Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.	June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
 
 
 
 
 
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS			128
  26#define INIT_PHYSMEM_REGIONS			4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
  30#endif
  31
  32/**
  33 * DOC: memblock overview
  34 *
  35 * Memblock is a method of managing memory regions during the early
  36 * boot period when the usual kernel memory allocators are not up and
  37 * running.
  38 *
  39 * Memblock views the system memory as collections of contiguous
  40 * regions. There are several types of these collections:
  41 *
  42 * * ``memory`` - describes the physical memory available to the
  43 *   kernel; this may differ from the actual physical memory installed
  44 *   in the system, for instance when the memory is restricted with
  45 *   ``mem=`` command line parameter
  46 * * ``reserved`` - describes the regions that were allocated
  47 * * ``physmap`` - describes the actual physical memory regardless of
  48 *   the possible restrictions; the ``physmap`` type is only available
  49 *   on some architectures.
  50 *
  51 * Each region is represented by :c:type:`struct memblock_region` that
  52 * defines the region extents, its attributes and NUMA node id on NUMA
  53 * systems. Every memory type is described by the :c:type:`struct
  54 * memblock_type` which contains an array of memory regions along with
  55 * the allocator metadata. The memory types are nicely wrapped with
  56 * :c:type:`struct memblock`. This structure is statically initialzed
  57 * at build time. The region arrays for the "memory" and "reserved"
  58 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
  59 * "physmap" type to %INIT_PHYSMEM_REGIONS.
  60 * The :c:func:`memblock_allow_resize` enables automatic resizing of
  61 * the region arrays during addition of new regions. This feature
  62 * should be used with care so that memory allocated for the region
  63 * array will not overlap with areas that should be reserved, for
  64 * example initrd.
  65 *
  66 * The early architecture setup should tell memblock what the physical
  67 * memory layout is by using :c:func:`memblock_add` or
  68 * :c:func:`memblock_add_node` functions. The first function does not
  69 * assign the region to a NUMA node and it is appropriate for UMA
  70 * systems. Yet, it is possible to use it on NUMA systems as well and
  71 * assign the region to a NUMA node later in the setup process using
  72 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
  73 * performs such an assignment directly.
  74 *
  75 * Once memblock is setup the memory can be allocated using one of the
  76 * API variants:
  77 *
  78 * * :c:func:`memblock_phys_alloc*` - these functions return the
  79 *   **physical** address of the allocated memory
  80 * * :c:func:`memblock_alloc*` - these functions return the **virtual**
  81 *   address of the allocated memory.
  82 *
  83 * Note, that both API variants use implict assumptions about allowed
  84 * memory ranges and the fallback methods. Consult the documentation
  85 * of :c:func:`memblock_alloc_internal` and
  86 * :c:func:`memblock_alloc_range_nid` functions for more elaboarte
  87 * description.
  88 *
  89 * As the system boot progresses, the architecture specific
  90 * :c:func:`mem_init` function frees all the memory to the buddy page
  91 * allocator.
  92 *
  93 * Unless an architecure enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  94 * memblock data structures will be discarded after the system
  95 * initialization compltes.
  96 */
  97
  98#ifndef CONFIG_NEED_MULTIPLE_NODES
  99struct pglist_data __refdata contig_page_data;
 100EXPORT_SYMBOL(contig_page_data);
 101#endif
 102
 103unsigned long max_low_pfn;
 104unsigned long min_low_pfn;
 105unsigned long max_pfn;
 106unsigned long long max_possible_pfn;
 107
 108static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
 109static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 110#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 111static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
 112#endif
 113
 114struct memblock memblock __initdata_memblock = {
 115	.memory.regions		= memblock_memory_init_regions,
 116	.memory.cnt		= 1,	/* empty dummy entry */
 117	.memory.max		= INIT_MEMBLOCK_REGIONS,
 118	.memory.name		= "memory",
 119
 120	.reserved.regions	= memblock_reserved_init_regions,
 121	.reserved.cnt		= 1,	/* empty dummy entry */
 122	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
 123	.reserved.name		= "reserved",
 124
 125#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 126	.physmem.regions	= memblock_physmem_init_regions,
 127	.physmem.cnt		= 1,	/* empty dummy entry */
 128	.physmem.max		= INIT_PHYSMEM_REGIONS,
 129	.physmem.name		= "physmem",
 130#endif
 131
 132	.bottom_up		= false,
 133	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 134};
 135
 136int memblock_debug __initdata_memblock;
 137static bool system_has_some_mirror __initdata_memblock = false;
 138static int memblock_can_resize __initdata_memblock;
 139static int memblock_memory_in_slab __initdata_memblock = 0;
 140static int memblock_reserved_in_slab __initdata_memblock = 0;
 141
 142static enum memblock_flags __init_memblock choose_memblock_flags(void)
 143{
 144	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 145}
 146
 147/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 148static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 149{
 150	return *size = min(*size, PHYS_ADDR_MAX - base);
 151}
 152
 153/*
 154 * Address comparison utilities
 155 */
 156static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 157				       phys_addr_t base2, phys_addr_t size2)
 158{
 159	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 160}
 161
 162bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 163					phys_addr_t base, phys_addr_t size)
 164{
 165	unsigned long i;
 166
 167	for (i = 0; i < type->cnt; i++)
 168		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 169					   type->regions[i].size))
 170			break;
 171	return i < type->cnt;
 172}
 173
 174/**
 175 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 176 * @start: start of candidate range
 177 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 178 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 179 * @size: size of free area to find
 180 * @align: alignment of free area to find
 181 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 182 * @flags: pick from blocks based on memory attributes
 183 *
 184 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 185 *
 186 * Return:
 187 * Found address on success, 0 on failure.
 188 */
 189static phys_addr_t __init_memblock
 190__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 191				phys_addr_t size, phys_addr_t align, int nid,
 192				enum memblock_flags flags)
 193{
 194	phys_addr_t this_start, this_end, cand;
 195	u64 i;
 196
 197	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 198		this_start = clamp(this_start, start, end);
 199		this_end = clamp(this_end, start, end);
 200
 201		cand = round_up(this_start, align);
 202		if (cand < this_end && this_end - cand >= size)
 203			return cand;
 204	}
 205
 206	return 0;
 207}
 208
 209/**
 210 * __memblock_find_range_top_down - find free area utility, in top-down
 211 * @start: start of candidate range
 212 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 213 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 214 * @size: size of free area to find
 215 * @align: alignment of free area to find
 216 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 217 * @flags: pick from blocks based on memory attributes
 218 *
 219 * Utility called from memblock_find_in_range_node(), find free area top-down.
 220 *
 221 * Return:
 222 * Found address on success, 0 on failure.
 223 */
 224static phys_addr_t __init_memblock
 225__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 226			       phys_addr_t size, phys_addr_t align, int nid,
 227			       enum memblock_flags flags)
 228{
 229	phys_addr_t this_start, this_end, cand;
 230	u64 i;
 231
 232	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 233					NULL) {
 234		this_start = clamp(this_start, start, end);
 235		this_end = clamp(this_end, start, end);
 236
 237		if (this_end < size)
 238			continue;
 239
 240		cand = round_down(this_end - size, align);
 241		if (cand >= this_start)
 242			return cand;
 243	}
 244
 245	return 0;
 246}
 247
 248/**
 249 * memblock_find_in_range_node - find free area in given range and node
 250 * @size: size of free area to find
 251 * @align: alignment of free area to find
 252 * @start: start of candidate range
 253 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 254 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 255 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 256 * @flags: pick from blocks based on memory attributes
 257 *
 258 * Find @size free area aligned to @align in the specified range and node.
 259 *
 260 * When allocation direction is bottom-up, the @start should be greater
 261 * than the end of the kernel image. Otherwise, it will be trimmed. The
 262 * reason is that we want the bottom-up allocation just near the kernel
 263 * image so it is highly likely that the allocated memory and the kernel
 264 * will reside in the same node.
 265 *
 266 * If bottom-up allocation failed, will try to allocate memory top-down.
 267 *
 268 * Return:
 269 * Found address on success, 0 on failure.
 270 */
 271static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 272					phys_addr_t align, phys_addr_t start,
 273					phys_addr_t end, int nid,
 274					enum memblock_flags flags)
 275{
 276	phys_addr_t kernel_end, ret;
 277
 278	/* pump up @end */
 279	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 280	    end == MEMBLOCK_ALLOC_KASAN)
 281		end = memblock.current_limit;
 282
 283	/* avoid allocating the first page */
 284	start = max_t(phys_addr_t, start, PAGE_SIZE);
 285	end = max(start, end);
 286	kernel_end = __pa_symbol(_end);
 287
 288	/*
 289	 * try bottom-up allocation only when bottom-up mode
 290	 * is set and @end is above the kernel image.
 291	 */
 292	if (memblock_bottom_up() && end > kernel_end) {
 293		phys_addr_t bottom_up_start;
 294
 295		/* make sure we will allocate above the kernel */
 296		bottom_up_start = max(start, kernel_end);
 297
 298		/* ok, try bottom-up allocation first */
 299		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 300						      size, align, nid, flags);
 301		if (ret)
 302			return ret;
 303
 304		/*
 305		 * we always limit bottom-up allocation above the kernel,
 306		 * but top-down allocation doesn't have the limit, so
 307		 * retrying top-down allocation may succeed when bottom-up
 308		 * allocation failed.
 309		 *
 310		 * bottom-up allocation is expected to be fail very rarely,
 311		 * so we use WARN_ONCE() here to see the stack trace if
 312		 * fail happens.
 313		 */
 314		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
 315			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
 316	}
 317
 318	return __memblock_find_range_top_down(start, end, size, align, nid,
 319					      flags);
 320}
 321
 322/**
 323 * memblock_find_in_range - find free area in given range
 324 * @start: start of candidate range
 325 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 326 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 327 * @size: size of free area to find
 328 * @align: alignment of free area to find
 329 *
 330 * Find @size free area aligned to @align in the specified range.
 331 *
 332 * Return:
 333 * Found address on success, 0 on failure.
 334 */
 335phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 336					phys_addr_t end, phys_addr_t size,
 337					phys_addr_t align)
 338{
 339	phys_addr_t ret;
 340	enum memblock_flags flags = choose_memblock_flags();
 341
 342again:
 343	ret = memblock_find_in_range_node(size, align, start, end,
 344					    NUMA_NO_NODE, flags);
 345
 346	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 347		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 348			&size);
 349		flags &= ~MEMBLOCK_MIRROR;
 350		goto again;
 351	}
 352
 353	return ret;
 354}
 355
 356static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 357{
 358	type->total_size -= type->regions[r].size;
 359	memmove(&type->regions[r], &type->regions[r + 1],
 360		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 361	type->cnt--;
 362
 363	/* Special case for empty arrays */
 364	if (type->cnt == 0) {
 365		WARN_ON(type->total_size != 0);
 366		type->cnt = 1;
 367		type->regions[0].base = 0;
 368		type->regions[0].size = 0;
 369		type->regions[0].flags = 0;
 370		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 371	}
 372}
 373
 374#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 375/**
 376 * memblock_discard - discard memory and reserved arrays if they were allocated
 377 */
 378void __init memblock_discard(void)
 379{
 380	phys_addr_t addr, size;
 381
 382	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 383		addr = __pa(memblock.reserved.regions);
 384		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 385				  memblock.reserved.max);
 386		__memblock_free_late(addr, size);
 387	}
 388
 389	if (memblock.memory.regions != memblock_memory_init_regions) {
 390		addr = __pa(memblock.memory.regions);
 391		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 392				  memblock.memory.max);
 393		__memblock_free_late(addr, size);
 394	}
 395}
 396#endif
 397
 398/**
 399 * memblock_double_array - double the size of the memblock regions array
 400 * @type: memblock type of the regions array being doubled
 401 * @new_area_start: starting address of memory range to avoid overlap with
 402 * @new_area_size: size of memory range to avoid overlap with
 403 *
 404 * Double the size of the @type regions array. If memblock is being used to
 405 * allocate memory for a new reserved regions array and there is a previously
 406 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 407 * waiting to be reserved, ensure the memory used by the new array does
 408 * not overlap.
 409 *
 410 * Return:
 411 * 0 on success, -1 on failure.
 412 */
 413static int __init_memblock memblock_double_array(struct memblock_type *type,
 414						phys_addr_t new_area_start,
 415						phys_addr_t new_area_size)
 416{
 417	struct memblock_region *new_array, *old_array;
 418	phys_addr_t old_alloc_size, new_alloc_size;
 419	phys_addr_t old_size, new_size, addr, new_end;
 420	int use_slab = slab_is_available();
 421	int *in_slab;
 422
 423	/* We don't allow resizing until we know about the reserved regions
 424	 * of memory that aren't suitable for allocation
 425	 */
 426	if (!memblock_can_resize)
 427		return -1;
 428
 429	/* Calculate new doubled size */
 430	old_size = type->max * sizeof(struct memblock_region);
 431	new_size = old_size << 1;
 432	/*
 433	 * We need to allocated new one align to PAGE_SIZE,
 434	 *   so we can free them completely later.
 435	 */
 436	old_alloc_size = PAGE_ALIGN(old_size);
 437	new_alloc_size = PAGE_ALIGN(new_size);
 438
 439	/* Retrieve the slab flag */
 440	if (type == &memblock.memory)
 441		in_slab = &memblock_memory_in_slab;
 442	else
 443		in_slab = &memblock_reserved_in_slab;
 444
 445	/* Try to find some space for it */
 
 
 
 
 
 
 
 
 
