT_SERVICES_DATA:
563	case EFI_RUNTIME_SERVICES_DATA:
564		return true;
565	default:
566		break;
567	}
568
569	return false;
570}
571
572/*
573 * Examine the physical address to determine if it is boot data by checking
574 * it against the boot params setup_data chain.
575 */
576static bool memremap_is_setup_data(resource_size_t phys_addr,
577				   unsigned long size)
578{
579	struct setup_data *data;
580	u64 paddr, paddr_next;
581
582	paddr = boot_params.hdr.setup_data;
583	while (paddr) {
584		unsigned int len;
585
586		if (phys_addr == paddr)
587			return true;
588
589		data = memremap(paddr, sizeof(*data),
590				MEMREMAP_WB | MEMREMAP_DEC);
591
592		paddr_next = data->next;
593		len = data->len;
594
595		memunmap(data);
596
597		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
598			return true;
599
600		paddr = paddr_next;
601	}
602
603	return false;
604}
605
606/*
607 * Examine the physical address to determine if it is boot data by checking
608 * it against the boot params setup_data chain (early boot version).
609 */
610static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
611						unsigned long size)
612{
613	struct setup_data *data;
614	u64 paddr, paddr_next;
615
616	paddr = boot_params.hdr.setup_data;
617	while (paddr) {
618		unsigned int len;
619
620		if (phys_addr == paddr)
621			return true;
622
623		data = early_memremap_decrypted(paddr, sizeof(*data));
624
625		paddr_next = data->next;
626		len = data->len;
627
628		early_memunmap(data, sizeof(*data));
629
630		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
631			return true;
632
633		paddr = paddr_next;
634	}
635
636	return false;
637}
638
639/*
640 * Architecture function to determine if RAM remap is allowed. By default, a
641 * RAM remap will map the data as encrypted. Determine if a RAM remap should
642 * not be done so that the data will be mapped decrypted.
643 */
644bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
645				 unsigned long flags)
646{
647	if (!mem_encrypt_active())
648		return true;
649
650	if (flags & MEMREMAP_ENC)
651		return true;
652
653	if (flags & MEMREMAP_DEC)
654		return false;
655
656	if (sme_active()) {
657		if (memremap_is_setup_data(phys_addr, size) ||
658		    memremap_is_efi_data(phys_addr, size))
659			return false;
660	}
661
662	return !memremap_should_map_decrypted(phys_addr, size);
663}
664
665/*
666 * Architecture override of __weak function to adjust the protection attributes
667 * used when remapping memory. By default, early_memremap() will map the data
668 * as encrypted. Determine if an encrypted mapping should not be done and set
669 * the appropriate protection attributes.
670 */
671pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
672					     unsigned long size,
673					     pgprot_t prot)
674{
675	bool encrypted_prot;
676
677	if (!mem_encrypt_active())
678		return prot;
679
680	encrypted_prot = true;
681
682	if (sme_active()) {
683		if (early_memremap_is_setup_data(phys_addr, size) ||
684		    memremap_is_efi_data(phys_addr, size))
685			encrypted_prot = false;
686	}
687
688	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
689		encrypted_prot = false;
690
691	return encrypted_prot ? pgprot_encrypted(prot)
692			      : pgprot_decrypted(prot);
693}
694
695bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
696{
697	return arch_memremap_can_ram_remap(phys_addr, size, 0);
698}
699
700#ifdef CONFIG_ARCH_USE_MEMREMAP_PROT
701/* Remap memory with encryption */
702void __init *early_memremap_encrypted(resource_size_t phys_addr,
703				      unsigned long size)
704{
705	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
706}
707
708/*
709 * Remap memory with encryption and write-protected - cannot be called
710 * before pat_init() is called
711 */
712void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
713					 unsigned long size)
714{
715	/* Be sure the write-protect PAT entry is set for write-protect */
716	if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
717		return NULL;
718
719	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
720}
721
722/* Remap memory without encryption */
723void __init *early_memremap_decrypted(resource_size_t phys_addr,
724				      unsigned long size)
725{
726	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
727}
728
729/*
730 * Remap memory without encryption and write-protected - cannot be called
731 * before pat_init() is called
732 */
733void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
734					 unsigned long size)
735{
736	/* Be sure the write-protect PAT entry is set for write-protect */
737	if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
738		return NULL;
739
740	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
741}
742#endif	/* CONFIG_ARCH_USE_MEMREMAP_PROT */
743
744static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
745
746static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
747{
748	/* Don't assume we're using swapper_pg_dir at this point */
749	pgd_t *base = __va(read_cr3_pa());
750	pgd_t *pgd = &base[pgd_index(addr)];
751	p4d_t *p4d = p4d_offset(pgd, addr);
752	pud_t *pud = pud_offset(p4d, addr);
753	pmd_t *pmd = pmd_offset(pud, addr);
754
755	return pmd;
756}
757
758static inline pte_t * __init early_ioremap_pte(unsigned long addr)
759{
760	return &bm_pte[pte_index(addr)];
761}
762
763bool __init is_early_ioremap_ptep(pte_t *ptep)
764{
765	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
766}
767
768void __init early_ioremap_init(void)
769{
770	pmd_t *pmd;
771
772#ifdef CONFIG_X86_64
773	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
774#else
775	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
776#endif
777
778	early_ioremap_setup();
779
780	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
781	memset(bm_pte, 0, sizeof(bm_pte));
782	pmd_populate_kernel(&init_mm, pmd, bm_pte);
783
784	/*
785	 * The boot-ioremap range spans multiple pmds, for which
786	 * we are not prepared:
787	 */
788#define __FIXADDR_TOP (-PAGE_SIZE)
789	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
790		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
791#undef __FIXADDR_TOP
792	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
793		WARN_ON(1);
794		printk(KERN_WARNING "pmd %p != %p\n",
795		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
796		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
797			fix_to_virt(FIX_BTMAP_BEGIN));
798		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
799			fix_to_virt(FIX_BTMAP_END));
800
801		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
802		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
803		       FIX_BTMAP_BEGIN);
804	}
805}
806
807void __init __early_set_fixmap(enum fixed_addresses idx,
808			       phys_addr_t phys, pgprot_t flags)
809{
810	unsigned long addr = __fix_to_virt(idx);
811	pte_t *pte;
812
813	if (idx >= __end_of_fixed_addresses) {
814		BUG();
815		return;
816	}
817	pte = early_ioremap_pte(addr);
818
819	/* Sanitize 'prot' against any unsupported bits: */
820	pgprot_val(flags) &= __default_kernel_pte_mask;
821
822	if (pgprot_val(flags))
823		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
824	else
825		pte_clear(&init_mm, addr, pte);
826	__flush_tlb_one_kernel(addr);
827}