Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (rwlock): protects the object_list modifications and
17 * accesses to the object_tree_root. The object_list is the main list
18 * holding the metadata (struct kmemleak_object) for the allocated memory
19 * blocks. The object_tree_root is a red black tree used to look-up
20 * metadata based on a pointer to the corresponding memory block. The
21 * kmemleak_object structures are added to the object_list and
22 * object_tree_root in the create_object() function called from the
23 * kmemleak_alloc() callback and removed in delete_object() called from the
24 * kmemleak_free() callback
25 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
26 * the metadata (e.g. count) are protected by this lock. Note that some
27 * members of this structure may be protected by other means (atomic or
28 * kmemleak_lock). This lock is also held when scanning the corresponding
29 * memory block to avoid the kernel freeing it via the kmemleak_free()
30 * callback. This is less heavyweight than holding a global lock like
31 * kmemleak_lock during scanning
32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33 * unreferenced objects at a time. The gray_list contains the objects which
34 * are already referenced or marked as false positives and need to be
35 * scanned. This list is only modified during a scanning episode when the
36 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
37 * Note that the kmemleak_object.use_count is incremented when an object is
38 * added to the gray_list and therefore cannot be freed. This mutex also
39 * prevents multiple users of the "kmemleak" debugfs file together with
40 * modifications to the memory scanning parameters including the scan_thread
41 * pointer
42 *
43 * Locks and mutexes are acquired/nested in the following order:
44 *
45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46 *
47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48 * regions.
49 *
50 * The kmemleak_object structures have a use_count incremented or decremented
51 * using the get_object()/put_object() functions. When the use_count becomes
52 * 0, this count can no longer be incremented and put_object() schedules the
53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54 * function must be protected by rcu_read_lock() to avoid accessing a freed
55 * structure.
56 */
57
58#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59
60#include <linux/init.h>
61#include <linux/kernel.h>
62#include <linux/list.h>
63#include <linux/sched/signal.h>
64#include <linux/sched/task.h>
65#include <linux/sched/task_stack.h>
66#include <linux/jiffies.h>
67#include <linux/delay.h>
68#include <linux/export.h>
69#include <linux/kthread.h>
70#include <linux/rbtree.h>
71#include <linux/fs.h>
72#include <linux/debugfs.h>
73#include <linux/seq_file.h>
74#include <linux/cpumask.h>
75#include <linux/spinlock.h>
76#include <linux/module.h>
77#include <linux/mutex.h>
78#include <linux/rcupdate.h>
79#include <linux/stacktrace.h>
80#include <linux/cache.h>
81#include <linux/percpu.h>
82#include <linux/memblock.h>
83#include <linux/pfn.h>
84#include <linux/mmzone.h>
85#include <linux/slab.h>
86#include <linux/thread_info.h>
87#include <linux/err.h>
88#include <linux/uaccess.h>
89#include <linux/string.h>
90#include <linux/nodemask.h>
91#include <linux/mm.h>
92#include <linux/workqueue.h>
93#include <linux/crc32.h>
94
95#include <asm/sections.h>
96#include <asm/processor.h>
97#include <linux/atomic.h>
98
99#include <linux/kasan.h>
100#include <linux/kmemleak.h>
101#include <linux/memory_hotplug.h>
102
103/*
104 * Kmemleak configuration and common defines.
105 */
106#define MAX_TRACE 16 /* stack trace length */
107#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
108#define SECS_FIRST_SCAN 60 /* delay before the first scan */
109#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
110#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
111
112#define BYTES_PER_POINTER sizeof(void *)
113
114/* GFP bitmask for kmemleak internal allocations */
115#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
116 __GFP_NORETRY | __GFP_NOMEMALLOC | \
117 __GFP_NOWARN)
118
119/* scanning area inside a memory block */
120struct kmemleak_scan_area {
121 struct hlist_node node;
122 unsigned long start;
123 size_t size;
124};
125
126#define KMEMLEAK_GREY 0
127#define KMEMLEAK_BLACK -1
128
129/*
130 * Structure holding the metadata for each allocated memory block.
131 * Modifications to such objects should be made while holding the
132 * object->lock. Insertions or deletions from object_list, gray_list or
133 * rb_node are already protected by the corresponding locks or mutex (see
134 * the notes on locking above). These objects are reference-counted
135 * (use_count) and freed using the RCU mechanism.
136 */
137struct kmemleak_object {
138 spinlock_t lock;
139 unsigned int flags; /* object status flags */
140 struct list_head object_list;
141 struct list_head gray_list;
142 struct rb_node rb_node;
143 struct rcu_head rcu; /* object_list lockless traversal */
144 /* object usage count; object freed when use_count == 0 */
145 atomic_t use_count;
146 unsigned long pointer;
147 size_t size;
148 /* pass surplus references to this pointer */
149 unsigned long excess_ref;
150 /* minimum number of a pointers found before it is considered leak */
151 int min_count;
152 /* the total number of pointers found pointing to this object */
153 int count;
154 /* checksum for detecting modified objects */
155 u32 checksum;
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long trace[MAX_TRACE];
159 unsigned int trace_len;
160 unsigned long jiffies; /* creation timestamp */
161 pid_t pid; /* pid of the current task */
162 char comm[TASK_COMM_LEN]; /* executable name */
163};
164
165/* flag representing the memory block allocation status */
166#define OBJECT_ALLOCATED (1 << 0)
167/* flag set after the first reporting of an unreference object */
168#define OBJECT_REPORTED (1 << 1)
169/* flag set to not scan the object */
170#define OBJECT_NO_SCAN (1 << 2)
171/* flag set to fully scan the object when scan_area allocation failed */
172#define OBJECT_FULL_SCAN (1 << 3)
173
174#define HEX_PREFIX " "
175/* number of bytes to print per line; must be 16 or 32 */
176#define HEX_ROW_SIZE 16
177/* number of bytes to print at a time (1, 2, 4, 8) */
178#define HEX_GROUP_SIZE 1
179/* include ASCII after the hex output */
180#define HEX_ASCII 1
181/* max number of lines to be printed */
182#define HEX_MAX_LINES 2
183
184/* the list of all allocated objects */
185static LIST_HEAD(object_list);
186/* the list of gray-colored objects (see color_gray comment below) */
187static LIST_HEAD(gray_list);
188/* memory pool allocation */
189static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
190static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
191static LIST_HEAD(mem_pool_free_list);
192/* search tree for object boundaries */
193static struct rb_root object_tree_root = RB_ROOT;
194/* rw_lock protecting the access to object_list and object_tree_root */
195static DEFINE_RWLOCK(kmemleak_lock);
196
197/* allocation caches for kmemleak internal data */
198static struct kmem_cache *object_cache;
199static struct kmem_cache *scan_area_cache;
200
201/* set if tracing memory operations is enabled */
202static int kmemleak_enabled = 1;
203/* same as above but only for the kmemleak_free() callback */
204static int kmemleak_free_enabled = 1;
205/* set in the late_initcall if there were no errors */
206static int kmemleak_initialized;
207/* set if a kmemleak warning was issued */
208static int kmemleak_warning;
209/* set if a fatal kmemleak error has occurred */
210static int kmemleak_error;
211
212/* minimum and maximum address that may be valid pointers */
213static unsigned long min_addr = ULONG_MAX;
214static unsigned long max_addr;
215
216static struct task_struct *scan_thread;
217/* used to avoid reporting of recently allocated objects */
218static unsigned long jiffies_min_age;
219static unsigned long jiffies_last_scan;
220/* delay between automatic memory scannings */
221static signed long jiffies_scan_wait;
222/* enables or disables the task stacks scanning */
223static int kmemleak_stack_scan = 1;
224/* protects the memory scanning, parameters and debug/kmemleak file access */
225static DEFINE_MUTEX(scan_mutex);
226/* setting kmemleak=on, will set this var, skipping the disable */
227static int kmemleak_skip_disable;
228/* If there are leaks that can be reported */
229static bool kmemleak_found_leaks;
230
231static bool kmemleak_verbose;
232module_param_named(verbose, kmemleak_verbose, bool, 0600);
233
234static void kmemleak_disable(void);
235
236/*
237 * Print a warning and dump the stack trace.
238 */
239#define kmemleak_warn(x...) do { \
240 pr_warn(x); \
241 dump_stack(); \
242 kmemleak_warning = 1; \
243} while (0)
244
245/*
246 * Macro invoked when a serious kmemleak condition occurred and cannot be
247 * recovered from. Kmemleak will be disabled and further allocation/freeing
248 * tracing no longer available.
249 */
250#define kmemleak_stop(x...) do { \
251 kmemleak_warn(x); \
252 kmemleak_disable(); \
253} while (0)
254
255#define warn_or_seq_printf(seq, fmt, ...) do { \
256 if (seq) \
257 seq_printf(seq, fmt, ##__VA_ARGS__); \
258 else \
259 pr_warn(fmt, ##__VA_ARGS__); \
260} while (0)
261
262static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
263 int rowsize, int groupsize, const void *buf,
264 size_t len, bool ascii)
265{
266 if (seq)
267 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
268 buf, len, ascii);
269 else
270 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
271 rowsize, groupsize, buf, len, ascii);
272}
273
274/*
275 * Printing of the objects hex dump to the seq file. The number of lines to be
276 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
277 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
278 * with the object->lock held.
279 */
280static void hex_dump_object(struct seq_file *seq,
281 struct kmemleak_object *object)
282{
283 const u8 *ptr = (const u8 *)object->pointer;
284 size_t len;
285
286 /* limit the number of lines to HEX_MAX_LINES */
287 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
288
289 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
290 kasan_disable_current();
291 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
292 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
293 kasan_enable_current();
294}
295
296/*
297 * Object colors, encoded with count and min_count:
298 * - white - orphan object, not enough references to it (count < min_count)
299 * - gray - not orphan, not marked as false positive (min_count == 0) or
300 * sufficient references to it (count >= min_count)
301 * - black - ignore, it doesn't contain references (e.g. text section)
302 * (min_count == -1). No function defined for this color.
303 * Newly created objects don't have any color assigned (object->count == -1)
304 * before the next memory scan when they become white.
305 */
306static bool color_white(const struct kmemleak_object *object)
307{
308 return object->count != KMEMLEAK_BLACK &&
309 object->count < object->min_count;
310}
311
312static bool color_gray(const struct kmemleak_object *object)
313{
314 return object->min_count != KMEMLEAK_BLACK &&
315 object->count >= object->min_count;
316}
317
318/*
319 * Objects are considered unreferenced only if their color is white, they have
320 * not be deleted and have a minimum age to avoid false positives caused by
321 * pointers temporarily stored in CPU registers.
322 */
323static bool unreferenced_object(struct kmemleak_object *object)
324{
325 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
326 time_before_eq(object->jiffies + jiffies_min_age,
327 jiffies_last_scan);
328}
329
330/*
331 * Printing of the unreferenced objects information to the seq file. The
332 * print_unreferenced function must be called with the object->lock held.
333 */
334static void print_unreferenced(struct seq_file *seq,
335 struct kmemleak_object *object)
336{
337 int i;
338 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
339
340 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
341 object->pointer, object->size);
342 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
343 object->comm, object->pid, object->jiffies,
344 msecs_age / 1000, msecs_age % 1000);
345 hex_dump_object(seq, object);
346 warn_or_seq_printf(seq, " backtrace:\n");
347
348 for (i = 0; i < object->trace_len; i++) {
349 void *ptr = (void *)object->trace[i];
350 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
351 }
352}
353
354/*
355 * Print the kmemleak_object information. This function is used mainly for
356 * debugging special cases when kmemleak operations. It must be called with
357 * the object->lock held.
358 */
359static void dump_object_info(struct kmemleak_object *object)
360{
361 pr_notice("Object 0x%08lx (size %zu):\n",
362 object->pointer, object->size);
363 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
364 object->comm, object->pid, object->jiffies);
365 pr_notice(" min_count = %d\n", object->min_count);
366 pr_notice(" count = %d\n", object->count);
367 pr_notice(" flags = 0x%x\n", object->flags);
368 pr_notice(" checksum = %u\n", object->checksum);
369 pr_notice(" backtrace:\n");
370 stack_trace_print(object->trace, object->trace_len, 4);
371}
372
373/*
374 * Look-up a memory block metadata (kmemleak_object) in the object search
375 * tree based on a pointer value. If alias is 0, only values pointing to the
376 * beginning of the memory block are allowed. The kmemleak_lock must be held
377 * when calling this function.
378 */
379static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
380{
381 struct rb_node *rb = object_tree_root.rb_node;
382
383 while (rb) {
384 struct kmemleak_object *object =
385 rb_entry(rb, struct kmemleak_object, rb_node);
386 if (ptr < object->pointer)
387 rb = object->rb_node.rb_left;
388 else if (object->pointer + object->size <= ptr)
389 rb = object->rb_node.rb_right;
390 else if (object->pointer == ptr || alias)
391 return object;
392 else {
393 kmemleak_warn("Found object by alias at 0x%08lx\n",
394 ptr);
395 dump_object_info(object);
396 break;
397 }
398 }
399 return NULL;
400}
401
402/*
403 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
404 * that once an object's use_count reached 0, the RCU freeing was already
405 * registered and the object should no longer be used. This function must be
406 * called under the protection of rcu_read_lock().
407 */
408static int get_object(struct kmemleak_object *object)
409{
410 return atomic_inc_not_zero(&object->use_count);
411}
412
413/*
414 * Memory pool allocation and freeing. kmemleak_lock must not be held.
415 */
416static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
417{
418 unsigned long flags;
419 struct kmemleak_object *object;
420
421 /* try the slab allocator first */
422 if (object_cache) {
423 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
424 if (object)
425 return object;
426 }
427
428 /* slab allocation failed, try the memory pool */
429 write_lock_irqsave(&kmemleak_lock, flags);
430 object = list_first_entry_or_null(&mem_pool_free_list,
431 typeof(*object), object_list);
432 if (object)
433 list_del(&object->object_list);
434 else if (mem_pool_free_count)
435 object = &mem_pool[--mem_pool_free_count];
436 else
437 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
438 write_unlock_irqrestore(&kmemleak_lock, flags);
439
440 return object;
441}
442
443/*
444 * Return the object to either the slab allocator or the memory pool.
445 */
446static void mem_pool_free(struct kmemleak_object *object)
447{
448 unsigned long flags;
449
450 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
451 kmem_cache_free(object_cache, object);
452 return;
453 }
454
455 /* add the object to the memory pool free list */
456 write_lock_irqsave(&kmemleak_lock, flags);
457 list_add(&object->object_list, &mem_pool_free_list);
458 write_unlock_irqrestore(&kmemleak_lock, flags);
459}
460
461/*
462 * RCU callback to free a kmemleak_object.
463 */
464static void free_object_rcu(struct rcu_head *rcu)
465{
466 struct hlist_node *tmp;
467 struct kmemleak_scan_area *area;
468 struct kmemleak_object *object =
469 container_of(rcu, struct kmemleak_object, rcu);
470
471 /*
472 * Once use_count is 0 (guaranteed by put_object), there is no other
473 * code accessing this object, hence no need for locking.
474 */
475 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
476 hlist_del(&area->node);
477 kmem_cache_free(scan_area_cache, area);
478 }
479 mem_pool_free(object);
480}
481
482/*
483 * Decrement the object use_count. Once the count is 0, free the object using
484 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
485 * delete_object() path, the delayed RCU freeing ensures that there is no
486 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
487 * is also possible.
488 */
489static void put_object(struct kmemleak_object *object)
490{
491 if (!atomic_dec_and_test(&object->use_count))
492 return;
493
494 /* should only get here after delete_object was called */
495 WARN_ON(object->flags & OBJECT_ALLOCATED);
496
497 /*
498 * It may be too early for the RCU callbacks, however, there is no
499 * concurrent object_list traversal when !object_cache and all objects
500 * came from the memory pool. Free the object directly.
501 */
502 if (object_cache)
503 call_rcu(&object->rcu, free_object_rcu);
504 else
505 free_object_rcu(&object->rcu);
506}
507
508/*
509 * Look up an object in the object search tree and increase its use_count.
