Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the SID table type.
  4 *
  5 * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
  6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
  7 *
  8 * Copyright (C) 2018 Red Hat, Inc.
  9 */
 10#include <linux/errno.h>
 11#include <linux/kernel.h>
 
 
 12#include <linux/slab.h>
 13#include <linux/sched.h>
 14#include <linux/spinlock.h>
 15#include <asm/barrier.h>
 16#include "flask.h"
 17#include "security.h"
 18#include "sidtab.h"
 19
 
 
 
 
 
 
 
 
 
 
 
 20int sidtab_init(struct sidtab *s)
 21{
 22	u32 i;
 23
 24	memset(s->roots, 0, sizeof(s->roots));
 25
 26	/* max count is SIDTAB_MAX so valid index is always < SIDTAB_MAX */
 27	for (i = 0; i < SIDTAB_RCACHE_SIZE; i++)
 28		s->rcache[i] = SIDTAB_MAX;
 29
 30	for (i = 0; i < SECINITSID_NUM; i++)
 31		s->isids[i].set = 0;
 32
 
 33	s->count = 0;
 34	s->convert = NULL;
 
 35
 36	spin_lock_init(&s->lock);
 
 
 
 
 
 
 
 37	return 0;
 38}
 39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
 41{
 42	struct sidtab_isid_entry *entry;
 
 43	int rc;
 44
 45	if (sid == 0 || sid > SECINITSID_NUM)
 46		return -EINVAL;
 47
 48	entry = &s->isids[sid - 1];
 49
 50	rc = context_cpy(&entry->context, context);
 51	if (rc)
 52		return rc;
 53
 54	entry->set = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55	return 0;
 56}
 57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58static u32 sidtab_level_from_count(u32 count)
 59{
 60	u32 capacity = SIDTAB_LEAF_ENTRIES;
 61	u32 level = 0;
 62
 63	while (count > capacity) {
 64		capacity <<= SIDTAB_INNER_SHIFT;
 65		++level;
 66	}
 67	return level;
 68}
 69
 70static int sidtab_alloc_roots(struct sidtab *s, u32 level)
 71{
 72	u32 l;
 73
 74	if (!s->roots[0].ptr_leaf) {
 75		s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
 76					       GFP_ATOMIC);
 77		if (!s->roots[0].ptr_leaf)
 78			return -ENOMEM;
 79	}
 80	for (l = 1; l <= level; ++l)
 81		if (!s->roots[l].ptr_inner) {
 82			s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
 83							GFP_ATOMIC);
 84			if (!s->roots[l].ptr_inner)
 85				return -ENOMEM;
 86			s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
 87		}
 88	return 0;
 89}
 90
 91static struct context *sidtab_do_lookup(struct sidtab *s, u32 index, int alloc)
 
 92{
 93	union sidtab_entry_inner *entry;
 94	u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
 95
 96	/* find the level of the subtree we need */
 97	level = sidtab_level_from_count(index + 1);
 98	capacity_shift = level * SIDTAB_INNER_SHIFT;
 99
100	/* allocate roots if needed */
101	if (alloc && sidtab_alloc_roots(s, level) != 0)
102		return NULL;
103
104	/* lookup inside the subtree */
105	entry = &s->roots[level];
106	while (level != 0) {
107		capacity_shift -= SIDTAB_INNER_SHIFT;
108		--level;
109
110		entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
111		leaf_index &= ((u32)1 << capacity_shift) - 1;
112
113		if (!entry->ptr_inner) {
114			if (alloc)
115				entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
116							   GFP_ATOMIC);
117			if (!entry->ptr_inner)
118				return NULL;
119		}
120	}
121	if (!entry->ptr_leaf) {
122		if (alloc)
123			entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
124						  GFP_ATOMIC);
125		if (!entry->ptr_leaf)
126			return NULL;
127	}
128	return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES].context;
129}
130
131static struct context *sidtab_lookup(struct sidtab *s, u32 index)
132{
133	/* read entries only after reading count */
134	u32 count = smp_load_acquire(&s->count);
135
136	if (index >= count)
137		return NULL;
138
139	return sidtab_do_lookup(s, index, 0);
140}
141
142static struct context *sidtab_lookup_initial(struct sidtab *s, u32 sid)
143{
144	return s->isids[sid - 1].set ? &s->isids[sid - 1].context : NULL;
145}
146
147static struct context *sidtab_search_core(struct sidtab *s, u32 sid, int force)
 