 
 446	if (use_slab) {
 447		new_array = kmalloc(new_size, GFP_KERNEL);
 448		addr = new_array ? __pa(new_array) : 0;
 449	} else {
 450		/* only exclude range when trying to double reserved.regions */
 451		if (type != &memblock.reserved)
 452			new_area_start = new_area_size = 0;
 453
 454		addr = memblock_find_in_range(new_area_start + new_area_size,
 455						memblock.current_limit,
 456						new_alloc_size, PAGE_SIZE);
 457		if (!addr && new_area_size)
 458			addr = memblock_find_in_range(0,
 459				min(new_area_start, memblock.current_limit),
 460				new_alloc_size, PAGE_SIZE);
 461
 462		new_array = addr ? __va(addr) : NULL;
 463	}
 464	if (!addr) {
 465		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 466		       type->name, type->max, type->max * 2);
 467		return -1;
 468	}
 469
 470	new_end = addr + new_size - 1;
 471	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 472			type->name, type->max * 2, &addr, &new_end);
 473
 474	/*
 475	 * Found space, we now need to move the array over before we add the
 476	 * reserved region since it may be our reserved array itself that is
 477	 * full.
 478	 */
 479	memcpy(new_array, type->regions, old_size);
 480	memset(new_array + type->max, 0, old_size);
 481	old_array = type->regions;
 482	type->regions = new_array;
 483	type->max <<= 1;
 484
 485	/* Free old array. We needn't free it if the array is the static one */
 486	if (*in_slab)
 487		kfree(old_array);
 488	else if (old_array != memblock_memory_init_regions &&
 489		 old_array != memblock_reserved_init_regions)
 490		memblock_free(__pa(old_array), old_alloc_size);
 491
 492	/*
 493	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 494	 * needn't do it
 495	 */
 496	if (!use_slab)
 497		BUG_ON(memblock_reserve(addr, new_alloc_size));
 498
 499	/* Update slab flag */
 500	*in_slab = use_slab;
 501
 502	return 0;
 503}
 504
 505/**
 506 * memblock_merge_regions - merge neighboring compatible regions
 507 * @type: memblock type to scan
 508 *
 509 * Scan @type and merge neighboring compatible regions.
 510 */
 511static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 512{
 513	int i = 0;
 514
 515	/* cnt never goes below 1 */
 516	while (i < type->cnt - 1) {
 517		struct memblock_region *this = &type->regions[i];
 518		struct memblock_region *next = &type->regions[i + 1];
 519
 520		if (this->base + this->size != next->base ||
 521		    memblock_get_region_node(this) !=
 522		    memblock_get_region_node(next) ||
 523		    this->flags != next->flags) {
 524			BUG_ON(this->base + this->size > next->base);
 525			i++;
 526			continue;
 527		}
 528
 529		this->size += next->size;
 530		/* move forward from next + 1, index of which is i + 2 */
 531		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 532		type->cnt--;
 533	}
 534}
 535
 536/**
 537 * memblock_insert_region - insert new memblock region
 538 * @type:	memblock type to insert into
 539 * @idx:	index for the insertion point
 540 * @base:	base address of the new region
 541 * @size:	size of the new region
 542 * @nid:	node id of the new region
 543 * @flags:	flags of the new region
 544 *
 545 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 546 * @type must already have extra room to accommodate the new region.
 547 */
 548static void __init_memblock memblock_insert_region(struct memblock_type *type,
 549						   int idx, phys_addr_t base,
 550						   phys_addr_t size,
 551						   int nid,
 552						   enum memblock_flags flags)
 553{
 554	struct memblock_region *rgn = &type->regions[idx];
 555
 556	BUG_ON(type->cnt >= type->max);
 557	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 558	rgn->base = base;
 559	rgn->size = size;
 560	rgn->flags = flags;
 561	memblock_set_region_node(rgn, nid);
 562	type->cnt++;
 563	type->total_size += size;
 564}
 565
 566/**
 567 * memblock_add_range - add new memblock region
 568 * @type: memblock type to add new region into
 569 * @base: base address of the new region
 570 * @size: size of the new region
 571 * @nid: nid of the new region
 572 * @flags: flags of the new region
 573 *
 574 * Add new memblock region [@base, @base + @size) into @type.  The new region
 575 * is allowed to overlap with existing ones - overlaps don't affect already
 576 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 577 * compatible regions are merged) after the addition.
 578 *
 579 * Return:
 580 * 0 on success, -errno on failure.
 581 */
 582int __init_memblock memblock_add_range(struct memblock_type *type,
 583				phys_addr_t base, phys_addr_t size,
 584				int nid, enum memblock_flags flags)
 585{
 586	bool insert = false;
 587	phys_addr_t obase = base;
 588	phys_addr_t end = base + memblock_cap_size(base, &size);
 589	int idx, nr_new;
 590	struct memblock_region *rgn;
 591
 592	if (!size)
 593		return 0;
 594
 595	/* special case for empty array */
 596	if (type->regions[0].size == 0) {
 597		WARN_ON(type->cnt != 1 || type->total_size);
 598		type->regions[0].base = base;
 599		type->regions[0].size = size;
 600		type->regions[0].flags = flags;
 601		memblock_set_region_node(&type->regions[0], nid);
 602		type->total_size = size;
 603		return 0;
 604	}
 605repeat:
 606	/*
 607	 * The following is executed twice.  Once with %false @insert and
 608	 * then with %true.  The first counts the number of regions needed
 609	 * to accommodate the new area.  The second actually inserts them.
 610	 */
 611	base = obase;
 612	nr_new = 0;
 613
 614	for_each_memblock_type(idx, type, rgn) {
 615		phys_addr_t rbase = rgn->base;
 616		phys_addr_t rend = rbase + rgn->size;
 617
 618		if (rbase >= end)
 619			break;
 620		if (rend <= base)
 621			continue;
 622		/*
 623		 * @rgn overlaps.  If it separates the lower part of new
 624		 * area, insert that portion.
 625		 */
 626		if (rbase > base) {
 627#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 628			WARN_ON(nid != memblock_get_region_node(rgn));
 629#endif
 630			WARN_ON(flags != rgn->flags);
 631			nr_new++;
 632			if (insert)
 633				memblock_insert_region(type, idx++, base,
 634						       rbase - base, nid,
 635						       flags);
 636		}
 637		/* area below @rend is dealt with, forget about it */
 638		base = min(rend, end);
 639	}
 640
 641	/* insert the remaining portion */
 642	if (base < end) {
 643		nr_new++;
 644		if (insert)
 645			memblock_insert_region(type, idx, base, end - base,
 646					       nid, flags);
 647	}
 648
 649	if (!nr_new)
 650		return 0;
 651
 652	/*
 653	 * If this was the first round, resize array and repeat for actual
 654	 * insertions; otherwise, merge and return.
 655	 */
 656	if (!insert) {
 657		while (type->cnt + nr_new > type->max)
 658			if (memblock_double_array(type, obase, size) < 0)
 659				return -ENOMEM;
 660		insert = true;
 661		goto repeat;
 662	} else {
 663		memblock_merge_regions(type);
 664		return 0;
 665	}
 666}
 667
 668/**
 669 * memblock_add_node - add new memblock region within a NUMA node
 670 * @base: base address of the new region
 671 * @size: size of the new region
 672 * @nid: nid of the new region
 673 *
 674 * Add new memblock region [@base, @base + @size) to the "memory"
 675 * type. See memblock_add_range() description for mode details
 676 *
 677 * Return:
 678 * 0 on success, -errno on failure.
 679 */
 680int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 681				       int nid)
 682{
 683	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 684}
 685
 686/**
 687 * memblock_add - add new memblock region
 688 * @base: base address of the new region
 689 * @size: size of the new region
 690 *
 691 * Add new memblock region [@base, @base + @size) to the "memory"
 692 * type. See memblock_add_range() description for mode details
 693 *
 694 * Return:
 695 * 0 on success, -errno on failure.
 696 */
 697int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 698{
 699	phys_addr_t end = base + size - 1;
 700
 701	memblock_dbg("memblock_add: [%pa-%pa] %pS\n",
 702		     &base, &end, (void *)_RET_IP_);
 703
 704	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 705}
 706
 707/**
 708 * memblock_isolate_range - isolate given range into disjoint memblocks
 709 * @type: memblock type to isolate range for
 710 * @base: base of range to isolate
 711 * @size: size of range to isolate
 712 * @start_rgn: out parameter for the start of isolated region
 713 * @end_rgn: out parameter for the end of isolated region
 714 *
 715 * Walk @type and ensure that regions don't cross the boundaries defined by
 716 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 717 * which may create at most two more regions.  The index of the first
 718 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 719 *
 720 * Return:
 721 * 0 on success, -errno on failure.
 722 */
 723static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 724					phys_addr_t base, phys_addr_t size,
 725					int *start_rgn, int *end_rgn)
 726{
 727	phys_addr_t end = base + memblock_cap_size(base, &size);
 728	int idx;
 729	struct memblock_region *rgn;
 730
 731	*start_rgn = *end_rgn = 0;
 732
 733	if (!size)
 734		return 0;
 735
 736	/* we'll create at most two more regions */
 737	while (type->cnt + 2 > type->max)
 738		if (memblock_double_array(type, base, size) < 0)
 739			return -ENOMEM;
 740
 741	for_each_memblock_type(idx, type, rgn) {
 742		phys_addr_t rbase = rgn->base;
 743		phys_addr_t rend = rbase + rgn->size;
 744
 745		if (rbase >= end)
 746			break;
 747		if (rend <= base)
 748			continue;
 749
 750		if (rbase < base) {
 751			/*
 752			 * @rgn intersects from below.  Split and continue
 753			 * to process the next region - the new top half.
 754			 */
 755			rgn->base = base;
 756			rgn->size -= base - rbase;
 757			type->total_size -= base - rbase;
 758			memblock_insert_region(type, idx, rbase, base - rbase,
 759					       memblock_get_region_node(rgn),
 760					       rgn->flags);
 761		} else if (rend > end) {
 762			/*
 763			 * @rgn intersects from above.  Split and redo the
 764			 * current region - the new bottom half.
 765			 */
 766			rgn->base = end;
 767			rgn->size -= end - rbase;
 768			type->total_size -= end - rbase;
 769			memblock_insert_region(type, idx--, rbase, end - rbase,
 770					       memblock_get_region_node(rgn),
 771					       rgn->flags);
 772		} else {
 773			/* @rgn is fully contained, record it */
 774			if (!*end_rgn)
 775				*start_rgn = idx;
 776			*end_rgn = idx + 1;
 777		}
 778	}
 779
 780	return 0;
 781}
 782
 783static int __init_memblock memblock_remove_range(struct memblock_type *type,
 784					  phys_addr_t base, phys_addr_t size)
 785{
 786	int start_rgn, end_rgn;
 787	int i, ret;
 788
 789	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 790	if (ret)
 791		return ret;
 792
 793	for (i = end_rgn - 1; i >= start_rgn; i--)
 794		memblock_remove_region(type, i);
 795	return 0;
 796}
 797
 798int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 799{
 800	phys_addr_t end = base + size - 1;
 801
 802	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
 803		     &base, &end, (void *)_RET_IP_);
 804
 805	return memblock_remove_range(&memblock.memory, base, size);
 806}
 807
 808/**
 809 * memblock_free - free boot memory block
 810 * @base: phys starting address of the  boot memory block
 811 * @size: size of the boot memory block in bytes
 812 *
 813 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 814 * The freeing memory will not be released to the buddy allocator.
 815 */
 816int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 817{
 818	phys_addr_t end = base + size - 1;
 819
 820	memblock_dbg("   memblock_free: [%pa-%pa] %pS\n",
 821		     &base, &end, (void *)_RET_IP_);
 822
 823	kmemleak_free_part_phys(base, size);
 824	return memblock_remove_range(&memblock.reserved, base, size);
 825}
 826
 827int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 828{
 829	phys_addr_t end = base + size - 1;
 830
 831	memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n",
 832		     &base, &end, (void *)_RET_IP_);
 833
 834	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 835}
 836
 837/**
 838 * memblock_setclr_flag - set or clear flag for a memory region
 839 * @base: base address of the region
 840 * @size: size of the region
 841 * @set: set or clear the flag
 842 * @flag: the flag to udpate
 843 *
 844 * This function isolates region [@base, @base + @size), and sets/clears flag
 845 *
 846 * Return: 0 on success, -errno on failure.
 847 */
 848static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 849				phys_addr_t size, int set, int flag)
 850{
 851	struct memblock_type *type = &memblock.memory;
 852	int i, ret, start_rgn, end_rgn;
 853
 854	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 855	if (ret)
 856		return ret;
 857
 858	for (i = start_rgn; i < end_rgn; i++) {
 859		struct memblock_region *r = &type->regions[i];
 860
 861		if (set)
 862			r->flags |= flag;
 863		else
 864			r->flags &= ~flag;
 865	}
 866
 867	memblock_merge_regions(type);
 868	return 0;
 869}
 870
 871/**
 872 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 873 * @base: the base phys addr of the region
 874 * @size: the size of the region
 875 *
 876 * Return: 0 on success, -errno on failure.
 877 */
 878int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 879{
 880	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 881}
 882
 883/**
 884 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 885 * @base: the base phys addr of the region
 886 * @size: the size of the region
 887 *
 888 * Return: 0 on success, -errno on failure.
 889 */
 890int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 891{
 892	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 893}
 894
 895/**
 896 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 897 * @base: the base phys addr of the region
 898 * @size: the size of the region
 899 *
 900 * Return: 0 on success, -errno on failure.
 901 */
 902int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 903{
 904	system_has_some_mirror = true;
 905
 906	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 907}
 908
 909/**
 910 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 911 * @base: the base phys addr of the region
 912 * @size: the size of the region
 913 *
 914 * Return: 0 on success, -errno on failure.
 915 */
 916int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 917{
 918	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 919}
 920
 921/**
 922 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 923 * @base: the base phys addr of the region
 924 * @size: the size of the region
 925 *
 926 * Return: 0 on success, -errno on failure.
 927 */
 928int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 929{
 930	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 931}
 932
 933/**
 934 * __next_reserved_mem_region - next function for for_each_reserved_region()
 935 * @idx: pointer to u64 loop variable
 936 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 937 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 938 *
 939 * Iterate over all reserved memory regions.
 940 */
 941void __init_memblock __next_reserved_mem_region(u64 *idx,
 942					   phys_addr_t *out_start,
 943					   phys_addr_t *out_end)
 944{
 945	struct memblock_type *type = &memblock.reserved;
 946
 947	if (*idx < type->cnt) {
 948		struct memblock_region *r = &type->regions[*idx];
 949		phys_addr_t base = r->base;
 950		phys_addr_t size = r->size;
 951
 952		if (out_start)
 953			*out_start = base;
 954		if (out_end)
 955			*out_end = base + size - 1;
 956
 957		*idx += 1;
 958		return;
 959	}
 960
 961	/* signal end of iteration */
 962	*idx = ULLONG_MAX;
 963}
 964
 965static bool should_skip_region(struct memblock_region *m, int nid, int flags)
 966{
 967	int m_nid = memblock_get_region_node(m);
 968
 969	/* only memory regions are associated with nodes, check it */
 970	if (nid != NUMA_NO_NODE && nid != m_nid)
 971		return true;
 972
 973	/* skip hotpluggable memory regions if needed */
 974	if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 975		return true;
 976
 977	/* if we want mirror memory skip non-mirror memory regions */
 978	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 979		return true;
 980
 981	/* skip nomap memory unless we were asked for it explicitly */
 982	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 983		return true;
 984
 985	return false;
 986}
 987
 988/**
 989 * __next_mem_range - next function for for_each_free_mem_range() etc.
 990 * @idx: pointer to u64 loop variable
 991 * @nid: node selector, %NUMA_NO_NODE for all nodes
 992 * @flags: pick from blocks based on memory attributes
 993 * @type_a: pointer to memblock_type from where the range is taken
 994 * @type_b: pointer to memblock_type which excludes memory from being taken
 995 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 996 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 997 * @out_nid: ptr to int for nid of the range, can be %NULL
 998 *
 999 * Find the first area from *@idx which matches @nid, fill the out
1000 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1001 * *@idx contains index into type_a and the upper 32bit indexes the
1002 * areas before each region in type_b.	For example, if type_b regions
1003 * look like the following,
1004 *
1005 *	0:[0-16), 1:[32-48), 2:[128-130)
1006 *
1007 * The upper 32bit indexes the following regions.
1008 *
1009 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1010 *
1011 * As both region arrays are sorted, the function advances the two indices
1012 * in lockstep and returns each intersection.
1013 */
1014void __init_memblock __next_mem_range(u64 *idx, int nid,
1015				      enum memblock_flags flags,
1016				      struct memblock_type *type_a,
1017				      struct memblock_type *type_b,
1018				      phys_addr_t *out_start,
1019				      phys_addr_t *out_end, int *out_nid)
1020{
1021	int idx_a = *idx & 0xffffffff;
1022	int idx_b = *idx >> 32;
1023
1024	if (WARN_ONCE(nid == MAX_NUMNODES,
1025	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1026		nid = NUMA_NO_NODE;
1027
1028	for (; idx_a < type_a->cnt; idx_a++) {
1029		struct memblock_region *m = &type_a->regions[idx_a];
1030
1031		phys_addr_t m_start = m->base;
1032		phys_addr_t m_end = m->base + m->size;
1033		int	    m_nid = memblock_get_region_node(m);
1034
1035		if (should_skip_region(m, nid, flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
1036			continue;
1037
1038		if (!type_b) {
1039			if (out_start)
1040				*out_start = m_start;
1041			if (out_end)
1042				*out_end = m_end;
1043			if (out_nid)
1044				*out_nid = m_nid;
1045			idx_a++;
1046			*idx = (u32)idx_a | (u64)idx_b << 32;
1047			return;
1048		}
1049
1050		/* scan areas before each reservation */
1051		for (; idx_b < type_b->cnt + 1; idx_b++) {
1052			struct memblock_region *r;
1053			phys_addr_t r_start;
1054			phys_addr_t r_end;
1055
1056			r = &type_b->regions[idx_b];
1057			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1058			r_end = idx_b < type_b->cnt ?
1059				r->base : PHYS_ADDR_MAX;
1060
1061			/*
1062			 * if idx_b advanced past idx_a,
1063			 * break out to advance idx_a
1064			 */
1065			if (r_start >= m_end)
1066				break;
1067			/* if the two regions intersect, we're done */
1068			if (m_start < r_end) {
1069				if (out_start)
1070					*out_start =
1071						max(m_start, r_start);
1072				if (out_end)
1073					*out_end = min(m_end, r_end);
1074				if (out_nid)
1075					*out_nid = m_nid;
1076				/*
1077				 * The region which ends first is
1078				 * advanced for the next iteration.
1079				 */
1080				if (m_end <= r_end)
1081					idx_a++;
1082				else
1083					idx_b++;
1084				*idx = (u32)idx_a | (u64)idx_b << 32;
1085				return;
1086			}
1087		}
1088	}
1089
1090	/* signal end of iteration */
1091	*idx = ULLONG_MAX;
1092}
1093
1094/**
1095 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1096 *
 