510 */
511static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
512{
513 unsigned long flags;
514 struct kmemleak_object *object;
515
516 rcu_read_lock();
517 read_lock_irqsave(&kmemleak_lock, flags);
518 object = lookup_object(ptr, alias);
519 read_unlock_irqrestore(&kmemleak_lock, flags);
520
521 /* check whether the object is still available */
522 if (object && !get_object(object))
523 object = NULL;
524 rcu_read_unlock();
525
526 return object;
527}
528
529/*
530 * Remove an object from the object_tree_root and object_list. Must be called
531 * with the kmemleak_lock held _if_ kmemleak is still enabled.
532 */
533static void __remove_object(struct kmemleak_object *object)
534{
535 rb_erase(&object->rb_node, &object_tree_root);
536 list_del_rcu(&object->object_list);
537}
538
539/*
540 * Look up an object in the object search tree and remove it from both
541 * object_tree_root and object_list. The returned object's use_count should be
542 * at least 1, as initially set by create_object().
543 */
544static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
545{
546 unsigned long flags;
547 struct kmemleak_object *object;
548
549 write_lock_irqsave(&kmemleak_lock, flags);
550 object = lookup_object(ptr, alias);
551 if (object)
552 __remove_object(object);
553 write_unlock_irqrestore(&kmemleak_lock, flags);
554
555 return object;
556}
557
558/*
559 * Save stack trace to the given array of MAX_TRACE size.
560 */
561static int __save_stack_trace(unsigned long *trace)
562{
563 return stack_trace_save(trace, MAX_TRACE, 2);
564}
565
566/*
567 * Create the metadata (struct kmemleak_object) corresponding to an allocated
568 * memory block and add it to the object_list and object_tree_root.
569 */
570static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
571 int min_count, gfp_t gfp)
572{
573 unsigned long flags;
574 struct kmemleak_object *object, *parent;
575 struct rb_node **link, *rb_parent;
576 unsigned long untagged_ptr;
577
578 object = mem_pool_alloc(gfp);
579 if (!object) {
580 pr_warn("Cannot allocate a kmemleak_object structure\n");
581 kmemleak_disable();
582 return NULL;
583 }
584
585 INIT_LIST_HEAD(&object->object_list);
586 INIT_LIST_HEAD(&object->gray_list);
587 INIT_HLIST_HEAD(&object->area_list);
588 spin_lock_init(&object->lock);
589 atomic_set(&object->use_count, 1);
590 object->flags = OBJECT_ALLOCATED;
591 object->pointer = ptr;
592 object->size = size;
593 object->excess_ref = 0;
594 object->min_count = min_count;
595 object->count = 0; /* white color initially */
596 object->jiffies = jiffies;
597 object->checksum = 0;
598
599 /* task information */
600 if (in_irq()) {
601 object->pid = 0;
602 strncpy(object->comm, "hardirq", sizeof(object->comm));
603 } else if (in_serving_softirq()) {
604 object->pid = 0;
605 strncpy(object->comm, "softirq", sizeof(object->comm));
606 } else {
607 object->pid = current->pid;
608 /*
609 * There is a small chance of a race with set_task_comm(),
610 * however using get_task_comm() here may cause locking
611 * dependency issues with current->alloc_lock. In the worst
612 * case, the command line is not correct.
613 */
614 strncpy(object->comm, current->comm, sizeof(object->comm));
615 }
616
617 /* kernel backtrace */
618 object->trace_len = __save_stack_trace(object->trace);
619
620 write_lock_irqsave(&kmemleak_lock, flags);
621
622 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
623 min_addr = min(min_addr, untagged_ptr);
624 max_addr = max(max_addr, untagged_ptr + size);
625 link = &object_tree_root.rb_node;
626 rb_parent = NULL;
627 while (*link) {
628 rb_parent = *link;
629 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
630 if (ptr + size <= parent->pointer)
631 link = &parent->rb_node.rb_left;
632 else if (parent->pointer + parent->size <= ptr)
633 link = &parent->rb_node.rb_right;
634 else {
635 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
636 ptr);
637 /*
638 * No need for parent->lock here since "parent" cannot
639 * be freed while the kmemleak_lock is held.
640 */
641 dump_object_info(parent);
642 kmem_cache_free(object_cache, object);
643 object = NULL;
644 goto out;
645 }
646 }
647 rb_link_node(&object->rb_node, rb_parent, link);
648 rb_insert_color(&object->rb_node, &object_tree_root);
649
650 list_add_tail_rcu(&object->object_list, &object_list);
651out:
652 write_unlock_irqrestore(&kmemleak_lock, flags);
653 return object;
654}
655
656/*
657 * Mark the object as not allocated and schedule RCU freeing via put_object().
658 */
659static void __delete_object(struct kmemleak_object *object)
660{
661 unsigned long flags;
662
663 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
664 WARN_ON(atomic_read(&object->use_count) < 1);
665
666 /*
667 * Locking here also ensures that the corresponding memory block
668 * cannot be freed when it is being scanned.
669 */
670 spin_lock_irqsave(&object->lock, flags);
671 object->flags &= ~OBJECT_ALLOCATED;
672 spin_unlock_irqrestore(&object->lock, flags);
673 put_object(object);
674}
675
676/*
677 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
678 * delete it.
679 */
680static void delete_object_full(unsigned long ptr)
681{
682 struct kmemleak_object *object;
683
684 object = find_and_remove_object(ptr, 0);
685 if (!object) {
686#ifdef DEBUG
687 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
688 ptr);
689#endif
690 return;
691 }
692 __delete_object(object);
693}
694
695/*
696 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
697 * delete it. If the memory block is partially freed, the function may create
698 * additional metadata for the remaining parts of the block.
699 */
700static void delete_object_part(unsigned long ptr, size_t size)
701{
702 struct kmemleak_object *object;
703 unsigned long start, end;
704
705 object = find_and_remove_object(ptr, 1);
706 if (!object) {
707#ifdef DEBUG
708 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
709 ptr, size);
710#endif
711 return;
712 }
713
714 /*
715 * Create one or two objects that may result from the memory block
716 * split. Note that partial freeing is only done by free_bootmem() and
717 * this happens before kmemleak_init() is called.
718 */
719 start = object->pointer;
720 end = object->pointer + object->size;
721 if (ptr > start)
722 create_object(start, ptr - start, object->min_count,
723 GFP_KERNEL);
724 if (ptr + size < end)
725 create_object(ptr + size, end - ptr - size, object->min_count,
726 GFP_KERNEL);
727
728 __delete_object(object);
729}
730
731static void __paint_it(struct kmemleak_object *object, int color)
732{
733 object->min_count = color;
734 if (color == KMEMLEAK_BLACK)
735 object->flags |= OBJECT_NO_SCAN;
736}
737
738static void paint_it(struct kmemleak_object *object, int color)
739{
740 unsigned long flags;
741
742 spin_lock_irqsave(&object->lock, flags);
743 __paint_it(object, color);
744 spin_unlock_irqrestore(&object->lock, flags);
745}
746
747static void paint_ptr(unsigned long ptr, int color)
748{
749 struct kmemleak_object *object;
750
751 object = find_and_get_object(ptr, 0);
752 if (!object) {
753 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
754 ptr,
755 (color == KMEMLEAK_GREY) ? "Grey" :
756 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
757 return;
758 }
759 paint_it(object, color);
760 put_object(object);
761}
762
763/*
764 * Mark an object permanently as gray-colored so that it can no longer be
765 * reported as a leak. This is used in general to mark a false positive.
766 */
767static void make_gray_object(unsigned long ptr)
768{
769 paint_ptr(ptr, KMEMLEAK_GREY);
770}
771
772/*
773 * Mark the object as black-colored so that it is ignored from scans and
774 * reporting.
775 */
776static void make_black_object(unsigned long ptr)
777{
778 paint_ptr(ptr, KMEMLEAK_BLACK);
779}
780
781/*
782 * Add a scanning area to the object. If at least one such area is added,
783 * kmemleak will only scan these ranges rather than the whole memory block.
784 */
785static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
786{
787 unsigned long flags;
788 struct kmemleak_object *object;
789 struct kmemleak_scan_area *area = NULL;
790
791 object = find_and_get_object(ptr, 1);
792 if (!object) {
793 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
794 ptr);
795 return;
796 }
797
798 if (scan_area_cache)
799 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
800
801 spin_lock_irqsave(&object->lock, flags);
802 if (!area) {
803 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
804 /* mark the object for full scan to avoid false positives */
805 object->flags |= OBJECT_FULL_SCAN;
806 goto out_unlock;
807 }
808 if (size == SIZE_MAX) {
809 size = object->pointer + object->size - ptr;
810 } else if (ptr + size > object->pointer + object->size) {
811 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
812 dump_object_info(object);
813 kmem_cache_free(scan_area_cache, area);
814 goto out_unlock;
815 }
816
817 INIT_HLIST_NODE(&area->node);
818 area->start = ptr;
819 area->size = size;
820
821 hlist_add_head(&area->node, &object->area_list);
822out_unlock:
823 spin_unlock_irqrestore(&object->lock, flags);
824 put_object(object);
825}
826
827/*
828 * Any surplus references (object already gray) to 'ptr' are passed to
829 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
830 * vm_struct may be used as an alternative reference to the vmalloc'ed object
831 * (see free_thread_stack()).
832 */
833static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
834{
835 unsigned long flags;
836 struct kmemleak_object *object;
837
838 object = find_and_get_object(ptr, 0);
839 if (!object) {
840 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
841 ptr);
842 return;
843 }
844
845 spin_lock_irqsave(&object->lock, flags);
846 object->excess_ref = excess_ref;
847 spin_unlock_irqrestore(&object->lock, flags);
848 put_object(object);
849}
850
851/*
852 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
853 * pointer. Such object will not be scanned by kmemleak but references to it
854 * are searched.
855 */
856static void object_no_scan(unsigned long ptr)
857{
858 unsigned long flags;
859 struct kmemleak_object *object;
860
861 object = find_and_get_object(ptr, 0);
862 if (!object) {
863 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
864 return;
865 }
866
867 spin_lock_irqsave(&object->lock, flags);
868 object->flags |= OBJECT_NO_SCAN;
869 spin_unlock_irqrestore(&object->lock, flags);
870 put_object(object);
871}
872
873/**
874 * kmemleak_alloc - register a newly allocated object
875 * @ptr: pointer to beginning of the object
876 * @size: size of the object
877 * @min_count: minimum number of references to this object. If during memory
878 * scanning a number of references less than @min_count is found,
879 * the object is reported as a memory leak. If @min_count is 0,
880 * the object is never reported as a leak. If @min_count is -1,
881 * the object is ignored (not scanned and not reported as a leak)
882 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
883 *
884 * This function is called from the kernel allocators when a new object
885 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
886 */
887void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
888 gfp_t gfp)
889{
890 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
891
892 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
893 create_object((unsigned long)ptr, size, min_count, gfp);
894}
895EXPORT_SYMBOL_GPL(kmemleak_alloc);
896
897/**
898 * kmemleak_alloc_percpu - register a newly allocated __percpu object
899 * @ptr: __percpu pointer to beginning of the object
900 * @size: size of the object
901 * @gfp: flags used for kmemleak internal memory allocations
902 *
903 * This function is called from the kernel percpu allocator when a new object
904 * (memory block) is allocated (alloc_percpu).
905 */
906void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
907 gfp_t gfp)
908{
909 unsigned int cpu;
910
911 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
912
913 /*
914 * Percpu allocations are only scanned and not reported as leaks
915 * (min_count is set to 0).
916 */
917 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
918 for_each_possible_cpu(cpu)
919 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
920 size, 0, gfp);
921}
922EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
923
924/**
925 * kmemleak_vmalloc - register a newly vmalloc'ed object
926 * @area: pointer to vm_struct
927 * @size: size of the object
928 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
929 *
930 * This function is called from the vmalloc() kernel allocator when a new
931 * object (memory block) is allocated.
932 */
933void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
934{
935 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
936
937 /*
938 * A min_count = 2 is needed because vm_struct contains a reference to
939 * the virtual address of the vmalloc'ed block.
940 */
941 if (kmemleak_enabled) {
942 create_object((unsigned long)area->addr, size, 2, gfp);
943 object_set_excess_ref((unsigned long)area,
944 (unsigned long)area->addr);
945 }
946}
947EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
948
949/**
950 * kmemleak_free - unregister a previously registered object
951 * @ptr: pointer to beginning of the object
952 *
953 * This function is called from the kernel allocators when an object (memory
954 * block) is freed (kmem_cache_free, kfree, vfree etc.).
955 */
956void __ref kmemleak_free(const void *ptr)
957{
958 pr_debug("%s(0x%p)\n", __func__, ptr);
959
960 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
961 delete_object_full((unsigned long)ptr);
962}
963EXPORT_SYMBOL_GPL(kmemleak_free);
964
965/**
966 * kmemleak_free_part - partially unregister a previously registered object
967 * @ptr: pointer to the beginning or inside the object. This also
968 * represents the start of the range to be freed
969 * @size: size to be unregistered
970 *
971 * This function is called when only a part of a memory block is freed
972 * (usually from the bootmem allocator).
973 */
974void __ref kmemleak_free_part(const void *ptr, size_t size)
975{
976 pr_debug("%s(0x%p)\n", __func__, ptr);
977
978 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
979 delete_object_part((unsigned long)ptr, size);
980}
981EXPORT_SYMBOL_GPL(kmemleak_free_part);
982
983/**
984 * kmemleak_free_percpu - unregister a previously registered __percpu object
985 * @ptr: __percpu pointer to beginning of the object
986 *
987 * This function is called from the kernel percpu allocator when an object
988 * (memory block) is freed (free_percpu).
989 */
990void __ref kmemleak_free_percpu(const void __percpu *ptr)
991{
992 unsigned int cpu;
993
994 pr_debug("%s(0x%p)\n", __func__, ptr);
995
996 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
997 for_each_possible_cpu(cpu)
998 delete_object_full((unsigned long)per_cpu_ptr(ptr,
999 cpu));
1000}
1001EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1002
1003/**
1004 * kmemleak_update_trace - update object allocation stack trace
1005 * @ptr: pointer to beginning of the object
1006 *
1007 * Override the object allocation stack trace for cases where the actual
1008 * allocation place is not always useful.
1009 */
1010void __ref kmemleak_update_trace(const void *ptr)
1011{
1012 struct kmemleak_object *object;
1013 unsigned long flags;
1014
1015 pr_debug("%s(0x%p)\n", __func__, ptr);
1016
1017 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1018 return;
1019
1020 object = find_and_get_object((unsigned long)ptr, 1);
1021 if (!object) {
1022#ifdef DEBUG
1023 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1024 ptr);
1025#endif
1026 return;
1027 }
1028
1029 spin_lock_irqsave(&object->lock, flags);
1030 object->trace_len = __save_stack_trace(object->trace);
1031 spin_unlock_irqrestore(&object->lock, flags);
1032
1033 put_object(object);
1034}
1035EXPORT_SYMBOL(kmemleak_update_trace);
1036
1037/**
1038 * kmemleak_not_leak - mark an allocated object as false positive
1039 * @ptr: pointer to beginning of the object
1040 *
1041 * Calling this function on an object will cause the memory block to no longer
1042 * be reported as leak and always be scanned.
1043 */
1044void __ref kmemleak_not_leak(const void *ptr)
1045{
1046 pr_debug("%s(0x%p)\n", __func__, ptr);
1047
1048 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1049 make_gray_object((unsigned long)ptr);
1050}
1051EXPORT_SYMBOL(kmemleak_not_leak);
1052
1053/**
1054 * kmemleak_ignore - ignore an allocated object
1055 * @ptr: pointer to beginning of the object
1056 *
1057 * Calling this function on an object will cause the memory block to be
1058 * ignored (not scanned and not reported as a leak). This is usually done when
1059 * it is known that the corresponding block is not a leak and does not contain
1060 * any references to other allocated memory blocks.
