Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the SID table type.
  4 *
  5 * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
  6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
  7 *
  8 * Copyright (C) 2018 Red Hat, Inc.
  9 */
 
 10#include <linux/errno.h>
 11#include <linux/kernel.h>
 
 
 12#include <linux/slab.h>
 13#include <linux/sched.h>
 14#include <linux/spinlock.h>
 15#include <asm/barrier.h>
 16#include "flask.h"
 17#include "security.h"
 18#include "sidtab.h"
 
 
 
 
 
 
 
 
 
 
 
 
 19
 20int sidtab_init(struct sidtab *s)
 21{
 22	u32 i;
 23
 24	memset(s->roots, 0, sizeof(s->roots));
 25
 26	/* max count is SIDTAB_MAX so valid index is always < SIDTAB_MAX */
 27	for (i = 0; i < SIDTAB_RCACHE_SIZE; i++)
 28		s->rcache[i] = SIDTAB_MAX;
 29
 30	for (i = 0; i < SECINITSID_NUM; i++)
 31		s->isids[i].set = 0;
 32
 
 33	s->count = 0;
 34	s->convert = NULL;
 
 35
 36	spin_lock_init(&s->lock);
 
 
 
 
 
 
 
 37	return 0;
 38}
 39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
 41{
 42	struct sidtab_isid_entry *entry;
 
 43	int rc;
 44
 45	if (sid == 0 || sid > SECINITSID_NUM)
 46		return -EINVAL;
 47
 48	entry = &s->isids[sid - 1];
 49
 50	rc = context_cpy(&entry->context, context);
 51	if (rc)
 52		return rc;
 53
 54	entry->set = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55	return 0;
 56}
 57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58static u32 sidtab_level_from_count(u32 count)
 59{
 60	u32 capacity = SIDTAB_LEAF_ENTRIES;
 61	u32 level = 0;
 62
 63	while (count > capacity) {
 64		capacity <<= SIDTAB_INNER_SHIFT;
 65		++level;
 66	}
 67	return level;
 68}
 69
 70static int sidtab_alloc_roots(struct sidtab *s, u32 level)
 71{
 72	u32 l;
 73
 74	if (!s->roots[0].ptr_leaf) {
 75		s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
 76					       GFP_ATOMIC);
 77		if (!s->roots[0].ptr_leaf)
 78			return -ENOMEM;
 79	}
 80	for (l = 1; l <= level; ++l)
 81		if (!s->roots[l].ptr_inner) {
 82			s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
 83							GFP_ATOMIC);
 84			if (!s->roots[l].ptr_inner)
 85				return -ENOMEM;
 86			s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
 87		}
 88	return 0;
 89}
 90
 91static struct context *sidtab_do_lookup(struct sidtab *s, u32 index, int alloc)
 
 92{
 93	union sidtab_entry_inner *entry;
 94	u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
 95
 96	/* find the level of the subtree we need */
 97	level = sidtab_level_from_count(index + 1);
 98	capacity_shift = level * SIDTAB_INNER_SHIFT;
 99
100	/* allocate roots if needed */
101	if (alloc && sidtab_alloc_roots(s, level) != 0)
102		return NULL;
103
104	/* lookup inside the subtree */
105	entry = &s->roots[level];
106	while (level != 0) {
107		capacity_shift -= SIDTAB_INNER_SHIFT;
108		--level;
109
110		entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
111		leaf_index &= ((u32)1 << capacity_shift) - 1;
112
113		if (!entry->ptr_inner) {
114			if (alloc)
115				entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
116							   GFP_ATOMIC);
117			if (!entry->ptr_inner)
118				return NULL;
119		}
120	}
121	if (!entry->ptr_leaf) {
122		if (alloc)
123			entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
124						  GFP_ATOMIC);
125		if (!entry->ptr_leaf)
126			return NULL;
127	}
128	return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES].context;
129}
130
131static struct context *sidtab_lookup(struct sidtab *s, u32 index)
132{
133	/* read entries only after reading count */
134	u32 count = smp_load_acquire(&s->count);
135
136	if (index >= count)
137		return NULL;
138
139	return sidtab_do_lookup(s, index, 0);
140}
141
142static struct context *sidtab_lookup_initial(struct sidtab *s, u32 sid)
143{
144	return s->isids[sid - 1].set ? &s->isids[sid - 1].context : NULL;
145}
146
147static struct context *sidtab_search_core(struct sidtab *s, u32 sid, int force)
 