148{
149	struct context *context;
150
151	if (sid != 0) {
 
 
152		if (sid > SECINITSID_NUM)
153			context = sidtab_lookup(s, sid - (SECINITSID_NUM + 1));
154		else
155			context = sidtab_lookup_initial(s, sid);
156		if (context && (!context->len || force))
157			return context;
158	}
159
160	return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
161}
162
163struct context *sidtab_search(struct sidtab *s, u32 sid)
164{
165	return sidtab_search_core(s, sid, 0);
166}
167
168struct context *sidtab_search_force(struct sidtab *s, u32 sid)
169{
170	return sidtab_search_core(s, sid, 1);
171}
172
173static int sidtab_find_context(union sidtab_entry_inner entry,
174			       u32 *pos, u32 count, u32 level,
175			       struct context *context, u32 *index)
176{
177	int rc;
178	u32 i;
179
180	if (level != 0) {
181		struct sidtab_node_inner *node = entry.ptr_inner;
182
183		i = 0;
184		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
185			rc = sidtab_find_context(node->entries[i],
186						 pos, count, level - 1,
187						 context, index);
188			if (rc == 0)
189				return 0;
190			i++;
191		}
192	} else {
193		struct sidtab_node_leaf *node = entry.ptr_leaf;
194
195		i = 0;
196		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
197			if (context_cmp(&node->entries[i].context, context)) {
198				*index = *pos;
199				return 0;
200			}
201			(*pos)++;
202			i++;
203		}
204	}
205	return -ENOENT;
206}
207
208static void sidtab_rcache_update(struct sidtab *s, u32 index, u32 pos)
209{
210	while (pos > 0) {
211		WRITE_ONCE(s->rcache[pos], READ_ONCE(s->rcache[pos - 1]));
212		--pos;
213	}
214	WRITE_ONCE(s->rcache[0], index);
215}
216
217static void sidtab_rcache_push(struct sidtab *s, u32 index)
218{
219	sidtab_rcache_update(s, index, SIDTAB_RCACHE_SIZE - 1);
220}
221
222static int sidtab_rcache_search(struct sidtab *s, struct context *context,
223				u32 *index)
224{
225	u32 i;
226
227	for (i = 0; i < SIDTAB_RCACHE_SIZE; i++) {
228		u32 v = READ_ONCE(s->rcache[i]);
229
230		if (v >= SIDTAB_MAX)
231			continue;
232
233		if (context_cmp(sidtab_do_lookup(s, v, 0), context)) {
234			sidtab_rcache_update(s, v, i);
235			*index = v;
236			return 0;
237		}
238	}
239	return -ENOENT;
240}
241
242static int sidtab_reverse_lookup(struct sidtab *s, struct context *context,
243				 u32 *index)
244{
245	unsigned long flags;
246	u32 count, count_locked, level, pos;
247	struct sidtab_convert_params *convert;
248	struct context *dst, *dst_convert;
249	int rc;
250
251	rc = sidtab_rcache_search(s, context, index);
252	if (rc == 0)
253		return 0;
254
255	/* read entries only after reading count */
256	count = smp_load_acquire(&s->count);
257	level = sidtab_level_from_count(count);
258
259	pos = 0;
260	rc = sidtab_find_context(s->roots[level], &pos, count, level,
261				 context, index);
262	if (rc == 0) {
263		sidtab_rcache_push(s, *index);
264		return 0;
265	}
266
267	/* lock-free search failed: lock, re-search, and insert if not found */
268	spin_lock_irqsave(&s->lock, flags);
269
270	convert = s->convert;
271	count_locked = s->count;
272	level = sidtab_level_from_count(count_locked);
 
