Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.	June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS			128
  26#define INIT_PHYSMEM_REGIONS			4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
  30#endif
  31
 
 
 
 
  32/**
  33 * DOC: memblock overview
  34 *
  35 * Memblock is a method of managing memory regions during the early
  36 * boot period when the usual kernel memory allocators are not up and
  37 * running.
  38 *
  39 * Memblock views the system memory as collections of contiguous
  40 * regions. There are several types of these collections:
  41 *
  42 * * ``memory`` - describes the physical memory available to the
  43 *   kernel; this may differ from the actual physical memory installed
  44 *   in the system, for instance when the memory is restricted with
  45 *   ``mem=`` command line parameter
  46 * * ``reserved`` - describes the regions that were allocated
  47 * * ``physmap`` - describes the actual physical memory regardless of
  48 *   the possible restrictions; the ``physmap`` type is only available
  49 *   on some architectures.
  50 *
  51 * Each region is represented by :c:type:`struct memblock_region` that
  52 * defines the region extents, its attributes and NUMA node id on NUMA
  53 * systems. Every memory type is described by the :c:type:`struct
  54 * memblock_type` which contains an array of memory regions along with
  55 * the allocator metadata. The memory types are nicely wrapped with
  56 * :c:type:`struct memblock`. This structure is statically initialzed
  57 * at build time. The region arrays for the "memory" and "reserved"
  58 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
  59 * "physmap" type to %INIT_PHYSMEM_REGIONS.
  60 * The :c:func:`memblock_allow_resize` enables automatic resizing of
  61 * the region arrays during addition of new regions. This feature
  62 * should be used with care so that memory allocated for the region
  63 * array will not overlap with areas that should be reserved, for
  64 * example initrd.
  65 *
  66 * The early architecture setup should tell memblock what the physical
  67 * memory layout is by using :c:func:`memblock_add` or
  68 * :c:func:`memblock_add_node` functions. The first function does not
  69 * assign the region to a NUMA node and it is appropriate for UMA
  70 * systems. Yet, it is possible to use it on NUMA systems as well and
  71 * assign the region to a NUMA node later in the setup process using
  72 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
  73 * performs such an assignment directly.
  74 *
  75 * Once memblock is setup the memory can be allocated using one of the
  76 * API variants:
  77 *
  78 * * :c:func:`memblock_phys_alloc*` - these functions return the
  79 *   **physical** address of the allocated memory
  80 * * :c:func:`memblock_alloc*` - these functions return the **virtual**
  81 *   address of the allocated memory.
  82 *
  83 * Note, that both API variants use implict assumptions about allowed
  84 * memory ranges and the fallback methods. Consult the documentation
  85 * of :c:func:`memblock_alloc_internal` and
  86 * :c:func:`memblock_alloc_range_nid` functions for more elaboarte
  87 * description.
  88 *
  89 * As the system boot progresses, the architecture specific
  90 * :c:func:`mem_init` function frees all the memory to the buddy page
  91 * allocator.
  92 *
  93 * Unless an architecure enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  94 * memblock data structures will be discarded after the system
  95 * initialization compltes.
  96 */
  97
  98#ifndef CONFIG_NEED_MULTIPLE_NODES
  99struct pglist_data __refdata contig_page_data;
 100EXPORT_SYMBOL(contig_page_data);
 101#endif
 102
 103unsigned long max_low_pfn;
 104unsigned long min_low_pfn;
 105unsigned long max_pfn;
 106unsigned long long max_possible_pfn;
 107
 108static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
 109static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 110#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 111static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
 112#endif
 113
 114struct memblock memblock __initdata_memblock = {
 115	.memory.regions		= memblock_memory_init_regions,
 116	.memory.cnt		= 1,	/* empty dummy entry */
 117	.memory.max		= INIT_MEMBLOCK_REGIONS,
 118	.memory.name		= "memory",
 119
 120	.reserved.regions	= memblock_reserved_init_regions,
 121	.reserved.cnt		= 1,	/* empty dummy entry */
 122	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
 123	.reserved.name		= "reserved",
 124
 125#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 126	.physmem.regions	= memblock_physmem_init_regions,
 127	.physmem.cnt		= 1,	/* empty dummy entry */
 128	.physmem.max		= INIT_PHYSMEM_REGIONS,
 129	.physmem.name		= "physmem",
 130#endif
 131
 132	.bottom_up		= false,
 133	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 134};
 135
 136int memblock_debug __initdata_memblock;
 137static bool system_has_some_mirror __initdata_memblock = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138static int memblock_can_resize __initdata_memblock;
 139static int memblock_memory_in_slab __initdata_memblock = 0;
 140static int memblock_reserved_in_slab __initdata_memblock = 0;
 
 
 
 
 
 141
 142static enum memblock_flags __init_memblock choose_memblock_flags(void)
 143{
 144	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 145}
 146
 147/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 148static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 149{
 150	return *size = min(*size, PHYS_ADDR_MAX - base);
 151}
 152
 153/*
 154 * Address comparison utilities
 155 */
 156static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 157				       phys_addr_t base2, phys_addr_t size2)
 
 158{
 159	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 160}
 161
 162bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 163					phys_addr_t base, phys_addr_t size)
 164{
 165	unsigned long i;
 166
 
 
 167	for (i = 0; i < type->cnt; i++)
 168		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 169					   type->regions[i].size))
 170			break;
 171	return i < type->cnt;
 172}
 173
 174/**
 175 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 176 * @start: start of candidate range
 177 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 178 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 179 * @size: size of free area to find
 180 * @align: alignment of free area to find
 181 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 182 * @flags: pick from blocks based on memory attributes
 183 *
 184 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 185 *
 186 * Return:
 187 * Found address on success, 0 on failure.
 188 */
 189static phys_addr_t __init_memblock
 190__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 191				phys_addr_t size, phys_addr_t align, int nid,
 192				enum memblock_flags flags)
 193{
 194	phys_addr_t this_start, this_end, cand;
 195	u64 i;
 196
 197	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 198		this_start = clamp(this_start, start, end);
 199		this_end = clamp(this_end, start, end);
 200
 201		cand = round_up(this_start, align);
 202		if (cand < this_end && this_end - cand >= size)
 203			return cand;
 204	}
 205
 206	return 0;
 207}
 208
 209/**
 210 * __memblock_find_range_top_down - find free area utility, in top-down
 211 * @start: start of candidate range
 212 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 213 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 214 * @size: size of free area to find
 215 * @align: alignment of free area to find
 216 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 217 * @flags: pick from blocks based on memory attributes
 218 *
 219 * Utility called from memblock_find_in_range_node(), find free area top-down.
 220 *
 221 * Return:
 222 * Found address on success, 0 on failure.
 223 */
 224static phys_addr_t __init_memblock
 225__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 226			       phys_addr_t size, phys_addr_t align, int nid,
 227			       enum memblock_flags flags)
 228{
 229	phys_addr_t this_start, this_end, cand;
 230	u64 i;
 231
 232	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 233					NULL) {
 234		this_start = clamp(this_start, start, end);
 235		this_end = clamp(this_end, start, end);
 236
 237		if (this_end < size)
 238			continue;
 239
 240		cand = round_down(this_end - size, align);
 241		if (cand >= this_start)
 242			return cand;
 243	}
 244
 245	return 0;
 246}
 247
 248/**
 249 * memblock_find_in_range_node - find free area in given range and node
 250 * @size: size of free area to find
 251 * @align: alignment of free area to find
 252 * @start: start of candidate range
 253 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 254 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 255 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 256 * @flags: pick from blocks based on memory attributes
 257 *
 258 * Find @size free area aligned to @align in the specified range and node.
 259 *
 260 * When allocation direction is bottom-up, the @start should be greater
 261 * than the end of the kernel image. Otherwise, it will be trimmed. The
 262 * reason is that we want the bottom-up allocation just near the kernel
 263 * image so it is highly likely that the allocated memory and the kernel
 264 * will reside in the same node.
 265 *
 266 * If bottom-up allocation failed, will try to allocate memory top-down.
 267 *
 268 * Return:
 269 * Found address on success, 0 on failure.
 270 */
 271static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 272					phys_addr_t align, phys_addr_t start,
 273					phys_addr_t end, int nid,
 274					enum memblock_flags flags)
 275{
 276	phys_addr_t kernel_end, ret;
 277
 278	/* pump up @end */
 279	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 280	    end == MEMBLOCK_ALLOC_KASAN)
 281		end = memblock.current_limit;
 282
 283	/* avoid allocating the first page */
 284	start = max_t(phys_addr_t, start, PAGE_SIZE);
 285	end = max(start, end);
 286	kernel_end = __pa_symbol(_end);
 287
 288	/*
 289	 * try bottom-up allocation only when bottom-up mode
 290	 * is set and @end is above the kernel image.
 291	 */
 292	if (memblock_bottom_up() && end > kernel_end) {
 293		phys_addr_t bottom_up_start;
 294
 295		/* make sure we will allocate above the kernel */
 296		bottom_up_start = max(start, kernel_end);
 297
 298		/* ok, try bottom-up allocation first */
 299		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 300						      size, align, nid, flags);
 301		if (ret)
 302			return ret;
 303
 304		/*
 305		 * we always limit bottom-up allocation above the kernel,
 306		 * but top-down allocation doesn't have the limit, so
 307		 * retrying top-down allocation may succeed when bottom-up
 308		 * allocation failed.
 309		 *
 310		 * bottom-up allocation is expected to be fail very rarely,
 311		 * so we use WARN_ONCE() here to see the stack trace if
 312		 * fail happens.
 313		 */
 314		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
 315			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
 316	}
 317
 318	return __memblock_find_range_top_down(start, end, size, align, nid,
 319					      flags);
 
 
 
 
 320}
 321
 322/**
 323 * memblock_find_in_range - find free area in given range
 324 * @start: start of candidate range
 325 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 326 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 327 * @size: size of free area to find
 328 * @align: alignment of free area to find
 329 *
 330 * Find @size free area aligned to @align in the specified range.
 331 *
 332 * Return:
 333 * Found address on success, 0 on failure.
 334 */
 335phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 336					phys_addr_t end, phys_addr_t size,
 337					phys_addr_t align)
 338{
 339	phys_addr_t ret;
 340	enum memblock_flags flags = choose_memblock_flags();
 341
 342again:
 343	ret = memblock_find_in_range_node(size, align, start, end,
 344					    NUMA_NO_NODE, flags);
 345
 346	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 347		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 348			&size);
 349		flags &= ~MEMBLOCK_MIRROR;
 350		goto again;
 351	}
 352
 353	return ret;
 354}
 355
 356static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 357{
 358	type->total_size -= type->regions[r].size;
 359	memmove(&type->regions[r], &type->regions[r + 1],
 360		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 361	type->cnt--;
 362
 363	/* Special case for empty arrays */
 364	if (type->cnt == 0) {
 365		WARN_ON(type->total_size != 0);
 366		type->cnt = 1;
 367		type->regions[0].base = 0;
 368		type->regions[0].size = 0;
 369		type->regions[0].flags = 0;
 370		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 371	}
 372}
 373
 374#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 375/**
 376 * memblock_discard - discard memory and reserved arrays if they were allocated
 377 */
 378void __init memblock_discard(void)
 379{
 380	phys_addr_t addr, size;
 381
 382	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 383		addr = __pa(memblock.reserved.regions);
 384		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 385				  memblock.reserved.max);
 386		__memblock_free_late(addr, size);
 
 
 
 387	}
 388
 389	if (memblock.memory.regions != memblock_memory_init_regions) {
 390		addr = __pa(memblock.memory.regions);
 391		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 392				  memblock.memory.max);
 393		__memblock_free_late(addr, size);
 
 
 
 394	}
 
 
 395}
 396#endif
 397
 398/**
 399 * memblock_double_array - double the size of the memblock regions array
 400 * @type: memblock type of the regions array being doubled
 401 * @new_area_start: starting address of memory range to avoid overlap with
 402 * @new_area_size: size of memory range to avoid overlap with
 403 *
 404 * Double the size of the @type regions array. If memblock is being used to
 405 * allocate memory for a new reserved regions array and there is a previously
 406 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 407 * waiting to be reserved, ensure the memory used by the new array does
 408 * not overlap.
 409 *
 410 * Return:
 411 * 0 on success, -1 on failure.
 412 */
 413static int __init_memblock memblock_double_array(struct memblock_type *type,
 414						phys_addr_t new_area_start,
 415						phys_addr_t new_area_size)
 416{
 417	struct memblock_region *new_array, *old_array;
 418	phys_addr_t old_alloc_size, new_alloc_size;
 419	phys_addr_t old_size, new_size, addr, new_end;
 420	int use_slab = slab_is_available();
 421	int *in_slab;
 422
 423	/* We don't allow resizing until we know about the reserved regions
 424	 * of memory that aren't suitable for allocation
 425	 */
 426	if (!memblock_can_resize)
 427		return -1;
 428
 429	/* Calculate new doubled size */
 430	old_size = type->max * sizeof(struct memblock_region);
 431	new_size = old_size << 1;
 432	/*
 433	 * We need to allocated new one align to PAGE_SIZE,
 434	 *   so we can free them completely later.
 435	 */
 436	old_alloc_size = PAGE_ALIGN(old_size);
 437	new_alloc_size = PAGE_ALIGN(new_size);
 438
 439	/* Retrieve the slab flag */
 440	if (type == &memblock.memory)
 441		in_slab = &memblock_memory_in_slab;
 442	else
 443		in_slab = &memblock_reserved_in_slab;
 444
 445	/* Try to find some space for it */
 446	if (use_slab) {
 447		new_array = kmalloc(new_size, GFP_KERNEL);
 448		addr = new_array ? __pa(new_array) : 0;
 449	} else {
 450		/* only exclude range when trying to double reserved.regions */
 451		if (type != &memblock.reserved)
 452			new_area_start = new_area_size = 0;
 453
 454		addr = memblock_find_in_range(new_area_start + new_area_size,
 455						memblock.current_limit,
 456						new_alloc_size, PAGE_SIZE);
 457		if (!addr && new_area_size)
 458			addr = memblock_find_in_range(0,
 459				min(new_area_start, memblock.current_limit),
 460				new_alloc_size, PAGE_SIZE);
 461
 462		new_array = addr ? __va(addr) : NULL;
 463	}
 464	if (!addr) {
 465		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 466		       type->name, type->max, type->max * 2);
 467		return -1;
 468	}
 469
 470	new_end = addr + new_size - 1;
 471	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 472			type->name, type->max * 2, &addr, &new_end);
 473
 474	/*
 475	 * Found space, we now need to move the array over before we add the
 476	 * reserved region since it may be our reserved array itself that is
 477	 * full.
 478	 */
 479	memcpy(new_array, type->regions, old_size);
 480	memset(new_array + type->max, 0, old_size);
 481	old_array = type->regions;
 482	type->regions = new_array;
 483	type->max <<= 1;
 484
 485	/* Free old array. We needn't free it if the array is the static one */
 486	if (*in_slab)
 487		kfree(old_array);
 488	else if (old_array != memblock_memory_init_regions &&
 489		 old_array != memblock_reserved_init_regions)
 490		memblock_free(__pa(old_array), old_alloc_size);
 491
 492	/*
 493	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 494	 * needn't do it
 495	 */
 496	if (!use_slab)
 497		BUG_ON(memblock_reserve(addr, new_alloc_size));
 498
 499	/* Update slab flag */
 500	*in_slab = use_slab;
 501
 502	return 0;
 503}
 504
 505/**
 506 * memblock_merge_regions - merge neighboring compatible regions
 507 * @type: memblock type to scan
 508 *
 509 * Scan @type and merge neighboring compatible regions.
 510 */
 511static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 
 
 
 512{
 513	int i = 0;
 514
 515	/* cnt never goes below 1 */
 516	while (i < type->cnt - 1) {
 
 517		struct memblock_region *this = &type->regions[i];
 518		struct memblock_region *next = &type->regions[i + 1];
 519
 520		if (this->base + this->size != next->base ||
 521		    memblock_get_region_node(this) !=
 522		    memblock_get_region_node(next) ||
 523		    this->flags != next->flags) {
 524			BUG_ON(this->base + this->size > next->base);
 525			i++;
 526			continue;
 527		}
 528
 529		this->size += next->size;
 530		/* move forward from next + 1, index of which is i + 2 */
 531		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 532		type->cnt--;
 
