Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/init.h>
12#include <linux/bitops.h>
13#include <linux/poison.h>
14#include <linux/pfn.h>
15#include <linux/debugfs.h>
16#include <linux/kmemleak.h>
17#include <linux/seq_file.h>
18#include <linux/memblock.h>
19
20#include <asm/sections.h>
21#include <linux/io.h>
22
23#include "internal.h"
24
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
32/**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmap`` - describes the actual physical memory regardless of
48 * the possible restrictions; the ``physmap`` type is only available
49 * on some architectures.
50 *
51 * Each region is represented by :c:type:`struct memblock_region` that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the :c:type:`struct
54 * memblock_type` which contains an array of memory regions along with
55 * the allocator metadata. The memory types are nicely wrapped with
56 * :c:type:`struct memblock`. This structure is statically initialzed
57 * at build time. The region arrays for the "memory" and "reserved"
58 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
59 * "physmap" type to %INIT_PHYSMEM_REGIONS.
60 * The :c:func:`memblock_allow_resize` enables automatic resizing of
61 * the region arrays during addition of new regions. This feature
62 * should be used with care so that memory allocated for the region
63 * array will not overlap with areas that should be reserved, for
64 * example initrd.
65 *
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using :c:func:`memblock_add` or
68 * :c:func:`memblock_add_node` functions. The first function does not
69 * assign the region to a NUMA node and it is appropriate for UMA
70 * systems. Yet, it is possible to use it on NUMA systems as well and
71 * assign the region to a NUMA node later in the setup process using
72 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
73 * performs such an assignment directly.
74 *
75 * Once memblock is setup the memory can be allocated using one of the
76 * API variants:
77 *
78 * * :c:func:`memblock_phys_alloc*` - these functions return the
79 * **physical** address of the allocated memory
80 * * :c:func:`memblock_alloc*` - these functions return the **virtual**
81 * address of the allocated memory.
82 *
83 * Note, that both API variants use implict assumptions about allowed
84 * memory ranges and the fallback methods. Consult the documentation
85 * of :c:func:`memblock_alloc_internal` and
86 * :c:func:`memblock_alloc_range_nid` functions for more elaboarte
87 * description.
88 *
89 * As the system boot progresses, the architecture specific
90 * :c:func:`mem_init` function frees all the memory to the buddy page
91 * allocator.
92 *
93 * Unless an architecure enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
94 * memblock data structures will be discarded after the system
95 * initialization compltes.
96 */
97
98#ifndef CONFIG_NEED_MULTIPLE_NODES
99struct pglist_data __refdata contig_page_data;
100EXPORT_SYMBOL(contig_page_data);
101#endif
102
103unsigned long max_low_pfn;
104unsigned long min_low_pfn;
105unsigned long max_pfn;
106unsigned long long max_possible_pfn;
107
108static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
109static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
110#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
111static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
112#endif
113
114struct memblock memblock __initdata_memblock = {
115 .memory.regions = memblock_memory_init_regions,
116 .memory.cnt = 1, /* empty dummy entry */
117 .memory.max = INIT_MEMBLOCK_REGIONS,
118 .memory.name = "memory",
119
120 .reserved.regions = memblock_reserved_init_regions,
121 .reserved.cnt = 1, /* empty dummy entry */
122 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
123 .reserved.name = "reserved",
124
125#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
126 .physmem.regions = memblock_physmem_init_regions,
127 .physmem.cnt = 1, /* empty dummy entry */
128 .physmem.max = INIT_PHYSMEM_REGIONS,
129 .physmem.name = "physmem",
130#endif
131
132 .bottom_up = false,
133 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
134};
135
136int memblock_debug __initdata_memblock;
137static bool system_has_some_mirror __initdata_memblock = false;
138static int memblock_can_resize __initdata_memblock;
139static int memblock_memory_in_slab __initdata_memblock = 0;
140static int memblock_reserved_in_slab __initdata_memblock = 0;
141
142static enum memblock_flags __init_memblock choose_memblock_flags(void)
143{
144 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
145}
146
147/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
148static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
149{
150 return *size = min(*size, PHYS_ADDR_MAX - base);
151}
152
153/*
154 * Address comparison utilities
155 */
156static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
157 phys_addr_t base2, phys_addr_t size2)
158{
159 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
160}
161
162bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
163 phys_addr_t base, phys_addr_t size)
164{
165 unsigned long i;
166
167 for (i = 0; i < type->cnt; i++)
168 if (memblock_addrs_overlap(base, size, type->regions[i].base,
169 type->regions[i].size))
170 break;
171 return i < type->cnt;
172}
173
174/**
175 * __memblock_find_range_bottom_up - find free area utility in bottom-up
176 * @start: start of candidate range
177 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
178 * %MEMBLOCK_ALLOC_ACCESSIBLE
179 * @size: size of free area to find
180 * @align: alignment of free area to find
181 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
182 * @flags: pick from blocks based on memory attributes
183 *
184 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
185 *
186 * Return:
187 * Found address on success, 0 on failure.
188 */
189static phys_addr_t __init_memblock
190__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
191 phys_addr_t size, phys_addr_t align, int nid,
192 enum memblock_flags flags)
193{
194 phys_addr_t this_start, this_end, cand;
195 u64 i;
196
197 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
198 this_start = clamp(this_start, start, end);
199 this_end = clamp(this_end, start, end);
200
201 cand = round_up(this_start, align);
202 if (cand < this_end && this_end - cand >= size)
203 return cand;
204 }
205
206 return 0;
207}
208
209/**
210 * __memblock_find_range_top_down - find free area utility, in top-down
211 * @start: start of candidate range
212 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
213 * %MEMBLOCK_ALLOC_ACCESSIBLE
214 * @size: size of free area to find
215 * @align: alignment of free area to find
216 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
217 * @flags: pick from blocks based on memory attributes
218 *
219 * Utility called from memblock_find_in_range_node(), find free area top-down.
220 *
221 * Return:
222 * Found address on success, 0 on failure.
223 */
224static phys_addr_t __init_memblock
225__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
226 phys_addr_t size, phys_addr_t align, int nid,
227 enum memblock_flags flags)
228{
229 phys_addr_t this_start, this_end, cand;
230 u64 i;
231
232 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
233 NULL) {
234 this_start = clamp(this_start, start, end);
235 this_end = clamp(this_end, start, end);
236
237 if (this_end < size)
238 continue;
239
240 cand = round_down(this_end - size, align);
241 if (cand >= this_start)
242 return cand;
243 }
244
245 return 0;
246}
247
248/**
249 * memblock_find_in_range_node - find free area in given range and node
250 * @size: size of free area to find
251 * @align: alignment of free area to find
252 * @start: start of candidate range
253 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
254 * %MEMBLOCK_ALLOC_ACCESSIBLE
255 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
256 * @flags: pick from blocks based on memory attributes
257 *
258 * Find @size free area aligned to @align in the specified range and node.
259 *
260 * When allocation direction is bottom-up, the @start should be greater
261 * than the end of the kernel image. Otherwise, it will be trimmed. The
262 * reason is that we want the bottom-up allocation just near the kernel
263 * image so it is highly likely that the allocated memory and the kernel
264 * will reside in the same node.
265 *
266 * If bottom-up allocation failed, will try to allocate memory top-down.
267 *
268 * Return:
269 * Found address on success, 0 on failure.
270 */
271static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
272 phys_addr_t align, phys_addr_t start,
273 phys_addr_t end, int nid,
274 enum memblock_flags flags)
275{
276 phys_addr_t kernel_end, ret;
277
278 /* pump up @end */
279 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
280 end == MEMBLOCK_ALLOC_KASAN)
281 end = memblock.current_limit;
282
283 /* avoid allocating the first page */
284 start = max_t(phys_addr_t, start, PAGE_SIZE);
285 end = max(start, end);
286 kernel_end = __pa_symbol(_end);
287
288 /*
289 * try bottom-up allocation only when bottom-up mode
290 * is set and @end is above the kernel image.
291 */
292 if (memblock_bottom_up() && end > kernel_end) {
293 phys_addr_t bottom_up_start;
294
295 /* make sure we will allocate above the kernel */
296 bottom_up_start = max(start, kernel_end);
297
298 /* ok, try bottom-up allocation first */
299 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
300 size, align, nid, flags);
301 if (ret)
302 return ret;
303
304 /*
305 * we always limit bottom-up allocation above the kernel,
306 * but top-down allocation doesn't have the limit, so
307 * retrying top-down allocation may succeed when bottom-up
308 * allocation failed.
309 *
310 * bottom-up allocation is expected to be fail very rarely,
311 * so we use WARN_ONCE() here to see the stack trace if
312 * fail happens.
313 */
314 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
315 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
316 }
317
318 return __memblock_find_range_top_down(start, end, size, align, nid,
319 flags);
320}
321
322/**
323 * memblock_find_in_range - find free area in given range
324 * @start: start of candidate range
325 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
326 * %MEMBLOCK_ALLOC_ACCESSIBLE
327 * @size: size of free area to find
328 * @align: alignment of free area to find
329 *
330 * Find @size free area aligned to @align in the specified range.
331 *
332 * Return:
333 * Found address on success, 0 on failure.
334 */
335phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
336 phys_addr_t end, phys_addr_t size,
337 phys_addr_t align)
338{
339 phys_addr_t ret;
340 enum memblock_flags flags = choose_memblock_flags();
341
342again:
343 ret = memblock_find_in_range_node(size, align, start, end,
344 NUMA_NO_NODE, flags);
345
346 if (!ret && (flags & MEMBLOCK_MIRROR)) {
347 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
348 &size);
349 flags &= ~MEMBLOCK_MIRROR;
350 goto again;
351 }
352
353 return ret;
354}
355
356static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
357{
358 type->total_size -= type->regions[r].size;
359 memmove(&type->regions[r], &type->regions[r + 1],
360 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
361 type->cnt--;
362
363 /* Special case for empty arrays */
364 if (type->cnt == 0) {
365 WARN_ON(type->total_size != 0);
366 type->cnt = 1;
367 type->regions[0].base = 0;
368 type->regions[0].size = 0;
369 type->regions[0].flags = 0;
370 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
371 }
372}
373
374#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
375/**
376 * memblock_discard - discard memory and reserved arrays if they were allocated
377 */
378void __init memblock_discard(void)
379{
380 phys_addr_t addr, size;
381
382 if (memblock.reserved.regions != memblock_reserved_init_regions) {
383 addr = __pa(memblock.reserved.regions);
384 size = PAGE_ALIGN(sizeof(struct memblock_region) *
385 memblock.reserved.max);
386 __memblock_free_late(addr, size);
387 }
388
389 if (memblock.memory.regions != memblock_memory_init_regions) {
390 addr = __pa(memblock.memory.regions);
391 size = PAGE_ALIGN(sizeof(struct memblock_region) *
392 memblock.memory.max);
393 __memblock_free_late(addr, size);
394 }
395}
396#endif
397
398/**
399 * memblock_double_array - double the size of the memblock regions array
400 * @type: memblock type of the regions array being doubled
401 * @new_area_start: starting address of memory range to avoid overlap with
402 * @new_area_size: size of memory range to avoid overlap with
403 *
404 * Double the size of the @type regions array. If memblock is being used to
405 * allocate memory for a new reserved regions array and there is a previously
406 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
407 * waiting to be reserved, ensure the memory used by the new array does
408 * not overlap.
409 *
410 * Return:
411 * 0 on success, -1 on failure.
412 */
413static int __init_memblock memblock_double_array(struct memblock_type *type,
414 phys_addr_t new_area_start,
415 phys_addr_t new_area_size)
416{
417 struct memblock_region *new_array, *old_array;
418 phys_addr_t old_alloc_size, new_alloc_size;
419 phys_addr_t old_size, new_size, addr, new_end;
420 int use_slab = slab_is_available();
421 int *in_slab;
422
423 /* We don't allow resizing until we know about the reserved regions
424 * of memory that aren't suitable for allocation
425 */
426 if (!memblock_can_resize)
427 return -1;
428
429 /* Calculate new doubled size */
430 old_size = type->max * sizeof(struct memblock_region);
431 new_size = old_size << 1;
432 /*
433 * We need to allocated new one align to PAGE_SIZE,
434 * so we can free them completely later.
435 */
436 old_alloc_size = PAGE_ALIGN(old_size);
437 new_alloc_size = PAGE_ALIGN(new_size);
438
439 /* Retrieve the slab flag */
440 if (type == &memblock.memory)
441 in_slab = &memblock_memory_in_slab;
442 else
443 in_slab = &memblock_reserved_in_slab;
444
445 /* Try to find some space for it */
446 if (use_slab) {
447 new_array = kmalloc(new_size, GFP_KERNEL);
448 addr = new_array ? __pa(new_array) : 0;
449 } else {
450 /* only exclude range when trying to double reserved.regions */
451 if (type != &memblock.reserved)
452 new_area_start = new_area_size = 0;
453
454 addr = memblock_find_in_range(new_area_start + new_area_size,
455 memblock.current_limit,
456 new_alloc_size, PAGE_SIZE);
457 if (!addr && new_area_size)
458 addr = memblock_find_in_range(0,
459 min(new_area_start, memblock.current_limit),
460 new_alloc_size, PAGE_SIZE);
461
462 new_array = addr ? __va(addr) : NULL;
463 }
464 if (!addr) {
465 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
466 type->name, type->max, type->max * 2);
467 return -1;
468 }
469
470 new_end = addr + new_size - 1;
471 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
472 type->name, type->max * 2, &addr, &new_end);
473
474 /*
475 * Found space, we now need to move the array over before we add the
476 * reserved region since it may be our reserved array itself that is
477 * full.