273
274	/* if count has changed before we acquired the lock, then catch up */
275	while (count < count_locked) {
276		if (context_cmp(sidtab_do_lookup(s, count, 0), context)) {
277			sidtab_rcache_push(s, count);
278			*index = count;
279			rc = 0;
280			goto out_unlock;
281		}
282		++count;
283	}
284
 
 
 
285	/* bail out if we already reached max entries */
286	rc = -EOVERFLOW;
287	if (count >= SIDTAB_MAX)
288		goto out_unlock;
289
290	/* insert context into new entry */
291	rc = -ENOMEM;
292	dst = sidtab_do_lookup(s, count, 1);
293	if (!dst)
294		goto out_unlock;
295
296	rc = context_cpy(dst, context);
 
 
 
297	if (rc)
298		goto out_unlock;
299
300	/*
301	 * if we are building a new sidtab, we need to convert the context
302	 * and insert it there as well
303	 */
304	if (convert) {
305		rc = -ENOMEM;
306		dst_convert = sidtab_do_lookup(convert->target, count, 1);
307		if (!dst_convert) {
308			context_destroy(dst);
309			goto out_unlock;
310		}
311
312		rc = convert->func(context, dst_convert, convert->args);
 
313		if (rc) {
314			context_destroy(dst);
315			goto out_unlock;
316		}
317
318		/* at this point we know the insert won't fail */
319		convert->target->count = count + 1;
 
 
 
320	}
321
322	if (context->len)
323		pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
324			context->str);
325
326	sidtab_rcache_push(s, count);
327	*index = count;
328
329	/* write entries before writing new count */
330	smp_store_release(&s->count, count + 1);
 
331
332	rc = 0;
333out_unlock:
334	spin_unlock_irqrestore(&s->lock, flags);
335	return rc;
336}
337
338int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid)
339{
340	int rc;
341	u32 i;
342
343	for (i = 0; i < SECINITSID_NUM; i++) {
344		struct sidtab_isid_entry *entry = &s->isids[i];
 
 
345
346		if (entry->set && context_cmp(context, &entry->context)) {
347			*sid = i + 1;
348			return 0;
349		}
350	}
351
352	rc = sidtab_reverse_lookup(s, context, sid);
353	if (rc)
354		return rc;
355	*sid += SECINITSID_NUM + 1;
356	return 0;
357}
358
359static int sidtab_convert_tree(union sidtab_entry_inner *edst,
360			       union sidtab_entry_inner *esrc,
361			       u32 *pos, u32 count, u32 level,
362			       struct sidtab_convert_params *convert)
363{
364	int rc;
365	u32 i;
366
367	if (level != 0) {
368		if (!edst->ptr_inner) {
369			edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
370						  GFP_KERNEL);
371			if (!edst->ptr_inner)
372				return -ENOMEM;
373		}
374		i = 0;
375		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
376			rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
377						 &esrc->ptr_inner->entries[i],
378						 pos, count, level - 1,
379						 convert);
380			if (rc)
381				return rc;
382			i++;
383		}
384	} else {
385		if (!edst->ptr_leaf) {
386			edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
387						 GFP_KERNEL);
388			if (!edst->ptr_leaf)
389				return -ENOMEM;
390		}
391		i = 0;
392		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
393			rc = convert->func(&esrc->ptr_leaf->entries[i].context,
394					   &edst->ptr_leaf->entries[i].context,
395					   convert->args);
396			if (rc)
397				return rc;
398			(*pos)++;
399			i++;
400		}
401		cond_resched();
402	}
403	return 0;
404}
405
406int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
407{
408	unsigned long flags;
409	u32 count, level, pos;
410	int rc;
411
412	spin_lock_irqsave(&s->lock, flags);
413
414	/* concurrent policy loads are not allowed */
415	if (s->convert) {
416		spin_unlock_irqrestore(&s->lock, flags);
417		return -EBUSY;
418	}
419
420	count = s->count;
421	level = sidtab_level_from_count(count);
422
423	/* allocate last leaf in the new sidtab (to avoid race with
424	 * live convert)
425	 */
426	rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
427	if (rc) {
428		spin_unlock_irqrestore(&s->lock, flags);
429		return rc;
430	}
431
432	/* set count in case no new entries are added during conversion */
433	params->target->count = count;
434
435	/* enable live convert of new entries */
436	s->convert = params;
437
438	/* we can safely do the rest of the conversion outside the lock */
439	spin_unlock_irqrestore(&s->lock, flags);
440
441	pr_info("SELinux:  Converting %u SID table entries...\n", count);
442
443	/* convert all entries not covered by live convert */
444	pos = 0;
445	rc = sidtab_convert_tree(&params->target->roots[level],
446				 &s->roots[level], &pos, count, level, params);
447	if (rc) {
448		/* we need to keep the old table - disable live convert */
449		spin_lock_irqsave(&s->lock, flags);
450		s->convert = NULL;
451		spin_unlock_irqrestore(&s->lock, flags);
 
