Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  Copyright (C) 1991, 1992  Linus Torvalds
  4 *
  5 *  This file contains the interface functions for the various time related
  6 *  system calls: time, stime, gettimeofday, settimeofday, adjtime
  7 *
  8 * Modification history:
  9 *
 10 * 1993-09-02    Philip Gladstone
 11 *      Created file with time related functions from sched/core.c and adjtimex()
 12 * 1993-10-08    Torsten Duwe
 13 *      adjtime interface update and CMOS clock write code
 14 * 1995-08-13    Torsten Duwe
 15 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 16 * 1999-01-16    Ulrich Windl
 17 *	Introduced error checking for many cases in adjtimex().
 18 *	Updated NTP code according to technical memorandum Jan '96
 19 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 20 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 21 *	(Even though the technical memorandum forbids it)
 22 * 2004-07-14	 Christoph Lameter
 23 *	Added getnstimeofday to allow the posix timer functions to return
 24 *	with nanosecond accuracy
 25 */
 26
 27#include <linux/export.h>
 28#include <linux/kernel.h>
 29#include <linux/timex.h>
 30#include <linux/capability.h>
 31#include <linux/timekeeper_internal.h>
 32#include <linux/errno.h>
 33#include <linux/syscalls.h>
 34#include <linux/security.h>
 35#include <linux/fs.h>
 36#include <linux/math64.h>
 37#include <linux/ptrace.h>
 38
 39#include <linux/uaccess.h>
 40#include <linux/compat.h>
 41#include <asm/unistd.h>
 42
 43#include <generated/timeconst.h>
 44#include "timekeeping.h"
 45
 46/*
 47 * The timezone where the local system is located.  Used as a default by some
 48 * programs who obtain this value by using gettimeofday.
 49 */
 50struct timezone sys_tz;
 51
 52EXPORT_SYMBOL(sys_tz);
 53
 54#ifdef __ARCH_WANT_SYS_TIME
 55
 56/*
 57 * sys_time() can be implemented in user-level using
 58 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 59 * why not move it into the appropriate arch directory (for those
 60 * architectures that need it).
 61 */
 62SYSCALL_DEFINE1(time, time_t __user *, tloc)
 63{
 64	time_t i = (time_t)ktime_get_real_seconds();
 65
 66	if (tloc) {
 67		if (put_user(i,tloc))
 68			return -EFAULT;
 69	}
 70	force_successful_syscall_return();
 71	return i;
 72}
 73
 74/*
 75 * sys_stime() can be implemented in user-level using
 76 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 77 * why not move it into the appropriate arch directory (for those
 78 * architectures that need it).
 79 */
 80
 81SYSCALL_DEFINE1(stime, time_t __user *, tptr)
 82{
 83	struct timespec64 tv;
 84	int err;
 85
 86	if (get_user(tv.tv_sec, tptr))
 87		return -EFAULT;
 88
 89	tv.tv_nsec = 0;
 90
 91	err = security_settime64(&tv, NULL);
 92	if (err)
 93		return err;
 94
 95	do_settimeofday64(&tv);
 96	return 0;
 97}
 98
 99#endif /* __ARCH_WANT_SYS_TIME */
100
101#ifdef CONFIG_COMPAT_32BIT_TIME
102#ifdef __ARCH_WANT_SYS_TIME32
103
104/* old_time32_t is a 32 bit "long" and needs to get converted. */
105SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
106{
107	old_time32_t i;
108
109	i = (old_time32_t)ktime_get_real_seconds();
110
111	if (tloc) {
112		if (put_user(i,tloc))
113			return -EFAULT;
114	}
115	force_successful_syscall_return();
116	return i;
117}
118
119SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
120{
121	struct timespec64 tv;
122	int err;
123
124	if (get_user(tv.tv_sec, tptr))
125		return -EFAULT;
126
127	tv.tv_nsec = 0;
128
129	err = security_settime64(&tv, NULL);
130	if (err)
131		return err;
132
133	do_settimeofday64(&tv);
134	return 0;
135}
136
137#endif /* __ARCH_WANT_SYS_TIME32 */
138#endif
139
140SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
141		struct timezone __user *, tz)
142{
143	if (likely(tv != NULL)) {
144		struct timespec64 ts;
145
146		ktime_get_real_ts64(&ts);
147		if (put_user(ts.tv_sec, &tv->tv_sec) ||
148		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149			return -EFAULT;
150	}
151	if (unlikely(tz != NULL)) {
152		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153			return -EFAULT;
154	}
155	return 0;
156}
157
158/*
159 * In case for some reason the CMOS clock has not already been running
160 * in UTC, but in some local time: The first time we set the timezone,
161 * we will warp the clock so that it is ticking UTC time instead of
162 * local time. Presumably, if someone is setting the timezone then we
163 * are running in an environment where the programs understand about
164 * timezones. This should be done at boot time in the /etc/rc script,
165 * as soon as possible, so that the clock can be set right. Otherwise,
166 * various programs will get confused when the clock gets warped.
167 */
168
169int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170{
171	static int firsttime = 1;
172	int error = 0;
173
174	if (tv && !timespec64_valid_settod(tv))
175		return -EINVAL;
176
177	error = security_settime64(tv, tz);
178	if (error)
179		return error;
180
181	if (tz) {
182		/* Verify we're witin the +-15 hrs range */
183		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184			return -EINVAL;
185
186		sys_tz = *tz;
187		update_vsyscall_tz();
188		if (firsttime) {
189			firsttime = 0;
190			if (!tv)
191				timekeeping_warp_clock();
192		}
193	}
194	if (tv)
195		return do_settimeofday64(tv);
196	return 0;
197}
198
199SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
200		struct timezone __user *, tz)
201{
202	struct timespec64 new_ts;
203	struct timeval user_tv;
204	struct timezone new_tz;
205
206	if (tv) {
207		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
 
208			return -EFAULT;
209
210		if (!timeval_valid(&user_tv))
211			return -EINVAL;
212
213		new_ts.tv_sec = user_tv.tv_sec;
214		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
215	}
216	if (tz) {
217		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
218			return -EFAULT;
219	}
220
221	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
222}
223
224#ifdef CONFIG_COMPAT
225COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
226		       struct timezone __user *, tz)
227{
228	if (tv) {
229		struct timespec64 ts;
230
231		ktime_get_real_ts64(&ts);
232		if (put_user(ts.tv_sec, &tv->tv_sec) ||
233		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
234			return -EFAULT;
235	}
236	if (tz) {
237		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
238			return -EFAULT;
239	}
240
241	return 0;
242}
243
244COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
245		       struct timezone __user *, tz)
246{
247	struct timespec64 new_ts;
248	struct timeval user_tv;
249	struct timezone new_tz;
250
251	if (tv) {
252		if (compat_get_timeval(&user_tv, tv))
 
253			return -EFAULT;
254
255		if (!timeval_valid(&user_tv))
256			return -EINVAL;
257
258		new_ts.tv_sec = user_tv.tv_sec;
259		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
260	}
261	if (tz) {
262		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
263			return -EFAULT;
264	}
265
266	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
267}
268#endif
269
270#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
271SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
272{
273	struct __kernel_timex txc;		/* Local copy of parameter */
274	int ret;
275
276	/* Copy the user data space into the kernel copy
277	 * structure. But bear in mind that the structures
278	 * may change
279	 */
280	if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
281		return -EFAULT;
282	ret = do_adjtimex(&txc);
283	return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
284}
285#endif
286
287#ifdef CONFIG_COMPAT_32BIT_TIME
288int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
289{
290	struct old_timex32 tx32;
291
292	memset(txc, 0, sizeof(struct __kernel_timex));
293	if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
294		return -EFAULT;
295
296	txc->modes = tx32.modes;
297	txc->offset = tx32.offset;
298	txc->freq = tx32.freq;
299	txc->maxerror = tx32.maxerror;
300	txc->esterror = tx32.esterror;
301	txc->status = tx32.status;
302	txc->constant = tx32.constant;
303	txc->precision = tx32.precision;
304	txc->tolerance = tx32.tolerance;
305	txc->time.tv_sec = tx32.time.tv_sec;
306	txc->time.tv_usec = tx32.time.tv_usec;
307	txc->tick = tx32.tick;
308	txc->ppsfreq = tx32.ppsfreq;
309	txc->jitter = tx32.jitter;
310	txc->shift = tx32.shift;
311	txc->stabil = tx32.stabil;
312	txc->jitcnt = tx32.jitcnt;
313	txc->calcnt = tx32.calcnt;
314	txc->errcnt = tx32.errcnt;
315	txc->stbcnt = tx32.stbcnt;
316
317	return 0;
318}
319
320int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
321{
322	struct old_timex32 tx32;
323
324	memset(&tx32, 0, sizeof(struct old_timex32));
325	tx32.modes = txc->modes;
326	tx32.offset = txc->offset;
327	tx32.freq = txc->freq;
328	tx32.maxerror = txc->maxerror;
329	tx32.esterror = txc->esterror;
330	tx32.status = txc->status;
331	tx32.constant = txc->constant;
332	tx32.precision = txc->precision;
333	tx32.tolerance = txc->tolerance;
334	tx32.time.tv_sec = txc->time.tv_sec;
335	tx32.time.tv_usec = txc->time.tv_usec;
336	tx32.tick = txc->tick;
337	tx32.ppsfreq = txc->ppsfreq;
338	tx32.jitter = txc->jitter;
339	tx32.shift = txc->shift;
340	tx32.stabil = txc->stabil;
341	tx32.jitcnt = txc->jitcnt;
342	tx32.calcnt = txc->calcnt;
343	tx32.errcnt = txc->errcnt;
344	tx32.stbcnt = txc->stbcnt;
345	tx32.tai = txc->tai;
346	if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
347		return -EFAULT;
348	return 0;
349}
350
351SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
352{
353	struct __kernel_timex txc;
354	int err, ret;
355
356	err = get_old_timex32(&txc, utp);
357	if (err)
358		return err;
359
360	ret = do_adjtimex(&txc);
361
362	err = put_old_timex32(utp, &txc);
363	if (err)
364		return err;
365
366	return ret;
367}
368#endif
369
370/*
371 * Convert jiffies to milliseconds and back.
 
372 *
373 * Avoid unnecessary multiplications/divisions in the
374 * two most common HZ cases:
 
 
375 */
376unsigned int jiffies_to_msecs(const unsigned long j)
377{
378#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
379	return (MSEC_PER_SEC / HZ) * j;
380#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
381	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
382#else
383# if BITS_PER_LONG == 32
384	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
385	       HZ_TO_MSEC_SHR32;
386# else
387	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
388# endif
389#endif
390}
391EXPORT_SYMBOL(jiffies_to_msecs);
392
 
 
 
 
 
 
393unsigned int jiffies_to_usecs(const unsigned long j)
394{
395	/*
396	 * Hz usually doesn't go much further MSEC_PER_SEC.
397	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
398	 */
399	BUILD_BUG_ON(HZ > USEC_PER_SEC);
400
401#if !(USEC_PER_SEC % HZ)
402	return (USEC_PER_SEC / HZ) * j;
403#else
404# if BITS_PER_LONG == 32
405	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
406# else
407	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
408# endif
409#endif
410}
411EXPORT_SYMBOL(jiffies_to_usecs);
412
413/*
414 * mktime64 - Converts date to seconds.
 
 
 
 
 
 
 
415 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
416 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
417 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
418 *
419 * [For the Julian calendar (which was used in Russia before 1917,
420 * Britain & colonies before 1752, anywhere else before 1582,
421 * and is still in use by some communities) leave out the
422 * -year/100+year/400 terms, and add 10.]
423 *
424 * This algorithm was first published by Gauss (I think).
425 *
426 * A leap second can be indicated by calling this function with sec as
427 * 60 (allowable under ISO 8601).  The leap second is treated the same
428 * as the following second since they don't exist in UNIX time.
429 *
430 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
431 * tomorrow - (allowable under ISO 8601) is supported.
 
 
432 */
433time64_t mktime64(const unsigned int year0, const unsigned int mon0,
434		const unsigned int day, const unsigned int hour,
435		const unsigned int min, const unsigned int sec)
436{
437	unsigned int mon = mon0, year = year0;
438
439	/* 1..12 -> 11,12,1..10 */
440	if (0 >= (int) (mon -= 2)) {
441		mon += 12;	/* Puts Feb last since it has leap day */
442		year -= 1;
443	}
444
445	return ((((time64_t)
446		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
447		  year*365 - 719499
448	    )*24 + hour /* now have hours - midnight tomorrow handled here */
449	  )*60 + min /* now have minutes */
450	)*60 + sec; /* finally seconds */
451}
452EXPORT_SYMBOL(mktime64);
453
454/**
455 * ns_to_timespec - Convert nanoseconds to timespec
456 * @nsec:       the nanoseconds value to be converted
457 *
458 * Returns the timespec representation of the nsec parameter.
459 */
460struct timespec ns_to_timespec(const s64 nsec)
461{
462	struct timespec ts;
463	s32 rem;
464
465	if (!nsec)
466		return (struct timespec) {0, 0};
467
468	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
469	if (unlikely(rem < 0)) {
470		ts.tv_sec--;
471		rem += NSEC_PER_SEC;
472	}
473	ts.tv_nsec = rem;
474
475	return ts;
476}
477EXPORT_SYMBOL(ns_to_timespec);
478
479/**
480 * ns_to_timeval - Convert nanoseconds to timeval
481 * @nsec:       the nanoseconds value to be converted
482 *
483 * Returns the timeval representation of the nsec parameter.
484 */
485struct timeval ns_to_timeval(const s64 nsec)
486{
487	struct timespec ts = ns_to_timespec(nsec);
488	struct timeval tv;
489
490	tv.tv_sec = ts.tv_sec;
491	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
492
493	return tv;
494}
495EXPORT_SYMBOL(ns_to_timeval);
496
497struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
498{
499	struct timespec64 ts = ns_to_timespec64(nsec);
500	struct __kernel_old_timeval tv;
501
502	tv.tv_sec = ts.tv_sec;
503	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
504
505	return tv;
506}
507EXPORT_SYMBOL(ns_to_kernel_old_timeval);
508
509/**
510 * set_normalized_timespec - set timespec sec and nsec parts and normalize
511 *
512 * @ts:		pointer to timespec variable to be set
513 * @sec:	seconds to set
514 * @nsec:	nanoseconds to set
515 *
516 * Set seconds and nanoseconds field of a timespec variable and
517 * normalize to the timespec storage format
518 *
519 * Note: The tv_nsec part is always in the range of
520 *	0 <= tv_nsec < NSEC_PER_SEC
521 * For negative values only the tv_sec field is negative !
522 */
523void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
524{
525	while (nsec >= NSEC_PER_SEC) {
526		/*
527		 * The following asm() prevents the compiler from
528		 * optimising this loop into a modulo operation. See
529		 * also __iter_div_u64_rem() in include/linux/time.h
530		 */
531		asm("" : "+rm"(nsec));
532		nsec -= NSEC_PER_SEC;
533		++sec;
534	}
535	while (nsec < 0) {
536		asm("" : "+rm"(nsec));
537		nsec += NSEC_PER_SEC;
538		--sec;
539	}
540	ts->tv_sec = sec;
541	ts->tv_nsec = nsec;
542}
543EXPORT_SYMBOL(set_normalized_timespec64);
544
545/**
546 * ns_to_timespec64 - Convert nanoseconds to timespec64
547 * @nsec:       the nanoseconds value to be converted
548 *
549 * Returns the timespec64 representation of the nsec parameter.
550 */
551struct timespec64 ns_to_timespec64(const s64 nsec)
552{
553	struct timespec64 ts;
554	s32 rem;
555
556	if (!nsec)
557		return (struct timespec64) {0, 0};
558
559	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
560	if (unlikely(rem < 0)) {
561		ts.tv_sec--;
562		rem += NSEC_PER_SEC;
 
 
 
 
563	}
564	ts.tv_nsec = rem;
565
566	return ts;
567}
568EXPORT_SYMBOL(ns_to_timespec64);
569
570/**
571 * msecs_to_jiffies: - convert milliseconds to jiffies
572 * @m:	time in milliseconds
573 *
574 * conversion is done as follows:
575 *
576 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
577 *
578 * - 'too large' values [that would result in larger than
579 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
580 *
581 * - all other values are converted to jiffies by either multiplying
582 *   the input value by a factor or dividing it with a factor and
583 *   handling any 32-bit overflows.
584 *   for the details see __msecs_to_jiffies()
585 *
586 * msecs_to_jiffies() checks for the passed in value being a constant
587 * via __builtin_constant_p() allowing gcc to eliminate most of the
588 * code, __msecs_to_jiffies() is called if the value passed does not
589 * allow constant folding and the actual conversion must be done at
590 * runtime.
591 * the _msecs_to_jiffies helpers are the HZ dependent conversion
592 * routines found in include/linux/jiffies.h
 
 
593 */
594unsigned long __msecs_to_jiffies(const unsigned int m)
595{
596	/*
597	 * Negative value, means infinite timeout:
598	 */
599	if ((int)m < 0)
600		return MAX_JIFFY_OFFSET;
601	return _msecs_to_jiffies(m);
602}
603EXPORT_SYMBOL(__msecs_to_jiffies);
604
 
 
 
 
 
 
605unsigned long __usecs_to_jiffies(const unsigned int u)
606{
607	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
608		return MAX_JIFFY_OFFSET;
609	return _usecs_to_jiffies(u);
610}
611EXPORT_SYMBOL(__usecs_to_jiffies);
612
613/*
 
 
 
614 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
615 * that a remainder subtract here would not do the right thing as the
616 * resolution values don't fall on second boundries.  I.e. the line:
617 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
618 * Note that due to the small error in the multiplier here, this
619 * rounding is incorrect for sufficiently large values of tv_nsec, but
620 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
621 * OK.
622 *
623 * Rather, we just shift the bits off the right.
624 *
625 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
626 * value to a scaled second value.
 
 
627 */
628static unsigned long
629__timespec64_to_jiffies(u64 sec, long nsec)
630{
631	nsec = nsec + TICK_NSEC - 1;
 
632
633	if (sec >= MAX_SEC_IN_JIFFIES){
634		sec = MAX_SEC_IN_JIFFIES;
635		nsec = 0;
636	}
637	return ((sec * SEC_CONVERSION) +
638		(((u64)nsec * NSEC_CONVERSION) >>
639		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
640
641}
642
643static unsigned long
644__timespec_to_jiffies(unsigned long sec, long nsec)
645{
646	return __timespec64_to_jiffies((u64)sec, nsec);
647}
648
649unsigned long
650timespec64_to_jiffies(const struct timespec64 *value)
651{
652	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
653}
654EXPORT_SYMBOL(timespec64_to_jiffies);
655
 
 
 
 
 
656void
657jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
658{
659	/*
660	 * Convert jiffies to nanoseconds and separate with
661	 * one divide.
662	 */
663	u32 rem;
664	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
665				    NSEC_PER_SEC, &rem);
666	value->tv_nsec = rem;
667}
668EXPORT_SYMBOL(jiffies_to_timespec64);
669
670/*
671 * We could use a similar algorithm to timespec_to_jiffies (with a
672 * different multiplier for usec instead of nsec). But this has a
673 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
674 * usec value, since it's not necessarily integral.
675 *
676 * We could instead round in the intermediate scaled representation
677 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
678 * perilous: the scaling introduces a small positive error, which
679 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
680 * units to the intermediate before shifting) leads to accidental
681 * overflow and overestimates.
682 *
683 * At the cost of one additional multiplication by a constant, just
684 * use the timespec implementation.
685 */
686unsigned long
687timeval_to_jiffies(const struct timeval *value)
688{
689	return __timespec_to_jiffies(value->tv_sec,
690				     value->tv_usec * NSEC_PER_USEC);
691}
692EXPORT_SYMBOL(timeval_to_jiffies);
693
694void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
695{
696	/*
697	 * Convert jiffies to nanoseconds and separate with
698	 * one divide.
699	 */
700	u32 rem;
701
702	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
703				    NSEC_PER_SEC, &rem);
704	value->tv_usec = rem / NSEC_PER_USEC;
705}
706EXPORT_SYMBOL(jiffies_to_timeval);
707
708/*
709 * Convert jiffies/jiffies_64 to clock_t and back.
710 */
711clock_t jiffies_to_clock_t(unsigned long x)
712{
713#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
714# if HZ < USER_HZ
715	return x * (USER_HZ / HZ);
716# else
717	return x / (HZ / USER_HZ);
718# endif
719#else
720	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
721#endif
722}
723EXPORT_SYMBOL(jiffies_to_clock_t);
724
 
 
 
 
 
 
725unsigned long clock_t_to_jiffies(unsigned long x)
726{
727#if (HZ % USER_HZ)==0
728	if (x >= ~0UL / (HZ / USER_HZ))
729		return ~0UL;
730	return x * (HZ / USER_HZ);
731#else
732	/* Don't worry about loss of precision here .. */
733	if (x >= ~0UL / HZ * USER_HZ)
734		return ~0UL;
735
736	/* .. but do try to contain it here */
737	return div_u64((u64)x * HZ, USER_HZ);
738#endif
739}
740EXPORT_SYMBOL(clock_t_to_jiffies);
741
 
 
 
 
 
 
742u64 jiffies_64_to_clock_t(u64 x)
743{
744#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
745# if HZ < USER_HZ
746	x = div_u64(x * USER_HZ, HZ);
747# elif HZ > USER_HZ
748	x = div_u64(x, HZ / USER_HZ);
749# else
750	/* Nothing to do */
751# endif
752#else
753	/*
754	 * There are better ways that don't overflow early,
755	 * but even this doesn't overflow in hundreds of years
756	 * in 64 bits, so..
757	 */
758	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
759#endif
760	return x;
761}
762EXPORT_SYMBOL(jiffies_64_to_clock_t);
763
 
 
 
 
 
 
764u64 nsec_to_clock_t(u64 x)
765{
766#if (NSEC_PER_SEC % USER_HZ) == 0
767	return div_u64(x, NSEC_PER_SEC / USER_HZ);
768#elif (USER_HZ % 512) == 0
769	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
770#else
771	/*
772         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
773         * overflow after 64.99 years.
774         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
775         */
776	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
777#endif
778}
779
 
 
 
 
 
 
780u64 jiffies64_to_nsecs(u64 j)
781{
782#if !(NSEC_PER_SEC % HZ)
783	return (NSEC_PER_SEC / HZ) * j;
784# else
785	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
786#endif
787}
788EXPORT_SYMBOL(jiffies64_to_nsecs);
789
 
 
 
 
 
 
790u64 jiffies64_to_msecs(const u64 j)
791{
792#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
793	return (MSEC_PER_SEC / HZ) * j;
794#else
795	return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
796#endif
797}
798EXPORT_SYMBOL(jiffies64_to_msecs);
799
800/**
801 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
802 *
803 * @n:	nsecs in u64
804 *
805 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
806 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
807 * for scheduler, not for use in device drivers to calculate timeout value.
808 *
809 * note:
810 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
811 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 
 
812 */
813u64 nsecs_to_jiffies64(u64 n)
814{
815#if (NSEC_PER_SEC % HZ) == 0
816	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
817	return div_u64(n, NSEC_PER_SEC / HZ);
818#elif (HZ % 512) == 0
819	/* overflow after 292 years if HZ = 1024 */
820	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
821#else
822	/*
823	 * Generic case - optimized for cases where HZ is a multiple of 3.
824	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
825	 */
826	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
827#endif
828}
829EXPORT_SYMBOL(nsecs_to_jiffies64);
830
831/**
832 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
833 *
834 * @n:	nsecs in u64
835 *
836 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
837 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
838 * for scheduler, not for use in device drivers to calculate timeout value.
839 *
840 * note:
841 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
842 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 
 
843 */
844unsigned long nsecs_to_jiffies(u64 n)
845{
846	return (unsigned long)nsecs_to_jiffies64(n);
847}
848EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
849
850/*
851 * Add two timespec64 values and do a safety check for overflow.
 
 
 
 
852 * It's assumed that both values are valid (>= 0).
853 * And, each timespec64 is in normalized form.
 
 
854 */
855struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
856				const struct timespec64 rhs)
857{
858	struct timespec64 res;
859
860	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
861			lhs.tv_nsec + rhs.tv_nsec);
862
863	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
864		res.tv_sec = TIME64_MAX;
865		res.tv_nsec = 0;
866	}
867
868	return res;
869}
870
 
 
 
 
 
 
 
 
 
871int get_timespec64(struct timespec64 *ts,
872		   const struct __kernel_timespec __user *uts)
873{
874	struct __kernel_timespec kts;
875	int ret;
876
877	ret = copy_from_user(&kts, uts, sizeof(kts));
878	if (ret)
879		return -EFAULT;
880
881	ts->tv_sec = kts.tv_sec;
882
883	/* Zero out the padding for 32 bit systems or in compat mode */
884	if (IS_ENABLED(CONFIG_64BIT_TIME) && in_compat_syscall())
885		kts.tv_nsec &= 0xFFFFFFFFUL;
886
 
887	ts->tv_nsec = kts.tv_nsec;
888
889	return 0;
890}
891EXPORT_SYMBOL_GPL(get_timespec64);
892
 
 
 
 
 
 
 
 
893int put_timespec64(const struct timespec64 *ts,
894		   struct __kernel_timespec __user *uts)
895{
896	struct __kernel_timespec kts = {
897		.tv_sec = ts->tv_sec,
898		.tv_nsec = ts->tv_nsec
899	};
900
901	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
902}
903EXPORT_SYMBOL_GPL(put_timespec64);
904
905static int __get_old_timespec32(struct timespec64 *ts64,
906				   const struct old_timespec32 __user *cts)
907{
908	struct old_timespec32 ts;
909	int ret;
910
911	ret = copy_from_user(&ts, cts, sizeof(ts));
912	if (ret)
913		return -EFAULT;
914
915	ts64->tv_sec = ts.tv_sec;
916	ts64->tv_nsec = ts.tv_nsec;
917
918	return 0;
919}
920
921static int __put_old_timespec32(const struct timespec64 *ts64,
922				   struct old_timespec32 __user *cts)
923{
924	struct old_timespec32 ts = {
925		.tv_sec = ts64->tv_sec,
926		.tv_nsec = ts64->tv_nsec
927	};
928	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
929}
930
 
 
 
 
 
 
 
 
 
931int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
932{
933	if (COMPAT_USE_64BIT_TIME)
934		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
935	else
936		return __get_old_timespec32(ts, uts);
937}
938EXPORT_SYMBOL_GPL(get_old_timespec32);
939
 
 
 
 
 
 
 
 
 
 
940int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
941{
942	if (COMPAT_USE_64BIT_TIME)
943		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
944	else
945		return __put_old_timespec32(ts, uts);
946}
947EXPORT_SYMBOL_GPL(put_old_timespec32);
948
 
 
 
 
 
 
 
949int get_itimerspec64(struct itimerspec64 *it,
950			const struct __kernel_itimerspec __user *uit)
951{
952	int ret;
953
954	ret = get_timespec64(&it->it_interval, &uit->it_interval);
955	if (ret)
956		return ret;
957
958	ret = get_timespec64(&it->it_value, &uit->it_value);
959
960	return ret;
961}
962EXPORT_SYMBOL_GPL(get_itimerspec64);
963
 
 
 
 
 
 
 
 
964int put_itimerspec64(const struct itimerspec64 *it,
965			struct __kernel_itimerspec __user *uit)
966{
967	int ret;
968
969	ret = put_timespec64(&it->it_interval, &uit->it_interval);
970	if (ret)
971		return ret;
972
973	ret = put_timespec64(&it->it_value, &uit->it_value);
974
975	return ret;
976}
977EXPORT_SYMBOL_GPL(put_itimerspec64);
978
 
 
 
 
 
 
 
979int get_old_itimerspec32(struct itimerspec64 *its,
980			const struct old_itimerspec32 __user *uits)
981{
982
983	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
984	    __get_old_timespec32(&its->it_value, &uits->it_value))
985		return -EFAULT;
986	return 0;
987}
988EXPORT_SYMBOL_GPL(get_old_itimerspec32);
989
 
 
 
 
 
 
 
 
990int put_old_itimerspec32(const struct itimerspec64 *its,
991			struct old_itimerspec32 __user *uits)
992{
993	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
994	    __put_old_timespec32(&its->it_value, &uits->it_value))
995		return -EFAULT;
996	return 0;
997}
998EXPORT_SYMBOL_GPL(put_old_itimerspec32);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 *
   5 *  This file contains the interface functions for the various time related
   6 *  system calls: time, stime, gettimeofday, settimeofday, adjtime
   7 *
   8 * Modification history:
   9 *
  10 * 1993-09-02    Philip Gladstone
  11 *      Created file with time related functions from sched/core.c and adjtimex()
  12 * 1993-10-08    Torsten Duwe
  13 *      adjtime interface update and CMOS clock write code
  14 * 1995-08-13    Torsten Duwe
  15 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
  16 * 1999-01-16    Ulrich Windl
  17 *	Introduced error checking for many cases in adjtimex().
  18 *	Updated NTP code according to technical memorandum Jan '96
  19 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
  20 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  21 *	(Even though the technical memorandum forbids it)
  22 * 2004-07-14	 Christoph Lameter
  23 *	Added getnstimeofday to allow the posix timer functions to return
  24 *	with nanosecond accuracy
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/timex.h>
  30#include <linux/capability.h>
  31#include <linux/timekeeper_internal.h>
  32#include <linux/errno.h>
  33#include <linux/syscalls.h>
  34#include <linux/security.h>
  35#include <linux/fs.h>
  36#include <linux/math64.h>
  37#include <linux/ptrace.h>
  38
  39#include <linux/uaccess.h>
  40#include <linux/compat.h>
  41#include <asm/unistd.h>
  42
  43#include <generated/timeconst.h>
  44#include "timekeeping.h"
  45
  46/*
  47 * The timezone where the local system is located.  Used as a default by some
  48 * programs who obtain this value by using gettimeofday.
  49 */
  50struct timezone sys_tz;
  51
  52EXPORT_SYMBOL(sys_tz);
  53
  54#ifdef __ARCH_WANT_SYS_TIME
  55
  56/*
  57 * sys_time() can be implemented in user-level using
  58 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
  59 * why not move it into the appropriate arch directory (for those
  60 * architectures that need it).
  61 */
  62SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
  63{
  64	__kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
  65
  66	if (tloc) {
  67		if (put_user(i,tloc))
  68			return -EFAULT;
  69	}
  70	force_successful_syscall_return();
  71	return i;
  72}
  73
  74/*
  75 * sys_stime() can be implemented in user-level using
  76 * sys_settimeofday().  Is this for backwards compatibility?  If so,
  77 * why not move it into the appropriate arch directory (for those
  78 * architectures that need it).
  79 */
  80
  81SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
  82{
  83	struct timespec64 tv;
  84	int err;
  85
  86	if (get_user(tv.tv_sec, tptr))
  87		return -EFAULT;
  88
  89	tv.tv_nsec = 0;
  90
  91	err = security_settime64(&tv, NULL);
  92	if (err)
  93		return err;
  94
  95	do_settimeofday64(&tv);
  96	return 0;
  97}
  98
  99#endif /* __ARCH_WANT_SYS_TIME */
 100
 101#ifdef CONFIG_COMPAT_32BIT_TIME
 102#ifdef __ARCH_WANT_SYS_TIME32
 103
 104/* old_time32_t is a 32 bit "long" and needs to get converted. */
 105SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
 106{
 107	old_time32_t i;
 108
 109	i = (old_time32_t)ktime_get_real_seconds();
 110
 111	if (tloc) {
 112		if (put_user(i,tloc))
 113			return -EFAULT;
 114	}
 115	force_successful_syscall_return();
 116	return i;
 117}
 118
 119SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
 120{
 121	struct timespec64 tv;
 122	int err;
 123
 124	if (get_user(tv.tv_sec, tptr))
 125		return -EFAULT;
 126
 127	tv.tv_nsec = 0;
 128
 129	err = security_settime64(&tv, NULL);
 130	if (err)
 131		return err;
 132
 133	do_settimeofday64(&tv);
 134	return 0;
 135}
 136
 137#endif /* __ARCH_WANT_SYS_TIME32 */
 138#endif
 139
 140SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
 141		struct timezone __user *, tz)
 142{
 143	if (likely(tv != NULL)) {
 144		struct timespec64 ts;
 145
 146		ktime_get_real_ts64(&ts);
 147		if (put_user(ts.tv_sec, &tv->tv_sec) ||
 148		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
 149			return -EFAULT;
 150	}
 151	if (unlikely(tz != NULL)) {
 152		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 153			return -EFAULT;
 154	}
 155	return 0;
 156}
 157
 158/*
 159 * In case for some reason the CMOS clock has not already been running
 160 * in UTC, but in some local time: The first time we set the timezone,
 161 * we will warp the clock so that it is ticking UTC time instead of
 162 * local time. Presumably, if someone is setting the timezone then we
 163 * are running in an environment where the programs understand about
 164 * timezones. This should be done at boot time in the /etc/rc script,
 165 * as soon as possible, so that the clock can be set right. Otherwise,
 166 * various programs will get confused when the clock gets warped.
 167 */
 168
 169int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
 170{
 171	static int firsttime = 1;
 172	int error = 0;
 173
 174	if (tv && !timespec64_valid_settod(tv))
 175		return -EINVAL;
 176
 177	error = security_settime64(tv, tz);
 178	if (error)
 179		return error;
 180
 181	if (tz) {
 182		/* Verify we're within the +-15 hrs range */
 183		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
 184			return -EINVAL;
 185
 186		sys_tz = *tz;
 187		update_vsyscall_tz();
 188		if (firsttime) {
 189			firsttime = 0;
 190			if (!tv)
 191				timekeeping_warp_clock();
 192		}
 193	}
 194	if (tv)
 195		return do_settimeofday64(tv);
 196	return 0;
 197}
 198
 199SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
 200		struct timezone __user *, tz)
 201{
 202	struct timespec64 new_ts;
 
 203	struct timezone new_tz;
 204
 205	if (tv) {
 206		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
 207		    get_user(new_ts.tv_nsec, &tv->tv_usec))
 208			return -EFAULT;
 209
 210		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
 211			return -EINVAL;
 212
 213		new_ts.tv_nsec *= NSEC_PER_USEC;
 
 214	}
 215	if (tz) {
 216		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 217			return -EFAULT;
 218	}
 219
 220	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 221}
 222
 223#ifdef CONFIG_COMPAT
 224COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
 225		       struct timezone __user *, tz)
 226{
 227	if (tv) {
 228		struct timespec64 ts;
 229
 230		ktime_get_real_ts64(&ts);
 231		if (put_user(ts.tv_sec, &tv->tv_sec) ||
 232		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
 233			return -EFAULT;
 234	}
 235	if (tz) {
 236		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 237			return -EFAULT;
 238	}
 239
 240	return 0;
 241}
 242
 243COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
 244		       struct timezone __user *, tz)
 245{
 246	struct timespec64 new_ts;
 
 247	struct timezone new_tz;
 248
 249	if (tv) {
 250		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
 251		    get_user(new_ts.tv_nsec, &tv->tv_usec))
 252			return -EFAULT;
 253
 254		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
 255			return -EINVAL;
 256
 257		new_ts.tv_nsec *= NSEC_PER_USEC;
 
 258	}
 259	if (tz) {
 260		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 261			return -EFAULT;
 262	}
 263
 264	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 265}
 266#endif
 267
 268#ifdef CONFIG_64BIT
 269SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
 270{
 271	struct __kernel_timex txc;		/* Local copy of parameter */
 272	int ret;
 273
 274	/* Copy the user data space into the kernel copy
 275	 * structure. But bear in mind that the structures
 276	 * may change
 277	 */
 278	if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
 279		return -EFAULT;
 280	ret = do_adjtimex(&txc);
 281	return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
 282}
 283#endif
 284
 285#ifdef CONFIG_COMPAT_32BIT_TIME
 286int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
 287{
 288	struct old_timex32 tx32;
 289
 290	memset(txc, 0, sizeof(struct __kernel_timex));
 291	if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
 292		return -EFAULT;
 293
 294	txc->modes = tx32.modes;
 295	txc->offset = tx32.offset;
 296	txc->freq = tx32.freq;
 297	txc->maxerror = tx32.maxerror;
 298	txc->esterror = tx32.esterror;
 299	txc->status = tx32.status;
 300	txc->constant = tx32.constant;
 301	txc->precision = tx32.precision;
 302	txc->tolerance = tx32.tolerance;
 303	txc->time.tv_sec = tx32.time.tv_sec;
 304	txc->time.tv_usec = tx32.time.tv_usec;
 305	txc->tick = tx32.tick;
 306	txc->ppsfreq = tx32.ppsfreq;
 307	txc->jitter = tx32.jitter;
 308	txc->shift = tx32.shift;
 309	txc->stabil = tx32.stabil;
 310	txc->jitcnt = tx32.jitcnt;
 311	txc->calcnt = tx32.calcnt;
 312	txc->errcnt = tx32.errcnt;
 313	txc->stbcnt = tx32.stbcnt;
 314
 315	return 0;
 316}
 317
 318int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
 319{
 320	struct old_timex32 tx32;
 321
 322	memset(&tx32, 0, sizeof(struct old_timex32));
 323	tx32.modes = txc->modes;
 324	tx32.offset = txc->offset;
 325	tx32.freq = txc->freq;
 326	tx32.maxerror = txc->maxerror;
 327	tx32.esterror = txc->esterror;
 328	tx32.status = txc->status;
 329	tx32.constant = txc->constant;
 330	tx32.precision = txc->precision;
 331	tx32.tolerance = txc->tolerance;
 332	tx32.time.tv_sec = txc->time.tv_sec;
 333	tx32.time.tv_usec = txc->time.tv_usec;
 334	tx32.tick = txc->tick;
 335	tx32.ppsfreq = txc->ppsfreq;
 336	tx32.jitter = txc->jitter;
 337	tx32.shift = txc->shift;
 338	tx32.stabil = txc->stabil;
 339	tx32.jitcnt = txc->jitcnt;
 340	tx32.calcnt = txc->calcnt;
 341	tx32.errcnt = txc->errcnt;
 342	tx32.stbcnt = txc->stbcnt;
 343	tx32.tai = txc->tai;
 344	if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
 345		return -EFAULT;
 346	return 0;
 347}
 348
 349SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
 350{
 351	struct __kernel_timex txc;
 352	int err, ret;
 353
 354	err = get_old_timex32(&txc, utp);
 355	if (err)
 356		return err;
 357
 358	ret = do_adjtimex(&txc);
 359
 360	err = put_old_timex32(utp, &txc);
 361	if (err)
 362		return err;
 363
 364	return ret;
 365}
 366#endif
 367
 368/**
 369 * jiffies_to_msecs - Convert jiffies to milliseconds
 370 * @j: jiffies value
 371 *
 372 * Avoid unnecessary multiplications/divisions in the
 373 * two most common HZ cases.
 374 *
 375 * Return: milliseconds value
 376 */
 377unsigned int jiffies_to_msecs(const unsigned long j)
 378{
 379#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 380	return (MSEC_PER_SEC / HZ) * j;
 381#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 382	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
 383#else
 384# if BITS_PER_LONG == 32
 385	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
 386	       HZ_TO_MSEC_SHR32;
 387# else
 388	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
 389# endif
 390#endif
 391}
 392EXPORT_SYMBOL(jiffies_to_msecs);
 393
 394/**
 395 * jiffies_to_usecs - Convert jiffies to microseconds
 396 * @j: jiffies value
 397 *
 398 * Return: microseconds value
 399 */
 400unsigned int jiffies_to_usecs(const unsigned long j)
 401{
 402	/*
 403	 * Hz usually doesn't go much further MSEC_PER_SEC.
 404	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
 405	 */
 406	BUILD_BUG_ON(HZ > USEC_PER_SEC);
 407
 408#if !(USEC_PER_SEC % HZ)
 409	return (USEC_PER_SEC / HZ) * j;
 410#else
 411# if BITS_PER_LONG == 32
 412	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
 413# else
 414	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
 415# endif
 416#endif
 417}
 418EXPORT_SYMBOL(jiffies_to_usecs);
 419
 420/**
 421 * mktime64 - Converts date to seconds.
 422 * @year0: year to convert
 423 * @mon0: month to convert
 424 * @day: day to convert
 425 * @hour: hour to convert
 426 * @min: minute to convert
 427 * @sec: second to convert
 428 *
 429 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 430 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 431 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 432 *
 433 * [For the Julian calendar (which was used in Russia before 1917,
 434 * Britain & colonies before 1752, anywhere else before 1582,
 435 * and is still in use by some communities) leave out the
 436 * -year/100+year/400 terms, and add 10.]
 437 *
 438 * This algorithm was first published by Gauss (I think).
 439 *
 440 * A leap second can be indicated by calling this function with sec as
 441 * 60 (allowable under ISO 8601).  The leap second is treated the same
 442 * as the following second since they don't exist in UNIX time.
 443 *
 444 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
 445 * tomorrow - (allowable under ISO 8601) is supported.
 446 *
 447 * Return: seconds since the epoch time for the given input date
 448 */
 449time64_t mktime64(const unsigned int year0, const unsigned int mon0,
 450		const unsigned int day, const unsigned int hour,
 451		const unsigned int min, const unsigned int sec)
 452{
 453	unsigned int mon = mon0, year = year0;
 454
 455	/* 1..12 -> 11,12,1..10 */
 456	if (0 >= (int) (mon -= 2)) {
 457		mon += 12;	/* Puts Feb last since it has leap day */
 458		year -= 1;
 459	}
 460
 461	return ((((time64_t)
 462		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
 463		  year*365 - 719499
 464	    )*24 + hour /* now have hours - midnight tomorrow handled here */
 465	  )*60 + min /* now have minutes */
 466	)*60 + sec; /* finally seconds */
 467}
 468EXPORT_SYMBOL(mktime64);
 469
 470struct __kernel_old_timeval ns_to_kernel_old_timeval(s64 nsec)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471{
 472	struct timespec64 ts = ns_to_timespec64(nsec);
 473	struct __kernel_old_timeval tv;
 474
 475	tv.tv_sec = ts.tv_sec;
 476	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
 477
 478	return tv;
 479}
 480EXPORT_SYMBOL(ns_to_kernel_old_timeval);
 481
 482/**
 483 * set_normalized_timespec64 - set timespec sec and nsec parts and normalize
 484 *
 485 * @ts:		pointer to timespec variable to be set
 486 * @sec:	seconds to set
 487 * @nsec:	nanoseconds to set
 488 *
 489 * Set seconds and nanoseconds field of a timespec variable and
 490 * normalize to the timespec storage format
 491 *
 492 * Note: The tv_nsec part is always in the range of 0 <= tv_nsec < NSEC_PER_SEC.
 
 493 * For negative values only the tv_sec field is negative !
 494 */
 495void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
 496{
 497	while (nsec >= NSEC_PER_SEC) {
 498		/*
 499		 * The following asm() prevents the compiler from
 500		 * optimising this loop into a modulo operation. See
 501		 * also __iter_div_u64_rem() in include/linux/time.h
 502		 */
 503		asm("" : "+rm"(nsec));
 504		nsec -= NSEC_PER_SEC;
 505		++sec;
 506	}
 507	while (nsec < 0) {
 508		asm("" : "+rm"(nsec));
 509		nsec += NSEC_PER_SEC;
 510		--sec;
 511	}
 512	ts->tv_sec = sec;
 513	ts->tv_nsec = nsec;
 514}
 515EXPORT_SYMBOL(set_normalized_timespec64);
 516
 517/**
 518 * ns_to_timespec64 - Convert nanoseconds to timespec64
 519 * @nsec:       the nanoseconds value to be converted
 520 *
 521 * Return: the timespec64 representation of the nsec parameter.
 522 */
 523struct timespec64 ns_to_timespec64(s64 nsec)
 524{
 525	struct timespec64 ts = { 0, 0 };
 526	s32 rem;
 527
 528	if (likely(nsec > 0)) {
 529		ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
 530		ts.tv_nsec = rem;
 531	} else if (nsec < 0) {
 532		/*
 533		 * With negative times, tv_sec points to the earlier
 534		 * second, and tv_nsec counts the nanoseconds since
 535		 * then, so tv_nsec is always a positive number.
 536		 */
 537		ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
 538		ts.tv_nsec = NSEC_PER_SEC - rem - 1;
 539	}
 
 540
 541	return ts;
 542}
 543EXPORT_SYMBOL(ns_to_timespec64);
 544
 545/**
 546 * __msecs_to_jiffies: - convert milliseconds to jiffies
 547 * @m:	time in milliseconds
 548 *
 549 * conversion is done as follows:
 550 *
 551 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 552 *
 553 * - 'too large' values [that would result in larger than
 554 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 555 *
 556 * - all other values are converted to jiffies by either multiplying
 557 *   the input value by a factor or dividing it with a factor and
 558 *   handling any 32-bit overflows.
 559 *   for the details see _msecs_to_jiffies()
 560 *
 561 * msecs_to_jiffies() checks for the passed in value being a constant
 562 * via __builtin_constant_p() allowing gcc to eliminate most of the
 563 * code, __msecs_to_jiffies() is called if the value passed does not
 564 * allow constant folding and the actual conversion must be done at
 565 * runtime.
 566 * The _msecs_to_jiffies helpers are the HZ dependent conversion
 567 * routines found in include/linux/jiffies.h
 568 *
 569 * Return: jiffies value
 570 */
 571unsigned long __msecs_to_jiffies(const unsigned int m)
 572{
 573	/*
 574	 * Negative value, means infinite timeout:
 575	 */
 576	if ((int)m < 0)
 577		return MAX_JIFFY_OFFSET;
 578	return _msecs_to_jiffies(m);
 579}
 580EXPORT_SYMBOL(__msecs_to_jiffies);
 581
 582/**
 583 * __usecs_to_jiffies: - convert microseconds to jiffies
 584 * @u:	time in milliseconds
 585 *
 586 * Return: jiffies value
 587 */
 588unsigned long __usecs_to_jiffies(const unsigned int u)
 589{
 590	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 591		return MAX_JIFFY_OFFSET;
 592	return _usecs_to_jiffies(u);
 593}
 594EXPORT_SYMBOL(__usecs_to_jiffies);
 595
 596/**
 597 * timespec64_to_jiffies - convert a timespec64 value to jiffies
 598 * @value: pointer to &struct timespec64
 599 *
 600 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 601 * that a remainder subtract here would not do the right thing as the
 602 * resolution values don't fall on second boundaries.  I.e. the line:
 603 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
 604 * Note that due to the small error in the multiplier here, this
 605 * rounding is incorrect for sufficiently large values of tv_nsec, but
 606 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
 607 * OK.
 608 *
 609 * Rather, we just shift the bits off the right.
 610 *
 611 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 612 * value to a scaled second value.
 613 *
 614 * Return: jiffies value
 615 */
 616unsigned long
 617timespec64_to_jiffies(const struct timespec64 *value)
 618{
 619	u64 sec = value->tv_sec;
 620	long nsec = value->tv_nsec + TICK_NSEC - 1;
 621
 622	if (sec >= MAX_SEC_IN_JIFFIES){
 623		sec = MAX_SEC_IN_JIFFIES;
 624		nsec = 0;
 625	}
 626	return ((sec * SEC_CONVERSION) +
 627		(((u64)nsec * NSEC_CONVERSION) >>
 628		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
 629
 630}
 
 
 
 
 
 
 
 
 
 
 
 
 631EXPORT_SYMBOL(timespec64_to_jiffies);
 632
 633/**
 634 * jiffies_to_timespec64 - convert jiffies value to &struct timespec64
 635 * @jiffies: jiffies value
 636 * @value: pointer to &struct timespec64
 637 */
 638void
 639jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
 640{
 641	/*
 642	 * Convert jiffies to nanoseconds and separate with
 643	 * one divide.
 644	 */
 645	u32 rem;
 646	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
 647				    NSEC_PER_SEC, &rem);
 648	value->tv_nsec = rem;
 649}
 650EXPORT_SYMBOL(jiffies_to_timespec64);
 651
 652/*
 653 * Convert jiffies/jiffies_64 to clock_t and back.
 
 
 
 
 
 
 
 
 
 
 
 
 
 654 */
 
 
 
 
 
 
 
 655
 656/**
 657 * jiffies_to_clock_t - Convert jiffies to clock_t
 658 * @x: jiffies value
 659 *
 660 * Return: jiffies converted to clock_t (CLOCKS_PER_SEC)
 
 
 
 
 
 
 
 
 
 
 
 661 */
 662clock_t jiffies_to_clock_t(unsigned long x)
 663{
 664#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 665# if HZ < USER_HZ
 666	return x * (USER_HZ / HZ);
 667# else
 668	return x / (HZ / USER_HZ);
 669# endif
 670#else
 671	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
 672#endif
 673}
 674EXPORT_SYMBOL(jiffies_to_clock_t);
 675
 676/**
 677 * clock_t_to_jiffies - Convert clock_t to jiffies
 678 * @x: clock_t value
 679 *
 680 * Return: clock_t value converted to jiffies
 681 */
 682unsigned long clock_t_to_jiffies(unsigned long x)
 683{
 684#if (HZ % USER_HZ)==0
 685	if (x >= ~0UL / (HZ / USER_HZ))
 686		return ~0UL;
 687	return x * (HZ / USER_HZ);
 688#else
 689	/* Don't worry about loss of precision here .. */
 690	if (x >= ~0UL / HZ * USER_HZ)
 691		return ~0UL;
 692
 693	/* .. but do try to contain it here */
 694	return div_u64((u64)x * HZ, USER_HZ);
 695#endif
 696}
 697EXPORT_SYMBOL(clock_t_to_jiffies);
 698
 699/**
 700 * jiffies_64_to_clock_t - Convert jiffies_64 to clock_t
 701 * @x: jiffies_64 value
 702 *
 703 * Return: jiffies_64 value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
 704 */
 705u64 jiffies_64_to_clock_t(u64 x)
 706{
 707#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 708# if HZ < USER_HZ
 709	x = div_u64(x * USER_HZ, HZ);
 710# elif HZ > USER_HZ
 711	x = div_u64(x, HZ / USER_HZ);
 712# else
 713	/* Nothing to do */
 714# endif
 715#else
 716	/*
 717	 * There are better ways that don't overflow early,
 718	 * but even this doesn't overflow in hundreds of years
 719	 * in 64 bits, so..
 720	 */
 721	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
 722#endif
 723	return x;
 724}
 725EXPORT_SYMBOL(jiffies_64_to_clock_t);
 726
 727/**
 728 * nsec_to_clock_t - Convert nsec value to clock_t
 729 * @x: nsec value
 730 *
 731 * Return: nsec value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
 732 */
 733u64 nsec_to_clock_t(u64 x)
 734{
 735#if (NSEC_PER_SEC % USER_HZ) == 0
 736	return div_u64(x, NSEC_PER_SEC / USER_HZ);
 737#elif (USER_HZ % 512) == 0
 738	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
 739#else
 740	/*
 741         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
 742         * overflow after 64.99 years.
 743         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
 744         */
 745	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
 746#endif
 747}
 748
 749/**
 750 * jiffies64_to_nsecs - Convert jiffies64 to nanoseconds
 751 * @j: jiffies64 value
 752 *
 753 * Return: nanoseconds value
 754 */
 755u64 jiffies64_to_nsecs(u64 j)
 756{
 757#if !(NSEC_PER_SEC % HZ)
 758	return (NSEC_PER_SEC / HZ) * j;
 759# else
 760	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
 761#endif
 762}
 763EXPORT_SYMBOL(jiffies64_to_nsecs);
 764
 765/**
 766 * jiffies64_to_msecs - Convert jiffies64 to milliseconds
 767 * @j: jiffies64 value
 768 *
 769 * Return: milliseconds value
 770 */
 771u64 jiffies64_to_msecs(const u64 j)
 772{
 773#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 774	return (MSEC_PER_SEC / HZ) * j;
 775#else
 776	return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
 777#endif
 778}
 779EXPORT_SYMBOL(jiffies64_to_msecs);
 780
 781/**
 782 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
 783 *
 784 * @n:	nsecs in u64
 785 *
 786 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 787 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 788 * for scheduler, not for use in device drivers to calculate timeout value.
 789 *
 790 * note:
 791 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 792 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 793 *
 794 * Return: nsecs converted to jiffies64 value
 795 */
 796u64 nsecs_to_jiffies64(u64 n)
 797{
 798#if (NSEC_PER_SEC % HZ) == 0
 799	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
 800	return div_u64(n, NSEC_PER_SEC / HZ);
 801#elif (HZ % 512) == 0
 802	/* overflow after 292 years if HZ = 1024 */
 803	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
 804#else
 805	/*
 806	 * Generic case - optimized for cases where HZ is a multiple of 3.
 807	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
 808	 */
 809	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
 810#endif
 811}
 812EXPORT_SYMBOL(nsecs_to_jiffies64);
 813
 814/**
 815 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 816 *
 817 * @n:	nsecs in u64
 818 *
 819 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 820 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 821 * for scheduler, not for use in device drivers to calculate timeout value.
 822 *
 823 * note:
 824 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 825 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 826 *
 827 * Return: nsecs converted to jiffies value
 828 */
 829unsigned long nsecs_to_jiffies(u64 n)
 830{
 831	return (unsigned long)nsecs_to_jiffies64(n);
 832}
 833EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
 834
 835/**
 836 * timespec64_add_safe - Add two timespec64 values and do a safety check
 837 * for overflow.
 838 * @lhs: first (left) timespec64 to add
 839 * @rhs: second (right) timespec64 to add
 840 *
 841 * It's assumed that both values are valid (>= 0).
 842 * And, each timespec64 is in normalized form.
 843 *
 844 * Return: sum of @lhs + @rhs
 845 */
 846struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
 847				const struct timespec64 rhs)
 848{
 849	struct timespec64 res;
 850
 851	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
 852			lhs.tv_nsec + rhs.tv_nsec);
 853
 854	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
 855		res.tv_sec = TIME64_MAX;
 856		res.tv_nsec = 0;
 857	}
 858
 859	return res;
 860}
 861
 862/**
 863 * get_timespec64 - get user's time value into kernel space
 864 * @ts: destination &struct timespec64
 865 * @uts: user's time value as &struct __kernel_timespec
 866 *
 867 * Handles compat or 32-bit modes.
 868 *
 869 * Return: 0 on success or negative errno on error
 870 */
 871int get_timespec64(struct timespec64 *ts,
 872		   const struct __kernel_timespec __user *uts)
 873{
 874	struct __kernel_timespec kts;
 875	int ret;
 876
 877	ret = copy_from_user(&kts, uts, sizeof(kts));
 878	if (ret)
 879		return -EFAULT;
 880
 881	ts->tv_sec = kts.tv_sec;
 882
 883	/* Zero out the padding in compat mode */
 884	if (in_compat_syscall())
 885		kts.tv_nsec &= 0xFFFFFFFFUL;
 886
 887	/* In 32-bit mode, this drops the padding */
 888	ts->tv_nsec = kts.tv_nsec;
 889
 890	return 0;
 891}
 892EXPORT_SYMBOL_GPL(get_timespec64);
 893
 894/**
 895 * put_timespec64 - convert timespec64 value to __kernel_timespec format and
 896 * 		    copy the latter to userspace
 897 * @ts: input &struct timespec64
 898 * @uts: user's &struct __kernel_timespec
 899 *
 900 * Return: 0 on success or negative errno on error
 901 */
 902int put_timespec64(const struct timespec64 *ts,
 903		   struct __kernel_timespec __user *uts)
 904{
 905	struct __kernel_timespec kts = {
 906		.tv_sec = ts->tv_sec,
 907		.tv_nsec = ts->tv_nsec
 908	};
 909
 910	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
 911}
 912EXPORT_SYMBOL_GPL(put_timespec64);
 913
 914static int __get_old_timespec32(struct timespec64 *ts64,
 915				   const struct old_timespec32 __user *cts)
 916{
 917	struct old_timespec32 ts;
 918	int ret;
 919
 920	ret = copy_from_user(&ts, cts, sizeof(ts));
 921	if (ret)
 922		return -EFAULT;
 923
 924	ts64->tv_sec = ts.tv_sec;
 925	ts64->tv_nsec = ts.tv_nsec;
 926
 927	return 0;
 928}
 929
 930static int __put_old_timespec32(const struct timespec64 *ts64,
 931				   struct old_timespec32 __user *cts)
 932{
 933	struct old_timespec32 ts = {
 934		.tv_sec = ts64->tv_sec,
 935		.tv_nsec = ts64->tv_nsec
 936	};
 937	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
 938}
 939
 940/**
 941 * get_old_timespec32 - get user's old-format time value into kernel space
 942 * @ts: destination &struct timespec64
 943 * @uts: user's old-format time value (&struct old_timespec32)
 944 *
 945 * Handles X86_X32_ABI compatibility conversion.
 946 *
 947 * Return: 0 on success or negative errno on error
 948 */
 949int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
 950{
 951	if (COMPAT_USE_64BIT_TIME)
 952		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
 953	else
 954		return __get_old_timespec32(ts, uts);
 955}
 956EXPORT_SYMBOL_GPL(get_old_timespec32);
 957
 958/**
 959 * put_old_timespec32 - convert timespec64 value to &struct old_timespec32 and
 960 * 			copy the latter to userspace
 961 * @ts: input &struct timespec64
 962 * @uts: user's &struct old_timespec32
 963 *
 964 * Handles X86_X32_ABI compatibility conversion.
 965 *
 966 * Return: 0 on success or negative errno on error
 967 */
 968int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
 969{
 970	if (COMPAT_USE_64BIT_TIME)
 971		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
 972	else
 973		return __put_old_timespec32(ts, uts);
 974}
 975EXPORT_SYMBOL_GPL(put_old_timespec32);
 976
 977/**
 978 * get_itimerspec64 - get user's &struct __kernel_itimerspec into kernel space
 979 * @it: destination &struct itimerspec64
 980 * @uit: user's &struct __kernel_itimerspec
 981 *
 982 * Return: 0 on success or negative errno on error
 983 */
 984int get_itimerspec64(struct itimerspec64 *it,
 985			const struct __kernel_itimerspec __user *uit)
 986{
 987	int ret;
 988
 989	ret = get_timespec64(&it->it_interval, &uit->it_interval);
 990	if (ret)
 991		return ret;
 992
 993	ret = get_timespec64(&it->it_value, &uit->it_value);
 994
 995	return ret;
 996}
 997EXPORT_SYMBOL_GPL(get_itimerspec64);
 998
 999/**
1000 * put_itimerspec64 - convert &struct itimerspec64 to __kernel_itimerspec format
1001 * 		      and copy the latter to userspace
1002 * @it: input &struct itimerspec64
1003 * @uit: user's &struct __kernel_itimerspec
1004 *
1005 * Return: 0 on success or negative errno on error
1006 */
1007int put_itimerspec64(const struct itimerspec64 *it,
1008			struct __kernel_itimerspec __user *uit)
1009{
1010	int ret;
1011
1012	ret = put_timespec64(&it->it_interval, &uit->it_interval);
1013	if (ret)
1014		return ret;
1015
1016	ret = put_timespec64(&it->it_value, &uit->it_value);
1017
1018	return ret;
1019}
1020EXPORT_SYMBOL_GPL(put_itimerspec64);
1021
1022/**
1023 * get_old_itimerspec32 - get user's &struct old_itimerspec32 into kernel space
1024 * @its: destination &struct itimerspec64
1025 * @uits: user's &struct old_itimerspec32
1026 *
1027 * Return: 0 on success or negative errno on error
1028 */
1029int get_old_itimerspec32(struct itimerspec64 *its,
1030			const struct old_itimerspec32 __user *uits)
1031{
1032
1033	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
1034	    __get_old_timespec32(&its->it_value, &uits->it_value))
1035		return -EFAULT;
1036	return 0;
1037}
1038EXPORT_SYMBOL_GPL(get_old_itimerspec32);
1039
1040/**
1041 * put_old_itimerspec32 - convert &struct itimerspec64 to &struct
1042 *			  old_itimerspec32 and copy the latter to userspace
1043 * @its: input &struct itimerspec64
1044 * @uits: user's &struct old_itimerspec32
1045 *
1046 * Return: 0 on success or negative errno on error
1047 */
1048int put_old_itimerspec32(const struct itimerspec64 *its,
1049			struct old_itimerspec32 __user *uits)
1050{
1051	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
1052	    __put_old_timespec32(&its->it_value, &uits->it_value))
1053		return -EFAULT;
1054	return 0;
1055}
1056EXPORT_SYMBOL_GPL(put_old_itimerspec32);