Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/module.h>
30#include <linux/sched/signal.h>
31#include <linux/sched/debug.h>
32#include <linux/tty.h>
33#include <linux/tty_flip.h>
34#include <linux/mm.h>
35#include <linux/string.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/leds.h>
39
40#include <linux/kbd_kern.h>
41#include <linux/kbd_diacr.h>
42#include <linux/vt_kern.h>
43#include <linux/input.h>
44#include <linux/reboot.h>
45#include <linux/notifier.h>
46#include <linux/jiffies.h>
47#include <linux/uaccess.h>
48
49#include <asm/irq_regs.h>
50
51extern void ctrl_alt_del(void);
52
53/*
54 * Exported functions/variables
55 */
56
57#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
58
59#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
60#include <asm/kbdleds.h>
61#else
62static inline int kbd_defleds(void)
63{
64 return 0;
65}
66#endif
67
68#define KBD_DEFLOCK 0
69
70/*
71 * Handler Tables.
72 */
73
74#define K_HANDLERS\
75 k_self, k_fn, k_spec, k_pad,\
76 k_dead, k_cons, k_cur, k_shift,\
77 k_meta, k_ascii, k_lock, k_lowercase,\
78 k_slock, k_dead2, k_brl, k_ignore
79
80typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
81 char up_flag);
82static k_handler_fn K_HANDLERS;
83static k_handler_fn *k_handler[16] = { K_HANDLERS };
84
85#define FN_HANDLERS\
86 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
87 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
88 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
89 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
90 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
91
92typedef void (fn_handler_fn)(struct vc_data *vc);
93static fn_handler_fn FN_HANDLERS;
94static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
95
96/*
97 * Variables exported for vt_ioctl.c
98 */
99
100struct vt_spawn_console vt_spawn_con = {
101 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
102 .pid = NULL,
103 .sig = 0,
104};
105
106
107/*
108 * Internal Data.
109 */
110
111static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
112static struct kbd_struct *kbd = kbd_table;
113
114/* maximum values each key_handler can handle */
115static const int max_vals[] = {
116 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
117 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
118 255, NR_LOCK - 1, 255, NR_BRL - 1
119};
120
121static const int NR_TYPES = ARRAY_SIZE(max_vals);
122
123static struct input_handler kbd_handler;
124static DEFINE_SPINLOCK(kbd_event_lock);
125static DEFINE_SPINLOCK(led_lock);
126static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
127static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
128static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
129static bool dead_key_next;
130static int npadch = -1; /* -1 or number assembled on pad */
131static unsigned int diacr;
132static char rep; /* flag telling character repeat */
133
134static int shift_state = 0;
135
136static unsigned int ledstate = -1U; /* undefined */
137static unsigned char ledioctl;
138
139/*
140 * Notifier list for console keyboard events
141 */
142static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
143
144int register_keyboard_notifier(struct notifier_block *nb)
145{
146 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
147}
148EXPORT_SYMBOL_GPL(register_keyboard_notifier);
149
150int unregister_keyboard_notifier(struct notifier_block *nb)
151{
152 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
153}
154EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
155
156/*
157 * Translation of scancodes to keycodes. We set them on only the first
158 * keyboard in the list that accepts the scancode and keycode.
159 * Explanation for not choosing the first attached keyboard anymore:
160 * USB keyboards for example have two event devices: one for all "normal"
161 * keys and one for extra function keys (like "volume up", "make coffee",
162 * etc.). So this means that scancodes for the extra function keys won't
163 * be valid for the first event device, but will be for the second.
164 */
165
166struct getset_keycode_data {
167 struct input_keymap_entry ke;
168 int error;
169};
170
171static int getkeycode_helper(struct input_handle *handle, void *data)
172{
173 struct getset_keycode_data *d = data;
174
175 d->error = input_get_keycode(handle->dev, &d->ke);
176
177 return d->error == 0; /* stop as soon as we successfully get one */
178}
179
180static int getkeycode(unsigned int scancode)
181{
182 struct getset_keycode_data d = {
183 .ke = {
184 .flags = 0,
185 .len = sizeof(scancode),
186 .keycode = 0,
187 },
188 .error = -ENODEV,
189 };
190
191 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
192
193 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
194
195 return d.error ?: d.ke.keycode;
196}
197
198static int setkeycode_helper(struct input_handle *handle, void *data)
199{
200 struct getset_keycode_data *d = data;
201
202 d->error = input_set_keycode(handle->dev, &d->ke);
203
204 return d->error == 0; /* stop as soon as we successfully set one */
205}
206
207static int setkeycode(unsigned int scancode, unsigned int keycode)
208{
209 struct getset_keycode_data d = {
210 .ke = {
211 .flags = 0,
212 .len = sizeof(scancode),
213 .keycode = keycode,
214 },
215 .error = -ENODEV,
216 };
217
218 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
219
220 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
221
222 return d.error;
223}
224
225/*
226 * Making beeps and bells. Note that we prefer beeps to bells, but when
227 * shutting the sound off we do both.
228 */
229
230static int kd_sound_helper(struct input_handle *handle, void *data)
231{
232 unsigned int *hz = data;
233 struct input_dev *dev = handle->dev;
234
235 if (test_bit(EV_SND, dev->evbit)) {
236 if (test_bit(SND_TONE, dev->sndbit)) {
237 input_inject_event(handle, EV_SND, SND_TONE, *hz);
238 if (*hz)
239 return 0;
240 }
241 if (test_bit(SND_BELL, dev->sndbit))
242 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
243 }
244
245 return 0;
246}
247
248static void kd_nosound(struct timer_list *unused)
249{
250 static unsigned int zero;
251
252 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
253}
254
255static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
256
257void kd_mksound(unsigned int hz, unsigned int ticks)
258{
259 del_timer_sync(&kd_mksound_timer);
260
261 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
262
263 if (hz && ticks)
264 mod_timer(&kd_mksound_timer, jiffies + ticks);
265}
266EXPORT_SYMBOL(kd_mksound);
267
268/*
269 * Setting the keyboard rate.
270 */
271
272static int kbd_rate_helper(struct input_handle *handle, void *data)
273{
274 struct input_dev *dev = handle->dev;
275 struct kbd_repeat *rpt = data;
276
277 if (test_bit(EV_REP, dev->evbit)) {
278
279 if (rpt[0].delay > 0)
280 input_inject_event(handle,
281 EV_REP, REP_DELAY, rpt[0].delay);
282 if (rpt[0].period > 0)
283 input_inject_event(handle,
284 EV_REP, REP_PERIOD, rpt[0].period);
285
286 rpt[1].delay = dev->rep[REP_DELAY];
287 rpt[1].period = dev->rep[REP_PERIOD];
288 }
289
290 return 0;
291}
292
293int kbd_rate(struct kbd_repeat *rpt)
294{
295 struct kbd_repeat data[2] = { *rpt };
296
297 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
298 *rpt = data[1]; /* Copy currently used settings */
299
300 return 0;
301}
302
303/*
304 * Helper Functions.