 533	}
 534}
 535
 536/**
 537 * memblock_insert_region - insert new memblock region
 538 * @type:	memblock type to insert into
 539 * @idx:	index for the insertion point
 540 * @base:	base address of the new region
 541 * @size:	size of the new region
 542 * @nid:	node id of the new region
 543 * @flags:	flags of the new region
 544 *
 545 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 546 * @type must already have extra room to accommodate the new region.
 547 */
 548static void __init_memblock memblock_insert_region(struct memblock_type *type,
 549						   int idx, phys_addr_t base,
 550						   phys_addr_t size,
 551						   int nid,
 552						   enum memblock_flags flags)
 553{
 554	struct memblock_region *rgn = &type->regions[idx];
 555
 556	BUG_ON(type->cnt >= type->max);
 557	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 558	rgn->base = base;
 559	rgn->size = size;
 560	rgn->flags = flags;
 561	memblock_set_region_node(rgn, nid);
 562	type->cnt++;
 563	type->total_size += size;
 564}
 565
 566/**
 567 * memblock_add_range - add new memblock region
 568 * @type: memblock type to add new region into
 569 * @base: base address of the new region
 570 * @size: size of the new region
 571 * @nid: nid of the new region
 572 * @flags: flags of the new region
 573 *
 574 * Add new memblock region [@base, @base + @size) into @type.  The new region
 575 * is allowed to overlap with existing ones - overlaps don't affect already
 576 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 577 * compatible regions are merged) after the addition.
 578 *
 579 * Return:
 580 * 0 on success, -errno on failure.
 581 */
 582int __init_memblock memblock_add_range(struct memblock_type *type,
 583				phys_addr_t base, phys_addr_t size,
 584				int nid, enum memblock_flags flags)
 585{
 586	bool insert = false;
 587	phys_addr_t obase = base;
 588	phys_addr_t end = base + memblock_cap_size(base, &size);
 589	int idx, nr_new;
 590	struct memblock_region *rgn;
 591
 592	if (!size)
 593		return 0;
 594
 595	/* special case for empty array */
 596	if (type->regions[0].size == 0) {
 597		WARN_ON(type->cnt != 1 || type->total_size);
 598		type->regions[0].base = base;
 599		type->regions[0].size = size;
 600		type->regions[0].flags = flags;
 601		memblock_set_region_node(&type->regions[0], nid);
 602		type->total_size = size;
 
 603		return 0;
 604	}
 
 
 
 
 
 
 
 
 
 
 
 605repeat:
 606	/*
 607	 * The following is executed twice.  Once with %false @insert and
 608	 * then with %true.  The first counts the number of regions needed
 609	 * to accommodate the new area.  The second actually inserts them.
 610	 */
 611	base = obase;
 612	nr_new = 0;
 613
 614	for_each_memblock_type(idx, type, rgn) {
 615		phys_addr_t rbase = rgn->base;
 616		phys_addr_t rend = rbase + rgn->size;
 617
 618		if (rbase >= end)
 619			break;
 620		if (rend <= base)
 621			continue;
 622		/*
 623		 * @rgn overlaps.  If it separates the lower part of new
 624		 * area, insert that portion.
 625		 */
 626		if (rbase > base) {
 627#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 628			WARN_ON(nid != memblock_get_region_node(rgn));
 629#endif
 630			WARN_ON(flags != rgn->flags);
 631			nr_new++;
 632			if (insert)
 
 
 
 633				memblock_insert_region(type, idx++, base,
 634						       rbase - base, nid,
 635						       flags);
 
 636		}
 637		/* area below @rend is dealt with, forget about it */
 638		base = min(rend, end);
 639	}
 640
 641	/* insert the remaining portion */
 642	if (base < end) {
 643		nr_new++;
 644		if (insert)
 
 
 
 645			memblock_insert_region(type, idx, base, end - base,
 646					       nid, flags);
 
 647	}
 648
 649	if (!nr_new)
 650		return 0;
 651
 652	/*
 653	 * If this was the first round, resize array and repeat for actual
 654	 * insertions; otherwise, merge and return.
 655	 */
 656	if (!insert) {
 657		while (type->cnt + nr_new > type->max)
 658			if (memblock_double_array(type, obase, size) < 0)
 659				return -ENOMEM;
 660		insert = true;
 661		goto repeat;
 662	} else {
 663		memblock_merge_regions(type);
 664		return 0;
 665	}
 666}
 667
 668/**
 669 * memblock_add_node - add new memblock region within a NUMA node
 670 * @base: base address of the new region
 671 * @size: size of the new region
 672 * @nid: nid of the new region
 
 673 *
 674 * Add new memblock region [@base, @base + @size) to the "memory"
 675 * type. See memblock_add_range() description for mode details
 676 *
 677 * Return:
 678 * 0 on success, -errno on failure.
 679 */
 680int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 681				       int nid)
 682{
 683	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 
 
 
 
 
 684}
 685
 686/**
 687 * memblock_add - add new memblock region
 688 * @base: base address of the new region
 689 * @size: size of the new region
 690 *
 691 * Add new memblock region [@base, @base + @size) to the "memory"
 692 * type. See memblock_add_range() description for mode details
 693 *
 694 * Return:
 695 * 0 on success, -errno on failure.
 696 */
 697int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 698{
 699	phys_addr_t end = base + size - 1;
 700
 701	memblock_dbg("memblock_add: [%pa-%pa] %pS\n",
 702		     &base, &end, (void *)_RET_IP_);
 703
 704	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 705}
 706
 707/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708 * memblock_isolate_range - isolate given range into disjoint memblocks
 709 * @type: memblock type to isolate range for
 710 * @base: base of range to isolate
 711 * @size: size of range to isolate
 712 * @start_rgn: out parameter for the start of isolated region
 713 * @end_rgn: out parameter for the end of isolated region
 714 *
 715 * Walk @type and ensure that regions don't cross the boundaries defined by
 716 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 717 * which may create at most two more regions.  The index of the first
 718 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 
 719 *
 720 * Return:
 721 * 0 on success, -errno on failure.
 722 */
 723static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 724					phys_addr_t base, phys_addr_t size,
 725					int *start_rgn, int *end_rgn)
 726{
 727	phys_addr_t end = base + memblock_cap_size(base, &size);
 728	int idx;
 729	struct memblock_region *rgn;
 730
 731	*start_rgn = *end_rgn = 0;
 732
 733	if (!size)
 734		return 0;
 735
 736	/* we'll create at most two more regions */
 737	while (type->cnt + 2 > type->max)
 738		if (memblock_double_array(type, base, size) < 0)
 739			return -ENOMEM;
 740
 741	for_each_memblock_type(idx, type, rgn) {
 742		phys_addr_t rbase = rgn->base;
 743		phys_addr_t rend = rbase + rgn->size;
 744
 745		if (rbase >= end)
 746			break;
 747		if (rend <= base)
 748			continue;
 749
 750		if (rbase < base) {
 751			/*
 752			 * @rgn intersects from below.  Split and continue
 753			 * to process the next region - the new top half.
 754			 */
 755			rgn->base = base;
 756			rgn->size -= base - rbase;
 757			type->total_size -= base - rbase;
 758			memblock_insert_region(type, idx, rbase, base - rbase,
 759					       memblock_get_region_node(rgn),
 760					       rgn->flags);
 761		} else if (rend > end) {
 762			/*
 763			 * @rgn intersects from above.  Split and redo the
 764			 * current region - the new bottom half.
 765			 */
 766			rgn->base = end;
 767			rgn->size -= end - rbase;
 768			type->total_size -= end - rbase;
 769			memblock_insert_region(type, idx--, rbase, end - rbase,
 770					       memblock_get_region_node(rgn),
 771					       rgn->flags);
 772		} else {
 773			/* @rgn is fully contained, record it */
 774			if (!*end_rgn)
 775				*start_rgn = idx;
 776			*end_rgn = idx + 1;
 777		}
 778	}
 779
 780	return 0;
 781}
 782
 783static int __init_memblock memblock_remove_range(struct memblock_type *type,
 784					  phys_addr_t base, phys_addr_t size)
 785{
 786	int start_rgn, end_rgn;
 787	int i, ret;
 788
 789	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 790	if (ret)
 791		return ret;
 792
 793	for (i = end_rgn - 1; i >= start_rgn; i--)
 794		memblock_remove_region(type, i);
 795	return 0;
 796}
 797
 798int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 799{
 800	phys_addr_t end = base + size - 1;
 801
 802	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
 803		     &base, &end, (void *)_RET_IP_);
 804
 805	return memblock_remove_range(&memblock.memory, base, size);
 806}
 807
 808/**
 809 * memblock_free - free boot memory block
 810 * @base: phys starting address of the  boot memory block
 811 * @size: size of the boot memory block in bytes
 812 *
 813 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 814 * The freeing memory will not be released to the buddy allocator.
 815 */
 816int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817{
 818	phys_addr_t end = base + size - 1;
 819
 820	memblock_dbg("   memblock_free: [%pa-%pa] %pS\n",
 821		     &base, &end, (void *)_RET_IP_);
 822
 823	kmemleak_free_part_phys(base, size);
 824	return memblock_remove_range(&memblock.reserved, base, size);
 825}
 826
 827int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 828{
 829	phys_addr_t end = base + size - 1;
 830
 831	memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n",
 832		     &base, &end, (void *)_RET_IP_);
 833
 834	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 835}
 836
 
 
 
 
 
 
 
 
 
 
 
 
 837/**
 838 * memblock_setclr_flag - set or clear flag for a memory region
 
 839 * @base: base address of the region
 840 * @size: size of the region
 841 * @set: set or clear the flag
 842 * @flag: the flag to udpate
 843 *
 844 * This function isolates region [@base, @base + @size), and sets/clears flag
 845 *
 846 * Return: 0 on success, -errno on failure.
 847 */
 848static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 849				phys_addr_t size, int set, int flag)
 850{
 851	struct memblock_type *type = &memblock.memory;
 852	int i, ret, start_rgn, end_rgn;
 853
 854	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 855	if (ret)
 856		return ret;
 857
 858	for (i = start_rgn; i < end_rgn; i++) {
 859		struct memblock_region *r = &type->regions[i];
 860
 861		if (set)
 862			r->flags |= flag;
 863		else
 864			r->flags &= ~flag;
 865	}
 866
 867	memblock_merge_regions(type);
 868	return 0;
 869}
 870
 871/**
 872 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 873 * @base: the base phys addr of the region
 874 * @size: the size of the region
 875 *
 876 * Return: 0 on success, -errno on failure.
 877 */
 878int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 879{
 880	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 881}
 882
 883/**
 884 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 885 * @base: the base phys addr of the region
 886 * @size: the size of the region
 887 *
 888 * Return: 0 on success, -errno on failure.
 889 */
 890int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 891{
 892	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 893}
 894
 895/**
 896 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 897 * @base: the base phys addr of the region
 898 * @size: the size of the region
 899 *
 900 * Return: 0 on success, -errno on failure.
 901 */
 902int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 903{
 
 
 
 904	system_has_some_mirror = true;
 905
 906	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 907}
 908
 909/**
 910 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 911 * @base: the base phys addr of the region
 912 * @size: the size of the region
 913 *
 
 
 
 
 
 
 
 
 914 * Return: 0 on success, -errno on failure.
 915 */
 916int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 917{
 918	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 919}
 920
 921/**
 922 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 923 * @base: the base phys addr of the region
 924 * @size: the size of the region
 925 *
 926 * Return: 0 on success, -errno on failure.
 927 */
 928int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 929{
 930	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 931}
 932
 933/**
 934 * __next_reserved_mem_region - next function for for_each_reserved_region()
 935 * @idx: pointer to u64 loop variable
 936 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 937 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 
 
 
 
 938 *
 939 * Iterate over all reserved memory regions.
 940 */
 941void __init_memblock __next_reserved_mem_region(u64 *idx,
 942					   phys_addr_t *out_start,
 943					   phys_addr_t *out_end)
 944{
 945	struct memblock_type *type = &memblock.reserved;
 946
 947	if (*idx < type->cnt) {
 948		struct memblock_region *r = &type->regions[*idx];
 949		phys_addr_t base = r->base;
 950		phys_addr_t size = r->size;
 951
 952		if (out_start)
 953			*out_start = base;
 954		if (out_end)
 955			*out_end = base + size - 1;
 956
 957		*idx += 1;
 958		return;
 959	}
 960
 961	/* signal end of iteration */
 962	*idx = ULLONG_MAX;
 963}
 964
 965static bool should_skip_region(struct memblock_region *m, int nid, int flags)
 
 
 966{
 967	int m_nid = memblock_get_region_node(m);
 968
 
 
 
 
 969	/* only memory regions are associated with nodes, check it */
 970	if (nid != NUMA_NO_NODE && nid != m_nid)
 971		return true;
 972
 973	/* skip hotpluggable memory regions if needed */
 974	if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 
 975		return true;
 976
 977	/* if we want mirror memory skip non-mirror memory regions */
 978	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 979		return true;
 980
 981	/* skip nomap memory unless we were asked for it explicitly */
 982	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 983		return true;
 984
 
 
 
 
 985	return false;
 986}
 987
 988/**
 989 * __next_mem_range - next function for for_each_free_mem_range() etc.
 990 * @idx: pointer to u64 loop variable
 991 * @nid: node selector, %NUMA_NO_NODE for all nodes
 992 * @flags: pick from blocks based on memory attributes
 993 * @type_a: pointer to memblock_type from where the range is taken
 994 * @type_b: pointer to memblock_type which excludes memory from being taken
 995 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 996 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 997 * @out_nid: ptr to int for nid of the range, can be %NULL
 998 *
 999 * Find the first area from *@idx which matches @nid, fill the out
1000 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1001 * *@idx contains index into type_a and the upper 32bit indexes the
1002 * areas before each region in type_b.	For example, if type_b regions
1003 * look like the following,
1004 *
1005 *	0:[0-16), 1:[32-48), 2:[128-130)
1006 *
1007 * The upper 32bit indexes the following regions.
1008 *
1009 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1010 *
1011 * As both region arrays are sorted, the function advances the two indices
1012 * in lockstep and returns each intersection.
1013 */
1014void __init_memblock __next_mem_range(u64 *idx, int nid,
1015				      enum memblock_flags flags,
1016				      struct memblock_type *type_a,
1017				      struct memblock_type *type_b,
1018				      phys_addr_t *out_start,
1019				      phys_addr_t *out_end, int *out_nid)
1020{
1021	int idx_a = *idx & 0xffffffff;
1022	int idx_b = *idx >> 32;
1023
1024	if (WARN_ONCE(nid == MAX_NUMNODES,
1025	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1026		nid = NUMA_NO_NODE;
1027
1028	for (; idx_a < type_a->cnt; idx_a++) {
1029		struct memblock_region *m = &type_a->regions[idx_a];
1030
1031		phys_addr_t m_start = m->base;
1032		phys_addr_t m_end = m->base + m->size;
1033		int	    m_nid = memblock_get_region_node(m);
1034
1035		if (should_skip_region(m, nid, flags))
1036			continue;
1037
1038		if (!type_b) {
1039			if (out_start)
1040				*out_start = m_start;
1041			if (out_end)
1042				*out_end = m_end;
1043			if (out_nid)
1044				*out_nid = m_nid;
1045			idx_a++;
1046			*idx = (u32)idx_a | (u64)idx_b << 32;
1047			return;
1048		}
1049
1050		/* scan areas before each reservation */
1051		for (; idx_b < type_b->cnt + 1; idx_b++) {
1052			struct memblock_region *r;
1053			phys_addr_t r_start;
1054			phys_addr_t r_end;
1055
1056			r = &type_b->regions[idx_b];
1057			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1058			r_end = idx_b < type_b->cnt ?
1059				r->base : PHYS_ADDR_MAX;
1060
1061			/*
1062			 * if idx_b advanced past idx_a,
1063			 * break out to advance idx_a
1064			 */
1065			if (r_start >= m_end)
1066				break;
1067			/* if the two regions intersect, we're done */
1068			if (m_start < r_end) {
1069				if (out_start)
1070					*out_start =
1071						max(m_start, r_start);
1072				if (out_end)
1073					*out_end = min(m_end, r_end);
1074				if (out_nid)
1075					*out_nid = m_nid;
1076				/*
1077				 * The region which ends first is
1078				 * advanced for the next iteration.
1079				 */
1080				if (m_end <= r_end)
1081					idx_a++;
1082				else
1083					idx_b++;
1084				*idx = (u32)idx_a | (u64)idx_b << 32;
1085				return;
1086			}
1087		}
1088	}
1089
1090	/* signal end of iteration */
1091	*idx = ULLONG_MAX;
1092}
1093
1094/**
1095 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1096 *
1097 * @idx: pointer to u64 loop variable
1098 * @nid: node selector, %NUMA_NO_NODE for all nodes
1099 * @flags: pick from blocks based on memory attributes
1100 * @type_a: pointer to memblock_type from where the range is taken
1101 * @type_b: pointer to memblock_type which excludes memory from being taken
1102 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1103 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1104 * @out_nid: ptr to int for nid of the range, can be %NULL
1105 *
1106 * Finds the next range from type_a which is not marked as unsuitable
1107 * in type_b.
1108 *
1109 * Reverse of __next_mem_range().
1110 */
1111void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1112					  enum memblock_flags flags,
1113					  struct memblock_type *type_a,
1114					  struct memblock_type *type_b,
1115					  phys_addr_t *out_start,
1116					  phys_addr_t *out_end, int *out_nid)
1117{
1118	int idx_a = *idx & 0xffffffff;
1119	int idx_b = *idx >> 32;
1120
1121	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1122		nid = NUMA_NO_NODE;
1123
1124	if (*idx == (u64)ULLONG_MAX) {
1125		idx_a = type_a->cnt - 1;
1126		if (type_b != NULL)
1127			idx_b = type_b->cnt;
1128		else
1129			idx_b = 0;
1130	}
1131
1132	for (; idx_a >= 0; idx_a--) {
1133		struct memblock_region *m = &type_a->regions[idx_a];
1134
1135		phys_addr_t m_start = m->base;
1136		phys_addr_t m_end = m->base + m->size;
1137		int m_nid = memblock_get_region_node(m);
1138
1139		if (should_skip_region(m, nid, flags))
1140			continue;
1141
1142		if (!type_b) {
1143			if (out_start)
1144				*out_start = m_start;
1145			if (out_end)
1146				*out_end = m_end;
1147			if (out_nid)
1148				*out_nid = m_nid;
1149			idx_a--;
1150			*idx = (u32)idx_a | (u64)idx_b << 32;
1151			return;
1152		}
1153
1154		/* scan areas before each reservation */
1155		for (; idx_b >= 0; idx_b--) {
1156			struct memblock_region *r;
1157			phys_addr_t r_start;
1158			phys_addr_t r_end;
1159
1160			r = &type_b->regions[idx_b];
1161			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1162			r_end = idx_b < type_b->cnt ?
1163				r->base : PHYS_ADDR_MAX;
1164			/*
1165			 * if idx_b advanced past idx_a,
1166			 * break out to advance idx_a
1167			 */
1168
1169			if (r_end <= m_start)
1170				break;
1171			/* if the two regions intersect, we're done */
1172			if (m_end > r_start) {
1173				if (out_start)
1174					*out_start = max(m_start, r_start);
1175				if (out_end)
1176					*out_end = min(m_end, r_end);
1177				if (out_nid)
1178					*out_nid = m_nid;
1179				if (m_start >= r_start)
1180					idx_a--;
1181				else
1182					idx_b--;
1183				*idx = (u32)idx_a | (u64)idx_b << 32;
1184				return;
1185			}
1186		}
1187	}
1188	/* signal end of iteration */
1189	*idx = ULLONG_MAX;
1190}
1191
1192#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1193/*
1194 * Common iterator interface used to define for_each_mem_pfn_range().
1195 */
1196void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1197				unsigned long *out_start_pfn,
1198				unsigned long *out_end_pfn, int *out_nid)
1199{
1200	struct memblock_type *type = &memblock.memory;
1201	struct memblock_region *r;
 