452	}
453	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454}
455
456static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
457{
458	u32 i;
459
460	if (level != 0) {
461		struct sidtab_node_inner *node = entry.ptr_inner;
462
463		if (!node)
464			return;
465
466		for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
467			sidtab_destroy_tree(node->entries[i], level - 1);
468		kfree(node);
469	} else {
470		struct sidtab_node_leaf *node = entry.ptr_leaf;
471
472		if (!node)
473			return;
474
475		for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
476			context_destroy(&node->entries[i].context);
477		kfree(node);
478	}
479}
480
481void sidtab_destroy(struct sidtab *s)
482{
483	u32 i, level;
484
485	for (i = 0; i < SECINITSID_NUM; i++)
486		if (s->isids[i].set)
487			context_destroy(&s->isids[i].context);
488
489	level = SIDTAB_MAX_LEVEL;
490	while (level && !s->roots[level].ptr_inner)
491		--level;
492
493	sidtab_destroy_tree(s->roots[level], level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
494}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the SID table type.
  4 *
  5 * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
  6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
  7 *
  8 * Copyright (C) 2018 Red Hat, Inc.
  9 */
 10#include <linux/errno.h>
 11#include <linux/kernel.h>
 12#include <linux/list.h>
 13#include <linux/rcupdate.h>
 14#include <linux/slab.h>
 15#include <linux/sched.h>
 16#include <linux/spinlock.h>
 17#include <asm/barrier.h>
 18#include "flask.h"
 19#include "security.h"
 20#include "sidtab.h"
 21
 22struct sidtab_str_cache {
 23	struct rcu_head rcu_member;
 24	struct list_head lru_member;
 25	struct sidtab_entry *parent;
 26	u32 len;
 27	char str[];
 28};
 29
 30#define index_to_sid(index) (index + SECINITSID_NUM + 1)
 31#define sid_to_index(sid) (sid - (SECINITSID_NUM + 1))
 32
 33int sidtab_init(struct sidtab *s)
 34{
 35	u32 i;
 36
 37	memset(s->roots, 0, sizeof(s->roots));
 38
 
 
 