478 */
479 memcpy(new_array, type->regions, old_size);
480 memset(new_array + type->max, 0, old_size);
481 old_array = type->regions;
482 type->regions = new_array;
483 type->max <<= 1;
484
485 /* Free old array. We needn't free it if the array is the static one */
486 if (*in_slab)
487 kfree(old_array);
488 else if (old_array != memblock_memory_init_regions &&
489 old_array != memblock_reserved_init_regions)
490 memblock_free(__pa(old_array), old_alloc_size);
491
492 /*
493 * Reserve the new array if that comes from the memblock. Otherwise, we
494 * needn't do it
495 */
496 if (!use_slab)
497 BUG_ON(memblock_reserve(addr, new_alloc_size));
498
499 /* Update slab flag */
500 *in_slab = use_slab;
501
502 return 0;
503}
504
505/**
506 * memblock_merge_regions - merge neighboring compatible regions
507 * @type: memblock type to scan
508 *
509 * Scan @type and merge neighboring compatible regions.
510 */
511static void __init_memblock memblock_merge_regions(struct memblock_type *type)
512{
513 int i = 0;
514
515 /* cnt never goes below 1 */
516 while (i < type->cnt - 1) {
517 struct memblock_region *this = &type->regions[i];
518 struct memblock_region *next = &type->regions[i + 1];
519
520 if (this->base + this->size != next->base ||
521 memblock_get_region_node(this) !=
522 memblock_get_region_node(next) ||
523 this->flags != next->flags) {
524 BUG_ON(this->base + this->size > next->base);
525 i++;
526 continue;
527 }
528
529 this->size += next->size;
530 /* move forward from next + 1, index of which is i + 2 */
531 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
532 type->cnt--;
533 }
534}
535
536/**
537 * memblock_insert_region - insert new memblock region
538 * @type: memblock type to insert into
539 * @idx: index for the insertion point
540 * @base: base address of the new region
541 * @size: size of the new region
542 * @nid: node id of the new region
543 * @flags: flags of the new region
544 *
545 * Insert new memblock region [@base, @base + @size) into @type at @idx.
546 * @type must already have extra room to accommodate the new region.
547 */
548static void __init_memblock memblock_insert_region(struct memblock_type *type,
549 int idx, phys_addr_t base,
550 phys_addr_t size,
551 int nid,
552 enum memblock_flags flags)
553{
554 struct memblock_region *rgn = &type->regions[idx];
555
556 BUG_ON(type->cnt >= type->max);
557 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
558 rgn->base = base;
559 rgn->size = size;
560 rgn->flags = flags;
561 memblock_set_region_node(rgn, nid);
562 type->cnt++;
563 type->total_size += size;
564}
565
566/**
567 * memblock_add_range - add new memblock region
568 * @type: memblock type to add new region into
569 * @base: base address of the new region
570 * @size: size of the new region
571 * @nid: nid of the new region
572 * @flags: flags of the new region
573 *
574 * Add new memblock region [@base, @base + @size) into @type. The new region
575 * is allowed to overlap with existing ones - overlaps don't affect already
576 * existing regions. @type is guaranteed to be minimal (all neighbouring
577 * compatible regions are merged) after the addition.
578 *
579 * Return:
580 * 0 on success, -errno on failure.
581 */
582int __init_memblock memblock_add_range(struct memblock_type *type,
583 phys_addr_t base, phys_addr_t size,
584 int nid, enum memblock_flags flags)
585{
586 bool insert = false;
587 phys_addr_t obase = base;
588 phys_addr_t end = base + memblock_cap_size(base, &size);
589 int idx, nr_new;
590 struct memblock_region *rgn;
591
592 if (!size)
593 return 0;
594
595 /* special case for empty array */
596 if (type->regions[0].size == 0) {
597 WARN_ON(type->cnt != 1 || type->total_size);
598 type->regions[0].base = base;
599 type->regions[0].size = size;
600 type->regions[0].flags = flags;
601 memblock_set_region_node(&type->regions[0], nid);
602 type->total_size = size;
603 return 0;
604 }
605repeat:
606 /*
607 * The following is executed twice. Once with %false @insert and
608 * then with %true. The first counts the number of regions needed
609 * to accommodate the new area. The second actually inserts them.
610 */
611 base = obase;
612 nr_new = 0;
613
614 for_each_memblock_type(idx, type, rgn) {
615 phys_addr_t rbase = rgn->base;
616 phys_addr_t rend = rbase + rgn->size;
617
618 if (rbase >= end)
619 break;
620 if (rend <= base)
621 continue;
622 /*
623 * @rgn overlaps. If it separates the lower part of new
624 * area, insert that portion.
625 */
626 if (rbase > base) {
627#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
628 WARN_ON(nid != memblock_get_region_node(rgn));
629#endif
630 WARN_ON(flags != rgn->flags);
631 nr_new++;
632 if (insert)
633 memblock_insert_region(type, idx++, base,
634 rbase - base, nid,
635 flags);
636 }
637 /* area below @rend is dealt with, forget about it */
638 base = min(rend, end);
639 }
640
641 /* insert the remaining portion */
642 if (base < end) {
643 nr_new++;
644 if (insert)
645 memblock_insert_region(type, idx, base, end - base,
646 nid, flags);
647 }
648
649 if (!nr_new)
650 return 0;
651
652 /*
653 * If this was the first round, resize array and repeat for actual
654 * insertions; otherwise, merge and return.
655 */
656 if (!insert) {
657 while (type->cnt + nr_new > type->max)
658 if (memblock_double_array(type, obase, size) < 0)
659 return -ENOMEM;
660 insert = true;
661 goto repeat;
662 } else {
663 memblock_merge_regions(type);
664 return 0;
665 }
666}
667
668/**
669 * memblock_add_node - add new memblock region within a NUMA node
670 * @base: base address of the new region
671 * @size: size of the new region
672 * @nid: nid of the new region
673 *
674 * Add new memblock region [@base, @base + @size) to the "memory"
675 * type. See memblock_add_range() description for mode details
676 *
677 * Return:
678 * 0 on success, -errno on failure.
679 */
680int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
681 int nid)
682{
683 return memblock_add_range(&memblock.memory, base, size, nid, 0);
684}
685
686/**
687 * memblock_add - add new memblock region
688 * @base: base address of the new region
689 * @size: size of the new region
690 *
691 * Add new memblock region [@base, @base + @size) to the "memory"
692 * type. See memblock_add_range() description for mode details
693 *
694 * Return:
695 * 0 on success, -errno on failure.
696 */
697int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
698{
699 phys_addr_t end = base + size - 1;
700
701 memblock_dbg("memblock_add: [%pa-%pa] %pS\n",
702 &base, &end, (void *)_RET_IP_);
703
704 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
705}
706
707/**
708 * memblock_isolate_range - isolate given range into disjoint memblocks
709 * @type: memblock type to isolate range for
710 * @base: base of range to isolate
711 * @size: size of range to isolate
712 * @start_rgn: out parameter for the start of isolated region
713 * @end_rgn: out parameter for the end of isolated region
714 *
715 * Walk @type and ensure that regions don't cross the boundaries defined by
716 * [@base, @base + @size). Crossing regions are split at the boundaries,
717 * which may create at most two more regions. The index of the first
718 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
719 *
720 * Return:
721 * 0 on success, -errno on failure.
722 */
723static int __init_memblock memblock_isolate_range(struct memblock_type *type,
724 phys_addr_t base, phys_addr_t size,
725 int *start_rgn, int *end_rgn)
726{
727 phys_addr_t end = base + memblock_cap_size(base, &size);
728 int idx;
729 struct memblock_region *rgn;
730
731 *start_rgn = *end_rgn = 0;
732
733 if (!size)
734 return 0;
735
736 /* we'll create at most two more regions */
737 while (type->cnt + 2 > type->max)
738 if (memblock_double_array(type, base, size) < 0)
739 return -ENOMEM;
740
741 for_each_memblock_type(idx, type, rgn) {
742 phys_addr_t rbase = rgn->base;
743 phys_addr_t rend = rbase + rgn->size;
744
745 if (rbase >= end)
746 break;
747 if (rend <= base)
748 continue;
749
750 if (rbase < base) {
751 /*
752 * @rgn intersects from below. Split and continue
753 * to process the next region - the new top half.
754 */
755 rgn->base = base;
756 rgn->size -= base - rbase;
757 type->total_size -= base - rbase;
758 memblock_insert_region(type, idx, rbase, base - rbase,
759 memblock_get_region_node(rgn),
760 rgn->flags);
761 } else if (rend > end) {
762 /*
763 * @rgn intersects from above. Split and redo the
764 * current region - the new bottom half.
765 */
766 rgn->base = end;
767 rgn->size -= end - rbase;
768 type->total_size -= end - rbase;
769 memblock_insert_region(type, idx--, rbase, end - rbase,
770 memblock_get_region_node(rgn),
771 rgn->flags);
772 } else {
773 /* @rgn is fully contained, record it */
774 if (!*end_rgn)
775 *start_rgn = idx;
776 *end_rgn = idx + 1;
777 }
778 }
779
780 return 0;
781}
782
783static int __init_memblock memblock_remove_range(struct memblock_type *type,
784 phys_addr_t base, phys_addr_t size)
785{
786 int start_rgn, end_rgn;
787 int i, ret;
788
789 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
790 if (ret)
791 return ret;
792
793 for (i = end_rgn - 1; i >= start_rgn; i--)
794 memblock_remove_region(type, i);
795 return 0;
796}
797
798int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
799{
800 phys_addr_t end = base + size - 1;
801
802 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
803 &base, &end, (void *)_RET_IP_);
804
805 return memblock_remove_range(&memblock.memory, base, size);
806}
807
808/**
809 * memblock_free - free boot memory block
810 * @base: phys starting address of the boot memory block
811 * @size: size of the boot memory block in bytes
812 *
813 * Free boot memory block previously allocated by memblock_alloc_xx() API.
814 * The freeing memory will not be released to the buddy allocator.
815 */
816int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
817{
818 phys_addr_t end = base + size - 1;
819
820 memblock_dbg(" memblock_free: [%pa-%pa] %pS\n",
821 &base, &end, (void *)_RET_IP_);
822
823 kmemleak_free_part_phys(base, size);
824 return memblock_remove_range(&memblock.reserved, base, size);
825}
826
827int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
828{
829 phys_addr_t end = base + size - 1;
830
831 memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n",
832 &base, &end, (void *)_RET_IP_);
833
834 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
835}
836
837/**
838 * memblock_setclr_flag - set or clear flag for a memory region
839 * @base: base address of the region
840 * @size: size of the region
841 * @set: set or clear the flag
842 * @flag: the flag to udpate
843 *
844 * This function isolates region [@base, @base + @size), and sets/clears flag
845 *
846 * Return: 0 on success, -errno on failure.
847 */
848static int __init_memblock memblock_setclr_flag(phys_addr_t base,
849 phys_addr_t size, int set, int flag)
850{
851 struct memblock_type *type = &memblock.memory;
852 int i, ret, start_rgn, end_rgn;
853
854 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
855 if (ret)
856 return ret;
857
858 for (i = start_rgn; i < end_rgn; i++) {
859 struct memblock_region *r = &type->regions[i];
860
861 if (set)
862 r->flags |= flag;
863 else
864 r->flags &= ~flag;
865 }
866
867 memblock_merge_regions(type);
868 return 0;
869}
870
871/**
872 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
873 * @base: the base phys addr of the region
874 * @size: the size of the region
875 *
876 * Return: 0 on success, -errno on failure.
877 */
878int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
879{
880 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
881}
882
883/**
884 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
885 * @base: the base phys addr of the region
886 * @size: the size of the region
887 *
888 * Return: 0 on success, -errno on failure.
889 */
890int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
891{
892 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
893}
894
895/**
896 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
897 * @base: the base phys addr of the region
898 * @size: the size of the region
899 *
900 * Return: 0 on success, -errno on failure.
901 */
902int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
903{
904 system_has_some_mirror = true;
905
906 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
907}
908
909/**
910 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
911 * @base: the base phys addr of the region
912 * @size: the size of the region
913 *
914 * Return: 0 on success, -errno on failure.
915 */
916int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
917{
918 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
919}
920
921/**
922 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
923 * @base: the base phys addr of the region
924 * @size: the size of the region
925 *
926 * Return: 0 on success, -errno on failure.
927 */
928int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
929{
930 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
931}
932
933/**
934 * __next_reserved_mem_region - next function for for_each_reserved_region()
935 * @idx: pointer to u64 loop variable
936 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
937 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
938 *
939 * Iterate over all reserved memory regions.
940 */
941void __init_memblock __next_reserved_mem_region(u64 *idx,
942 phys_addr_t *out_start,
943 phys_addr_t *out_end)
944{
945 struct memblock_type *type = &memblock.reserved;
946
947 if (*idx < type->cnt) {
948 struct memblock_region *r = &type->regions[*idx];
949 phys_addr_t base = r->base;
950 phys_addr_t size = r->size;
951
952 if (out_start)
953 *out_start = base;
954 if (out_end)
955 *out_end = base + size - 1;
956
957 *idx += 1;
958 return;
959 }
960
961 /* signal end of iteration */
962 *idx = ULLONG_MAX;
963}
964
965static bool should_skip_region(struct memblock_region *m, int nid, int flags)
966{
967 int m_nid = memblock_get_region_node(m);
968
969 /* only memory regions are associated with nodes, check it */
970 if (nid != NUMA_NO_NODE && nid != m_nid)
971 return true;
972
973 /* skip hotpluggable memory regions if needed */
974 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
975 return true;
976
977 /* if we want mirror memory skip non-mirror memory regions */
978 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
979 return true;
980
981 /* skip nomap memory unless we were asked for it explicitly */
982 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
983 return true;
984
985 return false;
986}
987
988/**
989 * __next_mem_range - next function for for_each_free_mem_range() etc.