305 */
306static void put_queue(struct vc_data *vc, int ch)
307{
308 tty_insert_flip_char(&vc->port, ch, 0);
309 tty_schedule_flip(&vc->port);
310}
311
312static void puts_queue(struct vc_data *vc, char *cp)
313{
314 while (*cp) {
315 tty_insert_flip_char(&vc->port, *cp, 0);
316 cp++;
317 }
318 tty_schedule_flip(&vc->port);
319}
320
321static void applkey(struct vc_data *vc, int key, char mode)
322{
323 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
324
325 buf[1] = (mode ? 'O' : '[');
326 buf[2] = key;
327 puts_queue(vc, buf);
328}
329
330/*
331 * Many other routines do put_queue, but I think either
332 * they produce ASCII, or they produce some user-assigned
333 * string, and in both cases we might assume that it is
334 * in utf-8 already.
335 */
336static void to_utf8(struct vc_data *vc, uint c)
337{
338 if (c < 0x80)
339 /* 0******* */
340 put_queue(vc, c);
341 else if (c < 0x800) {
342 /* 110***** 10****** */
343 put_queue(vc, 0xc0 | (c >> 6));
344 put_queue(vc, 0x80 | (c & 0x3f));
345 } else if (c < 0x10000) {
346 if (c >= 0xD800 && c < 0xE000)
347 return;
348 if (c == 0xFFFF)
349 return;
350 /* 1110**** 10****** 10****** */
351 put_queue(vc, 0xe0 | (c >> 12));
352 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
353 put_queue(vc, 0x80 | (c & 0x3f));
354 } else if (c < 0x110000) {
355 /* 11110*** 10****** 10****** 10****** */
356 put_queue(vc, 0xf0 | (c >> 18));
357 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
358 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
359 put_queue(vc, 0x80 | (c & 0x3f));
360 }
361}
362
363/*
364 * Called after returning from RAW mode or when changing consoles - recompute
365 * shift_down[] and shift_state from key_down[] maybe called when keymap is
366 * undefined, so that shiftkey release is seen. The caller must hold the
367 * kbd_event_lock.
368 */
369
370static void do_compute_shiftstate(void)
371{
372 unsigned int k, sym, val;
373
374 shift_state = 0;
375 memset(shift_down, 0, sizeof(shift_down));
376
377 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
378 sym = U(key_maps[0][k]);
379 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
380 continue;
381
382 val = KVAL(sym);
383 if (val == KVAL(K_CAPSSHIFT))
384 val = KVAL(K_SHIFT);
385
386 shift_down[val]++;
387 shift_state |= BIT(val);
388 }
389}
390
391/* We still have to export this method to vt.c */
392void compute_shiftstate(void)
393{
394 unsigned long flags;
395 spin_lock_irqsave(&kbd_event_lock, flags);
396 do_compute_shiftstate();
397 spin_unlock_irqrestore(&kbd_event_lock, flags);
398}
399
400/*
401 * We have a combining character DIACR here, followed by the character CH.
402 * If the combination occurs in the table, return the corresponding value.
403 * Otherwise, if CH is a space or equals DIACR, return DIACR.
404 * Otherwise, conclude that DIACR was not combining after all,
405 * queue it and return CH.
406 */
407static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
408{
409 unsigned int d = diacr;
410 unsigned int i;
411
412 diacr = 0;
413
414 if ((d & ~0xff) == BRL_UC_ROW) {
415 if ((ch & ~0xff) == BRL_UC_ROW)
416 return d | ch;
417 } else {
418 for (i = 0; i < accent_table_size; i++)
419 if (accent_table[i].diacr == d && accent_table[i].base == ch)
420 return accent_table[i].result;
421 }
422
423 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
424 return d;
425
426 if (kbd->kbdmode == VC_UNICODE)
427 to_utf8(vc, d);
428 else {
429 int c = conv_uni_to_8bit(d);
430 if (c != -1)
431 put_queue(vc, c);
432 }
433
434 return ch;
435}
436
437/*
438 * Special function handlers
439 */
440static void fn_enter(struct vc_data *vc)
441{
442 if (diacr) {
443 if (kbd->kbdmode == VC_UNICODE)
444 to_utf8(vc, diacr);
445 else {
446 int c = conv_uni_to_8bit(diacr);
447 if (c != -1)
448 put_queue(vc, c);
449 }
450 diacr = 0;
451 }
452
453 put_queue(vc, 13);
454 if (vc_kbd_mode(kbd, VC_CRLF))
455 put_queue(vc, 10);
456}
457
458static void fn_caps_toggle(struct vc_data *vc)
459{
460 if (rep)
461 return;
462
463 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
464}
465
466static void fn_caps_on(struct vc_data *vc)
467{
468 if (rep)
469 return;
470
471 set_vc_kbd_led(kbd, VC_CAPSLOCK);
472}
473
474static void fn_show_ptregs(struct vc_data *vc)
475{
476 struct pt_regs *regs = get_irq_regs();
477
478 if (regs)
479 show_regs(regs);
480}
481
482static void fn_hold(struct vc_data *vc)
483{
484 struct tty_struct *tty = vc->port.tty;
485
486 if (rep || !tty)
487 return;
488
489 /*
490 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
491 * these routines are also activated by ^S/^Q.
492 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
493 */
494 if (tty->stopped)
495 start_tty(tty);
496 else
497 stop_tty(tty);
498}
499
500static void fn_num(struct vc_data *vc)
501{
502 if (vc_kbd_mode(kbd, VC_APPLIC))
503 applkey(vc, 'P', 1);
504 else
505 fn_bare_num(vc);
506}
507
508/*
509 * Bind this to Shift-NumLock if you work in application keypad mode
510 * but want to be able to change the NumLock flag.
511 * Bind this to NumLock if you prefer that the NumLock key always
512 * changes the NumLock flag.