 
 
1097 * @idx: pointer to u64 loop variable
1098 * @nid: node selector, %NUMA_NO_NODE for all nodes
1099 * @flags: pick from blocks based on memory attributes
1100 * @type_a: pointer to memblock_type from where the range is taken
1101 * @type_b: pointer to memblock_type which excludes memory from being taken
1102 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1103 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1104 * @out_nid: ptr to int for nid of the range, can be %NULL
1105 *
1106 * Finds the next range from type_a which is not marked as unsuitable
1107 * in type_b.
1108 *
1109 * Reverse of __next_mem_range().
1110 */
1111void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1112					  enum memblock_flags flags,
1113					  struct memblock_type *type_a,
1114					  struct memblock_type *type_b,
1115					  phys_addr_t *out_start,
1116					  phys_addr_t *out_end, int *out_nid)
1117{
1118	int idx_a = *idx & 0xffffffff;
1119	int idx_b = *idx >> 32;
1120
1121	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1122		nid = NUMA_NO_NODE;
1123
1124	if (*idx == (u64)ULLONG_MAX) {
1125		idx_a = type_a->cnt - 1;
1126		if (type_b != NULL)
1127			idx_b = type_b->cnt;
1128		else
1129			idx_b = 0;
1130	}
1131
1132	for (; idx_a >= 0; idx_a--) {
1133		struct memblock_region *m = &type_a->regions[idx_a];
1134
1135		phys_addr_t m_start = m->base;
1136		phys_addr_t m_end = m->base + m->size;
1137		int m_nid = memblock_get_region_node(m);
1138
1139		if (should_skip_region(m, nid, flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
1140			continue;
1141
1142		if (!type_b) {
1143			if (out_start)
1144				*out_start = m_start;
1145			if (out_end)
1146				*out_end = m_end;
1147			if (out_nid)
1148				*out_nid = m_nid;
1149			idx_a--;
1150			*idx = (u32)idx_a | (u64)idx_b << 32;
1151			return;
1152		}
1153
1154		/* scan areas before each reservation */
1155		for (; idx_b >= 0; idx_b--) {
1156			struct memblock_region *r;
1157			phys_addr_t r_start;
1158			phys_addr_t r_end;
1159
1160			r = &type_b->regions[idx_b];
1161			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1162			r_end = idx_b < type_b->cnt ?
1163				r->base : PHYS_ADDR_MAX;
1164			/*
1165			 * if idx_b advanced past idx_a,
1166			 * break out to advance idx_a
1167			 */
1168
1169			if (r_end <= m_start)
1170				break;
1171			/* if the two regions intersect, we're done */
1172			if (m_end > r_start) {
1173				if (out_start)
1174					*out_start = max(m_start, r_start);
1175				if (out_end)
1176					*out_end = min(m_end, r_end);
1177				if (out_nid)
1178					*out_nid = m_nid;
1179				if (m_start >= r_start)
1180					idx_a--;
1181				else
1182					idx_b--;
1183				*idx = (u32)idx_a | (u64)idx_b << 32;
1184				return;
1185			}
1186		}
1187	}
1188	/* signal end of iteration */
1189	*idx = ULLONG_MAX;
1190}
1191
1192#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1193/*
1194 * Common iterator interface used to define for_each_mem_pfn_range().
1195 */
1196void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1197				unsigned long *out_start_pfn,
1198				unsigned long *out_end_pfn, int *out_nid)
1199{
1200	struct memblock_type *type = &memblock.memory;
1201	struct memblock_region *r;
1202
1203	while (++*idx < type->cnt) {
1204		r = &type->regions[*idx];
1205
1206		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1207			continue;
1208		if (nid == MAX_NUMNODES || nid == r->nid)
1209			break;
1210	}
1211	if (*idx >= type->cnt) {
1212		*idx = -1;
1213		return;
1214	}
1215
1216	if (out_start_pfn)
1217		*out_start_pfn = PFN_UP(r->base);
1218	if (out_end_pfn)
1219		*out_end_pfn = PFN_DOWN(r->base + r->size);
1220	if (out_nid)
1221		*out_nid = r->nid;
1222}
1223
1224/**
1225 * memblock_set_node - set node ID on memblock regions
1226 * @base: base of area to set node ID for
1227 * @size: size of area to set node ID for
1228 * @type: memblock type to set node ID for
1229 * @nid: node ID to set
1230 *
1231 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1232 * Regions which cross the area boundaries are split as necessary.
1233 *
1234 * Return:
1235 * 0 on success, -errno on failure.
1236 */
1237int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1238				      struct memblock_type *type, int nid)
1239{
1240	int start_rgn, end_rgn;
1241	int i, ret;
1242
1243	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1244	if (ret)
1245		return ret;
1246
1247	for (i = start_rgn; i < end_rgn; i++)
1248		memblock_set_region_node(&type->regions[i], nid);
1249
1250	memblock_merge_regions(type);
1251	return 0;
1252}
1253#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1254#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1255/**
1256 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1257 *
1258 * @idx: pointer to u64 loop variable
1259 * @zone: zone in which all of the memory blocks reside
1260 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1261 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1262 *
1263 * This function is meant to be a zone/pfn specific wrapper for the
1264 * for_each_mem_range type iterators. Specifically they are used in the
1265 * deferred memory init routines and as such we were duplicating much of
1266 * this logic throughout the code. So instead of having it in multiple
1267 * locations it seemed like it would make more sense to centralize this to
1268 * one new iterator that does everything they need.
1269 */
1270void __init_memblock
1271__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1272			     unsigned long *out_spfn, unsigned long *out_epfn)
1273{
1274	int zone_nid = zone_to_nid(zone);
1275	phys_addr_t spa, epa;
1276	int nid;
1277
1278	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1279			 &memblock.memory, &memblock.reserved,
1280			 &spa, &epa, &nid);
1281
1282	while (*idx != U64_MAX) {
1283		unsigned long epfn = PFN_DOWN(epa);
1284		unsigned long spfn = PFN_UP(spa);
1285
1286		/*
1287		 * Verify the end is at least past the start of the zone and
1288		 * that we have at least one PFN to initialize.
1289		 */
1290		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1291			/* if we went too far just stop searching */
1292			if (zone_end_pfn(zone) <= spfn) {
1293				*idx = U64_MAX;
1294				break;
1295			}
1296
1297			if (out_spfn)
1298				*out_spfn = max(zone->zone_start_pfn, spfn);
1299			if (out_epfn)
1300				*out_epfn = min(zone_end_pfn(zone), epfn);
1301
1302			return;
1303		}
1304
1305		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1306				 &memblock.memory, &memblock.reserved,
1307				 &spa, &epa, &nid);
1308	}
1309
1310	/* signal end of iteration */
1311	if (out_spfn)
1312		*out_spfn = ULONG_MAX;
1313	if (out_epfn)
1314		*out_epfn = 0;
1315}
1316
1317#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1318
1319/**
1320 * memblock_alloc_range_nid - allocate boot memory block
1321 * @size: size of memory block to be allocated in bytes
1322 * @align: alignment of the region and block's size
1323 * @start: the lower bound of the memory region to allocate (phys address)
1324 * @end: the upper bound of the memory region to allocate (phys address)
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 *
1327 * The allocation is performed from memory region limited by
1328 * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1329 *
1330 * If the specified node can not hold the requested memory the
1331 * allocation falls back to any node in the system
1332 *
1333 * For systems with memory mirroring, the allocation is attempted first
1334 * from the regions with mirroring enabled and then retried from any
1335 * memory region.
1336 *
1337 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1338 * allocated boot memory block, so that it is never reported as leaks.
1339 *
1340 * Return:
1341 * Physical address of allocated memory block on success, %0 on failure.
1342 */
1343static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1344					phys_addr_t align, phys_addr_t start,
1345					phys_addr_t end, int nid)
1346{
1347	enum memblock_flags flags = choose_memblock_flags();
1348	phys_addr_t found;
1349
1350	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1351		nid = NUMA_NO_NODE;
1352
1353	if (!align) {
1354		/* Can't use WARNs this early in boot on powerpc */
1355		dump_stack();
1356		align = SMP_CACHE_BYTES;
1357	}
1358
1359again:
1360	found = memblock_find_in_range_node(size, align, start, end, nid,
1361					    flags);
1362	if (found && !memblock_reserve(found, size))
1363		goto done;
1364
1365	if (nid != NUMA_NO_NODE) {
1366		found = memblock_find_in_range_node(size, align, start,
1367						    end, NUMA_NO_NODE,
1368						    flags);
1369		if (found && !memblock_reserve(found, size))
1370			goto done;
1371	}
 
 
1372
1373	if (flags & MEMBLOCK_MIRROR) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374		flags &= ~MEMBLOCK_MIRROR;
1375		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1376			&size);
1377		goto again;
1378	}
 
 
1379
1380	return 0;
 
 
 
 
1381
1382done:
1383	/* Skip kmemleak for kasan_init() due to high volume. */
1384	if (end != MEMBLOCK_ALLOC_KASAN)
1385		/*
1386		 * The min_count is set to 0 so that memblock allocated
1387		 * blocks are never reported as leaks. This is because many
1388		 * of these blocks are only referred via the physical
1389		 * address which is not looked up by kmemleak.
1390		 */
1391		kmemleak_alloc_phys(found, size, 0, 0);
1392
1393	return found;
1394}
1395
1396/**
1397 * memblock_phys_alloc_range - allocate a memory block inside specified range
1398 * @size: size of memory block to be allocated in bytes
1399 * @align: alignment of the region and block's size
1400 * @start: the lower bound of the memory region to allocate (physical address)
1401 * @end: the upper bound of the memory region to allocate (physical address)
1402 *
1403 * Allocate @size bytes in the between @start and @end.
1404 *
1405 * Return: physical address of the allocated memory block on success,
1406 * %0 on failure.
1407 */
1408phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1409					     phys_addr_t align,
1410					     phys_addr_t start,
1411					     phys_addr_t end)
1412{
1413	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
1414}
1415
1416/**
1417 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1418 * @size: size of memory block to be allocated in bytes
1419 * @align: alignment of the region and block's size
1420 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1421 *
1422 * Allocates memory block from the specified NUMA node. If the node
1423 * has no available memory, attempts to allocated from any node in the
1424 * system.
1425 *
1426 * Return: physical address of the allocated memory block on success,
1427 * %0 on failure.
1428 */
1429phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1430{
1431	return memblock_alloc_range_nid(size, align, 0,
1432					MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 
 
 
1433}
1434
1435/**
1436 * memblock_alloc_internal - allocate boot memory block
1437 * @size: size of memory block to be allocated in bytes
1438 * @align: alignment of the region and block's size
1439 * @min_addr: the lower bound of the memory region to allocate (phys address)
1440 * @max_addr: the upper bound of the memory region to allocate (phys address)
1441 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1442 *
1443 * Allocates memory block using memblock_alloc_range_nid() and
1444 * converts the returned physical address to virtual.
1445 *
1446 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1447 * will fall back to memory below @min_addr. Other constraints, such
1448 * as node and mirrored memory will be handled again in
1449 * memblock_alloc_range_nid().
 