1202
1203	while (++*idx < type->cnt) {
1204		r = &type->regions[*idx];
 
1205
1206		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1207			continue;
1208		if (nid == MAX_NUMNODES || nid == r->nid)
1209			break;
1210	}
1211	if (*idx >= type->cnt) {
1212		*idx = -1;
1213		return;
1214	}
1215
1216	if (out_start_pfn)
1217		*out_start_pfn = PFN_UP(r->base);
1218	if (out_end_pfn)
1219		*out_end_pfn = PFN_DOWN(r->base + r->size);
1220	if (out_nid)
1221		*out_nid = r->nid;
1222}
1223
1224/**
1225 * memblock_set_node - set node ID on memblock regions
1226 * @base: base of area to set node ID for
1227 * @size: size of area to set node ID for
1228 * @type: memblock type to set node ID for
1229 * @nid: node ID to set
1230 *
1231 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1232 * Regions which cross the area boundaries are split as necessary.
1233 *
1234 * Return:
1235 * 0 on success, -errno on failure.
1236 */
1237int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1238				      struct memblock_type *type, int nid)
1239{
 
1240	int start_rgn, end_rgn;
1241	int i, ret;
1242
1243	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1244	if (ret)
1245		return ret;
1246
1247	for (i = start_rgn; i < end_rgn; i++)
1248		memblock_set_region_node(&type->regions[i], nid);
1249
1250	memblock_merge_regions(type);
 
1251	return 0;
1252}
1253#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1254#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1255/**
1256 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1257 *
1258 * @idx: pointer to u64 loop variable
1259 * @zone: zone in which all of the memory blocks reside
1260 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1261 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1262 *
1263 * This function is meant to be a zone/pfn specific wrapper for the
1264 * for_each_mem_range type iterators. Specifically they are used in the
1265 * deferred memory init routines and as such we were duplicating much of
1266 * this logic throughout the code. So instead of having it in multiple
1267 * locations it seemed like it would make more sense to centralize this to
1268 * one new iterator that does everything they need.
1269 */
1270void __init_memblock
1271__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1272			     unsigned long *out_spfn, unsigned long *out_epfn)
1273{
1274	int zone_nid = zone_to_nid(zone);
1275	phys_addr_t spa, epa;
1276	int nid;
1277
1278	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1279			 &memblock.memory, &memblock.reserved,
1280			 &spa, &epa, &nid);
1281
1282	while (*idx != U64_MAX) {
1283		unsigned long epfn = PFN_DOWN(epa);
1284		unsigned long spfn = PFN_UP(spa);
1285
1286		/*
1287		 * Verify the end is at least past the start of the zone and
1288		 * that we have at least one PFN to initialize.
1289		 */
1290		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1291			/* if we went too far just stop searching */
1292			if (zone_end_pfn(zone) <= spfn) {
1293				*idx = U64_MAX;
1294				break;
1295			}
1296
1297			if (out_spfn)
1298				*out_spfn = max(zone->zone_start_pfn, spfn);
1299			if (out_epfn)
1300				*out_epfn = min(zone_end_pfn(zone), epfn);
1301
1302			return;
1303		}
1304
1305		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1306				 &memblock.memory, &memblock.reserved,
1307				 &spa, &epa, &nid);
1308	}
1309
1310	/* signal end of iteration */
1311	if (out_spfn)
1312		*out_spfn = ULONG_MAX;
1313	if (out_epfn)
1314		*out_epfn = 0;
1315}
1316
1317#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1318
1319/**
1320 * memblock_alloc_range_nid - allocate boot memory block
1321 * @size: size of memory block to be allocated in bytes
1322 * @align: alignment of the region and block's size
1323 * @start: the lower bound of the memory region to allocate (phys address)
1324 * @end: the upper bound of the memory region to allocate (phys address)
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 
1326 *
1327 * The allocation is performed from memory region limited by
1328 * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1329 *
1330 * If the specified node can not hold the requested memory the
1331 * allocation falls back to any node in the system
1332 *
1333 * For systems with memory mirroring, the allocation is attempted first
1334 * from the regions with mirroring enabled and then retried from any
1335 * memory region.
1336 *
1337 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1338 * allocated boot memory block, so that it is never reported as leaks.
1339 *
1340 * Return:
1341 * Physical address of allocated memory block on success, %0 on failure.
1342 */
1343static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1344					phys_addr_t align, phys_addr_t start,
1345					phys_addr_t end, int nid)
 
1346{
1347	enum memblock_flags flags = choose_memblock_flags();
1348	phys_addr_t found;
1349
1350	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1351		nid = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
1352
1353	if (!align) {
1354		/* Can't use WARNs this early in boot on powerpc */
1355		dump_stack();
1356		align = SMP_CACHE_BYTES;
1357	}
1358
1359again:
1360	found = memblock_find_in_range_node(size, align, start, end, nid,
1361					    flags);
1362	if (found && !memblock_reserve(found, size))
1363		goto done;
1364
1365	if (nid != NUMA_NO_NODE) {
1366		found = memblock_find_in_range_node(size, align, start,
1367						    end, NUMA_NO_NODE,
1368						    flags);
1369		if (found && !memblock_reserve(found, size))
1370			goto done;
1371	}
1372
1373	if (flags & MEMBLOCK_MIRROR) {
1374		flags &= ~MEMBLOCK_MIRROR;
1375		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1376			&size);
1377		goto again;
1378	}
1379
1380	return 0;
1381
1382done:
1383	/* Skip kmemleak for kasan_init() due to high volume. */
1384	if (end != MEMBLOCK_ALLOC_KASAN)
 
 
 
1385		/*
1386		 * The min_count is set to 0 so that memblock allocated
1387		 * blocks are never reported as leaks. This is because many
1388		 * of these blocks are only referred via the physical
1389		 * address which is not looked up by kmemleak.
1390		 */
1391		kmemleak_alloc_phys(found, size, 0, 0);
 
 
 
 
 
 
 
 
 
1392
1393	return found;
1394}
1395
1396/**
1397 * memblock_phys_alloc_range - allocate a memory block inside specified range
1398 * @size: size of memory block to be allocated in bytes
1399 * @align: alignment of the region and block's size
1400 * @start: the lower bound of the memory region to allocate (physical address)
1401 * @end: the upper bound of the memory region to allocate (physical address)
1402 *
1403 * Allocate @size bytes in the between @start and @end.
1404 *
1405 * Return: physical address of the allocated memory block on success,
1406 * %0 on failure.
1407 */
1408phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1409					     phys_addr_t align,
1410					     phys_addr_t start,
1411					     phys_addr_t end)
1412{
1413	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
 
 
 
 
1414}
1415
1416/**
1417 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1418 * @size: size of memory block to be allocated in bytes
1419 * @align: alignment of the region and block's size
1420 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1421 *
1422 * Allocates memory block from the specified NUMA node. If the node
1423 * has no available memory, attempts to allocated from any node in the
1424 * system.
1425 *
1426 * Return: physical address of the allocated memory block on success,
1427 * %0 on failure.
1428 */
1429phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1430{
1431	return memblock_alloc_range_nid(size, align, 0,
1432					MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1433}
1434
1435/**
1436 * memblock_alloc_internal - allocate boot memory block
1437 * @size: size of memory block to be allocated in bytes
1438 * @align: alignment of the region and block's size
1439 * @min_addr: the lower bound of the memory region to allocate (phys address)
1440 * @max_addr: the upper bound of the memory region to allocate (phys address)
1441 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 
1442 *
1443 * Allocates memory block using memblock_alloc_range_nid() and
1444 * converts the returned physical address to virtual.
1445 *
1446 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1447 * will fall back to memory below @min_addr. Other constraints, such
1448 * as node and mirrored memory will be handled again in
1449 * memblock_alloc_range_nid().
1450 *
1451 * Return:
1452 * Virtual address of allocated memory block on success, NULL on failure.
1453 */
1454static void * __init memblock_alloc_internal(
1455				phys_addr_t size, phys_addr_t align,
1456				phys_addr_t min_addr, phys_addr_t max_addr,
1457				int nid)
1458{
1459	phys_addr_t alloc;
1460
1461	/*
1462	 * Detect any accidental use of these APIs after slab is ready, as at
1463	 * this moment memblock may be deinitialized already and its
1464	 * internal data may be destroyed (after execution of memblock_free_all)
1465	 */
1466	if (WARN_ON_ONCE(slab_is_available()))
1467		return kzalloc_node(size, GFP_NOWAIT, nid);
1468
1469	if (max_addr > memblock.current_limit)
1470		max_addr = memblock.current_limit;
1471
1472	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid);
 
1473
1474	/* retry allocation without lower limit */
1475	if (!alloc && min_addr)
1476		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid);
 
1477
1478	if (!alloc)
1479		return NULL;
1480
1481	return phys_to_virt(alloc);
1482}
1483
1484/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1485 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1486 * memory and without panicking
1487 * @size: size of memory block to be allocated in bytes
1488 * @align: alignment of the region and block's size
1489 * @min_addr: the lower bound of the memory region from where the allocation
1490 *	  is preferred (phys address)
1491 * @max_addr: the upper bound of the memory region from where the allocation
1492 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1493 *	      allocate only from memory limited by memblock.current_limit value
1494 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1495 *
1496 * Public function, provides additional debug information (including caller
1497 * info), if enabled. Does not zero allocated memory, does not panic if request
1498 * cannot be satisfied.
1499 *
1500 * Return:
1501 * Virtual address of allocated memory block on success, NULL on failure.
1502 */
1503void * __init memblock_alloc_try_nid_raw(
1504			phys_addr_t size, phys_addr_t align,
1505			phys_addr_t min_addr, phys_addr_t max_addr,
1506			int nid)
1507{
1508	void *ptr;
1509
1510	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1511		     __func__, (u64)size, (u64)align, nid, &min_addr,
1512		     &max_addr, (void *)_RET_IP_);
1513
1514	ptr = memblock_alloc_internal(size, align,
1515					   min_addr, max_addr, nid);
1516	if (ptr && size > 0)
1517		page_init_poison(ptr, size);
1518
1519	return ptr;
1520}
1521
1522/**
1523 * memblock_alloc_try_nid - allocate boot memory block
1524 * @size: size of memory block to be allocated in bytes
1525 * @align: alignment of the region and block's size
1526 * @min_addr: the lower bound of the memory region from where the allocation
1527 *	  is preferred (phys address)
1528 * @max_addr: the upper bound of the memory region from where the allocation
1529 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1530 *	      allocate only from memory limited by memblock.current_limit value
1531 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1532 *
1533 * Public function, provides additional debug information (including caller
1534 * info), if enabled. This function zeroes the allocated memory.
1535 *
1536 * Return:
1537 * Virtual address of allocated memory block on success, NULL on failure.
1538 */
1539void * __init memblock_alloc_try_nid(
1540			phys_addr_t size, phys_addr_t align,
1541			phys_addr_t min_addr, phys_addr_t max_addr,
1542			int nid)
1543{
1544	void *ptr;
1545
1546	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1547		     __func__, (u64)size, (u64)align, nid, &min_addr,
1548		     &max_addr, (void *)_RET_IP_);
1549	ptr = memblock_alloc_internal(size, align,
1550					   min_addr, max_addr, nid);
1551	if (ptr)
1552		memset(ptr, 0, size);
1553
1554	return ptr;
1555}
1556
1557/**
1558 * __memblock_free_late - free pages directly to buddy allocator
1559 * @base: phys starting address of the  boot memory block
1560 * @size: size of the boot memory block in bytes
1561 *
1562 * This is only useful when the memblock allocator has already been torn
1563 * down, but we are still initializing the system.  Pages are released directly
1564 * to the buddy allocator.
1565 */
1566void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1567{
1568	phys_addr_t cursor, end;
1569
1570	end = base + size - 1;
1571	memblock_dbg("%s: [%pa-%pa] %pS\n",
1572		     __func__, &base, &end, (void *)_RET_IP_);
1573	kmemleak_free_part_phys(base, size);
1574	cursor = PFN_UP(base);
1575	end = PFN_DOWN(base + size);
1576
1577	for (; cursor < end; cursor++) {
1578		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1579		totalram_pages_inc();
1580	}
1581}
1582
1583/*
1584 * Remaining API functions
1585 */
1586
1587phys_addr_t __init_memblock memblock_phys_mem_size(void)
1588{
1589	return memblock.memory.total_size;
1590}
1591
1592phys_addr_t __init_memblock memblock_reserved_size(void)
1593{
1594	return memblock.reserved.total_size;
1595}
1596
1597phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
 
 
 
 
 
 
 
 
 
 
 