990 * @idx: pointer to u64 loop variable
991 * @nid: node selector, %NUMA_NO_NODE for all nodes
992 * @flags: pick from blocks based on memory attributes
993 * @type_a: pointer to memblock_type from where the range is taken
994 * @type_b: pointer to memblock_type which excludes memory from being taken
995 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
996 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
997 * @out_nid: ptr to int for nid of the range, can be %NULL
998 *
999 * Find the first area from *@idx which matches @nid, fill the out
1000 * parameters, and update *@idx for the next iteration. The lower 32bit of
1001 * *@idx contains index into type_a and the upper 32bit indexes the
1002 * areas before each region in type_b. For example, if type_b regions
1003 * look like the following,
1004 *
1005 * 0:[0-16), 1:[32-48), 2:[128-130)
1006 *
1007 * The upper 32bit indexes the following regions.
1008 *
1009 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1010 *
1011 * As both region arrays are sorted, the function advances the two indices
1012 * in lockstep and returns each intersection.
1013 */
1014void __init_memblock __next_mem_range(u64 *idx, int nid,
1015 enum memblock_flags flags,
1016 struct memblock_type *type_a,
1017 struct memblock_type *type_b,
1018 phys_addr_t *out_start,
1019 phys_addr_t *out_end, int *out_nid)
1020{
1021 int idx_a = *idx & 0xffffffff;
1022 int idx_b = *idx >> 32;
1023
1024 if (WARN_ONCE(nid == MAX_NUMNODES,
1025 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1026 nid = NUMA_NO_NODE;
1027
1028 for (; idx_a < type_a->cnt; idx_a++) {
1029 struct memblock_region *m = &type_a->regions[idx_a];
1030
1031 phys_addr_t m_start = m->base;
1032 phys_addr_t m_end = m->base + m->size;
1033 int m_nid = memblock_get_region_node(m);
1034
1035 if (should_skip_region(m, nid, flags))
1036 continue;
1037
1038 if (!type_b) {
1039 if (out_start)
1040 *out_start = m_start;
1041 if (out_end)
1042 *out_end = m_end;
1043 if (out_nid)
1044 *out_nid = m_nid;
1045 idx_a++;
1046 *idx = (u32)idx_a | (u64)idx_b << 32;
1047 return;
1048 }
1049
1050 /* scan areas before each reservation */
1051 for (; idx_b < type_b->cnt + 1; idx_b++) {
1052 struct memblock_region *r;
1053 phys_addr_t r_start;
1054 phys_addr_t r_end;
1055
1056 r = &type_b->regions[idx_b];
1057 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1058 r_end = idx_b < type_b->cnt ?
1059 r->base : PHYS_ADDR_MAX;
1060
1061 /*
1062 * if idx_b advanced past idx_a,
1063 * break out to advance idx_a
1064 */
1065 if (r_start >= m_end)
1066 break;
1067 /* if the two regions intersect, we're done */
1068 if (m_start < r_end) {
1069 if (out_start)
1070 *out_start =
1071 max(m_start, r_start);
1072 if (out_end)
1073 *out_end = min(m_end, r_end);
1074 if (out_nid)
1075 *out_nid = m_nid;
1076 /*
1077 * The region which ends first is
1078 * advanced for the next iteration.
1079 */
1080 if (m_end <= r_end)
1081 idx_a++;
1082 else
1083 idx_b++;
1084 *idx = (u32)idx_a | (u64)idx_b << 32;
1085 return;
1086 }
1087 }
1088 }
1089
1090 /* signal end of iteration */
1091 *idx = ULLONG_MAX;
1092}
1093
1094/**
1095 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1096 *
1097 * @idx: pointer to u64 loop variable
1098 * @nid: node selector, %NUMA_NO_NODE for all nodes
1099 * @flags: pick from blocks based on memory attributes
1100 * @type_a: pointer to memblock_type from where the range is taken
1101 * @type_b: pointer to memblock_type which excludes memory from being taken
1102 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1103 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1104 * @out_nid: ptr to int for nid of the range, can be %NULL
1105 *
1106 * Finds the next range from type_a which is not marked as unsuitable
1107 * in type_b.
1108 *
1109 * Reverse of __next_mem_range().
1110 */
1111void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1112 enum memblock_flags flags,
1113 struct memblock_type *type_a,
1114 struct memblock_type *type_b,
1115 phys_addr_t *out_start,
1116 phys_addr_t *out_end, int *out_nid)
1117{
1118 int idx_a = *idx & 0xffffffff;
1119 int idx_b = *idx >> 32;
1120
1121 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1122 nid = NUMA_NO_NODE;
1123
1124 if (*idx == (u64)ULLONG_MAX) {
1125 idx_a = type_a->cnt - 1;
1126 if (type_b != NULL)
1127 idx_b = type_b->cnt;
1128 else
1129 idx_b = 0;
1130 }
1131
1132 for (; idx_a >= 0; idx_a--) {
1133 struct memblock_region *m = &type_a->regions[idx_a];
1134
1135 phys_addr_t m_start = m->base;
1136 phys_addr_t m_end = m->base + m->size;
1137 int m_nid = memblock_get_region_node(m);
1138
1139 if (should_skip_region(m, nid, flags))
1140 continue;
1141
1142 if (!type_b) {
1143 if (out_start)
1144 *out_start = m_start;
1145 if (out_end)
1146 *out_end = m_end;
1147 if (out_nid)
1148 *out_nid = m_nid;
1149 idx_a--;
1150 *idx = (u32)idx_a | (u64)idx_b << 32;
1151 return;
1152 }
1153
1154 /* scan areas before each reservation */
1155 for (; idx_b >= 0; idx_b--) {
1156 struct memblock_region *r;
1157 phys_addr_t r_start;
1158 phys_addr_t r_end;
1159
1160 r = &type_b->regions[idx_b];
1161 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1162 r_end = idx_b < type_b->cnt ?
1163 r->base : PHYS_ADDR_MAX;
1164 /*
1165 * if idx_b advanced past idx_a,
1166 * break out to advance idx_a
1167 */
1168
1169 if (r_end <= m_start)
1170 break;
1171 /* if the two regions intersect, we're done */
1172 if (m_end > r_start) {
1173 if (out_start)
1174 *out_start = max(m_start, r_start);
1175 if (out_end)
1176 *out_end = min(m_end, r_end);
1177 if (out_nid)
1178 *out_nid = m_nid;
1179 if (m_start >= r_start)
1180 idx_a--;
1181 else
1182 idx_b--;
1183 *idx = (u32)idx_a | (u64)idx_b << 32;
1184 return;
1185 }
1186 }
1187 }
1188 /* signal end of iteration */
1189 *idx = ULLONG_MAX;
1190}
1191
1192#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1193/*
1194 * Common iterator interface used to define for_each_mem_pfn_range().
1195 */
1196void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1197 unsigned long *out_start_pfn,
1198 unsigned long *out_end_pfn, int *out_nid)
1199{
1200 struct memblock_type *type = &memblock.memory;
1201 struct memblock_region *r;
1202
1203 while (++*idx < type->cnt) {
1204 r = &type->regions[*idx];
1205
1206 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1207 continue;
1208 if (nid == MAX_NUMNODES || nid == r->nid)
1209 break;
1210 }
1211 if (*idx >= type->cnt) {
1212 *idx = -1;
1213 return;
1214 }
1215
1216 if (out_start_pfn)
1217 *out_start_pfn = PFN_UP(r->base);
1218 if (out_end_pfn)
1219 *out_end_pfn = PFN_DOWN(r->base + r->size);
1220 if (out_nid)
1221 *out_nid = r->nid;
1222}
1223
1224/**
1225 * memblock_set_node - set node ID on memblock regions
1226 * @base: base of area to set node ID for
1227 * @size: size of area to set node ID for
1228 * @type: memblock type to set node ID for
1229 * @nid: node ID to set
1230 *
1231 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1232 * Regions which cross the area boundaries are split as necessary.
1233 *
1234 * Return:
1235 * 0 on success, -errno on failure.
1236 */
1237int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1238 struct memblock_type *type, int nid)
1239{
1240 int start_rgn, end_rgn;
1241 int i, ret;
1242
1243 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1244 if (ret)
1245 return ret;
1246
1247 for (i = start_rgn; i < end_rgn; i++)
1248 memblock_set_region_node(&type->regions[i], nid);
1249
1250 memblock_merge_regions(type);
1251 return 0;
1252}
1253#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1254#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1255/**
1256 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1257 *
1258 * @idx: pointer to u64 loop variable
1259 * @zone: zone in which all of the memory blocks reside
1260 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1261 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1262 *
1263 * This function is meant to be a zone/pfn specific wrapper for the
1264 * for_each_mem_range type iterators. Specifically they are used in the
1265 * deferred memory init routines and as such we were duplicating much of
1266 * this logic throughout the code. So instead of having it in multiple
1267 * locations it seemed like it would make more sense to centralize this to
1268 * one new iterator that does everything they need.
1269 */
1270void __init_memblock
1271__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1272 unsigned long *out_spfn, unsigned long *out_epfn)
1273{
1274 int zone_nid = zone_to_nid(zone);
1275 phys_addr_t spa, epa;
1276 int nid;
1277
1278 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1279 &memblock.memory, &memblock.reserved,
1280 &spa, &epa, &nid);
1281
1282 while (*idx != U64_MAX) {
1283 unsigned long epfn = PFN_DOWN(epa);
1284 unsigned long spfn = PFN_UP(spa);
1285
1286 /*
1287 * Verify the end is at least past the start of the zone and
1288 * that we have at least one PFN to initialize.
1289 */
1290 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1291 /* if we went too far just stop searching */
1292 if (zone_end_pfn(zone) <= spfn) {
1293 *idx = U64_MAX;
1294 break;
1295 }
1296
1297 if (out_spfn)
1298 *out_spfn = max(zone->zone_start_pfn, spfn);
1299 if (out_epfn)
1300 *out_epfn = min(zone_end_pfn(zone), epfn);
1301
1302 return;
1303 }
1304
1305 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1306 &memblock.memory, &memblock.reserved,
1307 &spa, &epa, &nid);
1308 }
1309
1310 /* signal end of iteration */
1311 if (out_spfn)
1312 *out_spfn = ULONG_MAX;
1313 if (out_epfn)
1314 *out_epfn = 0;
1315}
1316
1317#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1318
1319/**
1320 * memblock_alloc_range_nid - allocate boot memory block
1321 * @size: size of memory block to be allocated in bytes
1322 * @align: alignment of the region and block's size
1323 * @start: the lower bound of the memory region to allocate (phys address)
1324 * @end: the upper bound of the memory region to allocate (phys address)
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 *
1327 * The allocation is performed from memory region limited by
1328 * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1329 *
1330 * If the specified node can not hold the requested memory the
1331 * allocation falls back to any node in the system
1332 *
1333 * For systems with memory mirroring, the allocation is attempted first
1334 * from the regions with mirroring enabled and then retried from any
1335 * memory region.
1336 *
1337 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1338 * allocated boot memory block, so that it is never reported as leaks.
1339 *
1340 * Return:
1341 * Physical address of allocated memory block on success, %0 on failure.
1342 */
1343static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1344 phys_addr_t align, phys_addr_t start,
1345 phys_addr_t end, int nid)
1346{
1347 enum memblock_flags flags = choose_memblock_flags();
1348 phys_addr_t found;
1349
1350 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1351 nid = NUMA_NO_NODE;
1352
1353 if (!align) {
1354 /* Can't use WARNs this early in boot on powerpc */
1355 dump_stack();
1356 align = SMP_CACHE_BYTES;
1357 }
1358
1359again:
1360 found = memblock_find_in_range_node(size, align, start, end, nid,
1361 flags);
1362 if (found && !memblock_reserve(found, size))
1363 goto done;
1364
1365 if (nid != NUMA_NO_NODE) {
1366 found = memblock_find_in_range_node(size, align, start,
1367 end, NUMA_NO_NODE,
1368 flags);
1369 if (found && !memblock_reserve(found, size))
1370 goto done;
1371 }
1372
1373 if (flags & MEMBLOCK_MIRROR) {
1374 flags &= ~MEMBLOCK_MIRROR;
1375 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1376 &size);
1377 goto again;
1378 }
1379
1380 return 0;
1381
1382done:
1383 /* Skip kmemleak for kasan_init() due to high volume. */
1384 if (end != MEMBLOCK_ALLOC_KASAN)
1385 /*
1386 * The min_count is set to 0 so that memblock allocated
1387 * blocks are never reported as leaks. This is because many
1388 * of these blocks are only referred via the physical
1389 * address which is not looked up by kmemleak.
1390 */
1391 kmemleak_alloc_phys(found, size, 0, 0);
1392
1393 return found;
1394}
1395
1396/**
1397 * memblock_phys_alloc_range - allocate a memory block inside specified range
1398 * @size: size of memory block to be allocated in bytes
1399 * @align: alignment of the region and block's size
1400 * @start: the lower bound of the memory region to allocate (physical address)
1401 * @end: the upper bound of the memory region to allocate (physical address)
1402 *
1403 * Allocate @size bytes in the between @start and @end.
1404 *
1405 * Return: physical address of the allocated memory block on success,
1406 * %0 on failure.