 
 39	for (i = 0; i < SECINITSID_NUM; i++)
 40		s->isids[i].set = 0;
 41
 42	s->frozen = false;
 43	s->count = 0;
 44	s->convert = NULL;
 45	hash_init(s->context_to_sid);
 46
 47	spin_lock_init(&s->lock);
 48
 49#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
 50	s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
 51	INIT_LIST_HEAD(&s->cache_lru_list);
 52	spin_lock_init(&s->cache_lock);
 53#endif
 54
 55	return 0;
 56}
 57
 58static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
 59{
 60	struct sidtab_entry *entry;
 61	u32 sid = 0;
 62
 63	rcu_read_lock();
 64	hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
 65		if (entry->hash != hash)
 66			continue;
 67		if (context_cmp(&entry->context, context)) {
 68			sid = entry->sid;
 69			break;
 70		}
 71	}
 72	rcu_read_unlock();
 73	return sid;
 74}
 75
 76int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
 77{
 78	struct sidtab_isid_entry *isid;
 79	u32 hash;
 80	int rc;
 81
 82	if (sid == 0 || sid > SECINITSID_NUM)
 83		return -EINVAL;
 84
 85	isid = &s->isids[sid - 1];
 86
 87	rc = context_cpy(&isid->entry.context, context);
 88	if (rc)
 89		return rc;
 90
 91#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
 92	isid->entry.cache = NULL;
 93#endif
 94	isid->set = 1;
 95
 96	hash = context_compute_hash(context);
 97
 98	/*
 99	 * Multiple initial sids may map to the same context. Check that this
100	 * context is not already represented in the context_to_sid hashtable
101	 * to avoid duplicate entries and long linked lists upon hash
102	 * collision.
103	 */
104	if (!context_to_sid(s, context, hash)) {
105		isid->entry.sid = sid;
106		isid->entry.hash = hash;
107		hash_add(s->context_to_sid, &isid->entry.list, hash);
108	}
109
110	return 0;
111}
112
113int sidtab_hash_stats(struct sidtab *sidtab, char *page)
114{
115	int i;
116	int chain_len = 0;
117	int slots_used = 0;
118	int entries = 0;
119	int max_chain_len = 0;
120	int cur_bucket = 0;
121	struct sidtab_entry *entry;
122
123	rcu_read_lock();
124	hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
125		entries++;
126		if (i == cur_bucket) {
127			chain_len++;
128			if (chain_len == 1)
129				slots_used++;
130		} else {
131			cur_bucket = i;
132			if (chain_len > max_chain_len)
133				max_chain_len = chain_len;
134			chain_len = 0;
135		}
136	}
137	rcu_read_unlock();
138
139	if (chain_len > max_chain_len)
140		max_chain_len = chain_len;
141
142	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
143			 "longest chain: %d\n", entries,
144			 slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
145}
146
147static u32 sidtab_level_from_count(u32 count)
148{
149	u32 capacity = SIDTAB_LEAF_ENTRIES;
150	u32 level = 0;
151
152	while (count > capacity) {
153		capacity <<= SIDTAB_INNER_SHIFT;
154		++level;
155	}
156	return level;
157}
158
159static int sidtab_alloc_roots(struct sidtab *s, u32 level)
160{
161	u32 l;
162
163	if (!s->roots[0].ptr_leaf) {
164		s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
165					       GFP_ATOMIC);
166		if (!s->roots[0].ptr_leaf)
167			return -ENOMEM;
168	}
169	for (l = 1; l <= level; ++l)
170		if (!s->roots[l].ptr_inner) {
171			s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
172							GFP_ATOMIC);
173			if (!s->roots[l].ptr_inner)
174				return -ENOMEM;
175			s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
176		}
177	return 0;
178}
179
180static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
181					     int alloc)
182{
183	union sidtab_entry_inner *entry;
184	u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
185
186	/* find the level of the subtree we need */
187	level = sidtab_level_from_count(index + 1);
188	capacity_shift = level * SIDTAB_INNER_SHIFT;
189
190	/* allocate roots if needed */
191	if (alloc && sidtab_alloc_roots(s, level) != 0)
192		return NULL;
193
194	/* lookup inside the subtree */
195	entry = &s->roots[level];
196	while (level != 0) {
197		capacity_shift -= SIDTAB_INNER_SHIFT;
198		--level;
199
200		entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
201		leaf_index &= ((u32)1 << capacity_shift) - 1;
202
203		if (!entry->ptr_inner) {
204			if (alloc)
205				entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
206							   GFP_ATOMIC);
207			if (!entry->ptr_inner)
208				return NULL;
209		}
210	}
211	if (!entry->ptr_leaf) {
212		if (alloc)
213			entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
214						  GFP_ATOMIC);
215		if (!entry->ptr_leaf)
216			return NULL;
217	}
218	return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
219}
220
221static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
222{
223	/* read entries only after reading count */
224	u32 count = smp_load_acquire(&s->count);
225
226	if (index >= count)
227		return NULL;
228
229	return sidtab_do_lookup(s, index, 0);
230}
231
232static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
233{
234	return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
235}
236
237static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
238					       int force)
239{
 