1061 */
1062void __ref kmemleak_ignore(const void *ptr)
1063{
1064 pr_debug("%s(0x%p)\n", __func__, ptr);
1065
1066 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1067 make_black_object((unsigned long)ptr);
1068}
1069EXPORT_SYMBOL(kmemleak_ignore);
1070
1071/**
1072 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1073 * @ptr: pointer to beginning or inside the object. This also
1074 * represents the start of the scan area
1075 * @size: size of the scan area
1076 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1077 *
1078 * This function is used when it is known that only certain parts of an object
1079 * contain references to other objects. Kmemleak will only scan these areas
1080 * reducing the number false negatives.
1081 */
1082void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1083{
1084 pr_debug("%s(0x%p)\n", __func__, ptr);
1085
1086 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1087 add_scan_area((unsigned long)ptr, size, gfp);
1088}
1089EXPORT_SYMBOL(kmemleak_scan_area);
1090
1091/**
1092 * kmemleak_no_scan - do not scan an allocated object
1093 * @ptr: pointer to beginning of the object
1094 *
1095 * This function notifies kmemleak not to scan the given memory block. Useful
1096 * in situations where it is known that the given object does not contain any
1097 * references to other objects. Kmemleak will not scan such objects reducing
1098 * the number of false negatives.
1099 */
1100void __ref kmemleak_no_scan(const void *ptr)
1101{
1102 pr_debug("%s(0x%p)\n", __func__, ptr);
1103
1104 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1105 object_no_scan((unsigned long)ptr);
1106}
1107EXPORT_SYMBOL(kmemleak_no_scan);
1108
1109/**
1110 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1111 * address argument
1112 * @phys: physical address of the object
1113 * @size: size of the object
1114 * @min_count: minimum number of references to this object.
1115 * See kmemleak_alloc()
1116 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1117 */
1118void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1119 gfp_t gfp)
1120{
1121 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1122 kmemleak_alloc(__va(phys), size, min_count, gfp);
1123}
1124EXPORT_SYMBOL(kmemleak_alloc_phys);
1125
1126/**
1127 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1128 * physical address argument
1129 * @phys: physical address if the beginning or inside an object. This
1130 * also represents the start of the range to be freed
1131 * @size: size to be unregistered
1132 */
1133void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1134{
1135 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1136 kmemleak_free_part(__va(phys), size);
1137}
1138EXPORT_SYMBOL(kmemleak_free_part_phys);
1139
1140/**
1141 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1142 * address argument
1143 * @phys: physical address of the object
1144 */
1145void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1146{
1147 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1148 kmemleak_not_leak(__va(phys));
1149}
1150EXPORT_SYMBOL(kmemleak_not_leak_phys);
1151
1152/**
1153 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1154 * address argument
1155 * @phys: physical address of the object
1156 */
1157void __ref kmemleak_ignore_phys(phys_addr_t phys)
1158{
1159 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1160 kmemleak_ignore(__va(phys));
1161}
1162EXPORT_SYMBOL(kmemleak_ignore_phys);
1163
1164/*
1165 * Update an object's checksum and return true if it was modified.
1166 */
1167static bool update_checksum(struct kmemleak_object *object)
1168{
1169 u32 old_csum = object->checksum;
1170
1171 kasan_disable_current();
1172 object->checksum = crc32(0, (void *)object->pointer, object->size);
1173 kasan_enable_current();
1174
1175 return object->checksum != old_csum;
1176}
1177
1178/*
1179 * Update an object's references. object->lock must be held by the caller.
1180 */
1181static void update_refs(struct kmemleak_object *object)
1182{
1183 if (!color_white(object)) {
1184 /* non-orphan, ignored or new */
1185 return;
1186 }
1187
1188 /*
1189 * Increase the object's reference count (number of pointers to the
1190 * memory block). If this count reaches the required minimum, the
1191 * object's color will become gray and it will be added to the
1192 * gray_list.
1193 */
1194 object->count++;
1195 if (color_gray(object)) {
1196 /* put_object() called when removing from gray_list */
1197 WARN_ON(!get_object(object));
1198 list_add_tail(&object->gray_list, &gray_list);
1199 }
1200}
1201
1202/*
1203 * Memory scanning is a long process and it needs to be interruptable. This
1204 * function checks whether such interrupt condition occurred.
1205 */
1206static int scan_should_stop(void)
1207{
1208 if (!kmemleak_enabled)
1209 return 1;
1210
1211 /*
1212 * This function may be called from either process or kthread context,
1213 * hence the need to check for both stop conditions.
1214 */
1215 if (current->mm)
1216 return signal_pending(current);
1217 else
1218 return kthread_should_stop();
1219
1220 return 0;
1221}
1222
1223/*
1224 * Scan a memory block (exclusive range) for valid pointers and add those
1225 * found to the gray list.
1226 */
1227static void scan_block(void *_start, void *_end,
1228 struct kmemleak_object *scanned)
1229{
1230 unsigned long *ptr;
1231 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1232 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1233 unsigned long flags;
1234 unsigned long untagged_ptr;
1235
1236 read_lock_irqsave(&kmemleak_lock, flags);
1237 for (ptr = start; ptr < end; ptr++) {
1238 struct kmemleak_object *object;
1239 unsigned long pointer;
1240 unsigned long excess_ref;
1241
1242 if (scan_should_stop())
1243 break;
1244
1245 kasan_disable_current();
1246 pointer = *ptr;
1247 kasan_enable_current();
1248
1249 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1250 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1251 continue;
1252
1253 /*
1254 * No need for get_object() here since we hold kmemleak_lock.
1255 * object->use_count cannot be dropped to 0 while the object
1256 * is still present in object_tree_root and object_list
1257 * (with updates protected by kmemleak_lock).
1258 */
1259 object = lookup_object(pointer, 1);
1260 if (!object)
1261 continue;
1262 if (object == scanned)
1263 /* self referenced, ignore */
1264 continue;
1265
1266 /*
1267 * Avoid the lockdep recursive warning on object->lock being
1268 * previously acquired in scan_object(). These locks are
1269 * enclosed by scan_mutex.
1270 */
1271 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1272 /* only pass surplus references (object already gray) */
1273 if (color_gray(object)) {
1274 excess_ref = object->excess_ref;
1275 /* no need for update_refs() if object already gray */
1276 } else {
1277 excess_ref = 0;
1278 update_refs(object);
1279 }
1280 spin_unlock(&object->lock);
1281
1282 if (excess_ref) {
1283 object = lookup_object(excess_ref, 0);
1284 if (!object)
1285 continue;
1286 if (object == scanned)
1287 /* circular reference, ignore */
1288 continue;
1289 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1290 update_refs(object);
1291 spin_unlock(&object->lock);
1292 }
1293 }
1294 read_unlock_irqrestore(&kmemleak_lock, flags);
1295}
1296
1297/*
1298 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1299 */
1300#ifdef CONFIG_SMP
1301static void scan_large_block(void *start, void *end)
1302{
1303 void *next;
1304
1305 while (start < end) {
1306 next = min(start + MAX_SCAN_SIZE, end);
1307 scan_block(start, next, NULL);
1308 start = next;
1309 cond_resched();
1310 }
1311}
1312#endif
1313
1314/*
1315 * Scan a memory block corresponding to a kmemleak_object. A condition is
1316 * that object->use_count >= 1.
1317 */
1318static void scan_object(struct kmemleak_object *object)
1319{
1320 struct kmemleak_scan_area *area;
1321 unsigned long flags;
1322
1323 /*
1324 * Once the object->lock is acquired, the corresponding memory block
1325 * cannot be freed (the same lock is acquired in delete_object).
1326 */
1327 spin_lock_irqsave(&object->lock, flags);
1328 if (object->flags & OBJECT_NO_SCAN)
1329 goto out;
1330 if (!(object->flags & OBJECT_ALLOCATED))
1331 /* already freed object */
1332 goto out;
1333 if (hlist_empty(&object->area_list) ||
1334 object->flags & OBJECT_FULL_SCAN) {
1335 void *start = (void *)object->pointer;
1336 void *end = (void *)(object->pointer + object->size);
1337 void *next;
1338
1339 do {
1340 next = min(start + MAX_SCAN_SIZE, end);
1341 scan_block(start, next, object);
1342
1343 start = next;
1344 if (start >= end)
1345 break;
1346
1347 spin_unlock_irqrestore(&object->lock, flags);
1348 cond_resched();
1349 spin_lock_irqsave(&object->lock, flags);
1350 } while (object->flags & OBJECT_ALLOCATED);
1351 } else
1352 hlist_for_each_entry(area, &object->area_list, node)
1353 scan_block((void *)area->start,
1354 (void *)(area->start + area->size),
1355 object);
1356out:
1357 spin_unlock_irqrestore(&object->lock, flags);
1358}
1359
1360/*
1361 * Scan the objects already referenced (gray objects). More objects will be
1362 * referenced and, if there are no memory leaks, all the objects are scanned.
1363 */
1364static void scan_gray_list(void)
1365{
1366 struct kmemleak_object *object, *tmp;
1367
1368 /*
1369 * The list traversal is safe for both tail additions and removals
1370 * from inside the loop. The kmemleak objects cannot be freed from
1371 * outside the loop because their use_count was incremented.
1372 */
1373 object = list_entry(gray_list.next, typeof(*object), gray_list);
1374 while (&object->gray_list != &gray_list) {
1375 cond_resched();
1376
1377 /* may add new objects to the list */
1378 if (!scan_should_stop())
1379 scan_object(object);
1380
1381 tmp = list_entry(object->gray_list.next, typeof(*object),
1382 gray_list);
1383
1384 /* remove the object from the list and release it */
1385 list_del(&object->gray_list);
1386 put_object(object);
1387
1388 object = tmp;
1389 }
1390 WARN_ON(!list_empty(&gray_list));
1391}
1392
1393/*
1394 * Scan data sections and all the referenced memory blocks allocated via the
1395 * kernel's standard allocators. This function must be called with the
1396 * scan_mutex held.
1397 */
1398static void kmemleak_scan(void)
1399{
1400 unsigned long flags;
1401 struct kmemleak_object *object;
1402 int i;
1403 int new_leaks = 0;
1404
1405 jiffies_last_scan = jiffies;
1406
1407 /* prepare the kmemleak_object's */
1408 rcu_read_lock();
1409 list_for_each_entry_rcu(object, &object_list, object_list) {
1410 spin_lock_irqsave(&object->lock, flags);
1411#ifdef DEBUG
1412 /*
1413 * With a few exceptions there should be a maximum of
1414 * 1 reference to any object at this point.
1415 */
1416 if (atomic_read(&object->use_count) > 1) {
1417 pr_debug("object->use_count = %d\n",
1418 atomic_read(&object->use_count));
1419 dump_object_info(object);
1420 }
1421#endif
1422 /* reset the reference count (whiten the object) */
1423 object->count = 0;
1424 if (color_gray(object) && get_object(object))
1425 list_add_tail(&object->gray_list, &gray_list);
1426
1427 spin_unlock_irqrestore(&object->lock, flags);
1428 }
1429 rcu_read_unlock();
1430
1431#ifdef CONFIG_SMP
1432 /* per-cpu sections scanning */
1433 for_each_possible_cpu(i)
1434 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1435 __per_cpu_end + per_cpu_offset(i));
1436#endif
1437
1438 /*
1439 * Struct page scanning for each node.
1440 */
1441 get_online_mems();
1442 for_each_online_node(i) {
1443 unsigned long start_pfn = node_start_pfn(i);
1444 unsigned long end_pfn = node_end_pfn(i);
1445 unsigned long pfn;
1446
1447 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1448 struct page *page = pfn_to_online_page(pfn);
1449
1450 if (!page)
1451 continue;
1452
1453 /* only scan pages belonging to this node */
1454 if (page_to_nid(page) != i)
1455 continue;
1456 /* only scan if page is in use */
1457 if (page_count(page) == 0)
1458 continue;
1459 scan_block(page, page + 1, NULL);
1460 if (!(pfn & 63))
1461 cond_resched();
1462 }
1463 }
1464 put_online_mems();
1465
1466 /*
1467 * Scanning the task stacks (may introduce false negatives).
1468 */
1469 if (kmemleak_stack_scan) {
1470 struct task_struct *p, *g;
1471
1472 read_lock(&tasklist_lock);
1473 do_each_thread(g, p) {
1474 void *stack = try_get_task_stack(p);
1475 if (stack) {
1476 scan_block(stack, stack + THREAD_SIZE, NULL);
1477 put_task_stack(p);
1478 }
1479 } while_each_thread(g, p);
1480 read_unlock(&tasklist_lock);
1481 }
1482
1483 /*
1484 * Scan the objects already referenced from the sections scanned
1485 * above.
1486 */
1487 scan_gray_list();
1488
1489 /*
1490 * Check for new or unreferenced objects modified since the previous
1491 * scan and color them gray until the next scan.
1492 */
1493 rcu_read_lock();
1494 list_for_each_entry_rcu(object, &object_list, object_list) {
1495 spin_lock_irqsave(&object->lock, flags);
1496 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1497 && update_checksum(object) && get_object(object)) {
1498 /* color it gray temporarily */
1499 object->count = object->min_count;
1500 list_add_tail(&object->gray_list, &gray_list);
1501 }
1502 spin_unlock_irqrestore(&object->lock, flags);
1503 }
1504 rcu_read_unlock();
1505
1506 /*
1507 * Re-scan the gray list for modified unreferenced objects.
1508 */
1509 scan_gray_list();
1510
1511 /*
1512 * If scanning was stopped do not report any new unreferenced objects.
1513 */
1514 if (scan_should_stop())
1515 return;
1516
1517 /*
1518 * Scanning result reporting.
1519 */
1520 rcu_read_lock();
1521 list_for_each_entry_rcu(object, &object_list, object_list) {
1522 spin_lock_irqsave(&object->lock, flags);
1523 if (unreferenced_object(object) &&
1524 !(object->flags & OBJECT_REPORTED)) {
1525 object->flags |= OBJECT_REPORTED;
1526
1527 if (kmemleak_verbose)
1528 print_unreferenced(NULL, object);
1529
1530 new_leaks++;
1531 }
1532 spin_unlock_irqrestore(&object->lock, flags);
1533 }
1534 rcu_read_unlock();
1535
1536 if (new_leaks) {
1537 kmemleak_found_leaks = true;
1538
1539 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1540 new_leaks);
1541 }
1542
1543}
1544
1545/*
1546 * Thread function performing automatic memory scanning. Unreferenced objects
1547 * at the end of a memory scan are reported but only the first time.
1548 */
1549static int kmemleak_scan_thread(void *arg)
1550{
1551 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1552
1553 pr_info("Automatic memory scanning thread started\n");
1554 set_user_nice(current, 10);
1555
1556 /*
1557 * Wait before the first scan to allow the system to fully initialize.
1558 */
1559 if (first_run) {
1560 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1561 first_run = 0;
1562 while (timeout && !kthread_should_stop())
1563 timeout = schedule_timeout_interruptible(timeout);
1564 }
1565
1566 while (!kthread_should_stop()) {
1567 signed long timeout = jiffies_scan_wait;
1568
1569 mutex_lock(&scan_mutex);
1570 kmemleak_scan();
1571 mutex_unlock(&scan_mutex);
1572
1573 /* wait before the next scan */
1574 while (timeout && !kthread_should_stop())
1575 timeout = schedule_timeout_interruptible(timeout);
1576 }
1577
1578 pr_info("Automatic memory scanning thread ended\n");
1579
1580 return 0;
1581}
1582
1583/*
1584 * Start the automatic memory scanning thread. This function must be called
1585 * with the scan_mutex held.
1586 */
1587static void start_scan_thread(void)
1588{
1589 if (scan_thread)
1590 return;
1591 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1592 if (IS_ERR(scan_thread)) {
1593 pr_warn("Failed to create the scan thread\n");
1594 scan_thread = NULL;
1595 }
1596}
1597
1598/*
1599 * Stop the automatic memory scanning thread.
1600 */
1601static void stop_scan_thread(void)
1602{
1603 if (scan_thread) {
1604 kthread_stop(scan_thread);
1605 scan_thread = NULL;
1606 }
1607}
1608
1609/*
1610 * Iterate over the object_list and return the first valid object at or after
1611 * the required position with its use_count incremented. The function triggers
1612 * a memory scanning when the pos argument points to the first position.