 
1598{
1599	unsigned long pages = 0;
1600	struct memblock_region *r;
1601	unsigned long start_pfn, end_pfn;
1602
1603	for_each_memblock(memory, r) {
1604		start_pfn = memblock_region_memory_base_pfn(r);
1605		end_pfn = memblock_region_memory_end_pfn(r);
1606		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1607		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1608		pages += end_pfn - start_pfn;
1609	}
1610
1611	return PFN_PHYS(pages);
1612}
1613
1614/* lowest address */
1615phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1616{
1617	return memblock.memory.regions[0].base;
1618}
1619
1620phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1621{
1622	int idx = memblock.memory.cnt - 1;
1623
1624	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1625}
1626
1627static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1628{
1629	phys_addr_t max_addr = PHYS_ADDR_MAX;
1630	struct memblock_region *r;
1631
1632	/*
1633	 * translate the memory @limit size into the max address within one of
1634	 * the memory memblock regions, if the @limit exceeds the total size
1635	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1636	 */
1637	for_each_memblock(memory, r) {
1638		if (limit <= r->size) {
1639			max_addr = r->base + limit;
1640			break;
1641		}
1642		limit -= r->size;
1643	}
1644
1645	return max_addr;
1646}
1647
1648void __init memblock_enforce_memory_limit(phys_addr_t limit)
1649{
1650	phys_addr_t max_addr = PHYS_ADDR_MAX;
1651
1652	if (!limit)
1653		return;
1654
1655	max_addr = __find_max_addr(limit);
1656
1657	/* @limit exceeds the total size of the memory, do nothing */
1658	if (max_addr == PHYS_ADDR_MAX)
1659		return;
1660
1661	/* truncate both memory and reserved regions */
1662	memblock_remove_range(&memblock.memory, max_addr,
1663			      PHYS_ADDR_MAX);
1664	memblock_remove_range(&memblock.reserved, max_addr,
1665			      PHYS_ADDR_MAX);
1666}
1667
1668void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1669{
1670	int start_rgn, end_rgn;
1671	int i, ret;
1672
1673	if (!size)
1674		return;
1675
 
 
 
 
 
1676	ret = memblock_isolate_range(&memblock.memory, base, size,
1677						&start_rgn, &end_rgn);
1678	if (ret)
1679		return;
1680
1681	/* remove all the MAP regions */
1682	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1683		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1684			memblock_remove_region(&memblock.memory, i);
1685
1686	for (i = start_rgn - 1; i >= 0; i--)
1687		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1688			memblock_remove_region(&memblock.memory, i);
1689
1690	/* truncate the reserved regions */
1691	memblock_remove_range(&memblock.reserved, 0, base);
1692	memblock_remove_range(&memblock.reserved,
1693			base + size, PHYS_ADDR_MAX);
1694}
1695
1696void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1697{
1698	phys_addr_t max_addr;
1699
1700	if (!limit)
1701		return;
1702
1703	max_addr = __find_max_addr(limit);
1704
1705	/* @limit exceeds the total size of the memory, do nothing */
1706	if (max_addr == PHYS_ADDR_MAX)
1707		return;
1708
1709	memblock_cap_memory_range(0, max_addr);
1710}
1711
1712static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1713{
1714	unsigned int left = 0, right = type->cnt;
1715
1716	do {
1717		unsigned int mid = (right + left) / 2;
1718
1719		if (addr < type->regions[mid].base)
1720			right = mid;
1721		else if (addr >= (type->regions[mid].base +
1722				  type->regions[mid].size))
1723			left = mid + 1;
1724		else
1725			return mid;
1726	} while (left < right);
1727	return -1;
1728}
1729
1730bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1731{
1732	return memblock_search(&memblock.reserved, addr) != -1;
1733}
1734
1735bool __init_memblock memblock_is_memory(phys_addr_t addr)
1736{
1737	return memblock_search(&memblock.memory, addr) != -1;
1738}
1739
1740bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1741{
1742	int i = memblock_search(&memblock.memory, addr);
1743
1744	if (i == -1)
1745		return false;
1746	return !memblock_is_nomap(&memblock.memory.regions[i]);
1747}
1748
1749#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1750int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1751			 unsigned long *start_pfn, unsigned long *end_pfn)
1752{
1753	struct memblock_type *type = &memblock.memory;
1754	int mid = memblock_search(type, PFN_PHYS(pfn));
1755
1756	if (mid == -1)
1757		return -1;
1758
1759	*start_pfn = PFN_DOWN(type->regions[mid].base);
1760	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1761
1762	return type->regions[mid].nid;
1763}
1764#endif
1765
1766/**
1767 * memblock_is_region_memory - check if a region is a subset of memory
1768 * @base: base of region to check
1769 * @size: size of region to check
1770 *
1771 * Check if the region [@base, @base + @size) is a subset of a memory block.
1772 *
1773 * Return:
1774 * 0 if false, non-zero if true
1775 */
1776bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1777{
1778	int idx = memblock_search(&memblock.memory, base);
1779	phys_addr_t end = base + memblock_cap_size(base, &size);
1780
1781	if (idx == -1)
1782		return false;
1783	return (memblock.memory.regions[idx].base +
1784		 memblock.memory.regions[idx].size) >= end;
1785}
1786
1787/**
1788 * memblock_is_region_reserved - check if a region intersects reserved memory
1789 * @base: base of region to check
1790 * @size: size of region to check
1791 *
1792 * Check if the region [@base, @base + @size) intersects a reserved
1793 * memory block.
1794 *
1795 * Return:
1796 * True if they intersect, false if not.
1797 */
1798bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1799{
1800	memblock_cap_size(base, &size);
1801	return memblock_overlaps_region(&memblock.reserved, base, size);
1802}
1803
1804void __init_memblock memblock_trim_memory(phys_addr_t align)
1805{
1806	phys_addr_t start, end, orig_start, orig_end;
1807	struct memblock_region *r;
1808
1809	for_each_memblock(memory, r) {
1810		orig_start = r->base;
1811		orig_end = r->base + r->size;
1812		start = round_up(orig_start, align);
1813		end = round_down(orig_end, align);
1814
1815		if (start == orig_start && end == orig_end)
1816			continue;
1817
1818		if (start < end) {
1819			r->base = start;
1820			r->size = end - start;
1821		} else {
1822			memblock_remove_region(&memblock.memory,
1823					       r - memblock.memory.regions);
1824			r--;
1825		}
1826	}
1827}
1828
1829void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1830{
1831	memblock.current_limit = limit;
1832}
1833
1834phys_addr_t __init_memblock memblock_get_current_limit(void)
1835{
1836	return memblock.current_limit;
1837}
1838
1839static void __init_memblock memblock_dump(struct memblock_type *type)
1840{
1841	phys_addr_t base, end, size;
1842	enum memblock_flags flags;
1843	int idx;
1844	struct memblock_region *rgn;
1845
1846	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1847
1848	for_each_memblock_type(idx, type, rgn) {
1849		char nid_buf[32] = "";
1850
1851		base = rgn->base;
1852		size = rgn->size;
1853		end = base + size - 1;
1854		flags = rgn->flags;
1855#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1856		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1857			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1858				 memblock_get_region_node(rgn));
1859#endif
1860		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1861			type->name, idx, &base, &end, &size, nid_buf, flags);
1862	}
1863}
1864
1865void __init_memblock __memblock_dump_all(void)
1866{
1867	pr_info("MEMBLOCK configuration:\n");
1868	pr_info(" memory size = %pa reserved size = %pa\n",
1869		&memblock.memory.total_size,
1870		&memblock.reserved.total_size);
1871
1872	memblock_dump(&memblock.memory);
1873	memblock_dump(&memblock.reserved);
1874#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1875	memblock_dump(&memblock.physmem);
1876#endif
1877}
1878
 
 
 
 
 
 
1879void __init memblock_allow_resize(void)
1880{
1881	memblock_can_resize = 1;
1882}
1883
1884static int __init early_memblock(char *p)
1885{
1886	if (p && strstr(p, "debug"))
1887		memblock_debug = 1;
1888	return 0;
1889}
1890early_param("memblock", early_memblock);
1891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892static void __init __free_pages_memory(unsigned long start, unsigned long end)
1893{
1894	int order;
1895
1896	while (start < end) {
1897		order = min(MAX_ORDER - 1UL, __ffs(start));
 
 
 
 
 
 
 
 
 
 
1898
1899		while (start + (1UL << order) > end)
1900			order--;
1901
1902		memblock_free_pages(pfn_to_page(start), start, order);
1903
1904		start += (1UL << order);
1905	}
1906}
1907
1908static unsigned long __init __free_memory_core(phys_addr_t start,
1909				 phys_addr_t end)
1910{
1911	unsigned long start_pfn = PFN_UP(start);
1912	unsigned long end_pfn = min_t(unsigned long,
1913				      PFN_DOWN(end), max_low_pfn);
1914
1915	if (start_pfn >= end_pfn)
1916		return 0;
1917
1918	__free_pages_memory(start_pfn, end_pfn);
1919
1920	return end_pfn - start_pfn;
1921}
1922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923static unsigned long __init free_low_memory_core_early(void)
1924{
1925	unsigned long count = 0;
1926	phys_addr_t start, end;
1927	u64 i;
1928
1929	memblock_clear_hotplug(0, -1);
1930
1931	for_each_reserved_mem_region(i, &start, &end)
1932		reserve_bootmem_region(start, end);
1933
1934	/*
1935	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1936	 *  because in some case like Node0 doesn't have RAM installed
1937	 *  low ram will be on Node1
1938	 */
1939	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1940				NULL)
1941		count += __free_memory_core(start, end);
1942
1943	return count;
1944}
1945
1946static int reset_managed_pages_done __initdata;
1947
1948void reset_node_managed_pages(pg_data_t *pgdat)
1949{
1950	struct zone *z;
1951
1952	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1953		atomic_long_set(&z->managed_pages, 0);
1954}
1955
1956void __init reset_all_zones_managed_pages(void)
1957{
1958	struct pglist_data *pgdat;
1959
1960	if (reset_managed_pages_done)
1961		return;
1962
1963	for_each_online_pgdat(pgdat)
1964		reset_node_managed_pages(pgdat);
1965
1966	reset_managed_pages_done = 1;
1967}
1968
1969/**
1970 * memblock_free_all - release free pages to the buddy allocator
1971 *
1972 * Return: the number of pages actually released.
1973 */
1974unsigned long __init memblock_free_all(void)
1975{
1976	unsigned long pages;
1977
 
1978	reset_all_zones_managed_pages();
1979
1980	pages = free_low_memory_core_early();
1981	totalram_pages_add(pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1982
1983	return pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1984}
 
1985
1986#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
 
 
 
 
 
 
 
1987
1988static int memblock_debug_show(struct seq_file *m, void *private)
1989{
1990	struct memblock_type *type = m->private;
1991	struct memblock_region *reg;
1992	int i;
 
1993	phys_addr_t end;
1994
1995	for (i = 0; i < type->cnt; i++) {
1996		reg = &type->regions[i];
1997		end = reg->base + reg->size - 1;
 
1998
1999		seq_printf(m, "%4d: ", i);
2000		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001	}
2002	return 0;
2003}
2004DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2005
2006static int __init memblock_init_debugfs(void)
2007{
2008	struct dentry *root = debugfs_create_dir("memblock", NULL);
2009
2010	debugfs_create_file("memory", 0444, root,
2011			    &memblock.memory, &memblock_debug_fops);
2012	debugfs_create_file("reserved", 0444, root,
2013			    &memblock.reserved, &memblock_debug_fops);
2014#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2015	debugfs_create_file("physmem", 0444, root,
2016			    &memblock.physmem, &memblock_debug_fops);
2017#endif
2018
2019	return 0;
2020}
2021__initcall(memblock_init_debugfs);
2022
2023#endif /* CONFIG_DEBUG_FS */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.	June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS			128
  26#define INIT_PHYSMEM_REGIONS			4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
  30#endif
  31
  32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
  33#define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
  34#endif
  35
  36/**
  37 * DOC: memblock overview
  38 *
  39 * Memblock is a method of managing memory regions during the early
  40 * boot period when the usual kernel memory allocators are not up and
  41 * running.
  42 *
  43 * Memblock views the system memory as collections of contiguous
  44 * regions. There are several types of these collections:
  45 *
  46 * * ``memory`` - describes the physical memory available to the
  47 *   kernel; this may differ from the actual physical memory installed
  48 *   in the system, for instance when the memory is restricted with
  49 *   ``mem=`` command line parameter
  50 * * ``reserved`` - describes the regions that were allocated
  51 * * ``physmem`` - describes the actual physical memory available during
  52 *   boot regardless of the possible restrictions and memory hot(un)plug;
  53 *   the ``physmem`` type is only available on some architectures.
  54 *
  55 * Each region is represented by struct memblock_region that
  56 * defines the region extents, its attributes and NUMA node id on NUMA
  57 * systems. Every memory type is described by the struct memblock_type
  58 * which contains an array of memory regions along with
  59 * the allocator metadata. The "memory" and "reserved" types are nicely
  60 * wrapped with struct memblock. This structure is statically
  61 * initialized at build time. The region arrays are initially sized to
  62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
  63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
  64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
  65 * The memblock_allow_resize() enables automatic resizing of the region
  66 * arrays during addition of new regions. This feature should be used
  67 * with care so that memory allocated for the region array will not
  68 * overlap with areas that should be reserved, for example initrd.
  69 *
  70 * The early architecture setup should tell memblock what the physical
  71 * memory layout is by using memblock_add() or memblock_add_node()
  72 * functions. The first function does not assign the region to a NUMA
  73 * node and it is appropriate for UMA systems. Yet, it is possible to
  74 * use it on NUMA systems as well and assign the region to a NUMA node
  75 * later in the setup process using memblock_set_node(). The
  76 * memblock_add_node() performs such an assignment directly.
 
  77 *
  78 * Once memblock is setup the memory can be allocated using one of the
  79 * API variants:
  80 *
  81 * * memblock_phys_alloc*() - these functions return the **physical**
  82 *   address of the allocated memory
  83 * * memblock_alloc*() - these functions return the **virtual** address
  84 *   of the allocated memory.
  85 *
  86 * Note, that both API variants use implicit assumptions about allowed
  87 * memory ranges and the fallback methods. Consult the documentation
  88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
  89 * functions for more elaborate description.
 
  90 *
  91 * As the system boot progresses, the architecture specific mem_init()
  92 * function frees all the memory to the buddy page allocator.
 
  93 *
  94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  95 * memblock data structures (except "physmem") will be discarded after the
  96 * system initialization completes.
  97 */
  98
  99#ifndef CONFIG_NUMA
 100struct pglist_data __refdata contig_page_data;
 101EXPORT_SYMBOL(contig_page_data);
 102#endif
 103
 104unsigned long max_low_pfn;
 105unsigned long min_low_pfn;
 106unsigned long max_pfn;
 107unsigned long long max_possible_pfn;
 108
 109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
 110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
 113#endif
 114
 115struct memblock memblock __initdata_memblock = {
 116	.memory.regions		= memblock_memory_init_regions,
 117	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
 
 118	.memory.name		= "memory",
 119
 120	.reserved.regions	= memblock_reserved_init_regions,
 
 121	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
 122	.reserved.name		= "reserved",
 123
 
 
 
 
 
 
 