148{
149	struct context *context;
150
151	if (sid != 0) {
 
 
152		if (sid > SECINITSID_NUM)
153			context = sidtab_lookup(s, sid - (SECINITSID_NUM + 1));
154		else
155			context = sidtab_lookup_initial(s, sid);
156		if (context && (!context->len || force))
157			return context;
158	}
159
160	return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
161}
162
163struct context *sidtab_search(struct sidtab *s, u32 sid)
164{
165	return sidtab_search_core(s, sid, 0);
166}
167
168struct context *sidtab_search_force(struct sidtab *s, u32 sid)
169{
170	return sidtab_search_core(s, sid, 1);
171}
172
173static int sidtab_find_context(union sidtab_entry_inner entry,
174			       u32 *pos, u32 count, u32 level,
175			       struct context *context, u32 *index)
176{
177	int rc;
178	u32 i;
179
180	if (level != 0) {
181		struct sidtab_node_inner *node = entry.ptr_inner;
182
183		i = 0;
184		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
185			rc = sidtab_find_context(node->entries[i],
186						 pos, count, level - 1,
187						 context, index);
188			if (rc == 0)
189				return 0;
190			i++;
191		}
192	} else {
193		struct sidtab_node_leaf *node = entry.ptr_leaf;
194
195		i = 0;
196		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
197			if (context_cmp(&node->entries[i].context, context)) {
198				*index = *pos;
199				return 0;
200			}
201			(*pos)++;
202			i++;
203		}
204	}
205	return -ENOENT;
206}
207
208static void sidtab_rcache_update(struct sidtab *s, u32 index, u32 pos)
209{
210	while (pos > 0) {
211		WRITE_ONCE(s->rcache[pos], READ_ONCE(s->rcache[pos - 1]));
212		--pos;
213	}
214	WRITE_ONCE(s->rcache[0], index);
215}
216
217static void sidtab_rcache_push(struct sidtab *s, u32 index)
218{
219	sidtab_rcache_update(s, index, SIDTAB_RCACHE_SIZE - 1);
220}
221
222static int sidtab_rcache_search(struct sidtab *s, struct context *context,
223				u32 *index)
224{
225	u32 i;
226
227	for (i = 0; i < SIDTAB_RCACHE_SIZE; i++) {
228		u32 v = READ_ONCE(s->rcache[i]);
229
230		if (v >= SIDTAB_MAX)
231			continue;
232
233		if (context_cmp(sidtab_do_lookup(s, v, 0), context)) {
234			sidtab_rcache_update(s, v, i);
235			*index = v;
236			return 0;
237		}
238	}
239	return -ENOENT;
240}
241
242static int sidtab_reverse_lookup(struct sidtab *s, struct context *context,
243				 u32 *index)
244{
245	unsigned long flags;
246	u32 count, count_locked, level, pos;
247	struct sidtab_convert_params *convert;
248	struct context *dst, *dst_convert;
249	int rc;
250
251	rc = sidtab_rcache_search(s, context, index);
252	if (rc == 0)
253		return 0;
254
255	/* read entries only after reading count */
256	count = smp_load_acquire(&s->count);
257	level = sidtab_level_from_count(count);
258
259	pos = 0;
260	rc = sidtab_find_context(s->roots[level], &pos, count, level,
261				 context, index);
262	if (rc == 0) {
263		sidtab_rcache_push(s, *index);
264		return 0;
265	}
266
267	/* lock-free search failed: lock, re-search, and insert if not found */
268	spin_lock_irqsave(&s->lock, flags);
269
270	convert = s->convert;
271	count_locked = s->count;
272	level = sidtab_level_from_count(count_locked);
 