1613 */
1614static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1615{
1616 struct kmemleak_object *object;
1617 loff_t n = *pos;
1618 int err;
1619
1620 err = mutex_lock_interruptible(&scan_mutex);
1621 if (err < 0)
1622 return ERR_PTR(err);
1623
1624 rcu_read_lock();
1625 list_for_each_entry_rcu(object, &object_list, object_list) {
1626 if (n-- > 0)
1627 continue;
1628 if (get_object(object))
1629 goto out;
1630 }
1631 object = NULL;
1632out:
1633 return object;
1634}
1635
1636/*
1637 * Return the next object in the object_list. The function decrements the
1638 * use_count of the previous object and increases that of the next one.
1639 */
1640static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1641{
1642 struct kmemleak_object *prev_obj = v;
1643 struct kmemleak_object *next_obj = NULL;
1644 struct kmemleak_object *obj = prev_obj;
1645
1646 ++(*pos);
1647
1648 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1649 if (get_object(obj)) {
1650 next_obj = obj;
1651 break;
1652 }
1653 }
1654
1655 put_object(prev_obj);
1656 return next_obj;
1657}
1658
1659/*
1660 * Decrement the use_count of the last object required, if any.
1661 */
1662static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1663{
1664 if (!IS_ERR(v)) {
1665 /*
1666 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1667 * waiting was interrupted, so only release it if !IS_ERR.
1668 */
1669 rcu_read_unlock();
1670 mutex_unlock(&scan_mutex);
1671 if (v)
1672 put_object(v);
1673 }
1674}
1675
1676/*
1677 * Print the information for an unreferenced object to the seq file.
1678 */
1679static int kmemleak_seq_show(struct seq_file *seq, void *v)
1680{
1681 struct kmemleak_object *object = v;
1682 unsigned long flags;
1683
1684 spin_lock_irqsave(&object->lock, flags);
1685 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1686 print_unreferenced(seq, object);
1687 spin_unlock_irqrestore(&object->lock, flags);
1688 return 0;
1689}
1690
1691static const struct seq_operations kmemleak_seq_ops = {
1692 .start = kmemleak_seq_start,
1693 .next = kmemleak_seq_next,
1694 .stop = kmemleak_seq_stop,
1695 .show = kmemleak_seq_show,
1696};
1697
1698static int kmemleak_open(struct inode *inode, struct file *file)
1699{
1700 return seq_open(file, &kmemleak_seq_ops);
1701}
1702
1703static int dump_str_object_info(const char *str)
1704{
1705 unsigned long flags;
1706 struct kmemleak_object *object;
1707 unsigned long addr;
1708
1709 if (kstrtoul(str, 0, &addr))
1710 return -EINVAL;
1711 object = find_and_get_object(addr, 0);
1712 if (!object) {
1713 pr_info("Unknown object at 0x%08lx\n", addr);
1714 return -EINVAL;
1715 }
1716
1717 spin_lock_irqsave(&object->lock, flags);
1718 dump_object_info(object);
1719 spin_unlock_irqrestore(&object->lock, flags);
1720
1721 put_object(object);
1722 return 0;
1723}
1724
1725/*
1726 * We use grey instead of black to ensure we can do future scans on the same
1727 * objects. If we did not do future scans these black objects could
1728 * potentially contain references to newly allocated objects in the future and
1729 * we'd end up with false positives.
1730 */
1731static void kmemleak_clear(void)
1732{
1733 struct kmemleak_object *object;
1734 unsigned long flags;
1735
1736 rcu_read_lock();
1737 list_for_each_entry_rcu(object, &object_list, object_list) {
1738 spin_lock_irqsave(&object->lock, flags);
1739 if ((object->flags & OBJECT_REPORTED) &&
1740 unreferenced_object(object))
1741 __paint_it(object, KMEMLEAK_GREY);
1742 spin_unlock_irqrestore(&object->lock, flags);
1743 }
1744 rcu_read_unlock();
1745
1746 kmemleak_found_leaks = false;
1747}
1748
1749static void __kmemleak_do_cleanup(void);
1750
1751/*
1752 * File write operation to configure kmemleak at run-time. The following
1753 * commands can be written to the /sys/kernel/debug/kmemleak file:
1754 * off - disable kmemleak (irreversible)
1755 * stack=on - enable the task stacks scanning
1756 * stack=off - disable the tasks stacks scanning
1757 * scan=on - start the automatic memory scanning thread
1758 * scan=off - stop the automatic memory scanning thread
1759 * scan=... - set the automatic memory scanning period in seconds (0 to
1760 * disable it)
1761 * scan - trigger a memory scan
1762 * clear - mark all current reported unreferenced kmemleak objects as
1763 * grey to ignore printing them, or free all kmemleak objects
1764 * if kmemleak has been disabled.
1765 * dump=... - dump information about the object found at the given address
1766 */
1767static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1768 size_t size, loff_t *ppos)
1769{
1770 char buf[64];
1771 int buf_size;
1772 int ret;
1773
1774 buf_size = min(size, (sizeof(buf) - 1));
1775 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1776 return -EFAULT;
1777 buf[buf_size] = 0;
1778
1779 ret = mutex_lock_interruptible(&scan_mutex);
1780 if (ret < 0)
1781 return ret;
1782
1783 if (strncmp(buf, "clear", 5) == 0) {
1784 if (kmemleak_enabled)
1785 kmemleak_clear();
1786 else
1787 __kmemleak_do_cleanup();
1788 goto out;
1789 }
1790
1791 if (!kmemleak_enabled) {
1792 ret = -EPERM;
1793 goto out;
1794 }
1795
1796 if (strncmp(buf, "off", 3) == 0)
1797 kmemleak_disable();
1798 else if (strncmp(buf, "stack=on", 8) == 0)
1799 kmemleak_stack_scan = 1;
1800 else if (strncmp(buf, "stack=off", 9) == 0)
1801 kmemleak_stack_scan = 0;
1802 else if (strncmp(buf, "scan=on", 7) == 0)
1803 start_scan_thread();
1804 else if (strncmp(buf, "scan=off", 8) == 0)
1805 stop_scan_thread();
1806 else if (strncmp(buf, "scan=", 5) == 0) {
1807 unsigned long secs;
1808
1809 ret = kstrtoul(buf + 5, 0, &secs);
1810 if (ret < 0)
1811 goto out;
1812 stop_scan_thread();
1813 if (secs) {
1814 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1815 start_scan_thread();
1816 }
1817 } else if (strncmp(buf, "scan", 4) == 0)
1818 kmemleak_scan();
1819 else if (strncmp(buf, "dump=", 5) == 0)
1820 ret = dump_str_object_info(buf + 5);
1821 else
1822 ret = -EINVAL;
1823
1824out:
1825 mutex_unlock(&scan_mutex);
1826 if (ret < 0)
1827 return ret;
1828
1829 /* ignore the rest of the buffer, only one command at a time */
1830 *ppos += size;
1831 return size;
1832}
1833
1834static const struct file_operations kmemleak_fops = {
1835 .owner = THIS_MODULE,
1836 .open = kmemleak_open,
1837 .read = seq_read,
1838 .write = kmemleak_write,
1839 .llseek = seq_lseek,
1840 .release = seq_release,
1841};
1842
1843static void __kmemleak_do_cleanup(void)
1844{
1845 struct kmemleak_object *object, *tmp;
1846
1847 /*
1848 * Kmemleak has already been disabled, no need for RCU list traversal
1849 * or kmemleak_lock held.
1850 */
1851 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1852 __remove_object(object);
1853 __delete_object(object);
1854 }
1855}
1856
1857/*
1858 * Stop the memory scanning thread and free the kmemleak internal objects if
1859 * no previous scan thread (otherwise, kmemleak may still have some useful
1860 * information on memory leaks).
1861 */
1862static void kmemleak_do_cleanup(struct work_struct *work)
1863{
1864 stop_scan_thread();
1865
1866 mutex_lock(&scan_mutex);
1867 /*
1868 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1869 * longer track object freeing. Ordering of the scan thread stopping and
1870 * the memory accesses below is guaranteed by the kthread_stop()
1871 * function.
1872 */
1873 kmemleak_free_enabled = 0;
1874 mutex_unlock(&scan_mutex);
1875
1876 if (!kmemleak_found_leaks)
1877 __kmemleak_do_cleanup();
1878 else
1879 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1880}
1881
1882static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1883
1884/*
1885 * Disable kmemleak. No memory allocation/freeing will be traced once this
1886 * function is called. Disabling kmemleak is an irreversible operation.
1887 */
1888static void kmemleak_disable(void)
1889{
1890 /* atomically check whether it was already invoked */
1891 if (cmpxchg(&kmemleak_error, 0, 1))
1892 return;
1893
1894 /* stop any memory operation tracing */
1895 kmemleak_enabled = 0;
1896
1897 /* check whether it is too early for a kernel thread */
1898 if (kmemleak_initialized)
1899 schedule_work(&cleanup_work);
1900 else
1901 kmemleak_free_enabled = 0;
1902
1903 pr_info("Kernel memory leak detector disabled\n");
1904}
1905
1906/*
1907 * Allow boot-time kmemleak disabling (enabled by default).
1908 */
1909static int __init kmemleak_boot_config(char *str)
1910{
1911 if (!str)
1912 return -EINVAL;
1913 if (strcmp(str, "off") == 0)
1914 kmemleak_disable();
1915 else if (strcmp(str, "on") == 0)
1916 kmemleak_skip_disable = 1;
1917 else
1918 return -EINVAL;
1919 return 0;
1920}
1921early_param("kmemleak", kmemleak_boot_config);
1922
1923/*
1924 * Kmemleak initialization.
1925 */
1926void __init kmemleak_init(void)
1927{
1928#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1929 if (!kmemleak_skip_disable) {
1930 kmemleak_disable();
1931 return;
1932 }
1933#endif
1934
1935 if (kmemleak_error)
1936 return;
1937
1938 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1939 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1940
1941 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1942 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1943
1944 /* register the data/bss sections */
1945 create_object((unsigned long)_sdata, _edata - _sdata,
1946 KMEMLEAK_GREY, GFP_ATOMIC);
1947 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1948 KMEMLEAK_GREY, GFP_ATOMIC);
1949 /* only register .data..ro_after_init if not within .data */
1950 if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
1951 create_object((unsigned long)__start_ro_after_init,
1952 __end_ro_after_init - __start_ro_after_init,
1953 KMEMLEAK_GREY, GFP_ATOMIC);
1954}
1955
1956/*
1957 * Late initialization function.
1958 */
1959static int __init kmemleak_late_init(void)
1960{
1961 kmemleak_initialized = 1;
1962
1963 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1964
1965 if (kmemleak_error) {
1966 /*
1967 * Some error occurred and kmemleak was disabled. There is a
1968 * small chance that kmemleak_disable() was called immediately
1969 * after setting kmemleak_initialized and we may end up with
1970 * two clean-up threads but serialized by scan_mutex.
1971 */
1972 schedule_work(&cleanup_work);
1973 return -ENOMEM;
1974 }
1975
1976 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1977 mutex_lock(&scan_mutex);
1978 start_scan_thread();
1979 mutex_unlock(&scan_mutex);
1980 }
1981
1982 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1983 mem_pool_free_count);
1984
1985 return 0;
1986}
1987late_initcall(kmemleak_late_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17 * del_state modifications and accesses to the object trees
18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19 * object_list is the main list holding the metadata (struct
20 * kmemleak_object) for the allocated memory blocks. The object trees are
21 * red black trees used to look-up metadata based on a pointer to the
22 * corresponding memory block. The kmemleak_object structures are added to
23 * the object_list and the object tree root in the create_object() function
24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27 * Accesses to the metadata (e.g. count) are protected by this lock. Note
28 * that some members of this structure may be protected by other means
29 * (atomic or kmemleak_lock). This lock is also held when scanning the
30 * corresponding memory block to avoid the kernel freeing it via the
31 * kmemleak_free() callback. This is less heavyweight than holding a global
32 * lock like kmemleak_lock during scanning.
33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34 * unreferenced objects at a time. The gray_list contains the objects which
35 * are already referenced or marked as false positives and need to be
36 * scanned. This list is only modified during a scanning episode when the
37 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
38 * Note that the kmemleak_object.use_count is incremented when an object is
39 * added to the gray_list and therefore cannot be freed. This mutex also
40 * prevents multiple users of the "kmemleak" debugfs file together with
41 * modifications to the memory scanning parameters including the scan_thread
42 * pointer
43 *
44 * Locks and mutexes are acquired/nested in the following order:
45 *
46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47 *
48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
49 * regions.
50 *
51 * The kmemleak_object structures have a use_count incremented or decremented
52 * using the get_object()/put_object() functions. When the use_count becomes
53 * 0, this count can no longer be incremented and put_object() schedules the
54 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55 * function must be protected by rcu_read_lock() to avoid accessing a freed
56 * structure.
57 */
58
59#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/list.h>
64#include <linux/sched/signal.h>
65#include <linux/sched/task.h>
66#include <linux/sched/task_stack.h>
67#include <linux/jiffies.h>
68#include <linux/delay.h>
69#include <linux/export.h>
70#include <linux/kthread.h>
71#include <linux/rbtree.h>
72#include <linux/fs.h>
73#include <linux/debugfs.h>
74#include <linux/seq_file.h>
75#include <linux/cpumask.h>
76#include <linux/spinlock.h>
77#include <linux/module.h>
78#include <linux/mutex.h>
79#include <linux/rcupdate.h>
80#include <linux/stacktrace.h>
81#include <linux/stackdepot.h>
82#include <linux/cache.h>
83#include <linux/percpu.h>
84#include <linux/memblock.h>
85#include <linux/pfn.h>
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
94#include <linux/workqueue.h>
95#include <linux/crc32.h>
96
97#include <asm/sections.h>
98#include <asm/processor.h>
99#include <linux/atomic.h>
100
101#include <linux/kasan.h>
102#include <linux/kfence.h>
103#include <linux/kmemleak.h>
104#include <linux/memory_hotplug.h>
105
106/*
107 * Kmemleak configuration and common defines.
108 */
109#define MAX_TRACE 16 /* stack trace length */
110#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
111#define SECS_FIRST_SCAN 60 /* delay before the first scan */
112#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
113#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
114
115#define BYTES_PER_POINTER sizeof(void *)
116
117/* scanning area inside a memory block */
118struct kmemleak_scan_area {
119 struct hlist_node node;
120 unsigned long start;
121 size_t size;
122};
123
124#define KMEMLEAK_GREY 0
125#define KMEMLEAK_BLACK -1
126
127/*
128 * Structure holding the metadata for each allocated memory block.
129 * Modifications to such objects should be made while holding the
130 * object->lock. Insertions or deletions from object_list, gray_list or
131 * rb_node are already protected by the corresponding locks or mutex (see
132 * the notes on locking above). These objects are reference-counted
133 * (use_count) and freed using the RCU mechanism.
134 */
135struct kmemleak_object {
136 raw_spinlock_t lock;
137 unsigned int flags; /* object status flags */
138 struct list_head object_list;
139 struct list_head gray_list;
140 struct rb_node rb_node;
141 struct rcu_head rcu; /* object_list lockless traversal */
142 /* object usage count; object freed when use_count == 0 */
143 atomic_t use_count;
144 unsigned int del_state; /* deletion state */
145 unsigned long pointer;
146 size_t size;
147 /* pass surplus references to this pointer */
148 unsigned long excess_ref;
149 /* minimum number of a pointers found before it is considered leak */
150 int min_count;
151 /* the total number of pointers found pointing to this object */
152 int count;
153 /* checksum for detecting modified objects */
154 u32 checksum;
155 depot_stack_handle_t trace_handle;
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long jiffies; /* creation timestamp */
159 pid_t pid; /* pid of the current task */
160 char comm[TASK_COMM_LEN]; /* executable name */
161};
162
163/* flag representing the memory block allocation status */
164#define OBJECT_ALLOCATED (1 << 0)
165/* flag set after the first reporting of an unreference object */
166#define OBJECT_REPORTED (1 << 1)
167/* flag set to not scan the object */
168#define OBJECT_NO_SCAN (1 << 2)
169/* flag set to fully scan the object when scan_area allocation failed */
170#define OBJECT_FULL_SCAN (1 << 3)
171/* flag set for object allocated with physical address */
172#define OBJECT_PHYS (1 << 4)
173/* flag set for per-CPU pointers */
174#define OBJECT_PERCPU (1 << 5)
175
176/* set when __remove_object() called */
177#define DELSTATE_REMOVED (1 << 0)
178/* set to temporarily prevent deletion from object_list */
179#define DELSTATE_NO_DELETE (1 << 1)
180
181#define HEX_PREFIX " "
182/* number of bytes to print per line; must be 16 or 32 */
183#define HEX_ROW_SIZE 16
184/* number of bytes to print at a time (1, 2, 4, 8) */
185#define HEX_GROUP_SIZE 1
186/* include ASCII after the hex output */
187#define HEX_ASCII 1
188/* max number of lines to be printed */
189#define HEX_MAX_LINES 2
190
191/* the list of all allocated objects */
192static LIST_HEAD(object_list);
193/* the list of gray-colored objects (see color_gray comment below) */
194static LIST_HEAD(gray_list);
195/* memory pool allocation */
196static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
197static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
198static LIST_HEAD(mem_pool_free_list);
199/* search tree for object boundaries */
200static struct rb_root object_tree_root = RB_ROOT;
201/* search tree for object (with OBJECT_PHYS flag) boundaries */
202static struct rb_root object_phys_tree_root = RB_ROOT;
203/* search tree for object (with OBJECT_PERCPU flag) boundaries */
204static struct rb_root object_percpu_tree_root = RB_ROOT;
205/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
206static DEFINE_RAW_SPINLOCK(kmemleak_lock);
207
208/* allocation caches for kmemleak internal data */
209static struct kmem_cache *object_cache;
210static struct kmem_cache *scan_area_cache;
211
212/* set if tracing memory operations is enabled */
213static int kmemleak_enabled = 1;
214/* same as above but only for the kmemleak_free() callback */
215static int kmemleak_free_enabled = 1;
216/* set in the late_initcall if there were no errors */
217static int kmemleak_late_initialized;
218/* set if a kmemleak warning was issued */
219static int kmemleak_warning;
220/* set if a fatal kmemleak error has occurred */
221static int kmemleak_error;
222
223/* minimum and maximum address that may be valid pointers */
224static unsigned long min_addr = ULONG_MAX;
225static unsigned long max_addr;
226
227/* minimum and maximum address that may be valid per-CPU pointers */
228static unsigned long min_percpu_addr = ULONG_MAX;
229static unsigned long max_percpu_addr;
230
231static struct task_struct *scan_thread;
232/* used to avoid reporting of recently allocated objects */
233static unsigned long jiffies_min_age;
234static unsigned long jiffies_last_scan;
235/* delay between automatic memory scannings */
236static unsigned long jiffies_scan_wait;
237/* enables or disables the task stacks scanning */
238static int kmemleak_stack_scan = 1;
239/* protects the memory scanning, parameters and debug/kmemleak file access */
240static DEFINE_MUTEX(scan_mutex);
241/* setting kmemleak=on, will set this var, skipping the disable */
242static int kmemleak_skip_disable;
243/* If there are leaks that can be reported */
244static bool kmemleak_found_leaks;
245
246static bool kmemleak_verbose;
247module_param_named(verbose, kmemleak_verbose, bool, 0600);
248
249static void kmemleak_disable(void);
250
251/*
252 * Print a warning and dump the stack trace.
253 */
254#define kmemleak_warn(x...) do { \
255 pr_warn(x); \
256 dump_stack(); \
257 kmemleak_warning = 1; \
258} while (0)
259
260/*
261 * Macro invoked when a serious kmemleak condition occurred and cannot be
262 * recovered from. Kmemleak will be disabled and further allocation/freeing
263 * tracing no longer available.
264 */
265#define kmemleak_stop(x...) do { \
266 kmemleak_warn(x); \
267 kmemleak_disable(); \
268} while (0)
269
270#define warn_or_seq_printf(seq, fmt, ...) do { \
271 if (seq) \
272 seq_printf(seq, fmt, ##__VA_ARGS__); \
273 else \
274 pr_warn(fmt, ##__VA_ARGS__); \
275} while (0)
276
277static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278 int rowsize, int groupsize, const void *buf,
279 size_t len, bool ascii)
280{
281 if (seq)
282 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283 buf, len, ascii);
284 else
285 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286 rowsize, groupsize, buf, len, ascii);
287}
288
289/*
290 * Printing of the objects hex dump to the seq file. The number of lines to be
291 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293 * with the object->lock held.
294 */
295static void hex_dump_object(struct seq_file *seq,
296 struct kmemleak_object *object)
297{
298 const u8 *ptr = (const u8 *)object->pointer;
299 size_t len;
300
301 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302 return;
303
304 if (object->flags & OBJECT_PERCPU)
305 ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer);
306
307 /* limit the number of lines to HEX_MAX_LINES */
308 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
309
310 if (object->flags & OBJECT_PERCPU)
311 warn_or_seq_printf(seq, " hex dump (first %zu bytes on cpu %d):\n",
312 len, raw_smp_processor_id());
313 else
314 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
315 kasan_disable_current();
316 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
317 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
318 kasan_enable_current();
319}
320
321/*
322 * Object colors, encoded with count and min_count:
323 * - white - orphan object, not enough references to it (count < min_count)
324 * - gray - not orphan, not marked as false positive (min_count == 0) or
325 * sufficient references to it (count >= min_count)
326 * - black - ignore, it doesn't contain references (e.g. text section)
327 * (min_count == -1). No function defined for this color.
328 * Newly created objects don't have any color assigned (object->count == -1)
329 * before the next memory scan when they become white.
330 */
331static bool color_white(const struct kmemleak_object *object)
332{
333 return object->count != KMEMLEAK_BLACK &&
334 object->count < object->min_count;
335}
336
337static bool color_gray(const struct kmemleak_object *object)
338{
339 return object->min_count != KMEMLEAK_BLACK &&
340 object->count >= object->min_count;
341}
342
343/*
344 * Objects are considered unreferenced only if their color is white, they have
345 * not be deleted and have a minimum age to avoid false positives caused by
346 * pointers temporarily stored in CPU registers.
347 */
348static bool unreferenced_object(struct kmemleak_object *object)
349{
350 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
351 time_before_eq(object->jiffies + jiffies_min_age,
352 jiffies_last_scan);
353}
354
355/*
356 * Printing of the unreferenced objects information to the seq file. The
357 * print_unreferenced function must be called with the object->lock held.
358 */
359static void print_unreferenced(struct seq_file *seq,
360 struct kmemleak_object *object)
361{
362 int i;
363 unsigned long *entries;
364 unsigned int nr_entries;
365
366 nr_entries = stack_depot_fetch(object->trace_handle, &entries);
367 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
368 object->pointer, object->size);
369 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
370 object->comm, object->pid, object->jiffies);
371 hex_dump_object(seq, object);
372 warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum);
373
374 for (i = 0; i < nr_entries; i++) {
375 void *ptr = (void *)entries[i];
376 warn_or_seq_printf(seq, " %pS\n", ptr);
377 }
378}
379
380/*
381 * Print the kmemleak_object information. This function is used mainly for
382 * debugging special cases when kmemleak operations. It must be called with
383 * the object->lock held.
384 */
385static void dump_object_info(struct kmemleak_object *object)
386{
387 pr_notice("Object 0x%08lx (size %zu):\n",
388 object->pointer, object->size);
389 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
390 object->comm, object->pid, object->jiffies);
391 pr_notice(" min_count = %d\n", object->min_count);
392 pr_notice(" count = %d\n", object->count);
393 pr_notice(" flags = 0x%x\n", object->flags);
394 pr_notice(" checksum = %u\n", object->checksum);
395 pr_notice(" backtrace:\n");
396 if (object->trace_handle)
397 stack_depot_print(object->trace_handle);
398}
399
400static struct rb_root *object_tree(unsigned long objflags)
401{
402 if (objflags & OBJECT_PHYS)
403 return &object_phys_tree_root;
404 if (objflags & OBJECT_PERCPU)
405 return &object_percpu_tree_root;
406 return &object_tree_root;
407}
408
409/*
410 * Look-up a memory block metadata (kmemleak_object) in the object search
411 * tree based on a pointer value. If alias is 0, only values pointing to the
412 * beginning of the memory block are allowed. The kmemleak_lock must be held
413 * when calling this function.
414 */
415static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
416 unsigned int objflags)
417{
418 struct rb_node *rb = object_tree(objflags)->rb_node;
419 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
420
421 while (rb) {
422 struct kmemleak_object *object;
423 unsigned long untagged_objp;
424
425 object = rb_entry(rb, struct kmemleak_object, rb_node);
426 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
427
428 if (untagged_ptr < untagged_objp)
429 rb = object->rb_node.rb_left;
430 else if (untagged_objp + object->size <= untagged_ptr)
431 rb = object->rb_node.rb_right;
432 else if (untagged_objp == untagged_ptr || alias)
433 return object;
434 else {
435 kmemleak_warn("Found object by alias at 0x%08lx\n",
436 ptr);
437 dump_object_info(object);
438 break;
439 }
440 }
441 return NULL;
442}
443
444/* Look-up a kmemleak object which allocated with virtual address. */
445static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
446{
447 return __lookup_object(ptr, alias, 0);
448}
449
450/*
451 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
452 * that once an object's use_count reached 0, the RCU freeing was already
453 * registered and the object should no longer be used. This function must be
454 * called under the protection of rcu_read_lock().
455 */
456static int get_object(struct kmemleak_object *object)
457{
458 return atomic_inc_not_zero(&object->use_count);
459}
460
461/*
462 * Memory pool allocation and freeing. kmemleak_lock must not be held.
463 */
464static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
465{
466 unsigned long flags;
467 struct kmemleak_object *object;
468
469 /* try the slab allocator first */
470 if (object_cache) {
471 object = kmem_cache_alloc_noprof(object_cache,
472 gfp_nested_mask(gfp));
473 if (object)
474 return object;
475 }
476
477 /* slab allocation failed, try the memory pool */
478 raw_spin_lock_irqsave(&kmemleak_lock, flags);
479 object = list_first_entry_or_null(&mem_pool_free_list,
480 typeof(*object), object_list);
481 if (object)
482 list_del(&object->object_list);
483 else if (mem_pool_free_count)
484 object = &mem_pool[--mem_pool_free_count];
485 else
486 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
487 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
488
489 return object;
490}
491
492/*
493 * Return the object to either the slab allocator or the memory pool.
494 */
495static void mem_pool_free(struct kmemleak_object *object)
496{
497 unsigned long flags;
498
499 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
500 kmem_cache_free(object_cache, object);
501 return;
502 }
503
504 /* add the object to the memory pool free list */
505 raw_spin_lock_irqsave(&kmemleak_lock, flags);
506 list_add(&object->object_list, &mem_pool_free_list);
507 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
508}
509
510/*
511 * RCU callback to free a kmemleak_object.
512 */
513static void free_object_rcu(struct rcu_head *rcu)
514{
515 struct hlist_node *tmp;
516 struct kmemleak_scan_area *area;
517 struct kmemleak_object *object =
518 container_of(rcu, struct kmemleak_object, rcu);
519
520 /*
521 * Once use_count is 0 (guaranteed by put_object), there is no other
522 * code accessing this object, hence no need for locking.
523 */
524 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
525 hlist_del(&area->node);
526 kmem_cache_free(scan_area_cache, area);
527 }
528 mem_pool_free(object);
529}
530
531/*
532 * Decrement the object use_count. Once the count is 0, free the object using
533 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
534 * delete_object() path, the delayed RCU freeing ensures that there is no
535 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
536 * is also possible.
537 */
538static void put_object(struct kmemleak_object *object)
539{
540 if (!atomic_dec_and_test(&object->use_count))
541 return;
542
543 /* should only get here after delete_object was called */
544 WARN_ON(object->flags & OBJECT_ALLOCATED);
545
546 /*
547 * It may be too early for the RCU callbacks, however, there is no
548 * concurrent object_list traversal when !object_cache and all objects
549 * came from the memory pool. Free the object directly.
550 */
551 if (object_cache)
552 call_rcu(&object->rcu, free_object_rcu);
553 else
554 free_object_rcu(&object->rcu);
555}
556
557/*
558 * Look up an object in the object search tree and increase its use_count.
559 */
560static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
561 unsigned int objflags)
562{
563 unsigned long flags;
564 struct kmemleak_object *object;
565
566 rcu_read_lock();
567 raw_spin_lock_irqsave(&kmemleak_lock, flags);
568 object = __lookup_object(ptr, alias, objflags);
569 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
570
571 /* check whether the object is still available */
572 if (object && !get_object(object))
573 object = NULL;
574 rcu_read_unlock();
575
576 return object;
577}
578
579/* Look up and get an object which allocated with virtual address. */
580static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
581{
582 return __find_and_get_object(ptr, alias, 0);
583}
584
585/*
586 * Remove an object from its object tree and object_list. Must be called with
587 * the kmemleak_lock held _if_ kmemleak is still enabled.
588 */
589static void __remove_object(struct kmemleak_object *object)
590{
591 rb_erase(&object->rb_node, object_tree(object->flags));
592 if (!(object->del_state & DELSTATE_NO_DELETE))
593 list_del_rcu(&object->object_list);
594 object->del_state |= DELSTATE_REMOVED;
595}
596
597static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
598 int alias,
599 unsigned int objflags)
600{
601 struct kmemleak_object *object;
602
603 object = __lookup_object(ptr, alias, objflags);
604 if (object)
605 __remove_object(object);
606
607 return object;
608}
609
610/*
611 * Look up an object in the object search tree and remove it from both object
612 * tree root and object_list. The returned object's use_count should be at
613 * least 1, as initially set by create_object().
614 */
615static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
616 unsigned int objflags)
617{
618 unsigned long flags;
619 struct kmemleak_object *object;
620
621 raw_spin_lock_irqsave(&kmemleak_lock, flags);
622 object = __find_and_remove_object(ptr, alias, objflags);
623 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
624
625 return object;
626}
627
628static noinline depot_stack_handle_t set_track_prepare(void)
629{
630 depot_stack_handle_t trace_handle;
631 unsigned long entries[MAX_TRACE];
632 unsigned int nr_entries;
633
634 /*
635 * Use object_cache to determine whether kmemleak_init() has
636 * been invoked. stack_depot_early_init() is called before
637 * kmemleak_init() in mm_core_init().
638 */
639 if (!object_cache)
640 return 0;
641 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
642 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
643
644 return trace_handle;
645}
646
647static struct kmemleak_object *__alloc_object(gfp_t gfp)
648{
649 struct kmemleak_object *object;
650
651 object = mem_pool_alloc(gfp);
652 if (!object) {
653 pr_warn("Cannot allocate a kmemleak_object structure\n");
654 kmemleak_disable();
655 return NULL;
656 }
657
658 INIT_LIST_HEAD(&object->object_list);
659 INIT_LIST_HEAD(&object->gray_list);
660 INIT_HLIST_HEAD(&object->area_list);
661 raw_spin_lock_init(&object->lock);
662 atomic_set(&object->use_count, 1);
663 object->excess_ref = 0;
664 object->count = 0; /* white color initially */
665 object->checksum = 0;
666 object->del_state = 0;
667
668 /* task information */
669 if (in_hardirq()) {
670 object->pid = 0;
671 strscpy(object->comm, "hardirq");
672 } else if (in_serving_softirq()) {
673 object->pid = 0;
674 strscpy(object->comm, "softirq");
675 } else {
676 object->pid = current->pid;
677 /*
678 * There is a small chance of a race with set_task_comm(),
679 * however using get_task_comm() here may cause locking
680 * dependency issues with current->alloc_lock. In the worst
681 * case, the command line is not correct.
682 */
683 strscpy(object->comm, current->comm);
684 }
685
686 /* kernel backtrace */
687 object->trace_handle = set_track_prepare();
688
689 return object;
690}
691
692static int __link_object(struct kmemleak_object *object, unsigned long ptr,
693 size_t size, int min_count, unsigned int objflags)
694{
695
696 struct kmemleak_object *parent;
697 struct rb_node **link, *rb_parent;
698 unsigned long untagged_ptr;
699 unsigned long untagged_objp;
700
701 object->flags = OBJECT_ALLOCATED | objflags;
702 object->pointer = ptr;
703 object->size = kfence_ksize((void *)ptr) ?: size;
704 object->min_count = min_count;
705 object->jiffies = jiffies;
706
707 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
708 /*
709 * Only update min_addr and max_addr with object storing virtual
710 * address. And update min_percpu_addr max_percpu_addr for per-CPU
711 * objects.
712 */
713 if (objflags & OBJECT_PERCPU) {
714 min_percpu_addr = min(min_percpu_addr, untagged_ptr);
715 max_percpu_addr = max(max_percpu_addr, untagged_ptr + size);
716 } else if (!(objflags & OBJECT_PHYS)) {
717 min_addr = min(min_addr, untagged_ptr);
718 max_addr = max(max_addr, untagged_ptr + size);
719 }
720 link = &object_tree(objflags)->rb_node;
721 rb_parent = NULL;
722 while (*link) {
723 rb_parent = *link;
724 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
725 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
726 if (untagged_ptr + size <= untagged_objp)
727 link = &parent->rb_node.rb_left;
728 else if (untagged_objp + parent->size <= untagged_ptr)
729 link = &parent->rb_node.rb_right;
730 else {
731 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
732 ptr);
733 /*
734 * No need for parent->lock here since "parent" cannot
735 * be freed while the kmemleak_lock is held.
736 */
737 dump_object_info(parent);
738 return -EEXIST;
739 }
740 }
741 rb_link_node(&object->rb_node, rb_parent, link);
742 rb_insert_color(&object->rb_node, object_tree(objflags));
743 list_add_tail_rcu(&object->object_list, &object_list);
744
745 return 0;
746}
747
748/*
749 * Create the metadata (struct kmemleak_object) corresponding to an allocated
750 * memory block and add it to the object_list and object tree.
751 */
752static void __create_object(unsigned long ptr, size_t size,
753 int min_count, gfp_t gfp, unsigned int objflags)
754{
755 struct kmemleak_object *object;
756 unsigned long flags;
757 int ret;
758
759 object = __alloc_object(gfp);
760 if (!object)
761 return;
762
763 raw_spin_lock_irqsave(&kmemleak_lock, flags);
764 ret = __link_object(object, ptr, size, min_count, objflags);
765 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
766 if (ret)
767 mem_pool_free(object);
768}
769
770/* Create kmemleak object which allocated with virtual address. */
771static void create_object(unsigned long ptr, size_t size,
772 int min_count, gfp_t gfp)
773{
774 __create_object(ptr, size, min_count, gfp, 0);
775}
776
777/* Create kmemleak object which allocated with physical address. */
778static void create_object_phys(unsigned long ptr, size_t size,
779 int min_count, gfp_t gfp)
780{
781 __create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
782}
783
784/* Create kmemleak object corresponding to a per-CPU allocation. */
785static void create_object_percpu(unsigned long ptr, size_t size,
786 int min_count, gfp_t gfp)
787{
788 __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
789}
790
791/*
792 * Mark the object as not allocated and schedule RCU freeing via put_object().
793 */
794static void __delete_object(struct kmemleak_object *object)
795{
796 unsigned long flags;
797
798 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
799 WARN_ON(atomic_read(&object->use_count) < 1);
800
801 /*
802 * Locking here also ensures that the corresponding memory block
803 * cannot be freed when it is being scanned.
804 */
805 raw_spin_lock_irqsave(&object->lock, flags);
806 object->flags &= ~OBJECT_ALLOCATED;
807 raw_spin_unlock_irqrestore(&object->lock, flags);
808 put_object(object);
809}
810
811/*
812 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
813 * delete it.
814 */
815static void delete_object_full(unsigned long ptr, unsigned int objflags)
816{
817 struct kmemleak_object *object;
818
819 object = find_and_remove_object(ptr, 0, objflags);
820 if (!object) {
821#ifdef DEBUG
822 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
823 ptr);
824#endif
825 return;
826 }
827 __delete_object(object);
828}
829
830/*
831 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
832 * delete it. If the memory block is partially freed, the function may create
833 * additional metadata for the remaining parts of the block.
834 */
835static void delete_object_part(unsigned long ptr, size_t size,
836 unsigned int objflags)
837{
838 struct kmemleak_object *object, *object_l, *object_r;
839 unsigned long start, end, flags;
840
841 object_l = __alloc_object(GFP_KERNEL);
842 if (!object_l)
843 return;
844
845 object_r = __alloc_object(GFP_KERNEL);
846 if (!object_r)
847 goto out;
848
849 raw_spin_lock_irqsave(&kmemleak_lock, flags);
850 object = __find_and_remove_object(ptr, 1, objflags);
851 if (!object) {
852#ifdef DEBUG
853 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
854 ptr, size);
855#endif
856 goto unlock;
857 }
858
859 /*
860 * Create one or two objects that may result from the memory block
861 * split. Note that partial freeing is only done by free_bootmem() and
862 * this happens before kmemleak_init() is called.
863 */
864 start = object->pointer;
865 end = object->pointer + object->size;
866 if ((ptr > start) &&
867 !__link_object(object_l, start, ptr - start,
868 object->min_count, objflags))
869 object_l = NULL;
870 if ((ptr + size < end) &&
871 !__link_object(object_r, ptr + size, end - ptr - size,
872 object->min_count, objflags))
873 object_r = NULL;
874
875unlock:
876 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
877 if (object)
878 __delete_object(object);
879
880out:
881 if (object_l)
882 mem_pool_free(object_l);
883 if (object_r)
884 mem_pool_free(object_r);
885}
886
887static void __paint_it(struct kmemleak_object *object, int color)
888{
889 object->min_count = color;
890 if (color == KMEMLEAK_BLACK)
891 object->flags |= OBJECT_NO_SCAN;
892}
893
894static void paint_it(struct kmemleak_object *object, int color)
895{
896 unsigned long flags;
897
898 raw_spin_lock_irqsave(&object->lock, flags);
899 __paint_it(object, color);
900 raw_spin_unlock_irqrestore(&object->lock, flags);
901}
902
903static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
904{
905 struct kmemleak_object *object;
906
907 object = __find_and_get_object(ptr, 0, objflags);
908 if (!object) {
909 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
910 ptr,
911 (color == KMEMLEAK_GREY) ? "Grey" :
912 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
913 return;
914 }
915 paint_it(object, color);
916 put_object(object);
917}
918
919/*
920 * Mark an object permanently as gray-colored so that it can no longer be
921 * reported as a leak. This is used in general to mark a false positive.
922 */
923static void make_gray_object(unsigned long ptr)
924{
925 paint_ptr(ptr, KMEMLEAK_GREY, 0);
926}
927
928/*
929 * Mark the object as black-colored so that it is ignored from scans and
930 * reporting.
931 */
932static void make_black_object(unsigned long ptr, unsigned int objflags)
933{
934 paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
935}
936
937/*
938 * Reset the checksum of an object. The immediate effect is that it will not
939 * be reported as a leak during the next scan until its checksum is updated.
940 */
941static void reset_checksum(unsigned long ptr)
942{
943 unsigned long flags;
944 struct kmemleak_object *object;
945
946 object = find_and_get_object(ptr, 0);
947 if (!object) {
948 kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n",
949 ptr);
950 return;
951 }
952
953 raw_spin_lock_irqsave(&object->lock, flags);
954 object->checksum = 0;
955 raw_spin_unlock_irqrestore(&object->lock, flags);
956 put_object(object);
957}
958
959/*
960 * Add a scanning area to the object. If at least one such area is added,
961 * kmemleak will only scan these ranges rather than the whole memory block.
962 */
963static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
964{
965 unsigned long flags;
966 struct kmemleak_object *object;
967 struct kmemleak_scan_area *area = NULL;
968 unsigned long untagged_ptr;
969 unsigned long untagged_objp;
970
971 object = find_and_get_object(ptr, 1);
972 if (!object) {
973 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
974 ptr);
975 return;
976 }
977
978 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
979 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
980
981 if (scan_area_cache)
982 area = kmem_cache_alloc_noprof(scan_area_cache,
983 gfp_nested_mask(gfp));
984
985 raw_spin_lock_irqsave(&object->lock, flags);
986 if (!area) {
987 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
988 /* mark the object for full scan to avoid false positives */
989 object->flags |= OBJECT_FULL_SCAN;
990 goto out_unlock;
991 }
992 if (size == SIZE_MAX) {
993 size = untagged_objp + object->size - untagged_ptr;
994 } else if (untagged_ptr + size > untagged_objp + object->size) {
995 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
996 dump_object_info(object);
997 kmem_cache_free(scan_area_cache, area);
998 goto out_unlock;
999 }
1000
1001 INIT_HLIST_NODE(&area->node);
1002 area->start = ptr;
1003 area->size = size;
1004
1005 hlist_add_head(&area->node, &object->area_list);
1006out_unlock:
1007 raw_spin_unlock_irqrestore(&object->lock, flags);
1008 put_object(object);
1009}
1010
1011/*
1012 * Any surplus references (object already gray) to 'ptr' are passed to
1013 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
1014 * vm_struct may be used as an alternative reference to the vmalloc'ed object
1015 * (see free_thread_stack()).
1016 */
1017static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
1018{
1019 unsigned long flags;
1020 struct kmemleak_object *object;
1021
1022 object = find_and_get_object(ptr, 0);
1023 if (!object) {
1024 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
1025 ptr);
1026 return;
1027 }
1028
1029 raw_spin_lock_irqsave(&object->lock, flags);
1030 object->excess_ref = excess_ref;
1031 raw_spin_unlock_irqrestore(&object->lock, flags);
1032 put_object(object);
1033}
1034
1035/*
1036 * Set the OBJECT_NO_SCAN flag for the object corresponding to the given
1037 * pointer. Such object will not be scanned by kmemleak but references to it
1038 * are searched.
1039 */
1040static void object_no_scan(unsigned long ptr)
1041{
1042 unsigned long flags;
1043 struct kmemleak_object *object;
1044
1045 object = find_and_get_object(ptr, 0);
1046 if (!object) {
1047 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1048 return;
1049 }
1050
1051 raw_spin_lock_irqsave(&object->lock, flags);
1052 object->flags |= OBJECT_NO_SCAN;
1053 raw_spin_unlock_irqrestore(&object->lock, flags);
1054 put_object(object);
1055}
1056
1057/**
1058 * kmemleak_alloc - register a newly allocated object
1059 * @ptr: pointer to beginning of the object
1060 * @size: size of the object
1061 * @min_count: minimum number of references to this object. If during memory
1062 * scanning a number of references less than @min_count is found,
1063 * the object is reported as a memory leak. If @min_count is 0,
1064 * the object is never reported as a leak. If @min_count is -1,
1065 * the object is ignored (not scanned and not reported as a leak)
1066 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1067 *
1068 * This function is called from the kernel allocators when a new object
1069 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1070 */
1071void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1072 gfp_t gfp)
1073{
1074 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1075
1076 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1077 create_object((unsigned long)ptr, size, min_count, gfp);
1078}
1079EXPORT_SYMBOL_GPL(kmemleak_alloc);
1080
1081/**
1082 * kmemleak_alloc_percpu - register a newly allocated __percpu object
1083 * @ptr: __percpu pointer to beginning of the object
1084 * @size: size of the object
1085 * @gfp: flags used for kmemleak internal memory allocations
1086 *
1087 * This function is called from the kernel percpu allocator when a new object
1088 * (memory block) is allocated (alloc_percpu).
1089 */
1090void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1091 gfp_t gfp)
1092{
1093 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1094
1095 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
1096 create_object_percpu((__force unsigned long)ptr, size, 1, gfp);
1097}
1098EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1099
1100/**
1101 * kmemleak_vmalloc - register a newly vmalloc'ed object
1102 * @area: pointer to vm_struct
1103 * @size: size of the object
1104 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1105 *
1106 * This function is called from the vmalloc() kernel allocator when a new
1107 * object (memory block) is allocated.
1108 */
1109void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1110{
1111 pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1112
1113 /*
1114 * A min_count = 2 is needed because vm_struct contains a reference to
1115 * the virtual address of the vmalloc'ed block.
1116 */
1117 if (kmemleak_enabled) {
1118 create_object((unsigned long)area->addr, size, 2, gfp);
1119 object_set_excess_ref((unsigned long)area,
1120 (unsigned long)area->addr);
1121 }
1122}
1123EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1124
1125/**
1126 * kmemleak_free - unregister a previously registered object
1127 * @ptr: pointer to beginning of the object
1128 *
1129 * This function is called from the kernel allocators when an object (memory
1130 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1131 */
1132void __ref kmemleak_free(const void *ptr)
1133{
1134 pr_debug("%s(0x%px)\n", __func__, ptr);
1135
1136 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1137 delete_object_full((unsigned long)ptr, 0);
1138}
1139EXPORT_SYMBOL_GPL(kmemleak_free);
1140
1141/**
1142 * kmemleak_free_part - partially unregister a previously registered object
1143 * @ptr: pointer to the beginning or inside the object. This also
1144 * represents the start of the range to be freed
1145 * @size: size to be unregistered
1146 *
1147 * This function is called when only a part of a memory block is freed
1148 * (usually from the bootmem allocator).
1149 */
1150void __ref kmemleak_free_part(const void *ptr, size_t size)
1151{
1152 pr_debug("%s(0x%px)\n", __func__, ptr);
1153
1154 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1155 delete_object_part((unsigned long)ptr, size, 0);
1156}
1157EXPORT_SYMBOL_GPL(kmemleak_free_part);
1158
1159/**
1160 * kmemleak_free_percpu - unregister a previously registered __percpu object
1161 * @ptr: __percpu pointer to beginning of the object
1162 *
1163 * This function is called from the kernel percpu allocator when an object
1164 * (memory block) is freed (free_percpu).
1165 */
1166void __ref kmemleak_free_percpu(const void __percpu *ptr)
1167{
1168 pr_debug("%s(0x%px)\n", __func__, ptr);
1169
1170 if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr))
1171 delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU);
1172}
1173EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1174
1175/**
1176 * kmemleak_update_trace - update object allocation stack trace
1177 * @ptr: pointer to beginning of the object
1178 *
1179 * Override the object allocation stack trace for cases where the actual
1180 * allocation place is not always useful.
1181 */
1182void __ref kmemleak_update_trace(const void *ptr)
1183{
1184 struct kmemleak_object *object;
1185 depot_stack_handle_t trace_handle;
1186 unsigned long flags;
1187
1188 pr_debug("%s(0x%px)\n", __func__, ptr);
1189
1190 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1191 return;
1192
1193 object = find_and_get_object((unsigned long)ptr, 1);
1194 if (!object) {
1195#ifdef DEBUG
1196 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1197 ptr);
1198#endif
1199 return;
1200 }
1201
1202 trace_handle = set_track_prepare();
1203 raw_spin_lock_irqsave(&object->lock, flags);
1204 object->trace_handle = trace_handle;
1205 raw_spin_unlock_irqrestore(&object->lock, flags);
1206
1207 put_object(object);
1208}
1209EXPORT_SYMBOL(kmemleak_update_trace);
1210
1211/**
1212 * kmemleak_not_leak - mark an allocated object as false positive
1213 * @ptr: pointer to beginning of the object
1214 *
1215 * Calling this function on an object will cause the memory block to no longer
1216 * be reported as leak and always be scanned.
1217 */
1218void __ref kmemleak_not_leak(const void *ptr)
1219{
1220 pr_debug("%s(0x%px)\n", __func__, ptr);
1221
1222 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1223 make_gray_object((unsigned long)ptr);
1224}
1225EXPORT_SYMBOL(kmemleak_not_leak);
1226
1227/**
1228 * kmemleak_transient_leak - mark an allocated object as transient false positive
1229 * @ptr: pointer to beginning of the object
1230 *
1231 * Calling this function on an object will cause the memory block to not be
1232 * reported as a leak temporarily. This may happen, for example, if the object
1233 * is part of a singly linked list and the ->next reference to it is changed.
1234 */
1235void __ref kmemleak_transient_leak(const void *ptr)
1236{
1237 pr_debug("%s(0x%px)\n", __func__, ptr);
1238
1239 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1240 reset_checksum((unsigned long)ptr);
1241}
1242EXPORT_SYMBOL(kmemleak_transient_leak);
1243
1244/**
1245 * kmemleak_ignore - ignore an allocated object
1246 * @ptr: pointer to beginning of the object
1247 *
1248 * Calling this function on an object will cause the memory block to be
1249 * ignored (not scanned and not reported as a leak). This is usually done when
1250 * it is known that the corresponding block is not a leak and does not contain
1251 * any references to other allocated memory blocks.
1252 */
1253void __ref kmemleak_ignore(const void *ptr)
1254{
1255 pr_debug("%s(0x%px)\n", __func__, ptr);
1256
1257 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1258 make_black_object((unsigned long)ptr, 0);
1259}
1260EXPORT_SYMBOL(kmemleak_ignore);
1261
1262/**
1263 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1264 * @ptr: pointer to beginning or inside the object. This also
1265 * represents the start of the scan area
1266 * @size: size of the scan area
1267 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1268 *
1269 * This function is used when it is known that only certain parts of an object
1270 * contain references to other objects. Kmemleak will only scan these areas
1271 * reducing the number false negatives.
1272 */
1273void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1274{
1275 pr_debug("%s(0x%px)\n", __func__, ptr);
1276
1277 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1278 add_scan_area((unsigned long)ptr, size, gfp);
1279}
1280EXPORT_SYMBOL(kmemleak_scan_area);
1281
1282/**
1283 * kmemleak_no_scan - do not scan an allocated object
1284 * @ptr: pointer to beginning of the object
1285 *
1286 * This function notifies kmemleak not to scan the given memory block. Useful
1287 * in situations where it is known that the given object does not contain any
1288 * references to other objects. Kmemleak will not scan such objects reducing
1289 * the number of false negatives.
1290 */
1291void __ref kmemleak_no_scan(const void *ptr)
1292{
1293 pr_debug("%s(0x%px)\n", __func__, ptr);
1294
1295 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1296 object_no_scan((unsigned long)ptr);
1297}
1298EXPORT_SYMBOL(kmemleak_no_scan);
1299
1300/**
1301 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1302 * address argument
1303 * @phys: physical address of the object
1304 * @size: size of the object
1305 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1306 */
1307void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1308{
1309 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1310
1311 if (kmemleak_enabled)
1312 /*
1313 * Create object with OBJECT_PHYS flag and
1314 * assume min_count 0.
1315 */
1316 create_object_phys((unsigned long)phys, size, 0, gfp);
1317}
1318EXPORT_SYMBOL(kmemleak_alloc_phys);
1319
1320/**
1321 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1322 * physical address argument
1323 * @phys: physical address if the beginning or inside an object. This
1324 * also represents the start of the range to be freed
1325 * @size: size to be unregistered
1326 */
1327void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1328{
1329 pr_debug("%s(0x%px)\n", __func__, &phys);
1330
1331 if (kmemleak_enabled)
1332 delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1333}
1334EXPORT_SYMBOL(kmemleak_free_part_phys);
1335
1336/**
1337 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1338 * address argument
1339 * @phys: physical address of the object
1340 */
1341void __ref kmemleak_ignore_phys(phys_addr_t phys)
1342{
1343 pr_debug("%s(0x%px)\n", __func__, &phys);
1344
1345 if (kmemleak_enabled)
1346 make_black_object((unsigned long)phys, OBJECT_PHYS);
1347}
1348EXPORT_SYMBOL(kmemleak_ignore_phys);
1349
1350/*
1351 * Update an object's checksum and return true if it was modified.
1352 */
1353static bool update_checksum(struct kmemleak_object *object)
1354{
1355 u32 old_csum = object->checksum;
1356
1357 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1358 return false;
1359
1360 kasan_disable_current();
1361 kcsan_disable_current();
1362 if (object->flags & OBJECT_PERCPU) {
1363 unsigned int cpu;
1364
1365 object->checksum = 0;
1366 for_each_possible_cpu(cpu) {
1367 void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1368
1369 object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size);
1370 }
1371 } else {
1372 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1373 }
1374 kasan_enable_current();
1375 kcsan_enable_current();
1376
1377 return object->checksum != old_csum;
1378}
1379
1380/*
1381 * Update an object's references. object->lock must be held by the caller.
1382 */
1383static void update_refs(struct kmemleak_object *object)
1384{
1385 if (!color_white(object)) {
1386 /* non-orphan, ignored or new */
1387 return;
1388 }
1389
1390 /*
1391 * Increase the object's reference count (number of pointers to the
1392 * memory block). If this count reaches the required minimum, the
1393 * object's color will become gray and it will be added to the
1394 * gray_list.
1395 */
1396 object->count++;
1397 if (color_gray(object)) {
1398 /* put_object() called when removing from gray_list */
1399 WARN_ON(!get_object(object));
1400 list_add_tail(&object->gray_list, &gray_list);
1401 }
1402}
1403
1404static void pointer_update_refs(struct kmemleak_object *scanned,
1405 unsigned long pointer, unsigned int objflags)
1406{
1407 struct kmemleak_object *object;
1408 unsigned long untagged_ptr;
1409 unsigned long excess_ref;
1410
1411 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1412 if (objflags & OBJECT_PERCPU) {
1413 if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr)
1414 return;
1415 } else {
1416 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1417 return;
1418 }
1419
1420 /*
1421 * No need for get_object() here since we hold kmemleak_lock.
1422 * object->use_count cannot be dropped to 0 while the object
1423 * is still present in object_tree_root and object_list
1424 * (with updates protected by kmemleak_lock).
1425 */
1426 object = __lookup_object(pointer, 1, objflags);
1427 if (!object)
1428 return;
1429 if (object == scanned)
1430 /* self referenced, ignore */
1431 return;
1432
1433 /*
1434 * Avoid the lockdep recursive warning on object->lock being
1435 * previously acquired in scan_object(). These locks are
1436 * enclosed by scan_mutex.
1437 */
1438 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1439 /* only pass surplus references (object already gray) */
1440 if (color_gray(object)) {
1441 excess_ref = object->excess_ref;
1442 /* no need for update_refs() if object already gray */
1443 } else {
1444 excess_ref = 0;
1445 update_refs(object);
1446 }
1447 raw_spin_unlock(&object->lock);
1448
1449 if (excess_ref) {
1450 object = lookup_object(excess_ref, 0);
1451 if (!object)
1452 return;
1453 if (object == scanned)
1454 /* circular reference, ignore */
1455 return;
1456 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1457 update_refs(object);
1458 raw_spin_unlock(&object->lock);
1459 }
1460}
1461
1462/*
1463 * Memory scanning is a long process and it needs to be interruptible. This
1464 * function checks whether such interrupt condition occurred.
1465 */
1466static int scan_should_stop(void)
1467{
1468 if (!kmemleak_enabled)
1469 return 1;
1470
1471 /*
1472 * This function may be called from either process or kthread context,
1473 * hence the need to check for both stop conditions.
1474 */
1475 if (current->mm)
1476 return signal_pending(current);
1477 else
1478 return kthread_should_stop();
1479
1480 return 0;
1481}
1482
1483/*
1484 * Scan a memory block (exclusive range) for valid pointers and add those
1485 * found to the gray list.
1486 */
1487static void scan_block(void *_start, void *_end,
1488 struct kmemleak_object *scanned)
1489{
1490 unsigned long *ptr;
1491 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1492 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1493 unsigned long flags;
1494
1495 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1496 for (ptr = start; ptr < end; ptr++) {
1497 unsigned long pointer;
1498
1499 if (scan_should_stop())
1500 break;
1501
1502 kasan_disable_current();
1503 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1504 kasan_enable_current();
1505
1506 pointer_update_refs(scanned, pointer, 0);
1507 pointer_update_refs(scanned, pointer, OBJECT_PERCPU);
1508 }
1509 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1510}
1511
1512/*
1513 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1514 */
1515#ifdef CONFIG_SMP
1516static void scan_large_block(void *start, void *end)
1517{
1518 void *next;
1519
1520 while (start < end) {
1521 next = min(start + MAX_SCAN_SIZE, end);
1522 scan_block(start, next, NULL);
1523 start = next;
1524 cond_resched();
1525 }
1526}
1527#endif
1528
1529/*
1530 * Scan a memory block corresponding to a kmemleak_object. A condition is
1531 * that object->use_count >= 1.
1532 */
1533static void scan_object(struct kmemleak_object *object)
1534{
1535 struct kmemleak_scan_area *area;
1536 unsigned long flags;
1537
1538 /*
1539 * Once the object->lock is acquired, the corresponding memory block
1540 * cannot be freed (the same lock is acquired in delete_object).
1541 */
1542 raw_spin_lock_irqsave(&object->lock, flags);
1543 if (object->flags & OBJECT_NO_SCAN)
1544 goto out;
1545 if (!(object->flags & OBJECT_ALLOCATED))
1546 /* already freed object */
1547 goto out;
1548
1549 if (object->flags & OBJECT_PERCPU) {
1550 unsigned int cpu;
1551
1552 for_each_possible_cpu(cpu) {
1553 void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1554 void *end = start + object->size;
1555
1556 scan_block(start, end, object);
1557
1558 raw_spin_unlock_irqrestore(&object->lock, flags);
1559 cond_resched();
1560 raw_spin_lock_irqsave(&object->lock, flags);
1561 if (!(object->flags & OBJECT_ALLOCATED))
1562 break;
1563 }
1564 } else if (hlist_empty(&object->area_list) ||
1565 object->flags & OBJECT_FULL_SCAN) {
1566 void *start = object->flags & OBJECT_PHYS ?
1567 __va((phys_addr_t)object->pointer) :
1568 (void *)object->pointer;
1569 void *end = start + object->size;
1570 void *next;
1571
1572 do {
1573 next = min(start + MAX_SCAN_SIZE, end);
1574 scan_block(start, next, object);
1575
1576 start = next;
1577 if (start >= end)
1578 break;
1579
1580 raw_spin_unlock_irqrestore(&object->lock, flags);
1581 cond_resched();
1582 raw_spin_lock_irqsave(&object->lock, flags);
1583 } while (object->flags & OBJECT_ALLOCATED);
1584 } else {
1585 hlist_for_each_entry(area, &object->area_list, node)
1586 scan_block((void *)area->start,
1587 (void *)(area->start + area->size),
1588 object);
1589 }
1590out:
1591 raw_spin_unlock_irqrestore(&object->lock, flags);
1592}
1593
1594/*
1595 * Scan the objects already referenced (gray objects). More objects will be
1596 * referenced and, if there are no memory leaks, all the objects are scanned.
1597 */
1598static void scan_gray_list(void)
1599{
1600 struct kmemleak_object *object, *tmp;
1601
1602 /*
1603 * The list traversal is safe for both tail additions and removals
1604 * from inside the loop. The kmemleak objects cannot be freed from
1605 * outside the loop because their use_count was incremented.
1606 */
1607 object = list_entry(gray_list.next, typeof(*object), gray_list);
1608 while (&object->gray_list != &gray_list) {
1609 cond_resched();
1610
1611 /* may add new objects to the list */
1612 if (!scan_should_stop())
1613 scan_object(object);
1614
1615 tmp = list_entry(object->gray_list.next, typeof(*object),
1616 gray_list);
1617
1618 /* remove the object from the list and release it */
1619 list_del(&object->gray_list);
1620 put_object(object);
1621
1622 object = tmp;
1623 }
1624 WARN_ON(!list_empty(&gray_list));
1625}
1626
1627/*
1628 * Conditionally call resched() in an object iteration loop while making sure
1629 * that the given object won't go away without RCU read lock by performing a
1630 * get_object() if necessaary.
1631 */
1632static void kmemleak_cond_resched(struct kmemleak_object *object)
1633{
1634 if (!get_object(object))
1635 return; /* Try next object */
1636
1637 raw_spin_lock_irq(&kmemleak_lock);
1638 if (object->del_state & DELSTATE_REMOVED)
1639 goto unlock_put; /* Object removed */
1640 object->del_state |= DELSTATE_NO_DELETE;
1641 raw_spin_unlock_irq(&kmemleak_lock);
1642
1643 rcu_read_unlock();
1644 cond_resched();
1645 rcu_read_lock();
1646
1647 raw_spin_lock_irq(&kmemleak_lock);
1648 if (object->del_state & DELSTATE_REMOVED)
1649 list_del_rcu(&object->object_list);
1650 object->del_state &= ~DELSTATE_NO_DELETE;
1651unlock_put:
1652 raw_spin_unlock_irq(&kmemleak_lock);
1653 put_object(object);
1654}
1655
1656/*
1657 * Scan data sections and all the referenced memory blocks allocated via the
1658 * kernel's standard allocators. This function must be called with the
1659 * scan_mutex held.
1660 */
1661static void kmemleak_scan(void)
1662{
1663 struct kmemleak_object *object;
1664 struct zone *zone;
1665 int __maybe_unused i;
1666 int new_leaks = 0;
1667
1668 jiffies_last_scan = jiffies;
1669
1670 /* prepare the kmemleak_object's */
1671 rcu_read_lock();
1672 list_for_each_entry_rcu(object, &object_list, object_list) {
1673 raw_spin_lock_irq(&object->lock);
1674#ifdef DEBUG
1675 /*
1676 * With a few exceptions there should be a maximum of
1677 * 1 reference to any object at this point.
1678 */
1679 if (atomic_read(&object->use_count) > 1) {
1680 pr_debug("object->use_count = %d\n",
1681 atomic_read(&object->use_count));
1682 dump_object_info(object);
1683 }
1684#endif
1685
1686 /* ignore objects outside lowmem (paint them black) */
1687 if ((object->flags & OBJECT_PHYS) &&
1688 !(object->flags & OBJECT_NO_SCAN)) {
1689 unsigned long phys = object->pointer;
1690
1691 if (PHYS_PFN(phys) < min_low_pfn ||
1692 PHYS_PFN(phys + object->size) > max_low_pfn)
1693 __paint_it(object, KMEMLEAK_BLACK);
1694 }
1695
1696 /* reset the reference count (whiten the object) */
1697 object->count = 0;
1698 if (color_gray(object) && get_object(object))
1699 list_add_tail(&object->gray_list, &gray_list);
1700
1701 raw_spin_unlock_irq(&object->lock);
1702
1703 if (need_resched())
1704 kmemleak_cond_resched(object);
1705 }
1706 rcu_read_unlock();
1707
1708#ifdef CONFIG_SMP
1709 /* per-cpu sections scanning */
1710 for_each_possible_cpu(i)
1711 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1712 __per_cpu_end + per_cpu_offset(i));
1713#endif
1714
1715 /*
1716 * Struct page scanning for each node.
1717 */
1718 get_online_mems();
1719 for_each_populated_zone(zone) {
1720 unsigned long start_pfn = zone->zone_start_pfn;
1721 unsigned long end_pfn = zone_end_pfn(zone);
1722 unsigned long pfn;
1723
1724 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1725 struct page *page = pfn_to_online_page(pfn);
1726
1727 if (!(pfn & 63))
1728 cond_resched();
1729
1730 if (!page)
1731 continue;
1732
1733 /* only scan pages belonging to this zone */
1734 if (page_zone(page) != zone)
1735 continue;
1736 /* only scan if page is in use */
1737 if (page_count(page) == 0)
1738 continue;
1739 scan_block(page, page + 1, NULL);
1740 }
1741 }
1742 put_online_mems();
1743
1744 /*
1745 * Scanning the task stacks (may introduce false negatives).
1746 */
1747 if (kmemleak_stack_scan) {
1748 struct task_struct *p, *g;
1749
1750 rcu_read_lock();
1751 for_each_process_thread(g, p) {
1752 void *stack = try_get_task_stack(p);
1753 if (stack) {
1754 scan_block(stack, stack + THREAD_SIZE, NULL);
1755 put_task_stack(p);
1756 }
1757 }
1758 rcu_read_unlock();
1759 }
1760
1761 /*
1762 * Scan the objects already referenced from the sections scanned
1763 * above.
1764 */
1765 scan_gray_list();
1766
1767 /*
1768 * Check for new or unreferenced objects modified since the previous
1769 * scan and color them gray until the next scan.
1770 */
1771 rcu_read_lock();
1772 list_for_each_entry_rcu(object, &object_list, object_list) {
1773 if (need_resched())
1774 kmemleak_cond_resched(object);
1775
1776 /*
1777 * This is racy but we can save the overhead of lock/unlock
1778 * calls. The missed objects, if any, should be caught in
1779 * the next scan.
1780 */
1781 if (!color_white(object))
1782 continue;
1783 raw_spin_lock_irq(&object->lock);
1784 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1785 && update_checksum(object) && get_object(object)) {
1786 /* color it gray temporarily */
1787 object->count = object->min_count;
1788 list_add_tail(&object->gray_list, &gray_list);
1789 }
1790 raw_spin_unlock_irq(&object->lock);
1791 }
1792 rcu_read_unlock();
1793
1794 /*
1795 * Re-scan the gray list for modified unreferenced objects.
1796 */
1797 scan_gray_list();
1798
1799 /*
1800 * If scanning was stopped do not report any new unreferenced objects.
1801 */
1802 if (scan_should_stop())
1803 return;
1804
1805 /*
1806 * Scanning result reporting.
1807 */
1808 rcu_read_lock();
1809 list_for_each_entry_rcu(object, &object_list, object_list) {
1810 if (need_resched())
1811 kmemleak_cond_resched(object);
1812
1813 /*
1814 * This is racy but we can save the overhead of lock/unlock
1815 * calls. The missed objects, if any, should be caught in
1816 * the next scan.
1817 */
1818 if (!color_white(object))
1819 continue;
1820 raw_spin_lock_irq(&object->lock);
1821 if (unreferenced_object(object) &&
1822 !(object->flags & OBJECT_REPORTED)) {
1823 object->flags |= OBJECT_REPORTED;
1824
1825 if (kmemleak_verbose)
1826 print_unreferenced(NULL, object);
1827
1828 new_leaks++;
1829 }
1830 raw_spin_unlock_irq(&object->lock);
1831 }
1832 rcu_read_unlock();
1833
1834 if (new_leaks) {
1835 kmemleak_found_leaks = true;
1836
1837 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1838 new_leaks);
1839 }
1840
1841}
1842
1843/*
1844 * Thread function performing automatic memory scanning. Unreferenced objects
1845 * at the end of a memory scan are reported but only the first time.
1846 */
1847static int kmemleak_scan_thread(void *arg)
1848{
1849 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1850
1851 pr_info("Automatic memory scanning thread started\n");
1852 set_user_nice(current, 10);
1853
1854 /*
1855 * Wait before the first scan to allow the system to fully initialize.
1856 */
1857 if (first_run) {
1858 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1859 first_run = 0;
1860 while (timeout && !kthread_should_stop())
1861 timeout = schedule_timeout_interruptible(timeout);
1862 }
1863
1864 while (!kthread_should_stop()) {
1865 signed long timeout = READ_ONCE(jiffies_scan_wait);
1866
1867 mutex_lock(&scan_mutex);
1868 kmemleak_scan();
1869 mutex_unlock(&scan_mutex);
1870
1871 /* wait before the next scan */
1872 while (timeout && !kthread_should_stop())
1873 timeout = schedule_timeout_interruptible(timeout);
1874 }
1875
1876 pr_info("Automatic memory scanning thread ended\n");
1877
1878 return 0;
1879}
1880
1881/*
1882 * Start the automatic memory scanning thread. This function must be called
1883 * with the scan_mutex held.
1884 */
1885static void start_scan_thread(void)
1886{
1887 if (scan_thread)
1888 return;
1889 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1890 if (IS_ERR(scan_thread)) {
1891 pr_warn("Failed to create the scan thread\n");
1892 scan_thread = NULL;
1893 }
1894}
1895
1896/*
1897 * Stop the automatic memory scanning thread.
1898 */
1899static void stop_scan_thread(void)
1900{
1901 if (scan_thread) {
1902 kthread_stop(scan_thread);
1903 scan_thread = NULL;
1904 }
1905}
1906
1907/*
1908 * Iterate over the object_list and return the first valid object at or after
1909 * the required position with its use_count incremented. The function triggers
1910 * a memory scanning when the pos argument points to the first position.
1911 */
1912static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1913{
1914 struct kmemleak_object *object;
1915 loff_t n = *pos;
1916 int err;
1917
1918 err = mutex_lock_interruptible(&scan_mutex);
1919 if (err < 0)
1920 return ERR_PTR(err);
1921
1922 rcu_read_lock();
1923 list_for_each_entry_rcu(object, &object_list, object_list) {
1924 if (n-- > 0)
1925 continue;
1926 if (get_object(object))
1927 goto out;
1928 }
1929 object = NULL;
1930out:
1931 return object;
1932}
1933
1934/*
1935 * Return the next object in the object_list. The function decrements the
1936 * use_count of the previous object and increases that of the next one.
1937 */
1938static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1939{
1940 struct kmemleak_object *prev_obj = v;
1941 struct kmemleak_object *next_obj = NULL;
1942 struct kmemleak_object *obj = prev_obj;
1943
1944 ++(*pos);
1945
1946 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1947 if (get_object(obj)) {
1948 next_obj = obj;
1949 break;
1950 }
1951 }
1952
1953 put_object(prev_obj);
1954 return next_obj;
1955}
1956
1957/*
1958 * Decrement the use_count of the last object required, if any.
1959 */
1960static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1961{
1962 if (!IS_ERR(v)) {
1963 /*
1964 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1965 * waiting was interrupted, so only release it if !IS_ERR.
1966 */
1967 rcu_read_unlock();
1968 mutex_unlock(&scan_mutex);
1969 if (v)
1970 put_object(v);
1971 }
1972}
1973
1974/*
1975 * Print the information for an unreferenced object to the seq file.
1976 */
1977static int kmemleak_seq_show(struct seq_file *seq, void *v)
1978{
1979 struct kmemleak_object *object = v;
1980 unsigned long flags;
1981
1982 raw_spin_lock_irqsave(&object->lock, flags);
1983 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1984 print_unreferenced(seq, object);
1985 raw_spin_unlock_irqrestore(&object->lock, flags);
1986 return 0;
1987}
1988
1989static const struct seq_operations kmemleak_seq_ops = {
1990 .start = kmemleak_seq_start,
1991 .next = kmemleak_seq_next,
1992 .stop = kmemleak_seq_stop,
1993 .show = kmemleak_seq_show,
1994};
1995
1996static int kmemleak_open(struct inode *inode, struct file *file)
1997{
1998 return seq_open(file, &kmemleak_seq_ops);
1999}
2000
2001static int dump_str_object_info(const char *str)
2002{
2003 unsigned long flags;
2004 struct kmemleak_object *object;
2005 unsigned long addr;
2006
2007 if (kstrtoul(str, 0, &addr))
2008 return -EINVAL;
2009 object = find_and_get_object(addr, 0);
2010 if (!object) {
2011 pr_info("Unknown object at 0x%08lx\n", addr);
2012 return -EINVAL;
2013 }
2014
2015 raw_spin_lock_irqsave(&object->lock, flags);
2016 dump_object_info(object);
2017 raw_spin_unlock_irqrestore(&object->lock, flags);
2018
2019 put_object(object);
2020 return 0;
2021}
2022
2023/*
2024 * We use grey instead of black to ensure we can do future scans on the same
2025 * objects. If we did not do future scans these black objects could
2026 * potentially contain references to newly allocated objects in the future and
2027 * we'd end up with false positives.
2028 */
2029static void kmemleak_clear(void)
2030{
2031 struct kmemleak_object *object;
2032
2033 rcu_read_lock();
2034 list_for_each_entry_rcu(object, &object_list, object_list) {
2035 raw_spin_lock_irq(&object->lock);
2036 if ((object->flags & OBJECT_REPORTED) &&
2037 unreferenced_object(object))
2038 __paint_it(object, KMEMLEAK_GREY);
2039 raw_spin_unlock_irq(&object->lock);
2040 }
2041 rcu_read_unlock();
2042
2043 kmemleak_found_leaks = false;
2044}
2045
2046static void __kmemleak_do_cleanup(void);
2047
2048/*
2049 * File write operation to configure kmemleak at run-time. The following
2050 * commands can be written to the /sys/kernel/debug/kmemleak file:
2051 * off - disable kmemleak (irreversible)
2052 * stack=on - enable the task stacks scanning
2053 * stack=off - disable the tasks stacks scanning
2054 * scan=on - start the automatic memory scanning thread
2055 * scan=off - stop the automatic memory scanning thread
2056 * scan=... - set the automatic memory scanning period in seconds (0 to
2057 * disable it)
2058 * scan - trigger a memory scan
2059 * clear - mark all current reported unreferenced kmemleak objects as
2060 * grey to ignore printing them, or free all kmemleak objects
2061 * if kmemleak has been disabled.
2062 * dump=... - dump information about the object found at the given address
2063 */
2064static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
2065 size_t size, loff_t *ppos)
2066{
2067 char buf[64];
2068 int buf_size;
2069 int ret;
2070
2071 buf_size = min(size, (sizeof(buf) - 1));
2072 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2073 return -EFAULT;
2074 buf[buf_size] = 0;
2075
2076 ret = mutex_lock_interruptible(&scan_mutex);
2077 if (ret < 0)
2078 return ret;
2079
2080 if (strncmp(buf, "clear", 5) == 0) {
2081 if (kmemleak_enabled)
2082 kmemleak_clear();
2083 else
2084 __kmemleak_do_cleanup();
2085 goto out;
2086 }
2087
2088 if (!kmemleak_enabled) {
2089 ret = -EPERM;
2090 goto out;
2091 }
2092
2093 if (strncmp(buf, "off", 3) == 0)
2094 kmemleak_disable();
2095 else if (strncmp(buf, "stack=on", 8) == 0)
2096 kmemleak_stack_scan = 1;
2097 else if (strncmp(buf, "stack=off", 9) == 0)
2098 kmemleak_stack_scan = 0;
2099 else if (strncmp(buf, "scan=on", 7) == 0)
2100 start_scan_thread();
2101 else if (strncmp(buf, "scan=off", 8) == 0)
2102 stop_scan_thread();
2103 else if (strncmp(buf, "scan=", 5) == 0) {
2104 unsigned secs;
2105 unsigned long msecs;
2106
2107 ret = kstrtouint(buf + 5, 0, &secs);
2108 if (ret < 0)
2109 goto out;
2110
2111 msecs = secs * MSEC_PER_SEC;
2112 if (msecs > UINT_MAX)
2113 msecs = UINT_MAX;
2114
2115 stop_scan_thread();
2116 if (msecs) {
2117 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2118 start_scan_thread();
2119 }
2120 } else if (strncmp(buf, "scan", 4) == 0)
2121 kmemleak_scan();
2122 else if (strncmp(buf, "dump=", 5) == 0)
2123 ret = dump_str_object_info(buf + 5);
2124 else
2125 ret = -EINVAL;
2126
2127out:
2128 mutex_unlock(&scan_mutex);
2129 if (ret < 0)
2130 return ret;
2131
2132 /* ignore the rest of the buffer, only one command at a time */
2133 *ppos += size;
2134 return size;
2135}
2136
2137static const struct file_operations kmemleak_fops = {
2138 .owner = THIS_MODULE,
2139 .open = kmemleak_open,
2140 .read = seq_read,
2141 .write = kmemleak_write,
2142 .llseek = seq_lseek,
2143 .release = seq_release,
2144};
2145
2146static void __kmemleak_do_cleanup(void)
2147{
2148 struct kmemleak_object *object, *tmp;
2149
2150 /*
2151 * Kmemleak has already been disabled, no need for RCU list traversal
2152 * or kmemleak_lock held.
2153 */
2154 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2155 __remove_object(object);
2156 __delete_object(object);
2157 }
2158}
2159
2160/*
2161 * Stop the memory scanning thread and free the kmemleak internal objects if
2162 * no previous scan thread (otherwise, kmemleak may still have some useful
2163 * information on memory leaks).
2164 */
2165static void kmemleak_do_cleanup(struct work_struct *work)
2166{
2167 stop_scan_thread();
2168
2169 mutex_lock(&scan_mutex);
2170 /*
2171 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2172 * longer track object freeing. Ordering of the scan thread stopping and
2173 * the memory accesses below is guaranteed by the kthread_stop()
2174 * function.
2175 */
2176 kmemleak_free_enabled = 0;
2177 mutex_unlock(&scan_mutex);
2178
2179 if (!kmemleak_found_leaks)
2180 __kmemleak_do_cleanup();
2181 else
2182 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2183}
2184
2185static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2186
2187/*
2188 * Disable kmemleak. No memory allocation/freeing will be traced once this
2189 * function is called. Disabling kmemleak is an irreversible operation.
2190 */
2191static void kmemleak_disable(void)
2192{
2193 /* atomically check whether it was already invoked */
2194 if (cmpxchg(&kmemleak_error, 0, 1))
2195 return;
2196
2197 /* stop any memory operation tracing */
2198 kmemleak_enabled = 0;
2199
2200 /* check whether it is too early for a kernel thread */
2201 if (kmemleak_late_initialized)
2202 schedule_work(&cleanup_work);
2203 else
2204 kmemleak_free_enabled = 0;
2205
2206 pr_info("Kernel memory leak detector disabled\n");
2207}
2208
2209/*
2210 * Allow boot-time kmemleak disabling (enabled by default).
2211 */
2212static int __init kmemleak_boot_config(char *str)
2213{
2214 if (!str)
2215 return -EINVAL;
2216 if (strcmp(str, "off") == 0)
2217 kmemleak_disable();
2218 else if (strcmp(str, "on") == 0) {
2219 kmemleak_skip_disable = 1;
2220 stack_depot_request_early_init();
2221 }
2222 else
2223 return -EINVAL;
2224 return 0;
2225}
2226early_param("kmemleak", kmemleak_boot_config);
2227
2228/*
2229 * Kmemleak initialization.
2230 */
2231void __init kmemleak_init(void)
2232{
2233#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2234 if (!kmemleak_skip_disable) {
2235 kmemleak_disable();
2236 return;
2237 }
2238#endif
2239
2240 if (kmemleak_error)
2241 return;
2242
2243 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2244 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2245
2246 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2247 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2248
2249 /* register the data/bss sections */
2250 create_object((unsigned long)_sdata, _edata - _sdata,
2251 KMEMLEAK_GREY, GFP_ATOMIC);
2252 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2253 KMEMLEAK_GREY, GFP_ATOMIC);
2254 /* only register .data..ro_after_init if not within .data */
2255 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2256 create_object((unsigned long)__start_ro_after_init,
2257 __end_ro_after_init - __start_ro_after_init,
2258 KMEMLEAK_GREY, GFP_ATOMIC);
2259}
2260
2261/*
2262 * Late initialization function.
2263 */
2264static int __init kmemleak_late_init(void)
2265{
2266 kmemleak_late_initialized = 1;
2267
2268 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2269
2270 if (kmemleak_error) {
2271 /*
2272 * Some error occurred and kmemleak was disabled. There is a
2273 * small chance that kmemleak_disable() was called immediately
2274 * after setting kmemleak_late_initialized and we may end up with
2275 * two clean-up threads but serialized by scan_mutex.
2276 */
2277 schedule_work(&cleanup_work);
2278 return -ENOMEM;
2279 }
2280
2281 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2282 mutex_lock(&scan_mutex);
2283 start_scan_thread();
2284 mutex_unlock(&scan_mutex);
2285 }
2286
2287 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2288 mem_pool_free_count);
2289
2290 return 0;
2291}
2292late_initcall(kmemleak_late_init);