1407 */
1408phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1409 phys_addr_t align,
1410 phys_addr_t start,
1411 phys_addr_t end)
1412{
1413 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
1414}
1415
1416/**
1417 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1418 * @size: size of memory block to be allocated in bytes
1419 * @align: alignment of the region and block's size
1420 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1421 *
1422 * Allocates memory block from the specified NUMA node. If the node
1423 * has no available memory, attempts to allocated from any node in the
1424 * system.
1425 *
1426 * Return: physical address of the allocated memory block on success,
1427 * %0 on failure.
1428 */
1429phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1430{
1431 return memblock_alloc_range_nid(size, align, 0,
1432 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1433}
1434
1435/**
1436 * memblock_alloc_internal - allocate boot memory block
1437 * @size: size of memory block to be allocated in bytes
1438 * @align: alignment of the region and block's size
1439 * @min_addr: the lower bound of the memory region to allocate (phys address)
1440 * @max_addr: the upper bound of the memory region to allocate (phys address)
1441 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1442 *
1443 * Allocates memory block using memblock_alloc_range_nid() and
1444 * converts the returned physical address to virtual.
1445 *
1446 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1447 * will fall back to memory below @min_addr. Other constraints, such
1448 * as node and mirrored memory will be handled again in
1449 * memblock_alloc_range_nid().
1450 *
1451 * Return:
1452 * Virtual address of allocated memory block on success, NULL on failure.
1453 */
1454static void * __init memblock_alloc_internal(
1455 phys_addr_t size, phys_addr_t align,
1456 phys_addr_t min_addr, phys_addr_t max_addr,
1457 int nid)
1458{
1459 phys_addr_t alloc;
1460
1461 /*
1462 * Detect any accidental use of these APIs after slab is ready, as at
1463 * this moment memblock may be deinitialized already and its
1464 * internal data may be destroyed (after execution of memblock_free_all)
1465 */
1466 if (WARN_ON_ONCE(slab_is_available()))
1467 return kzalloc_node(size, GFP_NOWAIT, nid);
1468
1469 if (max_addr > memblock.current_limit)
1470 max_addr = memblock.current_limit;
1471
1472 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid);
1473
1474 /* retry allocation without lower limit */
1475 if (!alloc && min_addr)
1476 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid);
1477
1478 if (!alloc)
1479 return NULL;
1480
1481 return phys_to_virt(alloc);
1482}
1483
1484/**
1485 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1486 * memory and without panicking
1487 * @size: size of memory block to be allocated in bytes
1488 * @align: alignment of the region and block's size
1489 * @min_addr: the lower bound of the memory region from where the allocation
1490 * is preferred (phys address)
1491 * @max_addr: the upper bound of the memory region from where the allocation
1492 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1493 * allocate only from memory limited by memblock.current_limit value
1494 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1495 *
1496 * Public function, provides additional debug information (including caller
1497 * info), if enabled. Does not zero allocated memory, does not panic if request
1498 * cannot be satisfied.
1499 *
1500 * Return:
1501 * Virtual address of allocated memory block on success, NULL on failure.
1502 */
1503void * __init memblock_alloc_try_nid_raw(
1504 phys_addr_t size, phys_addr_t align,
1505 phys_addr_t min_addr, phys_addr_t max_addr,
1506 int nid)
1507{
1508 void *ptr;
1509
1510 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1511 __func__, (u64)size, (u64)align, nid, &min_addr,
1512 &max_addr, (void *)_RET_IP_);
1513
1514 ptr = memblock_alloc_internal(size, align,
1515 min_addr, max_addr, nid);
1516 if (ptr && size > 0)
1517 page_init_poison(ptr, size);
1518
1519 return ptr;
1520}
1521
1522/**
1523 * memblock_alloc_try_nid - allocate boot memory block
1524 * @size: size of memory block to be allocated in bytes
1525 * @align: alignment of the region and block's size
1526 * @min_addr: the lower bound of the memory region from where the allocation
1527 * is preferred (phys address)
1528 * @max_addr: the upper bound of the memory region from where the allocation
1529 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1530 * allocate only from memory limited by memblock.current_limit value
1531 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1532 *
1533 * Public function, provides additional debug information (including caller
1534 * info), if enabled. This function zeroes the allocated memory.
1535 *
1536 * Return:
1537 * Virtual address of allocated memory block on success, NULL on failure.
1538 */
1539void * __init memblock_alloc_try_nid(
1540 phys_addr_t size, phys_addr_t align,
1541 phys_addr_t min_addr, phys_addr_t max_addr,
1542 int nid)
1543{
1544 void *ptr;
1545
1546 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1547 __func__, (u64)size, (u64)align, nid, &min_addr,
1548 &max_addr, (void *)_RET_IP_);
1549 ptr = memblock_alloc_internal(size, align,
1550 min_addr, max_addr, nid);
1551 if (ptr)
1552 memset(ptr, 0, size);
1553
1554 return ptr;
1555}
1556
1557/**
1558 * __memblock_free_late - free pages directly to buddy allocator
1559 * @base: phys starting address of the boot memory block
1560 * @size: size of the boot memory block in bytes
1561 *
1562 * This is only useful when the memblock allocator has already been torn
1563 * down, but we are still initializing the system. Pages are released directly
1564 * to the buddy allocator.
1565 */
1566void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1567{
1568 phys_addr_t cursor, end;
1569
1570 end = base + size - 1;
1571 memblock_dbg("%s: [%pa-%pa] %pS\n",
1572 __func__, &base, &end, (void *)_RET_IP_);
1573 kmemleak_free_part_phys(base, size);
1574 cursor = PFN_UP(base);
1575 end = PFN_DOWN(base + size);
1576
1577 for (; cursor < end; cursor++) {
1578 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1579 totalram_pages_inc();
1580 }
1581}
1582
1583/*
1584 * Remaining API functions
1585 */
1586
1587phys_addr_t __init_memblock memblock_phys_mem_size(void)
1588{
1589 return memblock.memory.total_size;
1590}
1591
1592phys_addr_t __init_memblock memblock_reserved_size(void)
1593{
1594 return memblock.reserved.total_size;
1595}
1596
1597phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1598{
1599 unsigned long pages = 0;
1600 struct memblock_region *r;
1601 unsigned long start_pfn, end_pfn;
1602
1603 for_each_memblock(memory, r) {
1604 start_pfn = memblock_region_memory_base_pfn(r);
1605 end_pfn = memblock_region_memory_end_pfn(r);
1606 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1607 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1608 pages += end_pfn - start_pfn;
1609 }
1610
1611 return PFN_PHYS(pages);
1612}
1613
1614/* lowest address */
1615phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1616{
1617 return memblock.memory.regions[0].base;
1618}
1619
1620phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1621{
1622 int idx = memblock.memory.cnt - 1;
1623
1624 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1625}
1626
1627static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1628{
1629 phys_addr_t max_addr = PHYS_ADDR_MAX;
1630 struct memblock_region *r;
1631
1632 /*
1633 * translate the memory @limit size into the max address within one of
1634 * the memory memblock regions, if the @limit exceeds the total size
1635 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1636 */
1637 for_each_memblock(memory, r) {
1638 if (limit <= r->size) {
1639 max_addr = r->base + limit;
1640 break;
1641 }
1642 limit -= r->size;
1643 }
1644
1645 return max_addr;
1646}
1647
1648void __init memblock_enforce_memory_limit(phys_addr_t limit)
1649{
1650 phys_addr_t max_addr = PHYS_ADDR_MAX;
1651
1652 if (!limit)
1653 return;
1654
1655 max_addr = __find_max_addr(limit);
1656
1657 /* @limit exceeds the total size of the memory, do nothing */
1658 if (max_addr == PHYS_ADDR_MAX)
1659 return;
1660
1661 /* truncate both memory and reserved regions */
1662 memblock_remove_range(&memblock.memory, max_addr,
1663 PHYS_ADDR_MAX);
1664 memblock_remove_range(&memblock.reserved, max_addr,
1665 PHYS_ADDR_MAX);
1666}
1667
1668void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1669{
1670 int start_rgn, end_rgn;
1671 int i, ret;
1672
1673 if (!size)
1674 return;
1675
1676 ret = memblock_isolate_range(&memblock.memory, base, size,
1677 &start_rgn, &end_rgn);
1678 if (ret)
1679 return;
1680
1681 /* remove all the MAP regions */
1682 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1683 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1684 memblock_remove_region(&memblock.memory, i);
1685
1686 for (i = start_rgn - 1; i >= 0; i--)
1687 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1688 memblock_remove_region(&memblock.memory, i);
1689
1690 /* truncate the reserved regions */
1691 memblock_remove_range(&memblock.reserved, 0, base);
1692 memblock_remove_range(&memblock.reserved,
1693 base + size, PHYS_ADDR_MAX);
1694}
1695
1696void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1697{
1698 phys_addr_t max_addr;
1699
1700 if (!limit)
1701 return;
1702
1703 max_addr = __find_max_addr(limit);
1704
1705 /* @limit exceeds the total size of the memory, do nothing */
1706 if (max_addr == PHYS_ADDR_MAX)
1707 return;
1708
1709 memblock_cap_memory_range(0, max_addr);
1710}
1711
1712static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1713{
1714 unsigned int left = 0, right = type->cnt;
1715
1716 do {
1717 unsigned int mid = (right + left) / 2;
1718
1719 if (addr < type->regions[mid].base)
1720 right = mid;
1721 else if (addr >= (type->regions[mid].base +
1722 type->regions[mid].size))
1723 left = mid + 1;
1724 else
1725 return mid;
1726 } while (left < right);
1727 return -1;
1728}
1729
1730bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1731{
1732 return memblock_search(&memblock.reserved, addr) != -1;
1733}
1734
1735bool __init_memblock memblock_is_memory(phys_addr_t addr)
1736{
1737 return memblock_search(&memblock.memory, addr) != -1;
1738}
1739
1740bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1741{
1742 int i = memblock_search(&memblock.memory, addr);
1743
1744 if (i == -1)
1745 return false;
1746 return !memblock_is_nomap(&memblock.memory.regions[i]);
1747}
1748
1749#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1750int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1751 unsigned long *start_pfn, unsigned long *end_pfn)
1752{
1753 struct memblock_type *type = &memblock.memory;
1754 int mid = memblock_search(type, PFN_PHYS(pfn));
1755
1756 if (mid == -1)
1757 return -1;
1758
1759 *start_pfn = PFN_DOWN(type->regions[mid].base);
1760 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1761
1762 return type->regions[mid].nid;
1763}
1764#endif
1765
1766/**
1767 * memblock_is_region_memory - check if a region is a subset of memory
1768 * @base: base of region to check
1769 * @size: size of region to check
1770 *
1771 * Check if the region [@base, @base + @size) is a subset of a memory block.
1772 *
1773 * Return:
1774 * 0 if false, non-zero if true
1775 */
1776bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1777{
1778 int idx = memblock_search(&memblock.memory, base);
1779 phys_addr_t end = base + memblock_cap_size(base, &size);
1780
1781 if (idx == -1)
1782 return false;
1783 return (memblock.memory.regions[idx].base +
1784 memblock.memory.regions[idx].size) >= end;
1785}
1786
1787/**
1788 * memblock_is_region_reserved - check if a region intersects reserved memory
1789 * @base: base of region to check
1790 * @size: size of region to check
1791 *
1792 * Check if the region [@base, @base + @size) intersects a reserved
1793 * memory block.
1794 *
1795 * Return:
1796 * True if they intersect, false if not.