273
274	/* if count has changed before we acquired the lock, then catch up */
275	while (count < count_locked) {
276		if (context_cmp(sidtab_do_lookup(s, count, 0), context)) {
277			sidtab_rcache_push(s, count);
278			*index = count;
279			rc = 0;
280			goto out_unlock;
281		}
282		++count;
283	}
284
 
 
285	/* bail out if we already reached max entries */
286	rc = -EOVERFLOW;
287	if (count >= SIDTAB_MAX)
288		goto out_unlock;
289
290	/* insert context into new entry */
291	rc = -ENOMEM;
292	dst = sidtab_do_lookup(s, count, 1);
293	if (!dst)
294		goto out_unlock;
295
296	rc = context_cpy(dst, context);
 
 
 
297	if (rc)
298		goto out_unlock;
299
300	/*
301	 * if we are building a new sidtab, we need to convert the context
302	 * and insert it there as well
303	 */
 
304	if (convert) {
 
 
305		rc = -ENOMEM;
306		dst_convert = sidtab_do_lookup(convert->target, count, 1);
307		if (!dst_convert) {
308			context_destroy(dst);
309			goto out_unlock;
310		}
311
312		rc = convert->func(context, dst_convert, convert->args);
 
 
313		if (rc) {
314			context_destroy(dst);
315			goto out_unlock;
316		}
 
 
 
317
318		/* at this point we know the insert won't fail */
319		convert->target->count = count + 1;
320	}
321
322	if (context->len)
323		pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
324			context->str);
325
326	sidtab_rcache_push(s, count);
327	*index = count;
328
329	/* write entries before writing new count */
330	smp_store_release(&s->count, count + 1);
 
331
332	rc = 0;
333out_unlock:
334	spin_unlock_irqrestore(&s->lock, flags);
335	return rc;
336}
337
338int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid)
339{
340	int rc;
341	u32 i;
342
343	for (i = 0; i < SECINITSID_NUM; i++) {
344		struct sidtab_isid_entry *entry = &s->isids[i];
 
 
345
346		if (entry->set && context_cmp(context, &entry->context)) {
347			*sid = i + 1;
348			return 0;
349		}
350	}
351
352	rc = sidtab_reverse_lookup(s, context, sid);
353	if (rc)
354		return rc;
355	*sid += SECINITSID_NUM + 1;
356	return 0;
357}
358
359static int sidtab_convert_tree(union sidtab_entry_inner *edst,
360			       union sidtab_entry_inner *esrc,
361			       u32 *pos, u32 count, u32 level,
362			       struct sidtab_convert_params *convert)
363{
364	int rc;
365	u32 i;
366
367	if (level != 0) {
368		if (!edst->ptr_inner) {
369			edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
370						  GFP_KERNEL);
371			if (!edst->ptr_inner)
372				return -ENOMEM;
373		}
374		i = 0;
375		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
376			rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
377						 &esrc->ptr_inner->entries[i],
378						 pos, count, level - 1,
379						 convert);
380			if (rc)
381				return rc;
382			i++;
383		}
384	} else {
385		if (!edst->ptr_leaf) {
386			edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
387						 GFP_KERNEL);
388			if (!edst->ptr_leaf)
389				return -ENOMEM;
390		}
391		i = 0;
392		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
393			rc = convert->func(&esrc->ptr_leaf->entries[i].context,
394					   &edst->ptr_leaf->entries[i].context,
395					   convert->args);
 