 
240	if (sid != 0) {
241		struct sidtab_entry *entry;
242
243		if (sid > SECINITSID_NUM)
244			entry = sidtab_lookup(s, sid_to_index(sid));
245		else
246			entry = sidtab_lookup_initial(s, sid);
247		if (entry && (!entry->context.len || force))
248			return entry;
249	}
250
251	return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
252}
253
254struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
255{
256	return sidtab_search_core(s, sid, 0);
257}
258
259struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
260{
261	return sidtab_search_core(s, sid, 1);
262}
263
264int sidtab_context_to_sid(struct sidtab *s, struct context *context,
265			  u32 *sid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266{
267	unsigned long flags;
268	u32 count, hash = context_compute_hash(context);
269	struct sidtab_convert_params *convert;
270	struct sidtab_entry *dst, *dst_convert;
271	int rc;
272
273	*sid = context_to_sid(s, context, hash);
274	if (*sid)
275		return 0;
276
 
 
 
 
 
 
 
 
 
 
 
 
277	/* lock-free search failed: lock, re-search, and insert if not found */
278	spin_lock_irqsave(&s->lock, flags);
279
280	rc = 0;
281	*sid = context_to_sid(s, context, hash);
282	if (*sid)
283		goto out_unlock;
284
285	if (unlikely(s->frozen)) {
286		/*
287		 * This sidtab is now frozen - tell the caller to abort and
288		 * get the new one.
289		 */
290		rc = -ESTALE;
291		goto out_unlock;
 
 
292	}
293
294	count = s->count;
295	convert = s->convert;
296
297	/* bail out if we already reached max entries */
298	rc = -EOVERFLOW;
299	if (count >= SIDTAB_MAX)
300		goto out_unlock;
301
302	/* insert context into new entry */
303	rc = -ENOMEM;
304	dst = sidtab_do_lookup(s, count, 1);
305	if (!dst)
306		goto out_unlock;
307
308	dst->sid = index_to_sid(count);
309	dst->hash = hash;
310
311	rc = context_cpy(&dst->context, context);
312	if (rc)
313		goto out_unlock;
314
315	/*
316	 * if we are building a new sidtab, we need to convert the context
317	 * and insert it there as well
318	 */
319	if (convert) {
320		rc = -ENOMEM;
321		dst_convert = sidtab_do_lookup(convert->target, count, 1);
322		if (!dst_convert) {
323			context_destroy(&dst->context);
324			goto out_unlock;
325		}
326
327		rc = convert->func(context, &dst_convert->context,
328				   convert->args);
329		if (rc) {
330			context_destroy(&dst->context);
331			goto out_unlock;
332		}
333		dst_convert->sid = index_to_sid(count);
334		dst_convert->hash = context_compute_hash(&dst_convert->context);
335		convert->target->count = count + 1;
336
337		hash_add_rcu(convert->target->context_to_sid,
338			     &dst_convert->list, dst_convert->hash);
339	}
340
341	if (context->len)
342		pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
343			context->str);
344
345	*sid = index_to_sid(count);
 