1797 */
1798bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1799{
1800 memblock_cap_size(base, &size);
1801 return memblock_overlaps_region(&memblock.reserved, base, size);
1802}
1803
1804void __init_memblock memblock_trim_memory(phys_addr_t align)
1805{
1806 phys_addr_t start, end, orig_start, orig_end;
1807 struct memblock_region *r;
1808
1809 for_each_memblock(memory, r) {
1810 orig_start = r->base;
1811 orig_end = r->base + r->size;
1812 start = round_up(orig_start, align);
1813 end = round_down(orig_end, align);
1814
1815 if (start == orig_start && end == orig_end)
1816 continue;
1817
1818 if (start < end) {
1819 r->base = start;
1820 r->size = end - start;
1821 } else {
1822 memblock_remove_region(&memblock.memory,
1823 r - memblock.memory.regions);
1824 r--;
1825 }
1826 }
1827}
1828
1829void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1830{
1831 memblock.current_limit = limit;
1832}
1833
1834phys_addr_t __init_memblock memblock_get_current_limit(void)
1835{
1836 return memblock.current_limit;
1837}
1838
1839static void __init_memblock memblock_dump(struct memblock_type *type)
1840{
1841 phys_addr_t base, end, size;
1842 enum memblock_flags flags;
1843 int idx;
1844 struct memblock_region *rgn;
1845
1846 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1847
1848 for_each_memblock_type(idx, type, rgn) {
1849 char nid_buf[32] = "";
1850
1851 base = rgn->base;
1852 size = rgn->size;
1853 end = base + size - 1;
1854 flags = rgn->flags;
1855#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1856 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1857 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1858 memblock_get_region_node(rgn));
1859#endif
1860 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1861 type->name, idx, &base, &end, &size, nid_buf, flags);
1862 }
1863}
1864
1865void __init_memblock __memblock_dump_all(void)
1866{
1867 pr_info("MEMBLOCK configuration:\n");
1868 pr_info(" memory size = %pa reserved size = %pa\n",
1869 &memblock.memory.total_size,
1870 &memblock.reserved.total_size);
1871
1872 memblock_dump(&memblock.memory);
1873 memblock_dump(&memblock.reserved);
1874#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1875 memblock_dump(&memblock.physmem);
1876#endif
1877}
1878
1879void __init memblock_allow_resize(void)
1880{
1881 memblock_can_resize = 1;
1882}
1883
1884static int __init early_memblock(char *p)
1885{
1886 if (p && strstr(p, "debug"))
1887 memblock_debug = 1;
1888 return 0;
1889}
1890early_param("memblock", early_memblock);
1891
1892static void __init __free_pages_memory(unsigned long start, unsigned long end)
1893{
1894 int order;
1895
1896 while (start < end) {
1897 order = min(MAX_ORDER - 1UL, __ffs(start));
1898
1899 while (start + (1UL << order) > end)
1900 order--;
1901
1902 memblock_free_pages(pfn_to_page(start), start, order);
1903
1904 start += (1UL << order);
1905 }
1906}
1907
1908static unsigned long __init __free_memory_core(phys_addr_t start,
1909 phys_addr_t end)
1910{
1911 unsigned long start_pfn = PFN_UP(start);
1912 unsigned long end_pfn = min_t(unsigned long,
1913 PFN_DOWN(end), max_low_pfn);
1914
1915 if (start_pfn >= end_pfn)
1916 return 0;
1917
1918 __free_pages_memory(start_pfn, end_pfn);
1919
1920 return end_pfn - start_pfn;
1921}
1922
1923static unsigned long __init free_low_memory_core_early(void)
1924{
1925 unsigned long count = 0;
1926 phys_addr_t start, end;
1927 u64 i;
1928
1929 memblock_clear_hotplug(0, -1);
1930
1931 for_each_reserved_mem_region(i, &start, &end)
1932 reserve_bootmem_region(start, end);
1933
1934 /*
1935 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1936 * because in some case like Node0 doesn't have RAM installed
1937 * low ram will be on Node1
1938 */
1939 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1940 NULL)
1941 count += __free_memory_core(start, end);
1942
1943 return count;
1944}
1945
1946static int reset_managed_pages_done __initdata;
1947
1948void reset_node_managed_pages(pg_data_t *pgdat)
1949{
1950 struct zone *z;
1951
1952 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1953 atomic_long_set(&z->managed_pages, 0);
1954}
1955
1956void __init reset_all_zones_managed_pages(void)
1957{
1958 struct pglist_data *pgdat;
1959
1960 if (reset_managed_pages_done)
1961 return;
1962
1963 for_each_online_pgdat(pgdat)
1964 reset_node_managed_pages(pgdat);
1965
1966 reset_managed_pages_done = 1;
1967}
1968
1969/**
1970 * memblock_free_all - release free pages to the buddy allocator
1971 *
1972 * Return: the number of pages actually released.
1973 */
1974unsigned long __init memblock_free_all(void)
1975{
1976 unsigned long pages;
1977
1978 reset_all_zones_managed_pages();
1979
1980 pages = free_low_memory_core_early();
1981 totalram_pages_add(pages);
1982
1983 return pages;
1984}
1985
1986#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
1987
1988static int memblock_debug_show(struct seq_file *m, void *private)
1989{
1990 struct memblock_type *type = m->private;
1991 struct memblock_region *reg;
1992 int i;
1993 phys_addr_t end;
1994
1995 for (i = 0; i < type->cnt; i++) {
1996 reg = &type->regions[i];
1997 end = reg->base + reg->size - 1;
1998
1999 seq_printf(m, "%4d: ", i);
2000 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2001 }
2002 return 0;
2003}
2004DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2005
2006static int __init memblock_init_debugfs(void)
2007{
2008 struct dentry *root = debugfs_create_dir("memblock", NULL);
2009
2010 debugfs_create_file("memory", 0444, root,
2011 &memblock.memory, &memblock_debug_fops);
2012 debugfs_create_file("reserved", 0444, root,
2013 &memblock.reserved, &memblock_debug_fops);
2014#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2015 debugfs_create_file("physmem", 0444, root,
2016 &memblock.physmem, &memblock_debug_fops);
2017#endif
2018
2019 return 0;
2020}
2021__initcall(memblock_init_debugfs);
2022
2023#endif /* CONFIG_DEBUG_FS */
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/bitops.h>
17#include <linux/poison.h>
18#include <linux/pfn.h>
19#include <linux/debugfs.h>
20#include <linux/kmemleak.h>
21#include <linux/seq_file.h>
22#include <linux/memblock.h>
23
24#include <asm/sections.h>
25#include <linux/io.h>
26
27#include "internal.h"
28
29static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
31#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
32static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
33#endif
34
35struct memblock memblock __initdata_memblock = {
36 .memory.regions = memblock_memory_init_regions,
37 .memory.cnt = 1, /* empty dummy entry */
38 .memory.max = INIT_MEMBLOCK_REGIONS,
39 .memory.name = "memory",
40
41 .reserved.regions = memblock_reserved_init_regions,
42 .reserved.cnt = 1, /* empty dummy entry */
43 .reserved.max = INIT_MEMBLOCK_REGIONS,
44 .reserved.name = "reserved",
45
46#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
47 .physmem.regions = memblock_physmem_init_regions,
48 .physmem.cnt = 1, /* empty dummy entry */
49 .physmem.max = INIT_PHYSMEM_REGIONS,
50 .physmem.name = "physmem",
51#endif
52
53 .bottom_up = false,
54 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
55};
56
57int memblock_debug __initdata_memblock;
58static bool system_has_some_mirror __initdata_memblock = false;
59static int memblock_can_resize __initdata_memblock;
60static int memblock_memory_in_slab __initdata_memblock = 0;
61static int memblock_reserved_in_slab __initdata_memblock = 0;
62
63ulong __init_memblock choose_memblock_flags(void)
64{
65 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
66}
67
68/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
69static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
70{
71 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
72}
73
74/*
75 * Address comparison utilities
76 */
77static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
78 phys_addr_t base2, phys_addr_t size2)
79{
80 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
81}
82
83bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
84 phys_addr_t base, phys_addr_t size)
85{
86 unsigned long i;
87
88 for (i = 0; i < type->cnt; i++)
89 if (memblock_addrs_overlap(base, size, type->regions[i].base,
90 type->regions[i].size))
91 break;
92 return i < type->cnt;
93}
94
95/*
96 * __memblock_find_range_bottom_up - find free area utility in bottom-up
97 * @start: start of candidate range
98 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
99 * @size: size of free area to find
100 * @align: alignment of free area to find
101 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
102 * @flags: pick from blocks based on memory attributes
103 *
104 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
105 *
106 * RETURNS:
107 * Found address on success, 0 on failure.
108 */
109static phys_addr_t __init_memblock
110__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
111 phys_addr_t size, phys_addr_t align, int nid,
112 ulong flags)
113{
114 phys_addr_t this_start, this_end, cand;
115 u64 i;
116
117 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
118 this_start = clamp(this_start, start, end);
119 this_end = clamp(this_end, start, end);
120
121 cand = round_up(this_start, align);
122 if (cand < this_end && this_end - cand >= size)
123 return cand;
124 }
125
126 return 0;
127}
128
129/**
130 * __memblock_find_range_top_down - find free area utility, in top-down
131 * @start: start of candidate range
132 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
133 * @size: size of free area to find
134 * @align: alignment of free area to find
135 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
136 * @flags: pick from blocks based on memory attributes
137 *
138 * Utility called from memblock_find_in_range_node(), find free area top-down.
139 *
140 * RETURNS:
141 * Found address on success, 0 on failure.
142 */
143static phys_addr_t __init_memblock
144__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
145 phys_addr_t size, phys_addr_t align, int nid,
146 ulong flags)
147{
148 phys_addr_t this_start, this_end, cand;
149 u64 i;
150
151 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
152 NULL) {
153 this_start = clamp(this_start, start, end);
154 this_end = clamp(this_end, start, end);
155
156 if (this_end < size)
157 continue;
158
159 cand = round_down(this_end - size, align);
160 if (cand >= this_start)
161 return cand;
162 }
163
164 return 0;
165}
166
167/**
168 * memblock_find_in_range_node - find free area in given range and node
169 * @size: size of free area to find
170 * @align: alignment of free area to find
171 * @start: start of candidate range
172 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
173 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
174 * @flags: pick from blocks based on memory attributes
175 *
176 * Find @size free area aligned to @align in the specified range and node.
177 *
178 * When allocation direction is bottom-up, the @start should be greater
179 * than the end of the kernel image. Otherwise, it will be trimmed. The
180 * reason is that we want the bottom-up allocation just near the kernel
181 * image so it is highly likely that the allocated memory and the kernel
182 * will reside in the same node.
183 *
184 * If bottom-up allocation failed, will try to allocate memory top-down.
185 *
186 * RETURNS:
187 * Found address on success, 0 on failure.
188 */
189phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
190 phys_addr_t align, phys_addr_t start,
191 phys_addr_t end, int nid, ulong flags)
192{
193 phys_addr_t kernel_end, ret;
194
195 /* pump up @end */
196 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
197 end = memblock.current_limit;
198
199 /* avoid allocating the first page */
200 start = max_t(phys_addr_t, start, PAGE_SIZE);
201 end = max(start, end);
202 kernel_end = __pa_symbol(_end);
203
204 /*
205 * try bottom-up allocation only when bottom-up mode
206 * is set and @end is above the kernel image.
207 */
208 if (memblock_bottom_up() && end > kernel_end) {
209 phys_addr_t bottom_up_start;
210
211 /* make sure we will allocate above the kernel */
212 bottom_up_start = max(start, kernel_end);
213
214 /* ok, try bottom-up allocation first */
215 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
216 size, align, nid, flags);
217 if (ret)
218 return ret;
219
220 /*
221 * we always limit bottom-up allocation above the kernel,
222 * but top-down allocation doesn't have the limit, so
223 * retrying top-down allocation may succeed when bottom-up
224 * allocation failed.
225 *
226 * bottom-up allocation is expected to be fail very rarely,
227 * so we use WARN_ONCE() here to see the stack trace if
228 * fail happens.
229 */
230 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
231 }
232
233 return __memblock_find_range_top_down(start, end, size, align, nid,
234 flags);
235}
236
237/**
238 * memblock_find_in_range - find free area in given range
239 * @start: start of candidate range
240 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
241 * @size: size of free area to find
242 * @align: alignment of free area to find
243 *
244 * Find @size free area aligned to @align in the specified range.
245 *
246 * RETURNS:
247 * Found address on success, 0 on failure.
248 */
249phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
250 phys_addr_t end, phys_addr_t size,
251 phys_addr_t align)
252{
253 phys_addr_t ret;
254 ulong flags = choose_memblock_flags();
255
256again:
257 ret = memblock_find_in_range_node(size, align, start, end,
258 NUMA_NO_NODE, flags);
259
260 if (!ret && (flags & MEMBLOCK_MIRROR)) {
261 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
262 &size);
263 flags &= ~MEMBLOCK_MIRROR;
264 goto again;
265 }
266
267 return ret;
268}
269
270static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
271{
272 type->total_size -= type->regions[r].size;
273 memmove(&type->regions[r], &type->regions[r + 1],
274 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
275 type->cnt--;
276
277 /* Special case for empty arrays */
278 if (type->cnt == 0) {
279 WARN_ON(type->total_size != 0);
280 type->cnt = 1;
281 type->regions[0].base = 0;
282 type->regions[0].size = 0;
283 type->regions[0].flags = 0;
284 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
285 }
286}
287
288#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
289/**
290 * Discard memory and reserved arrays if they were allocated
291 */
292void __init memblock_discard(void)
293{
294 phys_addr_t addr, size;
295
296 if (memblock.reserved.regions != memblock_reserved_init_regions) {
297 addr = __pa(memblock.reserved.regions);
298 size = PAGE_ALIGN(sizeof(struct memblock_region) *
299 memblock.reserved.max);
300 __memblock_free_late(addr, size);
301 }
302
303 if (memblock.memory.regions != memblock_memory_init_regions) {
304 addr = __pa(memblock.memory.regions);
305 size = PAGE_ALIGN(sizeof(struct memblock_region) *
306 memblock.memory.max);
307 __memblock_free_late(addr, size);
308 }
309}
310#endif
311
312/**
313 * memblock_double_array - double the size of the memblock regions array
314 * @type: memblock type of the regions array being doubled
315 * @new_area_start: starting address of memory range to avoid overlap with
316 * @new_area_size: size of memory range to avoid overlap with
317 *
318 * Double the size of the @type regions array. If memblock is being used to
319 * allocate memory for a new reserved regions array and there is a previously
320 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
321 * waiting to be reserved, ensure the memory used by the new array does
322 * not overlap.
323 *
324 * RETURNS:
325 * 0 on success, -1 on failure.
326 */
327static int __init_memblock memblock_double_array(struct memblock_type *type,
328 phys_addr_t new_area_start,
329 phys_addr_t new_area_size)
330{
331 struct memblock_region *new_array, *old_array;
332 phys_addr_t old_alloc_size, new_alloc_size;
333 phys_addr_t old_size, new_size, addr;
334 int use_slab = slab_is_available();
335 int *in_slab;
336
337 /* We don't allow resizing until we know about the reserved regions
338 * of memory that aren't suitable for allocation
339 */
340 if (!memblock_can_resize)
341 return -1;
342
343 /* Calculate new doubled size */
344 old_size = type->max * sizeof(struct memblock_region);
345 new_size = old_size << 1;
346 /*
347 * We need to allocated new one align to PAGE_SIZE,
348 * so we can free them completely later.
349 */
350 old_alloc_size = PAGE_ALIGN(old_size);
351 new_alloc_size = PAGE_ALIGN(new_size);
352
353 /* Retrieve the slab flag */
354 if (type == &memblock.memory)
355 in_slab = &memblock_memory_in_slab;
356 else
357 in_slab = &memblock_reserved_in_slab;
358
359 /* Try to find some space for it.