 124	.bottom_up		= false,
 125	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 126};
 127
 128#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 129struct memblock_type physmem = {
 130	.regions		= memblock_physmem_init_regions,
 131	.max			= INIT_PHYSMEM_REGIONS,
 132	.name			= "physmem",
 133};
 134#endif
 135
 136/*
 137 * keep a pointer to &memblock.memory in the text section to use it in
 138 * __next_mem_range() and its helpers.
 139 *  For architectures that do not keep memblock data after init, this
 140 * pointer will be reset to NULL at memblock_discard()
 141 */
 142static __refdata struct memblock_type *memblock_memory = &memblock.memory;
 143
 144#define for_each_memblock_type(i, memblock_type, rgn)			\
 145	for (i = 0, rgn = &memblock_type->regions[0];			\
 146	     i < memblock_type->cnt;					\
 147	     i++, rgn = &memblock_type->regions[i])
 148
 149#define memblock_dbg(fmt, ...)						\
 150	do {								\
 151		if (memblock_debug)					\
 152			pr_info(fmt, ##__VA_ARGS__);			\
 153	} while (0)
 154
 155static int memblock_debug __initdata_memblock;
 156static bool system_has_some_mirror __initdata_memblock;
 157static int memblock_can_resize __initdata_memblock;
 158static int memblock_memory_in_slab __initdata_memblock;
 159static int memblock_reserved_in_slab __initdata_memblock;
 160
 161bool __init_memblock memblock_has_mirror(void)
 162{
 163	return system_has_some_mirror;
 164}
 165
 166static enum memblock_flags __init_memblock choose_memblock_flags(void)
 167{
 168	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 169}
 170
 171/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 172static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 173{
 174	return *size = min(*size, PHYS_ADDR_MAX - base);
 175}
 176
 177/*
 178 * Address comparison utilities
 179 */
 180unsigned long __init_memblock
 181memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
 182		       phys_addr_t size2)
 183{
 184	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 185}
 186
 187bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 188					phys_addr_t base, phys_addr_t size)
 189{
 190	unsigned long i;
 191
 192	memblock_cap_size(base, &size);
 193
 194	for (i = 0; i < type->cnt; i++)
 195		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 196					   type->regions[i].size))
 197			return true;
 198	return false;
 199}
 200
 201/**
 202 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 203 * @start: start of candidate range
 204 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 205 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 206 * @size: size of free area to find
 207 * @align: alignment of free area to find
 208 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 209 * @flags: pick from blocks based on memory attributes
 210 *
 211 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 212 *
 213 * Return:
 214 * Found address on success, 0 on failure.
 215 */
 216static phys_addr_t __init_memblock
 217__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 218				phys_addr_t size, phys_addr_t align, int nid,
 219				enum memblock_flags flags)
 220{
 221	phys_addr_t this_start, this_end, cand;
 222	u64 i;
 223
 224	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 225		this_start = clamp(this_start, start, end);
 226		this_end = clamp(this_end, start, end);
 227
 228		cand = round_up(this_start, align);
 229		if (cand < this_end && this_end - cand >= size)
 230			return cand;
 231	}
 232
 233	return 0;
 234}
 235
 236/**
 237 * __memblock_find_range_top_down - find free area utility, in top-down
 238 * @start: start of candidate range
 239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 240 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 241 * @size: size of free area to find
 242 * @align: alignment of free area to find
 243 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 244 * @flags: pick from blocks based on memory attributes
 245 *
 246 * Utility called from memblock_find_in_range_node(), find free area top-down.
 247 *
 248 * Return:
 249 * Found address on success, 0 on failure.
 250 */
 251static phys_addr_t __init_memblock
 252__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 253			       phys_addr_t size, phys_addr_t align, int nid,
 254			       enum memblock_flags flags)
 255{
 256	phys_addr_t this_start, this_end, cand;
 257	u64 i;
 258
 259	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 260					NULL) {
 261		this_start = clamp(this_start, start, end);
 262		this_end = clamp(this_end, start, end);
 263
 264		if (this_end < size)
 265			continue;
 266
 267		cand = round_down(this_end - size, align);
 268		if (cand >= this_start)
 269			return cand;
 270	}
 271
 272	return 0;
 273}
 274
 275/**
 276 * memblock_find_in_range_node - find free area in given range and node
 277 * @size: size of free area to find
 278 * @align: alignment of free area to find
 279 * @start: start of candidate range
 280 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 281 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 282 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 283 * @flags: pick from blocks based on memory attributes
 284 *
 285 * Find @size free area aligned to @align in the specified range and node.
 286 *
 
 
 
 
 
 
 
 
 287 * Return:
 288 * Found address on success, 0 on failure.
 289 */
 290static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 291					phys_addr_t align, phys_addr_t start,
 292					phys_addr_t end, int nid,
 293					enum memblock_flags flags)
 294{
 
 
 295	/* pump up @end */
 296	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 297	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
 298		end = memblock.current_limit;
 299
 300	/* avoid allocating the first page */
 301	start = max_t(phys_addr_t, start, PAGE_SIZE);
 302	end = max(start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 303
 304	if (memblock_bottom_up())
 305		return __memblock_find_range_bottom_up(start, end, size, align,
 306						       nid, flags);
 307	else
 308		return __memblock_find_range_top_down(start, end, size, align,
 309						      nid, flags);
 310}
 311
 312/**
 313 * memblock_find_in_range - find free area in given range
 314 * @start: start of candidate range
 315 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 316 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 317 * @size: size of free area to find
 318 * @align: alignment of free area to find
 319 *
 320 * Find @size free area aligned to @align in the specified range.
 321 *
 322 * Return:
 323 * Found address on success, 0 on failure.
 324 */
 325static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 326					phys_addr_t end, phys_addr_t size,
 327					phys_addr_t align)
 328{
 329	phys_addr_t ret;
 330	enum memblock_flags flags = choose_memblock_flags();
 331
 332again:
 333	ret = memblock_find_in_range_node(size, align, start, end,
 334					    NUMA_NO_NODE, flags);
 335
 336	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 337		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
 338			&size);
 339		flags &= ~MEMBLOCK_MIRROR;
 340		goto again;
 341	}
 342
 343	return ret;
 344}
 345
 346static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 347{
 348	type->total_size -= type->regions[r].size;
 349	memmove(&type->regions[r], &type->regions[r + 1],
 350		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 351	type->cnt--;
 352
 353	/* Special case for empty arrays */
 354	if (type->cnt == 0) {
 355		WARN_ON(type->total_size != 0);
 
 356		type->regions[0].base = 0;
 357		type->regions[0].size = 0;
 358		type->regions[0].flags = 0;
 359		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 360	}
 361}
 362
 363#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 364/**
 365 * memblock_discard - discard memory and reserved arrays if they were allocated
 366 */
 367void __init memblock_discard(void)
 368{
 369	phys_addr_t addr, size;
 370
 371	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 372		addr = __pa(memblock.reserved.regions);
 373		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 374				  memblock.reserved.max);
 375		if (memblock_reserved_in_slab)
 376			kfree(memblock.reserved.regions);
 377		else
 378			memblock_free_late(addr, size);
 379	}
 380
 381	if (memblock.memory.regions != memblock_memory_init_regions) {
 382		addr = __pa(memblock.memory.regions);
 383		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 384				  memblock.memory.max);
 385		if (memblock_memory_in_slab)
 386			kfree(memblock.memory.regions);
 387		else
 388			memblock_free_late(addr, size);
 389	}
 390
 391	memblock_memory = NULL;
 392}
 393#endif
 394
 395/**
 396 * memblock_double_array - double the size of the memblock regions array
 397 * @type: memblock type of the regions array being doubled
 398 * @new_area_start: starting address of memory range to avoid overlap with
 399 * @new_area_size: size of memory range to avoid overlap with
 400 *
 401 * Double the size of the @type regions array. If memblock is being used to
 402 * allocate memory for a new reserved regions array and there is a previously
 403 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 404 * waiting to be reserved, ensure the memory used by the new array does
 405 * not overlap.
 406 *
 407 * Return:
 408 * 0 on success, -1 on failure.
 409 */
 410static int __init_memblock memblock_double_array(struct memblock_type *type,
 411						phys_addr_t new_area_start,
 412						phys_addr_t new_area_size)
 413{
 414	struct memblock_region *new_array, *old_array;
 415	phys_addr_t old_alloc_size, new_alloc_size;
 416	phys_addr_t old_size, new_size, addr, new_end;
 417	int use_slab = slab_is_available();
 418	int *in_slab;
 419
 420	/* We don't allow resizing until we know about the reserved regions
 421	 * of memory that aren't suitable for allocation
 422	 */
 423	if (!memblock_can_resize)
 424		panic("memblock: cannot resize %s array\n", type->name);
 425
 426	/* Calculate new doubled size */
 427	old_size = type->max * sizeof(struct memblock_region);
 428	new_size = old_size << 1;
 429	/*
 430	 * We need to allocated new one align to PAGE_SIZE,
 431	 *   so we can free them completely later.
 432	 */
 433	old_alloc_size = PAGE_ALIGN(old_size);
 434	new_alloc_size = PAGE_ALIGN(new_size);
 435
 436	/* Retrieve the slab flag */
 437	if (type == &memblock.memory)
 438		in_slab = &memblock_memory_in_slab;
 439	else
 440		in_slab = &memblock_reserved_in_slab;
 441
 442	/* Try to find some space for it */
 443	if (use_slab) {
 444		new_array = kmalloc(new_size, GFP_KERNEL);
 445		addr = new_array ? __pa(new_array) : 0;
 446	} else {
 447		/* only exclude range when trying to double reserved.regions */
 448		if (type != &memblock.reserved)
 449			new_area_start = new_area_size = 0;
 450
 451		addr = memblock_find_in_range(new_area_start + new_area_size,
 452						memblock.current_limit,
 453						new_alloc_size, PAGE_SIZE);
 454		if (!addr && new_area_size)
 455			addr = memblock_find_in_range(0,
 456				min(new_area_start, memblock.current_limit),
 457				new_alloc_size, PAGE_SIZE);
 458
 459		new_array = addr ? __va(addr) : NULL;
 460	}
 461	if (!addr) {
 462		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 463		       type->name, type->max, type->max * 2);
 464		return -1;
 465	}
 466
 467	new_end = addr + new_size - 1;
 468	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 469			type->name, type->max * 2, &addr, &new_end);
 470
 471	/*
 472	 * Found space, we now need to move the array over before we add the
 473	 * reserved region since it may be our reserved array itself that is
 474	 * full.
 475	 */
 476	memcpy(new_array, type->regions, old_size);
 477	memset(new_array + type->max, 0, old_size);
 478	old_array = type->regions;
 479	type->regions = new_array;
 480	type->max <<= 1;
 481
 482	/* Free old array. We needn't free it if the array is the static one */
 483	if (*in_slab)
 484		kfree(old_array);
 485	else if (old_array != memblock_memory_init_regions &&
 486		 old_array != memblock_reserved_init_regions)
 487		memblock_free(old_array, old_alloc_size);
 488
 489	/*
 490	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 491	 * needn't do it
 492	 */
 493	if (!use_slab)
 494		BUG_ON(memblock_reserve(addr, new_alloc_size));
 495
 496	/* Update slab flag */
 497	*in_slab = use_slab;
 498
 499	return 0;
 500}
 501
 502/**
 503 * memblock_merge_regions - merge neighboring compatible regions
 504 * @type: memblock type to scan
 505 * @start_rgn: start scanning from (@start_rgn - 1)
 506 * @end_rgn: end scanning at (@end_rgn - 1)
 507 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
 508 */
 509static void __init_memblock memblock_merge_regions(struct memblock_type *type,
 510						   unsigned long start_rgn,
 511						   unsigned long end_rgn)
 512{
 513	int i = 0;
 514	if (start_rgn)
 515		i = start_rgn - 1;
 516	end_rgn = min(end_rgn, type->cnt - 1);
 517	while (i < end_rgn) {
 518		struct memblock_region *this = &type->regions[i];
 519		struct memblock_region *next = &type->regions[i + 1];
 520
 521		if (this->base + this->size != next->base ||
 522		    memblock_get_region_node(this) !=
 523		    memblock_get_region_node(next) ||
 524		    this->flags != next->flags) {
 525			BUG_ON(this->base + this->size > next->base);
 526			i++;
 527			continue;
 528		}
 529
 530		this->size += next->size;
 531		/* move forward from next + 1, index of which is i + 2 */
 532		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 533		type->cnt--;
 534		end_rgn--;
 535	}
 536}
 537
 538/**
 539 * memblock_insert_region - insert new memblock region
 540 * @type:	memblock type to insert into
 541 * @idx:	index for the insertion point
 542 * @base:	base address of the new region
 543 * @size:	size of the new region
 544 * @nid:	node id of the new region
 545 * @flags:	flags of the new region
 546 *
 547 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 548 * @type must already have extra room to accommodate the new region.
 549 */
 550static void __init_memblock memblock_insert_region(struct memblock_type *type,
 551						   int idx, phys_addr_t base,
 552						   phys_addr_t size,
 553						   int nid,
 554						   enum memblock_flags flags)
 555{
 556	struct memblock_region *rgn = &type->regions[idx];
 557
 558	BUG_ON(type->cnt >= type->max);
 559	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 560	rgn->base = base;
 561	rgn->size = size;
 562	rgn->flags = flags;
 563	memblock_set_region_node(rgn, nid);
 564	type->cnt++;
 565	type->total_size += size;
 566}
 567
 568/**
 569 * memblock_add_range - add new memblock region
 570 * @type: memblock type to add new region into
 571 * @base: base address of the new region
 572 * @size: size of the new region
 573 * @nid: nid of the new region
 574 * @flags: flags of the new region
 575 *
 576 * Add new memblock region [@base, @base + @size) into @type.  The new region
 577 * is allowed to overlap with existing ones - overlaps don't affect already
 578 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 579 * compatible regions are merged) after the addition.
 580 *
 581 * Return:
 582 * 0 on success, -errno on failure.
 583 */
 584static int __init_memblock memblock_add_range(struct memblock_type *type,
 585				phys_addr_t base, phys_addr_t size,
 586				int nid, enum memblock_flags flags)
 587{
 588	bool insert = false;
 589	phys_addr_t obase = base;
 590	phys_addr_t end = base + memblock_cap_size(base, &size);
 591	int idx, nr_new, start_rgn = -1, end_rgn;
 592	struct memblock_region *rgn;
 593
 594	if (!size)
 595		return 0;
 596
 597	/* special case for empty array */
 598	if (type->regions[0].size == 0) {
 599		WARN_ON(type->cnt != 0 || type->total_size);
 600		type->regions[0].base = base;
 601		type->regions[0].size = size;
 602		type->regions[0].flags = flags;
 603		memblock_set_region_node(&type->regions[0], nid);
 604		type->total_size = size;
 605		type->cnt = 1;
 606		return 0;
 607	}
 608
 609	/*
 610	 * The worst case is when new range overlaps all existing regions,
 611	 * then we'll need type->cnt + 1 empty regions in @type. So if
 612	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
 613	 * that there is enough empty regions in @type, and we can insert
 614	 * regions directly.
 615	 */
 616	if (type->cnt * 2 + 1 <= type->max)
 617		insert = true;
 618
 619repeat:
 620	/*
 621	 * The following is executed twice.  Once with %false @insert and
 622	 * then with %true.  The first counts the number of regions needed
 623	 * to accommodate the new area.  The second actually inserts them.
 624	 */
 625	base = obase;
 626	nr_new = 0;
 627
 628	for_each_memblock_type(idx, type, rgn) {
 629		phys_addr_t rbase = rgn->base;
 630		phys_addr_t rend = rbase + rgn->size;
 631
 632		if (rbase >= end)
 633			break;
 634		if (rend <= base)
 635			continue;
 636		/*
 637		 * @rgn overlaps.  If it separates the lower part of new
 638		 * area, insert that portion.
 639		 */
 640		if (rbase > base) {
 641#ifdef CONFIG_NUMA
 642			WARN_ON(nid != memblock_get_region_node(rgn));
 643#endif
 644			WARN_ON(flags != rgn->flags);
 645			nr_new++;
 646			if (insert) {
 647				if (start_rgn == -1)
 648					start_rgn = idx;
 649				end_rgn = idx + 1;
 650				memblock_insert_region(type, idx++, base,
 651						       rbase - base, nid,
 652						       flags);
 653			}
 654		}
 655		/* area below @rend is dealt with, forget about it */
 656		base = min(rend, end);
 657	}
 658
 659	/* insert the remaining portion */
 660	if (base < end) {
 661		nr_new++;
 662		if (insert) {
 663			if (start_rgn == -1)
 664				start_rgn = idx;
 665			end_rgn = idx + 1;
 666			memblock_insert_region(type, idx, base, end - base,
 667					       nid, flags);
 668		}
 669	}
 670
 671	if (!nr_new)
 672		return 0;
 673
 674	/*
 675	 * If this was the first round, resize array and repeat for actual
 676	 * insertions; otherwise, merge and return.
 677	 */
 678	if (!insert) {
 679		while (type->cnt + nr_new > type->max)
 680			if (memblock_double_array(type, obase, size) < 0)
 681				return -ENOMEM;
 682		insert = true;
 683		goto repeat;
 684	} else {
 685		memblock_merge_regions(type, start_rgn, end_rgn);
 686		return 0;
 687	}
 688}
 689
 690/**
 691 * memblock_add_node - add new memblock region within a NUMA node
 692 * @base: base address of the new region
 693 * @size: size of the new region
 694 * @nid: nid of the new region
 695 * @flags: flags of the new region
 696 *
 697 * Add new memblock region [@base, @base + @size) to the "memory"
 698 * type. See memblock_add_range() description for mode details
 699 *
 700 * Return:
 701 * 0 on success, -errno on failure.
 702 */
 703int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 704				      int nid, enum memblock_flags flags)
 705{
 706	phys_addr_t end = base + size - 1;
 707
 708	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
 709		     &base, &end, nid, flags, (void *)_RET_IP_);
 710
 711	return memblock_add_range(&memblock.memory, base, size, nid, flags);
 712}
 713
 714/**
 715 * memblock_add - add new memblock region
 716 * @base: base address of the new region
 717 * @size: size of the new region
 718 *
 719 * Add new memblock region [@base, @base + @size) to the "memory"
 720 * type. See memblock_add_range() description for mode details
 721 *
 722 * Return:
 723 * 0 on success, -errno on failure.
 724 */
 725int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 726{
 727	phys_addr_t end = base + size - 1;
 728
 729	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 730		     &base, &end, (void *)_RET_IP_);
 731
 732	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 733}
 734
 735/**
 736 * memblock_validate_numa_coverage - check if amount of memory with
 737 * no node ID assigned is less than a threshold
 738 * @threshold_bytes: maximal memory size that can have unassigned node
 739 * ID (in bytes).
 740 *
 741 * A buggy firmware may report memory that does not belong to any node.
 742 * Check if amount of such memory is below @threshold_bytes.
 743 *
 744 * Return: true on success, false on failure.
 745 */
 746bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
 747{
 748	unsigned long nr_pages = 0;
 749	unsigned long start_pfn, end_pfn, mem_size_mb;
 750	int nid, i;
 751
 752	/* calculate lose page */
 753	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 754		if (!numa_valid_node(nid))
 755			nr_pages += end_pfn - start_pfn;
 756	}
 757
 758	if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
 759		mem_size_mb = memblock_phys_mem_size() >> 20;
 760		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
 761		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
 762		return false;
 763	}
 764
 765	return true;
 766}
 767
 768
 769/**
 770 * memblock_isolate_range - isolate given range into disjoint memblocks
 771 * @type: memblock type to isolate range for
 772 * @base: base of range to isolate
 773 * @size: size of range to isolate
 774 * @start_rgn: out parameter for the start of isolated region
 775 * @end_rgn: out parameter for the end of isolated region
 776 *
 777 * Walk @type and ensure that regions don't cross the boundaries defined by
 778 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 779 * which may create at most two more regions.  The index of the first
 780 * region inside the range is returned in *@start_rgn and the index of the
 781 * first region after the range is returned in *@end_rgn.
 782 *
 783 * Return:
 784 * 0 on success, -errno on failure.
 785 */
 786static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 787					phys_addr_t base, phys_addr_t size,
 788					int *start_rgn, int *end_rgn)
 789{
 790	phys_addr_t end = base + memblock_cap_size(base, &size);
 791	int idx;
 792	struct memblock_region *rgn;
 793
 794	*start_rgn = *end_rgn = 0;
 795
 796	if (!size)
 797		return 0;
 798
 799	/* we'll create at most two more regions */
 800	while (type->cnt + 2 > type->max)
 801		if (memblock_double_array(type, base, size) < 0)
 802			return -ENOMEM;
 803
 804	for_each_memblock_type(idx, type, rgn) {
 805		phys_addr_t rbase = rgn->base;
 806		phys_addr_t rend = rbase + rgn->size;
 807
 808		if (rbase >= end)
 809			break;
 810		if (rend <= base)
 811			continue;
 812
 813		if (rbase < base) {
 814			/*
 815			 * @rgn intersects from below.  Split and continue
 816			 * to process the next region - the new top half.
 817			 */
 818			rgn->base = base;
 819			rgn->size -= base - rbase;
 820			type->total_size -= base - rbase;
 821			memblock_insert_region(type, idx, rbase, base - rbase,
 822					       memblock_get_region_node(rgn),
 823					       rgn->flags);
 824		} else if (rend > end) {
 825			/*
 826			 * @rgn intersects from above.  Split and redo the
 827			 * current region - the new bottom half.
 828			 */
 829			rgn->base = end;
 830			rgn->size -= end - rbase;
 831			type->total_size -= end - rbase;
 832			memblock_insert_region(type, idx--, rbase, end - rbase,
 833					       memblock_get_region_node(rgn),
 834					       rgn->flags);
 835		} else {
 836			/* @rgn is fully contained, record it */
 837			if (!*end_rgn)
 838				*start_rgn = idx;
 839			*end_rgn = idx + 1;
 840		}
 841	}
 842
 843	return 0;
 844}
 845
 846static int __init_memblock memblock_remove_range(struct memblock_type *type,
 847					  phys_addr_t base, phys_addr_t size)
 848{
 849	int start_rgn, end_rgn;
 850	int i, ret;
 851
 852	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 853	if (ret)
 854		return ret;
 855
 856	for (i = end_rgn - 1; i >= start_rgn; i--)
 857		memblock_remove_region(type, i);
 858	return 0;
 859}
 860
 861int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 862{
 863	phys_addr_t end = base + size - 1;
 864
 865	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 866		     &base, &end, (void *)_RET_IP_);
 867
 868	return memblock_remove_range(&memblock.memory, base, size);
 869}
 870
 871/**
 872 * memblock_free - free boot memory allocation
 873 * @ptr: starting address of the  boot memory allocation
 874 * @size: size of the boot memory block in bytes
 875 *
 876 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 877 * The freeing memory will not be released to the buddy allocator.
 878 */
 879void __init_memblock memblock_free(void *ptr, size_t size)
 880{
 881	if (ptr)
 882		memblock_phys_free(__pa(ptr), size);
 883}
 884
 885/**
 886 * memblock_phys_free - free boot memory block
 887 * @base: phys starting address of the  boot memory block
 888 * @size: size of the boot memory block in bytes
 889 *
 890 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
 891 * The freeing memory will not be released to the buddy allocator.
 892 */
 893int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
 894{
 895	phys_addr_t end = base + size - 1;
 896
 897	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 898		     &base, &end, (void *)_RET_IP_);
 899
 900	kmemleak_free_part_phys(base, size);
 901	return memblock_remove_range(&memblock.reserved, base, size);
 902}
 903
 904int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 905{
 906	phys_addr_t end = base + size - 1;
 907
 908	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 909		     &base, &end, (void *)_RET_IP_);
 910
 911	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 912}
 913
 914#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 915int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
 916{
 917	phys_addr_t end = base + size - 1;
 918
 919	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 920		     &base, &end, (void *)_RET_IP_);
 921
 922	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
 923}
 924#endif
 925
 926/**
 927 * memblock_setclr_flag - set or clear flag for a memory region
 928 * @type: memblock type to set/clear flag for
 929 * @base: base address of the region
 930 * @size: size of the region
 931 * @set: set or clear the flag
 932 * @flag: the flag to update
 933 *
 934 * This function isolates region [@base, @base + @size), and sets/clears flag
 935 *
 936 * Return: 0 on success, -errno on failure.
 937 */
 938static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
 939				phys_addr_t base, phys_addr_t size, int set, int flag)
 940{
 