 
396			if (rc)
397				return rc;
398			(*pos)++;
399			i++;
400		}
401		cond_resched();
402	}
403	return 0;
404}
405
406int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
407{
408	unsigned long flags;
409	u32 count, level, pos;
410	int rc;
411
412	spin_lock_irqsave(&s->lock, flags);
413
414	/* concurrent policy loads are not allowed */
415	if (s->convert) {
416		spin_unlock_irqrestore(&s->lock, flags);
417		return -EBUSY;
418	}
419
420	count = s->count;
421	level = sidtab_level_from_count(count);
422
423	/* allocate last leaf in the new sidtab (to avoid race with
424	 * live convert)
425	 */
426	rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
427	if (rc) {
428		spin_unlock_irqrestore(&s->lock, flags);
429		return rc;
430	}
431
432	/* set count in case no new entries are added during conversion */
433	params->target->count = count;
434
435	/* enable live convert of new entries */
436	s->convert = params;
437
438	/* we can safely do the rest of the conversion outside the lock */
439	spin_unlock_irqrestore(&s->lock, flags);
440
441	pr_info("SELinux:  Converting %u SID table entries...\n", count);
442
443	/* convert all entries not covered by live convert */
444	pos = 0;
445	rc = sidtab_convert_tree(&params->target->roots[level],
446				 &s->roots[level], &pos, count, level, params);
447	if (rc) {
448		/* we need to keep the old table - disable live convert */
449		spin_lock_irqsave(&s->lock, flags);
450		s->convert = NULL;
451		spin_unlock_irqrestore(&s->lock, flags);
 
452	}
453	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454}
455
456static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
457{
458	u32 i;
459
460	if (level != 0) {
461		struct sidtab_node_inner *node = entry.ptr_inner;
462
463		if (!node)
464			return;
465
466		for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
467			sidtab_destroy_tree(node->entries[i], level - 1);
468		kfree(node);
469	} else {
470		struct sidtab_node_leaf *node = entry.ptr_leaf;
471
472		if (!node)
473			return;
474
475		for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
476			context_destroy(&node->entries[i].context);
477		kfree(node);
478	}
479}
480
481void sidtab_destroy(struct sidtab *s)
482{
483	u32 i, level;
484
485	for (i = 0; i < SECINITSID_NUM; i++)
486		if (s->isids[i].set)
487			context_destroy(&s->isids[i].context);
488
489	level = SIDTAB_MAX_LEVEL;
490	while (level && !s->roots[level].ptr_inner)
491		--level;
492
493	sidtab_destroy_tree(s->roots[level], level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
494}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the SID table type.
  4 *
  5 * Original author: Stephen Smalley, <stephen.smalley.work@gmail.com>
  6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
  7 *
  8 * Copyright (C) 2018 Red Hat, Inc.
  9 */
 10
 11#include <linux/errno.h>
 12#include <linux/kernel.h>
 13#include <linux/list.h>
 14#include <linux/rcupdate.h>
 15#include <linux/slab.h>
 16#include <linux/sched.h>
 17#include <linux/spinlock.h>
 18#include <asm/barrier.h>
 19#include "flask.h"
 20#include "security.h"
 21#include "sidtab.h"
 22#include "services.h"
 23
 24struct sidtab_str_cache {
 25	struct rcu_head rcu_member;
 26	struct list_head lru_member;
 27	struct sidtab_entry *parent;
 28	u32 len;
 29	char str[] __counted_by(len);
 30};
 31
 32#define index_to_sid(index) ((index) + SECINITSID_NUM + 1)
 33#define sid_to_index(sid)   ((sid) - (SECINITSID_NUM + 1))
 34
 35int sidtab_init(struct sidtab *s)
 36{
 37	u32 i;
 38
 39	memset(s->roots, 0, sizeof(s->roots));
 40
 
 
 
 
 41	for (i = 0; i < SECINITSID_NUM; i++)
 42		s->isids[i].set = 0;
 43
 44	s->frozen = false;
 45	s->count = 0;
 46	s->convert = NULL;
 47	hash_init(s->context_to_sid);
 48
 49	spin_lock_init(&s->lock);
 50
 51#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
 52	s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
 53	INIT_LIST_HEAD(&s->cache_lru_list);
 54	spin_lock_init(&s->cache_lock);
 55#endif
 56
 57	return 0;
 58}
 59
 60static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
 61{
 62	struct sidtab_entry *entry;
 63	u32 sid = 0;
 64
 65	rcu_read_lock();
 66	hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
 67		if (entry->hash != hash)
 68			continue;
 69		if (context_cmp(&entry->context, context)) {
 70			sid = entry->sid;
 71			break;
 72		}
 73	}
 74	rcu_read_unlock();
 75	return sid;
 76}
 77
 78int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
 79{
 80	struct sidtab_isid_entry *isid;
 81	u32 hash;
 82	int rc;
 83
 84	if (sid == 0 || sid > SECINITSID_NUM)
 85		return -EINVAL;
 86
 87	isid = &s->isids[sid - 1];
 88
 89	rc = context_cpy(&isid->entry.context, context);
 90	if (rc)
 91		return rc;
 92
 93#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
 94	isid->entry.cache = NULL;
 95#endif
 96	isid->set = 1;
 97
 98	hash = context_compute_hash(context);
 99
100	/*
101	 * Multiple initial sids may map to the same context. Check that this
102	 * context is not already represented in the context_to_sid hashtable
103	 * to avoid duplicate entries and long linked lists upon hash
104	 * collision.
105	 */
106	if (!context_to_sid(s, context, hash)) {
107		isid->entry.sid = sid;
108		isid->entry.hash = hash;
109		hash_add(s->context_to_sid, &isid->entry.list, hash);
110	}
111
112	return 0;
113}
114
115int sidtab_hash_stats(struct sidtab *sidtab, char *page)
116{
117	int i;
118	int chain_len = 0;
119	int slots_used = 0;
120	int entries = 0;
121	int max_chain_len = 0;
122	int cur_bucket = 0;
123	struct sidtab_entry *entry;
124
125	rcu_read_lock();
126	hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
127		entries++;
128		if (i == cur_bucket) {
129			chain_len++;
130			if (chain_len == 1)
131				slots_used++;
132		} else {
133			cur_bucket = i;
134			if (chain_len > max_chain_len)
135				max_chain_len = chain_len;
136			chain_len = 0;
137		}
138	}
139	rcu_read_unlock();
140
141	if (chain_len > max_chain_len)
142		max_chain_len = chain_len;
143
144	return scnprintf(page, PAGE_SIZE,
145			 "entries: %d\nbuckets used: %d/%d\n"
146			 "longest chain: %d\n",
147			 entries, slots_used, SIDTAB_HASH_BUCKETS,
148			 max_chain_len);
149}
150
151static u32 sidtab_level_from_count(u32 count)
152{
153	u32 capacity = SIDTAB_LEAF_ENTRIES;
154	u32 level = 0;
155
156	while (count > capacity) {
157		capacity <<= SIDTAB_INNER_SHIFT;
158		++level;
159	}
160	return level;
161}
162
163static int sidtab_alloc_roots(struct sidtab *s, u32 level)
164{
165	u32 l;
166
167	if (!s->roots[0].ptr_leaf) {
168		s->roots[0].ptr_leaf =
169			kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
170		if (!s->roots[0].ptr_leaf)
171			return -ENOMEM;
172	}
173	for (l = 1; l <= level; ++l)
174		if (!s->roots[l].ptr_inner) {
175			s->roots[l].ptr_inner =
176				kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
177			if (!s->roots[l].ptr_inner)
178				return -ENOMEM;
179			s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
180		}
181	return 0;
182}
183
184static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
185					     int alloc)
186{
187	union sidtab_entry_inner *entry;
188	u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
189
190	/* find the level of the subtree we need */
191	level = sidtab_level_from_count(index + 1);
192	capacity_shift = level * SIDTAB_INNER_SHIFT;
193
194	/* allocate roots if needed */
195	if (alloc && sidtab_alloc_roots(s, level) != 0)
196		return NULL;
197
198	/* lookup inside the subtree */
199	entry = &s->roots[level];
200	while (level != 0) {
201		capacity_shift -= SIDTAB_INNER_SHIFT;
202		--level;
203
204		entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
205		leaf_index &= ((u32)1 << capacity_shift) - 1;
206
207		if (!entry->ptr_inner) {
208			if (alloc)
209				entry->ptr_inner = kzalloc(
210					SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
211			if (!entry->ptr_inner)
212				return NULL;
213		}
214	}
215	if (!entry->ptr_leaf) {
216		if (alloc)
217			entry->ptr_leaf =
218				kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
219		if (!entry->ptr_leaf)
220			return NULL;
221	}
222	return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
223}
224
225static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
226{
227	/* read entries only after reading count */
228	u32 count = smp_load_acquire(&s->count);
229
230	if (index >= count)
231		return NULL;
232
233	return sidtab_do_lookup(s, index, 0);
234}
235
236static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
237{
238	return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
239}
240
241static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
242					       int force)
243{
 
 
244	if (sid != 0) {
245		struct sidtab_entry *entry;
246
247		if (sid > SECINITSID_NUM)
248			entry = sidtab_lookup(s, sid_to_index(sid));
249		else
250			entry = sidtab_lookup_initial(s, sid);
251		if (entry && (!entry->context.len || force))
252			return entry;
253	}
254
255	return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
256}
257
258struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
259{
260	return sidtab_search_core(s, sid, 0);
261}
262
263struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
264{
265	return sidtab_search_core(s, sid, 1);
266}
267
268int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269{
270	unsigned long flags;
271	u32 count, hash = context_compute_hash(context);
272	struct sidtab_convert_params *convert;
273	struct sidtab_entry *dst, *dst_convert;
274	int rc;
275
276	*sid = context_to_sid(s, context, hash);
277	if (*sid)
278		return 0;
279
 
 
 
 
 
 
 
 
 
 
 
 
280	/* lock-free search failed: lock, re-search, and insert if not found */
281	spin_lock_irqsave(&s->lock, flags);
282
283	rc = 0;
284	*sid = context_to_sid(s, context, hash);
285	if (*sid)
286		goto out_unlock;
287
288	if (unlikely(s->frozen)) {
289		/*
290		 * This sidtab is now frozen - tell the caller to abort and
291		 * get the new one.
292		 */
293		rc = -ESTALE;
294		goto out_unlock;
 
 
295	}
296
297	count = s->count;
298
299	/* bail out if we already reached max entries */
300	rc = -EOVERFLOW;
301	if (count >= SIDTAB_MAX)
302		goto out_unlock;
303
304	/* insert context into new entry */
305	rc = -ENOMEM;
306	dst = sidtab_do_lookup(s, count, 1);
307	if (!dst)
308		goto out_unlock;
309
310	dst->sid = index_to_sid(count);
311	dst->hash = hash;
312
313	rc = context_cpy(&dst->context, context);
314	if (rc)
315		goto out_unlock;
316
317	/*
318	 * if we are building a new sidtab, we need to convert the context
319	 * and insert it there as well
320	 */
321	convert = s->convert;
322	if (convert) {
323		struct sidtab *target = convert->target;
324
325		rc = -ENOMEM;
326		dst_convert = sidtab_do_lookup(target, count, 1);
327		if (!dst_convert) {
328			context_destroy(&dst->context);
329			goto out_unlock;
330		}
331
332		rc = services_convert_context(convert->args, context,
333					      &dst_convert->context,
334					      GFP_ATOMIC);
335		if (rc) {
336			context_destroy(&dst->context);
337			goto out_unlock;
338		}
339		dst_convert->sid = index_to_sid(count);
340		dst_convert->hash = context_compute_hash(&dst_convert->context);
341		target->count = count + 1;
342
343		hash_add_rcu(target->context_to_sid, &dst_convert->list,
344			     dst_convert->hash);
345	}
346
347	if (context->len)
348		pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
349			context->str);
350
351	*sid = index_to_sid(count);
 
352
353	/* write entries before updating count */
354	smp_store_release(&s->count, count + 1);
355	hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
356
357	rc = 0;
358out_unlock:
359	spin_unlock_irqrestore(&s->lock, flags);
360	return rc;
361}
362
363static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
364{
365	struct sidtab_entry *entry;
366	u32 i;
367
368	for (i = 0; i < count; i++) {
369		entry = sidtab_do_lookup(s, i, 0);
370		entry->sid = index_to_sid(i);
371		entry->hash = context_compute_hash(&entry->context);
372
373		hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
 
 
 
374	}
 
 
 
 
 
 
375}
376
377static int sidtab_convert_tree(union sidtab_entry_inner *edst,
378			       union sidtab_entry_inner *esrc, u32 *pos,
379			       u32 count, u32 level,
380			       struct sidtab_convert_params *convert)
381{
382	int rc;
383	u32 i;
384
385	if (level != 0) {
386		if (!edst->ptr_inner) {
387			edst->ptr_inner =
388				kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_KERNEL);
389			if (!edst->ptr_inner)
390				return -ENOMEM;
391		}
392		i = 0;
393		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
394			rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
395						 &esrc->ptr_inner->entries[i],
396						 pos, count, level - 1,
397						 convert);
398			if (rc)
399				return rc;
400			i++;
401		}
402	} else {
403		if (!edst->ptr_leaf) {
404			edst->ptr_leaf =
405				kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_KERNEL);
406			if (!edst->ptr_leaf)
407				return -ENOMEM;
408		}
409		i = 0;
410		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
411			rc = services_convert_context(
412				convert->args,
413				&esrc->ptr_leaf->entries[i].context,
414				&edst->ptr_leaf->entries[i].context,
415				GFP_KERNEL);
416			if (rc)
417				return rc;
418			(*pos)++;
419			i++;
420		}
421		cond_resched();
422	}
423	return 0;
424}
425
426int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
427{
428	unsigned long flags;
429	u32 count, level, pos;
430	int rc;
431
432	spin_lock_irqsave(&s->lock, flags);
433
434	/* concurrent policy loads are not allowed */
435	if (s->convert) {
436		spin_unlock_irqrestore(&s->lock, flags);
437		return -EBUSY;
438	}
439
440	count = s->count;
441	level = sidtab_level_from_count(count);
442
443	/* allocate last leaf in the new sidtab (to avoid race with
444	 * live convert)
445	 */
446	rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
447	if (rc) {
448		spin_unlock_irqrestore(&s->lock, flags);
449		return rc;
450	}
451
452	/* set count in case no new entries are added during conversion */
453	params->target->count = count;
454
455	/* enable live convert of new entries */
456	s->convert = params;
457
458	/* we can safely convert the tree outside the lock */
459	spin_unlock_irqrestore(&s->lock, flags);
460
461	pr_info("SELinux:  Converting %u SID table entries...\n", count);
462
463	/* convert all entries not covered by live convert */
464	pos = 0;
465	rc = sidtab_convert_tree(&params->target->roots[level],
466				 &s->roots[level], &pos, count, level, params);
467	if (rc) {
468		/* we need to keep the old table - disable live convert */
469		spin_lock_irqsave(&s->lock, flags);
470		s->convert = NULL;
471		spin_unlock_irqrestore(&s->lock, flags);
472		return rc;
473	}
474	/*
475	 * The hashtable can also be modified in sidtab_context_to_sid()
476	 * so we must re-acquire the lock here.
477	 */
478	spin_lock_irqsave(&s->lock, flags);
479	sidtab_convert_hashtable(params->target, count);
480	spin_unlock_irqrestore(&s->lock, flags);
481
482	return 0;
483}
484
485void sidtab_cancel_convert(struct sidtab *s)
486{
487	unsigned long flags;
488
489	/* cancelling policy load - disable live convert of sidtab */
490	spin_lock_irqsave(&s->lock, flags);
491	s->convert = NULL;