360 *
361 * WARNING: We assume that either slab_is_available() and we use it or
362 * we use MEMBLOCK for allocations. That means that this is unsafe to
363 * use when bootmem is currently active (unless bootmem itself is
364 * implemented on top of MEMBLOCK which isn't the case yet)
365 *
366 * This should however not be an issue for now, as we currently only
367 * call into MEMBLOCK while it's still active, or much later when slab
368 * is active for memory hotplug operations
369 */
370 if (use_slab) {
371 new_array = kmalloc(new_size, GFP_KERNEL);
372 addr = new_array ? __pa(new_array) : 0;
373 } else {
374 /* only exclude range when trying to double reserved.regions */
375 if (type != &memblock.reserved)
376 new_area_start = new_area_size = 0;
377
378 addr = memblock_find_in_range(new_area_start + new_area_size,
379 memblock.current_limit,
380 new_alloc_size, PAGE_SIZE);
381 if (!addr && new_area_size)
382 addr = memblock_find_in_range(0,
383 min(new_area_start, memblock.current_limit),
384 new_alloc_size, PAGE_SIZE);
385
386 new_array = addr ? __va(addr) : NULL;
387 }
388 if (!addr) {
389 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
390 type->name, type->max, type->max * 2);
391 return -1;
392 }
393
394 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
395 type->name, type->max * 2, (u64)addr,
396 (u64)addr + new_size - 1);
397
398 /*
399 * Found space, we now need to move the array over before we add the
400 * reserved region since it may be our reserved array itself that is
401 * full.
402 */
403 memcpy(new_array, type->regions, old_size);
404 memset(new_array + type->max, 0, old_size);
405 old_array = type->regions;
406 type->regions = new_array;
407 type->max <<= 1;
408
409 /* Free old array. We needn't free it if the array is the static one */
410 if (*in_slab)
411 kfree(old_array);
412 else if (old_array != memblock_memory_init_regions &&
413 old_array != memblock_reserved_init_regions)
414 memblock_free(__pa(old_array), old_alloc_size);
415
416 /*
417 * Reserve the new array if that comes from the memblock. Otherwise, we
418 * needn't do it
419 */
420 if (!use_slab)
421 BUG_ON(memblock_reserve(addr, new_alloc_size));
422
423 /* Update slab flag */
424 *in_slab = use_slab;
425
426 return 0;
427}
428
429/**
430 * memblock_merge_regions - merge neighboring compatible regions
431 * @type: memblock type to scan
432 *
433 * Scan @type and merge neighboring compatible regions.
434 */
435static void __init_memblock memblock_merge_regions(struct memblock_type *type)
436{
437 int i = 0;
438
439 /* cnt never goes below 1 */
440 while (i < type->cnt - 1) {
441 struct memblock_region *this = &type->regions[i];
442 struct memblock_region *next = &type->regions[i + 1];
443
444 if (this->base + this->size != next->base ||
445 memblock_get_region_node(this) !=
446 memblock_get_region_node(next) ||
447 this->flags != next->flags) {
448 BUG_ON(this->base + this->size > next->base);
449 i++;
450 continue;
451 }
452
453 this->size += next->size;
454 /* move forward from next + 1, index of which is i + 2 */
455 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
456 type->cnt--;
457 }
458}
459
460/**
461 * memblock_insert_region - insert new memblock region
462 * @type: memblock type to insert into
463 * @idx: index for the insertion point
464 * @base: base address of the new region
465 * @size: size of the new region
466 * @nid: node id of the new region
467 * @flags: flags of the new region
468 *
469 * Insert new memblock region [@base,@base+@size) into @type at @idx.
470 * @type must already have extra room to accommodate the new region.
471 */
472static void __init_memblock memblock_insert_region(struct memblock_type *type,
473 int idx, phys_addr_t base,
474 phys_addr_t size,
475 int nid, unsigned long flags)
476{
477 struct memblock_region *rgn = &type->regions[idx];
478
479 BUG_ON(type->cnt >= type->max);
480 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
481 rgn->base = base;
482 rgn->size = size;
483 rgn->flags = flags;
484 memblock_set_region_node(rgn, nid);
485 type->cnt++;
486 type->total_size += size;
487}
488
489/**
490 * memblock_add_range - add new memblock region
491 * @type: memblock type to add new region into
492 * @base: base address of the new region
493 * @size: size of the new region
494 * @nid: nid of the new region
495 * @flags: flags of the new region
496 *
497 * Add new memblock region [@base,@base+@size) into @type. The new region
498 * is allowed to overlap with existing ones - overlaps don't affect already
499 * existing regions. @type is guaranteed to be minimal (all neighbouring
500 * compatible regions are merged) after the addition.
501 *
502 * RETURNS:
503 * 0 on success, -errno on failure.
504 */
505int __init_memblock memblock_add_range(struct memblock_type *type,
506 phys_addr_t base, phys_addr_t size,
507 int nid, unsigned long flags)
508{
509 bool insert = false;
510 phys_addr_t obase = base;
511 phys_addr_t end = base + memblock_cap_size(base, &size);
512 int idx, nr_new;
513 struct memblock_region *rgn;
514
515 if (!size)
516 return 0;
517
518 /* special case for empty array */
519 if (type->regions[0].size == 0) {
520 WARN_ON(type->cnt != 1 || type->total_size);
521 type->regions[0].base = base;
522 type->regions[0].size = size;
523 type->regions[0].flags = flags;
524 memblock_set_region_node(&type->regions[0], nid);
525 type->total_size = size;
526 return 0;
527 }
528repeat:
529 /*
530 * The following is executed twice. Once with %false @insert and
531 * then with %true. The first counts the number of regions needed
532 * to accommodate the new area. The second actually inserts them.
533 */
534 base = obase;
535 nr_new = 0;
536
537 for_each_memblock_type(idx, type, rgn) {
538 phys_addr_t rbase = rgn->base;
539 phys_addr_t rend = rbase + rgn->size;
540
541 if (rbase >= end)
542 break;
543 if (rend <= base)
544 continue;
545 /*
546 * @rgn overlaps. If it separates the lower part of new
547 * area, insert that portion.
548 */
549 if (rbase > base) {
550#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
551 WARN_ON(nid != memblock_get_region_node(rgn));
552#endif
553 WARN_ON(flags != rgn->flags);
554 nr_new++;
555 if (insert)
556 memblock_insert_region(type, idx++, base,
557 rbase - base, nid,
558 flags);
559 }
560 /* area below @rend is dealt with, forget about it */
561 base = min(rend, end);
562 }
563
564 /* insert the remaining portion */
565 if (base < end) {
566 nr_new++;
567 if (insert)
568 memblock_insert_region(type, idx, base, end - base,
569 nid, flags);
570 }
571
572 if (!nr_new)
573 return 0;
574
575 /*
576 * If this was the first round, resize array and repeat for actual
577 * insertions; otherwise, merge and return.
578 */
579 if (!insert) {
580 while (type->cnt + nr_new > type->max)
581 if (memblock_double_array(type, obase, size) < 0)
582 return -ENOMEM;
583 insert = true;
584 goto repeat;
585 } else {
586 memblock_merge_regions(type);
587 return 0;
588 }
589}
590
591int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
592 int nid)
593{
594 return memblock_add_range(&memblock.memory, base, size, nid, 0);
595}
596
597int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
598{
599 phys_addr_t end = base + size - 1;
600
601 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
602 &base, &end, (void *)_RET_IP_);
603
604 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
605}
606
607/**
608 * memblock_isolate_range - isolate given range into disjoint memblocks
609 * @type: memblock type to isolate range for
610 * @base: base of range to isolate
611 * @size: size of range to isolate
612 * @start_rgn: out parameter for the start of isolated region
613 * @end_rgn: out parameter for the end of isolated region
614 *
615 * Walk @type and ensure that regions don't cross the boundaries defined by
616 * [@base,@base+@size). Crossing regions are split at the boundaries,
617 * which may create at most two more regions. The index of the first
618 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
619 *
620 * RETURNS:
621 * 0 on success, -errno on failure.
622 */
623static int __init_memblock memblock_isolate_range(struct memblock_type *type,
624 phys_addr_t base, phys_addr_t size,
625 int *start_rgn, int *end_rgn)
626{
627 phys_addr_t end = base + memblock_cap_size(base, &size);
628 int idx;
629 struct memblock_region *rgn;
630
631 *start_rgn = *end_rgn = 0;
632
633 if (!size)
634 return 0;
635
636 /* we'll create at most two more regions */
637 while (type->cnt + 2 > type->max)
638 if (memblock_double_array(type, base, size) < 0)
639 return -ENOMEM;
640
641 for_each_memblock_type(idx, type, rgn) {
642 phys_addr_t rbase = rgn->base;
643 phys_addr_t rend = rbase + rgn->size;
644
645 if (rbase >= end)
646 break;
647 if (rend <= base)
648 continue;
649
650 if (rbase < base) {
651 /*
652 * @rgn intersects from below. Split and continue
653 * to process the next region - the new top half.
654 */
655 rgn->base = base;
656 rgn->size -= base - rbase;
657 type->total_size -= base - rbase;
658 memblock_insert_region(type, idx, rbase, base - rbase,
659 memblock_get_region_node(rgn),
660 rgn->flags);
661 } else if (rend > end) {
662 /*
663 * @rgn intersects from above. Split and redo the
664 * current region - the new bottom half.
665 */
666 rgn->base = end;
667 rgn->size -= end - rbase;
668 type->total_size -= end - rbase;
669 memblock_insert_region(type, idx--, rbase, end - rbase,
670 memblock_get_region_node(rgn),
671 rgn->flags);
672 } else {
673 /* @rgn is fully contained, record it */
674 if (!*end_rgn)
675 *start_rgn = idx;
676 *end_rgn = idx + 1;
677 }
678 }
679
680 return 0;
681}
682
683static int __init_memblock memblock_remove_range(struct memblock_type *type,
684 phys_addr_t base, phys_addr_t size)
685{
686 int start_rgn, end_rgn;
687 int i, ret;
688
689 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
690 if (ret)
691 return ret;
692
693 for (i = end_rgn - 1; i >= start_rgn; i--)
694 memblock_remove_region(type, i);
695 return 0;
696}
697
698int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
699{
700 return memblock_remove_range(&memblock.memory, base, size);
701}
702
703
704int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
705{
706 phys_addr_t end = base + size - 1;
707
708 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
709 &base, &end, (void *)_RET_IP_);
710
711 kmemleak_free_part_phys(base, size);
712 return memblock_remove_range(&memblock.reserved, base, size);
713}
714
715int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
716{
717 phys_addr_t end = base + size - 1;
718
719 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
720 &base, &end, (void *)_RET_IP_);
721
722 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
723}
724
725/**
726 *
727 * This function isolates region [@base, @base + @size), and sets/clears flag
728 *
729 * Return 0 on success, -errno on failure.
730 */
731static int __init_memblock memblock_setclr_flag(phys_addr_t base,
732 phys_addr_t size, int set, int flag)
733{
734 struct memblock_type *type = &memblock.memory;
735 int i, ret, start_rgn, end_rgn;
736
737 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
738 if (ret)
739 return ret;
740
741 for (i = start_rgn; i < end_rgn; i++)
742 if (set)
743 memblock_set_region_flags(&type->regions[i], flag);
744 else
745 memblock_clear_region_flags(&type->regions[i], flag);
746
747 memblock_merge_regions(type);
748 return 0;
749}
750
751/**
752 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
753 * @base: the base phys addr of the region
754 * @size: the size of the region
755 *
756 * Return 0 on success, -errno on failure.
757 */
758int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
759{
760 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
761}
762
763/**
764 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
765 * @base: the base phys addr of the region
766 * @size: the size of the region
767 *
768 * Return 0 on success, -errno on failure.
769 */
770int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
771{
772 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
773}
774
775/**
776 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
777 * @base: the base phys addr of the region
778 * @size: the size of the region
779 *
780 * Return 0 on success, -errno on failure.
781 */
782int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
783{
784 system_has_some_mirror = true;
785
786 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
787}
788
789/**
790 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
791 * @base: the base phys addr of the region
792 * @size: the size of the region
793 *
794 * Return 0 on success, -errno on failure.
795 */
796int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
797{
798 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
799}
800
801/**
802 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
803 * @base: the base phys addr of the region
804 * @size: the size of the region
805 *
806 * Return 0 on success, -errno on failure.
807 */
808int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
809{
810 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
811}
812
813/**
814 * __next_reserved_mem_region - next function for for_each_reserved_region()
815 * @idx: pointer to u64 loop variable
816 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
817 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
818 *
819 * Iterate over all reserved memory regions.
820 */
821void __init_memblock __next_reserved_mem_region(u64 *idx,
822 phys_addr_t *out_start,
823 phys_addr_t *out_end)
824{
825 struct memblock_type *type = &memblock.reserved;
826
827 if (*idx < type->cnt) {
828 struct memblock_region *r = &type->regions[*idx];
829 phys_addr_t base = r->base;
830 phys_addr_t size = r->size;
831
832 if (out_start)
833 *out_start = base;
834 if (out_end)
835 *out_end = base + size - 1;
836
837 *idx += 1;
838 return;
839 }
840
841 /* signal end of iteration */
842 *idx = ULLONG_MAX;
843}
844
845/**
846 * __next__mem_range - next function for for_each_free_mem_range() etc.
847 * @idx: pointer to u64 loop variable
848 * @nid: node selector, %NUMA_NO_NODE for all nodes
849 * @flags: pick from blocks based on memory attributes
850 * @type_a: pointer to memblock_type from where the range is taken
851 * @type_b: pointer to memblock_type which excludes memory from being taken
852 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
853 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
854 * @out_nid: ptr to int for nid of the range, can be %NULL
855 *
856 * Find the first area from *@idx which matches @nid, fill the out
857 * parameters, and update *@idx for the next iteration. The lower 32bit of
858 * *@idx contains index into type_a and the upper 32bit indexes the
859 * areas before each region in type_b. For example, if type_b regions
860 * look like the following,
861 *
862 * 0:[0-16), 1:[32-48), 2:[128-130)
863 *
864 * The upper 32bit indexes the following regions.
865 *
866 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
867 *
868 * As both region arrays are sorted, the function advances the two indices
869 * in lockstep and returns each intersection.
870 */
871void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
872 struct memblock_type *type_a,
873 struct memblock_type *type_b,
874 phys_addr_t *out_start,
875 phys_addr_t *out_end, int *out_nid)
876{
877 int idx_a = *idx & 0xffffffff;
878 int idx_b = *idx >> 32;
879
880 if (WARN_ONCE(nid == MAX_NUMNODES,
881 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
882 nid = NUMA_NO_NODE;
883
884 for (; idx_a < type_a->cnt; idx_a++) {
885 struct memblock_region *m = &type_a->regions[idx_a];
886
887 phys_addr_t m_start = m->base;
888 phys_addr_t m_end = m->base + m->size;
889 int m_nid = memblock_get_region_node(m);
890
891 /* only memory regions are associated with nodes, check it */
892 if (nid != NUMA_NO_NODE && nid != m_nid)
893 continue;
894
895 /* skip hotpluggable memory regions if needed */
896 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
897 continue;
898
899 /* if we want mirror memory skip non-mirror memory regions */
900 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
901 continue;
902
903 /* skip nomap memory unless we were asked for it explicitly */
904 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
905 continue;
906
907 if (!type_b) {
908 if (out_start)
909 *out_start = m_start;
910 if (out_end)
911 *out_end = m_end;
912 if (out_nid)
913 *out_nid = m_nid;
914 idx_a++;
915 *idx = (u32)idx_a | (u64)idx_b << 32;
916 return;
917 }
918
919 /* scan areas before each reservation */
920 for (; idx_b < type_b->cnt + 1; idx_b++) {
921 struct memblock_region *r;
922 phys_addr_t r_start;
923 phys_addr_t r_end;
924
925 r = &type_b->regions[idx_b];
926 r_start = idx_b ? r[-1].base + r[-1].size : 0;
927 r_end = idx_b < type_b->cnt ?
928 r->base : (phys_addr_t)ULLONG_MAX;
929
930 /*
931 * if idx_b advanced past idx_a,
932 * break out to advance idx_a
933 */
934 if (r_start >= m_end)
935 break;
936 /* if the two regions intersect, we're done */
937 if (m_start < r_end) {
938 if (out_start)
939 *out_start =
940 max(m_start, r_start);
941 if (out_end)
942 *out_end = min(m_end, r_end);
943 if (out_nid)
944 *out_nid = m_nid;
945 /*
946 * The region which ends first is
947 * advanced for the next iteration.
948 */
949 if (m_end <= r_end)
950 idx_a++;
951 else
952 idx_b++;
953 *idx = (u32)idx_a | (u64)idx_b << 32;
954 return;
955 }
956 }
957 }
958
959 /* signal end of iteration */
960 *idx = ULLONG_MAX;
961}
962
963/**
964 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
965 *
966 * Finds the next range from type_a which is not marked as unsuitable
967 * in type_b.
968 *
969 * @idx: pointer to u64 loop variable
970 * @nid: node selector, %NUMA_NO_NODE for all nodes
971 * @flags: pick from blocks based on memory attributes
972 * @type_a: pointer to memblock_type from where the range is taken
973 * @type_b: pointer to memblock_type which excludes memory from being taken
974 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
975 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
976 * @out_nid: ptr to int for nid of the range, can be %NULL
977 *
978 * Reverse of __next_mem_range().
979 */
980void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
981 struct memblock_type *type_a,
982 struct memblock_type *type_b,
983 phys_addr_t *out_start,
984 phys_addr_t *out_end, int *out_nid)
985{
986 int idx_a = *idx & 0xffffffff;
987 int idx_b = *idx >> 32;
988
989 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
990 nid = NUMA_NO_NODE;
991
992 if (*idx == (u64)ULLONG_MAX) {
993 idx_a = type_a->cnt - 1;
994 if (type_b != NULL)
995 idx_b = type_b->cnt;
996 else
997 idx_b = 0;
998 }
999
1000 for (; idx_a >= 0; idx_a--) {
1001 struct memblock_region *m = &type_a->regions[idx_a];
1002
1003 phys_addr_t m_start = m->base;
1004 phys_addr_t m_end = m->base + m->size;
1005 int m_nid = memblock_get_region_node(m);
1006
1007 /* only memory regions are associated with nodes, check it */
1008 if (nid != NUMA_NO_NODE && nid != m_nid)
1009 continue;
1010
1011 /* skip hotpluggable memory regions if needed */
1012 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1013 continue;
1014
1015 /* if we want mirror memory skip non-mirror memory regions */
1016 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1017 continue;
1018
1019 /* skip nomap memory unless we were asked for it explicitly */
1020 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1021 continue;
1022
1023 if (!type_b) {
1024 if (out_start)
1025 *out_start = m_start;
1026 if (out_end)
1027 *out_end = m_end;
1028 if (out_nid)
1029 *out_nid = m_nid;
1030 idx_a--;
1031 *idx = (u32)idx_a | (u64)idx_b << 32;
1032 return;
1033 }
1034
1035 /* scan areas before each reservation */
1036 for (; idx_b >= 0; idx_b--) {
1037 struct memblock_region *r;
1038 phys_addr_t r_start;
1039 phys_addr_t r_end;
1040
1041 r = &type_b->regions[idx_b];
1042 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1043 r_end = idx_b < type_b->cnt ?
1044 r->base : (phys_addr_t)ULLONG_MAX;
1045 /*
1046 * if idx_b advanced past idx_a,
1047 * break out to advance idx_a
1048 */
1049
1050 if (r_end <= m_start)
1051 break;
1052 /* if the two regions intersect, we're done */
1053 if (m_end > r_start) {
1054 if (out_start)
1055 *out_start = max(m_start, r_start);
1056 if (out_end)
1057 *out_end = min(m_end, r_end);
1058 if (out_nid)
1059 *out_nid = m_nid;
1060 if (m_start >= r_start)
1061 idx_a--;
1062 else
1063 idx_b--;
1064 *idx = (u32)idx_a | (u64)idx_b << 32;
1065 return;
1066 }
1067 }
1068 }
1069 /* signal end of iteration */
1070 *idx = ULLONG_MAX;
1071}
1072
1073#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1074/*
1075 * Common iterator interface used to define for_each_mem_range().
1076 */
1077void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1078 unsigned long *out_start_pfn,
1079 unsigned long *out_end_pfn, int *out_nid)
1080{
1081 struct memblock_type *type = &memblock.memory;
1082 struct memblock_region *r;
1083
1084 while (++*idx < type->cnt) {
1085 r = &type->regions[*idx];
1086
1087 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1088 continue;
1089 if (nid == MAX_NUMNODES || nid == r->nid)
1090 break;
1091 }
1092 if (*idx >= type->cnt) {
1093 *idx = -1;
1094 return;
1095 }
1096
1097 if (out_start_pfn)
1098 *out_start_pfn = PFN_UP(r->base);
1099 if (out_end_pfn)
1100 *out_end_pfn = PFN_DOWN(r->base + r->size);
1101 if (out_nid)
1102 *out_nid = r->nid;
1103}
1104
1105/**
1106 * memblock_set_node - set node ID on memblock regions
1107 * @base: base of area to set node ID for
1108 * @size: size of area to set node ID for
1109 * @type: memblock type to set node ID for
1110 * @nid: node ID to set
1111 *
1112 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1113 * Regions which cross the area boundaries are split as necessary.
1114 *
1115 * RETURNS:
1116 * 0 on success, -errno on failure.
1117 */
1118int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1119 struct memblock_type *type, int nid)
1120{
1121 int start_rgn, end_rgn;
1122 int i, ret;
1123
1124 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1125 if (ret)
1126 return ret;
1127
1128 for (i = start_rgn; i < end_rgn; i++)
1129 memblock_set_region_node(&type->regions[i], nid);
1130
1131 memblock_merge_regions(type);
1132 return 0;
1133}
1134#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1135
1136static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1137 phys_addr_t align, phys_addr_t start,
1138 phys_addr_t end, int nid, ulong flags)
1139{
1140 phys_addr_t found;
1141
1142 if (!align)
1143 align = SMP_CACHE_BYTES;
1144
1145 found = memblock_find_in_range_node(size, align, start, end, nid,
1146 flags);
1147 if (found && !memblock_reserve(found, size)) {
1148 /*
1149 * The min_count is set to 0 so that memblock allocations are
1150 * never reported as leaks.
1151 */
1152 kmemleak_alloc_phys(found, size, 0, 0);
1153 return found;
1154 }
1155 return 0;
1156}
1157
1158phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1159 phys_addr_t start, phys_addr_t end,
1160 ulong flags)
1161{
1162 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1163 flags);
1164}
1165
1166phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1167 phys_addr_t align, phys_addr_t max_addr,
1168 int nid, ulong flags)
1169{
1170 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1171}
1172
1173phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1174{
1175 ulong flags = choose_memblock_flags();
1176 phys_addr_t ret;
1177
1178again:
1179 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1180 nid, flags);
1181
1182 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1183 flags &= ~MEMBLOCK_MIRROR;
1184 goto again;
1185 }
1186 return ret;
1187}
1188
1189phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1190{
1191 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1192 MEMBLOCK_NONE);
1193}
1194
1195phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1196{
1197 phys_addr_t alloc;
1198
1199 alloc = __memblock_alloc_base(size, align, max_addr);
1200
1201 if (alloc == 0)
1202 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1203 &size, &max_addr);
1204
1205 return alloc;
1206}
1207
1208phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1209{
1210 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1211}
1212
1213phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1214{
1215 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1216
1217 if (res)
1218 return res;
1219 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1220}
1221
1222/**
1223 * memblock_virt_alloc_internal - allocate boot memory block
1224 * @size: size of memory block to be allocated in bytes
1225 * @align: alignment of the region and block's size
1226 * @min_addr: the lower bound of the memory region to allocate (phys address)
1227 * @max_addr: the upper bound of the memory region to allocate (phys address)
1228 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1229 *
1230 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1231 * will fall back to memory below @min_addr. Also, allocation may fall back
1232 * to any node in the system if the specified node can not
1233 * hold the requested memory.
1234 *
1235 * The allocation is performed from memory region limited by
1236 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1237 *
1238 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1239 *
1240 * The phys address of allocated boot memory block is converted to virtual and
1241 * allocated memory is reset to 0.
1242 *
1243 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1244 * allocated boot memory block, so that it is never reported as leaks.
1245 *
1246 * RETURNS:
1247 * Virtual address of allocated memory block on success, NULL on failure.
1248 */
1249static void * __init memblock_virt_alloc_internal(
1250 phys_addr_t size, phys_addr_t align,
1251 phys_addr_t min_addr, phys_addr_t max_addr,
1252 int nid)
1253{
1254 phys_addr_t alloc;
1255 void *ptr;
1256 ulong flags = choose_memblock_flags();
1257
1258 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1259 nid = NUMA_NO_NODE;
1260
1261 /*
1262 * Detect any accidental use of these APIs after slab is ready, as at
1263 * this moment memblock may be deinitialized already and its
1264 * internal data may be destroyed (after execution of free_all_bootmem)
1265 */
1266 if (WARN_ON_ONCE(slab_is_available()))
1267 return kzalloc_node(size, GFP_NOWAIT, nid);
1268
1269 if (!align)
1270 align = SMP_CACHE_BYTES;
1271
1272 if (max_addr > memblock.current_limit)
1273 max_addr = memblock.current_limit;
1274again:
1275 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1276 nid, flags);
1277 if (alloc && !memblock_reserve(alloc, size))
1278 goto done;
1279
1280 if (nid != NUMA_NO_NODE) {
1281 alloc = memblock_find_in_range_node(size, align, min_addr,
1282 max_addr, NUMA_NO_NODE,
1283 flags);
1284 if (alloc && !memblock_reserve(alloc, size))
1285 goto done;
1286 }
1287
1288 if (min_addr) {
1289 min_addr = 0;
1290 goto again;
1291 }
1292
1293 if (flags & MEMBLOCK_MIRROR) {
1294 flags &= ~MEMBLOCK_MIRROR;
1295 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1296 &size);
1297 goto again;
1298 }
1299
1300 return NULL;
1301done:
1302 ptr = phys_to_virt(alloc);
1303
1304 /*
1305 * The min_count is set to 0 so that bootmem allocated blocks
1306 * are never reported as leaks. This is because many of these blocks
1307 * are only referred via the physical address which is not
1308 * looked up by kmemleak.
1309 */
1310 kmemleak_alloc(ptr, size, 0, 0);
1311
1312 return ptr;
1313}
1314
1315/**
1316 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1317 * memory and without panicking
1318 * @size: size of memory block to be allocated in bytes
1319 * @align: alignment of the region and block's size
1320 * @min_addr: the lower bound of the memory region from where the allocation
1321 * is preferred (phys address)
1322 * @max_addr: the upper bound of the memory region from where the allocation
1323 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1324 * allocate only from memory limited by memblock.current_limit value
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 *
1327 * Public function, provides additional debug information (including caller
1328 * info), if enabled. Does not zero allocated memory, does not panic if request
1329 * cannot be satisfied.