 941	int i, ret, start_rgn, end_rgn;
 942
 943	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 944	if (ret)
 945		return ret;
 946
 947	for (i = start_rgn; i < end_rgn; i++) {
 948		struct memblock_region *r = &type->regions[i];
 949
 950		if (set)
 951			r->flags |= flag;
 952		else
 953			r->flags &= ~flag;
 954	}
 955
 956	memblock_merge_regions(type, start_rgn, end_rgn);
 957	return 0;
 958}
 959
 960/**
 961 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 962 * @base: the base phys addr of the region
 963 * @size: the size of the region
 964 *
 965 * Return: 0 on success, -errno on failure.
 966 */
 967int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 968{
 969	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
 970}
 971
 972/**
 973 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 974 * @base: the base phys addr of the region
 975 * @size: the size of the region
 976 *
 977 * Return: 0 on success, -errno on failure.
 978 */
 979int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 980{
 981	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
 982}
 983
 984/**
 985 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 986 * @base: the base phys addr of the region
 987 * @size: the size of the region
 988 *
 989 * Return: 0 on success, -errno on failure.
 990 */
 991int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 992{
 993	if (!mirrored_kernelcore)
 994		return 0;
 995
 996	system_has_some_mirror = true;
 997
 998	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
 999}
1000
1001/**
1002 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1003 * @base: the base phys addr of the region
1004 * @size: the size of the region
1005 *
1006 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1007 * direct mapping of the physical memory. These regions will still be
1008 * covered by the memory map. The struct page representing NOMAP memory
1009 * frames in the memory map will be PageReserved()
1010 *
1011 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1012 * memblock, the caller must inform kmemleak to ignore that memory
1013 *
1014 * Return: 0 on success, -errno on failure.
1015 */
1016int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1017{
1018	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1019}
1020
1021/**
1022 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1023 * @base: the base phys addr of the region
1024 * @size: the size of the region
1025 *
1026 * Return: 0 on success, -errno on failure.
1027 */
1028int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1029{
1030	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1031}
1032
1033/**
1034 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1035 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1036 * for this region.
1037 * @base: the base phys addr of the region
1038 * @size: the size of the region
1039 *
1040 * struct pages will not be initialized for reserved memory regions marked with
1041 * %MEMBLOCK_RSRV_NOINIT.
1042 *
1043 * Return: 0 on success, -errno on failure.
1044 */
1045int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
 
 
1046{
1047	return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1048				    MEMBLOCK_RSRV_NOINIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049}
1050
1051static bool should_skip_region(struct memblock_type *type,
1052			       struct memblock_region *m,
1053			       int nid, int flags)
1054{
1055	int m_nid = memblock_get_region_node(m);
1056
1057	/* we never skip regions when iterating memblock.reserved or physmem */
1058	if (type != memblock_memory)
1059		return false;
1060
1061	/* only memory regions are associated with nodes, check it */
1062	if (numa_valid_node(nid) && nid != m_nid)
1063		return true;
1064
1065	/* skip hotpluggable memory regions if needed */
1066	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1067	    !(flags & MEMBLOCK_HOTPLUG))
1068		return true;
1069
1070	/* if we want mirror memory skip non-mirror memory regions */
1071	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1072		return true;
1073
1074	/* skip nomap memory unless we were asked for it explicitly */
1075	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1076		return true;
1077
1078	/* skip driver-managed memory unless we were asked for it explicitly */
1079	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1080		return true;
1081
1082	return false;
1083}
1084
1085/**
1086 * __next_mem_range - next function for for_each_free_mem_range() etc.
1087 * @idx: pointer to u64 loop variable
1088 * @nid: node selector, %NUMA_NO_NODE for all nodes
1089 * @flags: pick from blocks based on memory attributes
1090 * @type_a: pointer to memblock_type from where the range is taken
1091 * @type_b: pointer to memblock_type which excludes memory from being taken
1092 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1093 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1094 * @out_nid: ptr to int for nid of the range, can be %NULL
1095 *
1096 * Find the first area from *@idx which matches @nid, fill the out
1097 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1098 * *@idx contains index into type_a and the upper 32bit indexes the
1099 * areas before each region in type_b.	For example, if type_b regions
1100 * look like the following,
1101 *
1102 *	0:[0-16), 1:[32-48), 2:[128-130)
1103 *
1104 * The upper 32bit indexes the following regions.
1105 *
1106 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1107 *
1108 * As both region arrays are sorted, the function advances the two indices
1109 * in lockstep and returns each intersection.
1110 */
1111void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1112		      struct memblock_type *type_a,
1113		      struct memblock_type *type_b, phys_addr_t *out_start,
1114		      phys_addr_t *out_end, int *out_nid)
 
 
1115{
1116	int idx_a = *idx & 0xffffffff;
1117	int idx_b = *idx >> 32;
1118
 
 
 
 
1119	for (; idx_a < type_a->cnt; idx_a++) {
1120		struct memblock_region *m = &type_a->regions[idx_a];
1121
1122		phys_addr_t m_start = m->base;
1123		phys_addr_t m_end = m->base + m->size;
1124		int	    m_nid = memblock_get_region_node(m);
1125
1126		if (should_skip_region(type_a, m, nid, flags))
1127			continue;
1128
1129		if (!type_b) {
1130			if (out_start)
1131				*out_start = m_start;
1132			if (out_end)
1133				*out_end = m_end;
1134			if (out_nid)
1135				*out_nid = m_nid;
1136			idx_a++;
1137			*idx = (u32)idx_a | (u64)idx_b << 32;
1138			return;
1139		}
1140
1141		/* scan areas before each reservation */
1142		for (; idx_b < type_b->cnt + 1; idx_b++) {
1143			struct memblock_region *r;
1144			phys_addr_t r_start;
1145			phys_addr_t r_end;
1146
1147			r = &type_b->regions[idx_b];
1148			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1149			r_end = idx_b < type_b->cnt ?
1150				r->base : PHYS_ADDR_MAX;
1151
1152			/*
1153			 * if idx_b advanced past idx_a,
1154			 * break out to advance idx_a
1155			 */
1156			if (r_start >= m_end)
1157				break;
1158			/* if the two regions intersect, we're done */
1159			if (m_start < r_end) {
1160				if (out_start)
1161					*out_start =
1162						max(m_start, r_start);
1163				if (out_end)
1164					*out_end = min(m_end, r_end);
1165				if (out_nid)
1166					*out_nid = m_nid;
1167				/*
1168				 * The region which ends first is
1169				 * advanced for the next iteration.
1170				 */
1171				if (m_end <= r_end)
1172					idx_a++;
1173				else
1174					idx_b++;
1175				*idx = (u32)idx_a | (u64)idx_b << 32;
1176				return;
1177			}
1178		}
1179	}
1180
1181	/* signal end of iteration */
1182	*idx = ULLONG_MAX;
1183}
1184
1185/**
1186 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1187 *
1188 * @idx: pointer to u64 loop variable
1189 * @nid: node selector, %NUMA_NO_NODE for all nodes
1190 * @flags: pick from blocks based on memory attributes
1191 * @type_a: pointer to memblock_type from where the range is taken
1192 * @type_b: pointer to memblock_type which excludes memory from being taken
1193 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1194 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1195 * @out_nid: ptr to int for nid of the range, can be %NULL
1196 *
1197 * Finds the next range from type_a which is not marked as unsuitable
1198 * in type_b.
1199 *
1200 * Reverse of __next_mem_range().
1201 */
1202void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1203					  enum memblock_flags flags,
1204					  struct memblock_type *type_a,
1205					  struct memblock_type *type_b,
1206					  phys_addr_t *out_start,
1207					  phys_addr_t *out_end, int *out_nid)
1208{
1209	int idx_a = *idx & 0xffffffff;
1210	int idx_b = *idx >> 32;
1211
 
 
 
1212	if (*idx == (u64)ULLONG_MAX) {
1213		idx_a = type_a->cnt - 1;
1214		if (type_b != NULL)
1215			idx_b = type_b->cnt;
1216		else
1217			idx_b = 0;
1218	}
1219
1220	for (; idx_a >= 0; idx_a--) {
1221		struct memblock_region *m = &type_a->regions[idx_a];
1222
1223		phys_addr_t m_start = m->base;
1224		phys_addr_t m_end = m->base + m->size;
1225		int m_nid = memblock_get_region_node(m);
1226
1227		if (should_skip_region(type_a, m, nid, flags))
1228			continue;
1229
1230		if (!type_b) {
1231			if (out_start)
1232				*out_start = m_start;
1233			if (out_end)
1234				*out_end = m_end;
1235			if (out_nid)
1236				*out_nid = m_nid;
1237			idx_a--;
1238			*idx = (u32)idx_a | (u64)idx_b << 32;
1239			return;
1240		}
1241
1242		/* scan areas before each reservation */
1243		for (; idx_b >= 0; idx_b--) {
1244			struct memblock_region *r;
1245			phys_addr_t r_start;
1246			phys_addr_t r_end;
1247
1248			r = &type_b->regions[idx_b];
1249			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1250			r_end = idx_b < type_b->cnt ?
1251				r->base : PHYS_ADDR_MAX;
1252			/*
1253			 * if idx_b advanced past idx_a,
1254			 * break out to advance idx_a
1255			 */
1256
1257			if (r_end <= m_start)
1258				break;
1259			/* if the two regions intersect, we're done */
1260			if (m_end > r_start) {
1261				if (out_start)
1262					*out_start = max(m_start, r_start);
1263				if (out_end)
1264					*out_end = min(m_end, r_end);
1265				if (out_nid)
1266					*out_nid = m_nid;
1267				if (m_start >= r_start)
1268					idx_a--;
1269				else
1270					idx_b--;
1271				*idx = (u32)idx_a | (u64)idx_b << 32;
1272				return;
1273			}
1274		}
1275	}
1276	/* signal end of iteration */
1277	*idx = ULLONG_MAX;
1278}
1279
 
1280/*
1281 * Common iterator interface used to define for_each_mem_pfn_range().
1282 */
1283void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1284				unsigned long *out_start_pfn,
1285				unsigned long *out_end_pfn, int *out_nid)
1286{
1287	struct memblock_type *type = &memblock.memory;
1288	struct memblock_region *r;
1289	int r_nid;
1290
1291	while (++*idx < type->cnt) {
1292		r = &type->regions[*idx];
1293		r_nid = memblock_get_region_node(r);
1294
1295		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1296			continue;
1297		if (!numa_valid_node(nid) || nid == r_nid)
1298			break;
1299	}
1300	if (*idx >= type->cnt) {
1301		*idx = -1;
1302		return;
1303	}
1304
1305	if (out_start_pfn)
1306		*out_start_pfn = PFN_UP(r->base);
1307	if (out_end_pfn)
1308		*out_end_pfn = PFN_DOWN(r->base + r->size);
1309	if (out_nid)
1310		*out_nid = r_nid;
1311}
1312
1313/**
1314 * memblock_set_node - set node ID on memblock regions
1315 * @base: base of area to set node ID for
1316 * @size: size of area to set node ID for
1317 * @type: memblock type to set node ID for
1318 * @nid: node ID to set
1319 *
1320 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1321 * Regions which cross the area boundaries are split as necessary.
1322 *
1323 * Return:
1324 * 0 on success, -errno on failure.
1325 */
1326int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1327				      struct memblock_type *type, int nid)
1328{
1329#ifdef CONFIG_NUMA
1330	int start_rgn, end_rgn;
1331	int i, ret;
1332
1333	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1334	if (ret)
1335		return ret;
1336
1337	for (i = start_rgn; i < end_rgn; i++)
1338		memblock_set_region_node(&type->regions[i], nid);
1339
1340	memblock_merge_regions(type, start_rgn, end_rgn);
1341#endif
1342	return 0;
1343}
1344
1345#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1346/**
1347 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1348 *
1349 * @idx: pointer to u64 loop variable
1350 * @zone: zone in which all of the memory blocks reside
1351 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1352 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1353 *
1354 * This function is meant to be a zone/pfn specific wrapper for the
1355 * for_each_mem_range type iterators. Specifically they are used in the
1356 * deferred memory init routines and as such we were duplicating much of
1357 * this logic throughout the code. So instead of having it in multiple
1358 * locations it seemed like it would make more sense to centralize this to
1359 * one new iterator that does everything they need.
1360 */
1361void __init_memblock
1362__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1363			     unsigned long *out_spfn, unsigned long *out_epfn)
1364{
1365	int zone_nid = zone_to_nid(zone);
1366	phys_addr_t spa, epa;
 
1367
1368	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1369			 &memblock.memory, &memblock.reserved,
1370			 &spa, &epa, NULL);
1371
1372	while (*idx != U64_MAX) {
1373		unsigned long epfn = PFN_DOWN(epa);
1374		unsigned long spfn = PFN_UP(spa);
1375
1376		/*
1377		 * Verify the end is at least past the start of the zone and
1378		 * that we have at least one PFN to initialize.
1379		 */
1380		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1381			/* if we went too far just stop searching */
1382			if (zone_end_pfn(zone) <= spfn) {
1383				*idx = U64_MAX;
1384				break;
1385			}
1386
1387			if (out_spfn)
1388				*out_spfn = max(zone->zone_start_pfn, spfn);
1389			if (out_epfn)
1390				*out_epfn = min(zone_end_pfn(zone), epfn);
1391
1392			return;
1393		}
1394
1395		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1396				 &memblock.memory, &memblock.reserved,
1397				 &spa, &epa, NULL);
1398	}
1399
1400	/* signal end of iteration */
1401	if (out_spfn)
1402		*out_spfn = ULONG_MAX;
1403	if (out_epfn)
1404		*out_epfn = 0;
1405}
1406
1407#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1408
1409/**
1410 * memblock_alloc_range_nid - allocate boot memory block
1411 * @size: size of memory block to be allocated in bytes
1412 * @align: alignment of the region and block's size
1413 * @start: the lower bound of the memory region to allocate (phys address)
1414 * @end: the upper bound of the memory region to allocate (phys address)
1415 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1416 * @exact_nid: control the allocation fall back to other nodes
1417 *
1418 * The allocation is performed from memory region limited by
1419 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1420 *
1421 * If the specified node can not hold the requested memory and @exact_nid
1422 * is false, the allocation falls back to any node in the system.
1423 *
1424 * For systems with memory mirroring, the allocation is attempted first
1425 * from the regions with mirroring enabled and then retried from any
1426 * memory region.
1427 *
1428 * In addition, function using kmemleak_alloc_phys for allocated boot
1429 * memory block, it is never reported as leaks.
1430 *
1431 * Return:
1432 * Physical address of allocated memory block on success, %0 on failure.
1433 */
1434phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1435					phys_addr_t align, phys_addr_t start,
1436					phys_addr_t end, int nid,
1437					bool exact_nid)
1438{
1439	enum memblock_flags flags = choose_memblock_flags();
1440	phys_addr_t found;
1441
1442	/*
1443	 * Detect any accidental use of these APIs after slab is ready, as at
1444	 * this moment memblock may be deinitialized already and its
1445	 * internal data may be destroyed (after execution of memblock_free_all)
1446	 */
1447	if (WARN_ON_ONCE(slab_is_available())) {
1448		void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
1449
1450		return vaddr ? virt_to_phys(vaddr) : 0;
1451	}
1452
1453	if (!align) {
1454		/* Can't use WARNs this early in boot on powerpc */
1455		dump_stack();
1456		align = SMP_CACHE_BYTES;
1457	}
1458
1459again:
1460	found = memblock_find_in_range_node(size, align, start, end, nid,
1461					    flags);
1462	if (found && !memblock_reserve(found, size))
1463		goto done;
1464
1465	if (numa_valid_node(nid) && !exact_nid) {
1466		found = memblock_find_in_range_node(size, align, start,
1467						    end, NUMA_NO_NODE,
1468						    flags);
1469		if (found && !memblock_reserve(found, size))
1470			goto done;
1471	}
1472
1473	if (flags & MEMBLOCK_MIRROR) {
1474		flags &= ~MEMBLOCK_MIRROR;
1475		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1476			&size);
1477		goto again;
1478	}
1479
1480	return 0;
1481
1482done:
1483	/*
1484	 * Skip kmemleak for those places like kasan_init() and
1485	 * early_pgtable_alloc() due to high volume.
1486	 */
1487	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1488		/*
1489		 * Memblock allocated blocks are never reported as
1490		 * leaks. This is because many of these blocks are
1491		 * only referred via the physical address which is
1492		 * not looked up by kmemleak.
1493		 */
1494		kmemleak_alloc_phys(found, size, 0);
1495
1496	/*
1497	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1498	 * require memory to be accepted before it can be used by the
1499	 * guest.
1500	 *
1501	 * Accept the memory of the allocated buffer.
1502	 */
1503	accept_memory(found, size);
1504
1505	return found;
1506}
1507
1508/**
1509 * memblock_phys_alloc_range - allocate a memory block inside specified range
1510 * @size: size of memory block to be allocated in bytes
1511 * @align: alignment of the region and block's size
1512 * @start: the lower bound of the memory region to allocate (physical address)
1513 * @end: the upper bound of the memory region to allocate (physical address)
1514 *
1515 * Allocate @size bytes in the between @start and @end.
1516 *
1517 * Return: physical address of the allocated memory block on success,
1518 * %0 on failure.
1519 */
1520phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1521					     phys_addr_t align,
1522					     phys_addr_t start,
1523					     phys_addr_t end)
1524{
1525	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1526		     __func__, (u64)size, (u64)align, &start, &end,
1527		     (void *)_RET_IP_);
1528	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1529					false);
1530}
1531
1532/**
1533 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1534 * @size: size of memory block to be allocated in bytes
1535 * @align: alignment of the region and block's size
1536 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1537 *
1538 * Allocates memory block from the specified NUMA node. If the node
1539 * has no available memory, attempts to allocated from any node in the
1540 * system.
1541 *
1542 * Return: physical address of the allocated memory block on success,
1543 * %0 on failure.
1544 */
1545phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1546{
1547	return memblock_alloc_range_nid(size, align, 0,
1548					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1549}
1550
1551/**
1552 * memblock_alloc_internal - allocate boot memory block
1553 * @size: size of memory block to be allocated in bytes
1554 * @align: alignment of the region and block's size
1555 * @min_addr: the lower bound of the memory region to allocate (phys address)
1556 * @max_addr: the upper bound of the memory region to allocate (phys address)
1557 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1558 * @exact_nid: control the allocation fall back to other nodes
1559 *
1560 * Allocates memory block using memblock_alloc_range_nid() and
1561 * converts the returned physical address to virtual.
1562 *
1563 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1564 * will fall back to memory below @min_addr. Other constraints, such
1565 * as node and mirrored memory will be handled again in
1566 * memblock_alloc_range_nid().
1567 *
1568 * Return:
1569 * Virtual address of allocated memory block on success, NULL on failure.
1570 */
1571static void * __init memblock_alloc_internal(
1572				phys_addr_t size, phys_addr_t align,
1573				phys_addr_t min_addr, phys_addr_t max_addr,
1574				int nid, bool exact_nid)
1575{
1576	phys_addr_t alloc;
1577
 
 
 
 
 
 
 
1578
1579	if (max_addr > memblock.current_limit)
1580		max_addr = memblock.current_limit;
1581
1582	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1583					exact_nid);
1584
1585	/* retry allocation without lower limit */
1586	if (!alloc && min_addr)
1587		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1588						exact_nid);
1589
1590	if (!alloc)
1591		return NULL;
1592
1593	return phys_to_virt(alloc);
1594}
1595
1596/**
1597 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1598 * without zeroing memory
1599 * @size: size of memory block to be allocated in bytes
1600 * @align: alignment of the region and block's size
1601 * @min_addr: the lower bound of the memory region from where the allocation
1602 *	  is preferred (phys address)
1603 * @max_addr: the upper bound of the memory region from where the allocation
1604 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1605 *	      allocate only from memory limited by memblock.current_limit value
1606 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1607 *
1608 * Public function, provides additional debug information (including caller
1609 * info), if enabled. Does not zero allocated memory.
1610 *
1611 * Return:
1612 * Virtual address of allocated memory block on success, NULL on failure.
1613 */
1614void * __init memblock_alloc_exact_nid_raw(
1615			phys_addr_t size, phys_addr_t align,
1616			phys_addr_t min_addr, phys_addr_t max_addr,
1617			int nid)
1618{
1619	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1620		     __func__, (u64)size, (u64)align, nid, &min_addr,
1621		     &max_addr, (void *)_RET_IP_);
1622
1623	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1624				       true);
1625}
1626
1627/**
1628 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1629 * memory and without panicking
1630 * @size: size of memory block to be allocated in bytes
1631 * @align: alignment of the region and block's size
1632 * @min_addr: the lower bound of the memory region from where the allocation
1633 *	  is preferred (phys address)
1634 * @max_addr: the upper bound of the memory region from where the allocation
1635 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1636 *	      allocate only from memory limited by memblock.current_limit value
1637 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1638 *
1639 * Public function, provides additional debug information (including caller
1640 * info), if enabled. Does not zero allocated memory, does not panic if request
1641 * cannot be satisfied.
1642 *
1643 * Return:
1644 * Virtual address of allocated memory block on success, NULL on failure.
1645 */
1646void * __init memblock_alloc_try_nid_raw(
1647			phys_addr_t size, phys_addr_t align,
1648			phys_addr_t min_addr, phys_addr_t max_addr,
1649			int nid)
1650{
 
 
1651	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1652		     __func__, (u64)size, (u64)align, nid, &min_addr,
1653		     &max_addr, (void *)_RET_IP_);
1654
1655	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1656				       false);
 
 
 
 
1657}
1658
1659/**
1660 * memblock_alloc_try_nid - allocate boot memory block
1661 * @size: size of memory block to be allocated in bytes
1662 * @align: alignment of the region and block's size
1663 * @min_addr: the lower bound of the memory region from where the allocation
1664 *	  is preferred (phys address)
1665 * @max_addr: the upper bound of the memory region from where the allocation
1666 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1667 *	      allocate only from memory limited by memblock.current_limit value
1668 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1669 *
1670 * Public function, provides additional debug information (including caller
1671 * info), if enabled. This function zeroes the allocated memory.
1672 *
1673 * Return:
1674 * Virtual address of allocated memory block on success, NULL on failure.
1675 */
1676void * __init memblock_alloc_try_nid(
1677			phys_addr_t size, phys_addr_t align,
1678			phys_addr_t min_addr, phys_addr_t max_addr,
1679			int nid)
1680{
1681	void *ptr;
1682
1683	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1684		     __func__, (u64)size, (u64)align, nid, &min_addr,
1685		     &max_addr, (void *)_RET_IP_);
1686	ptr = memblock_alloc_internal(size, align,
1687					   min_addr, max_addr, nid, false);
1688	if (ptr)
1689		memset(ptr, 0, size);
1690
1691	return ptr;
1692}
1693
1694/**
1695 * memblock_free_late - free pages directly to buddy allocator
1696 * @base: phys starting address of the  boot memory block
1697 * @size: size of the boot memory block in bytes
1698 *
1699 * This is only useful when the memblock allocator has already been torn
1700 * down, but we are still initializing the system.  Pages are released directly
1701 * to the buddy allocator.
1702 */
1703void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1704{
1705	phys_addr_t cursor, end;
1706
1707	end = base + size - 1;
1708	memblock_dbg("%s: [%pa-%pa] %pS\n",
1709		     __func__, &base, &end, (void *)_RET_IP_);
1710	kmemleak_free_part_phys(base, size);
1711	cursor = PFN_UP(base);
1712	end = PFN_DOWN(base + size);
1713
1714	for (; cursor < end; cursor++) {
1715		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1716		totalram_pages_inc();
1717	}
1718}
1719
1720/*
1721 * Remaining API functions
1722 */
1723
1724phys_addr_t __init_memblock memblock_phys_mem_size(void)
1725{
1726	return memblock.memory.total_size;
1727}
1728
1729phys_addr_t __init_memblock memblock_reserved_size(void)
1730{
1731	return memblock.reserved.total_size;
1732}
1733
1734/**
1735 * memblock_estimated_nr_free_pages - return estimated number of free pages
1736 * from memblock point of view
1737 *
1738 * During bootup, subsystems might need a rough estimate of the number of free
1739 * pages in the whole system, before precise numbers are available from the
1740 * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers
1741 * obtained from the buddy might be very imprecise during bootup.
1742 *
1743 * Return:
1744 * An estimated number of free pages from memblock point of view.
1745 */
1746unsigned long __init memblock_estimated_nr_free_pages(void)
1747{
1748	return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
 
 
 
 
 
 
 
 
 
 
 
 
1749}
1750
1751/* lowest address */
1752phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1753{
1754	return memblock.memory.regions[0].base;
1755}
1756
1757phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1758{
1759	int idx = memblock.memory.cnt - 1;
1760
1761	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1762}
1763
1764static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1765{
1766	phys_addr_t max_addr = PHYS_ADDR_MAX;
1767	struct memblock_region *r;
1768
1769	/*
1770	 * translate the memory @limit size into the max address within one of
1771	 * the memory memblock regions, if the @limit exceeds the total size
1772	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1773	 */
1774	for_each_mem_region(r) {
1775		if (limit <= r->size) {
1776			max_addr = r->base + limit;
1777			break;
1778		}
1779		limit -= r->size;
1780	}
1781
1782	return max_addr;
1783}
1784
1785void __init memblock_enforce_memory_limit(phys_addr_t limit)
1786{
1787	phys_addr_t max_addr;
1788
1789	if (!limit)
1790		return;
1791
1792	max_addr = __find_max_addr(limit);
1793
1794	/* @limit exceeds the total size of the memory, do nothing */
1795	if (max_addr == PHYS_ADDR_MAX)
1796		return;
1797
1798	/* truncate both memory and reserved regions */
1799	memblock_remove_range(&memblock.memory, max_addr,
1800			      PHYS_ADDR_MAX);
1801	memblock_remove_range(&memblock.reserved, max_addr,
1802			      PHYS_ADDR_MAX);
1803}
1804
1805void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1806{
1807	int start_rgn, end_rgn;
1808	int i, ret;
1809
1810	if (!size)
1811		return;
1812
1813	if (!memblock_memory->total_size) {
1814		pr_warn("%s: No memory registered yet\n", __func__);
1815		return;
1816	}
1817
1818	ret = memblock_isolate_range(&memblock.memory, base, size,
1819						&start_rgn, &end_rgn);
1820	if (ret)
1821		return;
1822
1823	/* remove all the MAP regions */
1824	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1825		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1826			memblock_remove_region(&memblock.memory, i);
1827
1828	for (i = start_rgn - 1; i >= 0; i--)
1829		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1830			memblock_remove_region(&memblock.memory, i);
1831
1832	/* truncate the reserved regions */
1833	memblock_remove_range(&memblock.reserved, 0, base);
1834	memblock_remove_range(&memblock.reserved,
1835			base + size, PHYS_ADDR_MAX);
1836}
1837
1838void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1839{
1840	phys_addr_t max_addr;
1841
1842	if (!limit)
1843		return;
1844
1845	max_addr = __find_max_addr(limit);
1846
1847	/* @limit exceeds the total size of the memory, do nothing */
1848	if (max_addr == PHYS_ADDR_MAX)
1849		return;
1850
1851	memblock_cap_memory_range(0, max_addr);
1852}
1853
1854static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1855{
1856	unsigned int left = 0, right = type->cnt;
1857
1858	do {
1859		unsigned int mid = (right + left) / 2;
1860
1861		if (addr < type->regions[mid].base)
1862			right = mid;
1863		else if (addr >= (type->regions[mid].base +
1864				  type->regions[mid].size))
1865			left = mid + 1;
1866		else
1867			return mid;
1868	} while (left < right);
1869	return -1;
1870}
1871
1872bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1873{
1874	return memblock_search(&memblock.reserved, addr) != -1;
1875}
1876
1877bool __init_memblock memblock_is_memory(phys_addr_t addr)
1878{
1879	return memblock_search(&memblock.memory, addr) != -1;
1880}
1881
1882bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1883{
1884	int i = memblock_search(&memblock.memory, addr);
1885
1886	if (i == -1)
1887		return false;
1888	return !memblock_is_nomap(&memblock.memory.regions[i]);
1889}
1890
 
1891int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1892			 unsigned long *start_pfn, unsigned long *end_pfn)
1893{
1894	struct memblock_type *type = &memblock.memory;
1895	int mid = memblock_search(type, PFN_PHYS(pfn));
1896
1897	if (mid == -1)
1898		return NUMA_NO_NODE;
1899
1900	*start_pfn = PFN_DOWN(type->regions[mid].base);
1901	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1902
1903	return memblock_get_region_node(&type->regions[mid]);
1904}
 
1905
1906/**
1907 * memblock_is_region_memory - check if a region is a subset of memory
1908 * @base: base of region to check
1909 * @size: size of region to check
1910 *
1911 * Check if the region [@base, @base + @size) is a subset of a memory block.
1912 *
1913 * Return:
1914 * 0 if false, non-zero if true
1915 */
1916bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1917{
1918	int idx = memblock_search(&memblock.memory, base);
1919	phys_addr_t end = base + memblock_cap_size(base, &size);
1920
1921	if (idx == -1)
1922		return false;
1923	return (memblock.memory.regions[idx].base +
1924		 memblock.memory.regions[idx].size) >= end;
1925}
1926
1927/**
1928 * memblock_is_region_reserved - check if a region intersects reserved memory
1929 * @base: base of region to check
1930 * @size: size of region to check
1931 *
1932 * Check if the region [@base, @base + @size) intersects a reserved
1933 * memory block.
1934 *
1935 * Return:
1936 * True if they intersect, false if not.
1937 */
1938bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1939{
 
1940	return memblock_overlaps_region(&memblock.reserved, base, size);
1941}
1942
1943void __init_memblock memblock_trim_memory(phys_addr_t align)
1944{
1945	phys_addr_t start, end, orig_start, orig_end;
1946	struct memblock_region *r;
1947
1948	for_each_mem_region(r) {
1949		orig_start = r->base;
1950		orig_end = r->base + r->size;
1951		start = round_up(orig_start, align);
1952		end = round_down(orig_end, align);
1953
1954		if (start == orig_start && end == orig_end)
1955			continue;
1956
1957		if (start < end) {
1958			r->base = start;
1959			r->size = end - start;
1960		} else {
1961			memblock_remove_region(&memblock.memory,
1962					       r - memblock.memory.regions);
1963			r--;
1964		}
1965	}
1966}
1967
1968void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1969{
1970	memblock.current_limit = limit;
1971}
1972
1973phys_addr_t __init_memblock memblock_get_current_limit(void)
1974{
1975	return memblock.current_limit;
1976}
1977
1978static void __init_memblock memblock_dump(struct memblock_type *type)
1979{
1980	phys_addr_t base, end, size;
1981	enum memblock_flags flags;
1982	int idx;
1983	struct memblock_region *rgn;
1984
1985	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1986
1987	for_each_memblock_type(idx, type, rgn) {
1988		char nid_buf[32] = "";
1989
1990		base = rgn->base;
1991		size = rgn->size;
1992		end = base + size - 1;
1993		flags = rgn->flags;
1994#ifdef CONFIG_NUMA
1995		if (numa_valid_node(memblock_get_region_node(rgn)))
1996			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1997				 memblock_get_region_node(rgn));
1998#endif
1999		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
2000			type->name, idx, &base, &end, &size, nid_buf, flags);
2001	}
2002}
2003
2004static void __init_memblock __memblock_dump_all(void)
2005{
2006	pr_info("MEMBLOCK configuration:\n");
2007	pr_info(" memory size = %pa reserved size = %pa\n",
2008		&memblock.memory.total_size,
2009		&memblock.reserved.total_size);
2010
2011	memblock_dump(&memblock.memory);
2012	memblock_dump(&memblock.reserved);
2013#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2014	memblock_dump(&physmem);
2015#endif
2016}
2017
2018void __init_memblock memblock_dump_all(void)
2019{
2020	if (memblock_debug)
2021		__memblock_dump_all();
2022}
2023
2024void __init memblock_allow_resize(void)
2025{
2026	memblock_can_resize = 1;
2027}
2028
2029static int __init early_memblock(char *p)
2030{
2031	if (p && strstr(p, "debug"))
2032		memblock_debug = 1;
2033	return 0;
2034}
2035early_param("memblock", early_memblock);
2036
2037static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2038{
2039	struct page *start_pg, *end_pg;
2040	phys_addr_t pg, pgend;
2041
2042	/*
2043	 * Convert start_pfn/end_pfn to a struct page pointer.
2044	 */
2045	start_pg = pfn_to_page(start_pfn - 1) + 1;
2046	end_pg = pfn_to_page(end_pfn - 1) + 1;
2047
2048	/*
2049	 * Convert to physical addresses, and round start upwards and end
2050	 * downwards.
2051	 */
2052	pg = PAGE_ALIGN(__pa(start_pg));
2053	pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
2054
2055	/*
2056	 * If there are free pages between these, free the section of the
2057	 * memmap array.
2058	 */
2059	if (pg < pgend)
2060		memblock_phys_free(pg, pgend - pg);
2061}
2062
2063/*
2064 * The mem_map array can get very big.  Free the unused area of the memory map.
2065 */
2066static void __init free_unused_memmap(void)
2067{
2068	unsigned long start, end, prev_end = 0;
2069	int i;
2070
2071	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2072	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2073		return;
2074
2075	/*
2076	 * This relies on each bank being in address order.
2077	 * The banks are sorted previously in bootmem_init().
2078	 */
2079	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2080#ifdef CONFIG_SPARSEMEM
2081		/*
2082		 * Take care not to free memmap entries that don't exist
2083		 * due to SPARSEMEM sections which aren't present.
2084		 */
2085		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2086#endif
2087		/*
2088		 * Align down here since many operations in VM subsystem
2089		 * presume that there are no holes in the memory map inside
2090		 * a pageblock
2091		 */
2092		start = pageblock_start_pfn(start);
2093
2094		/*
2095		 * If we had a previous bank, and there is a space
2096		 * between the current bank and the previous, free it.
2097		 */
2098		if (prev_end && prev_end < start)
2099			free_memmap(prev_end, start);
2100
2101		/*
2102		 * Align up here since many operations in VM subsystem
2103		 * presume that there are no holes in the memory map inside
2104		 * a pageblock
2105		 */
2106		prev_end = pageblock_align(end);
2107	}
2108
2109#ifdef CONFIG_SPARSEMEM
2110	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2111		prev_end = pageblock_align(end);
2112		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2113	}
2114#endif
2115}
2116
2117static void __init __free_pages_memory(unsigned long start, unsigned long end)
2118{
2119	int order;
2120
2121	while (start < end) {
2122		/*
2123		 * Free the pages in the largest chunks alignment allows.
2124		 *
2125		 * __ffs() behaviour is undefined for 0. start == 0 is
2126		 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2127		 * the case.
2128		 */
2129		if (start)
2130			order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2131		else
2132			order = MAX_PAGE_ORDER;
2133
2134		while (start + (1UL << order) > end)
2135			order--;
2136
2137		memblock_free_pages(pfn_to_page(start), start, order);
2138
2139		start += (1UL << order);
2140	}
2141}
2142
2143static unsigned long __init __free_memory_core(phys_addr_t start,
2144				 phys_addr_t end)
2145{
2146	unsigned long start_pfn = PFN_UP(start);
2147	unsigned long end_pfn = min_t(unsigned long,
2148				      PFN_DOWN(end), max_low_pfn);
2149
2150	if (start_pfn >= end_pfn)
2151		return 0;
2152
2153	__free_pages_memory(start_pfn, end_pfn);
2154
2155	return end_pfn - start_pfn;
2156}
2157
2158static void __init memmap_init_reserved_pages(void)
2159{
2160	struct memblock_region *region;
2161	phys_addr_t start, end;
2162	int nid;
2163
2164	/*
2165	 * set nid on all reserved pages and also treat struct
2166	 * pages for the NOMAP regions as PageReserved
2167	 */
2168	for_each_mem_region(region) {
2169		nid = memblock_get_region_node(region);
2170		start = region->base;
2171		end = start + region->size;
2172
2173		if (memblock_is_nomap(region))
2174			reserve_bootmem_region(start, end, nid);
2175
2176		memblock_set_node(start, end, &memblock.reserved, nid);
2177	}
2178
2179	/*
2180	 * initialize struct pages for reserved regions that don't have
2181	 * the MEMBLOCK_RSRV_NOINIT flag set
2182	 */
2183	for_each_reserved_mem_region(region) {
2184		if (!memblock_is_reserved_noinit(region)) {
2185			nid = memblock_get_region_node(region);
2186			start = region->base;
2187			end = start + region->size;
2188
2189			if (!numa_valid_node(nid))
2190				nid = early_pfn_to_nid(PFN_DOWN(start));
2191
2192			reserve_bootmem_region(start, end, nid);
2193		}
2194	}
2195}
2196
2197static unsigned long __init free_low_memory_core_early(void)
2198{
2199	unsigned long count = 0;
2200	phys_addr_t start, end;
2201	u64 i;
2202
2203	memblock_clear_hotplug(0, -1);
2204
2205	memmap_init_reserved_pages();
 
2206
2207	/*
2208	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2209	 *  because in some case like Node0 doesn't have RAM installed
2210	 *  low ram will be on Node1
2211	 */
2212	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2213				NULL)
2214		count += __free_memory_core(start, end);
2215
2216	return count;
2217}
2218
2219static int reset_managed_pages_done __initdata;
2220
2221static void __init reset_node_managed_pages(pg_data_t *pgdat)
2222{
2223	struct zone *z;
2224
2225	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2226		atomic_long_set(&z->managed_pages, 0);
2227}
2228
2229void __init reset_all_zones_managed_pages(void)
2230{
2231	struct pglist_data *pgdat;
2232
2233	if (reset_managed_pages_done)
2234		return;
2235
2236	for_each_online_pgdat(pgdat)
2237		reset_node_managed_pages(pgdat);
2238
2239	reset_managed_pages_done = 1;
2240}
2241
2242/**
2243 * memblock_free_all - release free pages to the buddy allocator
 
 
2244 */
2245void __init memblock_free_all(void)
2246{
2247	unsigned long pages;
2248
2249	free_unused_memmap();
2250	reset_all_zones_managed_pages();
2251
2252	pages = free_low_memory_core_early();
2253	totalram_pages_add(pages);
2254}
2255
2256/* Keep a table to reserve named memory */
2257#define RESERVE_MEM_MAX_ENTRIES		8
2258#define RESERVE_MEM_NAME_SIZE		16
2259struct reserve_mem_table {
2260	char			name[RESERVE_MEM_NAME_SIZE];
2261	phys_addr_t		start;
2262	phys_addr_t		size;
2263};
2264static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
2265static int reserved_mem_count;
2266
2267/* Add wildcard region with a lookup name */
2268static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
2269				   const char *name)
2270{
2271	struct reserve_mem_table *map;
2272
2273	map = &reserved_mem_table[reserved_mem_count++];
2274	map->start = start;
2275	map->size = size;
2276	strscpy(map->name, name);
2277}
2278
2279/**
2280 * reserve_mem_find_by_name - Find reserved memory region with a given name
2281 * @name: The name that is attached to a reserved memory region
2282 * @start: If found, holds the start address
2283 * @size: If found, holds the size of the address.
2284 *
2285 * @start and @size are only updated if @name is found.
2286 *
2287 * Returns: 1 if found or 0 if not found.
2288 */
2289int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
2290{
2291	struct reserve_mem_table *map;
2292	int i;
2293
2294	for (i = 0; i < reserved_mem_count; i++) {
2295		map = &reserved_mem_table[i];
2296		if (!map->size)
2297			continue;
2298		if (strcmp(name, map->name) == 0) {
2299			*start = map->start;
2300			*size = map->size;
2301			return 1;
2302		}
2303	}
2304	return 0;
2305}
2306EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
2307
2308/*
2309 * Parse reserve_mem=nn:align:name
2310 */
2311static int __init reserve_mem(char *p)
2312{
2313	phys_addr_t start, size, align, tmp;
2314	char *name;
2315	char *oldp;
2316	int len;
2317
2318	if (!p)
2319		return -EINVAL;
2320
2321	/* Check if there's room for more reserved memory */
2322	if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
2323		return -EBUSY;
2324
2325	oldp = p;
2326	size = memparse(p, &p);
2327	if (!size || p == oldp)
2328		return -EINVAL;
2329
2330	if (*p != ':')
2331		return -EINVAL;
2332
2333	align = memparse(p+1, &p);
2334	if (*p != ':')
2335		return -EINVAL;
2336
2337	/*
2338	 * memblock_phys_alloc() doesn't like a zero size align,
2339	 * but it is OK for this command to have it.
2340	 */
2341	if (align < SMP_CACHE_BYTES)
2342		align = SMP_CACHE_BYTES;
2343
2344	name = p + 1;
2345	len = strlen(name);
2346
2347	/* name needs to have length but not too big */
2348	if (!len || len >= RESERVE_MEM_NAME_SIZE)
2349		return -EINVAL;
2350
2351	/* Make sure that name has text */
2352	for (p = name; *p; p++) {
2353		if (!isspace(*p))
2354			break;
2355	}
2356	if (!*p)
2357		return -EINVAL;
2358
2359	/* Make sure the name is not already used */
2360	if (reserve_mem_find_by_name(name, &start, &tmp))
2361		return -EBUSY;
2362
2363	start = memblock_phys_alloc(size, align);
2364	if (!start)
2365		return -ENOMEM;
2366
2367	reserved_mem_add(start, size, name);
2368
2369	return 1;
2370}
2371__setup("reserve_mem=", reserve_mem);
2372
2373#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2374static const char * const flagname[] = {
2375	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2376	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2377	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2378	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2379	[ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2380};
2381
2382static int memblock_debug_show(struct seq_file *m, void *private)
2383{
2384	struct memblock_type *type = m->private;
2385	struct memblock_region *reg;
2386	int i, j, nid;
2387	unsigned int count = ARRAY_SIZE(flagname);
2388	phys_addr_t end;
2389
2390	for (i = 0; i < type->cnt; i++) {
2391		reg = &type->regions[i];
2392		end = reg->base + reg->size - 1;
2393		nid = memblock_get_region_node(reg);
2394
2395		seq_printf(m, "%4d: ", i);
2396		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2397		if (numa_valid_node(nid))
2398			seq_printf(m, "%4d ", nid);
2399		else
2400			seq_printf(m, "%4c ", 'x');
2401		if (reg->flags) {
2402			for (j = 0; j < count; j++) {
2403				if (reg->flags & (1U << j)) {
2404					seq_printf(m, "%s\n", flagname[j]);
2405					break;
2406				}
2407			}
2408			if (j == count)
2409				seq_printf(m, "%s\n", "UNKNOWN");
2410		} else {
2411			seq_printf(m, "%s\n", "NONE");
2412		}
2413	}
2414	return 0;
2415}
2416DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2417
2418static int __init memblock_init_debugfs(void)
2419{
2420	struct dentry *root = debugfs_create_dir("memblock", NULL);
2421
2422	debugfs_create_file("memory", 0444, root,
2423			    &memblock.memory, &memblock_debug_fops);
2424	debugfs_create_file("reserved", 0444, root,
2425			    &memblock.reserved, &memblock_debug_fops);
2426#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2427	debugfs_create_file("physmem", 0444, root, &physmem,
2428			    &memblock_debug_fops);
2429#endif
2430
2431	return 0;
2432}
2433__initcall(memblock_init_debugfs);
2434
2435#endif /* CONFIG_DEBUG_FS */