513 */
514static void fn_bare_num(struct vc_data *vc)
515{
516 if (!rep)
517 chg_vc_kbd_led(kbd, VC_NUMLOCK);
518}
519
520static void fn_lastcons(struct vc_data *vc)
521{
522 /* switch to the last used console, ChN */
523 set_console(last_console);
524}
525
526static void fn_dec_console(struct vc_data *vc)
527{
528 int i, cur = fg_console;
529
530 /* Currently switching? Queue this next switch relative to that. */
531 if (want_console != -1)
532 cur = want_console;
533
534 for (i = cur - 1; i != cur; i--) {
535 if (i == -1)
536 i = MAX_NR_CONSOLES - 1;
537 if (vc_cons_allocated(i))
538 break;
539 }
540 set_console(i);
541}
542
543static void fn_inc_console(struct vc_data *vc)
544{
545 int i, cur = fg_console;
546
547 /* Currently switching? Queue this next switch relative to that. */
548 if (want_console != -1)
549 cur = want_console;
550
551 for (i = cur+1; i != cur; i++) {
552 if (i == MAX_NR_CONSOLES)
553 i = 0;
554 if (vc_cons_allocated(i))
555 break;
556 }
557 set_console(i);
558}
559
560static void fn_send_intr(struct vc_data *vc)
561{
562 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
563 tty_schedule_flip(&vc->port);
564}
565
566static void fn_scroll_forw(struct vc_data *vc)
567{
568 scrollfront(vc, 0);
569}
570
571static void fn_scroll_back(struct vc_data *vc)
572{
573 scrollback(vc);
574}
575
576static void fn_show_mem(struct vc_data *vc)
577{
578 show_mem(0, NULL);
579}
580
581static void fn_show_state(struct vc_data *vc)
582{
583 show_state();
584}
585
586static void fn_boot_it(struct vc_data *vc)
587{
588 ctrl_alt_del();
589}
590
591static void fn_compose(struct vc_data *vc)
592{
593 dead_key_next = true;
594}
595
596static void fn_spawn_con(struct vc_data *vc)
597{
598 spin_lock(&vt_spawn_con.lock);
599 if (vt_spawn_con.pid)
600 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
601 put_pid(vt_spawn_con.pid);
602 vt_spawn_con.pid = NULL;
603 }
604 spin_unlock(&vt_spawn_con.lock);
605}
606
607static void fn_SAK(struct vc_data *vc)
608{
609 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
610 schedule_work(SAK_work);
611}
612
613static void fn_null(struct vc_data *vc)
614{
615 do_compute_shiftstate();
616}
617
618/*
619 * Special key handlers
620 */
621static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
622{
623}
624
625static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
626{
627 if (up_flag)
628 return;
629 if (value >= ARRAY_SIZE(fn_handler))
630 return;
631 if ((kbd->kbdmode == VC_RAW ||
632 kbd->kbdmode == VC_MEDIUMRAW ||
633 kbd->kbdmode == VC_OFF) &&
634 value != KVAL(K_SAK))
635 return; /* SAK is allowed even in raw mode */
636 fn_handler[value](vc);
637}
638
639static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
640{
641 pr_err("k_lowercase was called - impossible\n");
642}
643
644static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
645{
646 if (up_flag)
647 return; /* no action, if this is a key release */
648
649 if (diacr)
650 value = handle_diacr(vc, value);
651
652 if (dead_key_next) {
653 dead_key_next = false;
654 diacr = value;
655 return;
656 }
657 if (kbd->kbdmode == VC_UNICODE)
658 to_utf8(vc, value);
659 else {
660 int c = conv_uni_to_8bit(value);
661 if (c != -1)
662 put_queue(vc, c);
663 }
664}
665
666/*
667 * Handle dead key. Note that we now may have several
668 * dead keys modifying the same character. Very useful
669 * for Vietnamese.
670 */
671static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
672{
673 if (up_flag)
674 return;
675
676 diacr = (diacr ? handle_diacr(vc, value) : value);
677}
678
679static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
680{
681 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
682}
683
684static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
685{
686 k_deadunicode(vc, value, up_flag);
687}
688
689/*
690 * Obsolete - for backwards compatibility only
691 */
692static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
693{
694 static const unsigned char ret_diacr[NR_DEAD] = {
695 '`', /* dead_grave */
696 '\'', /* dead_acute */
697 '^', /* dead_circumflex */
698 '~', /* dead_tilda */
699 '"', /* dead_diaeresis */
700 ',', /* dead_cedilla */
701 '_', /* dead_macron */
702 'U', /* dead_breve */
703 '.', /* dead_abovedot */
704 '*', /* dead_abovering */
705 '=', /* dead_doubleacute */
706 'c', /* dead_caron */
707 'k', /* dead_ogonek */
708 'i', /* dead_iota */
709 '#', /* dead_voiced_sound */
710 'o', /* dead_semivoiced_sound */
711 '!', /* dead_belowdot */
712 '?', /* dead_hook */
713 '+', /* dead_horn */
714 '-', /* dead_stroke */
715 ')', /* dead_abovecomma */
716 '(', /* dead_abovereversedcomma */
717 ':', /* dead_doublegrave */
718 'n', /* dead_invertedbreve */
719 ';', /* dead_belowcomma */
720 '$', /* dead_currency */
721 '@', /* dead_greek */
722 };
723
724 k_deadunicode(vc, ret_diacr[value], up_flag);
725}
726
727static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
728{
729 if (up_flag)
730 return;
731
732 set_console(value);
733}
734
735static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
736{
737 if (up_flag)
738 return;
739
740 if ((unsigned)value < ARRAY_SIZE(func_table)) {
741 if (func_table[value])
742 puts_queue(vc, func_table[value]);
743 } else
744 pr_err("k_fn called with value=%d\n", value);
745}
746
747static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
748{
749 static const char cur_chars[] = "BDCA";
750
751 if (up_flag)
752 return;
753
754 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
755}
756
757static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
758{
759 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
760 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
761
762 if (up_flag)
763 return; /* no action, if this is a key release */
764
765 /* kludge... shift forces cursor/number keys */
766 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
767 applkey(vc, app_map[value], 1);
768 return;
769 }
770
771 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
772
773 switch (value) {
774 case KVAL(K_PCOMMA):
775 case KVAL(K_PDOT):
776 k_fn(vc, KVAL(K_REMOVE), 0);
777 return;
778 case KVAL(K_P0):
779 k_fn(vc, KVAL(K_INSERT), 0);
780 return;
781 case KVAL(K_P1):
782 k_fn(vc, KVAL(K_SELECT), 0);
783 return;
784 case KVAL(K_P2):
785 k_cur(vc, KVAL(K_DOWN), 0);
786 return;
787 case KVAL(K_P3):
788 k_fn(vc, KVAL(K_PGDN), 0);
789 return;
790 case KVAL(K_P4):
791 k_cur(vc, KVAL(K_LEFT), 0);
792 return;
793 case KVAL(K_P6):
794 k_cur(vc, KVAL(K_RIGHT), 0);
795 return;
796 case KVAL(K_P7):
797 k_fn(vc, KVAL(K_FIND), 0);
798 return;
799 case KVAL(K_P8):
800 k_cur(vc, KVAL(K_UP), 0);
801 return;
802 case KVAL(K_P9):
803 k_fn(vc, KVAL(K_PGUP), 0);
804 return;
805 case KVAL(K_P5):
806 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
807 return;
808 }
809 }
810
811 put_queue(vc, pad_chars[value]);
812 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
813 put_queue(vc, 10);
814}
815
816static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
817{
818 int old_state = shift_state;
819
820 if (rep)
821 return;
822 /*
823 * Mimic typewriter:
824 * a CapsShift key acts like Shift but undoes CapsLock
825 */
826 if (value == KVAL(K_CAPSSHIFT)) {