1330 *
1331 * RETURNS:
1332 * Virtual address of allocated memory block on success, NULL on failure.
1333 */
1334void * __init memblock_virt_alloc_try_nid_raw(
1335 phys_addr_t size, phys_addr_t align,
1336 phys_addr_t min_addr, phys_addr_t max_addr,
1337 int nid)
1338{
1339 void *ptr;
1340
1341 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1342 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1343 (u64)max_addr, (void *)_RET_IP_);
1344
1345 ptr = memblock_virt_alloc_internal(size, align,
1346 min_addr, max_addr, nid);
1347#ifdef CONFIG_DEBUG_VM
1348 if (ptr && size > 0)
1349 memset(ptr, PAGE_POISON_PATTERN, size);
1350#endif
1351 return ptr;
1352}
1353
1354/**
1355 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1356 * @size: size of memory block to be allocated in bytes
1357 * @align: alignment of the region and block's size
1358 * @min_addr: the lower bound of the memory region from where the allocation
1359 * is preferred (phys address)
1360 * @max_addr: the upper bound of the memory region from where the allocation
1361 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1362 * allocate only from memory limited by memblock.current_limit value
1363 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1364 *
1365 * Public function, provides additional debug information (including caller
1366 * info), if enabled. This function zeroes the allocated memory.
1367 *
1368 * RETURNS:
1369 * Virtual address of allocated memory block on success, NULL on failure.
1370 */
1371void * __init memblock_virt_alloc_try_nid_nopanic(
1372 phys_addr_t size, phys_addr_t align,
1373 phys_addr_t min_addr, phys_addr_t max_addr,
1374 int nid)
1375{
1376 void *ptr;
1377
1378 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1379 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1380 (u64)max_addr, (void *)_RET_IP_);
1381
1382 ptr = memblock_virt_alloc_internal(size, align,
1383 min_addr, max_addr, nid);
1384 if (ptr)
1385 memset(ptr, 0, size);
1386 return ptr;
1387}
1388
1389/**
1390 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1391 * @size: size of memory block to be allocated in bytes
1392 * @align: alignment of the region and block's size
1393 * @min_addr: the lower bound of the memory region from where the allocation
1394 * is preferred (phys address)
1395 * @max_addr: the upper bound of the memory region from where the allocation
1396 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1397 * allocate only from memory limited by memblock.current_limit value
1398 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1399 *
1400 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1401 * which provides debug information (including caller info), if enabled,
1402 * and panics if the request can not be satisfied.
1403 *
1404 * RETURNS:
1405 * Virtual address of allocated memory block on success, NULL on failure.
1406 */
1407void * __init memblock_virt_alloc_try_nid(
1408 phys_addr_t size, phys_addr_t align,
1409 phys_addr_t min_addr, phys_addr_t max_addr,
1410 int nid)
1411{
1412 void *ptr;
1413
1414 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1415 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1416 (u64)max_addr, (void *)_RET_IP_);
1417 ptr = memblock_virt_alloc_internal(size, align,
1418 min_addr, max_addr, nid);
1419 if (ptr) {
1420 memset(ptr, 0, size);
1421 return ptr;
1422 }
1423
1424 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1425 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1426 (u64)max_addr);
1427 return NULL;
1428}
1429
1430/**
1431 * __memblock_free_early - free boot memory block
1432 * @base: phys starting address of the boot memory block
1433 * @size: size of the boot memory block in bytes
1434 *
1435 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1436 * The freeing memory will not be released to the buddy allocator.
1437 */
1438void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1439{
1440 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1441 __func__, (u64)base, (u64)base + size - 1,
1442 (void *)_RET_IP_);
1443 kmemleak_free_part_phys(base, size);
1444 memblock_remove_range(&memblock.reserved, base, size);
1445}
1446
1447/*
1448 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1449 * @addr: phys starting address of the boot memory block
1450 * @size: size of the boot memory block in bytes
1451 *
1452 * This is only useful when the bootmem allocator has already been torn
1453 * down, but we are still initializing the system. Pages are released directly
1454 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1455 */
1456void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1457{
1458 u64 cursor, end;
1459
1460 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1461 __func__, (u64)base, (u64)base + size - 1,
1462 (void *)_RET_IP_);
1463 kmemleak_free_part_phys(base, size);
1464 cursor = PFN_UP(base);
1465 end = PFN_DOWN(base + size);
1466
1467 for (; cursor < end; cursor++) {
1468 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1469 totalram_pages++;
1470 }
1471}
1472
1473/*
1474 * Remaining API functions
1475 */
1476
1477phys_addr_t __init_memblock memblock_phys_mem_size(void)
1478{
1479 return memblock.memory.total_size;
1480}
1481
1482phys_addr_t __init_memblock memblock_reserved_size(void)
1483{
1484 return memblock.reserved.total_size;
1485}
1486
1487phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1488{
1489 unsigned long pages = 0;
1490 struct memblock_region *r;
1491 unsigned long start_pfn, end_pfn;
1492
1493 for_each_memblock(memory, r) {
1494 start_pfn = memblock_region_memory_base_pfn(r);
1495 end_pfn = memblock_region_memory_end_pfn(r);
1496 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1497 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1498 pages += end_pfn - start_pfn;
1499 }
1500
1501 return PFN_PHYS(pages);
1502}
1503
1504/* lowest address */
1505phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1506{
1507 return memblock.memory.regions[0].base;
1508}
1509
1510phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1511{
1512 int idx = memblock.memory.cnt - 1;
1513
1514 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1515}
1516
1517static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1518{
1519 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1520 struct memblock_region *r;
1521
1522 /*
1523 * translate the memory @limit size into the max address within one of
1524 * the memory memblock regions, if the @limit exceeds the total size
1525 * of those regions, max_addr will keep original value ULLONG_MAX
1526 */
1527 for_each_memblock(memory, r) {
1528 if (limit <= r->size) {
1529 max_addr = r->base + limit;
1530 break;
1531 }
1532 limit -= r->size;
1533 }
1534
1535 return max_addr;
1536}
1537
1538void __init memblock_enforce_memory_limit(phys_addr_t limit)
1539{
1540 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1541
1542 if (!limit)
1543 return;
1544
1545 max_addr = __find_max_addr(limit);
1546
1547 /* @limit exceeds the total size of the memory, do nothing */
1548 if (max_addr == (phys_addr_t)ULLONG_MAX)
1549 return;
1550
1551 /* truncate both memory and reserved regions */
1552 memblock_remove_range(&memblock.memory, max_addr,
1553 (phys_addr_t)ULLONG_MAX);
1554 memblock_remove_range(&memblock.reserved, max_addr,
1555 (phys_addr_t)ULLONG_MAX);
1556}
1557
1558void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1559{
1560 int start_rgn, end_rgn;
1561 int i, ret;
1562
1563 if (!size)
1564 return;
1565
1566 ret = memblock_isolate_range(&memblock.memory, base, size,
1567 &start_rgn, &end_rgn);
1568 if (ret)
1569 return;
1570
1571 /* remove all the MAP regions */
1572 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1573 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1574 memblock_remove_region(&memblock.memory, i);
1575
1576 for (i = start_rgn - 1; i >= 0; i--)
1577 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1578 memblock_remove_region(&memblock.memory, i);
1579
1580 /* truncate the reserved regions */
1581 memblock_remove_range(&memblock.reserved, 0, base);
1582 memblock_remove_range(&memblock.reserved,
1583 base + size, (phys_addr_t)ULLONG_MAX);
1584}
1585
1586void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1587{
1588 phys_addr_t max_addr;
1589
1590 if (!limit)
1591 return;
1592
1593 max_addr = __find_max_addr(limit);
1594
1595 /* @limit exceeds the total size of the memory, do nothing */
1596 if (max_addr == (phys_addr_t)ULLONG_MAX)
1597 return;
1598
1599 memblock_cap_memory_range(0, max_addr);
1600}
1601
1602static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1603{
1604 unsigned int left = 0, right = type->cnt;
1605
1606 do {
1607 unsigned int mid = (right + left) / 2;
1608
1609 if (addr < type->regions[mid].base)
1610 right = mid;
1611 else if (addr >= (type->regions[mid].base +
1612 type->regions[mid].size))
1613 left = mid + 1;
1614 else
1615 return mid;
1616 } while (left < right);
1617 return -1;
1618}
1619
1620bool __init memblock_is_reserved(phys_addr_t addr)
1621{
1622 return memblock_search(&memblock.reserved, addr) != -1;
1623}
1624
1625bool __init_memblock memblock_is_memory(phys_addr_t addr)
1626{
1627 return memblock_search(&memblock.memory, addr) != -1;
1628}
1629
1630bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1631{
1632 int i = memblock_search(&memblock.memory, addr);
1633
1634 if (i == -1)
1635 return false;
1636 return !memblock_is_nomap(&memblock.memory.regions[i]);
1637}
1638
1639#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1640int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1641 unsigned long *start_pfn, unsigned long *end_pfn)
1642{
1643 struct memblock_type *type = &memblock.memory;
1644 int mid = memblock_search(type, PFN_PHYS(pfn));
1645
1646 if (mid == -1)
1647 return -1;
1648
1649 *start_pfn = PFN_DOWN(type->regions[mid].base);
1650 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1651
1652 return type->regions[mid].nid;
1653}
1654#endif
1655
1656/**
1657 * memblock_is_region_memory - check if a region is a subset of memory
1658 * @base: base of region to check
1659 * @size: size of region to check
1660 *
1661 * Check if the region [@base, @base+@size) is a subset of a memory block.
1662 *
1663 * RETURNS:
1664 * 0 if false, non-zero if true
1665 */
1666bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1667{
1668 int idx = memblock_search(&memblock.memory, base);
1669 phys_addr_t end = base + memblock_cap_size(base, &size);
1670
1671 if (idx == -1)
1672 return false;
1673 return (memblock.memory.regions[idx].base +
1674 memblock.memory.regions[idx].size) >= end;
1675}
1676
1677/**
1678 * memblock_is_region_reserved - check if a region intersects reserved memory
1679 * @base: base of region to check
1680 * @size: size of region to check
1681 *
1682 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1683 *
1684 * RETURNS:
1685 * True if they intersect, false if not.
1686 */
1687bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1688{
1689 memblock_cap_size(base, &size);
1690 return memblock_overlaps_region(&memblock.reserved, base, size);
1691}
1692
1693void __init_memblock memblock_trim_memory(phys_addr_t align)
1694{
1695 phys_addr_t start, end, orig_start, orig_end;
1696 struct memblock_region *r;
1697
1698 for_each_memblock(memory, r) {
1699 orig_start = r->base;
1700 orig_end = r->base + r->size;
1701 start = round_up(orig_start, align);
1702 end = round_down(orig_end, align);
1703
1704 if (start == orig_start && end == orig_end)
1705 continue;
1706
1707 if (start < end) {
1708 r->base = start;
1709 r->size = end - start;
1710 } else {
1711 memblock_remove_region(&memblock.memory,
1712 r - memblock.memory.regions);
1713 r--;
1714 }
1715 }
1716}
1717
1718void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1719{
1720 memblock.current_limit = limit;
1721}
1722
1723phys_addr_t __init_memblock memblock_get_current_limit(void)
1724{
1725 return memblock.current_limit;
1726}
1727
1728static void __init_memblock memblock_dump(struct memblock_type *type)
1729{
1730 phys_addr_t base, end, size;
1731 unsigned long flags;
1732 int idx;
1733 struct memblock_region *rgn;
1734
1735 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1736
1737 for_each_memblock_type(idx, type, rgn) {
1738 char nid_buf[32] = "";
1739
1740 base = rgn->base;
1741 size = rgn->size;
1742 end = base + size - 1;
1743 flags = rgn->flags;
1744#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1745 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1746 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1747 memblock_get_region_node(rgn));
1748#endif
1749 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1750 type->name, idx, &base, &end, &size, nid_buf, flags);
1751 }
1752}
1753
1754void __init_memblock __memblock_dump_all(void)
1755{
1756 pr_info("MEMBLOCK configuration:\n");
1757 pr_info(" memory size = %pa reserved size = %pa\n",
1758 &memblock.memory.total_size,
1759 &memblock.reserved.total_size);
1760
1761 memblock_dump(&memblock.memory);
1762 memblock_dump(&memblock.reserved);
1763#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1764 memblock_dump(&memblock.physmem);
1765#endif
1766}
1767
1768void __init memblock_allow_resize(void)
1769{
1770 memblock_can_resize = 1;
1771}
1772
1773static int __init early_memblock(char *p)
1774{
1775 if (p && strstr(p, "debug"))
1776 memblock_debug = 1;
1777 return 0;
1778}
1779early_param("memblock", early_memblock);
1780
1781#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1782
1783static int memblock_debug_show(struct seq_file *m, void *private)
1784{
1785 struct memblock_type *type = m->private;
1786 struct memblock_region *reg;
1787 int i;
1788 phys_addr_t end;
1789
1790 for (i = 0; i < type->cnt; i++) {
1791 reg = &type->regions[i];
1792 end = reg->base + reg->size - 1;
1793
1794 seq_printf(m, "%4d: ", i);
1795 seq_printf(m, "%pa..%pa\n", ®->base, &end);
1796 }
1797 return 0;
1798}
1799DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1800
1801static int __init memblock_init_debugfs(void)
1802{
1803 struct dentry *root = debugfs_create_dir("memblock", NULL);
1804 if (!root)
1805 return -ENXIO;
1806 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1807 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1808#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1809 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1810#endif
1811
1812 return 0;
1813}
1814__initcall(memblock_init_debugfs);
1815
1816#endif /* CONFIG_DEBUG_FS */