 
 
 
 
 
 
 
1450 *
1451 * Return:
 
 
 
1452 * Virtual address of allocated memory block on success, NULL on failure.
1453 */
1454static void * __init memblock_alloc_internal(
1455				phys_addr_t size, phys_addr_t align,
1456				phys_addr_t min_addr, phys_addr_t max_addr,
1457				int nid)
1458{
1459	phys_addr_t alloc;
 
 
 
 
 
1460
1461	/*
1462	 * Detect any accidental use of these APIs after slab is ready, as at
1463	 * this moment memblock may be deinitialized already and its
1464	 * internal data may be destroyed (after execution of memblock_free_all)
1465	 */
1466	if (WARN_ON_ONCE(slab_is_available()))
1467		return kzalloc_node(size, GFP_NOWAIT, nid);
1468
 
 
 
1469	if (max_addr > memblock.current_limit)
1470		max_addr = memblock.current_limit;
 
 
 
 
 
 
 
 
 
 
 
 
 
1471
1472	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid);
 
 
 
1473
1474	/* retry allocation without lower limit */
1475	if (!alloc && min_addr)
1476		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid);
 
 
 
 
 
 
 
1477
1478	if (!alloc)
1479		return NULL;
 
 
 
 
 
1480
1481	return phys_to_virt(alloc);
1482}
1483
1484/**
1485 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1486 * memory and without panicking
1487 * @size: size of memory block to be allocated in bytes
1488 * @align: alignment of the region and block's size
1489 * @min_addr: the lower bound of the memory region from where the allocation
1490 *	  is preferred (phys address)
1491 * @max_addr: the upper bound of the memory region from where the allocation
1492 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1493 *	      allocate only from memory limited by memblock.current_limit value
1494 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1495 *
1496 * Public function, provides additional debug information (including caller
1497 * info), if enabled. Does not zero allocated memory, does not panic if request
1498 * cannot be satisfied.
1499 *
1500 * Return:
1501 * Virtual address of allocated memory block on success, NULL on failure.
1502 */
1503void * __init memblock_alloc_try_nid_raw(
1504			phys_addr_t size, phys_addr_t align,
1505			phys_addr_t min_addr, phys_addr_t max_addr,
1506			int nid)
1507{
1508	void *ptr;
1509
1510	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1511		     __func__, (u64)size, (u64)align, nid, &min_addr,
1512		     &max_addr, (void *)_RET_IP_);
1513
1514	ptr = memblock_alloc_internal(size, align,
1515					   min_addr, max_addr, nid);
 
1516	if (ptr && size > 0)
1517		page_init_poison(ptr, size);
1518
1519	return ptr;
1520}
1521
1522/**
1523 * memblock_alloc_try_nid - allocate boot memory block
1524 * @size: size of memory block to be allocated in bytes
1525 * @align: alignment of the region and block's size
1526 * @min_addr: the lower bound of the memory region from where the allocation
1527 *	  is preferred (phys address)
1528 * @max_addr: the upper bound of the memory region from where the allocation
1529 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1530 *	      allocate only from memory limited by memblock.current_limit value
1531 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1532 *
1533 * Public function, provides additional debug information (including caller
1534 * info), if enabled. This function zeroes the allocated memory.
1535 *
1536 * Return:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537 * Virtual address of allocated memory block on success, NULL on failure.
1538 */
1539void * __init memblock_alloc_try_nid(
1540			phys_addr_t size, phys_addr_t align,
1541			phys_addr_t min_addr, phys_addr_t max_addr,
1542			int nid)
1543{
1544	void *ptr;
1545
1546	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1547		     __func__, (u64)size, (u64)align, nid, &min_addr,
1548		     &max_addr, (void *)_RET_IP_);
1549	ptr = memblock_alloc_internal(size, align,
1550					   min_addr, max_addr, nid);
1551	if (ptr)
1552		memset(ptr, 0, size);
 
 
1553
1554	return ptr;
 
 
 
1555}
1556
1557/**
1558 * __memblock_free_late - free pages directly to buddy allocator
1559 * @base: phys starting address of the  boot memory block
1560 * @size: size of the boot memory block in bytes
1561 *
1562 * This is only useful when the memblock allocator has already been torn
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563 * down, but we are still initializing the system.  Pages are released directly
1564 * to the buddy allocator.
1565 */
1566void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1567{
1568	phys_addr_t cursor, end;
1569
1570	end = base + size - 1;
1571	memblock_dbg("%s: [%pa-%pa] %pS\n",
1572		     __func__, &base, &end, (void *)_RET_IP_);
1573	kmemleak_free_part_phys(base, size);
1574	cursor = PFN_UP(base);
1575	end = PFN_DOWN(base + size);
1576
1577	for (; cursor < end; cursor++) {
1578		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1579		totalram_pages_inc();
1580	}
1581}
1582
1583/*
1584 * Remaining API functions
1585 */
1586
1587phys_addr_t __init_memblock memblock_phys_mem_size(void)
1588{
1589	return memblock.memory.total_size;
1590}
1591
1592phys_addr_t __init_memblock memblock_reserved_size(void)
1593{
1594	return memblock.reserved.total_size;
1595}
1596
1597phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1598{
1599	unsigned long pages = 0;
1600	struct memblock_region *r;
1601	unsigned long start_pfn, end_pfn;
1602
1603	for_each_memblock(memory, r) {
1604		start_pfn = memblock_region_memory_base_pfn(r);
1605		end_pfn = memblock_region_memory_end_pfn(r);
1606		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1607		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1608		pages += end_pfn - start_pfn;
1609	}
1610
1611	return PFN_PHYS(pages);
1612}
1613
1614/* lowest address */
1615phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1616{
1617	return memblock.memory.regions[0].base;
1618}
1619
1620phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1621{
1622	int idx = memblock.memory.cnt - 1;
1623
1624	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1625}
1626
1627static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1628{
1629	phys_addr_t max_addr = PHYS_ADDR_MAX;
1630	struct memblock_region *r;
1631
1632	/*
1633	 * translate the memory @limit size into the max address within one of
1634	 * the memory memblock regions, if the @limit exceeds the total size
1635	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1636	 */
1637	for_each_memblock(memory, r) {
1638		if (limit <= r->size) {
1639			max_addr = r->base + limit;
1640			break;
1641		}
1642		limit -= r->size;
1643	}
1644
1645	return max_addr;
1646}
1647
1648void __init memblock_enforce_memory_limit(phys_addr_t limit)
1649{
1650	phys_addr_t max_addr = PHYS_ADDR_MAX;
1651
1652	if (!limit)
1653		return;
1654
1655	max_addr = __find_max_addr(limit);
1656
1657	/* @limit exceeds the total size of the memory, do nothing */
1658	if (max_addr == PHYS_ADDR_MAX)
1659		return;
1660
1661	/* truncate both memory and reserved regions */
1662	memblock_remove_range(&memblock.memory, max_addr,
1663			      PHYS_ADDR_MAX);
1664	memblock_remove_range(&memblock.reserved, max_addr,
1665			      PHYS_ADDR_MAX);
1666}
1667
1668void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1669{
1670	int start_rgn, end_rgn;
1671	int i, ret;
1672
1673	if (!size)
1674		return;
1675
1676	ret = memblock_isolate_range(&memblock.memory, base, size,
1677						&start_rgn, &end_rgn);
1678	if (ret)
1679		return;
1680
1681	/* remove all the MAP regions */
1682	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1683		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1684			memblock_remove_region(&memblock.memory, i);
1685
1686	for (i = start_rgn - 1; i >= 0; i--)
1687		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1688			memblock_remove_region(&memblock.memory, i);
1689
1690	/* truncate the reserved regions */
1691	memblock_remove_range(&memblock.reserved, 0, base);
1692	memblock_remove_range(&memblock.reserved,
1693			base + size, PHYS_ADDR_MAX);
1694}
1695
1696void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1697{
1698	phys_addr_t max_addr;
1699
1700	if (!limit)
1701		return;
1702
1703	max_addr = __find_max_addr(limit);
1704
1705	/* @limit exceeds the total size of the memory, do nothing */
1706	if (max_addr == PHYS_ADDR_MAX)
1707		return;
1708
1709	memblock_cap_memory_range(0, max_addr);
1710}
1711
1712static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1713{
1714	unsigned int left = 0, right = type->cnt;
1715
1716	do {
1717		unsigned int mid = (right + left) / 2;
1718
1719		if (addr < type->regions[mid].base)
1720			right = mid;
1721		else if (addr >= (type->regions[mid].base +
1722				  type->regions[mid].size))
1723			left = mid + 1;
1724		else
1725			return mid;
1726	} while (left < right);
1727	return -1;
1728}
1729
1730bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1731{
1732	return memblock_search(&memblock.reserved, addr) != -1;
1733}
1734
1735bool __init_memblock memblock_is_memory(phys_addr_t addr)
1736{
1737	return memblock_search(&memblock.memory, addr) != -1;
1738}
1739
1740bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1741{
1742	int i = memblock_search(&memblock.memory, addr);
1743
1744	if (i == -1)
1745		return false;
1746	return !memblock_is_nomap(&memblock.memory.regions[i]);
1747}
1748
1749#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1750int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1751			 unsigned long *start_pfn, unsigned long *end_pfn)
1752{
1753	struct memblock_type *type = &memblock.memory;
1754	int mid = memblock_search(type, PFN_PHYS(pfn));
1755
1756	if (mid == -1)
1757		return -1;
1758
1759	*start_pfn = PFN_DOWN(type->regions[mid].base);
1760	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1761
1762	return type->regions[mid].nid;
1763}
1764#endif
1765
1766/**
1767 * memblock_is_region_memory - check if a region is a subset of memory
1768 * @base: base of region to check
1769 * @size: size of region to check
1770 *
1771 * Check if the region [@base, @base + @size) is a subset of a memory block.
1772 *
1773 * Return:
1774 * 0 if false, non-zero if true
1775 */
1776bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1777{
1778	int idx = memblock_search(&memblock.memory, base);
1779	phys_addr_t end = base + memblock_cap_size(base, &size);
1780
1781	if (idx == -1)
1782		return false;
1783	return (memblock.memory.regions[idx].base +
1784		 memblock.memory.regions[idx].size) >= end;
1785}
1786
1787/**
1788 * memblock_is_region_reserved - check if a region intersects reserved memory
1789 * @base: base of region to check
1790 * @size: size of region to check
1791 *
1792 * Check if the region [@base, @base + @size) intersects a reserved
1793 * memory block.
1794 *
1795 * Return:
1796 * True if they intersect, false if not.
1797 */
1798bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1799{
1800	memblock_cap_size(base, &size);
1801	return memblock_overlaps_region(&memblock.reserved, base, size);
1802}
1803
1804void __init_memblock memblock_trim_memory(phys_addr_t align)
1805{
1806	phys_addr_t start, end, orig_start, orig_end;
1807	struct memblock_region *r;
1808
1809	for_each_memblock(memory, r) {
1810		orig_start = r->base;
1811		orig_end = r->base + r->size;
1812		start = round_up(orig_start, align);
1813		end = round_down(orig_end, align);
1814
1815		if (start == orig_start && end == orig_end)
1816			continue;
1817
1818		if (start < end) {
1819			r->base = start;
1820			r->size = end - start;
1821		} else {
1822			memblock_remove_region(&memblock.memory,
1823					       r - memblock.memory.regions);
1824			r--;
1825		}
1826	}
1827}
1828
1829void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1830{
1831	memblock.current_limit = limit;
1832}
1833
1834phys_addr_t __init_memblock memblock_get_current_limit(void)
1835{
1836	return memblock.current_limit;
1837}
1838
1839static void __init_memblock memblock_dump(struct memblock_type *type)
1840{
1841	phys_addr_t base, end, size;
1842	enum memblock_flags flags;
1843	int idx;
1844	struct memblock_region *rgn;
1845
1846	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1847
1848	for_each_memblock_type(idx, type, rgn) {
1849		char nid_buf[32] = "";
1850
1851		base = rgn->base;
1852		size = rgn->size;
1853		end = base + size - 1;
1854		flags = rgn->flags;
1855#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1856		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1857			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1858				 memblock_get_region_node(rgn));
1859#endif
1860		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1861			type->name, idx, &base, &end, &size, nid_buf, flags);
1862	}
1863}
1864
1865void __init_memblock __memblock_dump_all(void)
1866{
1867	pr_info("MEMBLOCK configuration:\n");
1868	pr_info(" memory size = %pa reserved size = %pa\n",
1869		&memblock.memory.total_size,
1870		&memblock.reserved.total_size);
1871
1872	memblock_dump(&memblock.memory);
1873	memblock_dump(&memblock.reserved);
1874#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1875	memblock_dump(&memblock.physmem);
1876#endif
1877}
1878
1879void __init memblock_allow_resize(void)
1880{
1881	memblock_can_resize = 1;
1882}
1883
1884static int __init early_memblock(char *p)
1885{
1886	if (p && strstr(p, "debug"))
1887		memblock_debug = 1;
1888	return 0;
1889}
1890early_param("memblock", early_memblock);
1891
1892static void __init __free_pages_memory(unsigned long start, unsigned long end)
1893{
1894	int order;
1895
1896	while (start < end) {
1897		order = min(MAX_ORDER - 1UL, __ffs(start));
1898
1899		while (start + (1UL << order) > end)
1900			order--;
1901
1902		memblock_free_pages(pfn_to_page(start), start, order);
1903
1904		start += (1UL << order);
1905	}
1906}
1907
1908static unsigned long __init __free_memory_core(phys_addr_t start,
1909				 phys_addr_t end)
1910{
1911	unsigned long start_pfn = PFN_UP(start);
1912	unsigned long end_pfn = min_t(unsigned long,
1913				      PFN_DOWN(end), max_low_pfn);
1914
1915	if (start_pfn >= end_pfn)
1916		return 0;
1917
1918	__free_pages_memory(start_pfn, end_pfn);
1919
1920	return end_pfn - start_pfn;
1921}
1922
1923static unsigned long __init free_low_memory_core_early(void)
1924{
1925	unsigned long count = 0;
1926	phys_addr_t start, end;
1927	u64 i;
1928
1929	memblock_clear_hotplug(0, -1);
1930
1931	for_each_reserved_mem_region(i, &start, &end)
1932		reserve_bootmem_region(start, end);
1933
1934	/*
1935	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1936	 *  because in some case like Node0 doesn't have RAM installed
1937	 *  low ram will be on Node1
1938	 */
1939	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1940				NULL)
1941		count += __free_memory_core(start, end);
1942
1943	return count;
1944}
1945
1946static int reset_managed_pages_done __initdata;
1947
1948void reset_node_managed_pages(pg_data_t *pgdat)
1949{
1950	struct zone *z;
1951
1952	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1953		atomic_long_set(&z->managed_pages, 0);
1954}
1955
1956void __init reset_all_zones_managed_pages(void)
1957{
1958	struct pglist_data *pgdat;
1959
1960	if (reset_managed_pages_done)
1961		return;
1962
1963	for_each_online_pgdat(pgdat)
1964		reset_node_managed_pages(pgdat);
1965
1966	reset_managed_pages_done = 1;
1967}
1968
1969/**
1970 * memblock_free_all - release free pages to the buddy allocator
1971 *
1972 * Return: the number of pages actually released.
1973 */
1974unsigned long __init memblock_free_all(void)
1975{
1976	unsigned long pages;
1977
1978	reset_all_zones_managed_pages();
1979
1980	pages = free_low_memory_core_early();
1981	totalram_pages_add(pages);
1982
1983	return pages;
1984}
1985
1986#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
1987
1988static int memblock_debug_show(struct seq_file *m, void *private)
1989{
1990	struct memblock_type *type = m->private;
1991	struct memblock_region *reg;
1992	int i;
1993	phys_addr_t end;
1994
1995	for (i = 0; i < type->cnt; i++) {
1996		reg = &type->regions[i];
1997		end = reg->base + reg->size - 1;
1998
1999		seq_printf(m, "%4d: ", i);
2000		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2001	}
2002	return 0;
2003}
2004DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2005
2006static int __init memblock_init_debugfs(void)
2007{
2008	struct dentry *root = debugfs_create_dir("memblock", NULL);
2009
2010	debugfs_create_file("memory", 0444, root,
2011			    &memblock.memory, &memblock_debug_fops);
2012	debugfs_create_file("reserved", 0444, root,
2013			    &memblock.reserved, &memblock_debug_fops);
2014#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2015	debugfs_create_file("physmem", 0444, root,
2016			    &memblock.physmem, &memblock_debug_fops);
2017#endif
2018
2019	return 0;
2020}
2021__initcall(memblock_init_debugfs);
2022
2023#endif /* CONFIG_DEBUG_FS */
v4.17
 