827 value = KVAL(K_SHIFT);
828 if (!up_flag)
829 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
830 }
831
832 if (up_flag) {
833 /*
834 * handle the case that two shift or control
835 * keys are depressed simultaneously
836 */
837 if (shift_down[value])
838 shift_down[value]--;
839 } else
840 shift_down[value]++;
841
842 if (shift_down[value])
843 shift_state |= (1 << value);
844 else
845 shift_state &= ~(1 << value);
846
847 /* kludge */
848 if (up_flag && shift_state != old_state && npadch != -1) {
849 if (kbd->kbdmode == VC_UNICODE)
850 to_utf8(vc, npadch);
851 else
852 put_queue(vc, npadch & 0xff);
853 npadch = -1;
854 }
855}
856
857static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
858{
859 if (up_flag)
860 return;
861
862 if (vc_kbd_mode(kbd, VC_META)) {
863 put_queue(vc, '\033');
864 put_queue(vc, value);
865 } else
866 put_queue(vc, value | 0x80);
867}
868
869static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
870{
871 int base;
872
873 if (up_flag)
874 return;
875
876 if (value < 10) {
877 /* decimal input of code, while Alt depressed */
878 base = 10;
879 } else {
880 /* hexadecimal input of code, while AltGr depressed */
881 value -= 10;
882 base = 16;
883 }
884
885 if (npadch == -1)
886 npadch = value;
887 else
888 npadch = npadch * base + value;
889}
890
891static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
892{
893 if (up_flag || rep)
894 return;
895
896 chg_vc_kbd_lock(kbd, value);
897}
898
899static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
900{
901 k_shift(vc, value, up_flag);
902 if (up_flag || rep)
903 return;
904
905 chg_vc_kbd_slock(kbd, value);
906 /* try to make Alt, oops, AltGr and such work */
907 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
908 kbd->slockstate = 0;
909 chg_vc_kbd_slock(kbd, value);
910 }
911}
912
913/* by default, 300ms interval for combination release */
914static unsigned brl_timeout = 300;
915MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
916module_param(brl_timeout, uint, 0644);
917
918static unsigned brl_nbchords = 1;
919MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
920module_param(brl_nbchords, uint, 0644);
921
922static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
923{
924 static unsigned long chords;
925 static unsigned committed;
926
927 if (!brl_nbchords)
928 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
929 else {
930 committed |= pattern;
931 chords++;
932 if (chords == brl_nbchords) {
933 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
934 chords = 0;
935 committed = 0;
936 }
937 }
938}
939
940static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
941{
942 static unsigned pressed, committing;
943 static unsigned long releasestart;
944
945 if (kbd->kbdmode != VC_UNICODE) {
946 if (!up_flag)
947 pr_warn("keyboard mode must be unicode for braille patterns\n");
948 return;
949 }
950
951 if (!value) {
952 k_unicode(vc, BRL_UC_ROW, up_flag);
953 return;
954 }
955
956 if (value > 8)
957 return;
958
959 if (!up_flag) {
960 pressed |= 1 << (value - 1);
961 if (!brl_timeout)
962 committing = pressed;
963 } else if (brl_timeout) {
964 if (!committing ||
965 time_after(jiffies,
966 releasestart + msecs_to_jiffies(brl_timeout))) {
967 committing = pressed;
968 releasestart = jiffies;
969 }
970 pressed &= ~(1 << (value - 1));
971 if (!pressed && committing) {
972 k_brlcommit(vc, committing, 0);
973 committing = 0;
974 }
975 } else {
976 if (committing) {
977 k_brlcommit(vc, committing, 0);
978 committing = 0;
979 }
980 pressed &= ~(1 << (value - 1));
981 }
982}
983
984#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
985
986struct kbd_led_trigger {
987 struct led_trigger trigger;
988 unsigned int mask;
989};
990
991static int kbd_led_trigger_activate(struct led_classdev *cdev)
992{
993 struct kbd_led_trigger *trigger =
994 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
995
996 tasklet_disable(&keyboard_tasklet);
997 if (ledstate != -1U)
998 led_trigger_event(&trigger->trigger,
999 ledstate & trigger->mask ?
1000 LED_FULL : LED_OFF);
1001 tasklet_enable(&keyboard_tasklet);
1002
1003 return 0;
1004}
1005
1006#define KBD_LED_TRIGGER(_led_bit, _name) { \
1007 .trigger = { \
1008 .name = _name, \
1009 .activate = kbd_led_trigger_activate, \
1010 }, \
1011 .mask = BIT(_led_bit), \
1012 }
1013
1014#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1015 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1016
1017static struct kbd_led_trigger kbd_led_triggers[] = {
1018 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1019 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1020 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1021 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1022
1023 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1024 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1025 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1026 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1027 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1028 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1029 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1030 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1031};
1032
1033static void kbd_propagate_led_state(unsigned int old_state,
1034 unsigned int new_state)
1035{
1036 struct kbd_led_trigger *trigger;
1037 unsigned int changed = old_state ^ new_state;
1038 int i;
1039
1040 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1041 trigger = &kbd_led_triggers[i];
1042
1043 if (changed & trigger->mask)
1044 led_trigger_event(&trigger->trigger,
1045 new_state & trigger->mask ?
1046 LED_FULL : LED_OFF);
1047 }
1048}
1049
1050static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1051{
1052 unsigned int led_state = *(unsigned int *)data;
1053
1054 if (test_bit(EV_LED, handle->dev->evbit))
1055 kbd_propagate_led_state(~led_state, led_state);
1056
1057 return 0;
1058}
1059
1060static void kbd_init_leds(void)
1061{
1062 int error;
1063 int i;
1064
1065 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1066 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1067 if (error)
1068 pr_err("error %d while registering trigger %s\n",
1069 error, kbd_led_triggers[i].trigger.name);
1070 }
1071}
1072
1073#else
1074
1075static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1076{
1077 unsigned int leds = *(unsigned int *)data;
1078
1079 if (test_bit(EV_LED, handle->dev->evbit)) {
1080 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1081 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1082 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1083 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1084 }
1085
1086 return 0;
1087}
1088
1089static void kbd_propagate_led_state(unsigned int old_state,
1090 unsigned int new_state)
1091{
1092 input_handler_for_each_handle(&kbd_handler, &new_state,
1093 kbd_update_leds_helper);
1094}
1095
1096static void kbd_init_leds(void)
1097{
1098}
1099
1100#endif
1101
1102/*
1103 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1104 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1105 * or (iii) specified bits of specified words in kernel memory.
1106 */
1107static unsigned char getledstate(void)
1108{
1109 return ledstate & 0xff;
1110}
1111
1112void setledstate(struct kbd_struct *kb, unsigned int led)
1113{
1114 unsigned long flags;
1115 spin_lock_irqsave(&led_lock, flags);
1116 if (!(led & ~7)) {
1117 ledioctl = led;
1118 kb->ledmode = LED_SHOW_IOCTL;
1119 } else
1120 kb->ledmode = LED_SHOW_FLAGS;
1121
1122 set_leds();
1123 spin_unlock_irqrestore(&led_lock, flags);
1124}
1125
1126static inline unsigned char getleds(void)
1127{
1128 struct kbd_struct *kb = kbd_table + fg_console;
1129
1130 if (kb->ledmode == LED_SHOW_IOCTL)
1131 return ledioctl;
1132
1133 return kb->ledflagstate;
1134}
1135
1136/**
1137 * vt_get_leds - helper for braille console
1138 * @console: console to read
1139 * @flag: flag we want to check
1140 *
1141 * Check the status of a keyboard led flag and report it back
1142 */
1143int vt_get_leds(int console, int flag)
1144{
1145 struct kbd_struct *kb = kbd_table + console;
1146 int ret;
1147 unsigned long flags;
1148
1149 spin_lock_irqsave(&led_lock, flags);
1150 ret = vc_kbd_led(kb, flag);
1151 spin_unlock_irqrestore(&led_lock, flags);
1152
1153 return ret;
1154}
1155EXPORT_SYMBOL_GPL(vt_get_leds);
1156
1157/**
1158 * vt_set_led_state - set LED state of a console
1159 * @console: console to set
1160 * @leds: LED bits
1161 *
1162 * Set the LEDs on a console. This is a wrapper for the VT layer
1163 * so that we can keep kbd knowledge internal
1164 */
1165void vt_set_led_state(int console, int leds)
1166{
1167 struct kbd_struct *kb = kbd_table + console;
1168 setledstate(kb, leds);
1169}
1170
1171/**
1172 * vt_kbd_con_start - Keyboard side of console start
1173 * @console: console
1174 *
1175 * Handle console start. This is a wrapper for the VT layer
1176 * so that we can keep kbd knowledge internal
1177 *
1178 * FIXME: We eventually need to hold the kbd lock here to protect
1179 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1180 * and start_tty under the kbd_event_lock, while normal tty paths
1181 * don't hold the lock. We probably need to split out an LED lock
1182 * but not during an -rc release!
1183 */
1184void vt_kbd_con_start(int console)
1185{
1186 struct kbd_struct *kb = kbd_table + console;
1187 unsigned long flags;
1188 spin_lock_irqsave(&led_lock, flags);
1189 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1190 set_leds();
1191 spin_unlock_irqrestore(&led_lock, flags);
1192}
1193
1194/**
1195 * vt_kbd_con_stop - Keyboard side of console stop
1196 * @console: console
1197 *
1198 * Handle console stop. This is a wrapper for the VT layer
1199 * so that we can keep kbd knowledge internal
1200 */
1201void vt_kbd_con_stop(int console)
1202{
1203 struct kbd_struct *kb = kbd_table + console;
1204 unsigned long flags;
1205 spin_lock_irqsave(&led_lock, flags);
1206 set_vc_kbd_led(kb, VC_SCROLLOCK);
1207 set_leds();
1208 spin_unlock_irqrestore(&led_lock, flags);
1209}
1210
1211/*
1212 * This is the tasklet that updates LED state of LEDs using standard
1213 * keyboard triggers. The reason we use tasklet is that we need to
1214 * handle the scenario when keyboard handler is not registered yet
1215 * but we already getting updates from the VT to update led state.
1216 */
1217static void kbd_bh(unsigned long dummy)
1218{
1219 unsigned int leds;
1220 unsigned long flags;
1221
1222 spin_lock_irqsave(&led_lock, flags);
1223 leds = getleds();
1224 leds |= (unsigned int)kbd->lockstate << 8;
1225 spin_unlock_irqrestore(&led_lock, flags);
1226
1227 if (leds != ledstate) {
1228 kbd_propagate_led_state(ledstate, leds);
1229 ledstate = leds;
1230 }
1231}
1232
1233DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1234
1235#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1236 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1237 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1238 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1239
1240#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1241 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1242
1243static const unsigned short x86_keycodes[256] =
1244 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1245 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1246 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1247 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1248 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1249 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1250 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1251 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1252 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1253 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1254 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1255 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1256 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1257 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1258 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1259
1260#ifdef CONFIG_SPARC
1261static int sparc_l1_a_state;
1262extern void sun_do_break(void);
1263#endif
1264
1265static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1266 unsigned char up_flag)
1267{
1268 int code;
1269
1270 switch (keycode) {
1271
1272 case KEY_PAUSE:
1273 put_queue(vc, 0xe1);
1274 put_queue(vc, 0x1d | up_flag);
1275 put_queue(vc, 0x45 | up_flag);
1276 break;
1277
1278 case KEY_HANGEUL:
1279 if (!up_flag)
1280 put_queue(vc, 0xf2);
1281 break;
1282
1283 case KEY_HANJA:
1284 if (!up_flag)
1285 put_queue(vc, 0xf1);
1286 break;
1287
1288 case KEY_SYSRQ:
1289 /*
1290 * Real AT keyboards (that's what we're trying
1291 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1292 * pressing PrtSc/SysRq alone, but simply 0x54
1293 * when pressing Alt+PrtSc/SysRq.
1294 */
1295 if (test_bit(KEY_LEFTALT, key_down) ||
1296 test_bit(KEY_RIGHTALT, key_down)) {
1297 put_queue(vc, 0x54 | up_flag);
1298 } else {
1299 put_queue(vc, 0xe0);
1300 put_queue(vc, 0x2a | up_flag);
1301 put_queue(vc, 0xe0);
1302 put_queue(vc, 0x37 | up_flag);
1303 }
1304 break;
1305
1306 default:
1307 if (keycode > 255)
1308 return -1;
1309
1310 code = x86_keycodes[keycode];
1311 if (!code)
1312 return -1;
1313
1314 if (code & 0x100)
1315 put_queue(vc, 0xe0);
1316 put_queue(vc, (code & 0x7f) | up_flag);
1317
1318 break;
1319 }
1320
1321 return 0;
1322}
1323
1324#else
1325
1326#define HW_RAW(dev) 0
1327
1328static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1329{
1330 if (keycode > 127)
1331 return -1;
1332
1333 put_queue(vc, keycode | up_flag);
1334 return 0;
1335}
1336#endif
1337
1338static void kbd_rawcode(unsigned char data)
1339{
1340 struct vc_data *vc = vc_cons[fg_console].d;
1341
1342 kbd = kbd_table + vc->vc_num;
1343 if (kbd->kbdmode == VC_RAW)
1344 put_queue(vc, data);
1345}
1346
1347static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1348{
1349 struct vc_data *vc = vc_cons[fg_console].d;
1350 unsigned short keysym, *key_map;
1351 unsigned char type;
1352 bool raw_mode;
1353 struct tty_struct *tty;
1354 int shift_final;
1355 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1356 int rc;
1357
1358 tty = vc->port.tty;
1359
1360 if (tty && (!tty->driver_data)) {
1361 /* No driver data? Strange. Okay we fix it then. */
1362 tty->driver_data = vc;
1363 }
1364
1365 kbd = kbd_table + vc->vc_num;
1366
1367#ifdef CONFIG_SPARC
1368 if (keycode == KEY_STOP)
1369 sparc_l1_a_state = down;
1370#endif
1371
1372 rep = (down == 2);
1373
1374 raw_mode = (kbd->kbdmode == VC_RAW);
1375 if (raw_mode && !hw_raw)
1376 if (emulate_raw(vc, keycode, !down << 7))
1377 if (keycode < BTN_MISC && printk_ratelimit())
1378 pr_warn("can't emulate rawmode for keycode %d\n",
1379 keycode);
1380
1381#ifdef CONFIG_SPARC
1382 if (keycode == KEY_A && sparc_l1_a_state) {
1383 sparc_l1_a_state = false;
1384 sun_do_break();
1385 }
1386#endif
1387
1388 if (kbd->kbdmode == VC_MEDIUMRAW) {
1389 /*
1390 * This is extended medium raw mode, with keys above 127
1391 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1392 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1393 * interfere with anything else. The two bytes after 0 will
1394 * always have the up flag set not to interfere with older
1395 * applications. This allows for 16384 different keycodes,
1396 * which should be enough.
1397 */
1398 if (keycode < 128) {
1399 put_queue(vc, keycode | (!down << 7));
1400 } else {
1401 put_queue(vc, !down << 7);
1402 put_queue(vc, (keycode >> 7) | 0x80);
1403 put_queue(vc, keycode | 0x80);
1404 }
1405 raw_mode = true;
1406 }
1407
1408 if (down)
1409 set_bit(keycode, key_down);
1410 else
1411 clear_bit(keycode, key_down);
1412
1413 if (rep &&
1414 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1415 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1416 /*
1417 * Don't repeat a key if the input buffers are not empty and the
1418 * characters get aren't echoed locally. This makes key repeat
1419 * usable with slow applications and under heavy loads.
1420 */
1421 return;
1422 }
1423
1424 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1425 param.ledstate = kbd->ledflagstate;
1426 key_map = key_maps[shift_final];
1427
1428 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1429 KBD_KEYCODE, ¶m);
1430 if (rc == NOTIFY_STOP || !key_map) {
1431 atomic_notifier_call_chain(&keyboard_notifier_list,
1432 KBD_UNBOUND_KEYCODE, ¶m);
1433 do_compute_shiftstate();
1434 kbd->slockstate = 0;
1435 return;
1436 }
1437
1438 if (keycode < NR_KEYS)
1439 keysym = key_map[keycode];
1440 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1441 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1442 else
1443 return;
1444
1445 type = KTYP(keysym);
1446
1447 if (type < 0xf0) {
1448 param.value = keysym;
1449 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1450 KBD_UNICODE, ¶m);
1451 if (rc != NOTIFY_STOP)
1452 if (down && !raw_mode)
1453 k_unicode(vc, keysym, !down);
1454 return;
1455 }
1456
1457 type -= 0xf0;
1458
1459 if (type == KT_LETTER) {
1460 type = KT_LATIN;
1461 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1462 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1463 if (key_map)
1464 keysym = key_map[keycode];
1465 }
1466 }
1467
1468 param.value = keysym;
1469 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1470 KBD_KEYSYM, ¶m);
1471 if (rc == NOTIFY_STOP)
1472 return;
1473
1474 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1475 return;
1476
1477 (*k_handler[type])(vc, keysym & 0xff, !down);
1478
1479 param.ledstate = kbd->ledflagstate;
1480 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1481
1482 if (type != KT_SLOCK)
1483 kbd->slockstate = 0;
1484}
1485
1486static void kbd_event(struct input_handle *handle, unsigned int event_type,
1487 unsigned int event_code, int value)
1488{
1489 /* We are called with interrupts disabled, just take the lock */
1490 spin_lock(&kbd_event_lock);
1491
1492 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1493 kbd_rawcode(value);
1494 if (event_type == EV_KEY)
1495 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1496
1497 spin_unlock(&kbd_event_lock);
1498
1499 tasklet_schedule(&keyboard_tasklet);
1500 do_poke_blanked_console = 1;
1501 schedule_console_callback();
1502}
1503
1504static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1505{
1506 int i;
1507
1508 if (test_bit(EV_SND, dev->evbit))
1509 return true;
1510
1511 if (test_bit(EV_KEY, dev->evbit)) {
1512 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1513 if (test_bit(i, dev->keybit))
1514 return true;
1515 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1516 if (test_bit(i, dev->keybit))
1517 return true;
1518 }
1519
1520 return false;
1521}
1522
1523/*
1524 * When a keyboard (or other input device) is found, the kbd_connect
1525 * function is called. The function then looks at the device, and if it
1526 * likes it, it can open it and get events from it. In this (kbd_connect)
1527 * function, we should decide which VT to bind that keyboard to initially.
1528 */
1529static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1530 const struct input_device_id *id)
1531{
1532 struct input_handle *handle;
1533 int error;
1534
1535 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1536 if (!handle)
1537 return -ENOMEM;
1538
1539 handle->dev = dev;
1540 handle->handler = handler;
1541 handle->name = "kbd";
1542
1543 error = input_register_handle(handle);
1544 if (error)
1545 goto err_free_handle;
1546
1547 error = input_open_device(handle);
1548 if (error)
1549 goto err_unregister_handle;
1550
1551 return 0;
1552
1553 err_unregister_handle:
1554 input_unregister_handle(handle);
1555 err_free_handle:
1556 kfree(handle);
1557 return error;
1558}
1559
1560static void kbd_disconnect(struct input_handle *handle)
1561{
1562 input_close_device(handle);
1563 input_unregister_handle(handle);
1564 kfree(handle);
1565}
1566
1567/*
1568 * Start keyboard handler on the new keyboard by refreshing LED state to
1569 * match the rest of the system.
1570 */
1571static void kbd_start(struct input_handle *handle)
1572{
1573 tasklet_disable(&keyboard_tasklet);
1574
1575 if (ledstate != -1U)
1576 kbd_update_leds_helper(handle, &ledstate);
1577
1578 tasklet_enable(&keyboard_tasklet);
1579}
1580
1581static const struct input_device_id kbd_ids[] = {
1582 {
1583 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1584 .evbit = { BIT_MASK(EV_KEY) },
1585 },
1586
1587 {
1588 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1589 .evbit = { BIT_MASK(EV_SND) },
1590 },
1591
1592 { }, /* Terminating entry */
1593};
1594
1595MODULE_DEVICE_TABLE(input, kbd_ids);
1596
1597static struct input_handler kbd_handler = {
1598 .event = kbd_event,
1599 .match = kbd_match,
1600 .connect = kbd_connect,
1601 .disconnect = kbd_disconnect,
1602 .start = kbd_start,
1603 .name = "kbd",
1604 .id_table = kbd_ids,
1605};
1606
1607int __init kbd_init(void)
1608{
1609 int i;
1610 int error;
1611
1612 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1613 kbd_table[i].ledflagstate = kbd_defleds();
1614 kbd_table[i].default_ledflagstate = kbd_defleds();
1615 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1616 kbd_table[i].lockstate = KBD_DEFLOCK;
1617 kbd_table[i].slockstate = 0;
1618 kbd_table[i].modeflags = KBD_DEFMODE;
1619 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1620 }
1621
1622 kbd_init_leds();
1623
1624 error = input_register_handler(&kbd_handler);
1625 if (error)
1626 return error;
1627
1628 tasklet_enable(&keyboard_tasklet);
1629 tasklet_schedule(&keyboard_tasklet);
1630
1631 return 0;
1632}
1633
1634/* Ioctl support code */
1635
1636/**
1637 * vt_do_diacrit - diacritical table updates
1638 * @cmd: ioctl request
1639 * @udp: pointer to user data for ioctl
1640 * @perm: permissions check computed by caller
1641 *
1642 * Update the diacritical tables atomically and safely. Lock them
1643 * against simultaneous keypresses
1644 */
1645int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1646{
1647 unsigned long flags;
1648 int asize;
1649 int ret = 0;
1650
1651 switch (cmd) {
1652 case KDGKBDIACR:
1653 {
1654 struct kbdiacrs __user *a = udp;
1655 struct kbdiacr *dia;
1656 int i;
1657
1658 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1659 GFP_KERNEL);
1660 if (!dia)
1661 return -ENOMEM;
1662
1663 /* Lock the diacriticals table, make a copy and then
1664 copy it after we unlock */
1665 spin_lock_irqsave(&kbd_event_lock, flags);
1666
1667 asize = accent_table_size;
1668 for (i = 0; i < asize; i++) {
1669 dia[i].diacr = conv_uni_to_8bit(
1670 accent_table[i].diacr);
1671 dia[i].base = conv_uni_to_8bit(
1672 accent_table[i].base);
1673 dia[i].result = conv_uni_to_8bit(
1674 accent_table[i].result);
1675 }
1676 spin_unlock_irqrestore(&kbd_event_lock, flags);
1677
1678 if (put_user(asize, &a->kb_cnt))
1679 ret = -EFAULT;
1680 else if (copy_to_user(a->kbdiacr, dia,
1681 asize * sizeof(struct kbdiacr)))
1682 ret = -EFAULT;
1683 kfree(dia);
1684 return ret;
1685 }
1686 case KDGKBDIACRUC:
1687 {
1688 struct kbdiacrsuc __user *a = udp;
1689 void *buf;
1690
1691 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1692 GFP_KERNEL);
1693 if (buf == NULL)
1694 return -ENOMEM;
1695
1696 /* Lock the diacriticals table, make a copy and then
1697 copy it after we unlock */
1698 spin_lock_irqsave(&kbd_event_lock, flags);
1699
1700 asize = accent_table_size;
1701 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1702
1703 spin_unlock_irqrestore(&kbd_event_lock, flags);
1704
1705 if (put_user(asize, &a->kb_cnt))
1706 ret = -EFAULT;
1707 else if (copy_to_user(a->kbdiacruc, buf,
1708 asize*sizeof(struct kbdiacruc)))
1709 ret = -EFAULT;
1710 kfree(buf);
1711 return ret;
1712 }
1713
1714 case KDSKBDIACR:
1715 {
1716 struct kbdiacrs __user *a = udp;
1717 struct kbdiacr *dia = NULL;
1718 unsigned int ct;
1719 int i;
1720
1721 if (!perm)
1722 return -EPERM;
1723 if (get_user(ct, &a->kb_cnt))
1724 return -EFAULT;
1725 if (ct >= MAX_DIACR)
1726 return -EINVAL;
1727
1728 if (ct) {
1729
1730 dia = memdup_user(a->kbdiacr,
1731 sizeof(struct kbdiacr) * ct);
1732 if (IS_ERR(dia))
1733 return PTR_ERR(dia);
1734
1735 }
1736
1737 spin_lock_irqsave(&kbd_event_lock, flags);
1738 accent_table_size = ct;
1739 for (i = 0; i < ct; i++) {
1740 accent_table[i].diacr =
1741 conv_8bit_to_uni(dia[i].diacr);
1742 accent_table[i].base =
1743 conv_8bit_to_uni(dia[i].base);
1744 accent_table[i].result =
1745 conv_8bit_to_uni(dia[i].result);
1746 }
1747 spin_unlock_irqrestore(&kbd_event_lock, flags);
1748 kfree(dia);
1749 return 0;
1750 }
1751
1752 case KDSKBDIACRUC:
1753 {
1754 struct kbdiacrsuc __user *a = udp;
1755 unsigned int ct;
1756 void *buf = NULL;
1757
1758 if (!perm)
1759 return -EPERM;
1760
1761 if (get_user(ct, &a->kb_cnt))
1762 return -EFAULT;
1763
1764 if (ct >= MAX_DIACR)
1765 return -EINVAL;
1766
1767 if (ct) {
1768 buf = memdup_user(a->kbdiacruc,
1769 ct * sizeof(struct kbdiacruc));
1770 if (IS_ERR(buf))
1771 return PTR_ERR(buf);
1772 }
1773 spin_lock_irqsave(&kbd_event_lock, flags);
1774 if (ct)
1775 memcpy(accent_table, buf,
1776 ct * sizeof(struct kbdiacruc));
1777 accent_table_size = ct;
1778 spin_unlock_irqrestore(&kbd_event_lock, flags);
1779 kfree(buf);
1780 return 0;
1781 }
1782 }
1783 return ret;
1784}
1785
1786/**
1787 * vt_do_kdskbmode - set keyboard mode ioctl
1788 * @console: the console to use
1789 * @arg: the requested mode
1790 *
1791 * Update the keyboard mode bits while holding the correct locks.
1792 * Return 0 for success or an error code.
1793 */
1794int vt_do_kdskbmode(int console, unsigned int arg)
1795{
1796 struct kbd_struct *kb = kbd_table + console;
1797 int ret = 0;
1798 unsigned long flags;
1799
1800 spin_lock_irqsave(&kbd_event_lock, flags);
1801 switch(arg) {
1802 case K_RAW:
1803 kb->kbdmode = VC_RAW;
1804 break;
1805 case K_MEDIUMRAW:
1806 kb->kbdmode = VC_MEDIUMRAW;
1807 break;
1808 case K_XLATE:
1809 kb->kbdmode = VC_XLATE;
1810 do_compute_shiftstate();
1811 break;
1812 case K_UNICODE:
1813 kb->kbdmode = VC_UNICODE;
1814 do_compute_shiftstate();
1815 break;
1816 case K_OFF:
1817 kb->kbdmode = VC_OFF;
1818 break;
1819 default:
1820 ret = -EINVAL;
1821 }
1822 spin_unlock_irqrestore(&kbd_event_lock, flags);
1823 return ret;
1824}
1825
1826/**
1827 * vt_do_kdskbmeta - set keyboard meta state
1828 * @console: the console to use
1829 * @arg: the requested meta state
1830 *
1831 * Update the keyboard meta bits while holding the correct locks.
