Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (rwlock): protects the object_list modifications and
17 * accesses to the object_tree_root. The object_list is the main list
18 * holding the metadata (struct kmemleak_object) for the allocated memory
19 * blocks. The object_tree_root is a red black tree used to look-up
20 * metadata based on a pointer to the corresponding memory block. The
21 * kmemleak_object structures are added to the object_list and
22 * object_tree_root in the create_object() function called from the
23 * kmemleak_alloc() callback and removed in delete_object() called from the
24 * kmemleak_free() callback
25 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
26 * the metadata (e.g. count) are protected by this lock. Note that some
27 * members of this structure may be protected by other means (atomic or
28 * kmemleak_lock). This lock is also held when scanning the corresponding
29 * memory block to avoid the kernel freeing it via the kmemleak_free()
30 * callback. This is less heavyweight than holding a global lock like
31 * kmemleak_lock during scanning
32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33 * unreferenced objects at a time. The gray_list contains the objects which
34 * are already referenced or marked as false positives and need to be
35 * scanned. This list is only modified during a scanning episode when the
36 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
37 * Note that the kmemleak_object.use_count is incremented when an object is
38 * added to the gray_list and therefore cannot be freed. This mutex also
39 * prevents multiple users of the "kmemleak" debugfs file together with
40 * modifications to the memory scanning parameters including the scan_thread
41 * pointer
42 *
43 * Locks and mutexes are acquired/nested in the following order:
44 *
45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46 *
47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48 * regions.
49 *
50 * The kmemleak_object structures have a use_count incremented or decremented
51 * using the get_object()/put_object() functions. When the use_count becomes
52 * 0, this count can no longer be incremented and put_object() schedules the
53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54 * function must be protected by rcu_read_lock() to avoid accessing a freed
55 * structure.
56 */
57
58#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59
60#include <linux/init.h>
61#include <linux/kernel.h>
62#include <linux/list.h>
63#include <linux/sched/signal.h>
64#include <linux/sched/task.h>
65#include <linux/sched/task_stack.h>
66#include <linux/jiffies.h>
67#include <linux/delay.h>
68#include <linux/export.h>
69#include <linux/kthread.h>
70#include <linux/rbtree.h>
71#include <linux/fs.h>
72#include <linux/debugfs.h>
73#include <linux/seq_file.h>
74#include <linux/cpumask.h>
75#include <linux/spinlock.h>
76#include <linux/module.h>
77#include <linux/mutex.h>
78#include <linux/rcupdate.h>
79#include <linux/stacktrace.h>
80#include <linux/cache.h>
81#include <linux/percpu.h>
82#include <linux/memblock.h>
83#include <linux/pfn.h>
84#include <linux/mmzone.h>
85#include <linux/slab.h>
86#include <linux/thread_info.h>
87#include <linux/err.h>
88#include <linux/uaccess.h>
89#include <linux/string.h>
90#include <linux/nodemask.h>
91#include <linux/mm.h>
92#include <linux/workqueue.h>
93#include <linux/crc32.h>
94
95#include <asm/sections.h>
96#include <asm/processor.h>
97#include <linux/atomic.h>
98
99#include <linux/kasan.h>
100#include <linux/kmemleak.h>
101#include <linux/memory_hotplug.h>
102
103/*
104 * Kmemleak configuration and common defines.
105 */
106#define MAX_TRACE 16 /* stack trace length */
107#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
108#define SECS_FIRST_SCAN 60 /* delay before the first scan */
109#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
110#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
111
112#define BYTES_PER_POINTER sizeof(void *)
113
114/* GFP bitmask for kmemleak internal allocations */
115#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
116 __GFP_NORETRY | __GFP_NOMEMALLOC | \
117 __GFP_NOWARN)
118
119/* scanning area inside a memory block */
120struct kmemleak_scan_area {
121 struct hlist_node node;
122 unsigned long start;
123 size_t size;
124};
125
126#define KMEMLEAK_GREY 0
127#define KMEMLEAK_BLACK -1
128
129/*
130 * Structure holding the metadata for each allocated memory block.
131 * Modifications to such objects should be made while holding the
132 * object->lock. Insertions or deletions from object_list, gray_list or
133 * rb_node are already protected by the corresponding locks or mutex (see
134 * the notes on locking above). These objects are reference-counted
135 * (use_count) and freed using the RCU mechanism.
136 */
137struct kmemleak_object {
138 spinlock_t lock;
139 unsigned int flags; /* object status flags */
140 struct list_head object_list;
141 struct list_head gray_list;
142 struct rb_node rb_node;
143 struct rcu_head rcu; /* object_list lockless traversal */
144 /* object usage count; object freed when use_count == 0 */
145 atomic_t use_count;
146 unsigned long pointer;
147 size_t size;
148 /* pass surplus references to this pointer */
149 unsigned long excess_ref;
150 /* minimum number of a pointers found before it is considered leak */
151 int min_count;
152 /* the total number of pointers found pointing to this object */
153 int count;
154 /* checksum for detecting modified objects */
155 u32 checksum;
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long trace[MAX_TRACE];
159 unsigned int trace_len;
160 unsigned long jiffies; /* creation timestamp */
161 pid_t pid; /* pid of the current task */
162 char comm[TASK_COMM_LEN]; /* executable name */
163};
164
165/* flag representing the memory block allocation status */
166#define OBJECT_ALLOCATED (1 << 0)
167/* flag set after the first reporting of an unreference object */
168#define OBJECT_REPORTED (1 << 1)
169/* flag set to not scan the object */
170#define OBJECT_NO_SCAN (1 << 2)
171/* flag set to fully scan the object when scan_area allocation failed */
172#define OBJECT_FULL_SCAN (1 << 3)
173
174#define HEX_PREFIX " "
175/* number of bytes to print per line; must be 16 or 32 */
176#define HEX_ROW_SIZE 16
177/* number of bytes to print at a time (1, 2, 4, 8) */
178#define HEX_GROUP_SIZE 1
179/* include ASCII after the hex output */
180#define HEX_ASCII 1
181/* max number of lines to be printed */
182#define HEX_MAX_LINES 2
183
184/* the list of all allocated objects */
185static LIST_HEAD(object_list);
186/* the list of gray-colored objects (see color_gray comment below) */
187static LIST_HEAD(gray_list);
188/* memory pool allocation */
189static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
190static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
191static LIST_HEAD(mem_pool_free_list);
192/* search tree for object boundaries */
193static struct rb_root object_tree_root = RB_ROOT;
194/* rw_lock protecting the access to object_list and object_tree_root */
195static DEFINE_RWLOCK(kmemleak_lock);
196
197/* allocation caches for kmemleak internal data */
198static struct kmem_cache *object_cache;
199static struct kmem_cache *scan_area_cache;
200
201/* set if tracing memory operations is enabled */
202static int kmemleak_enabled = 1;
203/* same as above but only for the kmemleak_free() callback */
204static int kmemleak_free_enabled = 1;
205/* set in the late_initcall if there were no errors */
206static int kmemleak_initialized;
207/* set if a kmemleak warning was issued */
208static int kmemleak_warning;
209/* set if a fatal kmemleak error has occurred */
210static int kmemleak_error;
211
212/* minimum and maximum address that may be valid pointers */
213static unsigned long min_addr = ULONG_MAX;
214static unsigned long max_addr;
215
216static struct task_struct *scan_thread;
217/* used to avoid reporting of recently allocated objects */
218static unsigned long jiffies_min_age;
219static unsigned long jiffies_last_scan;
220/* delay between automatic memory scannings */
221static signed long jiffies_scan_wait;
222/* enables or disables the task stacks scanning */
223static int kmemleak_stack_scan = 1;
224/* protects the memory scanning, parameters and debug/kmemleak file access */
225static DEFINE_MUTEX(scan_mutex);
226/* setting kmemleak=on, will set this var, skipping the disable */
227static int kmemleak_skip_disable;
228/* If there are leaks that can be reported */
229static bool kmemleak_found_leaks;
230
231static bool kmemleak_verbose;
232module_param_named(verbose, kmemleak_verbose, bool, 0600);
233
234static void kmemleak_disable(void);
235
236/*
237 * Print a warning and dump the stack trace.
238 */
239#define kmemleak_warn(x...) do { \
240 pr_warn(x); \
241 dump_stack(); \
242 kmemleak_warning = 1; \
243} while (0)
244
245/*
246 * Macro invoked when a serious kmemleak condition occurred and cannot be
247 * recovered from. Kmemleak will be disabled and further allocation/freeing
248 * tracing no longer available.
249 */
250#define kmemleak_stop(x...) do { \
251 kmemleak_warn(x); \
252 kmemleak_disable(); \
253} while (0)
254
255#define warn_or_seq_printf(seq, fmt, ...) do { \
256 if (seq) \
257 seq_printf(seq, fmt, ##__VA_ARGS__); \
258 else \
259 pr_warn(fmt, ##__VA_ARGS__); \
260} while (0)
261
262static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
263 int rowsize, int groupsize, const void *buf,
264 size_t len, bool ascii)
265{
266 if (seq)
267 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
268 buf, len, ascii);
269 else
270 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
271 rowsize, groupsize, buf, len, ascii);
272}
273
274/*
275 * Printing of the objects hex dump to the seq file. The number of lines to be
276 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
277 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
278 * with the object->lock held.
279 */
280static void hex_dump_object(struct seq_file *seq,
281 struct kmemleak_object *object)
282{
283 const u8 *ptr = (const u8 *)object->pointer;
284 size_t len;
285
286 /* limit the number of lines to HEX_MAX_LINES */
287 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
288
289 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
290 kasan_disable_current();
291 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
292 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
293 kasan_enable_current();
294}
295
296/*
297 * Object colors, encoded with count and min_count:
298 * - white - orphan object, not enough references to it (count < min_count)
299 * - gray - not orphan, not marked as false positive (min_count == 0) or
300 * sufficient references to it (count >= min_count)
301 * - black - ignore, it doesn't contain references (e.g. text section)
302 * (min_count == -1). No function defined for this color.
303 * Newly created objects don't have any color assigned (object->count == -1)
304 * before the next memory scan when they become white.
305 */
306static bool color_white(const struct kmemleak_object *object)
307{
308 return object->count != KMEMLEAK_BLACK &&
309 object->count < object->min_count;
310}
311
312static bool color_gray(const struct kmemleak_object *object)
313{
314 return object->min_count != KMEMLEAK_BLACK &&
315 object->count >= object->min_count;
316}
317
318/*
319 * Objects are considered unreferenced only if their color is white, they have
320 * not be deleted and have a minimum age to avoid false positives caused by
321 * pointers temporarily stored in CPU registers.
322 */
323static bool unreferenced_object(struct kmemleak_object *object)
324{
325 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
326 time_before_eq(object->jiffies + jiffies_min_age,
327 jiffies_last_scan);
328}
329
330/*
331 * Printing of the unreferenced objects information to the seq file. The
332 * print_unreferenced function must be called with the object->lock held.
333 */
334static void print_unreferenced(struct seq_file *seq,
335 struct kmemleak_object *object)
336{
337 int i;
338 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
339
340 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
341 object->pointer, object->size);
342 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
343 object->comm, object->pid, object->jiffies,
344 msecs_age / 1000, msecs_age % 1000);
345 hex_dump_object(seq, object);
346 warn_or_seq_printf(seq, " backtrace:\n");
347
348 for (i = 0; i < object->trace_len; i++) {
349 void *ptr = (void *)object->trace[i];
350 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
351 }
352}
353
354/*
355 * Print the kmemleak_object information. This function is used mainly for
356 * debugging special cases when kmemleak operations. It must be called with
357 * the object->lock held.
358 */
359static void dump_object_info(struct kmemleak_object *object)
360{
361 pr_notice("Object 0x%08lx (size %zu):\n",
362 object->pointer, object->size);
363 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
364 object->comm, object->pid, object->jiffies);
365 pr_notice(" min_count = %d\n", object->min_count);
366 pr_notice(" count = %d\n", object->count);
367 pr_notice(" flags = 0x%x\n", object->flags);
368 pr_notice(" checksum = %u\n", object->checksum);
369 pr_notice(" backtrace:\n");
370 stack_trace_print(object->trace, object->trace_len, 4);
371}
372
373/*
374 * Look-up a memory block metadata (kmemleak_object) in the object search
375 * tree based on a pointer value. If alias is 0, only values pointing to the
376 * beginning of the memory block are allowed. The kmemleak_lock must be held
377 * when calling this function.
378 */
379static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
380{
381 struct rb_node *rb = object_tree_root.rb_node;
382
383 while (rb) {
384 struct kmemleak_object *object =
385 rb_entry(rb, struct kmemleak_object, rb_node);
386 if (ptr < object->pointer)
387 rb = object->rb_node.rb_left;
388 else if (object->pointer + object->size <= ptr)
389 rb = object->rb_node.rb_right;
390 else if (object->pointer == ptr || alias)
391 return object;
392 else {
393 kmemleak_warn("Found object by alias at 0x%08lx\n",
394 ptr);
395 dump_object_info(object);
396 break;
397 }
398 }
399 return NULL;
400}
401
402/*
403 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
404 * that once an object's use_count reached 0, the RCU freeing was already
405 * registered and the object should no longer be used. This function must be
406 * called under the protection of rcu_read_lock().
407 */
408static int get_object(struct kmemleak_object *object)
409{
410 return atomic_inc_not_zero(&object->use_count);
411}
412
413/*
414 * Memory pool allocation and freeing. kmemleak_lock must not be held.
415 */
416static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
417{
418 unsigned long flags;
419 struct kmemleak_object *object;
420
421 /* try the slab allocator first */
422 if (object_cache) {
423 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
424 if (object)
425 return object;
426 }
427
428 /* slab allocation failed, try the memory pool */
429 write_lock_irqsave(&kmemleak_lock, flags);
430 object = list_first_entry_or_null(&mem_pool_free_list,
431 typeof(*object), object_list);
432 if (object)
433 list_del(&object->object_list);
434 else if (mem_pool_free_count)
435 object = &mem_pool[--mem_pool_free_count];
436 else
437 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
438 write_unlock_irqrestore(&kmemleak_lock, flags);
439
440 return object;
441}
442
443/*
444 * Return the object to either the slab allocator or the memory pool.
445 */
446static void mem_pool_free(struct kmemleak_object *object)
447{
448 unsigned long flags;
449
450 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
451 kmem_cache_free(object_cache, object);
452 return;
453 }
454
455 /* add the object to the memory pool free list */
456 write_lock_irqsave(&kmemleak_lock, flags);
457 list_add(&object->object_list, &mem_pool_free_list);
458 write_unlock_irqrestore(&kmemleak_lock, flags);
459}
460
461/*
462 * RCU callback to free a kmemleak_object.
463 */
464static void free_object_rcu(struct rcu_head *rcu)
465{
466 struct hlist_node *tmp;
467 struct kmemleak_scan_area *area;
468 struct kmemleak_object *object =
469 container_of(rcu, struct kmemleak_object, rcu);
470
471 /*
472 * Once use_count is 0 (guaranteed by put_object), there is no other
473 * code accessing this object, hence no need for locking.
474 */
475 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
476 hlist_del(&area->node);
477 kmem_cache_free(scan_area_cache, area);
478 }
479 mem_pool_free(object);
480}
481
482/*
483 * Decrement the object use_count. Once the count is 0, free the object using
484 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
485 * delete_object() path, the delayed RCU freeing ensures that there is no
486 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
487 * is also possible.
488 */
489static void put_object(struct kmemleak_object *object)
490{
491 if (!atomic_dec_and_test(&object->use_count))
492 return;
493
494 /* should only get here after delete_object was called */
495 WARN_ON(object->flags & OBJECT_ALLOCATED);
496
497 /*
498 * It may be too early for the RCU callbacks, however, there is no
499 * concurrent object_list traversal when !object_cache and all objects
500 * came from the memory pool. Free the object directly.
501 */
502 if (object_cache)
503 call_rcu(&object->rcu, free_object_rcu);
504 else
505 free_object_rcu(&object->rcu);
506}
507
508/*
509 * Look up an object in the object search tree and increase its use_count.
510 */
511static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
512{
513 unsigned long flags;
514 struct kmemleak_object *object;
515
516 rcu_read_lock();
517 read_lock_irqsave(&kmemleak_lock, flags);
518 object = lookup_object(ptr, alias);
519 read_unlock_irqrestore(&kmemleak_lock, flags);
520
521 /* check whether the object is still available */
522 if (object && !get_object(object))
523 object = NULL;
524 rcu_read_unlock();
525
526 return object;
527}
528
529/*
530 * Remove an object from the object_tree_root and object_list. Must be called
531 * with the kmemleak_lock held _if_ kmemleak is still enabled.
532 */
533static void __remove_object(struct kmemleak_object *object)
534{
535 rb_erase(&object->rb_node, &object_tree_root);
536 list_del_rcu(&object->object_list);
537}
538
539/*
540 * Look up an object in the object search tree and remove it from both
541 * object_tree_root and object_list. The returned object's use_count should be
542 * at least 1, as initially set by create_object().
543 */
544static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
545{
546 unsigned long flags;
547 struct kmemleak_object *object;
548
549 write_lock_irqsave(&kmemleak_lock, flags);
550 object = lookup_object(ptr, alias);
551 if (object)
552 __remove_object(object);
553 write_unlock_irqrestore(&kmemleak_lock, flags);
554
555 return object;
556}
557
558/*
559 * Save stack trace to the given array of MAX_TRACE size.
560 */
561static int __save_stack_trace(unsigned long *trace)
562{
563 return stack_trace_save(trace, MAX_TRACE, 2);
564}
565
566/*
567 * Create the metadata (struct kmemleak_object) corresponding to an allocated
568 * memory block and add it to the object_list and object_tree_root.
569 */
570static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
571 int min_count, gfp_t gfp)
572{
573 unsigned long flags;
574 struct kmemleak_object *object, *parent;
575 struct rb_node **link, *rb_parent;
576 unsigned long untagged_ptr;
577
578 object = mem_pool_alloc(gfp);
579 if (!object) {
580 pr_warn("Cannot allocate a kmemleak_object structure\n");
581 kmemleak_disable();
582 return NULL;
583 }
584
585 INIT_LIST_HEAD(&object->object_list);
586 INIT_LIST_HEAD(&object->gray_list);
587 INIT_HLIST_HEAD(&object->area_list);
588 spin_lock_init(&object->lock);
589 atomic_set(&object->use_count, 1);
590 object->flags = OBJECT_ALLOCATED;
591 object->pointer = ptr;
592 object->size = size;
593 object->excess_ref = 0;
594 object->min_count = min_count;
595 object->count = 0; /* white color initially */
596 object->jiffies = jiffies;
597 object->checksum = 0;
598
599 /* task information */
600 if (in_irq()) {
601 object->pid = 0;
602 strncpy(object->comm, "hardirq", sizeof(object->comm));
603 } else if (in_serving_softirq()) {
604 object->pid = 0;
605 strncpy(object->comm, "softirq", sizeof(object->comm));
606 } else {
607 object->pid = current->pid;
608 /*
609 * There is a small chance of a race with set_task_comm(),
610 * however using get_task_comm() here may cause locking
611 * dependency issues with current->alloc_lock. In the worst
612 * case, the command line is not correct.
613 */
614 strncpy(object->comm, current->comm, sizeof(object->comm));
615 }
616
617 /* kernel backtrace */
618 object->trace_len = __save_stack_trace(object->trace);
619
620 write_lock_irqsave(&kmemleak_lock, flags);
621
622 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
623 min_addr = min(min_addr, untagged_ptr);
624 max_addr = max(max_addr, untagged_ptr + size);
625 link = &object_tree_root.rb_node;
626 rb_parent = NULL;
627 while (*link) {
628 rb_parent = *link;
629 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
630 if (ptr + size <= parent->pointer)
631 link = &parent->rb_node.rb_left;
632 else if (parent->pointer + parent->size <= ptr)
633 link = &parent->rb_node.rb_right;
634 else {
635 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
636 ptr);
637 /*
638 * No need for parent->lock here since "parent" cannot
639 * be freed while the kmemleak_lock is held.
640 */
641 dump_object_info(parent);
642 kmem_cache_free(object_cache, object);
643 object = NULL;
644 goto out;
645 }
646 }
647 rb_link_node(&object->rb_node, rb_parent, link);
648 rb_insert_color(&object->rb_node, &object_tree_root);
649
650 list_add_tail_rcu(&object->object_list, &object_list);
651out:
652 write_unlock_irqrestore(&kmemleak_lock, flags);
653 return object;
654}
655
656/*
657 * Mark the object as not allocated and schedule RCU freeing via put_object().
658 */
659static void __delete_object(struct kmemleak_object *object)
660{
661 unsigned long flags;
662
663 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
664 WARN_ON(atomic_read(&object->use_count) < 1);
665
666 /*
667 * Locking here also ensures that the corresponding memory block
668 * cannot be freed when it is being scanned.
669 */
670 spin_lock_irqsave(&object->lock, flags);
671 object->flags &= ~OBJECT_ALLOCATED;
672 spin_unlock_irqrestore(&object->lock, flags);
673 put_object(object);
674}
675
676/*
677 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
678 * delete it.
679 */
680static void delete_object_full(unsigned long ptr)
681{
682 struct kmemleak_object *object;
683
684 object = find_and_remove_object(ptr, 0);
685 if (!object) {
686#ifdef DEBUG
687 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
688 ptr);
689#endif
690 return;
691 }
692 __delete_object(object);
693}
694
695/*
696 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
697 * delete it. If the memory block is partially freed, the function may create
698 * additional metadata for the remaining parts of the block.
699 */
700static void delete_object_part(unsigned long ptr, size_t size)
701{
702 struct kmemleak_object *object;
703 unsigned long start, end;
704
705 object = find_and_remove_object(ptr, 1);
706 if (!object) {
707#ifdef DEBUG
708 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
709 ptr, size);
710#endif
711 return;
712 }
713
714 /*
715 * Create one or two objects that may result from the memory block
716 * split. Note that partial freeing is only done by free_bootmem() and
717 * this happens before kmemleak_init() is called.
718 */
719 start = object->pointer;
720 end = object->pointer + object->size;
721 if (ptr > start)
722 create_object(start, ptr - start, object->min_count,
723 GFP_KERNEL);
724 if (ptr + size < end)
725 create_object(ptr + size, end - ptr - size, object->min_count,
726 GFP_KERNEL);
727
728 __delete_object(object);
729}
730
731static void __paint_it(struct kmemleak_object *object, int color)
732{
733 object->min_count = color;
734 if (color == KMEMLEAK_BLACK)
735 object->flags |= OBJECT_NO_SCAN;
736}
737
738static void paint_it(struct kmemleak_object *object, int color)
739{
740 unsigned long flags;
741
742 spin_lock_irqsave(&object->lock, flags);
743 __paint_it(object, color);
744 spin_unlock_irqrestore(&object->lock, flags);
745}
746
747static void paint_ptr(unsigned long ptr, int color)
748{
749 struct kmemleak_object *object;
750
751 object = find_and_get_object(ptr, 0);
752 if (!object) {
753 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
754 ptr,
755 (color == KMEMLEAK_GREY) ? "Grey" :
756 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
757 return;
758 }
759 paint_it(object, color);
760 put_object(object);
761}
762
763/*
764 * Mark an object permanently as gray-colored so that it can no longer be
765 * reported as a leak. This is used in general to mark a false positive.
766 */
767static void make_gray_object(unsigned long ptr)
768{
769 paint_ptr(ptr, KMEMLEAK_GREY);
770}
771
772/*
773 * Mark the object as black-colored so that it is ignored from scans and
774 * reporting.
775 */
776static void make_black_object(unsigned long ptr)
777{
778 paint_ptr(ptr, KMEMLEAK_BLACK);
779}
780
781/*
782 * Add a scanning area to the object. If at least one such area is added,
783 * kmemleak will only scan these ranges rather than the whole memory block.
784 */
785static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
786{
787 unsigned long flags;
788 struct kmemleak_object *object;
789 struct kmemleak_scan_area *area = NULL;
790
791 object = find_and_get_object(ptr, 1);
792 if (!object) {
793 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
794 ptr);
795 return;
796 }
797
798 if (scan_area_cache)
799 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
800
801 spin_lock_irqsave(&object->lock, flags);
802 if (!area) {
803 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
804 /* mark the object for full scan to avoid false positives */
805 object->flags |= OBJECT_FULL_SCAN;
806 goto out_unlock;
807 }
808 if (size == SIZE_MAX) {
809 size = object->pointer + object->size - ptr;
810 } else if (ptr + size > object->pointer + object->size) {
811 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
812 dump_object_info(object);
813 kmem_cache_free(scan_area_cache, area);
814 goto out_unlock;
815 }
816
817 INIT_HLIST_NODE(&area->node);
818 area->start = ptr;
819 area->size = size;
820
821 hlist_add_head(&area->node, &object->area_list);
822out_unlock:
823 spin_unlock_irqrestore(&object->lock, flags);
824 put_object(object);
825}
826
827/*
828 * Any surplus references (object already gray) to 'ptr' are passed to
829 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
830 * vm_struct may be used as an alternative reference to the vmalloc'ed object
831 * (see free_thread_stack()).
832 */
833static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
834{
835 unsigned long flags;
836 struct kmemleak_object *object;
837
838 object = find_and_get_object(ptr, 0);
839 if (!object) {
840 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
841 ptr);
842 return;
843 }
844
845 spin_lock_irqsave(&object->lock, flags);
846 object->excess_ref = excess_ref;
847 spin_unlock_irqrestore(&object->lock, flags);
848 put_object(object);
849}
850
851/*
852 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
853 * pointer. Such object will not be scanned by kmemleak but references to it
854 * are searched.
855 */
856static void object_no_scan(unsigned long ptr)
857{
858 unsigned long flags;
859 struct kmemleak_object *object;
860
861 object = find_and_get_object(ptr, 0);
862 if (!object) {
863 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
864 return;
865 }
866
867 spin_lock_irqsave(&object->lock, flags);
868 object->flags |= OBJECT_NO_SCAN;
869 spin_unlock_irqrestore(&object->lock, flags);
870 put_object(object);
871}
872
873/**
874 * kmemleak_alloc - register a newly allocated object
875 * @ptr: pointer to beginning of the object
876 * @size: size of the object
877 * @min_count: minimum number of references to this object. If during memory
878 * scanning a number of references less than @min_count is found,
879 * the object is reported as a memory leak. If @min_count is 0,
880 * the object is never reported as a leak. If @min_count is -1,
881 * the object is ignored (not scanned and not reported as a leak)
882 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
883 *
884 * This function is called from the kernel allocators when a new object
885 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
886 */
887void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
888 gfp_t gfp)
889{
890 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
891
892 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
893 create_object((unsigned long)ptr, size, min_count, gfp);
894}
895EXPORT_SYMBOL_GPL(kmemleak_alloc);
896
897/**
898 * kmemleak_alloc_percpu - register a newly allocated __percpu object
899 * @ptr: __percpu pointer to beginning of the object
900 * @size: size of the object
901 * @gfp: flags used for kmemleak internal memory allocations
902 *
903 * This function is called from the kernel percpu allocator when a new object
904 * (memory block) is allocated (alloc_percpu).
905 */
906void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
907 gfp_t gfp)
908{
909 unsigned int cpu;
910
911 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
912
913 /*
914 * Percpu allocations are only scanned and not reported as leaks
915 * (min_count is set to 0).
916 */
917 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
918 for_each_possible_cpu(cpu)
919 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
920 size, 0, gfp);
921}
922EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
923
924/**
925 * kmemleak_vmalloc - register a newly vmalloc'ed object
926 * @area: pointer to vm_struct
927 * @size: size of the object
928 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
929 *
930 * This function is called from the vmalloc() kernel allocator when a new
931 * object (memory block) is allocated.
932 */
933void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
934{
935 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
936
937 /*
938 * A min_count = 2 is needed because vm_struct contains a reference to
939 * the virtual address of the vmalloc'ed block.
940 */
941 if (kmemleak_enabled) {
942 create_object((unsigned long)area->addr, size, 2, gfp);
943 object_set_excess_ref((unsigned long)area,
944 (unsigned long)area->addr);
945 }
946}
947EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
948
949/**
950 * kmemleak_free - unregister a previously registered object
951 * @ptr: pointer to beginning of the object
952 *
953 * This function is called from the kernel allocators when an object (memory
954 * block) is freed (kmem_cache_free, kfree, vfree etc.).
955 */
956void __ref kmemleak_free(const void *ptr)
957{
958 pr_debug("%s(0x%p)\n", __func__, ptr);
959
960 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
961 delete_object_full((unsigned long)ptr);
962}
963EXPORT_SYMBOL_GPL(kmemleak_free);
964
965/**
966 * kmemleak_free_part - partially unregister a previously registered object
967 * @ptr: pointer to the beginning or inside the object. This also
968 * represents the start of the range to be freed
969 * @size: size to be unregistered
970 *
971 * This function is called when only a part of a memory block is freed
972 * (usually from the bootmem allocator).
973 */
974void __ref kmemleak_free_part(const void *ptr, size_t size)
975{
976 pr_debug("%s(0x%p)\n", __func__, ptr);
977
978 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
979 delete_object_part((unsigned long)ptr, size);
980}
981EXPORT_SYMBOL_GPL(kmemleak_free_part);
982
983/**
984 * kmemleak_free_percpu - unregister a previously registered __percpu object
985 * @ptr: __percpu pointer to beginning of the object
986 *
987 * This function is called from the kernel percpu allocator when an object
988 * (memory block) is freed (free_percpu).
989 */
990void __ref kmemleak_free_percpu(const void __percpu *ptr)
991{
992 unsigned int cpu;
993
994 pr_debug("%s(0x%p)\n", __func__, ptr);
995
996 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
997 for_each_possible_cpu(cpu)
998 delete_object_full((unsigned long)per_cpu_ptr(ptr,
999 cpu));
1000}
1001EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1002
1003/**
1004 * kmemleak_update_trace - update object allocation stack trace
1005 * @ptr: pointer to beginning of the object
1006 *
1007 * Override the object allocation stack trace for cases where the actual
1008 * allocation place is not always useful.
1009 */
1010void __ref kmemleak_update_trace(const void *ptr)
1011{
1012 struct kmemleak_object *object;
1013 unsigned long flags;
1014
1015 pr_debug("%s(0x%p)\n", __func__, ptr);
1016
1017 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1018 return;
1019
1020 object = find_and_get_object((unsigned long)ptr, 1);
1021 if (!object) {
1022#ifdef DEBUG
1023 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1024 ptr);
1025#endif
1026 return;
1027 }
1028
1029 spin_lock_irqsave(&object->lock, flags);
1030 object->trace_len = __save_stack_trace(object->trace);
1031 spin_unlock_irqrestore(&object->lock, flags);
1032
1033 put_object(object);
1034}
1035EXPORT_SYMBOL(kmemleak_update_trace);
1036
1037/**
1038 * kmemleak_not_leak - mark an allocated object as false positive
1039 * @ptr: pointer to beginning of the object
1040 *
1041 * Calling this function on an object will cause the memory block to no longer
1042 * be reported as leak and always be scanned.
1043 */
1044void __ref kmemleak_not_leak(const void *ptr)
1045{
1046 pr_debug("%s(0x%p)\n", __func__, ptr);
1047
1048 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1049 make_gray_object((unsigned long)ptr);
1050}
1051EXPORT_SYMBOL(kmemleak_not_leak);
1052
1053/**
1054 * kmemleak_ignore - ignore an allocated object
1055 * @ptr: pointer to beginning of the object
1056 *
1057 * Calling this function on an object will cause the memory block to be
1058 * ignored (not scanned and not reported as a leak). This is usually done when
1059 * it is known that the corresponding block is not a leak and does not contain
1060 * any references to other allocated memory blocks.
1061 */
1062void __ref kmemleak_ignore(const void *ptr)
1063{
1064 pr_debug("%s(0x%p)\n", __func__, ptr);
1065
1066 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1067 make_black_object((unsigned long)ptr);
1068}
1069EXPORT_SYMBOL(kmemleak_ignore);
1070
1071/**
1072 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1073 * @ptr: pointer to beginning or inside the object. This also
1074 * represents the start of the scan area
1075 * @size: size of the scan area
1076 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1077 *
1078 * This function is used when it is known that only certain parts of an object
1079 * contain references to other objects. Kmemleak will only scan these areas
1080 * reducing the number false negatives.
1081 */
1082void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1083{
1084 pr_debug("%s(0x%p)\n", __func__, ptr);
1085
1086 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1087 add_scan_area((unsigned long)ptr, size, gfp);
1088}
1089EXPORT_SYMBOL(kmemleak_scan_area);
1090
1091/**
1092 * kmemleak_no_scan - do not scan an allocated object
1093 * @ptr: pointer to beginning of the object
1094 *
1095 * This function notifies kmemleak not to scan the given memory block. Useful
1096 * in situations where it is known that the given object does not contain any
1097 * references to other objects. Kmemleak will not scan such objects reducing
1098 * the number of false negatives.
1099 */
1100void __ref kmemleak_no_scan(const void *ptr)
1101{
1102 pr_debug("%s(0x%p)\n", __func__, ptr);
1103
1104 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1105 object_no_scan((unsigned long)ptr);
1106}
1107EXPORT_SYMBOL(kmemleak_no_scan);
1108
1109/**
1110 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1111 * address argument
1112 * @phys: physical address of the object
1113 * @size: size of the object
1114 * @min_count: minimum number of references to this object.
1115 * See kmemleak_alloc()
1116 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1117 */
1118void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1119 gfp_t gfp)
1120{
1121 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1122 kmemleak_alloc(__va(phys), size, min_count, gfp);
1123}
1124EXPORT_SYMBOL(kmemleak_alloc_phys);
1125
1126/**
1127 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1128 * physical address argument
1129 * @phys: physical address if the beginning or inside an object. This
1130 * also represents the start of the range to be freed
1131 * @size: size to be unregistered
1132 */
1133void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1134{
1135 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1136 kmemleak_free_part(__va(phys), size);
1137}
1138EXPORT_SYMBOL(kmemleak_free_part_phys);
1139
1140/**
1141 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1142 * address argument
1143 * @phys: physical address of the object
1144 */
1145void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1146{
1147 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1148 kmemleak_not_leak(__va(phys));
1149}
1150EXPORT_SYMBOL(kmemleak_not_leak_phys);
1151
1152/**
1153 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1154 * address argument
1155 * @phys: physical address of the object
1156 */
1157void __ref kmemleak_ignore_phys(phys_addr_t phys)
1158{
1159 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1160 kmemleak_ignore(__va(phys));
1161}
1162EXPORT_SYMBOL(kmemleak_ignore_phys);
1163
1164/*
1165 * Update an object's checksum and return true if it was modified.
1166 */
1167static bool update_checksum(struct kmemleak_object *object)
1168{
1169 u32 old_csum = object->checksum;
1170
1171 kasan_disable_current();
1172 object->checksum = crc32(0, (void *)object->pointer, object->size);
1173 kasan_enable_current();
1174
1175 return object->checksum != old_csum;
1176}
1177
1178/*
1179 * Update an object's references. object->lock must be held by the caller.
1180 */
1181static void update_refs(struct kmemleak_object *object)
1182{
1183 if (!color_white(object)) {
1184 /* non-orphan, ignored or new */
1185 return;
1186 }
1187
1188 /*
1189 * Increase the object's reference count (number of pointers to the
1190 * memory block). If this count reaches the required minimum, the
1191 * object's color will become gray and it will be added to the
1192 * gray_list.
1193 */
1194 object->count++;
1195 if (color_gray(object)) {
1196 /* put_object() called when removing from gray_list */
1197 WARN_ON(!get_object(object));
1198 list_add_tail(&object->gray_list, &gray_list);
1199 }
1200}
1201
1202/*
1203 * Memory scanning is a long process and it needs to be interruptable. This
1204 * function checks whether such interrupt condition occurred.
1205 */
1206static int scan_should_stop(void)
1207{
1208 if (!kmemleak_enabled)
1209 return 1;
1210
1211 /*
1212 * This function may be called from either process or kthread context,
1213 * hence the need to check for both stop conditions.
1214 */
1215 if (current->mm)
1216 return signal_pending(current);
1217 else
1218 return kthread_should_stop();
1219
1220 return 0;
1221}
1222
1223/*
1224 * Scan a memory block (exclusive range) for valid pointers and add those
1225 * found to the gray list.
1226 */
1227static void scan_block(void *_start, void *_end,
1228 struct kmemleak_object *scanned)
1229{
1230 unsigned long *ptr;
1231 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1232 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1233 unsigned long flags;
1234 unsigned long untagged_ptr;
1235
1236 read_lock_irqsave(&kmemleak_lock, flags);
1237 for (ptr = start; ptr < end; ptr++) {
1238 struct kmemleak_object *object;
1239 unsigned long pointer;
1240 unsigned long excess_ref;
1241
1242 if (scan_should_stop())
1243 break;
1244
1245 kasan_disable_current();
1246 pointer = *ptr;
1247 kasan_enable_current();
1248
1249 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1250 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1251 continue;
1252
1253 /*
1254 * No need for get_object() here since we hold kmemleak_lock.
1255 * object->use_count cannot be dropped to 0 while the object
1256 * is still present in object_tree_root and object_list
1257 * (with updates protected by kmemleak_lock).
1258 */
1259 object = lookup_object(pointer, 1);
1260 if (!object)
1261 continue;
1262 if (object == scanned)
1263 /* self referenced, ignore */
1264 continue;
1265
1266 /*
1267 * Avoid the lockdep recursive warning on object->lock being
1268 * previously acquired in scan_object(). These locks are
1269 * enclosed by scan_mutex.
1270 */
1271 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1272 /* only pass surplus references (object already gray) */
1273 if (color_gray(object)) {
1274 excess_ref = object->excess_ref;
1275 /* no need for update_refs() if object already gray */
1276 } else {
1277 excess_ref = 0;
1278 update_refs(object);
1279 }
1280 spin_unlock(&object->lock);
1281
1282 if (excess_ref) {
1283 object = lookup_object(excess_ref, 0);
1284 if (!object)
1285 continue;
1286 if (object == scanned)
1287 /* circular reference, ignore */
1288 continue;
1289 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1290 update_refs(object);
1291 spin_unlock(&object->lock);
1292 }
1293 }
1294 read_unlock_irqrestore(&kmemleak_lock, flags);
1295}
1296
1297/*
1298 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1299 */
1300#ifdef CONFIG_SMP
1301static void scan_large_block(void *start, void *end)
1302{
1303 void *next;
1304
1305 while (start < end) {
1306 next = min(start + MAX_SCAN_SIZE, end);
1307 scan_block(start, next, NULL);
1308 start = next;
1309 cond_resched();
1310 }
1311}
1312#endif
1313
1314/*
1315 * Scan a memory block corresponding to a kmemleak_object. A condition is
1316 * that object->use_count >= 1.
1317 */
1318static void scan_object(struct kmemleak_object *object)
1319{
1320 struct kmemleak_scan_area *area;
1321 unsigned long flags;
1322
1323 /*
1324 * Once the object->lock is acquired, the corresponding memory block
1325 * cannot be freed (the same lock is acquired in delete_object).
1326 */
1327 spin_lock_irqsave(&object->lock, flags);
1328 if (object->flags & OBJECT_NO_SCAN)
1329 goto out;
1330 if (!(object->flags & OBJECT_ALLOCATED))
1331 /* already freed object */
1332 goto out;
1333 if (hlist_empty(&object->area_list) ||
1334 object->flags & OBJECT_FULL_SCAN) {
1335 void *start = (void *)object->pointer;
1336 void *end = (void *)(object->pointer + object->size);
1337 void *next;
1338
1339 do {
1340 next = min(start + MAX_SCAN_SIZE, end);
1341 scan_block(start, next, object);
1342
1343 start = next;
1344 if (start >= end)
1345 break;
1346
1347 spin_unlock_irqrestore(&object->lock, flags);
1348 cond_resched();
1349 spin_lock_irqsave(&object->lock, flags);
1350 } while (object->flags & OBJECT_ALLOCATED);
1351 } else
1352 hlist_for_each_entry(area, &object->area_list, node)
1353 scan_block((void *)area->start,
1354 (void *)(area->start + area->size),
1355 object);
1356out:
1357 spin_unlock_irqrestore(&object->lock, flags);
1358}
1359
1360/*
1361 * Scan the objects already referenced (gray objects). More objects will be
1362 * referenced and, if there are no memory leaks, all the objects are scanned.
1363 */
1364static void scan_gray_list(void)
1365{
1366 struct kmemleak_object *object, *tmp;
1367
1368 /*
1369 * The list traversal is safe for both tail additions and removals
1370 * from inside the loop. The kmemleak objects cannot be freed from
1371 * outside the loop because their use_count was incremented.
1372 */
1373 object = list_entry(gray_list.next, typeof(*object), gray_list);
1374 while (&object->gray_list != &gray_list) {
1375 cond_resched();
1376
1377 /* may add new objects to the list */
1378 if (!scan_should_stop())
1379 scan_object(object);
1380
1381 tmp = list_entry(object->gray_list.next, typeof(*object),
1382 gray_list);
1383
1384 /* remove the object from the list and release it */
1385 list_del(&object->gray_list);
1386 put_object(object);
1387
1388 object = tmp;
1389 }
1390 WARN_ON(!list_empty(&gray_list));
1391}
1392
1393/*
1394 * Scan data sections and all the referenced memory blocks allocated via the
1395 * kernel's standard allocators. This function must be called with the
1396 * scan_mutex held.
1397 */
1398static void kmemleak_scan(void)
1399{
1400 unsigned long flags;
1401 struct kmemleak_object *object;
1402 int i;
1403 int new_leaks = 0;
1404
1405 jiffies_last_scan = jiffies;
1406
1407 /* prepare the kmemleak_object's */
1408 rcu_read_lock();
1409 list_for_each_entry_rcu(object, &object_list, object_list) {
1410 spin_lock_irqsave(&object->lock, flags);
1411#ifdef DEBUG
1412 /*
1413 * With a few exceptions there should be a maximum of
1414 * 1 reference to any object at this point.
1415 */
1416 if (atomic_read(&object->use_count) > 1) {
1417 pr_debug("object->use_count = %d\n",
1418 atomic_read(&object->use_count));
1419 dump_object_info(object);
1420 }
1421#endif
1422 /* reset the reference count (whiten the object) */
1423 object->count = 0;
1424 if (color_gray(object) && get_object(object))
1425 list_add_tail(&object->gray_list, &gray_list);
1426
1427 spin_unlock_irqrestore(&object->lock, flags);
1428 }
1429 rcu_read_unlock();
1430
1431#ifdef CONFIG_SMP
1432 /* per-cpu sections scanning */
1433 for_each_possible_cpu(i)
1434 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1435 __per_cpu_end + per_cpu_offset(i));
1436#endif
1437
1438 /*
1439 * Struct page scanning for each node.
1440 */
1441 get_online_mems();
1442 for_each_online_node(i) {
1443 unsigned long start_pfn = node_start_pfn(i);
1444 unsigned long end_pfn = node_end_pfn(i);
1445 unsigned long pfn;
1446
1447 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1448 struct page *page = pfn_to_online_page(pfn);
1449
1450 if (!page)
1451 continue;
1452
1453 /* only scan pages belonging to this node */
1454 if (page_to_nid(page) != i)
1455 continue;
1456 /* only scan if page is in use */
1457 if (page_count(page) == 0)
1458 continue;
1459 scan_block(page, page + 1, NULL);
1460 if (!(pfn & 63))
1461 cond_resched();
1462 }
1463 }
1464 put_online_mems();
1465
1466 /*
1467 * Scanning the task stacks (may introduce false negatives).
1468 */
1469 if (kmemleak_stack_scan) {
1470 struct task_struct *p, *g;
1471
1472 read_lock(&tasklist_lock);
1473 do_each_thread(g, p) {
1474 void *stack = try_get_task_stack(p);
1475 if (stack) {
1476 scan_block(stack, stack + THREAD_SIZE, NULL);
1477 put_task_stack(p);
1478 }
1479 } while_each_thread(g, p);
1480 read_unlock(&tasklist_lock);
1481 }
1482
1483 /*
1484 * Scan the objects already referenced from the sections scanned
1485 * above.
1486 */
1487 scan_gray_list();
1488
1489 /*
1490 * Check for new or unreferenced objects modified since the previous
1491 * scan and color them gray until the next scan.
1492 */
1493 rcu_read_lock();
1494 list_for_each_entry_rcu(object, &object_list, object_list) {
1495 spin_lock_irqsave(&object->lock, flags);
1496 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1497 && update_checksum(object) && get_object(object)) {
1498 /* color it gray temporarily */
1499 object->count = object->min_count;
1500 list_add_tail(&object->gray_list, &gray_list);
1501 }
1502 spin_unlock_irqrestore(&object->lock, flags);
1503 }
1504 rcu_read_unlock();
1505
1506 /*
1507 * Re-scan the gray list for modified unreferenced objects.
1508 */
1509 scan_gray_list();
1510
1511 /*
1512 * If scanning was stopped do not report any new unreferenced objects.
1513 */
1514 if (scan_should_stop())
1515 return;
1516
1517 /*
1518 * Scanning result reporting.
1519 */
1520 rcu_read_lock();
1521 list_for_each_entry_rcu(object, &object_list, object_list) {
1522 spin_lock_irqsave(&object->lock, flags);
1523 if (unreferenced_object(object) &&
1524 !(object->flags & OBJECT_REPORTED)) {
1525 object->flags |= OBJECT_REPORTED;
1526
1527 if (kmemleak_verbose)
1528 print_unreferenced(NULL, object);
1529
1530 new_leaks++;
1531 }
1532 spin_unlock_irqrestore(&object->lock, flags);
1533 }
1534 rcu_read_unlock();
1535
1536 if (new_leaks) {
1537 kmemleak_found_leaks = true;
1538
1539 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1540 new_leaks);
1541 }
1542
1543}
1544
1545/*
1546 * Thread function performing automatic memory scanning. Unreferenced objects
1547 * at the end of a memory scan are reported but only the first time.
1548 */
1549static int kmemleak_scan_thread(void *arg)
1550{
1551 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1552
1553 pr_info("Automatic memory scanning thread started\n");
1554 set_user_nice(current, 10);
1555
1556 /*
1557 * Wait before the first scan to allow the system to fully initialize.
1558 */
1559 if (first_run) {
1560 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1561 first_run = 0;
1562 while (timeout && !kthread_should_stop())
1563 timeout = schedule_timeout_interruptible(timeout);
1564 }
1565
1566 while (!kthread_should_stop()) {
1567 signed long timeout = jiffies_scan_wait;
1568
1569 mutex_lock(&scan_mutex);
1570 kmemleak_scan();
1571 mutex_unlock(&scan_mutex);
1572
1573 /* wait before the next scan */
1574 while (timeout && !kthread_should_stop())
1575 timeout = schedule_timeout_interruptible(timeout);
1576 }
1577
1578 pr_info("Automatic memory scanning thread ended\n");
1579
1580 return 0;
1581}
1582
1583/*
1584 * Start the automatic memory scanning thread. This function must be called
1585 * with the scan_mutex held.
1586 */
1587static void start_scan_thread(void)
1588{
1589 if (scan_thread)
1590 return;
1591 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1592 if (IS_ERR(scan_thread)) {
1593 pr_warn("Failed to create the scan thread\n");
1594 scan_thread = NULL;
1595 }
1596}
1597
1598/*
1599 * Stop the automatic memory scanning thread.
1600 */
1601static void stop_scan_thread(void)
1602{
1603 if (scan_thread) {
1604 kthread_stop(scan_thread);
1605 scan_thread = NULL;
1606 }
1607}
1608
1609/*
1610 * Iterate over the object_list and return the first valid object at or after
1611 * the required position with its use_count incremented. The function triggers
1612 * a memory scanning when the pos argument points to the first position.
1613 */
1614static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1615{
1616 struct kmemleak_object *object;
1617 loff_t n = *pos;
1618 int err;
1619
1620 err = mutex_lock_interruptible(&scan_mutex);
1621 if (err < 0)
1622 return ERR_PTR(err);
1623
1624 rcu_read_lock();
1625 list_for_each_entry_rcu(object, &object_list, object_list) {
1626 if (n-- > 0)
1627 continue;
1628 if (get_object(object))
1629 goto out;
1630 }
1631 object = NULL;
1632out:
1633 return object;
1634}
1635
1636/*
1637 * Return the next object in the object_list. The function decrements the
1638 * use_count of the previous object and increases that of the next one.
1639 */
1640static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1641{
1642 struct kmemleak_object *prev_obj = v;
1643 struct kmemleak_object *next_obj = NULL;
1644 struct kmemleak_object *obj = prev_obj;
1645
1646 ++(*pos);
1647
1648 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1649 if (get_object(obj)) {
1650 next_obj = obj;
1651 break;
1652 }
1653 }
1654
1655 put_object(prev_obj);
1656 return next_obj;
1657}
1658
1659/*
1660 * Decrement the use_count of the last object required, if any.
1661 */
1662static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1663{
1664 if (!IS_ERR(v)) {
1665 /*
1666 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1667 * waiting was interrupted, so only release it if !IS_ERR.
1668 */
1669 rcu_read_unlock();
1670 mutex_unlock(&scan_mutex);
1671 if (v)
1672 put_object(v);
1673 }
1674}
1675
1676/*
1677 * Print the information for an unreferenced object to the seq file.
1678 */
1679static int kmemleak_seq_show(struct seq_file *seq, void *v)
1680{
1681 struct kmemleak_object *object = v;
1682 unsigned long flags;
1683
1684 spin_lock_irqsave(&object->lock, flags);
1685 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1686 print_unreferenced(seq, object);
1687 spin_unlock_irqrestore(&object->lock, flags);
1688 return 0;
1689}
1690
1691static const struct seq_operations kmemleak_seq_ops = {
1692 .start = kmemleak_seq_start,
1693 .next = kmemleak_seq_next,
1694 .stop = kmemleak_seq_stop,
1695 .show = kmemleak_seq_show,
1696};
1697
1698static int kmemleak_open(struct inode *inode, struct file *file)
1699{
1700 return seq_open(file, &kmemleak_seq_ops);
1701}
1702
1703static int dump_str_object_info(const char *str)
1704{
1705 unsigned long flags;
1706 struct kmemleak_object *object;
1707 unsigned long addr;
1708
1709 if (kstrtoul(str, 0, &addr))
1710 return -EINVAL;
1711 object = find_and_get_object(addr, 0);
1712 if (!object) {
1713 pr_info("Unknown object at 0x%08lx\n", addr);
1714 return -EINVAL;
1715 }
1716
1717 spin_lock_irqsave(&object->lock, flags);
1718 dump_object_info(object);
1719 spin_unlock_irqrestore(&object->lock, flags);
1720
1721 put_object(object);
1722 return 0;
1723}
1724
1725/*
1726 * We use grey instead of black to ensure we can do future scans on the same
1727 * objects. If we did not do future scans these black objects could
1728 * potentially contain references to newly allocated objects in the future and
1729 * we'd end up with false positives.
1730 */
1731static void kmemleak_clear(void)
1732{
1733 struct kmemleak_object *object;
1734 unsigned long flags;
1735
1736 rcu_read_lock();
1737 list_for_each_entry_rcu(object, &object_list, object_list) {
1738 spin_lock_irqsave(&object->lock, flags);
1739 if ((object->flags & OBJECT_REPORTED) &&
1740 unreferenced_object(object))
1741 __paint_it(object, KMEMLEAK_GREY);
1742 spin_unlock_irqrestore(&object->lock, flags);
1743 }
1744 rcu_read_unlock();
1745
1746 kmemleak_found_leaks = false;
1747}
1748
1749static void __kmemleak_do_cleanup(void);
1750
1751/*
1752 * File write operation to configure kmemleak at run-time. The following
1753 * commands can be written to the /sys/kernel/debug/kmemleak file:
1754 * off - disable kmemleak (irreversible)
1755 * stack=on - enable the task stacks scanning
1756 * stack=off - disable the tasks stacks scanning
1757 * scan=on - start the automatic memory scanning thread
1758 * scan=off - stop the automatic memory scanning thread
1759 * scan=... - set the automatic memory scanning period in seconds (0 to
1760 * disable it)
1761 * scan - trigger a memory scan
1762 * clear - mark all current reported unreferenced kmemleak objects as
1763 * grey to ignore printing them, or free all kmemleak objects
1764 * if kmemleak has been disabled.
1765 * dump=... - dump information about the object found at the given address
1766 */
1767static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1768 size_t size, loff_t *ppos)
1769{
1770 char buf[64];
1771 int buf_size;
1772 int ret;
1773
1774 buf_size = min(size, (sizeof(buf) - 1));
1775 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1776 return -EFAULT;
1777 buf[buf_size] = 0;
1778
1779 ret = mutex_lock_interruptible(&scan_mutex);
1780 if (ret < 0)
1781 return ret;
1782
1783 if (strncmp(buf, "clear", 5) == 0) {
1784 if (kmemleak_enabled)
1785 kmemleak_clear();
1786 else
1787 __kmemleak_do_cleanup();
1788 goto out;
1789 }
1790
1791 if (!kmemleak_enabled) {
1792 ret = -EPERM;
1793 goto out;
1794 }
1795
1796 if (strncmp(buf, "off", 3) == 0)
1797 kmemleak_disable();
1798 else if (strncmp(buf, "stack=on", 8) == 0)
1799 kmemleak_stack_scan = 1;
1800 else if (strncmp(buf, "stack=off", 9) == 0)
1801 kmemleak_stack_scan = 0;
1802 else if (strncmp(buf, "scan=on", 7) == 0)
1803 start_scan_thread();
1804 else if (strncmp(buf, "scan=off", 8) == 0)
1805 stop_scan_thread();
1806 else if (strncmp(buf, "scan=", 5) == 0) {
1807 unsigned long secs;
1808
1809 ret = kstrtoul(buf + 5, 0, &secs);
1810 if (ret < 0)
1811 goto out;
1812 stop_scan_thread();
1813 if (secs) {
1814 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1815 start_scan_thread();
1816 }
1817 } else if (strncmp(buf, "scan", 4) == 0)
1818 kmemleak_scan();
1819 else if (strncmp(buf, "dump=", 5) == 0)
1820 ret = dump_str_object_info(buf + 5);
1821 else
1822 ret = -EINVAL;
1823
1824out:
1825 mutex_unlock(&scan_mutex);
1826 if (ret < 0)
1827 return ret;
1828
1829 /* ignore the rest of the buffer, only one command at a time */
1830 *ppos += size;
1831 return size;
1832}
1833
1834static const struct file_operations kmemleak_fops = {
1835 .owner = THIS_MODULE,
1836 .open = kmemleak_open,
1837 .read = seq_read,
1838 .write = kmemleak_write,
1839 .llseek = seq_lseek,
1840 .release = seq_release,
1841};
1842
1843static void __kmemleak_do_cleanup(void)
1844{
1845 struct kmemleak_object *object, *tmp;
1846
1847 /*
1848 * Kmemleak has already been disabled, no need for RCU list traversal
1849 * or kmemleak_lock held.
1850 */
1851 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1852 __remove_object(object);
1853 __delete_object(object);
1854 }
1855}
1856
1857/*
1858 * Stop the memory scanning thread and free the kmemleak internal objects if
1859 * no previous scan thread (otherwise, kmemleak may still have some useful
1860 * information on memory leaks).
1861 */
1862static void kmemleak_do_cleanup(struct work_struct *work)
1863{
1864 stop_scan_thread();
1865
1866 mutex_lock(&scan_mutex);
1867 /*
1868 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1869 * longer track object freeing. Ordering of the scan thread stopping and
1870 * the memory accesses below is guaranteed by the kthread_stop()
1871 * function.
1872 */
1873 kmemleak_free_enabled = 0;
1874 mutex_unlock(&scan_mutex);
1875
1876 if (!kmemleak_found_leaks)
1877 __kmemleak_do_cleanup();
1878 else
1879 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1880}
1881
1882static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1883
1884/*
1885 * Disable kmemleak. No memory allocation/freeing will be traced once this
1886 * function is called. Disabling kmemleak is an irreversible operation.
1887 */
1888static void kmemleak_disable(void)
1889{
1890 /* atomically check whether it was already invoked */
1891 if (cmpxchg(&kmemleak_error, 0, 1))
1892 return;
1893
1894 /* stop any memory operation tracing */
1895 kmemleak_enabled = 0;
1896
1897 /* check whether it is too early for a kernel thread */
1898 if (kmemleak_initialized)
1899 schedule_work(&cleanup_work);
1900 else
1901 kmemleak_free_enabled = 0;
1902
1903 pr_info("Kernel memory leak detector disabled\n");
1904}
1905
1906/*
1907 * Allow boot-time kmemleak disabling (enabled by default).
1908 */
1909static int __init kmemleak_boot_config(char *str)
1910{
1911 if (!str)
1912 return -EINVAL;
1913 if (strcmp(str, "off") == 0)
1914 kmemleak_disable();
1915 else if (strcmp(str, "on") == 0)
1916 kmemleak_skip_disable = 1;
1917 else
1918 return -EINVAL;
1919 return 0;
1920}
1921early_param("kmemleak", kmemleak_boot_config);
1922
1923/*
1924 * Kmemleak initialization.
1925 */
1926void __init kmemleak_init(void)
1927{
1928#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1929 if (!kmemleak_skip_disable) {
1930 kmemleak_disable();
1931 return;
1932 }
1933#endif
1934
1935 if (kmemleak_error)
1936 return;
1937
1938 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1939 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1940
1941 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1942 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1943
1944 /* register the data/bss sections */
1945 create_object((unsigned long)_sdata, _edata - _sdata,
1946 KMEMLEAK_GREY, GFP_ATOMIC);
1947 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1948 KMEMLEAK_GREY, GFP_ATOMIC);
1949 /* only register .data..ro_after_init if not within .data */
1950 if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
1951 create_object((unsigned long)__start_ro_after_init,
1952 __end_ro_after_init - __start_ro_after_init,
1953 KMEMLEAK_GREY, GFP_ATOMIC);
1954}
1955
1956/*
1957 * Late initialization function.
1958 */
1959static int __init kmemleak_late_init(void)
1960{
1961 kmemleak_initialized = 1;
1962
1963 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1964
1965 if (kmemleak_error) {
1966 /*
1967 * Some error occurred and kmemleak was disabled. There is a
1968 * small chance that kmemleak_disable() was called immediately
1969 * after setting kmemleak_initialized and we may end up with
1970 * two clean-up threads but serialized by scan_mutex.
1971 */
1972 schedule_work(&cleanup_work);
1973 return -ENOMEM;
1974 }
1975
1976 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1977 mutex_lock(&scan_mutex);
1978 start_scan_thread();
1979 mutex_unlock(&scan_mutex);
1980 }
1981
1982 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1983 mem_pool_free_count);
1984
1985 return 0;
1986}
1987late_initcall(kmemleak_late_init);
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/dev-tools/kmemleak.rst.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * Locks and mutexes are acquired/nested in the following order:
57 *
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59 *
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
62 *
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
69 */
70
71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73#include <linux/init.h>
74#include <linux/kernel.h>
75#include <linux/list.h>
76#include <linux/sched.h>
77#include <linux/jiffies.h>
78#include <linux/delay.h>
79#include <linux/export.h>
80#include <linux/kthread.h>
81#include <linux/rbtree.h>
82#include <linux/fs.h>
83#include <linux/debugfs.h>
84#include <linux/seq_file.h>
85#include <linux/cpumask.h>
86#include <linux/spinlock.h>
87#include <linux/mutex.h>
88#include <linux/rcupdate.h>
89#include <linux/stacktrace.h>
90#include <linux/cache.h>
91#include <linux/percpu.h>
92#include <linux/hardirq.h>
93#include <linux/bootmem.h>
94#include <linux/pfn.h>
95#include <linux/mmzone.h>
96#include <linux/slab.h>
97#include <linux/thread_info.h>
98#include <linux/err.h>
99#include <linux/uaccess.h>
100#include <linux/string.h>
101#include <linux/nodemask.h>
102#include <linux/mm.h>
103#include <linux/workqueue.h>
104#include <linux/crc32.h>
105
106#include <asm/sections.h>
107#include <asm/processor.h>
108#include <linux/atomic.h>
109
110#include <linux/kasan.h>
111#include <linux/kmemcheck.h>
112#include <linux/kmemleak.h>
113#include <linux/memory_hotplug.h>
114
115/*
116 * Kmemleak configuration and common defines.
117 */
118#define MAX_TRACE 16 /* stack trace length */
119#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
120#define SECS_FIRST_SCAN 60 /* delay before the first scan */
121#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
122#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
123
124#define BYTES_PER_POINTER sizeof(void *)
125
126/* GFP bitmask for kmemleak internal allocations */
127#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
128 __GFP_NORETRY | __GFP_NOMEMALLOC | \
129 __GFP_NOWARN)
130
131/* scanning area inside a memory block */
132struct kmemleak_scan_area {
133 struct hlist_node node;
134 unsigned long start;
135 size_t size;
136};
137
138#define KMEMLEAK_GREY 0
139#define KMEMLEAK_BLACK -1
140
141/*
142 * Structure holding the metadata for each allocated memory block.
143 * Modifications to such objects should be made while holding the
144 * object->lock. Insertions or deletions from object_list, gray_list or
145 * rb_node are already protected by the corresponding locks or mutex (see
146 * the notes on locking above). These objects are reference-counted
147 * (use_count) and freed using the RCU mechanism.
148 */
149struct kmemleak_object {
150 spinlock_t lock;
151 unsigned long flags; /* object status flags */
152 struct list_head object_list;
153 struct list_head gray_list;
154 struct rb_node rb_node;
155 struct rcu_head rcu; /* object_list lockless traversal */
156 /* object usage count; object freed when use_count == 0 */
157 atomic_t use_count;
158 unsigned long pointer;
159 size_t size;
160 /* minimum number of a pointers found before it is considered leak */
161 int min_count;
162 /* the total number of pointers found pointing to this object */
163 int count;
164 /* checksum for detecting modified objects */
165 u32 checksum;
166 /* memory ranges to be scanned inside an object (empty for all) */
167 struct hlist_head area_list;
168 unsigned long trace[MAX_TRACE];
169 unsigned int trace_len;
170 unsigned long jiffies; /* creation timestamp */
171 pid_t pid; /* pid of the current task */
172 char comm[TASK_COMM_LEN]; /* executable name */
173};
174
175/* flag representing the memory block allocation status */
176#define OBJECT_ALLOCATED (1 << 0)
177/* flag set after the first reporting of an unreference object */
178#define OBJECT_REPORTED (1 << 1)
179/* flag set to not scan the object */
180#define OBJECT_NO_SCAN (1 << 2)
181
182/* number of bytes to print per line; must be 16 or 32 */
183#define HEX_ROW_SIZE 16
184/* number of bytes to print at a time (1, 2, 4, 8) */
185#define HEX_GROUP_SIZE 1
186/* include ASCII after the hex output */
187#define HEX_ASCII 1
188/* max number of lines to be printed */
189#define HEX_MAX_LINES 2
190
191/* the list of all allocated objects */
192static LIST_HEAD(object_list);
193/* the list of gray-colored objects (see color_gray comment below) */
194static LIST_HEAD(gray_list);
195/* search tree for object boundaries */
196static struct rb_root object_tree_root = RB_ROOT;
197/* rw_lock protecting the access to object_list and object_tree_root */
198static DEFINE_RWLOCK(kmemleak_lock);
199
200/* allocation caches for kmemleak internal data */
201static struct kmem_cache *object_cache;
202static struct kmem_cache *scan_area_cache;
203
204/* set if tracing memory operations is enabled */
205static int kmemleak_enabled;
206/* same as above but only for the kmemleak_free() callback */
207static int kmemleak_free_enabled;
208/* set in the late_initcall if there were no errors */
209static int kmemleak_initialized;
210/* enables or disables early logging of the memory operations */
211static int kmemleak_early_log = 1;
212/* set if a kmemleak warning was issued */
213static int kmemleak_warning;
214/* set if a fatal kmemleak error has occurred */
215static int kmemleak_error;
216
217/* minimum and maximum address that may be valid pointers */
218static unsigned long min_addr = ULONG_MAX;
219static unsigned long max_addr;
220
221static struct task_struct *scan_thread;
222/* used to avoid reporting of recently allocated objects */
223static unsigned long jiffies_min_age;
224static unsigned long jiffies_last_scan;
225/* delay between automatic memory scannings */
226static signed long jiffies_scan_wait;
227/* enables or disables the task stacks scanning */
228static int kmemleak_stack_scan = 1;
229/* protects the memory scanning, parameters and debug/kmemleak file access */
230static DEFINE_MUTEX(scan_mutex);
231/* setting kmemleak=on, will set this var, skipping the disable */
232static int kmemleak_skip_disable;
233/* If there are leaks that can be reported */
234static bool kmemleak_found_leaks;
235
236/*
237 * Early object allocation/freeing logging. Kmemleak is initialized after the
238 * kernel allocator. However, both the kernel allocator and kmemleak may
239 * allocate memory blocks which need to be tracked. Kmemleak defines an
240 * arbitrary buffer to hold the allocation/freeing information before it is
241 * fully initialized.
242 */
243
244/* kmemleak operation type for early logging */
245enum {
246 KMEMLEAK_ALLOC,
247 KMEMLEAK_ALLOC_PERCPU,
248 KMEMLEAK_FREE,
249 KMEMLEAK_FREE_PART,
250 KMEMLEAK_FREE_PERCPU,
251 KMEMLEAK_NOT_LEAK,
252 KMEMLEAK_IGNORE,
253 KMEMLEAK_SCAN_AREA,
254 KMEMLEAK_NO_SCAN
255};
256
257/*
258 * Structure holding the information passed to kmemleak callbacks during the
259 * early logging.
260 */
261struct early_log {
262 int op_type; /* kmemleak operation type */
263 const void *ptr; /* allocated/freed memory block */
264 size_t size; /* memory block size */
265 int min_count; /* minimum reference count */
266 unsigned long trace[MAX_TRACE]; /* stack trace */
267 unsigned int trace_len; /* stack trace length */
268};
269
270/* early logging buffer and current position */
271static struct early_log
272 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
273static int crt_early_log __initdata;
274
275static void kmemleak_disable(void);
276
277/*
278 * Print a warning and dump the stack trace.
279 */
280#define kmemleak_warn(x...) do { \
281 pr_warn(x); \
282 dump_stack(); \
283 kmemleak_warning = 1; \
284} while (0)
285
286/*
287 * Macro invoked when a serious kmemleak condition occurred and cannot be
288 * recovered from. Kmemleak will be disabled and further allocation/freeing
289 * tracing no longer available.
290 */
291#define kmemleak_stop(x...) do { \
292 kmemleak_warn(x); \
293 kmemleak_disable(); \
294} while (0)
295
296/*
297 * Printing of the objects hex dump to the seq file. The number of lines to be
298 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
299 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
300 * with the object->lock held.
301 */
302static void hex_dump_object(struct seq_file *seq,
303 struct kmemleak_object *object)
304{
305 const u8 *ptr = (const u8 *)object->pointer;
306 size_t len;
307
308 /* limit the number of lines to HEX_MAX_LINES */
309 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
310
311 seq_printf(seq, " hex dump (first %zu bytes):\n", len);
312 kasan_disable_current();
313 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
314 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
315 kasan_enable_current();
316}
317
318/*
319 * Object colors, encoded with count and min_count:
320 * - white - orphan object, not enough references to it (count < min_count)
321 * - gray - not orphan, not marked as false positive (min_count == 0) or
322 * sufficient references to it (count >= min_count)
323 * - black - ignore, it doesn't contain references (e.g. text section)
324 * (min_count == -1). No function defined for this color.
325 * Newly created objects don't have any color assigned (object->count == -1)
326 * before the next memory scan when they become white.
327 */
328static bool color_white(const struct kmemleak_object *object)
329{
330 return object->count != KMEMLEAK_BLACK &&
331 object->count < object->min_count;
332}
333
334static bool color_gray(const struct kmemleak_object *object)
335{
336 return object->min_count != KMEMLEAK_BLACK &&
337 object->count >= object->min_count;
338}
339
340/*
341 * Objects are considered unreferenced only if their color is white, they have
342 * not be deleted and have a minimum age to avoid false positives caused by
343 * pointers temporarily stored in CPU registers.
344 */
345static bool unreferenced_object(struct kmemleak_object *object)
346{
347 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
348 time_before_eq(object->jiffies + jiffies_min_age,
349 jiffies_last_scan);
350}
351
352/*
353 * Printing of the unreferenced objects information to the seq file. The
354 * print_unreferenced function must be called with the object->lock held.
355 */
356static void print_unreferenced(struct seq_file *seq,
357 struct kmemleak_object *object)
358{
359 int i;
360 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
361
362 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
363 object->pointer, object->size);
364 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
365 object->comm, object->pid, object->jiffies,
366 msecs_age / 1000, msecs_age % 1000);
367 hex_dump_object(seq, object);
368 seq_printf(seq, " backtrace:\n");
369
370 for (i = 0; i < object->trace_len; i++) {
371 void *ptr = (void *)object->trace[i];
372 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
373 }
374}
375
376/*
377 * Print the kmemleak_object information. This function is used mainly for
378 * debugging special cases when kmemleak operations. It must be called with
379 * the object->lock held.
380 */
381static void dump_object_info(struct kmemleak_object *object)
382{
383 struct stack_trace trace;
384
385 trace.nr_entries = object->trace_len;
386 trace.entries = object->trace;
387
388 pr_notice("Object 0x%08lx (size %zu):\n",
389 object->pointer, object->size);
390 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
391 object->comm, object->pid, object->jiffies);
392 pr_notice(" min_count = %d\n", object->min_count);
393 pr_notice(" count = %d\n", object->count);
394 pr_notice(" flags = 0x%lx\n", object->flags);
395 pr_notice(" checksum = %u\n", object->checksum);
396 pr_notice(" backtrace:\n");
397 print_stack_trace(&trace, 4);
398}
399
400/*
401 * Look-up a memory block metadata (kmemleak_object) in the object search
402 * tree based on a pointer value. If alias is 0, only values pointing to the
403 * beginning of the memory block are allowed. The kmemleak_lock must be held
404 * when calling this function.
405 */
406static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
407{
408 struct rb_node *rb = object_tree_root.rb_node;
409
410 while (rb) {
411 struct kmemleak_object *object =
412 rb_entry(rb, struct kmemleak_object, rb_node);
413 if (ptr < object->pointer)
414 rb = object->rb_node.rb_left;
415 else if (object->pointer + object->size <= ptr)
416 rb = object->rb_node.rb_right;
417 else if (object->pointer == ptr || alias)
418 return object;
419 else {
420 kmemleak_warn("Found object by alias at 0x%08lx\n",
421 ptr);
422 dump_object_info(object);
423 break;
424 }
425 }
426 return NULL;
427}
428
429/*
430 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
431 * that once an object's use_count reached 0, the RCU freeing was already
432 * registered and the object should no longer be used. This function must be
433 * called under the protection of rcu_read_lock().
434 */
435static int get_object(struct kmemleak_object *object)
436{
437 return atomic_inc_not_zero(&object->use_count);
438}
439
440/*
441 * RCU callback to free a kmemleak_object.
442 */
443static void free_object_rcu(struct rcu_head *rcu)
444{
445 struct hlist_node *tmp;
446 struct kmemleak_scan_area *area;
447 struct kmemleak_object *object =
448 container_of(rcu, struct kmemleak_object, rcu);
449
450 /*
451 * Once use_count is 0 (guaranteed by put_object), there is no other
452 * code accessing this object, hence no need for locking.
453 */
454 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
455 hlist_del(&area->node);
456 kmem_cache_free(scan_area_cache, area);
457 }
458 kmem_cache_free(object_cache, object);
459}
460
461/*
462 * Decrement the object use_count. Once the count is 0, free the object using
463 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
464 * delete_object() path, the delayed RCU freeing ensures that there is no
465 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
466 * is also possible.
467 */
468static void put_object(struct kmemleak_object *object)
469{
470 if (!atomic_dec_and_test(&object->use_count))
471 return;
472
473 /* should only get here after delete_object was called */
474 WARN_ON(object->flags & OBJECT_ALLOCATED);
475
476 call_rcu(&object->rcu, free_object_rcu);
477}
478
479/*
480 * Look up an object in the object search tree and increase its use_count.
481 */
482static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
483{
484 unsigned long flags;
485 struct kmemleak_object *object;
486
487 rcu_read_lock();
488 read_lock_irqsave(&kmemleak_lock, flags);
489 object = lookup_object(ptr, alias);
490 read_unlock_irqrestore(&kmemleak_lock, flags);
491
492 /* check whether the object is still available */
493 if (object && !get_object(object))
494 object = NULL;
495 rcu_read_unlock();
496
497 return object;
498}
499
500/*
501 * Look up an object in the object search tree and remove it from both
502 * object_tree_root and object_list. The returned object's use_count should be
503 * at least 1, as initially set by create_object().
504 */
505static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
506{
507 unsigned long flags;
508 struct kmemleak_object *object;
509
510 write_lock_irqsave(&kmemleak_lock, flags);
511 object = lookup_object(ptr, alias);
512 if (object) {
513 rb_erase(&object->rb_node, &object_tree_root);
514 list_del_rcu(&object->object_list);
515 }
516 write_unlock_irqrestore(&kmemleak_lock, flags);
517
518 return object;
519}
520
521/*
522 * Save stack trace to the given array of MAX_TRACE size.
523 */
524static int __save_stack_trace(unsigned long *trace)
525{
526 struct stack_trace stack_trace;
527
528 stack_trace.max_entries = MAX_TRACE;
529 stack_trace.nr_entries = 0;
530 stack_trace.entries = trace;
531 stack_trace.skip = 2;
532 save_stack_trace(&stack_trace);
533
534 return stack_trace.nr_entries;
535}
536
537/*
538 * Create the metadata (struct kmemleak_object) corresponding to an allocated
539 * memory block and add it to the object_list and object_tree_root.
540 */
541static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
542 int min_count, gfp_t gfp)
543{
544 unsigned long flags;
545 struct kmemleak_object *object, *parent;
546 struct rb_node **link, *rb_parent;
547
548 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
549 if (!object) {
550 pr_warn("Cannot allocate a kmemleak_object structure\n");
551 kmemleak_disable();
552 return NULL;
553 }
554
555 INIT_LIST_HEAD(&object->object_list);
556 INIT_LIST_HEAD(&object->gray_list);
557 INIT_HLIST_HEAD(&object->area_list);
558 spin_lock_init(&object->lock);
559 atomic_set(&object->use_count, 1);
560 object->flags = OBJECT_ALLOCATED;
561 object->pointer = ptr;
562 object->size = size;
563 object->min_count = min_count;
564 object->count = 0; /* white color initially */
565 object->jiffies = jiffies;
566 object->checksum = 0;
567
568 /* task information */
569 if (in_irq()) {
570 object->pid = 0;
571 strncpy(object->comm, "hardirq", sizeof(object->comm));
572 } else if (in_softirq()) {
573 object->pid = 0;
574 strncpy(object->comm, "softirq", sizeof(object->comm));
575 } else {
576 object->pid = current->pid;
577 /*
578 * There is a small chance of a race with set_task_comm(),
579 * however using get_task_comm() here may cause locking
580 * dependency issues with current->alloc_lock. In the worst
581 * case, the command line is not correct.
582 */
583 strncpy(object->comm, current->comm, sizeof(object->comm));
584 }
585
586 /* kernel backtrace */
587 object->trace_len = __save_stack_trace(object->trace);
588
589 write_lock_irqsave(&kmemleak_lock, flags);
590
591 min_addr = min(min_addr, ptr);
592 max_addr = max(max_addr, ptr + size);
593 link = &object_tree_root.rb_node;
594 rb_parent = NULL;
595 while (*link) {
596 rb_parent = *link;
597 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
598 if (ptr + size <= parent->pointer)
599 link = &parent->rb_node.rb_left;
600 else if (parent->pointer + parent->size <= ptr)
601 link = &parent->rb_node.rb_right;
602 else {
603 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
604 ptr);
605 /*
606 * No need for parent->lock here since "parent" cannot
607 * be freed while the kmemleak_lock is held.
608 */
609 dump_object_info(parent);
610 kmem_cache_free(object_cache, object);
611 object = NULL;
612 goto out;
613 }
614 }
615 rb_link_node(&object->rb_node, rb_parent, link);
616 rb_insert_color(&object->rb_node, &object_tree_root);
617
618 list_add_tail_rcu(&object->object_list, &object_list);
619out:
620 write_unlock_irqrestore(&kmemleak_lock, flags);
621 return object;
622}
623
624/*
625 * Mark the object as not allocated and schedule RCU freeing via put_object().
626 */
627static void __delete_object(struct kmemleak_object *object)
628{
629 unsigned long flags;
630
631 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
632 WARN_ON(atomic_read(&object->use_count) < 1);
633
634 /*
635 * Locking here also ensures that the corresponding memory block
636 * cannot be freed when it is being scanned.
637 */
638 spin_lock_irqsave(&object->lock, flags);
639 object->flags &= ~OBJECT_ALLOCATED;
640 spin_unlock_irqrestore(&object->lock, flags);
641 put_object(object);
642}
643
644/*
645 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
646 * delete it.
647 */
648static void delete_object_full(unsigned long ptr)
649{
650 struct kmemleak_object *object;
651
652 object = find_and_remove_object(ptr, 0);
653 if (!object) {
654#ifdef DEBUG
655 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
656 ptr);
657#endif
658 return;
659 }
660 __delete_object(object);
661}
662
663/*
664 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
665 * delete it. If the memory block is partially freed, the function may create
666 * additional metadata for the remaining parts of the block.
667 */
668static void delete_object_part(unsigned long ptr, size_t size)
669{
670 struct kmemleak_object *object;
671 unsigned long start, end;
672
673 object = find_and_remove_object(ptr, 1);
674 if (!object) {
675#ifdef DEBUG
676 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
677 ptr, size);
678#endif
679 return;
680 }
681
682 /*
683 * Create one or two objects that may result from the memory block
684 * split. Note that partial freeing is only done by free_bootmem() and
685 * this happens before kmemleak_init() is called. The path below is
686 * only executed during early log recording in kmemleak_init(), so
687 * GFP_KERNEL is enough.
688 */
689 start = object->pointer;
690 end = object->pointer + object->size;
691 if (ptr > start)
692 create_object(start, ptr - start, object->min_count,
693 GFP_KERNEL);
694 if (ptr + size < end)
695 create_object(ptr + size, end - ptr - size, object->min_count,
696 GFP_KERNEL);
697
698 __delete_object(object);
699}
700
701static void __paint_it(struct kmemleak_object *object, int color)
702{
703 object->min_count = color;
704 if (color == KMEMLEAK_BLACK)
705 object->flags |= OBJECT_NO_SCAN;
706}
707
708static void paint_it(struct kmemleak_object *object, int color)
709{
710 unsigned long flags;
711
712 spin_lock_irqsave(&object->lock, flags);
713 __paint_it(object, color);
714 spin_unlock_irqrestore(&object->lock, flags);
715}
716
717static void paint_ptr(unsigned long ptr, int color)
718{
719 struct kmemleak_object *object;
720
721 object = find_and_get_object(ptr, 0);
722 if (!object) {
723 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
724 ptr,
725 (color == KMEMLEAK_GREY) ? "Grey" :
726 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
727 return;
728 }
729 paint_it(object, color);
730 put_object(object);
731}
732
733/*
734 * Mark an object permanently as gray-colored so that it can no longer be
735 * reported as a leak. This is used in general to mark a false positive.
736 */
737static void make_gray_object(unsigned long ptr)
738{
739 paint_ptr(ptr, KMEMLEAK_GREY);
740}
741
742/*
743 * Mark the object as black-colored so that it is ignored from scans and
744 * reporting.
745 */
746static void make_black_object(unsigned long ptr)
747{
748 paint_ptr(ptr, KMEMLEAK_BLACK);
749}
750
751/*
752 * Add a scanning area to the object. If at least one such area is added,
753 * kmemleak will only scan these ranges rather than the whole memory block.
754 */
755static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
756{
757 unsigned long flags;
758 struct kmemleak_object *object;
759 struct kmemleak_scan_area *area;
760
761 object = find_and_get_object(ptr, 1);
762 if (!object) {
763 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
764 ptr);
765 return;
766 }
767
768 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
769 if (!area) {
770 pr_warn("Cannot allocate a scan area\n");
771 goto out;
772 }
773
774 spin_lock_irqsave(&object->lock, flags);
775 if (size == SIZE_MAX) {
776 size = object->pointer + object->size - ptr;
777 } else if (ptr + size > object->pointer + object->size) {
778 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
779 dump_object_info(object);
780 kmem_cache_free(scan_area_cache, area);
781 goto out_unlock;
782 }
783
784 INIT_HLIST_NODE(&area->node);
785 area->start = ptr;
786 area->size = size;
787
788 hlist_add_head(&area->node, &object->area_list);
789out_unlock:
790 spin_unlock_irqrestore(&object->lock, flags);
791out:
792 put_object(object);
793}
794
795/*
796 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
797 * pointer. Such object will not be scanned by kmemleak but references to it
798 * are searched.
799 */
800static void object_no_scan(unsigned long ptr)
801{
802 unsigned long flags;
803 struct kmemleak_object *object;
804
805 object = find_and_get_object(ptr, 0);
806 if (!object) {
807 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
808 return;
809 }
810
811 spin_lock_irqsave(&object->lock, flags);
812 object->flags |= OBJECT_NO_SCAN;
813 spin_unlock_irqrestore(&object->lock, flags);
814 put_object(object);
815}
816
817/*
818 * Log an early kmemleak_* call to the early_log buffer. These calls will be
819 * processed later once kmemleak is fully initialized.
820 */
821static void __init log_early(int op_type, const void *ptr, size_t size,
822 int min_count)
823{
824 unsigned long flags;
825 struct early_log *log;
826
827 if (kmemleak_error) {
828 /* kmemleak stopped recording, just count the requests */
829 crt_early_log++;
830 return;
831 }
832
833 if (crt_early_log >= ARRAY_SIZE(early_log)) {
834 crt_early_log++;
835 kmemleak_disable();
836 return;
837 }
838
839 /*
840 * There is no need for locking since the kernel is still in UP mode
841 * at this stage. Disabling the IRQs is enough.
842 */
843 local_irq_save(flags);
844 log = &early_log[crt_early_log];
845 log->op_type = op_type;
846 log->ptr = ptr;
847 log->size = size;
848 log->min_count = min_count;
849 log->trace_len = __save_stack_trace(log->trace);
850 crt_early_log++;
851 local_irq_restore(flags);
852}
853
854/*
855 * Log an early allocated block and populate the stack trace.
856 */
857static void early_alloc(struct early_log *log)
858{
859 struct kmemleak_object *object;
860 unsigned long flags;
861 int i;
862
863 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
864 return;
865
866 /*
867 * RCU locking needed to ensure object is not freed via put_object().
868 */
869 rcu_read_lock();
870 object = create_object((unsigned long)log->ptr, log->size,
871 log->min_count, GFP_ATOMIC);
872 if (!object)
873 goto out;
874 spin_lock_irqsave(&object->lock, flags);
875 for (i = 0; i < log->trace_len; i++)
876 object->trace[i] = log->trace[i];
877 object->trace_len = log->trace_len;
878 spin_unlock_irqrestore(&object->lock, flags);
879out:
880 rcu_read_unlock();
881}
882
883/*
884 * Log an early allocated block and populate the stack trace.
885 */
886static void early_alloc_percpu(struct early_log *log)
887{
888 unsigned int cpu;
889 const void __percpu *ptr = log->ptr;
890
891 for_each_possible_cpu(cpu) {
892 log->ptr = per_cpu_ptr(ptr, cpu);
893 early_alloc(log);
894 }
895}
896
897/**
898 * kmemleak_alloc - register a newly allocated object
899 * @ptr: pointer to beginning of the object
900 * @size: size of the object
901 * @min_count: minimum number of references to this object. If during memory
902 * scanning a number of references less than @min_count is found,
903 * the object is reported as a memory leak. If @min_count is 0,
904 * the object is never reported as a leak. If @min_count is -1,
905 * the object is ignored (not scanned and not reported as a leak)
906 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
907 *
908 * This function is called from the kernel allocators when a new object
909 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
910 */
911void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
912 gfp_t gfp)
913{
914 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
915
916 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
917 create_object((unsigned long)ptr, size, min_count, gfp);
918 else if (kmemleak_early_log)
919 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
920}
921EXPORT_SYMBOL_GPL(kmemleak_alloc);
922
923/**
924 * kmemleak_alloc_percpu - register a newly allocated __percpu object
925 * @ptr: __percpu pointer to beginning of the object
926 * @size: size of the object
927 * @gfp: flags used for kmemleak internal memory allocations
928 *
929 * This function is called from the kernel percpu allocator when a new object
930 * (memory block) is allocated (alloc_percpu).
931 */
932void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
933 gfp_t gfp)
934{
935 unsigned int cpu;
936
937 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
938
939 /*
940 * Percpu allocations are only scanned and not reported as leaks
941 * (min_count is set to 0).
942 */
943 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
944 for_each_possible_cpu(cpu)
945 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
946 size, 0, gfp);
947 else if (kmemleak_early_log)
948 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
949}
950EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
951
952/**
953 * kmemleak_free - unregister a previously registered object
954 * @ptr: pointer to beginning of the object
955 *
956 * This function is called from the kernel allocators when an object (memory
957 * block) is freed (kmem_cache_free, kfree, vfree etc.).
958 */
959void __ref kmemleak_free(const void *ptr)
960{
961 pr_debug("%s(0x%p)\n", __func__, ptr);
962
963 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
964 delete_object_full((unsigned long)ptr);
965 else if (kmemleak_early_log)
966 log_early(KMEMLEAK_FREE, ptr, 0, 0);
967}
968EXPORT_SYMBOL_GPL(kmemleak_free);
969
970/**
971 * kmemleak_free_part - partially unregister a previously registered object
972 * @ptr: pointer to the beginning or inside the object. This also
973 * represents the start of the range to be freed
974 * @size: size to be unregistered
975 *
976 * This function is called when only a part of a memory block is freed
977 * (usually from the bootmem allocator).
978 */
979void __ref kmemleak_free_part(const void *ptr, size_t size)
980{
981 pr_debug("%s(0x%p)\n", __func__, ptr);
982
983 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
984 delete_object_part((unsigned long)ptr, size);
985 else if (kmemleak_early_log)
986 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
987}
988EXPORT_SYMBOL_GPL(kmemleak_free_part);
989
990/**
991 * kmemleak_free_percpu - unregister a previously registered __percpu object
992 * @ptr: __percpu pointer to beginning of the object
993 *
994 * This function is called from the kernel percpu allocator when an object
995 * (memory block) is freed (free_percpu).
996 */
997void __ref kmemleak_free_percpu(const void __percpu *ptr)
998{
999 unsigned int cpu;
1000
1001 pr_debug("%s(0x%p)\n", __func__, ptr);
1002
1003 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1004 for_each_possible_cpu(cpu)
1005 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1006 cpu));
1007 else if (kmemleak_early_log)
1008 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1009}
1010EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1011
1012/**
1013 * kmemleak_update_trace - update object allocation stack trace
1014 * @ptr: pointer to beginning of the object
1015 *
1016 * Override the object allocation stack trace for cases where the actual
1017 * allocation place is not always useful.
1018 */
1019void __ref kmemleak_update_trace(const void *ptr)
1020{
1021 struct kmemleak_object *object;
1022 unsigned long flags;
1023
1024 pr_debug("%s(0x%p)\n", __func__, ptr);
1025
1026 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1027 return;
1028
1029 object = find_and_get_object((unsigned long)ptr, 1);
1030 if (!object) {
1031#ifdef DEBUG
1032 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1033 ptr);
1034#endif
1035 return;
1036 }
1037
1038 spin_lock_irqsave(&object->lock, flags);
1039 object->trace_len = __save_stack_trace(object->trace);
1040 spin_unlock_irqrestore(&object->lock, flags);
1041
1042 put_object(object);
1043}
1044EXPORT_SYMBOL(kmemleak_update_trace);
1045
1046/**
1047 * kmemleak_not_leak - mark an allocated object as false positive
1048 * @ptr: pointer to beginning of the object
1049 *
1050 * Calling this function on an object will cause the memory block to no longer
1051 * be reported as leak and always be scanned.
1052 */
1053void __ref kmemleak_not_leak(const void *ptr)
1054{
1055 pr_debug("%s(0x%p)\n", __func__, ptr);
1056
1057 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1058 make_gray_object((unsigned long)ptr);
1059 else if (kmemleak_early_log)
1060 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1061}
1062EXPORT_SYMBOL(kmemleak_not_leak);
1063
1064/**
1065 * kmemleak_ignore - ignore an allocated object
1066 * @ptr: pointer to beginning of the object
1067 *
1068 * Calling this function on an object will cause the memory block to be
1069 * ignored (not scanned and not reported as a leak). This is usually done when
1070 * it is known that the corresponding block is not a leak and does not contain
1071 * any references to other allocated memory blocks.
1072 */
1073void __ref kmemleak_ignore(const void *ptr)
1074{
1075 pr_debug("%s(0x%p)\n", __func__, ptr);
1076
1077 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1078 make_black_object((unsigned long)ptr);
1079 else if (kmemleak_early_log)
1080 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1081}
1082EXPORT_SYMBOL(kmemleak_ignore);
1083
1084/**
1085 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1086 * @ptr: pointer to beginning or inside the object. This also
1087 * represents the start of the scan area
1088 * @size: size of the scan area
1089 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1090 *
1091 * This function is used when it is known that only certain parts of an object
1092 * contain references to other objects. Kmemleak will only scan these areas
1093 * reducing the number false negatives.
1094 */
1095void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1096{
1097 pr_debug("%s(0x%p)\n", __func__, ptr);
1098
1099 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1100 add_scan_area((unsigned long)ptr, size, gfp);
1101 else if (kmemleak_early_log)
1102 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1103}
1104EXPORT_SYMBOL(kmemleak_scan_area);
1105
1106/**
1107 * kmemleak_no_scan - do not scan an allocated object
1108 * @ptr: pointer to beginning of the object
1109 *
1110 * This function notifies kmemleak not to scan the given memory block. Useful
1111 * in situations where it is known that the given object does not contain any
1112 * references to other objects. Kmemleak will not scan such objects reducing
1113 * the number of false negatives.
1114 */
1115void __ref kmemleak_no_scan(const void *ptr)
1116{
1117 pr_debug("%s(0x%p)\n", __func__, ptr);
1118
1119 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1120 object_no_scan((unsigned long)ptr);
1121 else if (kmemleak_early_log)
1122 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1123}
1124EXPORT_SYMBOL(kmemleak_no_scan);
1125
1126/**
1127 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1128 * address argument
1129 */
1130void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1131 gfp_t gfp)
1132{
1133 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1134 kmemleak_alloc(__va(phys), size, min_count, gfp);
1135}
1136EXPORT_SYMBOL(kmemleak_alloc_phys);
1137
1138/**
1139 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1140 * physical address argument
1141 */
1142void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1143{
1144 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1145 kmemleak_free_part(__va(phys), size);
1146}
1147EXPORT_SYMBOL(kmemleak_free_part_phys);
1148
1149/**
1150 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1151 * address argument
1152 */
1153void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1154{
1155 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1156 kmemleak_not_leak(__va(phys));
1157}
1158EXPORT_SYMBOL(kmemleak_not_leak_phys);
1159
1160/**
1161 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1162 * address argument
1163 */
1164void __ref kmemleak_ignore_phys(phys_addr_t phys)
1165{
1166 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1167 kmemleak_ignore(__va(phys));
1168}
1169EXPORT_SYMBOL(kmemleak_ignore_phys);
1170
1171/*
1172 * Update an object's checksum and return true if it was modified.
1173 */
1174static bool update_checksum(struct kmemleak_object *object)
1175{
1176 u32 old_csum = object->checksum;
1177
1178 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1179 return false;
1180
1181 kasan_disable_current();
1182 object->checksum = crc32(0, (void *)object->pointer, object->size);
1183 kasan_enable_current();
1184
1185 return object->checksum != old_csum;
1186}
1187
1188/*
1189 * Memory scanning is a long process and it needs to be interruptable. This
1190 * function checks whether such interrupt condition occurred.
1191 */
1192static int scan_should_stop(void)
1193{
1194 if (!kmemleak_enabled)
1195 return 1;
1196
1197 /*
1198 * This function may be called from either process or kthread context,
1199 * hence the need to check for both stop conditions.
1200 */
1201 if (current->mm)
1202 return signal_pending(current);
1203 else
1204 return kthread_should_stop();
1205
1206 return 0;
1207}
1208
1209/*
1210 * Scan a memory block (exclusive range) for valid pointers and add those
1211 * found to the gray list.
1212 */
1213static void scan_block(void *_start, void *_end,
1214 struct kmemleak_object *scanned)
1215{
1216 unsigned long *ptr;
1217 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1218 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1219 unsigned long flags;
1220
1221 read_lock_irqsave(&kmemleak_lock, flags);
1222 for (ptr = start; ptr < end; ptr++) {
1223 struct kmemleak_object *object;
1224 unsigned long pointer;
1225
1226 if (scan_should_stop())
1227 break;
1228
1229 /* don't scan uninitialized memory */
1230 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1231 BYTES_PER_POINTER))
1232 continue;
1233
1234 kasan_disable_current();
1235 pointer = *ptr;
1236 kasan_enable_current();
1237
1238 if (pointer < min_addr || pointer >= max_addr)
1239 continue;
1240
1241 /*
1242 * No need for get_object() here since we hold kmemleak_lock.
1243 * object->use_count cannot be dropped to 0 while the object
1244 * is still present in object_tree_root and object_list
1245 * (with updates protected by kmemleak_lock).
1246 */
1247 object = lookup_object(pointer, 1);
1248 if (!object)
1249 continue;
1250 if (object == scanned)
1251 /* self referenced, ignore */
1252 continue;
1253
1254 /*
1255 * Avoid the lockdep recursive warning on object->lock being
1256 * previously acquired in scan_object(). These locks are
1257 * enclosed by scan_mutex.
1258 */
1259 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1260 if (!color_white(object)) {
1261 /* non-orphan, ignored or new */
1262 spin_unlock(&object->lock);
1263 continue;
1264 }
1265
1266 /*
1267 * Increase the object's reference count (number of pointers
1268 * to the memory block). If this count reaches the required
1269 * minimum, the object's color will become gray and it will be
1270 * added to the gray_list.
1271 */
1272 object->count++;
1273 if (color_gray(object)) {
1274 /* put_object() called when removing from gray_list */
1275 WARN_ON(!get_object(object));
1276 list_add_tail(&object->gray_list, &gray_list);
1277 }
1278 spin_unlock(&object->lock);
1279 }
1280 read_unlock_irqrestore(&kmemleak_lock, flags);
1281}
1282
1283/*
1284 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1285 */
1286static void scan_large_block(void *start, void *end)
1287{
1288 void *next;
1289
1290 while (start < end) {
1291 next = min(start + MAX_SCAN_SIZE, end);
1292 scan_block(start, next, NULL);
1293 start = next;
1294 cond_resched();
1295 }
1296}
1297
1298/*
1299 * Scan a memory block corresponding to a kmemleak_object. A condition is
1300 * that object->use_count >= 1.
1301 */
1302static void scan_object(struct kmemleak_object *object)
1303{
1304 struct kmemleak_scan_area *area;
1305 unsigned long flags;
1306
1307 /*
1308 * Once the object->lock is acquired, the corresponding memory block
1309 * cannot be freed (the same lock is acquired in delete_object).
1310 */
1311 spin_lock_irqsave(&object->lock, flags);
1312 if (object->flags & OBJECT_NO_SCAN)
1313 goto out;
1314 if (!(object->flags & OBJECT_ALLOCATED))
1315 /* already freed object */
1316 goto out;
1317 if (hlist_empty(&object->area_list)) {
1318 void *start = (void *)object->pointer;
1319 void *end = (void *)(object->pointer + object->size);
1320 void *next;
1321
1322 do {
1323 next = min(start + MAX_SCAN_SIZE, end);
1324 scan_block(start, next, object);
1325
1326 start = next;
1327 if (start >= end)
1328 break;
1329
1330 spin_unlock_irqrestore(&object->lock, flags);
1331 cond_resched();
1332 spin_lock_irqsave(&object->lock, flags);
1333 } while (object->flags & OBJECT_ALLOCATED);
1334 } else
1335 hlist_for_each_entry(area, &object->area_list, node)
1336 scan_block((void *)area->start,
1337 (void *)(area->start + area->size),
1338 object);
1339out:
1340 spin_unlock_irqrestore(&object->lock, flags);
1341}
1342
1343/*
1344 * Scan the objects already referenced (gray objects). More objects will be
1345 * referenced and, if there are no memory leaks, all the objects are scanned.
1346 */
1347static void scan_gray_list(void)
1348{
1349 struct kmemleak_object *object, *tmp;
1350
1351 /*
1352 * The list traversal is safe for both tail additions and removals
1353 * from inside the loop. The kmemleak objects cannot be freed from
1354 * outside the loop because their use_count was incremented.
1355 */
1356 object = list_entry(gray_list.next, typeof(*object), gray_list);
1357 while (&object->gray_list != &gray_list) {
1358 cond_resched();
1359
1360 /* may add new objects to the list */
1361 if (!scan_should_stop())
1362 scan_object(object);
1363
1364 tmp = list_entry(object->gray_list.next, typeof(*object),
1365 gray_list);
1366
1367 /* remove the object from the list and release it */
1368 list_del(&object->gray_list);
1369 put_object(object);
1370
1371 object = tmp;
1372 }
1373 WARN_ON(!list_empty(&gray_list));
1374}
1375
1376/*
1377 * Scan data sections and all the referenced memory blocks allocated via the
1378 * kernel's standard allocators. This function must be called with the
1379 * scan_mutex held.
1380 */
1381static void kmemleak_scan(void)
1382{
1383 unsigned long flags;
1384 struct kmemleak_object *object;
1385 int i;
1386 int new_leaks = 0;
1387
1388 jiffies_last_scan = jiffies;
1389
1390 /* prepare the kmemleak_object's */
1391 rcu_read_lock();
1392 list_for_each_entry_rcu(object, &object_list, object_list) {
1393 spin_lock_irqsave(&object->lock, flags);
1394#ifdef DEBUG
1395 /*
1396 * With a few exceptions there should be a maximum of
1397 * 1 reference to any object at this point.
1398 */
1399 if (atomic_read(&object->use_count) > 1) {
1400 pr_debug("object->use_count = %d\n",
1401 atomic_read(&object->use_count));
1402 dump_object_info(object);
1403 }
1404#endif
1405 /* reset the reference count (whiten the object) */
1406 object->count = 0;
1407 if (color_gray(object) && get_object(object))
1408 list_add_tail(&object->gray_list, &gray_list);
1409
1410 spin_unlock_irqrestore(&object->lock, flags);
1411 }
1412 rcu_read_unlock();
1413
1414 /* data/bss scanning */
1415 scan_large_block(_sdata, _edata);
1416 scan_large_block(__bss_start, __bss_stop);
1417 scan_large_block(__start_data_ro_after_init, __end_data_ro_after_init);
1418
1419#ifdef CONFIG_SMP
1420 /* per-cpu sections scanning */
1421 for_each_possible_cpu(i)
1422 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1423 __per_cpu_end + per_cpu_offset(i));
1424#endif
1425
1426 /*
1427 * Struct page scanning for each node.
1428 */
1429 get_online_mems();
1430 for_each_online_node(i) {
1431 unsigned long start_pfn = node_start_pfn(i);
1432 unsigned long end_pfn = node_end_pfn(i);
1433 unsigned long pfn;
1434
1435 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1436 struct page *page;
1437
1438 if (!pfn_valid(pfn))
1439 continue;
1440 page = pfn_to_page(pfn);
1441 /* only scan if page is in use */
1442 if (page_count(page) == 0)
1443 continue;
1444 scan_block(page, page + 1, NULL);
1445 }
1446 }
1447 put_online_mems();
1448
1449 /*
1450 * Scanning the task stacks (may introduce false negatives).
1451 */
1452 if (kmemleak_stack_scan) {
1453 struct task_struct *p, *g;
1454
1455 read_lock(&tasklist_lock);
1456 do_each_thread(g, p) {
1457 void *stack = try_get_task_stack(p);
1458 if (stack) {
1459 scan_block(stack, stack + THREAD_SIZE, NULL);
1460 put_task_stack(p);
1461 }
1462 } while_each_thread(g, p);
1463 read_unlock(&tasklist_lock);
1464 }
1465
1466 /*
1467 * Scan the objects already referenced from the sections scanned
1468 * above.
1469 */
1470 scan_gray_list();
1471
1472 /*
1473 * Check for new or unreferenced objects modified since the previous
1474 * scan and color them gray until the next scan.
1475 */
1476 rcu_read_lock();
1477 list_for_each_entry_rcu(object, &object_list, object_list) {
1478 spin_lock_irqsave(&object->lock, flags);
1479 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1480 && update_checksum(object) && get_object(object)) {
1481 /* color it gray temporarily */
1482 object->count = object->min_count;
1483 list_add_tail(&object->gray_list, &gray_list);
1484 }
1485 spin_unlock_irqrestore(&object->lock, flags);
1486 }
1487 rcu_read_unlock();
1488
1489 /*
1490 * Re-scan the gray list for modified unreferenced objects.
1491 */
1492 scan_gray_list();
1493
1494 /*
1495 * If scanning was stopped do not report any new unreferenced objects.
1496 */
1497 if (scan_should_stop())
1498 return;
1499
1500 /*
1501 * Scanning result reporting.
1502 */
1503 rcu_read_lock();
1504 list_for_each_entry_rcu(object, &object_list, object_list) {
1505 spin_lock_irqsave(&object->lock, flags);
1506 if (unreferenced_object(object) &&
1507 !(object->flags & OBJECT_REPORTED)) {
1508 object->flags |= OBJECT_REPORTED;
1509 new_leaks++;
1510 }
1511 spin_unlock_irqrestore(&object->lock, flags);
1512 }
1513 rcu_read_unlock();
1514
1515 if (new_leaks) {
1516 kmemleak_found_leaks = true;
1517
1518 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1519 new_leaks);
1520 }
1521
1522}
1523
1524/*
1525 * Thread function performing automatic memory scanning. Unreferenced objects
1526 * at the end of a memory scan are reported but only the first time.
1527 */
1528static int kmemleak_scan_thread(void *arg)
1529{
1530 static int first_run = 1;
1531
1532 pr_info("Automatic memory scanning thread started\n");
1533 set_user_nice(current, 10);
1534
1535 /*
1536 * Wait before the first scan to allow the system to fully initialize.
1537 */
1538 if (first_run) {
1539 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1540 first_run = 0;
1541 while (timeout && !kthread_should_stop())
1542 timeout = schedule_timeout_interruptible(timeout);
1543 }
1544
1545 while (!kthread_should_stop()) {
1546 signed long timeout = jiffies_scan_wait;
1547
1548 mutex_lock(&scan_mutex);
1549 kmemleak_scan();
1550 mutex_unlock(&scan_mutex);
1551
1552 /* wait before the next scan */
1553 while (timeout && !kthread_should_stop())
1554 timeout = schedule_timeout_interruptible(timeout);
1555 }
1556
1557 pr_info("Automatic memory scanning thread ended\n");
1558
1559 return 0;
1560}
1561
1562/*
1563 * Start the automatic memory scanning thread. This function must be called
1564 * with the scan_mutex held.
1565 */
1566static void start_scan_thread(void)
1567{
1568 if (scan_thread)
1569 return;
1570 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1571 if (IS_ERR(scan_thread)) {
1572 pr_warn("Failed to create the scan thread\n");
1573 scan_thread = NULL;
1574 }
1575}
1576
1577/*
1578 * Stop the automatic memory scanning thread. This function must be called
1579 * with the scan_mutex held.
1580 */
1581static void stop_scan_thread(void)
1582{
1583 if (scan_thread) {
1584 kthread_stop(scan_thread);
1585 scan_thread = NULL;
1586 }
1587}
1588
1589/*
1590 * Iterate over the object_list and return the first valid object at or after
1591 * the required position with its use_count incremented. The function triggers
1592 * a memory scanning when the pos argument points to the first position.
1593 */
1594static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1595{
1596 struct kmemleak_object *object;
1597 loff_t n = *pos;
1598 int err;
1599
1600 err = mutex_lock_interruptible(&scan_mutex);
1601 if (err < 0)
1602 return ERR_PTR(err);
1603
1604 rcu_read_lock();
1605 list_for_each_entry_rcu(object, &object_list, object_list) {
1606 if (n-- > 0)
1607 continue;
1608 if (get_object(object))
1609 goto out;
1610 }
1611 object = NULL;
1612out:
1613 return object;
1614}
1615
1616/*
1617 * Return the next object in the object_list. The function decrements the
1618 * use_count of the previous object and increases that of the next one.
1619 */
1620static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1621{
1622 struct kmemleak_object *prev_obj = v;
1623 struct kmemleak_object *next_obj = NULL;
1624 struct kmemleak_object *obj = prev_obj;
1625
1626 ++(*pos);
1627
1628 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1629 if (get_object(obj)) {
1630 next_obj = obj;
1631 break;
1632 }
1633 }
1634
1635 put_object(prev_obj);
1636 return next_obj;
1637}
1638
1639/*
1640 * Decrement the use_count of the last object required, if any.
1641 */
1642static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1643{
1644 if (!IS_ERR(v)) {
1645 /*
1646 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1647 * waiting was interrupted, so only release it if !IS_ERR.
1648 */
1649 rcu_read_unlock();
1650 mutex_unlock(&scan_mutex);
1651 if (v)
1652 put_object(v);
1653 }
1654}
1655
1656/*
1657 * Print the information for an unreferenced object to the seq file.
1658 */
1659static int kmemleak_seq_show(struct seq_file *seq, void *v)
1660{
1661 struct kmemleak_object *object = v;
1662 unsigned long flags;
1663
1664 spin_lock_irqsave(&object->lock, flags);
1665 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1666 print_unreferenced(seq, object);
1667 spin_unlock_irqrestore(&object->lock, flags);
1668 return 0;
1669}
1670
1671static const struct seq_operations kmemleak_seq_ops = {
1672 .start = kmemleak_seq_start,
1673 .next = kmemleak_seq_next,
1674 .stop = kmemleak_seq_stop,
1675 .show = kmemleak_seq_show,
1676};
1677
1678static int kmemleak_open(struct inode *inode, struct file *file)
1679{
1680 return seq_open(file, &kmemleak_seq_ops);
1681}
1682
1683static int dump_str_object_info(const char *str)
1684{
1685 unsigned long flags;
1686 struct kmemleak_object *object;
1687 unsigned long addr;
1688
1689 if (kstrtoul(str, 0, &addr))
1690 return -EINVAL;
1691 object = find_and_get_object(addr, 0);
1692 if (!object) {
1693 pr_info("Unknown object at 0x%08lx\n", addr);
1694 return -EINVAL;
1695 }
1696
1697 spin_lock_irqsave(&object->lock, flags);
1698 dump_object_info(object);
1699 spin_unlock_irqrestore(&object->lock, flags);
1700
1701 put_object(object);
1702 return 0;
1703}
1704
1705/*
1706 * We use grey instead of black to ensure we can do future scans on the same
1707 * objects. If we did not do future scans these black objects could
1708 * potentially contain references to newly allocated objects in the future and
1709 * we'd end up with false positives.
1710 */
1711static void kmemleak_clear(void)
1712{
1713 struct kmemleak_object *object;
1714 unsigned long flags;
1715
1716 rcu_read_lock();
1717 list_for_each_entry_rcu(object, &object_list, object_list) {
1718 spin_lock_irqsave(&object->lock, flags);
1719 if ((object->flags & OBJECT_REPORTED) &&
1720 unreferenced_object(object))
1721 __paint_it(object, KMEMLEAK_GREY);
1722 spin_unlock_irqrestore(&object->lock, flags);
1723 }
1724 rcu_read_unlock();
1725
1726 kmemleak_found_leaks = false;
1727}
1728
1729static void __kmemleak_do_cleanup(void);
1730
1731/*
1732 * File write operation to configure kmemleak at run-time. The following
1733 * commands can be written to the /sys/kernel/debug/kmemleak file:
1734 * off - disable kmemleak (irreversible)
1735 * stack=on - enable the task stacks scanning
1736 * stack=off - disable the tasks stacks scanning
1737 * scan=on - start the automatic memory scanning thread
1738 * scan=off - stop the automatic memory scanning thread
1739 * scan=... - set the automatic memory scanning period in seconds (0 to
1740 * disable it)
1741 * scan - trigger a memory scan
1742 * clear - mark all current reported unreferenced kmemleak objects as
1743 * grey to ignore printing them, or free all kmemleak objects
1744 * if kmemleak has been disabled.
1745 * dump=... - dump information about the object found at the given address
1746 */
1747static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1748 size_t size, loff_t *ppos)
1749{
1750 char buf[64];
1751 int buf_size;
1752 int ret;
1753
1754 buf_size = min(size, (sizeof(buf) - 1));
1755 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1756 return -EFAULT;
1757 buf[buf_size] = 0;
1758
1759 ret = mutex_lock_interruptible(&scan_mutex);
1760 if (ret < 0)
1761 return ret;
1762
1763 if (strncmp(buf, "clear", 5) == 0) {
1764 if (kmemleak_enabled)
1765 kmemleak_clear();
1766 else
1767 __kmemleak_do_cleanup();
1768 goto out;
1769 }
1770
1771 if (!kmemleak_enabled) {
1772 ret = -EBUSY;
1773 goto out;
1774 }
1775
1776 if (strncmp(buf, "off", 3) == 0)
1777 kmemleak_disable();
1778 else if (strncmp(buf, "stack=on", 8) == 0)
1779 kmemleak_stack_scan = 1;
1780 else if (strncmp(buf, "stack=off", 9) == 0)
1781 kmemleak_stack_scan = 0;
1782 else if (strncmp(buf, "scan=on", 7) == 0)
1783 start_scan_thread();
1784 else if (strncmp(buf, "scan=off", 8) == 0)
1785 stop_scan_thread();
1786 else if (strncmp(buf, "scan=", 5) == 0) {
1787 unsigned long secs;
1788
1789 ret = kstrtoul(buf + 5, 0, &secs);
1790 if (ret < 0)
1791 goto out;
1792 stop_scan_thread();
1793 if (secs) {
1794 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1795 start_scan_thread();
1796 }
1797 } else if (strncmp(buf, "scan", 4) == 0)
1798 kmemleak_scan();
1799 else if (strncmp(buf, "dump=", 5) == 0)
1800 ret = dump_str_object_info(buf + 5);
1801 else
1802 ret = -EINVAL;
1803
1804out:
1805 mutex_unlock(&scan_mutex);
1806 if (ret < 0)
1807 return ret;
1808
1809 /* ignore the rest of the buffer, only one command at a time */
1810 *ppos += size;
1811 return size;
1812}
1813
1814static const struct file_operations kmemleak_fops = {
1815 .owner = THIS_MODULE,
1816 .open = kmemleak_open,
1817 .read = seq_read,
1818 .write = kmemleak_write,
1819 .llseek = seq_lseek,
1820 .release = seq_release,
1821};
1822
1823static void __kmemleak_do_cleanup(void)
1824{
1825 struct kmemleak_object *object;
1826
1827 rcu_read_lock();
1828 list_for_each_entry_rcu(object, &object_list, object_list)
1829 delete_object_full(object->pointer);
1830 rcu_read_unlock();
1831}
1832
1833/*
1834 * Stop the memory scanning thread and free the kmemleak internal objects if
1835 * no previous scan thread (otherwise, kmemleak may still have some useful
1836 * information on memory leaks).
1837 */
1838static void kmemleak_do_cleanup(struct work_struct *work)
1839{
1840 stop_scan_thread();
1841
1842 /*
1843 * Once the scan thread has stopped, it is safe to no longer track
1844 * object freeing. Ordering of the scan thread stopping and the memory
1845 * accesses below is guaranteed by the kthread_stop() function.
1846 */
1847 kmemleak_free_enabled = 0;
1848
1849 if (!kmemleak_found_leaks)
1850 __kmemleak_do_cleanup();
1851 else
1852 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1853}
1854
1855static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1856
1857/*
1858 * Disable kmemleak. No memory allocation/freeing will be traced once this
1859 * function is called. Disabling kmemleak is an irreversible operation.
1860 */
1861static void kmemleak_disable(void)
1862{
1863 /* atomically check whether it was already invoked */
1864 if (cmpxchg(&kmemleak_error, 0, 1))
1865 return;
1866
1867 /* stop any memory operation tracing */
1868 kmemleak_enabled = 0;
1869
1870 /* check whether it is too early for a kernel thread */
1871 if (kmemleak_initialized)
1872 schedule_work(&cleanup_work);
1873 else
1874 kmemleak_free_enabled = 0;
1875
1876 pr_info("Kernel memory leak detector disabled\n");
1877}
1878
1879/*
1880 * Allow boot-time kmemleak disabling (enabled by default).
1881 */
1882static int kmemleak_boot_config(char *str)
1883{
1884 if (!str)
1885 return -EINVAL;
1886 if (strcmp(str, "off") == 0)
1887 kmemleak_disable();
1888 else if (strcmp(str, "on") == 0)
1889 kmemleak_skip_disable = 1;
1890 else
1891 return -EINVAL;
1892 return 0;
1893}
1894early_param("kmemleak", kmemleak_boot_config);
1895
1896static void __init print_log_trace(struct early_log *log)
1897{
1898 struct stack_trace trace;
1899
1900 trace.nr_entries = log->trace_len;
1901 trace.entries = log->trace;
1902
1903 pr_notice("Early log backtrace:\n");
1904 print_stack_trace(&trace, 2);
1905}
1906
1907/*
1908 * Kmemleak initialization.
1909 */
1910void __init kmemleak_init(void)
1911{
1912 int i;
1913 unsigned long flags;
1914
1915#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1916 if (!kmemleak_skip_disable) {
1917 kmemleak_early_log = 0;
1918 kmemleak_disable();
1919 return;
1920 }
1921#endif
1922
1923 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1924 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1925
1926 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1927 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1928
1929 if (crt_early_log > ARRAY_SIZE(early_log))
1930 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
1931 crt_early_log);
1932
1933 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1934 local_irq_save(flags);
1935 kmemleak_early_log = 0;
1936 if (kmemleak_error) {
1937 local_irq_restore(flags);
1938 return;
1939 } else {
1940 kmemleak_enabled = 1;
1941 kmemleak_free_enabled = 1;
1942 }
1943 local_irq_restore(flags);
1944
1945 /*
1946 * This is the point where tracking allocations is safe. Automatic
1947 * scanning is started during the late initcall. Add the early logged
1948 * callbacks to the kmemleak infrastructure.
1949 */
1950 for (i = 0; i < crt_early_log; i++) {
1951 struct early_log *log = &early_log[i];
1952
1953 switch (log->op_type) {
1954 case KMEMLEAK_ALLOC:
1955 early_alloc(log);
1956 break;
1957 case KMEMLEAK_ALLOC_PERCPU:
1958 early_alloc_percpu(log);
1959 break;
1960 case KMEMLEAK_FREE:
1961 kmemleak_free(log->ptr);
1962 break;
1963 case KMEMLEAK_FREE_PART:
1964 kmemleak_free_part(log->ptr, log->size);
1965 break;
1966 case KMEMLEAK_FREE_PERCPU:
1967 kmemleak_free_percpu(log->ptr);
1968 break;
1969 case KMEMLEAK_NOT_LEAK:
1970 kmemleak_not_leak(log->ptr);
1971 break;
1972 case KMEMLEAK_IGNORE:
1973 kmemleak_ignore(log->ptr);
1974 break;
1975 case KMEMLEAK_SCAN_AREA:
1976 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1977 break;
1978 case KMEMLEAK_NO_SCAN:
1979 kmemleak_no_scan(log->ptr);
1980 break;
1981 default:
1982 kmemleak_warn("Unknown early log operation: %d\n",
1983 log->op_type);
1984 }
1985
1986 if (kmemleak_warning) {
1987 print_log_trace(log);
1988 kmemleak_warning = 0;
1989 }
1990 }
1991}
1992
1993/*
1994 * Late initialization function.
1995 */
1996static int __init kmemleak_late_init(void)
1997{
1998 struct dentry *dentry;
1999
2000 kmemleak_initialized = 1;
2001
2002 if (kmemleak_error) {
2003 /*
2004 * Some error occurred and kmemleak was disabled. There is a
2005 * small chance that kmemleak_disable() was called immediately
2006 * after setting kmemleak_initialized and we may end up with
2007 * two clean-up threads but serialized by scan_mutex.
2008 */
2009 schedule_work(&cleanup_work);
2010 return -ENOMEM;
2011 }
2012
2013 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
2014 &kmemleak_fops);
2015 if (!dentry)
2016 pr_warn("Failed to create the debugfs kmemleak file\n");
2017 mutex_lock(&scan_mutex);
2018 start_scan_thread();
2019 mutex_unlock(&scan_mutex);
2020
2021 pr_info("Kernel memory leak detector initialized\n");
2022
2023 return 0;
2024}
2025late_initcall(kmemleak_late_init);