   1/*
   2 * Procedures for maintaining information about logical memory blocks.
   3 *
   4 * Peter Bergner, IBM Corp.	June 2001.
   5 * Copyright (C) 2001 Peter Bergner.
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/bitops.h>
  17#include <linux/poison.h>
  18#include <linux/pfn.h>
  19#include <linux/debugfs.h>
  20#include <linux/kmemleak.h>
  21#include <linux/seq_file.h>
  22#include <linux/memblock.h>
  23
  24#include <asm/sections.h>
  25#include <linux/io.h>
  26
  27#include "internal.h"
  28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  29static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  30static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  31#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  32static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
  33#endif
  34
  35struct memblock memblock __initdata_memblock = {
  36	.memory.regions		= memblock_memory_init_regions,
  37	.memory.cnt		= 1,	/* empty dummy entry */
  38	.memory.max		= INIT_MEMBLOCK_REGIONS,
  39	.memory.name		= "memory",
  40
  41	.reserved.regions	= memblock_reserved_init_regions,
  42	.reserved.cnt		= 1,	/* empty dummy entry */
  43	.reserved.max		= INIT_MEMBLOCK_REGIONS,
  44	.reserved.name		= "reserved",
  45
  46#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  47	.physmem.regions	= memblock_physmem_init_regions,
  48	.physmem.cnt		= 1,	/* empty dummy entry */
  49	.physmem.max		= INIT_PHYSMEM_REGIONS,
  50	.physmem.name		= "physmem",
  51#endif
  52
  53	.bottom_up		= false,
  54	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
  55};
  56
  57int memblock_debug __initdata_memblock;
  58static bool system_has_some_mirror __initdata_memblock = false;
  59static int memblock_can_resize __initdata_memblock;
  60static int memblock_memory_in_slab __initdata_memblock = 0;
  61static int memblock_reserved_in_slab __initdata_memblock = 0;
  62
  63ulong __init_memblock choose_memblock_flags(void)
  64{
  65	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
  66}
  67
  68/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
  69static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
  70{
  71	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
  72}
  73
  74/*
  75 * Address comparison utilities
  76 */
  77static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  78				       phys_addr_t base2, phys_addr_t size2)
  79{
  80	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  81}
  82
  83bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
  84					phys_addr_t base, phys_addr_t size)
  85{
  86	unsigned long i;
  87
  88	for (i = 0; i < type->cnt; i++)
  89		if (memblock_addrs_overlap(base, size, type->regions[i].base,
  90					   type->regions[i].size))
  91			break;
  92	return i < type->cnt;
  93}
  94
  95/*
  96 * __memblock_find_range_bottom_up - find free area utility in bottom-up
  97 * @start: start of candidate range
  98 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 
  99 * @size: size of free area to find
 100 * @align: alignment of free area to find
 101 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 102 * @flags: pick from blocks based on memory attributes
 103 *
 104 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 105 *
 106 * RETURNS:
 107 * Found address on success, 0 on failure.
 108 */
 109static phys_addr_t __init_memblock
 110__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 111				phys_addr_t size, phys_addr_t align, int nid,
 112				ulong flags)
 113{
 114	phys_addr_t this_start, this_end, cand;
 115	u64 i;
 116
 117	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 118		this_start = clamp(this_start, start, end);
 119		this_end = clamp(this_end, start, end);
 120
 121		cand = round_up(this_start, align);
 122		if (cand < this_end && this_end - cand >= size)
 123			return cand;
 124	}
 125
 126	return 0;
 127}
 128
 129/**
 130 * __memblock_find_range_top_down - find free area utility, in top-down
 131 * @start: start of candidate range
 132 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 
 133 * @size: size of free area to find
 134 * @align: alignment of free area to find
 135 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 136 * @flags: pick from blocks based on memory attributes
 137 *
 138 * Utility called from memblock_find_in_range_node(), find free area top-down.
 139 *
 140 * RETURNS:
 141 * Found address on success, 0 on failure.
 142 */
 143static phys_addr_t __init_memblock
 144__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 145			       phys_addr_t size, phys_addr_t align, int nid,
 146			       ulong flags)
 147{
 148	phys_addr_t this_start, this_end, cand;
 149	u64 i;
 150
 151	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 152					NULL) {
 153		this_start = clamp(this_start, start, end);
 154		this_end = clamp(this_end, start, end);
 155
 156		if (this_end < size)
 157			continue;
 158
 159		cand = round_down(this_end - size, align);
 160		if (cand >= this_start)
 161			return cand;
 162	}
 163
 164	return 0;
 165}
 166
 167/**
 168 * memblock_find_in_range_node - find free area in given range and node
 169 * @size: size of free area to find
 170 * @align: alignment of free area to find
 171 * @start: start of candidate range
 172 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 
 173 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 174 * @flags: pick from blocks based on memory attributes
 175 *
 176 * Find @size free area aligned to @align in the specified range and node.
 177 *
 178 * When allocation direction is bottom-up, the @start should be greater
 179 * than the end of the kernel image. Otherwise, it will be trimmed. The
 180 * reason is that we want the bottom-up allocation just near the kernel
 181 * image so it is highly likely that the allocated memory and the kernel
 182 * will reside in the same node.
 183 *
 184 * If bottom-up allocation failed, will try to allocate memory top-down.
 185 *
 186 * RETURNS:
 187 * Found address on success, 0 on failure.
 188 */
 189phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 190					phys_addr_t align, phys_addr_t start,
 191					phys_addr_t end, int nid, ulong flags)
 
 192{
 193	phys_addr_t kernel_end, ret;
 194
 195	/* pump up @end */
 196	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 
 197		end = memblock.current_limit;
 198
 199	/* avoid allocating the first page */
 200	start = max_t(phys_addr_t, start, PAGE_SIZE);
 201	end = max(start, end);
 202	kernel_end = __pa_symbol(_end);
 203
 204	/*
 205	 * try bottom-up allocation only when bottom-up mode
 206	 * is set and @end is above the kernel image.
 207	 */
 208	if (memblock_bottom_up() && end > kernel_end) {
 209		phys_addr_t bottom_up_start;
 210
 211		/* make sure we will allocate above the kernel */
 212		bottom_up_start = max(start, kernel_end);
 213
 214		/* ok, try bottom-up allocation first */
 215		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 216						      size, align, nid, flags);
 217		if (ret)
 218			return ret;
 219
 220		/*
 221		 * we always limit bottom-up allocation above the kernel,
 222		 * but top-down allocation doesn't have the limit, so
 223		 * retrying top-down allocation may succeed when bottom-up
 224		 * allocation failed.
 225		 *
 226		 * bottom-up allocation is expected to be fail very rarely,
 227		 * so we use WARN_ONCE() here to see the stack trace if
 228		 * fail happens.
 229		 */
 230		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
 