492	spin_unlock_irqrestore(&s->lock, flags);
493}
494
495void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags)
496	__acquires(&s->lock)
497{
498	spin_lock_irqsave(&s->lock, *flags);
499	s->frozen = true;
500	s->convert = NULL;
501}
502void sidtab_freeze_end(struct sidtab *s, unsigned long *flags)
503	__releases(&s->lock)
504{
505	spin_unlock_irqrestore(&s->lock, *flags);
506}
507
508static void sidtab_destroy_entry(struct sidtab_entry *entry)
509{
510	context_destroy(&entry->context);
511#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
512	kfree(rcu_dereference_raw(entry->cache));
513#endif
514}
515
516static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
517{
518	u32 i;
519
520	if (level != 0) {
521		struct sidtab_node_inner *node = entry.ptr_inner;
522
523		if (!node)
524			return;
525
526		for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
527			sidtab_destroy_tree(node->entries[i], level - 1);
528		kfree(node);
529	} else {
530		struct sidtab_node_leaf *node = entry.ptr_leaf;
531
532		if (!node)
533			return;
534
535		for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
536			sidtab_destroy_entry(&node->entries[i]);
537		kfree(node);
538	}
539}
540
541void sidtab_destroy(struct sidtab *s)
542{
543	u32 i, level;
544
545	for (i = 0; i < SECINITSID_NUM; i++)
546		if (s->isids[i].set)
547			sidtab_destroy_entry(&s->isids[i].entry);
548
549	level = SIDTAB_MAX_LEVEL;
550	while (level && !s->roots[level].ptr_inner)
551		--level;
552
553	sidtab_destroy_tree(s->roots[level], level);
554	/*
555	 * The context_to_sid hashtable's objects are all shared
556	 * with the isids array and context tree, and so don't need
557	 * to be cleaned up here.
558	 */
559}
560
561#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
562
563void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
564			const char *str, u32 str_len)
565{
566	struct sidtab_str_cache *cache, *victim = NULL;
567	unsigned long flags;
568
569	/* do not cache invalid contexts */
570	if (entry->context.len)
571		return;
572
573	spin_lock_irqsave(&s->cache_lock, flags);
574
575	cache = rcu_dereference_protected(entry->cache,
576					  lockdep_is_held(&s->cache_lock));
577	if (cache) {
578		/* entry in cache - just bump to the head of LRU list */
579		list_move(&cache->lru_member, &s->cache_lru_list);
580		goto out_unlock;
581	}
582
583	cache = kmalloc(struct_size(cache, str, str_len), GFP_ATOMIC);
584	if (!cache)
585		goto out_unlock;
586
587	if (s->cache_free_slots == 0) {
588		/* pop a cache entry from the tail and free it */
589		victim = container_of(s->cache_lru_list.prev,
590				      struct sidtab_str_cache, lru_member);
591		list_del(&victim->lru_member);
592		rcu_assign_pointer(victim->parent->cache, NULL);
593	} else {
594		s->cache_free_slots--;
595	}
596	cache->parent = entry;
597	cache->len = str_len;
598	memcpy(cache->str, str, str_len);
599	list_add(&cache->lru_member, &s->cache_lru_list);
600
601	rcu_assign_pointer(entry->cache, cache);
602
603out_unlock:
604	spin_unlock_irqrestore(&s->cache_lock, flags);
605	kfree_rcu(victim, rcu_member);
606}
607
608int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out,
609		       u32 *out_len)
610{
611	struct sidtab_str_cache *cache;
612	int rc = 0;
613
614	if (entry->context.len)
615		return -ENOENT; /* do not cache invalid contexts */
616
617	rcu_read_lock();
618
619	cache = rcu_dereference(entry->cache);
620	if (!cache) {
621		rc = -ENOENT;
622	} else {
623		*out_len = cache->len;
624		if (out) {
625			*out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
626			if (!*out)
627				rc = -ENOMEM;
628		}
629	}
630
631	rcu_read_unlock();
632
633	if (!rc && out)
634		sidtab_sid2str_put(s, entry, *out, *out_len);
635	return rc;
636}
637
638#endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */