Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  Copyright (C) 1991, 1992  Linus Torvalds
  4 *
  5 *  This file contains the interface functions for the various time related
  6 *  system calls: time, stime, gettimeofday, settimeofday, adjtime
  7 *
  8 * Modification history:
 
 
 
 
 
  9 *
 10 * 1993-09-02    Philip Gladstone
 11 *      Created file with time related functions from sched/core.c and adjtimex()
 12 * 1993-10-08    Torsten Duwe
 13 *      adjtime interface update and CMOS clock write code
 14 * 1995-08-13    Torsten Duwe
 15 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 16 * 1999-01-16    Ulrich Windl
 17 *	Introduced error checking for many cases in adjtimex().
 18 *	Updated NTP code according to technical memorandum Jan '96
 19 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 20 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 21 *	(Even though the technical memorandum forbids it)
 22 * 2004-07-14	 Christoph Lameter
 23 *	Added getnstimeofday to allow the posix timer functions to return
 24 *	with nanosecond accuracy
 25 */
 26
 27#include <linux/export.h>
 28#include <linux/kernel.h>
 29#include <linux/timex.h>
 30#include <linux/capability.h>
 31#include <linux/timekeeper_internal.h>
 32#include <linux/errno.h>
 33#include <linux/syscalls.h>
 34#include <linux/security.h>
 35#include <linux/fs.h>
 36#include <linux/math64.h>
 37#include <linux/ptrace.h>
 38
 39#include <linux/uaccess.h>
 40#include <linux/compat.h>
 41#include <asm/unistd.h>
 42
 43#include <generated/timeconst.h>
 44#include "timekeeping.h"
 45
 46/*
 47 * The timezone where the local system is located.  Used as a default by some
 48 * programs who obtain this value by using gettimeofday.
 49 */
 50struct timezone sys_tz;
 51
 52EXPORT_SYMBOL(sys_tz);
 53
 54#ifdef __ARCH_WANT_SYS_TIME
 55
 56/*
 57 * sys_time() can be implemented in user-level using
 58 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 59 * why not move it into the appropriate arch directory (for those
 60 * architectures that need it).
 61 */
 62SYSCALL_DEFINE1(time, time_t __user *, tloc)
 63{
 64	time_t i = (time_t)ktime_get_real_seconds();
 65
 66	if (tloc) {
 67		if (put_user(i,tloc))
 68			return -EFAULT;
 69	}
 70	force_successful_syscall_return();
 71	return i;
 72}
 73
 74/*
 75 * sys_stime() can be implemented in user-level using
 76 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 77 * why not move it into the appropriate arch directory (for those
 78 * architectures that need it).
 79 */
 80
 81SYSCALL_DEFINE1(stime, time_t __user *, tptr)
 82{
 83	struct timespec64 tv;
 84	int err;
 85
 86	if (get_user(tv.tv_sec, tptr))
 87		return -EFAULT;
 88
 89	tv.tv_nsec = 0;
 90
 91	err = security_settime64(&tv, NULL);
 92	if (err)
 93		return err;
 94
 95	do_settimeofday64(&tv);
 96	return 0;
 97}
 98
 99#endif /* __ARCH_WANT_SYS_TIME */
100
101#ifdef CONFIG_COMPAT_32BIT_TIME
102#ifdef __ARCH_WANT_SYS_TIME32
103
104/* old_time32_t is a 32 bit "long" and needs to get converted. */
105SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
106{
107	old_time32_t i;
108
109	i = (old_time32_t)ktime_get_real_seconds();
110
111	if (tloc) {
112		if (put_user(i,tloc))
113			return -EFAULT;
114	}
115	force_successful_syscall_return();
116	return i;
117}
118
119SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
120{
121	struct timespec64 tv;
122	int err;
123
124	if (get_user(tv.tv_sec, tptr))
125		return -EFAULT;
126
127	tv.tv_nsec = 0;
128
129	err = security_settime64(&tv, NULL);
130	if (err)
131		return err;
132
133	do_settimeofday64(&tv);
134	return 0;
135}
136
137#endif /* __ARCH_WANT_SYS_TIME32 */
138#endif
139
140SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
141		struct timezone __user *, tz)
142{
143	if (likely(tv != NULL)) {
144		struct timespec64 ts;
145
146		ktime_get_real_ts64(&ts);
147		if (put_user(ts.tv_sec, &tv->tv_sec) ||
148		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149			return -EFAULT;
150	}
151	if (unlikely(tz != NULL)) {
152		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153			return -EFAULT;
154	}
155	return 0;
156}
157
158/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159 * In case for some reason the CMOS clock has not already been running
160 * in UTC, but in some local time: The first time we set the timezone,
161 * we will warp the clock so that it is ticking UTC time instead of
162 * local time. Presumably, if someone is setting the timezone then we
163 * are running in an environment where the programs understand about
164 * timezones. This should be done at boot time in the /etc/rc script,
165 * as soon as possible, so that the clock can be set right. Otherwise,
166 * various programs will get confused when the clock gets warped.
167 */
168
169int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170{
171	static int firsttime = 1;
172	int error = 0;
173
174	if (tv && !timespec64_valid_settod(tv))
175		return -EINVAL;
176
177	error = security_settime64(tv, tz);
178	if (error)
179		return error;
180
181	if (tz) {
182		/* Verify we're witin the +-15 hrs range */
183		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184			return -EINVAL;
185
186		sys_tz = *tz;
187		update_vsyscall_tz();
188		if (firsttime) {
189			firsttime = 0;
190			if (!tv)
191				timekeeping_warp_clock();
192		}
193	}
194	if (tv)
195		return do_settimeofday64(tv);
196	return 0;
197}
198
199SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
200		struct timezone __user *, tz)
201{
202	struct timespec64 new_ts;
203	struct timeval user_tv;
 
204	struct timezone new_tz;
205
206	if (tv) {
207		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
208			return -EFAULT;
209
210		if (!timeval_valid(&user_tv))
211			return -EINVAL;
212
213		new_ts.tv_sec = user_tv.tv_sec;
214		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
215	}
216	if (tz) {
217		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
218			return -EFAULT;
219	}
220
221	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
222}
223
224#ifdef CONFIG_COMPAT
225COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
226		       struct timezone __user *, tz)
227{
228	if (tv) {
229		struct timespec64 ts;
230
231		ktime_get_real_ts64(&ts);
232		if (put_user(ts.tv_sec, &tv->tv_sec) ||
233		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
234			return -EFAULT;
235	}
236	if (tz) {
237		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
238			return -EFAULT;
239	}
240
241	return 0;
242}
243
244COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
245		       struct timezone __user *, tz)
246{
247	struct timespec64 new_ts;
248	struct timeval user_tv;
249	struct timezone new_tz;
250
251	if (tv) {
252		if (compat_get_timeval(&user_tv, tv))
253			return -EFAULT;
254
255		if (!timeval_valid(&user_tv))
256			return -EINVAL;
257
258		new_ts.tv_sec = user_tv.tv_sec;
259		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
260	}
261	if (tz) {
262		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
263			return -EFAULT;
264	}
265
266	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
267}
268#endif
269
270#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
271SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
272{
273	struct __kernel_timex txc;		/* Local copy of parameter */
274	int ret;
275
276	/* Copy the user data space into the kernel copy
277	 * structure. But bear in mind that the structures
278	 * may change
279	 */
280	if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
281		return -EFAULT;
282	ret = do_adjtimex(&txc);
283	return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
284}
285#endif
286
287#ifdef CONFIG_COMPAT_32BIT_TIME
288int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
289{
290	struct old_timex32 tx32;
291
292	memset(txc, 0, sizeof(struct __kernel_timex));
293	if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
294		return -EFAULT;
295
296	txc->modes = tx32.modes;
297	txc->offset = tx32.offset;
298	txc->freq = tx32.freq;
299	txc->maxerror = tx32.maxerror;
300	txc->esterror = tx32.esterror;
301	txc->status = tx32.status;
302	txc->constant = tx32.constant;
303	txc->precision = tx32.precision;
304	txc->tolerance = tx32.tolerance;
305	txc->time.tv_sec = tx32.time.tv_sec;
306	txc->time.tv_usec = tx32.time.tv_usec;
307	txc->tick = tx32.tick;
308	txc->ppsfreq = tx32.ppsfreq;
309	txc->jitter = tx32.jitter;
310	txc->shift = tx32.shift;
311	txc->stabil = tx32.stabil;
312	txc->jitcnt = tx32.jitcnt;
313	txc->calcnt = tx32.calcnt;
314	txc->errcnt = tx32.errcnt;
315	txc->stbcnt = tx32.stbcnt;
316
317	return 0;
318}
319
320int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
 
 
 
 
 
 
 
321{
322	struct old_timex32 tx32;
323
324	memset(&tx32, 0, sizeof(struct old_timex32));
325	tx32.modes = txc->modes;
326	tx32.offset = txc->offset;
327	tx32.freq = txc->freq;
328	tx32.maxerror = txc->maxerror;
329	tx32.esterror = txc->esterror;
330	tx32.status = txc->status;
331	tx32.constant = txc->constant;
332	tx32.precision = txc->precision;
333	tx32.tolerance = txc->tolerance;
334	tx32.time.tv_sec = txc->time.tv_sec;
335	tx32.time.tv_usec = txc->time.tv_usec;
336	tx32.tick = txc->tick;
337	tx32.ppsfreq = txc->ppsfreq;
338	tx32.jitter = txc->jitter;
339	tx32.shift = txc->shift;
340	tx32.stabil = txc->stabil;
341	tx32.jitcnt = txc->jitcnt;
342	tx32.calcnt = txc->calcnt;
343	tx32.errcnt = txc->errcnt;
344	tx32.stbcnt = txc->stbcnt;
345	tx32.tai = txc->tai;
346	if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
347		return -EFAULT;
348	return 0;
349}
350
351SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
352{
353	struct __kernel_timex txc;
354	int err, ret;
355
356	err = get_old_timex32(&txc, utp);
357	if (err)
358		return err;
359
360	ret = do_adjtimex(&txc);
361
362	err = put_old_timex32(utp, &txc);
363	if (err)
364		return err;
365
366	return ret;
367}
368#endif
369
370/*
371 * Convert jiffies to milliseconds and back.
372 *
373 * Avoid unnecessary multiplications/divisions in the
374 * two most common HZ cases:
375 */
376unsigned int jiffies_to_msecs(const unsigned long j)
377{
378#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
379	return (MSEC_PER_SEC / HZ) * j;
380#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
381	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
382#else
383# if BITS_PER_LONG == 32
384	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
385	       HZ_TO_MSEC_SHR32;
386# else
387	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
388# endif
389#endif
390}
391EXPORT_SYMBOL(jiffies_to_msecs);
392
393unsigned int jiffies_to_usecs(const unsigned long j)
394{
395	/*
396	 * Hz usually doesn't go much further MSEC_PER_SEC.
397	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
398	 */
399	BUILD_BUG_ON(HZ > USEC_PER_SEC);
400
401#if !(USEC_PER_SEC % HZ)
402	return (USEC_PER_SEC / HZ) * j;
403#else
404# if BITS_PER_LONG == 32
405	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
406# else
407	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
408# endif
409#endif
410}
411EXPORT_SYMBOL(jiffies_to_usecs);
412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413/*
414 * mktime64 - Converts date to seconds.
415 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
416 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
417 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
418 *
419 * [For the Julian calendar (which was used in Russia before 1917,
420 * Britain & colonies before 1752, anywhere else before 1582,
421 * and is still in use by some communities) leave out the
422 * -year/100+year/400 terms, and add 10.]
423 *
424 * This algorithm was first published by Gauss (I think).
425 *
426 * A leap second can be indicated by calling this function with sec as
427 * 60 (allowable under ISO 8601).  The leap second is treated the same
428 * as the following second since they don't exist in UNIX time.
429 *
430 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
431 * tomorrow - (allowable under ISO 8601) is supported.
432 */
433time64_t mktime64(const unsigned int year0, const unsigned int mon0,
434		const unsigned int day, const unsigned int hour,
435		const unsigned int min, const unsigned int sec)
436{
437	unsigned int mon = mon0, year = year0;
438
439	/* 1..12 -> 11,12,1..10 */
440	if (0 >= (int) (mon -= 2)) {
441		mon += 12;	/* Puts Feb last since it has leap day */
442		year -= 1;
443	}
444
445	return ((((time64_t)
446		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
447		  year*365 - 719499
448	    )*24 + hour /* now have hours - midnight tomorrow handled here */
449	  )*60 + min /* now have minutes */
450	)*60 + sec; /* finally seconds */
451}
452EXPORT_SYMBOL(mktime64);
453
454/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455 * ns_to_timespec - Convert nanoseconds to timespec
456 * @nsec:       the nanoseconds value to be converted
457 *
458 * Returns the timespec representation of the nsec parameter.
459 */
460struct timespec ns_to_timespec(const s64 nsec)
461{
462	struct timespec ts;
463	s32 rem;
464
465	if (!nsec)
466		return (struct timespec) {0, 0};
467
468	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
469	if (unlikely(rem < 0)) {
470		ts.tv_sec--;
471		rem += NSEC_PER_SEC;
472	}
473	ts.tv_nsec = rem;
474
475	return ts;
476}
477EXPORT_SYMBOL(ns_to_timespec);
478
479/**
480 * ns_to_timeval - Convert nanoseconds to timeval
481 * @nsec:       the nanoseconds value to be converted
482 *
483 * Returns the timeval representation of the nsec parameter.
484 */
485struct timeval ns_to_timeval(const s64 nsec)
486{
487	struct timespec ts = ns_to_timespec(nsec);
488	struct timeval tv;
489
490	tv.tv_sec = ts.tv_sec;
491	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
492
493	return tv;
494}
495EXPORT_SYMBOL(ns_to_timeval);
496
497struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
498{
499	struct timespec64 ts = ns_to_timespec64(nsec);
500	struct __kernel_old_timeval tv;
501
502	tv.tv_sec = ts.tv_sec;
503	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
504
505	return tv;
506}
507EXPORT_SYMBOL(ns_to_kernel_old_timeval);
508
509/**
510 * set_normalized_timespec - set timespec sec and nsec parts and normalize
511 *
512 * @ts:		pointer to timespec variable to be set
513 * @sec:	seconds to set
514 * @nsec:	nanoseconds to set
515 *
516 * Set seconds and nanoseconds field of a timespec variable and
517 * normalize to the timespec storage format
518 *
519 * Note: The tv_nsec part is always in the range of
520 *	0 <= tv_nsec < NSEC_PER_SEC
521 * For negative values only the tv_sec field is negative !
522 */
523void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
524{
525	while (nsec >= NSEC_PER_SEC) {
526		/*
527		 * The following asm() prevents the compiler from
528		 * optimising this loop into a modulo operation. See
529		 * also __iter_div_u64_rem() in include/linux/time.h
530		 */
531		asm("" : "+rm"(nsec));
532		nsec -= NSEC_PER_SEC;
533		++sec;
534	}
535	while (nsec < 0) {
536		asm("" : "+rm"(nsec));
537		nsec += NSEC_PER_SEC;
538		--sec;
539	}
540	ts->tv_sec = sec;
541	ts->tv_nsec = nsec;
542}
543EXPORT_SYMBOL(set_normalized_timespec64);
544
545/**
546 * ns_to_timespec64 - Convert nanoseconds to timespec64
547 * @nsec:       the nanoseconds value to be converted
548 *
549 * Returns the timespec64 representation of the nsec parameter.
550 */
551struct timespec64 ns_to_timespec64(const s64 nsec)
552{
553	struct timespec64 ts;
554	s32 rem;
555
556	if (!nsec)
557		return (struct timespec64) {0, 0};
558
559	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
560	if (unlikely(rem < 0)) {
561		ts.tv_sec--;
562		rem += NSEC_PER_SEC;
563	}
564	ts.tv_nsec = rem;
565
566	return ts;
567}
568EXPORT_SYMBOL(ns_to_timespec64);
569
570/**
571 * msecs_to_jiffies: - convert milliseconds to jiffies
572 * @m:	time in milliseconds
573 *
574 * conversion is done as follows:
575 *
576 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
577 *
578 * - 'too large' values [that would result in larger than
579 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
580 *
581 * - all other values are converted to jiffies by either multiplying
582 *   the input value by a factor or dividing it with a factor and
583 *   handling any 32-bit overflows.
584 *   for the details see __msecs_to_jiffies()
585 *
586 * msecs_to_jiffies() checks for the passed in value being a constant
587 * via __builtin_constant_p() allowing gcc to eliminate most of the
588 * code, __msecs_to_jiffies() is called if the value passed does not
589 * allow constant folding and the actual conversion must be done at
590 * runtime.
591 * the _msecs_to_jiffies helpers are the HZ dependent conversion
592 * routines found in include/linux/jiffies.h
593 */
594unsigned long __msecs_to_jiffies(const unsigned int m)
595{
596	/*
597	 * Negative value, means infinite timeout:
598	 */
599	if ((int)m < 0)
600		return MAX_JIFFY_OFFSET;
601	return _msecs_to_jiffies(m);
602}
603EXPORT_SYMBOL(__msecs_to_jiffies);
604
605unsigned long __usecs_to_jiffies(const unsigned int u)
606{
607	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
608		return MAX_JIFFY_OFFSET;
609	return _usecs_to_jiffies(u);
610}
611EXPORT_SYMBOL(__usecs_to_jiffies);
612
613/*
614 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
615 * that a remainder subtract here would not do the right thing as the
616 * resolution values don't fall on second boundries.  I.e. the line:
617 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
618 * Note that due to the small error in the multiplier here, this
619 * rounding is incorrect for sufficiently large values of tv_nsec, but
620 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
621 * OK.
622 *
623 * Rather, we just shift the bits off the right.
624 *
625 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
626 * value to a scaled second value.
627 */
628static unsigned long
629__timespec64_to_jiffies(u64 sec, long nsec)
630{
631	nsec = nsec + TICK_NSEC - 1;
632
633	if (sec >= MAX_SEC_IN_JIFFIES){
634		sec = MAX_SEC_IN_JIFFIES;
635		nsec = 0;
636	}
637	return ((sec * SEC_CONVERSION) +
638		(((u64)nsec * NSEC_CONVERSION) >>
639		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
640
641}
642
643static unsigned long
644__timespec_to_jiffies(unsigned long sec, long nsec)
645{
646	return __timespec64_to_jiffies((u64)sec, nsec);
647}
648
649unsigned long
650timespec64_to_jiffies(const struct timespec64 *value)
651{
652	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
653}
654EXPORT_SYMBOL(timespec64_to_jiffies);
655
656void
657jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
658{
659	/*
660	 * Convert jiffies to nanoseconds and separate with
661	 * one divide.
662	 */
663	u32 rem;
664	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
665				    NSEC_PER_SEC, &rem);
666	value->tv_nsec = rem;
667}
668EXPORT_SYMBOL(jiffies_to_timespec64);
669
670/*
671 * We could use a similar algorithm to timespec_to_jiffies (with a
672 * different multiplier for usec instead of nsec). But this has a
673 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
674 * usec value, since it's not necessarily integral.
675 *
676 * We could instead round in the intermediate scaled representation
677 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
678 * perilous: the scaling introduces a small positive error, which
679 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
680 * units to the intermediate before shifting) leads to accidental
681 * overflow and overestimates.
682 *
683 * At the cost of one additional multiplication by a constant, just
684 * use the timespec implementation.
685 */
686unsigned long
687timeval_to_jiffies(const struct timeval *value)
688{
689	return __timespec_to_jiffies(value->tv_sec,
690				     value->tv_usec * NSEC_PER_USEC);
691}
692EXPORT_SYMBOL(timeval_to_jiffies);
693
694void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
695{
696	/*
697	 * Convert jiffies to nanoseconds and separate with
698	 * one divide.
699	 */
700	u32 rem;
701
702	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
703				    NSEC_PER_SEC, &rem);
704	value->tv_usec = rem / NSEC_PER_USEC;
705}
706EXPORT_SYMBOL(jiffies_to_timeval);
707
708/*
709 * Convert jiffies/jiffies_64 to clock_t and back.
710 */
711clock_t jiffies_to_clock_t(unsigned long x)
712{
713#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
714# if HZ < USER_HZ
715	return x * (USER_HZ / HZ);
716# else
717	return x / (HZ / USER_HZ);
718# endif
719#else
720	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
721#endif
722}
723EXPORT_SYMBOL(jiffies_to_clock_t);
724
725unsigned long clock_t_to_jiffies(unsigned long x)
726{
727#if (HZ % USER_HZ)==0
728	if (x >= ~0UL / (HZ / USER_HZ))
729		return ~0UL;
730	return x * (HZ / USER_HZ);
731#else
732	/* Don't worry about loss of precision here .. */
733	if (x >= ~0UL / HZ * USER_HZ)
734		return ~0UL;
735
736	/* .. but do try to contain it here */
737	return div_u64((u64)x * HZ, USER_HZ);
738#endif
739}
740EXPORT_SYMBOL(clock_t_to_jiffies);
741
742u64 jiffies_64_to_clock_t(u64 x)
743{
744#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
745# if HZ < USER_HZ
746	x = div_u64(x * USER_HZ, HZ);
747# elif HZ > USER_HZ
748	x = div_u64(x, HZ / USER_HZ);
749# else
750	/* Nothing to do */
751# endif
752#else
753	/*
754	 * There are better ways that don't overflow early,
755	 * but even this doesn't overflow in hundreds of years
756	 * in 64 bits, so..
757	 */
758	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
759#endif
760	return x;
761}
762EXPORT_SYMBOL(jiffies_64_to_clock_t);
763
764u64 nsec_to_clock_t(u64 x)
765{
766#if (NSEC_PER_SEC % USER_HZ) == 0
767	return div_u64(x, NSEC_PER_SEC / USER_HZ);
768#elif (USER_HZ % 512) == 0
769	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
770#else
771	/*
772         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
773         * overflow after 64.99 years.
774         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
775         */
776	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
777#endif
778}
779
780u64 jiffies64_to_nsecs(u64 j)
781{
782#if !(NSEC_PER_SEC % HZ)
783	return (NSEC_PER_SEC / HZ) * j;
784# else
785	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
786#endif
787}
788EXPORT_SYMBOL(jiffies64_to_nsecs);
789
790u64 jiffies64_to_msecs(const u64 j)
791{
792#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
793	return (MSEC_PER_SEC / HZ) * j;
794#else
795	return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
796#endif
797}
798EXPORT_SYMBOL(jiffies64_to_msecs);
799
800/**
801 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
802 *
803 * @n:	nsecs in u64
804 *
805 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
806 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
807 * for scheduler, not for use in device drivers to calculate timeout value.
808 *
809 * note:
810 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
811 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
812 */
813u64 nsecs_to_jiffies64(u64 n)
814{
815#if (NSEC_PER_SEC % HZ) == 0
816	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
817	return div_u64(n, NSEC_PER_SEC / HZ);
818#elif (HZ % 512) == 0
819	/* overflow after 292 years if HZ = 1024 */
820	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
821#else
822	/*
823	 * Generic case - optimized for cases where HZ is a multiple of 3.
824	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
825	 */
826	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
827#endif
828}
829EXPORT_SYMBOL(nsecs_to_jiffies64);
830
831/**
832 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
833 *
834 * @n:	nsecs in u64
835 *
836 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
837 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
838 * for scheduler, not for use in device drivers to calculate timeout value.
839 *
840 * note:
841 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
842 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
843 */
844unsigned long nsecs_to_jiffies(u64 n)
845{
846	return (unsigned long)nsecs_to_jiffies64(n);
847}
848EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
849
850/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
851 * Add two timespec64 values and do a safety check for overflow.
852 * It's assumed that both values are valid (>= 0).
853 * And, each timespec64 is in normalized form.
854 */
855struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
856				const struct timespec64 rhs)
857{
858	struct timespec64 res;
859
860	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
861			lhs.tv_nsec + rhs.tv_nsec);
862
863	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
864		res.tv_sec = TIME64_MAX;
865		res.tv_nsec = 0;
866	}
867
868	return res;
869}
870
871int get_timespec64(struct timespec64 *ts,
872		   const struct __kernel_timespec __user *uts)
873{
874	struct __kernel_timespec kts;
875	int ret;
876
877	ret = copy_from_user(&kts, uts, sizeof(kts));
878	if (ret)
879		return -EFAULT;
880
881	ts->tv_sec = kts.tv_sec;
882
883	/* Zero out the padding for 32 bit systems or in compat mode */
884	if (IS_ENABLED(CONFIG_64BIT_TIME) && in_compat_syscall())
885		kts.tv_nsec &= 0xFFFFFFFFUL;
886
887	ts->tv_nsec = kts.tv_nsec;
888
889	return 0;
890}
891EXPORT_SYMBOL_GPL(get_timespec64);
892
893int put_timespec64(const struct timespec64 *ts,
894		   struct __kernel_timespec __user *uts)
895{
896	struct __kernel_timespec kts = {
897		.tv_sec = ts->tv_sec,
898		.tv_nsec = ts->tv_nsec
899	};
900
901	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
902}
903EXPORT_SYMBOL_GPL(put_timespec64);
904
905static int __get_old_timespec32(struct timespec64 *ts64,
906				   const struct old_timespec32 __user *cts)
907{
908	struct old_timespec32 ts;
909	int ret;
910
911	ret = copy_from_user(&ts, cts, sizeof(ts));
912	if (ret)
913		return -EFAULT;
914
915	ts64->tv_sec = ts.tv_sec;
916	ts64->tv_nsec = ts.tv_nsec;
917
918	return 0;
919}
920
921static int __put_old_timespec32(const struct timespec64 *ts64,
922				   struct old_timespec32 __user *cts)
923{
924	struct old_timespec32 ts = {
925		.tv_sec = ts64->tv_sec,
926		.tv_nsec = ts64->tv_nsec
927	};
928	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
929}
930
931int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
932{
933	if (COMPAT_USE_64BIT_TIME)
934		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
935	else
936		return __get_old_timespec32(ts, uts);
937}
938EXPORT_SYMBOL_GPL(get_old_timespec32);
939
940int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
941{
942	if (COMPAT_USE_64BIT_TIME)
943		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
944	else
945		return __put_old_timespec32(ts, uts);
946}
947EXPORT_SYMBOL_GPL(put_old_timespec32);
948
949int get_itimerspec64(struct itimerspec64 *it,
950			const struct __kernel_itimerspec __user *uit)
951{
952	int ret;
953
954	ret = get_timespec64(&it->it_interval, &uit->it_interval);
955	if (ret)
956		return ret;
957
958	ret = get_timespec64(&it->it_value, &uit->it_value);
959
960	return ret;
961}
962EXPORT_SYMBOL_GPL(get_itimerspec64);
963
964int put_itimerspec64(const struct itimerspec64 *it,
965			struct __kernel_itimerspec __user *uit)
966{
967	int ret;
968
969	ret = put_timespec64(&it->it_interval, &uit->it_interval);
970	if (ret)
971		return ret;
972
973	ret = put_timespec64(&it->it_value, &uit->it_value);
974
975	return ret;
976}
977EXPORT_SYMBOL_GPL(put_itimerspec64);
978
979int get_old_itimerspec32(struct itimerspec64 *its,
980			const struct old_itimerspec32 __user *uits)
981{
982
983	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
984	    __get_old_timespec32(&its->it_value, &uits->it_value))
985		return -EFAULT;
986	return 0;
987}
988EXPORT_SYMBOL_GPL(get_old_itimerspec32);
989
990int put_old_itimerspec32(const struct itimerspec64 *its,
991			struct old_itimerspec32 __user *uits)
992{
993	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
994	    __put_old_timespec32(&its->it_value, &uits->it_value))
995		return -EFAULT;
996	return 0;
997}
998EXPORT_SYMBOL_GPL(put_old_itimerspec32);
v4.10.11
 
  1/*
  2 *  linux/kernel/time.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
 
  5 *
  6 *  This file contains the interface functions for the various
  7 *  time related system calls: time, stime, gettimeofday, settimeofday,
  8 *			       adjtime
  9 */
 10/*
 11 * Modification history kernel/time.c
 12 *
 13 * 1993-09-02    Philip Gladstone
 14 *      Created file with time related functions from sched/core.c and adjtimex()
 15 * 1993-10-08    Torsten Duwe
 16 *      adjtime interface update and CMOS clock write code
 17 * 1995-08-13    Torsten Duwe
 18 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 19 * 1999-01-16    Ulrich Windl
 20 *	Introduced error checking for many cases in adjtimex().
 21 *	Updated NTP code according to technical memorandum Jan '96
 22 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 23 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 24 *	(Even though the technical memorandum forbids it)
 25 * 2004-07-14	 Christoph Lameter
 26 *	Added getnstimeofday to allow the posix timer functions to return
 27 *	with nanosecond accuracy
 28 */
 29
 30#include <linux/export.h>
 
 31#include <linux/timex.h>
 32#include <linux/capability.h>
 33#include <linux/timekeeper_internal.h>
 34#include <linux/errno.h>
 35#include <linux/syscalls.h>
 36#include <linux/security.h>
 37#include <linux/fs.h>
 38#include <linux/math64.h>
 39#include <linux/ptrace.h>
 40
 41#include <linux/uaccess.h>
 
 42#include <asm/unistd.h>
 43
 44#include <generated/timeconst.h>
 45#include "timekeeping.h"
 46
 47/*
 48 * The timezone where the local system is located.  Used as a default by some
 49 * programs who obtain this value by using gettimeofday.
 50 */
 51struct timezone sys_tz;
 52
 53EXPORT_SYMBOL(sys_tz);
 54
 55#ifdef __ARCH_WANT_SYS_TIME
 56
 57/*
 58 * sys_time() can be implemented in user-level using
 59 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 60 * why not move it into the appropriate arch directory (for those
 61 * architectures that need it).
 62 */
 63SYSCALL_DEFINE1(time, time_t __user *, tloc)
 64{
 65	time_t i = get_seconds();
 66
 67	if (tloc) {
 68		if (put_user(i,tloc))
 69			return -EFAULT;
 70	}
 71	force_successful_syscall_return();
 72	return i;
 73}
 74
 75/*
 76 * sys_stime() can be implemented in user-level using
 77 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 78 * why not move it into the appropriate arch directory (for those
 79 * architectures that need it).
 80 */
 81
 82SYSCALL_DEFINE1(stime, time_t __user *, tptr)
 83{
 84	struct timespec tv;
 85	int err;
 86
 87	if (get_user(tv.tv_sec, tptr))
 88		return -EFAULT;
 89
 90	tv.tv_nsec = 0;
 91
 92	err = security_settime(&tv, NULL);
 93	if (err)
 94		return err;
 95
 96	do_settimeofday(&tv);
 97	return 0;
 98}
 99
100#endif /* __ARCH_WANT_SYS_TIME */
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103		struct timezone __user *, tz)
104{
105	if (likely(tv != NULL)) {
106		struct timeval ktv;
107		do_gettimeofday(&ktv);
108		if (copy_to_user(tv, &ktv, sizeof(ktv)))
 
 
109			return -EFAULT;
110	}
111	if (unlikely(tz != NULL)) {
112		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113			return -EFAULT;
114	}
115	return 0;
116}
117
118/*
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
121 */
122int persistent_clock_is_local;
123
124/*
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
127 *
128 * This is ugly, but preferable to the alternatives.  Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours)  or
132 * compile in the timezone information into the kernel.  Bad, bad....
133 *
134 *						- TYT, 1992-01-01
135 *
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
139 */
140static inline void warp_clock(void)
141{
142	if (sys_tz.tz_minuteswest != 0) {
143		struct timespec adjust;
144
145		persistent_clock_is_local = 1;
146		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147		adjust.tv_nsec = 0;
148		timekeeping_inject_offset(&adjust);
149	}
150}
151
152/*
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
161 */
162
163int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
164{
165	static int firsttime = 1;
166	int error = 0;
167
168	if (tv && !timespec64_valid(tv))
169		return -EINVAL;
170
171	error = security_settime64(tv, tz);
172	if (error)
173		return error;
174
175	if (tz) {
176		/* Verify we're witin the +-15 hrs range */
177		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178			return -EINVAL;
179
180		sys_tz = *tz;
181		update_vsyscall_tz();
182		if (firsttime) {
183			firsttime = 0;
184			if (!tv)
185				warp_clock();
186		}
187	}
188	if (tv)
189		return do_settimeofday64(tv);
190	return 0;
191}
192
193SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194		struct timezone __user *, tz)
195{
 
196	struct timeval user_tv;
197	struct timespec	new_ts;
198	struct timezone new_tz;
199
200	if (tv) {
201		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202			return -EFAULT;
203
204		if (!timeval_valid(&user_tv))
205			return -EINVAL;
206
207		new_ts.tv_sec = user_tv.tv_sec;
208		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
209	}
210	if (tz) {
211		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212			return -EFAULT;
213	}
214
215	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216}
217
218SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
 
219{
220	struct timex txc;		/* Local copy of parameter */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221	int ret;
222
223	/* Copy the user data space into the kernel copy
224	 * structure. But bear in mind that the structures
225	 * may change
226	 */
227	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228		return -EFAULT;
229	ret = do_adjtimex(&txc);
230	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231}
232
233/**
234 * current_fs_time - Return FS time
235 * @sb: Superblock.
236 *
237 * Return the current time truncated to the time granularity supported by
238 * the fs.
239 */
240struct timespec current_fs_time(struct super_block *sb)
241{
242	struct timespec now = current_kernel_time();
243	return timespec_trunc(now, sb->s_time_gran);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244}
245EXPORT_SYMBOL(current_fs_time);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246
247/*
248 * Convert jiffies to milliseconds and back.
249 *
250 * Avoid unnecessary multiplications/divisions in the
251 * two most common HZ cases:
252 */
253unsigned int jiffies_to_msecs(const unsigned long j)
254{
255#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256	return (MSEC_PER_SEC / HZ) * j;
257#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
259#else
260# if BITS_PER_LONG == 32
261	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
 
262# else
263	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
264# endif
265#endif
266}
267EXPORT_SYMBOL(jiffies_to_msecs);
268
269unsigned int jiffies_to_usecs(const unsigned long j)
270{
271	/*
272	 * Hz usually doesn't go much further MSEC_PER_SEC.
273	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
274	 */
275	BUILD_BUG_ON(HZ > USEC_PER_SEC);
276
277#if !(USEC_PER_SEC % HZ)
278	return (USEC_PER_SEC / HZ) * j;
279#else
280# if BITS_PER_LONG == 32
281	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
282# else
283	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
284# endif
285#endif
286}
287EXPORT_SYMBOL(jiffies_to_usecs);
288
289/**
290 * timespec_trunc - Truncate timespec to a granularity
291 * @t: Timespec
292 * @gran: Granularity in ns.
293 *
294 * Truncate a timespec to a granularity. Always rounds down. gran must
295 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
296 */
297struct timespec timespec_trunc(struct timespec t, unsigned gran)
298{
299	/* Avoid division in the common cases 1 ns and 1 s. */
300	if (gran == 1) {
301		/* nothing */
302	} else if (gran == NSEC_PER_SEC) {
303		t.tv_nsec = 0;
304	} else if (gran > 1 && gran < NSEC_PER_SEC) {
305		t.tv_nsec -= t.tv_nsec % gran;
306	} else {
307		WARN(1, "illegal file time granularity: %u", gran);
308	}
309	return t;
310}
311EXPORT_SYMBOL(timespec_trunc);
312
313/*
314 * mktime64 - Converts date to seconds.
315 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
316 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
317 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
318 *
319 * [For the Julian calendar (which was used in Russia before 1917,
320 * Britain & colonies before 1752, anywhere else before 1582,
321 * and is still in use by some communities) leave out the
322 * -year/100+year/400 terms, and add 10.]
323 *
324 * This algorithm was first published by Gauss (I think).
325 *
326 * A leap second can be indicated by calling this function with sec as
327 * 60 (allowable under ISO 8601).  The leap second is treated the same
328 * as the following second since they don't exist in UNIX time.
329 *
330 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
331 * tomorrow - (allowable under ISO 8601) is supported.
332 */
333time64_t mktime64(const unsigned int year0, const unsigned int mon0,
334		const unsigned int day, const unsigned int hour,
335		const unsigned int min, const unsigned int sec)
336{
337	unsigned int mon = mon0, year = year0;
338
339	/* 1..12 -> 11,12,1..10 */
340	if (0 >= (int) (mon -= 2)) {
341		mon += 12;	/* Puts Feb last since it has leap day */
342		year -= 1;
343	}
344
345	return ((((time64_t)
346		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
347		  year*365 - 719499
348	    )*24 + hour /* now have hours - midnight tomorrow handled here */
349	  )*60 + min /* now have minutes */
350	)*60 + sec; /* finally seconds */
351}
352EXPORT_SYMBOL(mktime64);
353
354/**
355 * set_normalized_timespec - set timespec sec and nsec parts and normalize
356 *
357 * @ts:		pointer to timespec variable to be set
358 * @sec:	seconds to set
359 * @nsec:	nanoseconds to set
360 *
361 * Set seconds and nanoseconds field of a timespec variable and
362 * normalize to the timespec storage format
363 *
364 * Note: The tv_nsec part is always in the range of
365 *	0 <= tv_nsec < NSEC_PER_SEC
366 * For negative values only the tv_sec field is negative !
367 */
368void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
369{
370	while (nsec >= NSEC_PER_SEC) {
371		/*
372		 * The following asm() prevents the compiler from
373		 * optimising this loop into a modulo operation. See
374		 * also __iter_div_u64_rem() in include/linux/time.h
375		 */
376		asm("" : "+rm"(nsec));
377		nsec -= NSEC_PER_SEC;
378		++sec;
379	}
380	while (nsec < 0) {
381		asm("" : "+rm"(nsec));
382		nsec += NSEC_PER_SEC;
383		--sec;
384	}
385	ts->tv_sec = sec;
386	ts->tv_nsec = nsec;
387}
388EXPORT_SYMBOL(set_normalized_timespec);
389
390/**
391 * ns_to_timespec - Convert nanoseconds to timespec
392 * @nsec:       the nanoseconds value to be converted
393 *
394 * Returns the timespec representation of the nsec parameter.
395 */
396struct timespec ns_to_timespec(const s64 nsec)
397{
398	struct timespec ts;
399	s32 rem;
400
401	if (!nsec)
402		return (struct timespec) {0, 0};
403
404	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
405	if (unlikely(rem < 0)) {
406		ts.tv_sec--;
407		rem += NSEC_PER_SEC;
408	}
409	ts.tv_nsec = rem;
410
411	return ts;
412}
413EXPORT_SYMBOL(ns_to_timespec);
414
415/**
416 * ns_to_timeval - Convert nanoseconds to timeval
417 * @nsec:       the nanoseconds value to be converted
418 *
419 * Returns the timeval representation of the nsec parameter.
420 */
421struct timeval ns_to_timeval(const s64 nsec)
422{
423	struct timespec ts = ns_to_timespec(nsec);
424	struct timeval tv;
425
426	tv.tv_sec = ts.tv_sec;
427	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
428
429	return tv;
430}
431EXPORT_SYMBOL(ns_to_timeval);
432
433#if BITS_PER_LONG == 32
 
 
 
 
 
 
 
 
 
 
 
434/**
435 * set_normalized_timespec - set timespec sec and nsec parts and normalize
436 *
437 * @ts:		pointer to timespec variable to be set
438 * @sec:	seconds to set
439 * @nsec:	nanoseconds to set
440 *
441 * Set seconds and nanoseconds field of a timespec variable and
442 * normalize to the timespec storage format
443 *
444 * Note: The tv_nsec part is always in the range of
445 *	0 <= tv_nsec < NSEC_PER_SEC
446 * For negative values only the tv_sec field is negative !
447 */
448void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
449{
450	while (nsec >= NSEC_PER_SEC) {
451		/*
452		 * The following asm() prevents the compiler from
453		 * optimising this loop into a modulo operation. See
454		 * also __iter_div_u64_rem() in include/linux/time.h
455		 */
456		asm("" : "+rm"(nsec));
457		nsec -= NSEC_PER_SEC;
458		++sec;
459	}
460	while (nsec < 0) {
461		asm("" : "+rm"(nsec));
462		nsec += NSEC_PER_SEC;
463		--sec;
464	}
465	ts->tv_sec = sec;
466	ts->tv_nsec = nsec;
467}
468EXPORT_SYMBOL(set_normalized_timespec64);
469
470/**
471 * ns_to_timespec64 - Convert nanoseconds to timespec64
472 * @nsec:       the nanoseconds value to be converted
473 *
474 * Returns the timespec64 representation of the nsec parameter.
475 */
476struct timespec64 ns_to_timespec64(const s64 nsec)
477{
478	struct timespec64 ts;
479	s32 rem;
480
481	if (!nsec)
482		return (struct timespec64) {0, 0};
483
484	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
485	if (unlikely(rem < 0)) {
486		ts.tv_sec--;
487		rem += NSEC_PER_SEC;
488	}
489	ts.tv_nsec = rem;
490
491	return ts;
492}
493EXPORT_SYMBOL(ns_to_timespec64);
494#endif
495/**
496 * msecs_to_jiffies: - convert milliseconds to jiffies
497 * @m:	time in milliseconds
498 *
499 * conversion is done as follows:
500 *
501 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
502 *
503 * - 'too large' values [that would result in larger than
504 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
505 *
506 * - all other values are converted to jiffies by either multiplying
507 *   the input value by a factor or dividing it with a factor and
508 *   handling any 32-bit overflows.
509 *   for the details see __msecs_to_jiffies()
510 *
511 * msecs_to_jiffies() checks for the passed in value being a constant
512 * via __builtin_constant_p() allowing gcc to eliminate most of the
513 * code, __msecs_to_jiffies() is called if the value passed does not
514 * allow constant folding and the actual conversion must be done at
515 * runtime.
516 * the _msecs_to_jiffies helpers are the HZ dependent conversion
517 * routines found in include/linux/jiffies.h
518 */
519unsigned long __msecs_to_jiffies(const unsigned int m)
520{
521	/*
522	 * Negative value, means infinite timeout:
523	 */
524	if ((int)m < 0)
525		return MAX_JIFFY_OFFSET;
526	return _msecs_to_jiffies(m);
527}
528EXPORT_SYMBOL(__msecs_to_jiffies);
529
530unsigned long __usecs_to_jiffies(const unsigned int u)
531{
532	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
533		return MAX_JIFFY_OFFSET;
534	return _usecs_to_jiffies(u);
535}
536EXPORT_SYMBOL(__usecs_to_jiffies);
537
538/*
539 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
540 * that a remainder subtract here would not do the right thing as the
541 * resolution values don't fall on second boundries.  I.e. the line:
542 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
543 * Note that due to the small error in the multiplier here, this
544 * rounding is incorrect for sufficiently large values of tv_nsec, but
545 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
546 * OK.
547 *
548 * Rather, we just shift the bits off the right.
549 *
550 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
551 * value to a scaled second value.
552 */
553static unsigned long
554__timespec64_to_jiffies(u64 sec, long nsec)
555{
556	nsec = nsec + TICK_NSEC - 1;
557
558	if (sec >= MAX_SEC_IN_JIFFIES){
559		sec = MAX_SEC_IN_JIFFIES;
560		nsec = 0;
561	}
562	return ((sec * SEC_CONVERSION) +
563		(((u64)nsec * NSEC_CONVERSION) >>
564		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
565
566}
567
568static unsigned long
569__timespec_to_jiffies(unsigned long sec, long nsec)
570{
571	return __timespec64_to_jiffies((u64)sec, nsec);
572}
573
574unsigned long
575timespec64_to_jiffies(const struct timespec64 *value)
576{
577	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
578}
579EXPORT_SYMBOL(timespec64_to_jiffies);
580
581void
582jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
583{
584	/*
585	 * Convert jiffies to nanoseconds and separate with
586	 * one divide.
587	 */
588	u32 rem;
589	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
590				    NSEC_PER_SEC, &rem);
591	value->tv_nsec = rem;
592}
593EXPORT_SYMBOL(jiffies_to_timespec64);
594
595/*
596 * We could use a similar algorithm to timespec_to_jiffies (with a
597 * different multiplier for usec instead of nsec). But this has a
598 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
599 * usec value, since it's not necessarily integral.
600 *
601 * We could instead round in the intermediate scaled representation
602 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
603 * perilous: the scaling introduces a small positive error, which
604 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
605 * units to the intermediate before shifting) leads to accidental
606 * overflow and overestimates.
607 *
608 * At the cost of one additional multiplication by a constant, just
609 * use the timespec implementation.
610 */
611unsigned long
612timeval_to_jiffies(const struct timeval *value)
613{
614	return __timespec_to_jiffies(value->tv_sec,
615				     value->tv_usec * NSEC_PER_USEC);
616}
617EXPORT_SYMBOL(timeval_to_jiffies);
618
619void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
620{
621	/*
622	 * Convert jiffies to nanoseconds and separate with
623	 * one divide.
624	 */
625	u32 rem;
626
627	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
628				    NSEC_PER_SEC, &rem);
629	value->tv_usec = rem / NSEC_PER_USEC;
630}
631EXPORT_SYMBOL(jiffies_to_timeval);
632
633/*
634 * Convert jiffies/jiffies_64 to clock_t and back.
635 */
636clock_t jiffies_to_clock_t(unsigned long x)
637{
638#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
639# if HZ < USER_HZ
640	return x * (USER_HZ / HZ);
641# else
642	return x / (HZ / USER_HZ);
643# endif
644#else
645	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
646#endif
647}
648EXPORT_SYMBOL(jiffies_to_clock_t);
649
650unsigned long clock_t_to_jiffies(unsigned long x)
651{
652#if (HZ % USER_HZ)==0
653	if (x >= ~0UL / (HZ / USER_HZ))
654		return ~0UL;
655	return x * (HZ / USER_HZ);
656#else
657	/* Don't worry about loss of precision here .. */
658	if (x >= ~0UL / HZ * USER_HZ)
659		return ~0UL;
660
661	/* .. but do try to contain it here */
662	return div_u64((u64)x * HZ, USER_HZ);
663#endif
664}
665EXPORT_SYMBOL(clock_t_to_jiffies);
666
667u64 jiffies_64_to_clock_t(u64 x)
668{
669#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
670# if HZ < USER_HZ
671	x = div_u64(x * USER_HZ, HZ);
672# elif HZ > USER_HZ
673	x = div_u64(x, HZ / USER_HZ);
674# else
675	/* Nothing to do */
676# endif
677#else
678	/*
679	 * There are better ways that don't overflow early,
680	 * but even this doesn't overflow in hundreds of years
681	 * in 64 bits, so..
682	 */
683	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
684#endif
685	return x;
686}
687EXPORT_SYMBOL(jiffies_64_to_clock_t);
688
689u64 nsec_to_clock_t(u64 x)
690{
691#if (NSEC_PER_SEC % USER_HZ) == 0
692	return div_u64(x, NSEC_PER_SEC / USER_HZ);
693#elif (USER_HZ % 512) == 0
694	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
695#else
696	/*
697         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
698         * overflow after 64.99 years.
699         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
700         */
701	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
702#endif
703}
704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
705/**
706 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
707 *
708 * @n:	nsecs in u64
709 *
710 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
711 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
712 * for scheduler, not for use in device drivers to calculate timeout value.
713 *
714 * note:
715 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
716 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
717 */
718u64 nsecs_to_jiffies64(u64 n)
719{
720#if (NSEC_PER_SEC % HZ) == 0
721	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
722	return div_u64(n, NSEC_PER_SEC / HZ);
723#elif (HZ % 512) == 0
724	/* overflow after 292 years if HZ = 1024 */
725	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
726#else
727	/*
728	 * Generic case - optimized for cases where HZ is a multiple of 3.
729	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
730	 */
731	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
732#endif
733}
734EXPORT_SYMBOL(nsecs_to_jiffies64);
735
736/**
737 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
738 *
739 * @n:	nsecs in u64
740 *
741 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
742 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
743 * for scheduler, not for use in device drivers to calculate timeout value.
744 *
745 * note:
746 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
747 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
748 */
749unsigned long nsecs_to_jiffies(u64 n)
750{
751	return (unsigned long)nsecs_to_jiffies64(n);
752}
753EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
754
755/*
756 * Add two timespec values and do a safety check for overflow.
757 * It's assumed that both values are valid (>= 0)
758 */
759struct timespec timespec_add_safe(const struct timespec lhs,
760				  const struct timespec rhs)
761{
762	struct timespec res;
763
764	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
765				lhs.tv_nsec + rhs.tv_nsec);
766
767	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
768		res.tv_sec = TIME_T_MAX;
769
770	return res;
771}
772
773/*
774 * Add two timespec64 values and do a safety check for overflow.
775 * It's assumed that both values are valid (>= 0).
776 * And, each timespec64 is in normalized form.
777 */
778struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
779				const struct timespec64 rhs)
780{
781	struct timespec64 res;
782
783	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
784			lhs.tv_nsec + rhs.tv_nsec);
785
786	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
787		res.tv_sec = TIME64_MAX;
788		res.tv_nsec = 0;
789	}
790
791	return res;
792}