346
347	/* write entries before updating count */
348	smp_store_release(&s->count, count + 1);
349	hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
350
351	rc = 0;
352out_unlock:
353	spin_unlock_irqrestore(&s->lock, flags);
354	return rc;
355}
356
357static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
358{
359	struct sidtab_entry *entry;
360	u32 i;
361
362	for (i = 0; i < count; i++) {
363		entry = sidtab_do_lookup(s, i, 0);
364		entry->sid = index_to_sid(i);
365		entry->hash = context_compute_hash(&entry->context);
366
367		hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
 
 
 
368	}
 
 
 
 
 
 
369}
370
371static int sidtab_convert_tree(union sidtab_entry_inner *edst,
372			       union sidtab_entry_inner *esrc,
373			       u32 *pos, u32 count, u32 level,
374			       struct sidtab_convert_params *convert)
375{
376	int rc;
377	u32 i;
378
379	if (level != 0) {
380		if (!edst->ptr_inner) {
381			edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
382						  GFP_KERNEL);
383			if (!edst->ptr_inner)
384				return -ENOMEM;
385		}
386		i = 0;
387		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
388			rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
389						 &esrc->ptr_inner->entries[i],
390						 pos, count, level - 1,
391						 convert);
392			if (rc)
393				return rc;
394			i++;
395		}
396	} else {
397		if (!edst->ptr_leaf) {
398			edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
399						 GFP_KERNEL);
400			if (!edst->ptr_leaf)
401				return -ENOMEM;
402		}
403		i = 0;
404		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
405			rc = convert->func(&esrc->ptr_leaf->entries[i].context,
406					   &edst->ptr_leaf->entries[i].context,
407					   convert->args);
408			if (rc)
409				return rc;
410			(*pos)++;
411			i++;
412		}
413		cond_resched();
414	}
415	return 0;
416}
417
418int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
419{
420	unsigned long flags;
421	u32 count, level, pos;
422	int rc;
423
424	spin_lock_irqsave(&s->lock, flags);
425
426	/* concurrent policy loads are not allowed */
427	if (s->convert) {
428		spin_unlock_irqrestore(&s->lock, flags);
429		return -EBUSY;
430	}
431
432	count = s->count;
433	level = sidtab_level_from_count(count);
434
435	/* allocate last leaf in the new sidtab (to avoid race with
436	 * live convert)
437	 */
438	rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
439	if (rc) {
440		spin_unlock_irqrestore(&s->lock, flags);
441		return rc;
442	}
443
444	/* set count in case no new entries are added during conversion */
445	params->target->count = count;
446
447	/* enable live convert of new entries */
448	s->convert = params;
449
450	/* we can safely convert the tree outside the lock */
451	spin_unlock_irqrestore(&s->lock, flags);
452
453	pr_info("SELinux:  Converting %u SID table entries...\n", count);
454
455	/* convert all entries not covered by live convert */
456	pos = 0;
457	rc = sidtab_convert_tree(&params->target->roots[level],
458				 &s->roots[level], &pos, count, level, params);
459	if (rc) {
460		/* we need to keep the old table - disable live convert */
461		spin_lock_irqsave(&s->lock, flags);
462		s->convert = NULL;
463		spin_unlock_irqrestore(&s->lock, flags);
464		return rc;
465	}
466	/*
467	 * The hashtable can also be modified in sidtab_context_to_sid()
468	 * so we must re-acquire the lock here.
469	 */
470	spin_lock_irqsave(&s->lock, flags);
471	sidtab_convert_hashtable(params->target, count);
472	spin_unlock_irqrestore(&s->lock, flags);
473
474	return 0;
475}
476
477void sidtab_cancel_convert(struct sidtab *s)
478{
479	unsigned long flags;
480
481	/* cancelling policy load - disable live convert of sidtab */
482	spin_lock_irqsave(&s->lock, flags);
483	s->convert = NULL;
484	spin_unlock_irqrestore(&s->lock, flags);
485}
486
487void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags) __acquires(&s->lock)
488{
489	spin_lock_irqsave(&s->lock, *flags);
490	s->frozen = true;
491	s->convert = NULL;
492}
493void sidtab_freeze_end(struct sidtab *s, unsigned long *flags) __releases(&s->lock)
494{
495	spin_unlock_irqrestore(&s->lock, *flags);
496}
497
498static void sidtab_destroy_entry(struct sidtab_entry *entry)
499{
500	context_destroy(&entry->context);
501#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
502	kfree(rcu_dereference_raw(entry->cache));
503#endif
504}
505
506static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
507{
508	u32 i;
509
510	if (level != 0) {
511		struct sidtab_node_inner *node = entry.ptr_inner;
512
513		if (!node)
514			return;
515
516		for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
517			sidtab_destroy_tree(node->entries[i], level - 1);
518		kfree(node);
519	} else {
520		struct sidtab_node_leaf *node = entry.ptr_leaf;
521
522		if (!node)
523			return;
524
525		for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
526			sidtab_destroy_entry(&node->entries[i]);
527		kfree(node);
528	}
529}
530
531void sidtab_destroy(struct sidtab *s)
532{
533	u32 i, level;
534
535	for (i = 0; i < SECINITSID_NUM; i++)
536		if (s->isids[i].set)
537			sidtab_destroy_entry(&s->isids[i].entry);
538
539	level = SIDTAB_MAX_LEVEL;
540	while (level && !s->roots[level].ptr_inner)
541		--level;
542
543	sidtab_destroy_tree(s->roots[level], level);
544	/*
545	 * The context_to_sid hashtable's objects are all shared
546	 * with the isids array and context tree, and so don't need
547	 * to be cleaned up here.
548	 */
549}
550
551#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
552
553void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
554			const char *str, u32 str_len)
555{
556	struct sidtab_str_cache *cache, *victim = NULL;
557	unsigned long flags;
558
559	/* do not cache invalid contexts */
560	if (entry->context.len)
561		return;
562
563	spin_lock_irqsave(&s->cache_lock, flags);
564
565	cache = rcu_dereference_protected(entry->cache,
566					  lockdep_is_held(&s->cache_lock));
567	if (cache) {
568		/* entry in cache - just bump to the head of LRU list */
569		list_move(&cache->lru_member, &s->cache_lru_list);
570		goto out_unlock;
571	}
572
573	cache = kmalloc(sizeof(struct sidtab_str_cache) + str_len, GFP_ATOMIC);
574	if (!cache)
575		goto out_unlock;
576
577	if (s->cache_free_slots == 0) {
578		/* pop a cache entry from the tail and free it */
579		victim = container_of(s->cache_lru_list.prev,
580				      struct sidtab_str_cache, lru_member);
581		list_del(&victim->lru_member);
582		rcu_assign_pointer(victim->parent->cache, NULL);
583	} else {
584		s->cache_free_slots--;
585	}
586	cache->parent = entry;
587	cache->len = str_len;
588	memcpy(cache->str, str, str_len);
589	list_add(&cache->lru_member, &s->cache_lru_list);
590
591	rcu_assign_pointer(entry->cache, cache);
592
593out_unlock:
594	spin_unlock_irqrestore(&s->cache_lock, flags);
595	kfree_rcu(victim, rcu_member);
596}
597
598int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry,
599		       char **out, u32 *out_len)
600{
601	struct sidtab_str_cache *cache;
602	int rc = 0;
603
604	if (entry->context.len)
605		return -ENOENT; /* do not cache invalid contexts */
606
607	rcu_read_lock();
608
609	cache = rcu_dereference(entry->cache);
610	if (!cache) {
611		rc = -ENOENT;
612	} else {
613		*out_len = cache->len;
614		if (out) {
615			*out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
616			if (!*out)
617				rc = -ENOMEM;
618		}
619	}
620
621	rcu_read_unlock();
622
623	if (!rc && out)
624		sidtab_sid2str_put(s, entry, *out, *out_len);
625	return rc;
626}
627
628#endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */