Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/init.h>
12#include <linux/bitops.h>
13#include <linux/poison.h>
14#include <linux/pfn.h>
15#include <linux/debugfs.h>
16#include <linux/kmemleak.h>
17#include <linux/seq_file.h>
18#include <linux/memblock.h>
19
20#include <asm/sections.h>
21#include <linux/io.h>
22
23#include "internal.h"
24
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
32/**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmap`` - describes the actual physical memory regardless of
48 * the possible restrictions; the ``physmap`` type is only available
49 * on some architectures.
50 *
51 * Each region is represented by :c:type:`struct memblock_region` that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the :c:type:`struct
54 * memblock_type` which contains an array of memory regions along with
55 * the allocator metadata. The memory types are nicely wrapped with
56 * :c:type:`struct memblock`. This structure is statically initialzed
57 * at build time. The region arrays for the "memory" and "reserved"
58 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
59 * "physmap" type to %INIT_PHYSMEM_REGIONS.
60 * The :c:func:`memblock_allow_resize` enables automatic resizing of
61 * the region arrays during addition of new regions. This feature
62 * should be used with care so that memory allocated for the region
63 * array will not overlap with areas that should be reserved, for
64 * example initrd.
65 *
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using :c:func:`memblock_add` or
68 * :c:func:`memblock_add_node` functions. The first function does not
69 * assign the region to a NUMA node and it is appropriate for UMA
70 * systems. Yet, it is possible to use it on NUMA systems as well and
71 * assign the region to a NUMA node later in the setup process using
72 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
73 * performs such an assignment directly.
74 *
75 * Once memblock is setup the memory can be allocated using one of the
76 * API variants:
77 *
78 * * :c:func:`memblock_phys_alloc*` - these functions return the
79 * **physical** address of the allocated memory
80 * * :c:func:`memblock_alloc*` - these functions return the **virtual**
81 * address of the allocated memory.
82 *
83 * Note, that both API variants use implict assumptions about allowed
84 * memory ranges and the fallback methods. Consult the documentation
85 * of :c:func:`memblock_alloc_internal` and
86 * :c:func:`memblock_alloc_range_nid` functions for more elaboarte
87 * description.
88 *
89 * As the system boot progresses, the architecture specific
90 * :c:func:`mem_init` function frees all the memory to the buddy page
91 * allocator.
92 *
93 * Unless an architecure enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
94 * memblock data structures will be discarded after the system
95 * initialization compltes.
96 */
97
98#ifndef CONFIG_NEED_MULTIPLE_NODES
99struct pglist_data __refdata contig_page_data;
100EXPORT_SYMBOL(contig_page_data);
101#endif
102
103unsigned long max_low_pfn;
104unsigned long min_low_pfn;
105unsigned long max_pfn;
106unsigned long long max_possible_pfn;
107
108static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
109static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
110#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
111static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
112#endif
113
114struct memblock memblock __initdata_memblock = {
115 .memory.regions = memblock_memory_init_regions,
116 .memory.cnt = 1, /* empty dummy entry */
117 .memory.max = INIT_MEMBLOCK_REGIONS,
118 .memory.name = "memory",
119
120 .reserved.regions = memblock_reserved_init_regions,
121 .reserved.cnt = 1, /* empty dummy entry */
122 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
123 .reserved.name = "reserved",
124
125#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
126 .physmem.regions = memblock_physmem_init_regions,
127 .physmem.cnt = 1, /* empty dummy entry */
128 .physmem.max = INIT_PHYSMEM_REGIONS,
129 .physmem.name = "physmem",
130#endif
131
132 .bottom_up = false,
133 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
134};
135
136int memblock_debug __initdata_memblock;
137static bool system_has_some_mirror __initdata_memblock = false;
138static int memblock_can_resize __initdata_memblock;
139static int memblock_memory_in_slab __initdata_memblock = 0;
140static int memblock_reserved_in_slab __initdata_memblock = 0;
141
142static enum memblock_flags __init_memblock choose_memblock_flags(void)
143{
144 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
145}
146
147/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
148static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
149{
150 return *size = min(*size, PHYS_ADDR_MAX - base);
151}
152
153/*
154 * Address comparison utilities
155 */
156static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
157 phys_addr_t base2, phys_addr_t size2)
158{
159 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
160}
161
162bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
163 phys_addr_t base, phys_addr_t size)
164{
165 unsigned long i;
166
167 for (i = 0; i < type->cnt; i++)
168 if (memblock_addrs_overlap(base, size, type->regions[i].base,
169 type->regions[i].size))
170 break;
171 return i < type->cnt;
172}
173
174/**
175 * __memblock_find_range_bottom_up - find free area utility in bottom-up
176 * @start: start of candidate range
177 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
178 * %MEMBLOCK_ALLOC_ACCESSIBLE
179 * @size: size of free area to find
180 * @align: alignment of free area to find
181 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
182 * @flags: pick from blocks based on memory attributes
183 *
184 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
185 *
186 * Return:
187 * Found address on success, 0 on failure.
188 */
189static phys_addr_t __init_memblock
190__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
191 phys_addr_t size, phys_addr_t align, int nid,
192 enum memblock_flags flags)
193{
194 phys_addr_t this_start, this_end, cand;
195 u64 i;
196
197 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
198 this_start = clamp(this_start, start, end);
199 this_end = clamp(this_end, start, end);
200
201 cand = round_up(this_start, align);
202 if (cand < this_end && this_end - cand >= size)
203 return cand;
204 }
205
206 return 0;
207}
208
209/**
210 * __memblock_find_range_top_down - find free area utility, in top-down
211 * @start: start of candidate range
212 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
213 * %MEMBLOCK_ALLOC_ACCESSIBLE
214 * @size: size of free area to find
215 * @align: alignment of free area to find
216 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
217 * @flags: pick from blocks based on memory attributes
218 *
219 * Utility called from memblock_find_in_range_node(), find free area top-down.
220 *
221 * Return:
222 * Found address on success, 0 on failure.
223 */
224static phys_addr_t __init_memblock
225__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
226 phys_addr_t size, phys_addr_t align, int nid,
227 enum memblock_flags flags)
228{
229 phys_addr_t this_start, this_end, cand;
230 u64 i;
231
232 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
233 NULL) {
234 this_start = clamp(this_start, start, end);
235 this_end = clamp(this_end, start, end);
236
237 if (this_end < size)
238 continue;
239
240 cand = round_down(this_end - size, align);
241 if (cand >= this_start)
242 return cand;
243 }
244
245 return 0;
246}
247
248/**
249 * memblock_find_in_range_node - find free area in given range and node
250 * @size: size of free area to find
251 * @align: alignment of free area to find
252 * @start: start of candidate range
253 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
254 * %MEMBLOCK_ALLOC_ACCESSIBLE
255 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
256 * @flags: pick from blocks based on memory attributes
257 *
258 * Find @size free area aligned to @align in the specified range and node.
259 *
260 * When allocation direction is bottom-up, the @start should be greater
261 * than the end of the kernel image. Otherwise, it will be trimmed. The
262 * reason is that we want the bottom-up allocation just near the kernel
263 * image so it is highly likely that the allocated memory and the kernel
264 * will reside in the same node.
265 *
266 * If bottom-up allocation failed, will try to allocate memory top-down.
267 *
268 * Return:
269 * Found address on success, 0 on failure.
270 */
271static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
272 phys_addr_t align, phys_addr_t start,
273 phys_addr_t end, int nid,
274 enum memblock_flags flags)
275{
276 phys_addr_t kernel_end, ret;
277
278 /* pump up @end */
279 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
280 end == MEMBLOCK_ALLOC_KASAN)
281 end = memblock.current_limit;
282
283 /* avoid allocating the first page */
284 start = max_t(phys_addr_t, start, PAGE_SIZE);
285 end = max(start, end);
286 kernel_end = __pa_symbol(_end);
287
288 /*
289 * try bottom-up allocation only when bottom-up mode
290 * is set and @end is above the kernel image.
291 */
292 if (memblock_bottom_up() && end > kernel_end) {
293 phys_addr_t bottom_up_start;
294
295 /* make sure we will allocate above the kernel */
296 bottom_up_start = max(start, kernel_end);
297
298 /* ok, try bottom-up allocation first */
299 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
300 size, align, nid, flags);
301 if (ret)
302 return ret;
303
304 /*
305 * we always limit bottom-up allocation above the kernel,
306 * but top-down allocation doesn't have the limit, so
307 * retrying top-down allocation may succeed when bottom-up
308 * allocation failed.
309 *
310 * bottom-up allocation is expected to be fail very rarely,
311 * so we use WARN_ONCE() here to see the stack trace if
312 * fail happens.
313 */
314 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
315 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
316 }
317
318 return __memblock_find_range_top_down(start, end, size, align, nid,
319 flags);
320}
321
322/**
323 * memblock_find_in_range - find free area in given range
324 * @start: start of candidate range
325 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
326 * %MEMBLOCK_ALLOC_ACCESSIBLE
327 * @size: size of free area to find
328 * @align: alignment of free area to find
329 *
330 * Find @size free area aligned to @align in the specified range.
331 *
332 * Return:
333 * Found address on success, 0 on failure.
334 */
335phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
336 phys_addr_t end, phys_addr_t size,
337 phys_addr_t align)
338{
339 phys_addr_t ret;
340 enum memblock_flags flags = choose_memblock_flags();
341
342again:
343 ret = memblock_find_in_range_node(size, align, start, end,
344 NUMA_NO_NODE, flags);
345
346 if (!ret && (flags & MEMBLOCK_MIRROR)) {
347 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
348 &size);
349 flags &= ~MEMBLOCK_MIRROR;
350 goto again;
351 }
352
353 return ret;
354}
355
356static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
357{
358 type->total_size -= type->regions[r].size;
359 memmove(&type->regions[r], &type->regions[r + 1],
360 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
361 type->cnt--;
362
363 /* Special case for empty arrays */
364 if (type->cnt == 0) {
365 WARN_ON(type->total_size != 0);
366 type->cnt = 1;
367 type->regions[0].base = 0;
368 type->regions[0].size = 0;
369 type->regions[0].flags = 0;
370 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
371 }
372}
373
374#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
375/**
376 * memblock_discard - discard memory and reserved arrays if they were allocated
377 */
378void __init memblock_discard(void)
379{
380 phys_addr_t addr, size;
381
382 if (memblock.reserved.regions != memblock_reserved_init_regions) {
383 addr = __pa(memblock.reserved.regions);
384 size = PAGE_ALIGN(sizeof(struct memblock_region) *
385 memblock.reserved.max);
386 __memblock_free_late(addr, size);
387 }
388
389 if (memblock.memory.regions != memblock_memory_init_regions) {
390 addr = __pa(memblock.memory.regions);
391 size = PAGE_ALIGN(sizeof(struct memblock_region) *
392 memblock.memory.max);
393 __memblock_free_late(addr, size);
394 }
395}
396#endif
397
398/**
399 * memblock_double_array - double the size of the memblock regions array
400 * @type: memblock type of the regions array being doubled
401 * @new_area_start: starting address of memory range to avoid overlap with
402 * @new_area_size: size of memory range to avoid overlap with
403 *
404 * Double the size of the @type regions array. If memblock is being used to
405 * allocate memory for a new reserved regions array and there is a previously
406 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
407 * waiting to be reserved, ensure the memory used by the new array does
408 * not overlap.
409 *
410 * Return:
411 * 0 on success, -1 on failure.
412 */
413static int __init_memblock memblock_double_array(struct memblock_type *type,
414 phys_addr_t new_area_start,
415 phys_addr_t new_area_size)
416{
417 struct memblock_region *new_array, *old_array;
418 phys_addr_t old_alloc_size, new_alloc_size;
419 phys_addr_t old_size, new_size, addr, new_end;
420 int use_slab = slab_is_available();
421 int *in_slab;
422
423 /* We don't allow resizing until we know about the reserved regions
424 * of memory that aren't suitable for allocation
425 */
426 if (!memblock_can_resize)
427 return -1;
428
429 /* Calculate new doubled size */
430 old_size = type->max * sizeof(struct memblock_region);
431 new_size = old_size << 1;
432 /*
433 * We need to allocated new one align to PAGE_SIZE,
434 * so we can free them completely later.
435 */
436 old_alloc_size = PAGE_ALIGN(old_size);
437 new_alloc_size = PAGE_ALIGN(new_size);
438
439 /* Retrieve the slab flag */
440 if (type == &memblock.memory)
441 in_slab = &memblock_memory_in_slab;
442 else
443 in_slab = &memblock_reserved_in_slab;
444
445 /* Try to find some space for it */
446 if (use_slab) {
447 new_array = kmalloc(new_size, GFP_KERNEL);
448 addr = new_array ? __pa(new_array) : 0;
449 } else {
450 /* only exclude range when trying to double reserved.regions */
451 if (type != &memblock.reserved)
452 new_area_start = new_area_size = 0;
453
454 addr = memblock_find_in_range(new_area_start + new_area_size,
455 memblock.current_limit,
456 new_alloc_size, PAGE_SIZE);
457 if (!addr && new_area_size)
458 addr = memblock_find_in_range(0,
459 min(new_area_start, memblock.current_limit),
460 new_alloc_size, PAGE_SIZE);
461
462 new_array = addr ? __va(addr) : NULL;
463 }
464 if (!addr) {
465 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
466 type->name, type->max, type->max * 2);
467 return -1;
468 }
469
470 new_end = addr + new_size - 1;
471 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
472 type->name, type->max * 2, &addr, &new_end);
473
474 /*
475 * Found space, we now need to move the array over before we add the
476 * reserved region since it may be our reserved array itself that is
477 * full.
478 */
479 memcpy(new_array, type->regions, old_size);
480 memset(new_array + type->max, 0, old_size);
481 old_array = type->regions;
482 type->regions = new_array;
483 type->max <<= 1;
484
485 /* Free old array. We needn't free it if the array is the static one */
486 if (*in_slab)
487 kfree(old_array);
488 else if (old_array != memblock_memory_init_regions &&
489 old_array != memblock_reserved_init_regions)
490 memblock_free(__pa(old_array), old_alloc_size);
491
492 /*
493 * Reserve the new array if that comes from the memblock. Otherwise, we
494 * needn't do it
495 */
496 if (!use_slab)
497 BUG_ON(memblock_reserve(addr, new_alloc_size));
498
499 /* Update slab flag */
500 *in_slab = use_slab;
501
502 return 0;
503}
504
505/**
506 * memblock_merge_regions - merge neighboring compatible regions
507 * @type: memblock type to scan
508 *
509 * Scan @type and merge neighboring compatible regions.
510 */
511static void __init_memblock memblock_merge_regions(struct memblock_type *type)
512{
513 int i = 0;
514
515 /* cnt never goes below 1 */
516 while (i < type->cnt - 1) {
517 struct memblock_region *this = &type->regions[i];
518 struct memblock_region *next = &type->regions[i + 1];
519
520 if (this->base + this->size != next->base ||
521 memblock_get_region_node(this) !=
522 memblock_get_region_node(next) ||
523 this->flags != next->flags) {
524 BUG_ON(this->base + this->size > next->base);
525 i++;
526 continue;
527 }
528
529 this->size += next->size;
530 /* move forward from next + 1, index of which is i + 2 */
531 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
532 type->cnt--;
533 }
534}
535
536/**
537 * memblock_insert_region - insert new memblock region
538 * @type: memblock type to insert into
539 * @idx: index for the insertion point
540 * @base: base address of the new region
541 * @size: size of the new region
542 * @nid: node id of the new region
543 * @flags: flags of the new region
544 *
545 * Insert new memblock region [@base, @base + @size) into @type at @idx.
546 * @type must already have extra room to accommodate the new region.
547 */
548static void __init_memblock memblock_insert_region(struct memblock_type *type,
549 int idx, phys_addr_t base,
550 phys_addr_t size,
551 int nid,
552 enum memblock_flags flags)
553{
554 struct memblock_region *rgn = &type->regions[idx];
555
556 BUG_ON(type->cnt >= type->max);
557 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
558 rgn->base = base;
559 rgn->size = size;
560 rgn->flags = flags;
561 memblock_set_region_node(rgn, nid);
562 type->cnt++;
563 type->total_size += size;
564}
565
566/**
567 * memblock_add_range - add new memblock region
568 * @type: memblock type to add new region into
569 * @base: base address of the new region
570 * @size: size of the new region
571 * @nid: nid of the new region
572 * @flags: flags of the new region
573 *
574 * Add new memblock region [@base, @base + @size) into @type. The new region
575 * is allowed to overlap with existing ones - overlaps don't affect already
576 * existing regions. @type is guaranteed to be minimal (all neighbouring
577 * compatible regions are merged) after the addition.
578 *
579 * Return:
580 * 0 on success, -errno on failure.
581 */
582int __init_memblock memblock_add_range(struct memblock_type *type,
583 phys_addr_t base, phys_addr_t size,
584 int nid, enum memblock_flags flags)
585{
586 bool insert = false;
587 phys_addr_t obase = base;
588 phys_addr_t end = base + memblock_cap_size(base, &size);
589 int idx, nr_new;
590 struct memblock_region *rgn;
591
592 if (!size)
593 return 0;
594
595 /* special case for empty array */
596 if (type->regions[0].size == 0) {
597 WARN_ON(type->cnt != 1 || type->total_size);
598 type->regions[0].base = base;
599 type->regions[0].size = size;
600 type->regions[0].flags = flags;
601 memblock_set_region_node(&type->regions[0], nid);
602 type->total_size = size;
603 return 0;
604 }
605repeat:
606 /*
607 * The following is executed twice. Once with %false @insert and
608 * then with %true. The first counts the number of regions needed
609 * to accommodate the new area. The second actually inserts them.
610 */
611 base = obase;
612 nr_new = 0;
613
614 for_each_memblock_type(idx, type, rgn) {
615 phys_addr_t rbase = rgn->base;
616 phys_addr_t rend = rbase + rgn->size;
617
618 if (rbase >= end)
619 break;
620 if (rend <= base)
621 continue;
622 /*
623 * @rgn overlaps. If it separates the lower part of new
624 * area, insert that portion.
625 */
626 if (rbase > base) {
627#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
628 WARN_ON(nid != memblock_get_region_node(rgn));
629#endif
630 WARN_ON(flags != rgn->flags);
631 nr_new++;
632 if (insert)
633 memblock_insert_region(type, idx++, base,
634 rbase - base, nid,
635 flags);
636 }
637 /* area below @rend is dealt with, forget about it */
638 base = min(rend, end);
639 }
640
641 /* insert the remaining portion */
642 if (base < end) {
643 nr_new++;
644 if (insert)
645 memblock_insert_region(type, idx, base, end - base,
646 nid, flags);
647 }
648
649 if (!nr_new)
650 return 0;
651
652 /*
653 * If this was the first round, resize array and repeat for actual
654 * insertions; otherwise, merge and return.
655 */
656 if (!insert) {
657 while (type->cnt + nr_new > type->max)
658 if (memblock_double_array(type, obase, size) < 0)
659 return -ENOMEM;
660 insert = true;
661 goto repeat;
662 } else {
663 memblock_merge_regions(type);
664 return 0;
665 }
666}
667
668/**
669 * memblock_add_node - add new memblock region within a NUMA node
670 * @base: base address of the new region
671 * @size: size of the new region
672 * @nid: nid of the new region
673 *
674 * Add new memblock region [@base, @base + @size) to the "memory"
675 * type. See memblock_add_range() description for mode details
676 *
677 * Return:
678 * 0 on success, -errno on failure.
679 */
680int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
681 int nid)
682{
683 return memblock_add_range(&memblock.memory, base, size, nid, 0);
684}
685
686/**
687 * memblock_add - add new memblock region
688 * @base: base address of the new region
689 * @size: size of the new region
690 *
691 * Add new memblock region [@base, @base + @size) to the "memory"
692 * type. See memblock_add_range() description for mode details
693 *
694 * Return:
695 * 0 on success, -errno on failure.
696 */
697int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
698{
699 phys_addr_t end = base + size - 1;
700
701 memblock_dbg("memblock_add: [%pa-%pa] %pS\n",
702 &base, &end, (void *)_RET_IP_);
703
704 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
705}
706
707/**
708 * memblock_isolate_range - isolate given range into disjoint memblocks
709 * @type: memblock type to isolate range for
710 * @base: base of range to isolate
711 * @size: size of range to isolate
712 * @start_rgn: out parameter for the start of isolated region
713 * @end_rgn: out parameter for the end of isolated region
714 *
715 * Walk @type and ensure that regions don't cross the boundaries defined by
716 * [@base, @base + @size). Crossing regions are split at the boundaries,
717 * which may create at most two more regions. The index of the first
718 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
719 *
720 * Return:
721 * 0 on success, -errno on failure.
722 */
723static int __init_memblock memblock_isolate_range(struct memblock_type *type,
724 phys_addr_t base, phys_addr_t size,
725 int *start_rgn, int *end_rgn)
726{
727 phys_addr_t end = base + memblock_cap_size(base, &size);
728 int idx;
729 struct memblock_region *rgn;
730
731 *start_rgn = *end_rgn = 0;
732
733 if (!size)
734 return 0;
735
736 /* we'll create at most two more regions */
737 while (type->cnt + 2 > type->max)
738 if (memblock_double_array(type, base, size) < 0)
739 return -ENOMEM;
740
741 for_each_memblock_type(idx, type, rgn) {
742 phys_addr_t rbase = rgn->base;
743 phys_addr_t rend = rbase + rgn->size;
744
745 if (rbase >= end)
746 break;
747 if (rend <= base)
748 continue;
749
750 if (rbase < base) {
751 /*
752 * @rgn intersects from below. Split and continue
753 * to process the next region - the new top half.
754 */
755 rgn->base = base;
756 rgn->size -= base - rbase;
757 type->total_size -= base - rbase;
758 memblock_insert_region(type, idx, rbase, base - rbase,
759 memblock_get_region_node(rgn),
760 rgn->flags);
761 } else if (rend > end) {
762 /*
763 * @rgn intersects from above. Split and redo the
764 * current region - the new bottom half.
765 */
766 rgn->base = end;
767 rgn->size -= end - rbase;
768 type->total_size -= end - rbase;
769 memblock_insert_region(type, idx--, rbase, end - rbase,
770 memblock_get_region_node(rgn),
771 rgn->flags);
772 } else {
773 /* @rgn is fully contained, record it */
774 if (!*end_rgn)
775 *start_rgn = idx;
776 *end_rgn = idx + 1;
777 }
778 }
779
780 return 0;
781}
782
783static int __init_memblock memblock_remove_range(struct memblock_type *type,
784 phys_addr_t base, phys_addr_t size)
785{
786 int start_rgn, end_rgn;
787 int i, ret;
788
789 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
790 if (ret)
791 return ret;
792
793 for (i = end_rgn - 1; i >= start_rgn; i--)
794 memblock_remove_region(type, i);
795 return 0;
796}
797
798int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
799{
800 phys_addr_t end = base + size - 1;
801
802 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
803 &base, &end, (void *)_RET_IP_);
804
805 return memblock_remove_range(&memblock.memory, base, size);
806}
807
808/**
809 * memblock_free - free boot memory block
810 * @base: phys starting address of the boot memory block
811 * @size: size of the boot memory block in bytes
812 *
813 * Free boot memory block previously allocated by memblock_alloc_xx() API.
814 * The freeing memory will not be released to the buddy allocator.
815 */
816int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
817{
818 phys_addr_t end = base + size - 1;
819
820 memblock_dbg(" memblock_free: [%pa-%pa] %pS\n",
821 &base, &end, (void *)_RET_IP_);
822
823 kmemleak_free_part_phys(base, size);
824 return memblock_remove_range(&memblock.reserved, base, size);
825}
826
827int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
828{
829 phys_addr_t end = base + size - 1;
830
831 memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n",
832 &base, &end, (void *)_RET_IP_);
833
834 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
835}
836
837/**
838 * memblock_setclr_flag - set or clear flag for a memory region
839 * @base: base address of the region
840 * @size: size of the region
841 * @set: set or clear the flag
842 * @flag: the flag to udpate
843 *
844 * This function isolates region [@base, @base + @size), and sets/clears flag
845 *
846 * Return: 0 on success, -errno on failure.
847 */
848static int __init_memblock memblock_setclr_flag(phys_addr_t base,
849 phys_addr_t size, int set, int flag)
850{
851 struct memblock_type *type = &memblock.memory;
852 int i, ret, start_rgn, end_rgn;
853
854 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
855 if (ret)
856 return ret;
857
858 for (i = start_rgn; i < end_rgn; i++) {
859 struct memblock_region *r = &type->regions[i];
860
861 if (set)
862 r->flags |= flag;
863 else
864 r->flags &= ~flag;
865 }
866
867 memblock_merge_regions(type);
868 return 0;
869}
870
871/**
872 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
873 * @base: the base phys addr of the region
874 * @size: the size of the region
875 *
876 * Return: 0 on success, -errno on failure.
877 */
878int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
879{
880 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
881}
882
883/**
884 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
885 * @base: the base phys addr of the region
886 * @size: the size of the region
887 *
888 * Return: 0 on success, -errno on failure.
889 */
890int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
891{
892 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
893}
894
895/**
896 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
897 * @base: the base phys addr of the region
898 * @size: the size of the region
899 *
900 * Return: 0 on success, -errno on failure.
901 */
902int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
903{
904 system_has_some_mirror = true;
905
906 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
907}
908
909/**
910 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
911 * @base: the base phys addr of the region
912 * @size: the size of the region
913 *
914 * Return: 0 on success, -errno on failure.
915 */
916int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
917{
918 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
919}
920
921/**
922 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
923 * @base: the base phys addr of the region
924 * @size: the size of the region
925 *
926 * Return: 0 on success, -errno on failure.
927 */
928int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
929{
930 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
931}
932
933/**
934 * __next_reserved_mem_region - next function for for_each_reserved_region()
935 * @idx: pointer to u64 loop variable
936 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
937 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
938 *
939 * Iterate over all reserved memory regions.
940 */
941void __init_memblock __next_reserved_mem_region(u64 *idx,
942 phys_addr_t *out_start,
943 phys_addr_t *out_end)
944{
945 struct memblock_type *type = &memblock.reserved;
946
947 if (*idx < type->cnt) {
948 struct memblock_region *r = &type->regions[*idx];
949 phys_addr_t base = r->base;
950 phys_addr_t size = r->size;
951
952 if (out_start)
953 *out_start = base;
954 if (out_end)
955 *out_end = base + size - 1;
956
957 *idx += 1;
958 return;
959 }
960
961 /* signal end of iteration */
962 *idx = ULLONG_MAX;
963}
964
965static bool should_skip_region(struct memblock_region *m, int nid, int flags)
966{
967 int m_nid = memblock_get_region_node(m);
968
969 /* only memory regions are associated with nodes, check it */
970 if (nid != NUMA_NO_NODE && nid != m_nid)
971 return true;
972
973 /* skip hotpluggable memory regions if needed */
974 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
975 return true;
976
977 /* if we want mirror memory skip non-mirror memory regions */
978 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
979 return true;
980
981 /* skip nomap memory unless we were asked for it explicitly */
982 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
983 return true;
984
985 return false;
986}
987
988/**
989 * __next_mem_range - next function for for_each_free_mem_range() etc.
990 * @idx: pointer to u64 loop variable
991 * @nid: node selector, %NUMA_NO_NODE for all nodes
992 * @flags: pick from blocks based on memory attributes
993 * @type_a: pointer to memblock_type from where the range is taken
994 * @type_b: pointer to memblock_type which excludes memory from being taken
995 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
996 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
997 * @out_nid: ptr to int for nid of the range, can be %NULL
998 *
999 * Find the first area from *@idx which matches @nid, fill the out
1000 * parameters, and update *@idx for the next iteration. The lower 32bit of
1001 * *@idx contains index into type_a and the upper 32bit indexes the
1002 * areas before each region in type_b. For example, if type_b regions
1003 * look like the following,
1004 *
1005 * 0:[0-16), 1:[32-48), 2:[128-130)
1006 *
1007 * The upper 32bit indexes the following regions.
1008 *
1009 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1010 *
1011 * As both region arrays are sorted, the function advances the two indices
1012 * in lockstep and returns each intersection.
1013 */
1014void __init_memblock __next_mem_range(u64 *idx, int nid,
1015 enum memblock_flags flags,
1016 struct memblock_type *type_a,
1017 struct memblock_type *type_b,
1018 phys_addr_t *out_start,
1019 phys_addr_t *out_end, int *out_nid)
1020{
1021 int idx_a = *idx & 0xffffffff;
1022 int idx_b = *idx >> 32;
1023
1024 if (WARN_ONCE(nid == MAX_NUMNODES,
1025 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1026 nid = NUMA_NO_NODE;
1027
1028 for (; idx_a < type_a->cnt; idx_a++) {
1029 struct memblock_region *m = &type_a->regions[idx_a];
1030
1031 phys_addr_t m_start = m->base;
1032 phys_addr_t m_end = m->base + m->size;
1033 int m_nid = memblock_get_region_node(m);
1034
1035 if (should_skip_region(m, nid, flags))
1036 continue;
1037
1038 if (!type_b) {
1039 if (out_start)
1040 *out_start = m_start;
1041 if (out_end)
1042 *out_end = m_end;
1043 if (out_nid)
1044 *out_nid = m_nid;
1045 idx_a++;
1046 *idx = (u32)idx_a | (u64)idx_b << 32;
1047 return;
1048 }
1049
1050 /* scan areas before each reservation */
1051 for (; idx_b < type_b->cnt + 1; idx_b++) {
1052 struct memblock_region *r;
1053 phys_addr_t r_start;
1054 phys_addr_t r_end;
1055
1056 r = &type_b->regions[idx_b];
1057 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1058 r_end = idx_b < type_b->cnt ?
1059 r->base : PHYS_ADDR_MAX;
1060
1061 /*
1062 * if idx_b advanced past idx_a,
1063 * break out to advance idx_a
1064 */
1065 if (r_start >= m_end)
1066 break;
1067 /* if the two regions intersect, we're done */
1068 if (m_start < r_end) {
1069 if (out_start)
1070 *out_start =
1071 max(m_start, r_start);
1072 if (out_end)
1073 *out_end = min(m_end, r_end);
1074 if (out_nid)
1075 *out_nid = m_nid;
1076 /*
1077 * The region which ends first is
1078 * advanced for the next iteration.
1079 */
1080 if (m_end <= r_end)
1081 idx_a++;
1082 else
1083 idx_b++;
1084 *idx = (u32)idx_a | (u64)idx_b << 32;
1085 return;
1086 }
1087 }
1088 }
1089
1090 /* signal end of iteration */
1091 *idx = ULLONG_MAX;
1092}
1093
1094/**
1095 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1096 *
1097 * @idx: pointer to u64 loop variable
1098 * @nid: node selector, %NUMA_NO_NODE for all nodes
1099 * @flags: pick from blocks based on memory attributes
1100 * @type_a: pointer to memblock_type from where the range is taken
1101 * @type_b: pointer to memblock_type which excludes memory from being taken
1102 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1103 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1104 * @out_nid: ptr to int for nid of the range, can be %NULL
1105 *
1106 * Finds the next range from type_a which is not marked as unsuitable
1107 * in type_b.
1108 *
1109 * Reverse of __next_mem_range().
1110 */
1111void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1112 enum memblock_flags flags,
1113 struct memblock_type *type_a,
1114 struct memblock_type *type_b,
1115 phys_addr_t *out_start,
1116 phys_addr_t *out_end, int *out_nid)
1117{
1118 int idx_a = *idx & 0xffffffff;
1119 int idx_b = *idx >> 32;
1120
1121 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1122 nid = NUMA_NO_NODE;
1123
1124 if (*idx == (u64)ULLONG_MAX) {
1125 idx_a = type_a->cnt - 1;
1126 if (type_b != NULL)
1127 idx_b = type_b->cnt;
1128 else
1129 idx_b = 0;
1130 }
1131
1132 for (; idx_a >= 0; idx_a--) {
1133 struct memblock_region *m = &type_a->regions[idx_a];
1134
1135 phys_addr_t m_start = m->base;
1136 phys_addr_t m_end = m->base + m->size;
1137 int m_nid = memblock_get_region_node(m);
1138
1139 if (should_skip_region(m, nid, flags))
1140 continue;
1141
1142 if (!type_b) {
1143 if (out_start)
1144 *out_start = m_start;
1145 if (out_end)
1146 *out_end = m_end;
1147 if (out_nid)
1148 *out_nid = m_nid;
1149 idx_a--;
1150 *idx = (u32)idx_a | (u64)idx_b << 32;
1151 return;
1152 }
1153
1154 /* scan areas before each reservation */
1155 for (; idx_b >= 0; idx_b--) {
1156 struct memblock_region *r;
1157 phys_addr_t r_start;
1158 phys_addr_t r_end;
1159
1160 r = &type_b->regions[idx_b];
1161 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1162 r_end = idx_b < type_b->cnt ?
1163 r->base : PHYS_ADDR_MAX;
1164 /*
1165 * if idx_b advanced past idx_a,
1166 * break out to advance idx_a
1167 */
1168
1169 if (r_end <= m_start)
1170 break;
1171 /* if the two regions intersect, we're done */
1172 if (m_end > r_start) {
1173 if (out_start)
1174 *out_start = max(m_start, r_start);
1175 if (out_end)
1176 *out_end = min(m_end, r_end);
1177 if (out_nid)
1178 *out_nid = m_nid;
1179 if (m_start >= r_start)
1180 idx_a--;
1181 else
1182 idx_b--;
1183 *idx = (u32)idx_a | (u64)idx_b << 32;
1184 return;
1185 }
1186 }
1187 }
1188 /* signal end of iteration */
1189 *idx = ULLONG_MAX;
1190}
1191
1192#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1193/*
1194 * Common iterator interface used to define for_each_mem_pfn_range().
1195 */
1196void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1197 unsigned long *out_start_pfn,
1198 unsigned long *out_end_pfn, int *out_nid)
1199{
1200 struct memblock_type *type = &memblock.memory;
1201 struct memblock_region *r;
1202
1203 while (++*idx < type->cnt) {
1204 r = &type->regions[*idx];
1205
1206 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1207 continue;
1208 if (nid == MAX_NUMNODES || nid == r->nid)
1209 break;
1210 }
1211 if (*idx >= type->cnt) {
1212 *idx = -1;
1213 return;
1214 }
1215
1216 if (out_start_pfn)
1217 *out_start_pfn = PFN_UP(r->base);
1218 if (out_end_pfn)
1219 *out_end_pfn = PFN_DOWN(r->base + r->size);
1220 if (out_nid)
1221 *out_nid = r->nid;
1222}
1223
1224/**
1225 * memblock_set_node - set node ID on memblock regions
1226 * @base: base of area to set node ID for
1227 * @size: size of area to set node ID for
1228 * @type: memblock type to set node ID for
1229 * @nid: node ID to set
1230 *
1231 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1232 * Regions which cross the area boundaries are split as necessary.
1233 *
1234 * Return:
1235 * 0 on success, -errno on failure.
1236 */
1237int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1238 struct memblock_type *type, int nid)
1239{
1240 int start_rgn, end_rgn;
1241 int i, ret;
1242
1243 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1244 if (ret)
1245 return ret;
1246
1247 for (i = start_rgn; i < end_rgn; i++)
1248 memblock_set_region_node(&type->regions[i], nid);
1249
1250 memblock_merge_regions(type);
1251 return 0;
1252}
1253#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1254#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1255/**
1256 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1257 *
1258 * @idx: pointer to u64 loop variable
1259 * @zone: zone in which all of the memory blocks reside
1260 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1261 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1262 *
1263 * This function is meant to be a zone/pfn specific wrapper for the
1264 * for_each_mem_range type iterators. Specifically they are used in the
1265 * deferred memory init routines and as such we were duplicating much of
1266 * this logic throughout the code. So instead of having it in multiple
1267 * locations it seemed like it would make more sense to centralize this to
1268 * one new iterator that does everything they need.
1269 */
1270void __init_memblock
1271__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1272 unsigned long *out_spfn, unsigned long *out_epfn)
1273{
1274 int zone_nid = zone_to_nid(zone);
1275 phys_addr_t spa, epa;
1276 int nid;
1277
1278 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1279 &memblock.memory, &memblock.reserved,
1280 &spa, &epa, &nid);
1281
1282 while (*idx != U64_MAX) {
1283 unsigned long epfn = PFN_DOWN(epa);
1284 unsigned long spfn = PFN_UP(spa);
1285
1286 /*
1287 * Verify the end is at least past the start of the zone and
1288 * that we have at least one PFN to initialize.
1289 */
1290 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1291 /* if we went too far just stop searching */
1292 if (zone_end_pfn(zone) <= spfn) {
1293 *idx = U64_MAX;
1294 break;
1295 }
1296
1297 if (out_spfn)
1298 *out_spfn = max(zone->zone_start_pfn, spfn);
1299 if (out_epfn)
1300 *out_epfn = min(zone_end_pfn(zone), epfn);
1301
1302 return;
1303 }
1304
1305 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1306 &memblock.memory, &memblock.reserved,
1307 &spa, &epa, &nid);
1308 }
1309
1310 /* signal end of iteration */
1311 if (out_spfn)
1312 *out_spfn = ULONG_MAX;
1313 if (out_epfn)
1314 *out_epfn = 0;
1315}
1316
1317#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1318
1319/**
1320 * memblock_alloc_range_nid - allocate boot memory block
1321 * @size: size of memory block to be allocated in bytes
1322 * @align: alignment of the region and block's size
1323 * @start: the lower bound of the memory region to allocate (phys address)
1324 * @end: the upper bound of the memory region to allocate (phys address)
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 *
1327 * The allocation is performed from memory region limited by
1328 * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1329 *
1330 * If the specified node can not hold the requested memory the
1331 * allocation falls back to any node in the system
1332 *
1333 * For systems with memory mirroring, the allocation is attempted first
1334 * from the regions with mirroring enabled and then retried from any
1335 * memory region.
1336 *
1337 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1338 * allocated boot memory block, so that it is never reported as leaks.
1339 *
1340 * Return:
1341 * Physical address of allocated memory block on success, %0 on failure.
1342 */
1343static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1344 phys_addr_t align, phys_addr_t start,
1345 phys_addr_t end, int nid)
1346{
1347 enum memblock_flags flags = choose_memblock_flags();
1348 phys_addr_t found;
1349
1350 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1351 nid = NUMA_NO_NODE;
1352
1353 if (!align) {
1354 /* Can't use WARNs this early in boot on powerpc */
1355 dump_stack();
1356 align = SMP_CACHE_BYTES;
1357 }
1358
1359again:
1360 found = memblock_find_in_range_node(size, align, start, end, nid,
1361 flags);
1362 if (found && !memblock_reserve(found, size))
1363 goto done;
1364
1365 if (nid != NUMA_NO_NODE) {
1366 found = memblock_find_in_range_node(size, align, start,
1367 end, NUMA_NO_NODE,
1368 flags);
1369 if (found && !memblock_reserve(found, size))
1370 goto done;
1371 }
1372
1373 if (flags & MEMBLOCK_MIRROR) {
1374 flags &= ~MEMBLOCK_MIRROR;
1375 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1376 &size);
1377 goto again;
1378 }
1379
1380 return 0;
1381
1382done:
1383 /* Skip kmemleak for kasan_init() due to high volume. */
1384 if (end != MEMBLOCK_ALLOC_KASAN)
1385 /*
1386 * The min_count is set to 0 so that memblock allocated
1387 * blocks are never reported as leaks. This is because many
1388 * of these blocks are only referred via the physical
1389 * address which is not looked up by kmemleak.
1390 */
1391 kmemleak_alloc_phys(found, size, 0, 0);
1392
1393 return found;
1394}
1395
1396/**
1397 * memblock_phys_alloc_range - allocate a memory block inside specified range
1398 * @size: size of memory block to be allocated in bytes
1399 * @align: alignment of the region and block's size
1400 * @start: the lower bound of the memory region to allocate (physical address)
1401 * @end: the upper bound of the memory region to allocate (physical address)
1402 *
1403 * Allocate @size bytes in the between @start and @end.
1404 *
1405 * Return: physical address of the allocated memory block on success,
1406 * %0 on failure.
1407 */
1408phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1409 phys_addr_t align,
1410 phys_addr_t start,
1411 phys_addr_t end)
1412{
1413 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
1414}
1415
1416/**
1417 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1418 * @size: size of memory block to be allocated in bytes
1419 * @align: alignment of the region and block's size
1420 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1421 *
1422 * Allocates memory block from the specified NUMA node. If the node
1423 * has no available memory, attempts to allocated from any node in the
1424 * system.
1425 *
1426 * Return: physical address of the allocated memory block on success,
1427 * %0 on failure.
1428 */
1429phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1430{
1431 return memblock_alloc_range_nid(size, align, 0,
1432 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1433}
1434
1435/**
1436 * memblock_alloc_internal - allocate boot memory block
1437 * @size: size of memory block to be allocated in bytes
1438 * @align: alignment of the region and block's size
1439 * @min_addr: the lower bound of the memory region to allocate (phys address)
1440 * @max_addr: the upper bound of the memory region to allocate (phys address)
1441 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1442 *
1443 * Allocates memory block using memblock_alloc_range_nid() and
1444 * converts the returned physical address to virtual.
1445 *
1446 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1447 * will fall back to memory below @min_addr. Other constraints, such
1448 * as node and mirrored memory will be handled again in
1449 * memblock_alloc_range_nid().
1450 *
1451 * Return:
1452 * Virtual address of allocated memory block on success, NULL on failure.
1453 */
1454static void * __init memblock_alloc_internal(
1455 phys_addr_t size, phys_addr_t align,
1456 phys_addr_t min_addr, phys_addr_t max_addr,
1457 int nid)
1458{
1459 phys_addr_t alloc;
1460
1461 /*
1462 * Detect any accidental use of these APIs after slab is ready, as at
1463 * this moment memblock may be deinitialized already and its
1464 * internal data may be destroyed (after execution of memblock_free_all)
1465 */
1466 if (WARN_ON_ONCE(slab_is_available()))
1467 return kzalloc_node(size, GFP_NOWAIT, nid);
1468
1469 if (max_addr > memblock.current_limit)
1470 max_addr = memblock.current_limit;
1471
1472 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid);
1473
1474 /* retry allocation without lower limit */
1475 if (!alloc && min_addr)
1476 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid);
1477
1478 if (!alloc)
1479 return NULL;
1480
1481 return phys_to_virt(alloc);
1482}
1483
1484/**
1485 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1486 * memory and without panicking
1487 * @size: size of memory block to be allocated in bytes
1488 * @align: alignment of the region and block's size
1489 * @min_addr: the lower bound of the memory region from where the allocation
1490 * is preferred (phys address)
1491 * @max_addr: the upper bound of the memory region from where the allocation
1492 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1493 * allocate only from memory limited by memblock.current_limit value
1494 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1495 *
1496 * Public function, provides additional debug information (including caller
1497 * info), if enabled. Does not zero allocated memory, does not panic if request
1498 * cannot be satisfied.
1499 *
1500 * Return:
1501 * Virtual address of allocated memory block on success, NULL on failure.
1502 */
1503void * __init memblock_alloc_try_nid_raw(
1504 phys_addr_t size, phys_addr_t align,
1505 phys_addr_t min_addr, phys_addr_t max_addr,
1506 int nid)
1507{
1508 void *ptr;
1509
1510 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1511 __func__, (u64)size, (u64)align, nid, &min_addr,
1512 &max_addr, (void *)_RET_IP_);
1513
1514 ptr = memblock_alloc_internal(size, align,
1515 min_addr, max_addr, nid);
1516 if (ptr && size > 0)
1517 page_init_poison(ptr, size);
1518
1519 return ptr;
1520}
1521
1522/**
1523 * memblock_alloc_try_nid - allocate boot memory block
1524 * @size: size of memory block to be allocated in bytes
1525 * @align: alignment of the region and block's size
1526 * @min_addr: the lower bound of the memory region from where the allocation
1527 * is preferred (phys address)
1528 * @max_addr: the upper bound of the memory region from where the allocation
1529 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1530 * allocate only from memory limited by memblock.current_limit value
1531 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1532 *
1533 * Public function, provides additional debug information (including caller
1534 * info), if enabled. This function zeroes the allocated memory.
1535 *
1536 * Return:
1537 * Virtual address of allocated memory block on success, NULL on failure.
1538 */
1539void * __init memblock_alloc_try_nid(
1540 phys_addr_t size, phys_addr_t align,
1541 phys_addr_t min_addr, phys_addr_t max_addr,
1542 int nid)
1543{
1544 void *ptr;
1545
1546 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1547 __func__, (u64)size, (u64)align, nid, &min_addr,
1548 &max_addr, (void *)_RET_IP_);
1549 ptr = memblock_alloc_internal(size, align,
1550 min_addr, max_addr, nid);
1551 if (ptr)
1552 memset(ptr, 0, size);
1553
1554 return ptr;
1555}
1556
1557/**
1558 * __memblock_free_late - free pages directly to buddy allocator
1559 * @base: phys starting address of the boot memory block
1560 * @size: size of the boot memory block in bytes
1561 *
1562 * This is only useful when the memblock allocator has already been torn
1563 * down, but we are still initializing the system. Pages are released directly
1564 * to the buddy allocator.
1565 */
1566void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1567{
1568 phys_addr_t cursor, end;
1569
1570 end = base + size - 1;
1571 memblock_dbg("%s: [%pa-%pa] %pS\n",
1572 __func__, &base, &end, (void *)_RET_IP_);
1573 kmemleak_free_part_phys(base, size);
1574 cursor = PFN_UP(base);
1575 end = PFN_DOWN(base + size);
1576
1577 for (; cursor < end; cursor++) {
1578 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1579 totalram_pages_inc();
1580 }
1581}
1582
1583/*
1584 * Remaining API functions
1585 */
1586
1587phys_addr_t __init_memblock memblock_phys_mem_size(void)
1588{
1589 return memblock.memory.total_size;
1590}
1591
1592phys_addr_t __init_memblock memblock_reserved_size(void)
1593{
1594 return memblock.reserved.total_size;
1595}
1596
1597phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1598{
1599 unsigned long pages = 0;
1600 struct memblock_region *r;
1601 unsigned long start_pfn, end_pfn;
1602
1603 for_each_memblock(memory, r) {
1604 start_pfn = memblock_region_memory_base_pfn(r);
1605 end_pfn = memblock_region_memory_end_pfn(r);
1606 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1607 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1608 pages += end_pfn - start_pfn;
1609 }
1610
1611 return PFN_PHYS(pages);
1612}
1613
1614/* lowest address */
1615phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1616{
1617 return memblock.memory.regions[0].base;
1618}
1619
1620phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1621{
1622 int idx = memblock.memory.cnt - 1;
1623
1624 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1625}
1626
1627static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1628{
1629 phys_addr_t max_addr = PHYS_ADDR_MAX;
1630 struct memblock_region *r;
1631
1632 /*
1633 * translate the memory @limit size into the max address within one of
1634 * the memory memblock regions, if the @limit exceeds the total size
1635 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1636 */
1637 for_each_memblock(memory, r) {
1638 if (limit <= r->size) {
1639 max_addr = r->base + limit;
1640 break;
1641 }
1642 limit -= r->size;
1643 }
1644
1645 return max_addr;
1646}
1647
1648void __init memblock_enforce_memory_limit(phys_addr_t limit)
1649{
1650 phys_addr_t max_addr = PHYS_ADDR_MAX;
1651
1652 if (!limit)
1653 return;
1654
1655 max_addr = __find_max_addr(limit);
1656
1657 /* @limit exceeds the total size of the memory, do nothing */
1658 if (max_addr == PHYS_ADDR_MAX)
1659 return;
1660
1661 /* truncate both memory and reserved regions */
1662 memblock_remove_range(&memblock.memory, max_addr,
1663 PHYS_ADDR_MAX);
1664 memblock_remove_range(&memblock.reserved, max_addr,
1665 PHYS_ADDR_MAX);
1666}
1667
1668void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1669{
1670 int start_rgn, end_rgn;
1671 int i, ret;
1672
1673 if (!size)
1674 return;
1675
1676 ret = memblock_isolate_range(&memblock.memory, base, size,
1677 &start_rgn, &end_rgn);
1678 if (ret)
1679 return;
1680
1681 /* remove all the MAP regions */
1682 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1683 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1684 memblock_remove_region(&memblock.memory, i);
1685
1686 for (i = start_rgn - 1; i >= 0; i--)
1687 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1688 memblock_remove_region(&memblock.memory, i);
1689
1690 /* truncate the reserved regions */
1691 memblock_remove_range(&memblock.reserved, 0, base);
1692 memblock_remove_range(&memblock.reserved,
1693 base + size, PHYS_ADDR_MAX);
1694}
1695
1696void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1697{
1698 phys_addr_t max_addr;
1699
1700 if (!limit)
1701 return;
1702
1703 max_addr = __find_max_addr(limit);
1704
1705 /* @limit exceeds the total size of the memory, do nothing */
1706 if (max_addr == PHYS_ADDR_MAX)
1707 return;
1708
1709 memblock_cap_memory_range(0, max_addr);
1710}
1711
1712static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1713{
1714 unsigned int left = 0, right = type->cnt;
1715
1716 do {
1717 unsigned int mid = (right + left) / 2;
1718
1719 if (addr < type->regions[mid].base)
1720 right = mid;
1721 else if (addr >= (type->regions[mid].base +
1722 type->regions[mid].size))
1723 left = mid + 1;
1724 else
1725 return mid;
1726 } while (left < right);
1727 return -1;
1728}
1729
1730bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1731{
1732 return memblock_search(&memblock.reserved, addr) != -1;
1733}
1734
1735bool __init_memblock memblock_is_memory(phys_addr_t addr)
1736{
1737 return memblock_search(&memblock.memory, addr) != -1;
1738}
1739
1740bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1741{
1742 int i = memblock_search(&memblock.memory, addr);
1743
1744 if (i == -1)
1745 return false;
1746 return !memblock_is_nomap(&memblock.memory.regions[i]);
1747}
1748
1749#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1750int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1751 unsigned long *start_pfn, unsigned long *end_pfn)
1752{
1753 struct memblock_type *type = &memblock.memory;
1754 int mid = memblock_search(type, PFN_PHYS(pfn));
1755
1756 if (mid == -1)
1757 return -1;
1758
1759 *start_pfn = PFN_DOWN(type->regions[mid].base);
1760 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1761
1762 return type->regions[mid].nid;
1763}
1764#endif
1765
1766/**
1767 * memblock_is_region_memory - check if a region is a subset of memory
1768 * @base: base of region to check
1769 * @size: size of region to check
1770 *
1771 * Check if the region [@base, @base + @size) is a subset of a memory block.
1772 *
1773 * Return:
1774 * 0 if false, non-zero if true
1775 */
1776bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1777{
1778 int idx = memblock_search(&memblock.memory, base);
1779 phys_addr_t end = base + memblock_cap_size(base, &size);
1780
1781 if (idx == -1)
1782 return false;
1783 return (memblock.memory.regions[idx].base +
1784 memblock.memory.regions[idx].size) >= end;
1785}
1786
1787/**
1788 * memblock_is_region_reserved - check if a region intersects reserved memory
1789 * @base: base of region to check
1790 * @size: size of region to check
1791 *
1792 * Check if the region [@base, @base + @size) intersects a reserved
1793 * memory block.
1794 *
1795 * Return:
1796 * True if they intersect, false if not.
1797 */
1798bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1799{
1800 memblock_cap_size(base, &size);
1801 return memblock_overlaps_region(&memblock.reserved, base, size);
1802}
1803
1804void __init_memblock memblock_trim_memory(phys_addr_t align)
1805{
1806 phys_addr_t start, end, orig_start, orig_end;
1807 struct memblock_region *r;
1808
1809 for_each_memblock(memory, r) {
1810 orig_start = r->base;
1811 orig_end = r->base + r->size;
1812 start = round_up(orig_start, align);
1813 end = round_down(orig_end, align);
1814
1815 if (start == orig_start && end == orig_end)
1816 continue;
1817
1818 if (start < end) {
1819 r->base = start;
1820 r->size = end - start;
1821 } else {
1822 memblock_remove_region(&memblock.memory,
1823 r - memblock.memory.regions);
1824 r--;
1825 }
1826 }
1827}
1828
1829void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1830{
1831 memblock.current_limit = limit;
1832}
1833
1834phys_addr_t __init_memblock memblock_get_current_limit(void)
1835{
1836 return memblock.current_limit;
1837}
1838
1839static void __init_memblock memblock_dump(struct memblock_type *type)
1840{
1841 phys_addr_t base, end, size;
1842 enum memblock_flags flags;
1843 int idx;
1844 struct memblock_region *rgn;
1845
1846 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1847
1848 for_each_memblock_type(idx, type, rgn) {
1849 char nid_buf[32] = "";
1850
1851 base = rgn->base;
1852 size = rgn->size;
1853 end = base + size - 1;
1854 flags = rgn->flags;
1855#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1856 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1857 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1858 memblock_get_region_node(rgn));
1859#endif
1860 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1861 type->name, idx, &base, &end, &size, nid_buf, flags);
1862 }
1863}
1864
1865void __init_memblock __memblock_dump_all(void)
1866{
1867 pr_info("MEMBLOCK configuration:\n");
1868 pr_info(" memory size = %pa reserved size = %pa\n",
1869 &memblock.memory.total_size,
1870 &memblock.reserved.total_size);
1871
1872 memblock_dump(&memblock.memory);
1873 memblock_dump(&memblock.reserved);
1874#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1875 memblock_dump(&memblock.physmem);
1876#endif
1877}
1878
1879void __init memblock_allow_resize(void)
1880{
1881 memblock_can_resize = 1;
1882}
1883
1884static int __init early_memblock(char *p)
1885{
1886 if (p && strstr(p, "debug"))
1887 memblock_debug = 1;
1888 return 0;
1889}
1890early_param("memblock", early_memblock);
1891
1892static void __init __free_pages_memory(unsigned long start, unsigned long end)
1893{
1894 int order;
1895
1896 while (start < end) {
1897 order = min(MAX_ORDER - 1UL, __ffs(start));
1898
1899 while (start + (1UL << order) > end)
1900 order--;
1901
1902 memblock_free_pages(pfn_to_page(start), start, order);
1903
1904 start += (1UL << order);
1905 }
1906}
1907
1908static unsigned long __init __free_memory_core(phys_addr_t start,
1909 phys_addr_t end)
1910{
1911 unsigned long start_pfn = PFN_UP(start);
1912 unsigned long end_pfn = min_t(unsigned long,
1913 PFN_DOWN(end), max_low_pfn);
1914
1915 if (start_pfn >= end_pfn)
1916 return 0;
1917
1918 __free_pages_memory(start_pfn, end_pfn);
1919
1920 return end_pfn - start_pfn;
1921}
1922
1923static unsigned long __init free_low_memory_core_early(void)
1924{
1925 unsigned long count = 0;
1926 phys_addr_t start, end;
1927 u64 i;
1928
1929 memblock_clear_hotplug(0, -1);
1930
1931 for_each_reserved_mem_region(i, &start, &end)
1932 reserve_bootmem_region(start, end);
1933
1934 /*
1935 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1936 * because in some case like Node0 doesn't have RAM installed
1937 * low ram will be on Node1
1938 */
1939 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1940 NULL)
1941 count += __free_memory_core(start, end);
1942
1943 return count;
1944}
1945
1946static int reset_managed_pages_done __initdata;
1947
1948void reset_node_managed_pages(pg_data_t *pgdat)
1949{
1950 struct zone *z;
1951
1952 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1953 atomic_long_set(&z->managed_pages, 0);
1954}
1955
1956void __init reset_all_zones_managed_pages(void)
1957{
1958 struct pglist_data *pgdat;
1959
1960 if (reset_managed_pages_done)
1961 return;
1962
1963 for_each_online_pgdat(pgdat)
1964 reset_node_managed_pages(pgdat);
1965
1966 reset_managed_pages_done = 1;
1967}
1968
1969/**
1970 * memblock_free_all - release free pages to the buddy allocator
1971 *
1972 * Return: the number of pages actually released.
1973 */
1974unsigned long __init memblock_free_all(void)
1975{
1976 unsigned long pages;
1977
1978 reset_all_zones_managed_pages();
1979
1980 pages = free_low_memory_core_early();
1981 totalram_pages_add(pages);
1982
1983 return pages;
1984}
1985
1986#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
1987
1988static int memblock_debug_show(struct seq_file *m, void *private)
1989{
1990 struct memblock_type *type = m->private;
1991 struct memblock_region *reg;
1992 int i;
1993 phys_addr_t end;
1994
1995 for (i = 0; i < type->cnt; i++) {
1996 reg = &type->regions[i];
1997 end = reg->base + reg->size - 1;
1998
1999 seq_printf(m, "%4d: ", i);
2000 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2001 }
2002 return 0;
2003}
2004DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2005
2006static int __init memblock_init_debugfs(void)
2007{
2008 struct dentry *root = debugfs_create_dir("memblock", NULL);
2009
2010 debugfs_create_file("memory", 0444, root,
2011 &memblock.memory, &memblock_debug_fops);
2012 debugfs_create_file("reserved", 0444, root,
2013 &memblock.reserved, &memblock_debug_fops);
2014#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2015 debugfs_create_file("physmem", 0444, root,
2016 &memblock.physmem, &memblock_debug_fops);
2017#endif
2018
2019 return 0;
2020}
2021__initcall(memblock_init_debugfs);
2022
2023#endif /* CONFIG_DEBUG_FS */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/init.h>
12#include <linux/bitops.h>
13#include <linux/poison.h>
14#include <linux/pfn.h>
15#include <linux/debugfs.h>
16#include <linux/kmemleak.h>
17#include <linux/seq_file.h>
18#include <linux/memblock.h>
19
20#include <asm/sections.h>
21#include <linux/io.h>
22
23#include "internal.h"
24
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33#define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34#endif
35
36/**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
54 *
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
60 * wrapped with struct memblock. This structure is statically
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
69 *
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
77 *
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
85 *
86 * Note, that both API variants use implicit assumptions about allowed
87 * memory ranges and the fallback methods. Consult the documentation
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
90 *
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
93 *
94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
97 */
98
99#ifndef CONFIG_NUMA
100struct pglist_data __refdata contig_page_data;
101EXPORT_SYMBOL(contig_page_data);
102#endif
103
104unsigned long max_low_pfn;
105unsigned long min_low_pfn;
106unsigned long max_pfn;
107unsigned long long max_possible_pfn;
108
109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113#endif
114
115struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
118 .memory.name = "memory",
119
120 .reserved.regions = memblock_reserved_init_regions,
121 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
122 .reserved.name = "reserved",
123
124 .bottom_up = false,
125 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
126};
127
128#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
129struct memblock_type physmem = {
130 .regions = memblock_physmem_init_regions,
131 .max = INIT_PHYSMEM_REGIONS,
132 .name = "physmem",
133};
134#endif
135
136/*
137 * keep a pointer to &memblock.memory in the text section to use it in
138 * __next_mem_range() and its helpers.
139 * For architectures that do not keep memblock data after init, this
140 * pointer will be reset to NULL at memblock_discard()
141 */
142static __refdata struct memblock_type *memblock_memory = &memblock.memory;
143
144#define for_each_memblock_type(i, memblock_type, rgn) \
145 for (i = 0, rgn = &memblock_type->regions[0]; \
146 i < memblock_type->cnt; \
147 i++, rgn = &memblock_type->regions[i])
148
149#define memblock_dbg(fmt, ...) \
150 do { \
151 if (memblock_debug) \
152 pr_info(fmt, ##__VA_ARGS__); \
153 } while (0)
154
155static int memblock_debug __initdata_memblock;
156static bool system_has_some_mirror __initdata_memblock;
157static int memblock_can_resize __initdata_memblock;
158static int memblock_memory_in_slab __initdata_memblock;
159static int memblock_reserved_in_slab __initdata_memblock;
160
161bool __init_memblock memblock_has_mirror(void)
162{
163 return system_has_some_mirror;
164}
165
166static enum memblock_flags __init_memblock choose_memblock_flags(void)
167{
168 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
169}
170
171/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
172static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
173{
174 return *size = min(*size, PHYS_ADDR_MAX - base);
175}
176
177/*
178 * Address comparison utilities
179 */
180unsigned long __init_memblock
181memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
182 phys_addr_t size2)
183{
184 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
185}
186
187bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
188 phys_addr_t base, phys_addr_t size)
189{
190 unsigned long i;
191
192 memblock_cap_size(base, &size);
193
194 for (i = 0; i < type->cnt; i++)
195 if (memblock_addrs_overlap(base, size, type->regions[i].base,
196 type->regions[i].size))
197 return true;
198 return false;
199}
200
201/**
202 * __memblock_find_range_bottom_up - find free area utility in bottom-up
203 * @start: start of candidate range
204 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
205 * %MEMBLOCK_ALLOC_ACCESSIBLE
206 * @size: size of free area to find
207 * @align: alignment of free area to find
208 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
209 * @flags: pick from blocks based on memory attributes
210 *
211 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
212 *
213 * Return:
214 * Found address on success, 0 on failure.
215 */
216static phys_addr_t __init_memblock
217__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
218 phys_addr_t size, phys_addr_t align, int nid,
219 enum memblock_flags flags)
220{
221 phys_addr_t this_start, this_end, cand;
222 u64 i;
223
224 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
225 this_start = clamp(this_start, start, end);
226 this_end = clamp(this_end, start, end);
227
228 cand = round_up(this_start, align);
229 if (cand < this_end && this_end - cand >= size)
230 return cand;
231 }
232
233 return 0;
234}
235
236/**
237 * __memblock_find_range_top_down - find free area utility, in top-down
238 * @start: start of candidate range
239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
240 * %MEMBLOCK_ALLOC_ACCESSIBLE
241 * @size: size of free area to find
242 * @align: alignment of free area to find
243 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
244 * @flags: pick from blocks based on memory attributes
245 *
246 * Utility called from memblock_find_in_range_node(), find free area top-down.
247 *
248 * Return:
249 * Found address on success, 0 on failure.
250 */
251static phys_addr_t __init_memblock
252__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
253 phys_addr_t size, phys_addr_t align, int nid,
254 enum memblock_flags flags)
255{
256 phys_addr_t this_start, this_end, cand;
257 u64 i;
258
259 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
260 NULL) {
261 this_start = clamp(this_start, start, end);
262 this_end = clamp(this_end, start, end);
263
264 if (this_end < size)
265 continue;
266
267 cand = round_down(this_end - size, align);
268 if (cand >= this_start)
269 return cand;
270 }
271
272 return 0;
273}
274
275/**
276 * memblock_find_in_range_node - find free area in given range and node
277 * @size: size of free area to find
278 * @align: alignment of free area to find
279 * @start: start of candidate range
280 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
281 * %MEMBLOCK_ALLOC_ACCESSIBLE
282 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
283 * @flags: pick from blocks based on memory attributes
284 *
285 * Find @size free area aligned to @align in the specified range and node.
286 *
287 * Return:
288 * Found address on success, 0 on failure.
289 */
290static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
291 phys_addr_t align, phys_addr_t start,
292 phys_addr_t end, int nid,
293 enum memblock_flags flags)
294{
295 /* pump up @end */
296 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
297 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
298 end = memblock.current_limit;
299
300 /* avoid allocating the first page */
301 start = max_t(phys_addr_t, start, PAGE_SIZE);
302 end = max(start, end);
303
304 if (memblock_bottom_up())
305 return __memblock_find_range_bottom_up(start, end, size, align,
306 nid, flags);
307 else
308 return __memblock_find_range_top_down(start, end, size, align,
309 nid, flags);
310}
311
312/**
313 * memblock_find_in_range - find free area in given range
314 * @start: start of candidate range
315 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
316 * %MEMBLOCK_ALLOC_ACCESSIBLE
317 * @size: size of free area to find
318 * @align: alignment of free area to find
319 *
320 * Find @size free area aligned to @align in the specified range.
321 *
322 * Return:
323 * Found address on success, 0 on failure.
324 */
325static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
326 phys_addr_t end, phys_addr_t size,
327 phys_addr_t align)
328{
329 phys_addr_t ret;
330 enum memblock_flags flags = choose_memblock_flags();
331
332again:
333 ret = memblock_find_in_range_node(size, align, start, end,
334 NUMA_NO_NODE, flags);
335
336 if (!ret && (flags & MEMBLOCK_MIRROR)) {
337 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
338 &size);
339 flags &= ~MEMBLOCK_MIRROR;
340 goto again;
341 }
342
343 return ret;
344}
345
346static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
347{
348 type->total_size -= type->regions[r].size;
349 memmove(&type->regions[r], &type->regions[r + 1],
350 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
351 type->cnt--;
352
353 /* Special case for empty arrays */
354 if (type->cnt == 0) {
355 WARN_ON(type->total_size != 0);
356 type->regions[0].base = 0;
357 type->regions[0].size = 0;
358 type->regions[0].flags = 0;
359 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
360 }
361}
362
363#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
364/**
365 * memblock_discard - discard memory and reserved arrays if they were allocated
366 */
367void __init memblock_discard(void)
368{
369 phys_addr_t addr, size;
370
371 if (memblock.reserved.regions != memblock_reserved_init_regions) {
372 addr = __pa(memblock.reserved.regions);
373 size = PAGE_ALIGN(sizeof(struct memblock_region) *
374 memblock.reserved.max);
375 if (memblock_reserved_in_slab)
376 kfree(memblock.reserved.regions);
377 else
378 memblock_free_late(addr, size);
379 }
380
381 if (memblock.memory.regions != memblock_memory_init_regions) {
382 addr = __pa(memblock.memory.regions);
383 size = PAGE_ALIGN(sizeof(struct memblock_region) *
384 memblock.memory.max);
385 if (memblock_memory_in_slab)
386 kfree(memblock.memory.regions);
387 else
388 memblock_free_late(addr, size);
389 }
390
391 memblock_memory = NULL;
392}
393#endif
394
395/**
396 * memblock_double_array - double the size of the memblock regions array
397 * @type: memblock type of the regions array being doubled
398 * @new_area_start: starting address of memory range to avoid overlap with
399 * @new_area_size: size of memory range to avoid overlap with
400 *
401 * Double the size of the @type regions array. If memblock is being used to
402 * allocate memory for a new reserved regions array and there is a previously
403 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
404 * waiting to be reserved, ensure the memory used by the new array does
405 * not overlap.
406 *
407 * Return:
408 * 0 on success, -1 on failure.
409 */
410static int __init_memblock memblock_double_array(struct memblock_type *type,
411 phys_addr_t new_area_start,
412 phys_addr_t new_area_size)
413{
414 struct memblock_region *new_array, *old_array;
415 phys_addr_t old_alloc_size, new_alloc_size;
416 phys_addr_t old_size, new_size, addr, new_end;
417 int use_slab = slab_is_available();
418 int *in_slab;
419
420 /* We don't allow resizing until we know about the reserved regions
421 * of memory that aren't suitable for allocation
422 */
423 if (!memblock_can_resize)
424 panic("memblock: cannot resize %s array\n", type->name);
425
426 /* Calculate new doubled size */
427 old_size = type->max * sizeof(struct memblock_region);
428 new_size = old_size << 1;
429 /*
430 * We need to allocated new one align to PAGE_SIZE,
431 * so we can free them completely later.
432 */
433 old_alloc_size = PAGE_ALIGN(old_size);
434 new_alloc_size = PAGE_ALIGN(new_size);
435
436 /* Retrieve the slab flag */
437 if (type == &memblock.memory)
438 in_slab = &memblock_memory_in_slab;
439 else
440 in_slab = &memblock_reserved_in_slab;
441
442 /* Try to find some space for it */
443 if (use_slab) {
444 new_array = kmalloc(new_size, GFP_KERNEL);
445 addr = new_array ? __pa(new_array) : 0;
446 } else {
447 /* only exclude range when trying to double reserved.regions */
448 if (type != &memblock.reserved)
449 new_area_start = new_area_size = 0;
450
451 addr = memblock_find_in_range(new_area_start + new_area_size,
452 memblock.current_limit,
453 new_alloc_size, PAGE_SIZE);
454 if (!addr && new_area_size)
455 addr = memblock_find_in_range(0,
456 min(new_area_start, memblock.current_limit),
457 new_alloc_size, PAGE_SIZE);
458
459 new_array = addr ? __va(addr) : NULL;
460 }
461 if (!addr) {
462 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
463 type->name, type->max, type->max * 2);
464 return -1;
465 }
466
467 new_end = addr + new_size - 1;
468 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
469 type->name, type->max * 2, &addr, &new_end);
470
471 /*
472 * Found space, we now need to move the array over before we add the
473 * reserved region since it may be our reserved array itself that is
474 * full.
475 */
476 memcpy(new_array, type->regions, old_size);
477 memset(new_array + type->max, 0, old_size);
478 old_array = type->regions;
479 type->regions = new_array;
480 type->max <<= 1;
481
482 /* Free old array. We needn't free it if the array is the static one */
483 if (*in_slab)
484 kfree(old_array);
485 else if (old_array != memblock_memory_init_regions &&
486 old_array != memblock_reserved_init_regions)
487 memblock_free(old_array, old_alloc_size);
488
489 /*
490 * Reserve the new array if that comes from the memblock. Otherwise, we
491 * needn't do it
492 */
493 if (!use_slab)
494 BUG_ON(memblock_reserve(addr, new_alloc_size));
495
496 /* Update slab flag */
497 *in_slab = use_slab;
498
499 return 0;
500}
501
502/**
503 * memblock_merge_regions - merge neighboring compatible regions
504 * @type: memblock type to scan
505 * @start_rgn: start scanning from (@start_rgn - 1)
506 * @end_rgn: end scanning at (@end_rgn - 1)
507 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
508 */
509static void __init_memblock memblock_merge_regions(struct memblock_type *type,
510 unsigned long start_rgn,
511 unsigned long end_rgn)
512{
513 int i = 0;
514 if (start_rgn)
515 i = start_rgn - 1;
516 end_rgn = min(end_rgn, type->cnt - 1);
517 while (i < end_rgn) {
518 struct memblock_region *this = &type->regions[i];
519 struct memblock_region *next = &type->regions[i + 1];
520
521 if (this->base + this->size != next->base ||
522 memblock_get_region_node(this) !=
523 memblock_get_region_node(next) ||
524 this->flags != next->flags) {
525 BUG_ON(this->base + this->size > next->base);
526 i++;
527 continue;
528 }
529
530 this->size += next->size;
531 /* move forward from next + 1, index of which is i + 2 */
532 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
533 type->cnt--;
534 end_rgn--;
535 }
536}
537
538/**
539 * memblock_insert_region - insert new memblock region
540 * @type: memblock type to insert into
541 * @idx: index for the insertion point
542 * @base: base address of the new region
543 * @size: size of the new region
544 * @nid: node id of the new region
545 * @flags: flags of the new region
546 *
547 * Insert new memblock region [@base, @base + @size) into @type at @idx.
548 * @type must already have extra room to accommodate the new region.
549 */
550static void __init_memblock memblock_insert_region(struct memblock_type *type,
551 int idx, phys_addr_t base,
552 phys_addr_t size,
553 int nid,
554 enum memblock_flags flags)
555{
556 struct memblock_region *rgn = &type->regions[idx];
557
558 BUG_ON(type->cnt >= type->max);
559 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
560 rgn->base = base;
561 rgn->size = size;
562 rgn->flags = flags;
563 memblock_set_region_node(rgn, nid);
564 type->cnt++;
565 type->total_size += size;
566}
567
568/**
569 * memblock_add_range - add new memblock region
570 * @type: memblock type to add new region into
571 * @base: base address of the new region
572 * @size: size of the new region
573 * @nid: nid of the new region
574 * @flags: flags of the new region
575 *
576 * Add new memblock region [@base, @base + @size) into @type. The new region
577 * is allowed to overlap with existing ones - overlaps don't affect already
578 * existing regions. @type is guaranteed to be minimal (all neighbouring
579 * compatible regions are merged) after the addition.
580 *
581 * Return:
582 * 0 on success, -errno on failure.
583 */
584static int __init_memblock memblock_add_range(struct memblock_type *type,
585 phys_addr_t base, phys_addr_t size,
586 int nid, enum memblock_flags flags)
587{
588 bool insert = false;
589 phys_addr_t obase = base;
590 phys_addr_t end = base + memblock_cap_size(base, &size);
591 int idx, nr_new, start_rgn = -1, end_rgn;
592 struct memblock_region *rgn;
593
594 if (!size)
595 return 0;
596
597 /* special case for empty array */
598 if (type->regions[0].size == 0) {
599 WARN_ON(type->cnt != 0 || type->total_size);
600 type->regions[0].base = base;
601 type->regions[0].size = size;
602 type->regions[0].flags = flags;
603 memblock_set_region_node(&type->regions[0], nid);
604 type->total_size = size;
605 type->cnt = 1;
606 return 0;
607 }
608
609 /*
610 * The worst case is when new range overlaps all existing regions,
611 * then we'll need type->cnt + 1 empty regions in @type. So if
612 * type->cnt * 2 + 1 is less than or equal to type->max, we know
613 * that there is enough empty regions in @type, and we can insert
614 * regions directly.
615 */
616 if (type->cnt * 2 + 1 <= type->max)
617 insert = true;
618
619repeat:
620 /*
621 * The following is executed twice. Once with %false @insert and
622 * then with %true. The first counts the number of regions needed
623 * to accommodate the new area. The second actually inserts them.
624 */
625 base = obase;
626 nr_new = 0;
627
628 for_each_memblock_type(idx, type, rgn) {
629 phys_addr_t rbase = rgn->base;
630 phys_addr_t rend = rbase + rgn->size;
631
632 if (rbase >= end)
633 break;
634 if (rend <= base)
635 continue;
636 /*
637 * @rgn overlaps. If it separates the lower part of new
638 * area, insert that portion.
639 */
640 if (rbase > base) {
641#ifdef CONFIG_NUMA
642 WARN_ON(nid != memblock_get_region_node(rgn));
643#endif
644 WARN_ON(flags != rgn->flags);
645 nr_new++;
646 if (insert) {
647 if (start_rgn == -1)
648 start_rgn = idx;
649 end_rgn = idx + 1;
650 memblock_insert_region(type, idx++, base,
651 rbase - base, nid,
652 flags);
653 }
654 }
655 /* area below @rend is dealt with, forget about it */
656 base = min(rend, end);
657 }
658
659 /* insert the remaining portion */
660 if (base < end) {
661 nr_new++;
662 if (insert) {
663 if (start_rgn == -1)
664 start_rgn = idx;
665 end_rgn = idx + 1;
666 memblock_insert_region(type, idx, base, end - base,
667 nid, flags);
668 }
669 }
670
671 if (!nr_new)
672 return 0;
673
674 /*
675 * If this was the first round, resize array and repeat for actual
676 * insertions; otherwise, merge and return.
677 */
678 if (!insert) {
679 while (type->cnt + nr_new > type->max)
680 if (memblock_double_array(type, obase, size) < 0)
681 return -ENOMEM;
682 insert = true;
683 goto repeat;
684 } else {
685 memblock_merge_regions(type, start_rgn, end_rgn);
686 return 0;
687 }
688}
689
690/**
691 * memblock_add_node - add new memblock region within a NUMA node
692 * @base: base address of the new region
693 * @size: size of the new region
694 * @nid: nid of the new region
695 * @flags: flags of the new region
696 *
697 * Add new memblock region [@base, @base + @size) to the "memory"
698 * type. See memblock_add_range() description for mode details
699 *
700 * Return:
701 * 0 on success, -errno on failure.
702 */
703int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
704 int nid, enum memblock_flags flags)
705{
706 phys_addr_t end = base + size - 1;
707
708 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
709 &base, &end, nid, flags, (void *)_RET_IP_);
710
711 return memblock_add_range(&memblock.memory, base, size, nid, flags);
712}
713
714/**
715 * memblock_add - add new memblock region
716 * @base: base address of the new region
717 * @size: size of the new region
718 *
719 * Add new memblock region [@base, @base + @size) to the "memory"
720 * type. See memblock_add_range() description for mode details
721 *
722 * Return:
723 * 0 on success, -errno on failure.
724 */
725int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
726{
727 phys_addr_t end = base + size - 1;
728
729 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
730 &base, &end, (void *)_RET_IP_);
731
732 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
733}
734
735/**
736 * memblock_validate_numa_coverage - check if amount of memory with
737 * no node ID assigned is less than a threshold
738 * @threshold_bytes: maximal memory size that can have unassigned node
739 * ID (in bytes).
740 *
741 * A buggy firmware may report memory that does not belong to any node.
742 * Check if amount of such memory is below @threshold_bytes.
743 *
744 * Return: true on success, false on failure.
745 */
746bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
747{
748 unsigned long nr_pages = 0;
749 unsigned long start_pfn, end_pfn, mem_size_mb;
750 int nid, i;
751
752 /* calculate lose page */
753 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
754 if (!numa_valid_node(nid))
755 nr_pages += end_pfn - start_pfn;
756 }
757
758 if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
759 mem_size_mb = memblock_phys_mem_size() >> 20;
760 pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
761 (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
762 return false;
763 }
764
765 return true;
766}
767
768
769/**
770 * memblock_isolate_range - isolate given range into disjoint memblocks
771 * @type: memblock type to isolate range for
772 * @base: base of range to isolate
773 * @size: size of range to isolate
774 * @start_rgn: out parameter for the start of isolated region
775 * @end_rgn: out parameter for the end of isolated region
776 *
777 * Walk @type and ensure that regions don't cross the boundaries defined by
778 * [@base, @base + @size). Crossing regions are split at the boundaries,
779 * which may create at most two more regions. The index of the first
780 * region inside the range is returned in *@start_rgn and the index of the
781 * first region after the range is returned in *@end_rgn.
782 *
783 * Return:
784 * 0 on success, -errno on failure.
785 */
786static int __init_memblock memblock_isolate_range(struct memblock_type *type,
787 phys_addr_t base, phys_addr_t size,
788 int *start_rgn, int *end_rgn)
789{
790 phys_addr_t end = base + memblock_cap_size(base, &size);
791 int idx;
792 struct memblock_region *rgn;
793
794 *start_rgn = *end_rgn = 0;
795
796 if (!size)
797 return 0;
798
799 /* we'll create at most two more regions */
800 while (type->cnt + 2 > type->max)
801 if (memblock_double_array(type, base, size) < 0)
802 return -ENOMEM;
803
804 for_each_memblock_type(idx, type, rgn) {
805 phys_addr_t rbase = rgn->base;
806 phys_addr_t rend = rbase + rgn->size;
807
808 if (rbase >= end)
809 break;
810 if (rend <= base)
811 continue;
812
813 if (rbase < base) {
814 /*
815 * @rgn intersects from below. Split and continue
816 * to process the next region - the new top half.
817 */
818 rgn->base = base;
819 rgn->size -= base - rbase;
820 type->total_size -= base - rbase;
821 memblock_insert_region(type, idx, rbase, base - rbase,
822 memblock_get_region_node(rgn),
823 rgn->flags);
824 } else if (rend > end) {
825 /*
826 * @rgn intersects from above. Split and redo the
827 * current region - the new bottom half.
828 */
829 rgn->base = end;
830 rgn->size -= end - rbase;
831 type->total_size -= end - rbase;
832 memblock_insert_region(type, idx--, rbase, end - rbase,
833 memblock_get_region_node(rgn),
834 rgn->flags);
835 } else {
836 /* @rgn is fully contained, record it */
837 if (!*end_rgn)
838 *start_rgn = idx;
839 *end_rgn = idx + 1;
840 }
841 }
842
843 return 0;
844}
845
846static int __init_memblock memblock_remove_range(struct memblock_type *type,
847 phys_addr_t base, phys_addr_t size)
848{
849 int start_rgn, end_rgn;
850 int i, ret;
851
852 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
853 if (ret)
854 return ret;
855
856 for (i = end_rgn - 1; i >= start_rgn; i--)
857 memblock_remove_region(type, i);
858 return 0;
859}
860
861int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
862{
863 phys_addr_t end = base + size - 1;
864
865 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
866 &base, &end, (void *)_RET_IP_);
867
868 return memblock_remove_range(&memblock.memory, base, size);
869}
870
871/**
872 * memblock_free - free boot memory allocation
873 * @ptr: starting address of the boot memory allocation
874 * @size: size of the boot memory block in bytes
875 *
876 * Free boot memory block previously allocated by memblock_alloc_xx() API.
877 * The freeing memory will not be released to the buddy allocator.
878 */
879void __init_memblock memblock_free(void *ptr, size_t size)
880{
881 if (ptr)
882 memblock_phys_free(__pa(ptr), size);
883}
884
885/**
886 * memblock_phys_free - free boot memory block
887 * @base: phys starting address of the boot memory block
888 * @size: size of the boot memory block in bytes
889 *
890 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
891 * The freeing memory will not be released to the buddy allocator.
892 */
893int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
894{
895 phys_addr_t end = base + size - 1;
896
897 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
898 &base, &end, (void *)_RET_IP_);
899
900 kmemleak_free_part_phys(base, size);
901 return memblock_remove_range(&memblock.reserved, base, size);
902}
903
904int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
905{
906 phys_addr_t end = base + size - 1;
907
908 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
909 &base, &end, (void *)_RET_IP_);
910
911 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
912}
913
914#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
915int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
916{
917 phys_addr_t end = base + size - 1;
918
919 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
920 &base, &end, (void *)_RET_IP_);
921
922 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
923}
924#endif
925
926/**
927 * memblock_setclr_flag - set or clear flag for a memory region
928 * @type: memblock type to set/clear flag for
929 * @base: base address of the region
930 * @size: size of the region
931 * @set: set or clear the flag
932 * @flag: the flag to update
933 *
934 * This function isolates region [@base, @base + @size), and sets/clears flag
935 *
936 * Return: 0 on success, -errno on failure.
937 */
938static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
939 phys_addr_t base, phys_addr_t size, int set, int flag)
940{
941 int i, ret, start_rgn, end_rgn;
942
943 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
944 if (ret)
945 return ret;
946
947 for (i = start_rgn; i < end_rgn; i++) {
948 struct memblock_region *r = &type->regions[i];
949
950 if (set)
951 r->flags |= flag;
952 else
953 r->flags &= ~flag;
954 }
955
956 memblock_merge_regions(type, start_rgn, end_rgn);
957 return 0;
958}
959
960/**
961 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
962 * @base: the base phys addr of the region
963 * @size: the size of the region
964 *
965 * Return: 0 on success, -errno on failure.
966 */
967int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
968{
969 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
970}
971
972/**
973 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
974 * @base: the base phys addr of the region
975 * @size: the size of the region
976 *
977 * Return: 0 on success, -errno on failure.
978 */
979int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
980{
981 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
982}
983
984/**
985 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
986 * @base: the base phys addr of the region
987 * @size: the size of the region
988 *
989 * Return: 0 on success, -errno on failure.
990 */
991int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
992{
993 if (!mirrored_kernelcore)
994 return 0;
995
996 system_has_some_mirror = true;
997
998 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
999}
1000
1001/**
1002 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1003 * @base: the base phys addr of the region
1004 * @size: the size of the region
1005 *
1006 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1007 * direct mapping of the physical memory. These regions will still be
1008 * covered by the memory map. The struct page representing NOMAP memory
1009 * frames in the memory map will be PageReserved()
1010 *
1011 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1012 * memblock, the caller must inform kmemleak to ignore that memory
1013 *
1014 * Return: 0 on success, -errno on failure.
1015 */
1016int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1017{
1018 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1019}
1020
1021/**
1022 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1023 * @base: the base phys addr of the region
1024 * @size: the size of the region
1025 *
1026 * Return: 0 on success, -errno on failure.
1027 */
1028int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1029{
1030 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1031}
1032
1033/**
1034 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1035 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1036 * for this region.
1037 * @base: the base phys addr of the region
1038 * @size: the size of the region
1039 *
1040 * struct pages will not be initialized for reserved memory regions marked with
1041 * %MEMBLOCK_RSRV_NOINIT.
1042 *
1043 * Return: 0 on success, -errno on failure.
1044 */
1045int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1046{
1047 return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1048 MEMBLOCK_RSRV_NOINIT);
1049}
1050
1051static bool should_skip_region(struct memblock_type *type,
1052 struct memblock_region *m,
1053 int nid, int flags)
1054{
1055 int m_nid = memblock_get_region_node(m);
1056
1057 /* we never skip regions when iterating memblock.reserved or physmem */
1058 if (type != memblock_memory)
1059 return false;
1060
1061 /* only memory regions are associated with nodes, check it */
1062 if (numa_valid_node(nid) && nid != m_nid)
1063 return true;
1064
1065 /* skip hotpluggable memory regions if needed */
1066 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1067 !(flags & MEMBLOCK_HOTPLUG))
1068 return true;
1069
1070 /* if we want mirror memory skip non-mirror memory regions */
1071 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1072 return true;
1073
1074 /* skip nomap memory unless we were asked for it explicitly */
1075 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1076 return true;
1077
1078 /* skip driver-managed memory unless we were asked for it explicitly */
1079 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1080 return true;
1081
1082 return false;
1083}
1084
1085/**
1086 * __next_mem_range - next function for for_each_free_mem_range() etc.
1087 * @idx: pointer to u64 loop variable
1088 * @nid: node selector, %NUMA_NO_NODE for all nodes
1089 * @flags: pick from blocks based on memory attributes
1090 * @type_a: pointer to memblock_type from where the range is taken
1091 * @type_b: pointer to memblock_type which excludes memory from being taken
1092 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1093 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1094 * @out_nid: ptr to int for nid of the range, can be %NULL
1095 *
1096 * Find the first area from *@idx which matches @nid, fill the out
1097 * parameters, and update *@idx for the next iteration. The lower 32bit of
1098 * *@idx contains index into type_a and the upper 32bit indexes the
1099 * areas before each region in type_b. For example, if type_b regions
1100 * look like the following,
1101 *
1102 * 0:[0-16), 1:[32-48), 2:[128-130)
1103 *
1104 * The upper 32bit indexes the following regions.
1105 *
1106 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1107 *
1108 * As both region arrays are sorted, the function advances the two indices
1109 * in lockstep and returns each intersection.
1110 */
1111void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1112 struct memblock_type *type_a,
1113 struct memblock_type *type_b, phys_addr_t *out_start,
1114 phys_addr_t *out_end, int *out_nid)
1115{
1116 int idx_a = *idx & 0xffffffff;
1117 int idx_b = *idx >> 32;
1118
1119 for (; idx_a < type_a->cnt; idx_a++) {
1120 struct memblock_region *m = &type_a->regions[idx_a];
1121
1122 phys_addr_t m_start = m->base;
1123 phys_addr_t m_end = m->base + m->size;
1124 int m_nid = memblock_get_region_node(m);
1125
1126 if (should_skip_region(type_a, m, nid, flags))
1127 continue;
1128
1129 if (!type_b) {
1130 if (out_start)
1131 *out_start = m_start;
1132 if (out_end)
1133 *out_end = m_end;
1134 if (out_nid)
1135 *out_nid = m_nid;
1136 idx_a++;
1137 *idx = (u32)idx_a | (u64)idx_b << 32;
1138 return;
1139 }
1140
1141 /* scan areas before each reservation */
1142 for (; idx_b < type_b->cnt + 1; idx_b++) {
1143 struct memblock_region *r;
1144 phys_addr_t r_start;
1145 phys_addr_t r_end;
1146
1147 r = &type_b->regions[idx_b];
1148 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1149 r_end = idx_b < type_b->cnt ?
1150 r->base : PHYS_ADDR_MAX;
1151
1152 /*
1153 * if idx_b advanced past idx_a,
1154 * break out to advance idx_a
1155 */
1156 if (r_start >= m_end)
1157 break;
1158 /* if the two regions intersect, we're done */
1159 if (m_start < r_end) {
1160 if (out_start)
1161 *out_start =
1162 max(m_start, r_start);
1163 if (out_end)
1164 *out_end = min(m_end, r_end);
1165 if (out_nid)
1166 *out_nid = m_nid;
1167 /*
1168 * The region which ends first is
1169 * advanced for the next iteration.
1170 */
1171 if (m_end <= r_end)
1172 idx_a++;
1173 else
1174 idx_b++;
1175 *idx = (u32)idx_a | (u64)idx_b << 32;
1176 return;
1177 }
1178 }
1179 }
1180
1181 /* signal end of iteration */
1182 *idx = ULLONG_MAX;
1183}
1184
1185/**
1186 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1187 *
1188 * @idx: pointer to u64 loop variable
1189 * @nid: node selector, %NUMA_NO_NODE for all nodes
1190 * @flags: pick from blocks based on memory attributes
1191 * @type_a: pointer to memblock_type from where the range is taken
1192 * @type_b: pointer to memblock_type which excludes memory from being taken
1193 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1194 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1195 * @out_nid: ptr to int for nid of the range, can be %NULL
1196 *
1197 * Finds the next range from type_a which is not marked as unsuitable
1198 * in type_b.
1199 *
1200 * Reverse of __next_mem_range().
1201 */
1202void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1203 enum memblock_flags flags,
1204 struct memblock_type *type_a,
1205 struct memblock_type *type_b,
1206 phys_addr_t *out_start,
1207 phys_addr_t *out_end, int *out_nid)
1208{
1209 int idx_a = *idx & 0xffffffff;
1210 int idx_b = *idx >> 32;
1211
1212 if (*idx == (u64)ULLONG_MAX) {
1213 idx_a = type_a->cnt - 1;
1214 if (type_b != NULL)
1215 idx_b = type_b->cnt;
1216 else
1217 idx_b = 0;
1218 }
1219
1220 for (; idx_a >= 0; idx_a--) {
1221 struct memblock_region *m = &type_a->regions[idx_a];
1222
1223 phys_addr_t m_start = m->base;
1224 phys_addr_t m_end = m->base + m->size;
1225 int m_nid = memblock_get_region_node(m);
1226
1227 if (should_skip_region(type_a, m, nid, flags))
1228 continue;
1229
1230 if (!type_b) {
1231 if (out_start)
1232 *out_start = m_start;
1233 if (out_end)
1234 *out_end = m_end;
1235 if (out_nid)
1236 *out_nid = m_nid;
1237 idx_a--;
1238 *idx = (u32)idx_a | (u64)idx_b << 32;
1239 return;
1240 }
1241
1242 /* scan areas before each reservation */
1243 for (; idx_b >= 0; idx_b--) {
1244 struct memblock_region *r;
1245 phys_addr_t r_start;
1246 phys_addr_t r_end;
1247
1248 r = &type_b->regions[idx_b];
1249 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1250 r_end = idx_b < type_b->cnt ?
1251 r->base : PHYS_ADDR_MAX;
1252 /*
1253 * if idx_b advanced past idx_a,
1254 * break out to advance idx_a
1255 */
1256
1257 if (r_end <= m_start)
1258 break;
1259 /* if the two regions intersect, we're done */
1260 if (m_end > r_start) {
1261 if (out_start)
1262 *out_start = max(m_start, r_start);
1263 if (out_end)
1264 *out_end = min(m_end, r_end);
1265 if (out_nid)
1266 *out_nid = m_nid;
1267 if (m_start >= r_start)
1268 idx_a--;
1269 else
1270 idx_b--;
1271 *idx = (u32)idx_a | (u64)idx_b << 32;
1272 return;
1273 }
1274 }
1275 }
1276 /* signal end of iteration */
1277 *idx = ULLONG_MAX;
1278}
1279
1280/*
1281 * Common iterator interface used to define for_each_mem_pfn_range().
1282 */
1283void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1284 unsigned long *out_start_pfn,
1285 unsigned long *out_end_pfn, int *out_nid)
1286{
1287 struct memblock_type *type = &memblock.memory;
1288 struct memblock_region *r;
1289 int r_nid;
1290
1291 while (++*idx < type->cnt) {
1292 r = &type->regions[*idx];
1293 r_nid = memblock_get_region_node(r);
1294
1295 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1296 continue;
1297 if (!numa_valid_node(nid) || nid == r_nid)
1298 break;
1299 }
1300 if (*idx >= type->cnt) {
1301 *idx = -1;
1302 return;
1303 }
1304
1305 if (out_start_pfn)
1306 *out_start_pfn = PFN_UP(r->base);
1307 if (out_end_pfn)
1308 *out_end_pfn = PFN_DOWN(r->base + r->size);
1309 if (out_nid)
1310 *out_nid = r_nid;
1311}
1312
1313/**
1314 * memblock_set_node - set node ID on memblock regions
1315 * @base: base of area to set node ID for
1316 * @size: size of area to set node ID for
1317 * @type: memblock type to set node ID for
1318 * @nid: node ID to set
1319 *
1320 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1321 * Regions which cross the area boundaries are split as necessary.
1322 *
1323 * Return:
1324 * 0 on success, -errno on failure.
1325 */
1326int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1327 struct memblock_type *type, int nid)
1328{
1329#ifdef CONFIG_NUMA
1330 int start_rgn, end_rgn;
1331 int i, ret;
1332
1333 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1334 if (ret)
1335 return ret;
1336
1337 for (i = start_rgn; i < end_rgn; i++)
1338 memblock_set_region_node(&type->regions[i], nid);
1339
1340 memblock_merge_regions(type, start_rgn, end_rgn);
1341#endif
1342 return 0;
1343}
1344
1345#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1346/**
1347 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1348 *
1349 * @idx: pointer to u64 loop variable
1350 * @zone: zone in which all of the memory blocks reside
1351 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1352 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1353 *
1354 * This function is meant to be a zone/pfn specific wrapper for the
1355 * for_each_mem_range type iterators. Specifically they are used in the
1356 * deferred memory init routines and as such we were duplicating much of
1357 * this logic throughout the code. So instead of having it in multiple
1358 * locations it seemed like it would make more sense to centralize this to
1359 * one new iterator that does everything they need.
1360 */
1361void __init_memblock
1362__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1363 unsigned long *out_spfn, unsigned long *out_epfn)
1364{
1365 int zone_nid = zone_to_nid(zone);
1366 phys_addr_t spa, epa;
1367
1368 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1369 &memblock.memory, &memblock.reserved,
1370 &spa, &epa, NULL);
1371
1372 while (*idx != U64_MAX) {
1373 unsigned long epfn = PFN_DOWN(epa);
1374 unsigned long spfn = PFN_UP(spa);
1375
1376 /*
1377 * Verify the end is at least past the start of the zone and
1378 * that we have at least one PFN to initialize.
1379 */
1380 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1381 /* if we went too far just stop searching */
1382 if (zone_end_pfn(zone) <= spfn) {
1383 *idx = U64_MAX;
1384 break;
1385 }
1386
1387 if (out_spfn)
1388 *out_spfn = max(zone->zone_start_pfn, spfn);
1389 if (out_epfn)
1390 *out_epfn = min(zone_end_pfn(zone), epfn);
1391
1392 return;
1393 }
1394
1395 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1396 &memblock.memory, &memblock.reserved,
1397 &spa, &epa, NULL);
1398 }
1399
1400 /* signal end of iteration */
1401 if (out_spfn)
1402 *out_spfn = ULONG_MAX;
1403 if (out_epfn)
1404 *out_epfn = 0;
1405}
1406
1407#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1408
1409/**
1410 * memblock_alloc_range_nid - allocate boot memory block
1411 * @size: size of memory block to be allocated in bytes
1412 * @align: alignment of the region and block's size
1413 * @start: the lower bound of the memory region to allocate (phys address)
1414 * @end: the upper bound of the memory region to allocate (phys address)
1415 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1416 * @exact_nid: control the allocation fall back to other nodes
1417 *
1418 * The allocation is performed from memory region limited by
1419 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1420 *
1421 * If the specified node can not hold the requested memory and @exact_nid
1422 * is false, the allocation falls back to any node in the system.
1423 *
1424 * For systems with memory mirroring, the allocation is attempted first
1425 * from the regions with mirroring enabled and then retried from any
1426 * memory region.
1427 *
1428 * In addition, function using kmemleak_alloc_phys for allocated boot
1429 * memory block, it is never reported as leaks.
1430 *
1431 * Return:
1432 * Physical address of allocated memory block on success, %0 on failure.
1433 */
1434phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1435 phys_addr_t align, phys_addr_t start,
1436 phys_addr_t end, int nid,
1437 bool exact_nid)
1438{
1439 enum memblock_flags flags = choose_memblock_flags();
1440 phys_addr_t found;
1441
1442 /*
1443 * Detect any accidental use of these APIs after slab is ready, as at
1444 * this moment memblock may be deinitialized already and its
1445 * internal data may be destroyed (after execution of memblock_free_all)
1446 */
1447 if (WARN_ON_ONCE(slab_is_available())) {
1448 void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
1449
1450 return vaddr ? virt_to_phys(vaddr) : 0;
1451 }
1452
1453 if (!align) {
1454 /* Can't use WARNs this early in boot on powerpc */
1455 dump_stack();
1456 align = SMP_CACHE_BYTES;
1457 }
1458
1459again:
1460 found = memblock_find_in_range_node(size, align, start, end, nid,
1461 flags);
1462 if (found && !memblock_reserve(found, size))
1463 goto done;
1464
1465 if (numa_valid_node(nid) && !exact_nid) {
1466 found = memblock_find_in_range_node(size, align, start,
1467 end, NUMA_NO_NODE,
1468 flags);
1469 if (found && !memblock_reserve(found, size))
1470 goto done;
1471 }
1472
1473 if (flags & MEMBLOCK_MIRROR) {
1474 flags &= ~MEMBLOCK_MIRROR;
1475 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1476 &size);
1477 goto again;
1478 }
1479
1480 return 0;
1481
1482done:
1483 /*
1484 * Skip kmemleak for those places like kasan_init() and
1485 * early_pgtable_alloc() due to high volume.
1486 */
1487 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1488 /*
1489 * Memblock allocated blocks are never reported as
1490 * leaks. This is because many of these blocks are
1491 * only referred via the physical address which is
1492 * not looked up by kmemleak.
1493 */
1494 kmemleak_alloc_phys(found, size, 0);
1495
1496 /*
1497 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1498 * require memory to be accepted before it can be used by the
1499 * guest.
1500 *
1501 * Accept the memory of the allocated buffer.
1502 */
1503 accept_memory(found, size);
1504
1505 return found;
1506}
1507
1508/**
1509 * memblock_phys_alloc_range - allocate a memory block inside specified range
1510 * @size: size of memory block to be allocated in bytes
1511 * @align: alignment of the region and block's size
1512 * @start: the lower bound of the memory region to allocate (physical address)
1513 * @end: the upper bound of the memory region to allocate (physical address)
1514 *
1515 * Allocate @size bytes in the between @start and @end.
1516 *
1517 * Return: physical address of the allocated memory block on success,
1518 * %0 on failure.
1519 */
1520phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1521 phys_addr_t align,
1522 phys_addr_t start,
1523 phys_addr_t end)
1524{
1525 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1526 __func__, (u64)size, (u64)align, &start, &end,
1527 (void *)_RET_IP_);
1528 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1529 false);
1530}
1531
1532/**
1533 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1534 * @size: size of memory block to be allocated in bytes
1535 * @align: alignment of the region and block's size
1536 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1537 *
1538 * Allocates memory block from the specified NUMA node. If the node
1539 * has no available memory, attempts to allocated from any node in the
1540 * system.
1541 *
1542 * Return: physical address of the allocated memory block on success,
1543 * %0 on failure.
1544 */
1545phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1546{
1547 return memblock_alloc_range_nid(size, align, 0,
1548 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1549}
1550
1551/**
1552 * memblock_alloc_internal - allocate boot memory block
1553 * @size: size of memory block to be allocated in bytes
1554 * @align: alignment of the region and block's size
1555 * @min_addr: the lower bound of the memory region to allocate (phys address)
1556 * @max_addr: the upper bound of the memory region to allocate (phys address)
1557 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1558 * @exact_nid: control the allocation fall back to other nodes
1559 *
1560 * Allocates memory block using memblock_alloc_range_nid() and
1561 * converts the returned physical address to virtual.
1562 *
1563 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1564 * will fall back to memory below @min_addr. Other constraints, such
1565 * as node and mirrored memory will be handled again in
1566 * memblock_alloc_range_nid().
1567 *
1568 * Return:
1569 * Virtual address of allocated memory block on success, NULL on failure.
1570 */
1571static void * __init memblock_alloc_internal(
1572 phys_addr_t size, phys_addr_t align,
1573 phys_addr_t min_addr, phys_addr_t max_addr,
1574 int nid, bool exact_nid)
1575{
1576 phys_addr_t alloc;
1577
1578
1579 if (max_addr > memblock.current_limit)
1580 max_addr = memblock.current_limit;
1581
1582 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1583 exact_nid);
1584
1585 /* retry allocation without lower limit */
1586 if (!alloc && min_addr)
1587 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1588 exact_nid);
1589
1590 if (!alloc)
1591 return NULL;
1592
1593 return phys_to_virt(alloc);
1594}
1595
1596/**
1597 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1598 * without zeroing memory
1599 * @size: size of memory block to be allocated in bytes
1600 * @align: alignment of the region and block's size
1601 * @min_addr: the lower bound of the memory region from where the allocation
1602 * is preferred (phys address)
1603 * @max_addr: the upper bound of the memory region from where the allocation
1604 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1605 * allocate only from memory limited by memblock.current_limit value
1606 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1607 *
1608 * Public function, provides additional debug information (including caller
1609 * info), if enabled. Does not zero allocated memory.
1610 *
1611 * Return:
1612 * Virtual address of allocated memory block on success, NULL on failure.
1613 */
1614void * __init memblock_alloc_exact_nid_raw(
1615 phys_addr_t size, phys_addr_t align,
1616 phys_addr_t min_addr, phys_addr_t max_addr,
1617 int nid)
1618{
1619 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1620 __func__, (u64)size, (u64)align, nid, &min_addr,
1621 &max_addr, (void *)_RET_IP_);
1622
1623 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1624 true);
1625}
1626
1627/**
1628 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1629 * memory and without panicking
1630 * @size: size of memory block to be allocated in bytes
1631 * @align: alignment of the region and block's size
1632 * @min_addr: the lower bound of the memory region from where the allocation
1633 * is preferred (phys address)
1634 * @max_addr: the upper bound of the memory region from where the allocation
1635 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1636 * allocate only from memory limited by memblock.current_limit value
1637 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1638 *
1639 * Public function, provides additional debug information (including caller
1640 * info), if enabled. Does not zero allocated memory, does not panic if request
1641 * cannot be satisfied.
1642 *
1643 * Return:
1644 * Virtual address of allocated memory block on success, NULL on failure.
1645 */
1646void * __init memblock_alloc_try_nid_raw(
1647 phys_addr_t size, phys_addr_t align,
1648 phys_addr_t min_addr, phys_addr_t max_addr,
1649 int nid)
1650{
1651 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1652 __func__, (u64)size, (u64)align, nid, &min_addr,
1653 &max_addr, (void *)_RET_IP_);
1654
1655 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1656 false);
1657}
1658
1659/**
1660 * memblock_alloc_try_nid - allocate boot memory block
1661 * @size: size of memory block to be allocated in bytes
1662 * @align: alignment of the region and block's size
1663 * @min_addr: the lower bound of the memory region from where the allocation
1664 * is preferred (phys address)
1665 * @max_addr: the upper bound of the memory region from where the allocation
1666 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1667 * allocate only from memory limited by memblock.current_limit value
1668 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1669 *
1670 * Public function, provides additional debug information (including caller
1671 * info), if enabled. This function zeroes the allocated memory.
1672 *
1673 * Return:
1674 * Virtual address of allocated memory block on success, NULL on failure.
1675 */
1676void * __init memblock_alloc_try_nid(
1677 phys_addr_t size, phys_addr_t align,
1678 phys_addr_t min_addr, phys_addr_t max_addr,
1679 int nid)
1680{
1681 void *ptr;
1682
1683 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1684 __func__, (u64)size, (u64)align, nid, &min_addr,
1685 &max_addr, (void *)_RET_IP_);
1686 ptr = memblock_alloc_internal(size, align,
1687 min_addr, max_addr, nid, false);
1688 if (ptr)
1689 memset(ptr, 0, size);
1690
1691 return ptr;
1692}
1693
1694/**
1695 * memblock_free_late - free pages directly to buddy allocator
1696 * @base: phys starting address of the boot memory block
1697 * @size: size of the boot memory block in bytes
1698 *
1699 * This is only useful when the memblock allocator has already been torn
1700 * down, but we are still initializing the system. Pages are released directly
1701 * to the buddy allocator.
1702 */
1703void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1704{
1705 phys_addr_t cursor, end;
1706
1707 end = base + size - 1;
1708 memblock_dbg("%s: [%pa-%pa] %pS\n",
1709 __func__, &base, &end, (void *)_RET_IP_);
1710 kmemleak_free_part_phys(base, size);
1711 cursor = PFN_UP(base);
1712 end = PFN_DOWN(base + size);
1713
1714 for (; cursor < end; cursor++) {
1715 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1716 totalram_pages_inc();
1717 }
1718}
1719
1720/*
1721 * Remaining API functions
1722 */
1723
1724phys_addr_t __init_memblock memblock_phys_mem_size(void)
1725{
1726 return memblock.memory.total_size;
1727}
1728
1729phys_addr_t __init_memblock memblock_reserved_size(void)
1730{
1731 return memblock.reserved.total_size;
1732}
1733
1734/**
1735 * memblock_estimated_nr_free_pages - return estimated number of free pages
1736 * from memblock point of view
1737 *
1738 * During bootup, subsystems might need a rough estimate of the number of free
1739 * pages in the whole system, before precise numbers are available from the
1740 * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers
1741 * obtained from the buddy might be very imprecise during bootup.
1742 *
1743 * Return:
1744 * An estimated number of free pages from memblock point of view.
1745 */
1746unsigned long __init memblock_estimated_nr_free_pages(void)
1747{
1748 return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
1749}
1750
1751/* lowest address */
1752phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1753{
1754 return memblock.memory.regions[0].base;
1755}
1756
1757phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1758{
1759 int idx = memblock.memory.cnt - 1;
1760
1761 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1762}
1763
1764static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1765{
1766 phys_addr_t max_addr = PHYS_ADDR_MAX;
1767 struct memblock_region *r;
1768
1769 /*
1770 * translate the memory @limit size into the max address within one of
1771 * the memory memblock regions, if the @limit exceeds the total size
1772 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1773 */
1774 for_each_mem_region(r) {
1775 if (limit <= r->size) {
1776 max_addr = r->base + limit;
1777 break;
1778 }
1779 limit -= r->size;
1780 }
1781
1782 return max_addr;
1783}
1784
1785void __init memblock_enforce_memory_limit(phys_addr_t limit)
1786{
1787 phys_addr_t max_addr;
1788
1789 if (!limit)
1790 return;
1791
1792 max_addr = __find_max_addr(limit);
1793
1794 /* @limit exceeds the total size of the memory, do nothing */
1795 if (max_addr == PHYS_ADDR_MAX)
1796 return;
1797
1798 /* truncate both memory and reserved regions */
1799 memblock_remove_range(&memblock.memory, max_addr,
1800 PHYS_ADDR_MAX);
1801 memblock_remove_range(&memblock.reserved, max_addr,
1802 PHYS_ADDR_MAX);
1803}
1804
1805void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1806{
1807 int start_rgn, end_rgn;
1808 int i, ret;
1809
1810 if (!size)
1811 return;
1812
1813 if (!memblock_memory->total_size) {
1814 pr_warn("%s: No memory registered yet\n", __func__);
1815 return;
1816 }
1817
1818 ret = memblock_isolate_range(&memblock.memory, base, size,
1819 &start_rgn, &end_rgn);
1820 if (ret)
1821 return;
1822
1823 /* remove all the MAP regions */
1824 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1825 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1826 memblock_remove_region(&memblock.memory, i);
1827
1828 for (i = start_rgn - 1; i >= 0; i--)
1829 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1830 memblock_remove_region(&memblock.memory, i);
1831
1832 /* truncate the reserved regions */
1833 memblock_remove_range(&memblock.reserved, 0, base);
1834 memblock_remove_range(&memblock.reserved,
1835 base + size, PHYS_ADDR_MAX);
1836}
1837
1838void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1839{
1840 phys_addr_t max_addr;
1841
1842 if (!limit)
1843 return;
1844
1845 max_addr = __find_max_addr(limit);
1846
1847 /* @limit exceeds the total size of the memory, do nothing */
1848 if (max_addr == PHYS_ADDR_MAX)
1849 return;
1850
1851 memblock_cap_memory_range(0, max_addr);
1852}
1853
1854static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1855{
1856 unsigned int left = 0, right = type->cnt;
1857
1858 do {
1859 unsigned int mid = (right + left) / 2;
1860
1861 if (addr < type->regions[mid].base)
1862 right = mid;
1863 else if (addr >= (type->regions[mid].base +
1864 type->regions[mid].size))
1865 left = mid + 1;
1866 else
1867 return mid;
1868 } while (left < right);
1869 return -1;
1870}
1871
1872bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1873{
1874 return memblock_search(&memblock.reserved, addr) != -1;
1875}
1876
1877bool __init_memblock memblock_is_memory(phys_addr_t addr)
1878{
1879 return memblock_search(&memblock.memory, addr) != -1;
1880}
1881
1882bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1883{
1884 int i = memblock_search(&memblock.memory, addr);
1885
1886 if (i == -1)
1887 return false;
1888 return !memblock_is_nomap(&memblock.memory.regions[i]);
1889}
1890
1891int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1892 unsigned long *start_pfn, unsigned long *end_pfn)
1893{
1894 struct memblock_type *type = &memblock.memory;
1895 int mid = memblock_search(type, PFN_PHYS(pfn));
1896
1897 if (mid == -1)
1898 return NUMA_NO_NODE;
1899
1900 *start_pfn = PFN_DOWN(type->regions[mid].base);
1901 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1902
1903 return memblock_get_region_node(&type->regions[mid]);
1904}
1905
1906/**
1907 * memblock_is_region_memory - check if a region is a subset of memory
1908 * @base: base of region to check
1909 * @size: size of region to check
1910 *
1911 * Check if the region [@base, @base + @size) is a subset of a memory block.
1912 *
1913 * Return:
1914 * 0 if false, non-zero if true
1915 */
1916bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1917{
1918 int idx = memblock_search(&memblock.memory, base);
1919 phys_addr_t end = base + memblock_cap_size(base, &size);
1920
1921 if (idx == -1)
1922 return false;
1923 return (memblock.memory.regions[idx].base +
1924 memblock.memory.regions[idx].size) >= end;
1925}
1926
1927/**
1928 * memblock_is_region_reserved - check if a region intersects reserved memory
1929 * @base: base of region to check
1930 * @size: size of region to check
1931 *
1932 * Check if the region [@base, @base + @size) intersects a reserved
1933 * memory block.
1934 *
1935 * Return:
1936 * True if they intersect, false if not.
1937 */
1938bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1939{
1940 return memblock_overlaps_region(&memblock.reserved, base, size);
1941}
1942
1943void __init_memblock memblock_trim_memory(phys_addr_t align)
1944{
1945 phys_addr_t start, end, orig_start, orig_end;
1946 struct memblock_region *r;
1947
1948 for_each_mem_region(r) {
1949 orig_start = r->base;
1950 orig_end = r->base + r->size;
1951 start = round_up(orig_start, align);
1952 end = round_down(orig_end, align);
1953
1954 if (start == orig_start && end == orig_end)
1955 continue;
1956
1957 if (start < end) {
1958 r->base = start;
1959 r->size = end - start;
1960 } else {
1961 memblock_remove_region(&memblock.memory,
1962 r - memblock.memory.regions);
1963 r--;
1964 }
1965 }
1966}
1967
1968void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1969{
1970 memblock.current_limit = limit;
1971}
1972
1973phys_addr_t __init_memblock memblock_get_current_limit(void)
1974{
1975 return memblock.current_limit;
1976}
1977
1978static void __init_memblock memblock_dump(struct memblock_type *type)
1979{
1980 phys_addr_t base, end, size;
1981 enum memblock_flags flags;
1982 int idx;
1983 struct memblock_region *rgn;
1984
1985 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1986
1987 for_each_memblock_type(idx, type, rgn) {
1988 char nid_buf[32] = "";
1989
1990 base = rgn->base;
1991 size = rgn->size;
1992 end = base + size - 1;
1993 flags = rgn->flags;
1994#ifdef CONFIG_NUMA
1995 if (numa_valid_node(memblock_get_region_node(rgn)))
1996 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1997 memblock_get_region_node(rgn));
1998#endif
1999 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
2000 type->name, idx, &base, &end, &size, nid_buf, flags);
2001 }
2002}
2003
2004static void __init_memblock __memblock_dump_all(void)
2005{
2006 pr_info("MEMBLOCK configuration:\n");
2007 pr_info(" memory size = %pa reserved size = %pa\n",
2008 &memblock.memory.total_size,
2009 &memblock.reserved.total_size);
2010
2011 memblock_dump(&memblock.memory);
2012 memblock_dump(&memblock.reserved);
2013#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2014 memblock_dump(&physmem);
2015#endif
2016}
2017
2018void __init_memblock memblock_dump_all(void)
2019{
2020 if (memblock_debug)
2021 __memblock_dump_all();
2022}
2023
2024void __init memblock_allow_resize(void)
2025{
2026 memblock_can_resize = 1;
2027}
2028
2029static int __init early_memblock(char *p)
2030{
2031 if (p && strstr(p, "debug"))
2032 memblock_debug = 1;
2033 return 0;
2034}
2035early_param("memblock", early_memblock);
2036
2037static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2038{
2039 struct page *start_pg, *end_pg;
2040 phys_addr_t pg, pgend;
2041
2042 /*
2043 * Convert start_pfn/end_pfn to a struct page pointer.
2044 */
2045 start_pg = pfn_to_page(start_pfn - 1) + 1;
2046 end_pg = pfn_to_page(end_pfn - 1) + 1;
2047
2048 /*
2049 * Convert to physical addresses, and round start upwards and end
2050 * downwards.
2051 */
2052 pg = PAGE_ALIGN(__pa(start_pg));
2053 pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
2054
2055 /*
2056 * If there are free pages between these, free the section of the
2057 * memmap array.
2058 */
2059 if (pg < pgend)
2060 memblock_phys_free(pg, pgend - pg);
2061}
2062
2063/*
2064 * The mem_map array can get very big. Free the unused area of the memory map.
2065 */
2066static void __init free_unused_memmap(void)
2067{
2068 unsigned long start, end, prev_end = 0;
2069 int i;
2070
2071 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2072 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2073 return;
2074
2075 /*
2076 * This relies on each bank being in address order.
2077 * The banks are sorted previously in bootmem_init().
2078 */
2079 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2080#ifdef CONFIG_SPARSEMEM
2081 /*
2082 * Take care not to free memmap entries that don't exist
2083 * due to SPARSEMEM sections which aren't present.
2084 */
2085 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2086#endif
2087 /*
2088 * Align down here since many operations in VM subsystem
2089 * presume that there are no holes in the memory map inside
2090 * a pageblock
2091 */
2092 start = pageblock_start_pfn(start);
2093
2094 /*
2095 * If we had a previous bank, and there is a space
2096 * between the current bank and the previous, free it.
2097 */
2098 if (prev_end && prev_end < start)
2099 free_memmap(prev_end, start);
2100
2101 /*
2102 * Align up here since many operations in VM subsystem
2103 * presume that there are no holes in the memory map inside
2104 * a pageblock
2105 */
2106 prev_end = pageblock_align(end);
2107 }
2108
2109#ifdef CONFIG_SPARSEMEM
2110 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2111 prev_end = pageblock_align(end);
2112 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2113 }
2114#endif
2115}
2116
2117static void __init __free_pages_memory(unsigned long start, unsigned long end)
2118{
2119 int order;
2120
2121 while (start < end) {
2122 /*
2123 * Free the pages in the largest chunks alignment allows.
2124 *
2125 * __ffs() behaviour is undefined for 0. start == 0 is
2126 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2127 * the case.
2128 */
2129 if (start)
2130 order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2131 else
2132 order = MAX_PAGE_ORDER;
2133
2134 while (start + (1UL << order) > end)
2135 order--;
2136
2137 memblock_free_pages(pfn_to_page(start), start, order);
2138
2139 start += (1UL << order);
2140 }
2141}
2142
2143static unsigned long __init __free_memory_core(phys_addr_t start,
2144 phys_addr_t end)
2145{
2146 unsigned long start_pfn = PFN_UP(start);
2147 unsigned long end_pfn = min_t(unsigned long,
2148 PFN_DOWN(end), max_low_pfn);
2149
2150 if (start_pfn >= end_pfn)
2151 return 0;
2152
2153 __free_pages_memory(start_pfn, end_pfn);
2154
2155 return end_pfn - start_pfn;
2156}
2157
2158static void __init memmap_init_reserved_pages(void)
2159{
2160 struct memblock_region *region;
2161 phys_addr_t start, end;
2162 int nid;
2163
2164 /*
2165 * set nid on all reserved pages and also treat struct
2166 * pages for the NOMAP regions as PageReserved
2167 */
2168 for_each_mem_region(region) {
2169 nid = memblock_get_region_node(region);
2170 start = region->base;
2171 end = start + region->size;
2172
2173 if (memblock_is_nomap(region))
2174 reserve_bootmem_region(start, end, nid);
2175
2176 memblock_set_node(start, end, &memblock.reserved, nid);
2177 }
2178
2179 /*
2180 * initialize struct pages for reserved regions that don't have
2181 * the MEMBLOCK_RSRV_NOINIT flag set
2182 */
2183 for_each_reserved_mem_region(region) {
2184 if (!memblock_is_reserved_noinit(region)) {
2185 nid = memblock_get_region_node(region);
2186 start = region->base;
2187 end = start + region->size;
2188
2189 if (!numa_valid_node(nid))
2190 nid = early_pfn_to_nid(PFN_DOWN(start));
2191
2192 reserve_bootmem_region(start, end, nid);
2193 }
2194 }
2195}
2196
2197static unsigned long __init free_low_memory_core_early(void)
2198{
2199 unsigned long count = 0;
2200 phys_addr_t start, end;
2201 u64 i;
2202
2203 memblock_clear_hotplug(0, -1);
2204
2205 memmap_init_reserved_pages();
2206
2207 /*
2208 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2209 * because in some case like Node0 doesn't have RAM installed
2210 * low ram will be on Node1
2211 */
2212 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2213 NULL)
2214 count += __free_memory_core(start, end);
2215
2216 return count;
2217}
2218
2219static int reset_managed_pages_done __initdata;
2220
2221static void __init reset_node_managed_pages(pg_data_t *pgdat)
2222{
2223 struct zone *z;
2224
2225 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2226 atomic_long_set(&z->managed_pages, 0);
2227}
2228
2229void __init reset_all_zones_managed_pages(void)
2230{
2231 struct pglist_data *pgdat;
2232
2233 if (reset_managed_pages_done)
2234 return;
2235
2236 for_each_online_pgdat(pgdat)
2237 reset_node_managed_pages(pgdat);
2238
2239 reset_managed_pages_done = 1;
2240}
2241
2242/**
2243 * memblock_free_all - release free pages to the buddy allocator
2244 */
2245void __init memblock_free_all(void)
2246{
2247 unsigned long pages;
2248
2249 free_unused_memmap();
2250 reset_all_zones_managed_pages();
2251
2252 pages = free_low_memory_core_early();
2253 totalram_pages_add(pages);
2254}
2255
2256/* Keep a table to reserve named memory */
2257#define RESERVE_MEM_MAX_ENTRIES 8
2258#define RESERVE_MEM_NAME_SIZE 16
2259struct reserve_mem_table {
2260 char name[RESERVE_MEM_NAME_SIZE];
2261 phys_addr_t start;
2262 phys_addr_t size;
2263};
2264static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
2265static int reserved_mem_count;
2266
2267/* Add wildcard region with a lookup name */
2268static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
2269 const char *name)
2270{
2271 struct reserve_mem_table *map;
2272
2273 map = &reserved_mem_table[reserved_mem_count++];
2274 map->start = start;
2275 map->size = size;
2276 strscpy(map->name, name);
2277}
2278
2279/**
2280 * reserve_mem_find_by_name - Find reserved memory region with a given name
2281 * @name: The name that is attached to a reserved memory region
2282 * @start: If found, holds the start address
2283 * @size: If found, holds the size of the address.
2284 *
2285 * @start and @size are only updated if @name is found.
2286 *
2287 * Returns: 1 if found or 0 if not found.
2288 */
2289int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
2290{
2291 struct reserve_mem_table *map;
2292 int i;
2293
2294 for (i = 0; i < reserved_mem_count; i++) {
2295 map = &reserved_mem_table[i];
2296 if (!map->size)
2297 continue;
2298 if (strcmp(name, map->name) == 0) {
2299 *start = map->start;
2300 *size = map->size;
2301 return 1;
2302 }
2303 }
2304 return 0;
2305}
2306EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
2307
2308/*
2309 * Parse reserve_mem=nn:align:name
2310 */
2311static int __init reserve_mem(char *p)
2312{
2313 phys_addr_t start, size, align, tmp;
2314 char *name;
2315 char *oldp;
2316 int len;
2317
2318 if (!p)
2319 return -EINVAL;
2320
2321 /* Check if there's room for more reserved memory */
2322 if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
2323 return -EBUSY;
2324
2325 oldp = p;
2326 size = memparse(p, &p);
2327 if (!size || p == oldp)
2328 return -EINVAL;
2329
2330 if (*p != ':')
2331 return -EINVAL;
2332
2333 align = memparse(p+1, &p);
2334 if (*p != ':')
2335 return -EINVAL;
2336
2337 /*
2338 * memblock_phys_alloc() doesn't like a zero size align,
2339 * but it is OK for this command to have it.
2340 */
2341 if (align < SMP_CACHE_BYTES)
2342 align = SMP_CACHE_BYTES;
2343
2344 name = p + 1;
2345 len = strlen(name);
2346
2347 /* name needs to have length but not too big */
2348 if (!len || len >= RESERVE_MEM_NAME_SIZE)
2349 return -EINVAL;
2350
2351 /* Make sure that name has text */
2352 for (p = name; *p; p++) {
2353 if (!isspace(*p))
2354 break;
2355 }
2356 if (!*p)
2357 return -EINVAL;
2358
2359 /* Make sure the name is not already used */
2360 if (reserve_mem_find_by_name(name, &start, &tmp))
2361 return -EBUSY;
2362
2363 start = memblock_phys_alloc(size, align);
2364 if (!start)
2365 return -ENOMEM;
2366
2367 reserved_mem_add(start, size, name);
2368
2369 return 1;
2370}
2371__setup("reserve_mem=", reserve_mem);
2372
2373#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2374static const char * const flagname[] = {
2375 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2376 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2377 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2378 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2379 [ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2380};
2381
2382static int memblock_debug_show(struct seq_file *m, void *private)
2383{
2384 struct memblock_type *type = m->private;
2385 struct memblock_region *reg;
2386 int i, j, nid;
2387 unsigned int count = ARRAY_SIZE(flagname);
2388 phys_addr_t end;
2389
2390 for (i = 0; i < type->cnt; i++) {
2391 reg = &type->regions[i];
2392 end = reg->base + reg->size - 1;
2393 nid = memblock_get_region_node(reg);
2394
2395 seq_printf(m, "%4d: ", i);
2396 seq_printf(m, "%pa..%pa ", ®->base, &end);
2397 if (numa_valid_node(nid))
2398 seq_printf(m, "%4d ", nid);
2399 else
2400 seq_printf(m, "%4c ", 'x');
2401 if (reg->flags) {
2402 for (j = 0; j < count; j++) {
2403 if (reg->flags & (1U << j)) {
2404 seq_printf(m, "%s\n", flagname[j]);
2405 break;
2406 }
2407 }
2408 if (j == count)
2409 seq_printf(m, "%s\n", "UNKNOWN");
2410 } else {
2411 seq_printf(m, "%s\n", "NONE");
2412 }
2413 }
2414 return 0;
2415}
2416DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2417
2418static int __init memblock_init_debugfs(void)
2419{
2420 struct dentry *root = debugfs_create_dir("memblock", NULL);
2421
2422 debugfs_create_file("memory", 0444, root,
2423 &memblock.memory, &memblock_debug_fops);
2424 debugfs_create_file("reserved", 0444, root,
2425 &memblock.reserved, &memblock_debug_fops);
2426#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2427 debugfs_create_file("physmem", 0444, root, &physmem,
2428 &memblock_debug_fops);
2429#endif
2430
2431 return 0;
2432}
2433__initcall(memblock_init_debugfs);
2434
2435#endif /* CONFIG_DEBUG_FS */