 231	}
 232
 233	return __memblock_find_range_top_down(start, end, size, align, nid,
 234					      flags);
 235}
 236
 237/**
 238 * memblock_find_in_range - find free area in given range
 239 * @start: start of candidate range
 240 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 
 241 * @size: size of free area to find
 242 * @align: alignment of free area to find
 243 *
 244 * Find @size free area aligned to @align in the specified range.
 245 *
 246 * RETURNS:
 247 * Found address on success, 0 on failure.
 248 */
 249phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 250					phys_addr_t end, phys_addr_t size,
 251					phys_addr_t align)
 252{
 253	phys_addr_t ret;
 254	ulong flags = choose_memblock_flags();
 255
 256again:
 257	ret = memblock_find_in_range_node(size, align, start, end,
 258					    NUMA_NO_NODE, flags);
 259
 260	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 261		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 262			&size);
 263		flags &= ~MEMBLOCK_MIRROR;
 264		goto again;
 265	}
 266
 267	return ret;
 268}
 269
 270static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 271{
 272	type->total_size -= type->regions[r].size;
 273	memmove(&type->regions[r], &type->regions[r + 1],
 274		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 275	type->cnt--;
 276
 277	/* Special case for empty arrays */
 278	if (type->cnt == 0) {
 279		WARN_ON(type->total_size != 0);
 280		type->cnt = 1;
 281		type->regions[0].base = 0;
 282		type->regions[0].size = 0;
 283		type->regions[0].flags = 0;
 284		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 285	}
 286}
 287
 288#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 289/**
 290 * Discard memory and reserved arrays if they were allocated
 291 */
 292void __init memblock_discard(void)
 293{
 294	phys_addr_t addr, size;
 295
 296	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 297		addr = __pa(memblock.reserved.regions);
 298		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 299				  memblock.reserved.max);
 300		__memblock_free_late(addr, size);
 301	}
 302
 303	if (memblock.memory.regions != memblock_memory_init_regions) {
 304		addr = __pa(memblock.memory.regions);
 305		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 306				  memblock.memory.max);
 307		__memblock_free_late(addr, size);
 308	}
 309}
 310#endif
 311
 312/**
 313 * memblock_double_array - double the size of the memblock regions array
 314 * @type: memblock type of the regions array being doubled
 315 * @new_area_start: starting address of memory range to avoid overlap with
 316 * @new_area_size: size of memory range to avoid overlap with
 317 *
 318 * Double the size of the @type regions array. If memblock is being used to
 319 * allocate memory for a new reserved regions array and there is a previously
 320 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 321 * waiting to be reserved, ensure the memory used by the new array does
 322 * not overlap.
 323 *
 324 * RETURNS:
 325 * 0 on success, -1 on failure.
 326 */
 327static int __init_memblock memblock_double_array(struct memblock_type *type,
 328						phys_addr_t new_area_start,
 329						phys_addr_t new_area_size)
 330{
 331	struct memblock_region *new_array, *old_array;
 332	phys_addr_t old_alloc_size, new_alloc_size;
 333	phys_addr_t old_size, new_size, addr;
 334	int use_slab = slab_is_available();
 335	int *in_slab;
 336
 337	/* We don't allow resizing until we know about the reserved regions
 338	 * of memory that aren't suitable for allocation
 339	 */
 340	if (!memblock_can_resize)
 341		return -1;
 342
 343	/* Calculate new doubled size */
 344	old_size = type->max * sizeof(struct memblock_region);
 345	new_size = old_size << 1;
 346	/*
 347	 * We need to allocated new one align to PAGE_SIZE,
 348	 *   so we can free them completely later.
 349	 */
 350	old_alloc_size = PAGE_ALIGN(old_size);
 351	new_alloc_size = PAGE_ALIGN(new_size);
 352
 353	/* Retrieve the slab flag */
 354	if (type == &memblock.memory)
 355		in_slab = &memblock_memory_in_slab;
 356	else
 357		in_slab = &memblock_reserved_in_slab;
 358
 359	/* Try to find some space for it.
 360	 *
 361	 * WARNING: We assume that either slab_is_available() and we use it or
 362	 * we use MEMBLOCK for allocations. That means that this is unsafe to
 363	 * use when bootmem is currently active (unless bootmem itself is
 364	 * implemented on top of MEMBLOCK which isn't the case yet)
 365	 *
 366	 * This should however not be an issue for now, as we currently only
 367	 * call into MEMBLOCK while it's still active, or much later when slab
 368	 * is active for memory hotplug operations
 369	 */
 370	if (use_slab) {
 371		new_array = kmalloc(new_size, GFP_KERNEL);
 372		addr = new_array ? __pa(new_array) : 0;
 373	} else {
 374		/* only exclude range when trying to double reserved.regions */
 375		if (type != &memblock.reserved)
 376			new_area_start = new_area_size = 0;
 377
 378		addr = memblock_find_in_range(new_area_start + new_area_size,
 379						memblock.current_limit,
 380						new_alloc_size, PAGE_SIZE);
 381		if (!addr && new_area_size)
 382			addr = memblock_find_in_range(0,
 383				min(new_area_start, memblock.current_limit),
 384				new_alloc_size, PAGE_SIZE);
 385
 386		new_array = addr ? __va(addr) : NULL;
 387	}
 388	if (!addr) {
 389		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 390		       type->name, type->max, type->max * 2);
 391		return -1;
 392	}
 393
 394	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
 395			type->name, type->max * 2, (u64)addr,
 396			(u64)addr + new_size - 1);
 397
 398	/*
 399	 * Found space, we now need to move the array over before we add the
 400	 * reserved region since it may be our reserved array itself that is
 401	 * full.
 402	 */
 403	memcpy(new_array, type->regions, old_size);
 404	memset(new_array + type->max, 0, old_size);
 405	old_array = type->regions;
 406	type->regions = new_array;
 407	type->max <<= 1;
 408
 409	/* Free old array. We needn't free it if the array is the static one */
 410	if (*in_slab)
 411		kfree(old_array);
 412	else if (old_array != memblock_memory_init_regions &&
 413		 old_array != memblock_reserved_init_regions)
 414		memblock_free(__pa(old_array), old_alloc_size);
 415
 416	/*
 417	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 418	 * needn't do it
 419	 */
 420	if (!use_slab)
 421		BUG_ON(memblock_reserve(addr, new_alloc_size));
 422
 423	/* Update slab flag */
 424	*in_slab = use_slab;
 425
 426	return 0;
 427}
 428
 429/**
 430 * memblock_merge_regions - merge neighboring compatible regions
 431 * @type: memblock type to scan
 432 *
 433 * Scan @type and merge neighboring compatible regions.
 434 */
 435static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 436{
 437	int i = 0;
 438
 439	/* cnt never goes below 1 */
 440	while (i < type->cnt - 1) {
 441		struct memblock_region *this = &type->regions[i];
 442		struct memblock_region *next = &type->regions[i + 1];
 443
 444		if (this->base + this->size != next->base ||
 445		    memblock_get_region_node(this) !=
 446		    memblock_get_region_node(next) ||
 447		    this->flags != next->flags) {
 448			BUG_ON(this->base + this->size > next->base);
 449			i++;
 450			continue;
 451		}
 452
 453		this->size += next->size;
 454		/* move forward from next + 1, index of which is i + 2 */
 455		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 456		type->cnt--;
 457	}
 458}
 459
 460/**
 461 * memblock_insert_region - insert new memblock region
 462 * @type:	memblock type to insert into
 463 * @idx:	index for the insertion point
 464 * @base:	base address of the new region
 465 * @size:	size of the new region
 466 * @nid:	node id of the new region
 467 * @flags:	flags of the new region
 468 *
 469 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 470 * @type must already have extra room to accommodate the new region.
 471 */
 472static void __init_memblock memblock_insert_region(struct memblock_type *type,
 473						   int idx, phys_addr_t base,
 474						   phys_addr_t size,
 475						   int nid, unsigned long flags)
 
 476{
 477	struct memblock_region *rgn = &type->regions[idx];
 478
 479	BUG_ON(type->cnt >= type->max);
 480	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 481	rgn->base = base;
 482	rgn->size = size;
 483	rgn->flags = flags;
 484	memblock_set_region_node(rgn, nid);
 485	type->cnt++;
 486	type->total_size += size;
 487}
 488
 489/**
 490 * memblock_add_range - add new memblock region
 491 * @type: memblock type to add new region into
 492 * @base: base address of the new region
 493 * @size: size of the new region
 494 * @nid: nid of the new region
 495 * @flags: flags of the new region
 496 *
 497 * Add new memblock region [@base,@base+@size) into @type.  The new region
 498 * is allowed to overlap with existing ones - overlaps don't affect already
 499 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 500 * compatible regions are merged) after the addition.
 501 *
 502 * RETURNS:
 503 * 0 on success, -errno on failure.
 504 */
 505int __init_memblock memblock_add_range(struct memblock_type *type,
 506				phys_addr_t base, phys_addr_t size,
 507				int nid, unsigned long flags)
 508{
 509	bool insert = false;
 510	phys_addr_t obase = base;
 511	phys_addr_t end = base + memblock_cap_size(base, &size);
 512	int idx, nr_new;
 513	struct memblock_region *rgn;
 514
 515	if (!size)
 516		return 0;
 517
 518	/* special case for empty array */
 519	if (type->regions[0].size == 0) {
 520		WARN_ON(type->cnt != 1 || type->total_size);
 521		type->regions[0].base = base;
 522		type->regions[0].size = size;
 523		type->regions[0].flags = flags;
 524		memblock_set_region_node(&type->regions[0], nid);
 525		type->total_size = size;
 526		return 0;
 527	}
 528repeat:
 529	/*
 530	 * The following is executed twice.  Once with %false @insert and
 531	 * then with %true.  The first counts the number of regions needed
 532	 * to accommodate the new area.  The second actually inserts them.
 533	 */
 534	base = obase;
 535	nr_new = 0;
 536
 537	for_each_memblock_type(idx, type, rgn) {
 538		phys_addr_t rbase = rgn->base;
 539		phys_addr_t rend = rbase + rgn->size;
 540
 541		if (rbase >= end)
 542			break;
 543		if (rend <= base)
 544			continue;
 545		/*
 546		 * @rgn overlaps.  If it separates the lower part of new
 547		 * area, insert that portion.
 548		 */
 549		if (rbase > base) {
 550#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 551			WARN_ON(nid != memblock_get_region_node(rgn));
 552#endif
 553			WARN_ON(flags != rgn->flags);
 554			nr_new++;
 555			if (insert)
 556				memblock_insert_region(type, idx++, base,
 557						       rbase - base, nid,
 558						       flags);
 559		}
 560		/* area below @rend is dealt with, forget about it */
 561		base = min(rend, end);
 562	}
 563
 564	/* insert the remaining portion */
 565	if (base < end) {
 566		nr_new++;
 567		if (insert)
 568			memblock_insert_region(type, idx, base, end - base,
 569					       nid, flags);
 570	}
 571
 572	if (!nr_new)
 573		return 0;
 574
 575	/*
 576	 * If this was the first round, resize array and repeat for actual
 577	 * insertions; otherwise, merge and return.
 578	 */
 579	if (!insert) {
 580		while (type->cnt + nr_new > type->max)
 581			if (memblock_double_array(type, obase, size) < 0)
 582				return -ENOMEM;
 583		insert = true;
 584		goto repeat;
 585	} else {
 586		memblock_merge_regions(type);
 587		return 0;
 588	}
 589}
 590
 
 
 
 
 
 
 
 
 
 
 
 
 591int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 592				       int nid)
 593{
 594	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 595}
 596
 
 
 
 
 
 
 
 
 
 
 
 597int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 598{
 599	phys_addr_t end = base + size - 1;
 600
 601	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
 602		     &base, &end, (void *)_RET_IP_);
 603
 604	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 605}
 606
 607/**
 608 * memblock_isolate_range - isolate given range into disjoint memblocks
 609 * @type: memblock type to isolate range for
 610 * @base: base of range to isolate
 611 * @size: size of range to isolate
 612 * @start_rgn: out parameter for the start of isolated region
 613 * @end_rgn: out parameter for the end of isolated region
 614 *
 615 * Walk @type and ensure that regions don't cross the boundaries defined by
 616 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 617 * which may create at most two more regions.  The index of the first
 618 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 619 *
 620 * RETURNS:
 621 * 0 on success, -errno on failure.
 622 */
 623static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 624					phys_addr_t base, phys_addr_t size,
 625					int *start_rgn, int *end_rgn)
 626{
 627	phys_addr_t end = base + memblock_cap_size(base, &size);
 628	int idx;
 629	struct memblock_region *rgn;
 630
 631	*start_rgn = *end_rgn = 0;
 632
 633	if (!size)
 634		return 0;
 635
 636	/* we'll create at most two more regions */
 637	while (type->cnt + 2 > type->max)
 638		if (memblock_double_array(type, base, size) < 0)
 639			return -ENOMEM;
 640
 641	for_each_memblock_type(idx, type, rgn) {
 642		phys_addr_t rbase = rgn->base;
 643		phys_addr_t rend = rbase + rgn->size;
 644
 645		if (rbase >= end)
 646			break;
 647		if (rend <= base)
 648			continue;
 649
 650		if (rbase < base) {
 651			/*
 652			 * @rgn intersects from below.  Split and continue
 653			 * to process the next region - the new top half.
 654			 */
 655			rgn->base = base;
 656			rgn->size -= base - rbase;
 657			type->total_size -= base - rbase;
 658			memblock_insert_region(type, idx, rbase, base - rbase,
 659					       memblock_get_region_node(rgn),
 660					       rgn->flags);
 661		} else if (rend > end) {
 662			/*
 663			 * @rgn intersects from above.  Split and redo the
 664			 * current region - the new bottom half.
 665			 */
 666			rgn->base = end;
 667			rgn->size -= end - rbase;
 668			type->total_size -= end - rbase;
 669			memblock_insert_region(type, idx--, rbase, end - rbase,
 670					       memblock_get_region_node(rgn),
 671					       rgn->flags);
 672		} else {
 673			/* @rgn is fully contained, record it */
 674			if (!*end_rgn)
 675				*start_rgn = idx;
 676			*end_rgn = idx + 1;
 677		}
 678	}
 679
 680	return 0;
 681}
 682
 683static int __init_memblock memblock_remove_range(struct memblock_type *type,
 684					  phys_addr_t base, phys_addr_t size)
 685{
 686	int start_rgn, end_rgn;
 687	int i, ret;
 688
 689	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 690	if (ret)
 691		return ret;
 692
 693	for (i = end_rgn - 1; i >= start_rgn; i--)
 694		memblock_remove_region(type, i);
 695	return 0;
 696}
 697
 698int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 699{
 
 
 
 
 
 700	return memblock_remove_range(&memblock.memory, base, size);
 701}
 702
 703
 
 
 
 
 
 
 
 704int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 705{
 706	phys_addr_t end = base + size - 1;
 707
 708	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
 709		     &base, &end, (void *)_RET_IP_);
 710
 711	kmemleak_free_part_phys(base, size);
 712	return memblock_remove_range(&memblock.reserved, base, size);
 713}
 714
 715int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 716{
 717	phys_addr_t end = base + size - 1;
 718
 719	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
 720		     &base, &end, (void *)_RET_IP_);
 721
 722	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 723}
 724
 725/**
 
 
 
 
 
 726 *
 727 * This function isolates region [@base, @base + @size), and sets/clears flag
 728 *
 729 * Return 0 on success, -errno on failure.
 730 */
 731static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 732				phys_addr_t size, int set, int flag)
 733{
 734	struct memblock_type *type = &memblock.memory;
 735	int i, ret, start_rgn, end_rgn;
 736
 737	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 738	if (ret)
 739		return ret;
 740
 741	for (i = start_rgn; i < end_rgn; i++)
 
 
 742		if (set)
 743			memblock_set_region_flags(&type->regions[i], flag);
 744		else
 745			memblock_clear_region_flags(&type->regions[i], flag);
 
 746
 747	memblock_merge_regions(type);
 748	return 0;
 749}
 750
 751/**
 752 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 753 * @base: the base phys addr of the region
 754 * @size: the size of the region
 755 *
 756 * Return 0 on success, -errno on failure.
 757 */
 758int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 759{
 760	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 761}
 762
 763/**
 764 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 765 * @base: the base phys addr of the region
 766 * @size: the size of the region
 767 *
 768 * Return 0 on success, -errno on failure.
 769 */
 770int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 771{
 772	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 773}
 774
 775/**
 776 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 777 * @base: the base phys addr of the region
 778 * @size: the size of the region
 779 *
 780 * Return 0 on success, -errno on failure.
 781 */
 782int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 783{
 784	system_has_some_mirror = true;
 785
 786	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 787}
 788
 789/**
 790 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 791 * @base: the base phys addr of the region
 792 * @size: the size of the region
 793 *
 794 * Return 0 on success, -errno on failure.
 795 */
 796int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 797{
 798	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 799}
 800
 801/**
 802 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 803 * @base: the base phys addr of the region
 804 * @size: the size of the region
 805 *
 806 * Return 0 on success, -errno on failure.
 807 */
 808int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 809{
 810	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 811}
 812
 813/**
 814 * __next_reserved_mem_region - next function for for_each_reserved_region()
 815 * @idx: pointer to u64 loop variable
 816 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 817 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 818 *
 819 * Iterate over all reserved memory regions.
 820 */
 821void __init_memblock __next_reserved_mem_region(u64 *idx,
 822					   phys_addr_t *out_start,
 823					   phys_addr_t *out_end)
 824{
 825	struct memblock_type *type = &memblock.reserved;
 826
 827	if (*idx < type->cnt) {
 828		struct memblock_region *r = &type->regions[*idx];
 829		phys_addr_t base = r->base;
 830		phys_addr_t size = r->size;
 831
 832		if (out_start)
 833			*out_start = base;
 834		if (out_end)
 835			*out_end = base + size - 1;
 836
 837		*idx += 1;
 838		return;
 839	}
 840
 841	/* signal end of iteration */
 842	*idx = ULLONG_MAX;
 843}
 844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845/**
 846 * __next__mem_range - next function for for_each_free_mem_range() etc.
 847 * @idx: pointer to u64 loop variable
 848 * @nid: node selector, %NUMA_NO_NODE for all nodes
 849 * @flags: pick from blocks based on memory attributes
 850 * @type_a: pointer to memblock_type from where the range is taken
 851 * @type_b: pointer to memblock_type which excludes memory from being taken
 852 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 853 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 854 * @out_nid: ptr to int for nid of the range, can be %NULL
 855 *
 856 * Find the first area from *@idx which matches @nid, fill the out
 857 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 858 * *@idx contains index into type_a and the upper 32bit indexes the
 859 * areas before each region in type_b.	For example, if type_b regions
 860 * look like the following,
 861 *
 862 *	0:[0-16), 1:[32-48), 2:[128-130)
 863 *
 864 * The upper 32bit indexes the following regions.
 865 *
 866 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 867 *
 868 * As both region arrays are sorted, the function advances the two indices
 869 * in lockstep and returns each intersection.
 870 */
 871void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
 
 872				      struct memblock_type *type_a,
 873				      struct memblock_type *type_b,
 874				      phys_addr_t *out_start,
 875				      phys_addr_t *out_end, int *out_nid)
 876{
 877	int idx_a = *idx & 0xffffffff;
 878	int idx_b = *idx >> 32;
 879
 880	if (WARN_ONCE(nid == MAX_NUMNODES,
 881	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 882		nid = NUMA_NO_NODE;
 883
 884	for (; idx_a < type_a->cnt; idx_a++) {
 885		struct memblock_region *m = &type_a->regions[idx_a];
 886
 887		phys_addr_t m_start = m->base;
 888		phys_addr_t m_end = m->base + m->size;
 889		int	    m_nid = memblock_get_region_node(m);
 890
 891		/* only memory regions are associated with nodes, check it */
 892		if (nid != NUMA_NO_NODE && nid != m_nid)
 893			continue;
 894
 895		/* skip hotpluggable memory regions if needed */
 896		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 897			continue;
 898
 899		/* if we want mirror memory skip non-mirror memory regions */
 900		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 901			continue;
 902
 903		/* skip nomap memory unless we were asked for it explicitly */
 904		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 905			continue;
 906
 907		if (!type_b) {
 908			if (out_start)
 909				*out_start = m_start;
 910			if (out_end)
 911				*out_end = m_end;
 912			if (out_nid)
 913				*out_nid = m_nid;
 914			idx_a++;
 915			*idx = (u32)idx_a | (u64)idx_b << 32;
 916			return;
 917		}
 918
 919		/* scan areas before each reservation */
 920		for (; idx_b < type_b->cnt + 1; idx_b++) {
 921			struct memblock_region *r;
 922			phys_addr_t r_start;
 923			phys_addr_t r_end;
 924
 925			r = &type_b->regions[idx_b];
 926			r_start = idx_b ? r[-1].base + r[-1].size : 0;
 927			r_end = idx_b < type_b->cnt ?
 928				r->base : (phys_addr_t)ULLONG_MAX;
 929
 930			/*
 931			 * if idx_b advanced past idx_a,
 932			 * break out to advance idx_a
 933			 */
 934			if (r_start >= m_end)
 935				break;
 936			/* if the two regions intersect, we're done */
 937			if (m_start < r_end) {
 938				if (out_start)
 939					*out_start =
 940						max(m_start, r_start);
 941				if (out_end)
 942					*out_end = min(m_end, r_end);
 943				if (out_nid)
 944					*out_nid = m_nid;
 945				/*
 946				 * The region which ends first is
 947				 * advanced for the next iteration.
 948				 */
 949				if (m_end <= r_end)
 950					idx_a++;
 951				else
 952					idx_b++;
 953				*idx = (u32)idx_a | (u64)idx_b << 32;
 954				return;
 955			}
 956		}
 957	}
 958
 959	/* signal end of iteration */
 960	*idx = ULLONG_MAX;
 961}
 962
 963/**
 964 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
 965 *
 966 * Finds the next range from type_a which is not marked as unsuitable
 967 * in type_b.
 968 *
 969 * @idx: pointer to u64 loop variable
 970 * @nid: node selector, %NUMA_NO_NODE for all nodes
 971 * @flags: pick from blocks based on memory attributes
 972 * @type_a: pointer to memblock_type from where the range is taken
 973 * @type_b: pointer to memblock_type which excludes memory from being taken
 974 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 975 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 976 * @out_nid: ptr to int for nid of the range, can be %NULL
 977 *
 
 
 
 978 * Reverse of __next_mem_range().
 979 */
 980void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
 
 981					  struct memblock_type *type_a,
 982					  struct memblock_type *type_b,
 983					  phys_addr_t *out_start,
 984					  phys_addr_t *out_end, int *out_nid)
 985{
 986	int idx_a = *idx & 0xffffffff;
 987	int idx_b = *idx >> 32;
 988
 989	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 990		nid = NUMA_NO_NODE;
 991
 992	if (*idx == (u64)ULLONG_MAX) {
 993		idx_a = type_a->cnt - 1;
 994		if (type_b != NULL)
 995			idx_b = type_b->cnt;
 996		else
 997			idx_b = 0;
 998	}
 999
1000	for (; idx_a >= 0; idx_a--) {
1001		struct memblock_region *m = &type_a->regions[idx_a];
1002
1003		phys_addr_t m_start = m->base;
1004		phys_addr_t m_end = m->base + m->size;
1005		int m_nid = memblock_get_region_node(m);
1006
1007		/* only memory regions are associated with nodes, check it */
1008		if (nid != NUMA_NO_NODE && nid != m_nid)
1009			continue;
1010
1011		/* skip hotpluggable memory regions if needed */
1012		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1013			continue;
1014
1015		/* if we want mirror memory skip non-mirror memory regions */
1016		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1017			continue;
1018
1019		/* skip nomap memory unless we were asked for it explicitly */
1020		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1021			continue;
1022
1023		if (!type_b) {
1024			if (out_start)
1025				*out_start = m_start;
1026			if (out_end)
1027				*out_end = m_end;
1028			if (out_nid)
1029				*out_nid = m_nid;
1030			idx_a--;
1031			*idx = (u32)idx_a | (u64)idx_b << 32;
1032			return;
1033		}
1034
1035		/* scan areas before each reservation */
1036		for (; idx_b >= 0; idx_b--) {
1037			struct memblock_region *r;
1038			phys_addr_t r_start;
1039			phys_addr_t r_end;
1040
1041			r = &type_b->regions[idx_b];
1042			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1043			r_end = idx_b < type_b->cnt ?
1044				r->base : (phys_addr_t)ULLONG_MAX;
1045			/*
1046			 * if idx_b advanced past idx_a,
1047			 * break out to advance idx_a
1048			 */
1049
1050			if (r_end <= m_start)
1051				break;
1052			/* if the two regions intersect, we're done */
1053			if (m_end > r_start) {
1054				if (out_start)
1055					*out_start = max(m_start, r_start);
1056				if (out_end)
1057					*out_end = min(m_end, r_end);
1058				if (out_nid)
1059					*out_nid = m_nid;
1060				if (m_start >= r_start)
1061					idx_a--;
1062				else
1063					idx_b--;
1064				*idx = (u32)idx_a | (u64)idx_b << 32;
1065				return;
1066			}
1067		}
1068	}
1069	/* signal end of iteration */
1070	*idx = ULLONG_MAX;
1071}
1072
1073#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1074/*
1075 * Common iterator interface used to define for_each_mem_range().
1076 */
1077void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1078				unsigned long *out_start_pfn,
1079				unsigned long *out_end_pfn, int *out_nid)
1080{
1081	struct memblock_type *type = &memblock.memory;
1082	struct memblock_region *r;
1083
1084	while (++*idx < type->cnt) {
1085		r = &type->regions[*idx];
1086
1087		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1088			continue;
1089		if (nid == MAX_NUMNODES || nid == r->nid)
1090			break;
1091	}
1092	if (*idx >= type->cnt) {
1093		*idx = -1;
1094		return;
1095	}
1096
1097	if (out_start_pfn)
1098		*out_start_pfn = PFN_UP(r->base);
1099	if (out_end_pfn)
1100		*out_end_pfn = PFN_DOWN(r->base + r->size);
1101	if (out_nid)
1102		*out_nid = r->nid;
1103}
1104
1105/**
1106 * memblock_set_node - set node ID on memblock regions
1107 * @base: base of area to set node ID for
1108 * @size: size of area to set node ID for
1109 * @type: memblock type to set node ID for
1110 * @nid: node ID to set
1111 *
1112 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1113 * Regions which cross the area boundaries are split as necessary.
1114 *
1115 * RETURNS:
1116 * 0 on success, -errno on failure.
1117 */
1118int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1119				      struct memblock_type *type, int nid)
1120{
1121	int start_rgn, end_rgn;
1122	int i, ret;
1123
1124	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1125	if (ret)
1126		return ret;
1127
1128	for (i = start_rgn; i < end_rgn; i++)
1129		memblock_set_region_node(&type->regions[i], nid);
1130
1131	memblock_merge_regions(type);
1132	return 0;
1133}
1134#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1137					phys_addr_t align, phys_addr_t start,
1138					phys_addr_t end, int nid, ulong flags)
1139{
 
1140	phys_addr_t found;
1141
1142	if (!align)
 
 
 
 
 
1143		align = SMP_CACHE_BYTES;
 
1144
 
1145	found = memblock_find_in_range_node(size, align, start, end, nid,
1146					    flags);
1147	if (found && !memblock_reserve(found, size)) {
1148		/*
1149		 * The min_count is set to 0 so that memblock allocations are
1150		 * never reported as leaks.
1151		 */
1152		kmemleak_alloc_phys(found, size, 0, 0);
1153		return found;
 
 
1154	}
1155	return 0;
1156}
1157
1158phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1159					phys_addr_t start, phys_addr_t end,
1160					ulong flags)
1161{
1162	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1163					flags);
1164}
1165
1166phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1167					phys_addr_t align, phys_addr_t max_addr,
1168					int nid, ulong flags)
1169{
1170	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1171}
1172
1173phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1174{
1175	ulong flags = choose_memblock_flags();
1176	phys_addr_t ret;
1177
1178again:
1179	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1180				      nid, flags);
1181
1182	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1183		flags &= ~MEMBLOCK_MIRROR;
 
 
1184		goto again;
1185	}
1186	return ret;
1187}
1188
1189phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1190{
1191	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1192				       MEMBLOCK_NONE);
1193}
1194
1195phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1196{
1197	phys_addr_t alloc;
1198
1199	alloc = __memblock_alloc_base(size, align, max_addr);
1200
1201	if (alloc == 0)
1202		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1203		      &size, &max_addr);
 
1204
1205	return alloc;
1206}
1207
1208phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1209{
1210	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1211}
1212
1213phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
1214{
1215	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1216
1217	if (res)
1218		return res;
1219	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1220}
1221
1222/**
1223 * memblock_virt_alloc_internal - allocate boot memory block
1224 * @size: size of memory block to be allocated in bytes
1225 * @align: alignment of the region and block's size
1226 * @min_addr: the lower bound of the memory region to allocate (phys address)
1227 * @max_addr: the upper bound of the memory region to allocate (phys address)
1228 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1229 *
 
 
 
1230 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1231 * will fall back to memory below @min_addr. Also, allocation may fall back
1232 * to any node in the system if the specified node can not
1233 * hold the requested memory.
1234 *
1235 * The allocation is performed from memory region limited by
1236 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1237 *
1238 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1239 *
1240 * The phys address of allocated boot memory block is converted to virtual and
1241 * allocated memory is reset to 0.
1242 *
1243 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1244 * allocated boot memory block, so that it is never reported as leaks.
1245 *
1246 * RETURNS:
1247 * Virtual address of allocated memory block on success, NULL on failure.
1248 */
1249static void * __init memblock_virt_alloc_internal(
1250				phys_addr_t size, phys_addr_t align,
1251				phys_addr_t min_addr, phys_addr_t max_addr,
1252				int nid)
1253{
1254	phys_addr_t alloc;
1255	void *ptr;
1256	ulong flags = choose_memblock_flags();
1257
1258	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1259		nid = NUMA_NO_NODE;
1260
1261	/*
1262	 * Detect any accidental use of these APIs after slab is ready, as at
1263	 * this moment memblock may be deinitialized already and its
1264	 * internal data may be destroyed (after execution of free_all_bootmem)
1265	 */
1266	if (WARN_ON_ONCE(slab_is_available()))
1267		return kzalloc_node(size, GFP_NOWAIT, nid);
1268
1269	if (!align)
1270		align = SMP_CACHE_BYTES;
1271
1272	if (max_addr > memblock.current_limit)
1273		max_addr = memblock.current_limit;
1274again:
1275	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1276					    nid, flags);
1277	if (alloc && !memblock_reserve(alloc, size))
1278		goto done;
1279
1280	if (nid != NUMA_NO_NODE) {
1281		alloc = memblock_find_in_range_node(size, align, min_addr,
1282						    max_addr, NUMA_NO_NODE,
1283						    flags);
1284		if (alloc && !memblock_reserve(alloc, size))
1285			goto done;
1286	}
1287
1288	if (min_addr) {
1289		min_addr = 0;
1290		goto again;
1291	}
1292
1293	if (flags & MEMBLOCK_MIRROR) {
1294		flags &= ~MEMBLOCK_MIRROR;
1295		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1296			&size);
1297		goto again;
1298	}
1299
1300	return NULL;
1301done:
1302	ptr = phys_to_virt(alloc);
1303
1304	/*
1305	 * The min_count is set to 0 so that bootmem allocated blocks
1306	 * are never reported as leaks. This is because many of these blocks
1307	 * are only referred via the physical address which is not
1308	 * looked up by kmemleak.
1309	 */
1310	kmemleak_alloc(ptr, size, 0, 0);
1311
1312	return ptr;
1313}
1314
1315/**
1316 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1317 * memory and without panicking
1318 * @size: size of memory block to be allocated in bytes
1319 * @align: alignment of the region and block's size
1320 * @min_addr: the lower bound of the memory region from where the allocation
1321 *	  is preferred (phys address)
1322 * @max_addr: the upper bound of the memory region from where the allocation
1323 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1324 *	      allocate only from memory limited by memblock.current_limit value
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 *
1327 * Public function, provides additional debug information (including caller
1328 * info), if enabled. Does not zero allocated memory, does not panic if request
1329 * cannot be satisfied.
1330 *
1331 * RETURNS:
1332 * Virtual address of allocated memory block on success, NULL on failure.
1333 */
1334void * __init memblock_virt_alloc_try_nid_raw(
1335			phys_addr_t size, phys_addr_t align,
1336			phys_addr_t min_addr, phys_addr_t max_addr,
1337			int nid)
1338{
1339	void *ptr;
1340
1341	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1342		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1343		     (u64)max_addr, (void *)_RET_IP_);
1344
1345	ptr = memblock_virt_alloc_internal(size, align,
1346					   min_addr, max_addr, nid);
1347#ifdef CONFIG_DEBUG_VM
1348	if (ptr && size > 0)
1349		memset(ptr, PAGE_POISON_PATTERN, size);
1350#endif
1351	return ptr;
1352}
1353
1354/**
1355 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1356 * @size: size of memory block to be allocated in bytes
1357 * @align: alignment of the region and block's size
1358 * @min_addr: the lower bound of the memory region from where the allocation
1359 *	  is preferred (phys address)
1360 * @max_addr: the upper bound of the memory region from where the allocation
1361 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1362 *	      allocate only from memory limited by memblock.current_limit value
1363 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1364 *
1365 * Public function, provides additional debug information (including caller
1366 * info), if enabled. This function zeroes the allocated memory.
1367 *
1368 * RETURNS:
1369 * Virtual address of allocated memory block on success, NULL on failure.
1370 */
1371void * __init memblock_virt_alloc_try_nid_nopanic(
1372				phys_addr_t size, phys_addr_t align,
1373				phys_addr_t min_addr, phys_addr_t max_addr,
1374				int nid)
1375{
1376	void *ptr;
1377
1378	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1379		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1380		     (u64)max_addr, (void *)_RET_IP_);
1381
1382	ptr = memblock_virt_alloc_internal(size, align,
1383					   min_addr, max_addr, nid);
1384	if (ptr)
1385		memset(ptr, 0, size);
1386	return ptr;
1387}
1388
1389/**
1390 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1391 * @size: size of memory block to be allocated in bytes
1392 * @align: alignment of the region and block's size
1393 * @min_addr: the lower bound of the memory region from where the allocation
1394 *	  is preferred (phys address)
1395 * @max_addr: the upper bound of the memory region from where the allocation
1396 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1397 *	      allocate only from memory limited by memblock.current_limit value
1398 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1399 *
1400 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1401 * which provides debug information (including caller info), if enabled,
1402 * and panics if the request can not be satisfied.
1403 *
1404 * RETURNS:
1405 * Virtual address of allocated memory block on success, NULL on failure.
1406 */
1407void * __init memblock_virt_alloc_try_nid(
1408			phys_addr_t size, phys_addr_t align,
1409			phys_addr_t min_addr, phys_addr_t max_addr,
1410			int nid)
1411{
1412	void *ptr;
1413
1414	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1415		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1416		     (u64)max_addr, (void *)_RET_IP_);
1417	ptr = memblock_virt_alloc_internal(size, align,
1418					   min_addr, max_addr, nid);
1419	if (ptr) {
1420		memset(ptr, 0, size);
1421		return ptr;
1422	}
1423
1424	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1425	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1426	      (u64)max_addr);
1427	return NULL;
1428}
1429
1430/**
1431 * __memblock_free_early - free boot memory block
1432 * @base: phys starting address of the  boot memory block
1433 * @size: size of the boot memory block in bytes
1434 *
1435 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1436 * The freeing memory will not be released to the buddy allocator.
1437 */
1438void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1439{
1440	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1441		     __func__, (u64)base, (u64)base + size - 1,
1442		     (void *)_RET_IP_);
1443	kmemleak_free_part_phys(base, size);
1444	memblock_remove_range(&memblock.reserved, base, size);
1445}
1446
1447/*
1448 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1449 * @addr: phys starting address of the  boot memory block
1450 * @size: size of the boot memory block in bytes
1451 *
1452 * This is only useful when the bootmem allocator has already been torn
1453 * down, but we are still initializing the system.  Pages are released directly
1454 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1455 */
1456void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1457{
1458	u64 cursor, end;
1459
1460	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1461		     __func__, (u64)base, (u64)base + size - 1,
1462		     (void *)_RET_IP_);
1463	kmemleak_free_part_phys(base, size);
1464	cursor = PFN_UP(base);
1465	end = PFN_DOWN(base + size);
1466
1467	for (; cursor < end; cursor++) {
1468		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1469		totalram_pages++;
1470	}
1471}
1472
1473/*
1474 * Remaining API functions
1475 */
1476
1477phys_addr_t __init_memblock memblock_phys_mem_size(void)
1478{
1479	return memblock.memory.total_size;
1480}
1481
1482phys_addr_t __init_memblock memblock_reserved_size(void)
1483{
1484	return memblock.reserved.total_size;
1485}
1486
1487phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1488{
1489	unsigned long pages = 0;
1490	struct memblock_region *r;
1491	unsigned long start_pfn, end_pfn;
1492
1493	for_each_memblock(memory, r) {
1494		start_pfn = memblock_region_memory_base_pfn(r);
1495		end_pfn = memblock_region_memory_end_pfn(r);
1496		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1497		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1498		pages += end_pfn - start_pfn;
1499	}
1500
1501	return PFN_PHYS(pages);
1502}
1503
1504/* lowest address */
1505phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1506{
1507	return memblock.memory.regions[0].base;
1508}
1509
1510phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1511{
1512	int idx = memblock.memory.cnt - 1;
1513
1514	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1515}
1516
1517static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1518{
1519	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1520	struct memblock_region *r;
1521
1522	/*
1523	 * translate the memory @limit size into the max address within one of
1524	 * the memory memblock regions, if the @limit exceeds the total size
1525	 * of those regions, max_addr will keep original value ULLONG_MAX
1526	 */
1527	for_each_memblock(memory, r) {
1528		if (limit <= r->size) {
1529			max_addr = r->base + limit;
1530			break;
1531		}
1532		limit -= r->size;
1533	}
1534
1535	return max_addr;
1536}
1537
1538void __init memblock_enforce_memory_limit(phys_addr_t limit)
1539{
1540	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1541
1542	if (!limit)
1543		return;
1544
1545	max_addr = __find_max_addr(limit);
1546
1547	/* @limit exceeds the total size of the memory, do nothing */
1548	if (max_addr == (phys_addr_t)ULLONG_MAX)
1549		return;
1550
1551	/* truncate both memory and reserved regions */
1552	memblock_remove_range(&memblock.memory, max_addr,
1553			      (phys_addr_t)ULLONG_MAX);
1554	memblock_remove_range(&memblock.reserved, max_addr,
1555			      (phys_addr_t)ULLONG_MAX);
1556}
1557
1558void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1559{
1560	int start_rgn, end_rgn;
1561	int i, ret;
1562
1563	if (!size)
1564		return;
1565
1566	ret = memblock_isolate_range(&memblock.memory, base, size,
1567						&start_rgn, &end_rgn);
1568	if (ret)
1569		return;
1570
1571	/* remove all the MAP regions */
1572	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1573		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1574			memblock_remove_region(&memblock.memory, i);
1575
1576	for (i = start_rgn - 1; i >= 0; i--)
1577		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1578			memblock_remove_region(&memblock.memory, i);
1579
1580	/* truncate the reserved regions */
1581	memblock_remove_range(&memblock.reserved, 0, base);
1582	memblock_remove_range(&memblock.reserved,
1583			base + size, (phys_addr_t)ULLONG_MAX);
1584}
1585
1586void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1587{
1588	phys_addr_t max_addr;
1589
1590	if (!limit)
1591		return;
1592
1593	max_addr = __find_max_addr(limit);
1594
1595	/* @limit exceeds the total size of the memory, do nothing */
1596	if (max_addr == (phys_addr_t)ULLONG_MAX)
1597		return;
1598
1599	memblock_cap_memory_range(0, max_addr);
1600}
1601
1602static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1603{
1604	unsigned int left = 0, right = type->cnt;
1605
1606	do {
1607		unsigned int mid = (right + left) / 2;
1608
1609		if (addr < type->regions[mid].base)
1610			right = mid;
1611		else if (addr >= (type->regions[mid].base +
1612				  type->regions[mid].size))
1613			left = mid + 1;
1614		else
1615			return mid;
1616	} while (left < right);
1617	return -1;
1618}
1619
1620bool __init memblock_is_reserved(phys_addr_t addr)
1621{
1622	return memblock_search(&memblock.reserved, addr) != -1;
1623}
1624
1625bool __init_memblock memblock_is_memory(phys_addr_t addr)
1626{
1627	return memblock_search(&memblock.memory, addr) != -1;
1628}
1629
1630bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1631{
1632	int i = memblock_search(&memblock.memory, addr);
1633
1634	if (i == -1)
1635		return false;
1636	return !memblock_is_nomap(&memblock.memory.regions[i]);
1637}
1638
1639#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1640int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1641			 unsigned long *start_pfn, unsigned long *end_pfn)
1642{
1643	struct memblock_type *type = &memblock.memory;
1644	int mid = memblock_search(type, PFN_PHYS(pfn));
1645
1646	if (mid == -1)
1647		return -1;
1648
1649	*start_pfn = PFN_DOWN(type->regions[mid].base);
1650	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1651
1652	return type->regions[mid].nid;
1653}
1654#endif
1655
1656/**
1657 * memblock_is_region_memory - check if a region is a subset of memory
1658 * @base: base of region to check
1659 * @size: size of region to check
1660 *
1661 * Check if the region [@base, @base+@size) is a subset of a memory block.
1662 *
1663 * RETURNS:
1664 * 0 if false, non-zero if true
1665 */
1666bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1667{
1668	int idx = memblock_search(&memblock.memory, base);
1669	phys_addr_t end = base + memblock_cap_size(base, &size);
1670
1671	if (idx == -1)
1672		return false;
1673	return (memblock.memory.regions[idx].base +
1674		 memblock.memory.regions[idx].size) >= end;
1675}
1676
1677/**
1678 * memblock_is_region_reserved - check if a region intersects reserved memory
1679 * @base: base of region to check
1680 * @size: size of region to check
1681 *
1682 * Check if the region [@base, @base+@size) intersects a reserved memory block.
 
1683 *
1684 * RETURNS:
1685 * True if they intersect, false if not.
1686 */
1687bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1688{
1689	memblock_cap_size(base, &size);
1690	return memblock_overlaps_region(&memblock.reserved, base, size);
1691}
1692
1693void __init_memblock memblock_trim_memory(phys_addr_t align)
1694{
1695	phys_addr_t start, end, orig_start, orig_end;
1696	struct memblock_region *r;
1697
1698	for_each_memblock(memory, r) {
1699		orig_start = r->base;
1700		orig_end = r->base + r->size;
1701		start = round_up(orig_start, align);
1702		end = round_down(orig_end, align);
1703
1704		if (start == orig_start && end == orig_end)
1705			continue;
1706
1707		if (start < end) {
1708			r->base = start;
1709			r->size = end - start;
1710		} else {
1711			memblock_remove_region(&memblock.memory,
1712					       r - memblock.memory.regions);
1713			r--;
1714		}
1715	}
1716}
1717
1718void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1719{
1720	memblock.current_limit = limit;
1721}
1722
1723phys_addr_t __init_memblock memblock_get_current_limit(void)
1724{
1725	return memblock.current_limit;
1726}
1727
1728static void __init_memblock memblock_dump(struct memblock_type *type)
1729{
1730	phys_addr_t base, end, size;
1731	unsigned long flags;
1732	int idx;
1733	struct memblock_region *rgn;
1734
1735	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1736
1737	for_each_memblock_type(idx, type, rgn) {
1738		char nid_buf[32] = "";
1739
1740		base = rgn->base;
1741		size = rgn->size;
1742		end = base + size - 1;
1743		flags = rgn->flags;
1744#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1745		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1746			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1747				 memblock_get_region_node(rgn));
1748#endif
1749		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1750			type->name, idx, &base, &end, &size, nid_buf, flags);
1751	}
1752}
1753
1754void __init_memblock __memblock_dump_all(void)
1755{
1756	pr_info("MEMBLOCK configuration:\n");
1757	pr_info(" memory size = %pa reserved size = %pa\n",
1758		&memblock.memory.total_size,
1759		&memblock.reserved.total_size);
1760
1761	memblock_dump(&memblock.memory);
1762	memblock_dump(&memblock.reserved);
1763#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1764	memblock_dump(&memblock.physmem);
1765#endif
1766}
1767
1768void __init memblock_allow_resize(void)
1769{
1770	memblock_can_resize = 1;
1771}
1772
1773static int __init early_memblock(char *p)
1774{
1775	if (p && strstr(p, "debug"))
1776		memblock_debug = 1;
1777	return 0;
1778}
1779early_param("memblock", early_memblock);
1780
1781#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782
1783static int memblock_debug_show(struct seq_file *m, void *private)
1784{
1785	struct memblock_type *type = m->private;
1786	struct memblock_region *reg;
1787	int i;
1788	phys_addr_t end;
1789
1790	for (i = 0; i < type->cnt; i++) {
1791		reg = &type->regions[i];
1792		end = reg->base + reg->size - 1;
1793
1794		seq_printf(m, "%4d: ", i);
1795		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1796	}
1797	return 0;
1798}
1799DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1800
1801static int __init memblock_init_debugfs(void)
1802{
1803	struct dentry *root = debugfs_create_dir("memblock", NULL);
1804	if (!root)
1805		return -ENXIO;
1806	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1807	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
 
1808#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1809	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
 
1810#endif
1811
1812	return 0;
1813}
1814__initcall(memblock_init_debugfs);
1815
1816#endif /* CONFIG_DEBUG_FS */