1832 * Return 0 for success or an error code.
1833 */
1834int vt_do_kdskbmeta(int console, unsigned int arg)
1835{
1836 struct kbd_struct *kb = kbd_table + console;
1837 int ret = 0;
1838 unsigned long flags;
1839
1840 spin_lock_irqsave(&kbd_event_lock, flags);
1841 switch(arg) {
1842 case K_METABIT:
1843 clr_vc_kbd_mode(kb, VC_META);
1844 break;
1845 case K_ESCPREFIX:
1846 set_vc_kbd_mode(kb, VC_META);
1847 break;
1848 default:
1849 ret = -EINVAL;
1850 }
1851 spin_unlock_irqrestore(&kbd_event_lock, flags);
1852 return ret;
1853}
1854
1855int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1856 int perm)
1857{
1858 struct kbkeycode tmp;
1859 int kc = 0;
1860
1861 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1862 return -EFAULT;
1863 switch (cmd) {
1864 case KDGETKEYCODE:
1865 kc = getkeycode(tmp.scancode);
1866 if (kc >= 0)
1867 kc = put_user(kc, &user_kbkc->keycode);
1868 break;
1869 case KDSETKEYCODE:
1870 if (!perm)
1871 return -EPERM;
1872 kc = setkeycode(tmp.scancode, tmp.keycode);
1873 break;
1874 }
1875 return kc;
1876}
1877
1878#define i (tmp.kb_index)
1879#define s (tmp.kb_table)
1880#define v (tmp.kb_value)
1881
1882int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1883 int console)
1884{
1885 struct kbd_struct *kb = kbd_table + console;
1886 struct kbentry tmp;
1887 ushort *key_map, *new_map, val, ov;
1888 unsigned long flags;
1889
1890 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1891 return -EFAULT;
1892
1893 if (!capable(CAP_SYS_TTY_CONFIG))
1894 perm = 0;
1895
1896 switch (cmd) {
1897 case KDGKBENT:
1898 /* Ensure another thread doesn't free it under us */
1899 spin_lock_irqsave(&kbd_event_lock, flags);
1900 key_map = key_maps[s];
1901 if (key_map) {
1902 val = U(key_map[i]);
1903 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1904 val = K_HOLE;
1905 } else
1906 val = (i ? K_HOLE : K_NOSUCHMAP);
1907 spin_unlock_irqrestore(&kbd_event_lock, flags);
1908 return put_user(val, &user_kbe->kb_value);
1909 case KDSKBENT:
1910 if (!perm)
1911 return -EPERM;
1912 if (!i && v == K_NOSUCHMAP) {
1913 spin_lock_irqsave(&kbd_event_lock, flags);
1914 /* deallocate map */
1915 key_map = key_maps[s];
1916 if (s && key_map) {
1917 key_maps[s] = NULL;
1918 if (key_map[0] == U(K_ALLOCATED)) {
1919 kfree(key_map);
1920 keymap_count--;
1921 }
1922 }
1923 spin_unlock_irqrestore(&kbd_event_lock, flags);
1924 break;
1925 }
1926
1927 if (KTYP(v) < NR_TYPES) {
1928 if (KVAL(v) > max_vals[KTYP(v)])
1929 return -EINVAL;
1930 } else
1931 if (kb->kbdmode != VC_UNICODE)
1932 return -EINVAL;
1933
1934 /* ++Geert: non-PC keyboards may generate keycode zero */
1935#if !defined(__mc68000__) && !defined(__powerpc__)
1936 /* assignment to entry 0 only tests validity of args */
1937 if (!i)
1938 break;
1939#endif
1940
1941 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1942 if (!new_map)
1943 return -ENOMEM;
1944 spin_lock_irqsave(&kbd_event_lock, flags);
1945 key_map = key_maps[s];
1946 if (key_map == NULL) {
1947 int j;
1948
1949 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1950 !capable(CAP_SYS_RESOURCE)) {
1951 spin_unlock_irqrestore(&kbd_event_lock, flags);
1952 kfree(new_map);
1953 return -EPERM;
1954 }
1955 key_maps[s] = new_map;
1956 key_map = new_map;
1957 key_map[0] = U(K_ALLOCATED);
1958 for (j = 1; j < NR_KEYS; j++)
1959 key_map[j] = U(K_HOLE);
1960 keymap_count++;
1961 } else
1962 kfree(new_map);
1963
1964 ov = U(key_map[i]);
1965 if (v == ov)
1966 goto out;
1967 /*
1968 * Attention Key.
1969 */
1970 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1971 spin_unlock_irqrestore(&kbd_event_lock, flags);
1972 return -EPERM;
1973 }
1974 key_map[i] = U(v);
1975 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1976 do_compute_shiftstate();
1977out:
1978 spin_unlock_irqrestore(&kbd_event_lock, flags);
1979 break;
1980 }
1981 return 0;
1982}
1983#undef i
1984#undef s
1985#undef v
1986
1987/* FIXME: This one needs untangling and locking */
1988int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1989{
1990 struct kbsentry *kbs;
1991 char *p;
1992 u_char *q;
1993 u_char __user *up;
1994 int sz, fnw_sz;
1995 int delta;
1996 char *first_free, *fj, *fnw;
1997 int i, j, k;
1998 int ret;
1999 unsigned long flags;
2000
2001 if (!capable(CAP_SYS_TTY_CONFIG))
2002 perm = 0;
2003
2004 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
2005 if (!kbs) {
2006 ret = -ENOMEM;
2007 goto reterr;
2008 }
2009
2010 /* we mostly copy too much here (512bytes), but who cares ;) */
2011 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
2012 ret = -EFAULT;
2013 goto reterr;
2014 }
2015 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2016 i = kbs->kb_func;
2017
2018 switch (cmd) {
2019 case KDGKBSENT:
2020 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
2021 a struct member */
2022 up = user_kdgkb->kb_string;
2023 p = func_table[i];
2024 if(p)
2025 for ( ; *p && sz; p++, sz--)
2026 if (put_user(*p, up++)) {
2027 ret = -EFAULT;
2028 goto reterr;
2029 }
2030 if (put_user('\0', up)) {
2031 ret = -EFAULT;
2032 goto reterr;
2033 }
2034 kfree(kbs);
2035 return ((p && *p) ? -EOVERFLOW : 0);
2036 case KDSKBSENT:
2037 if (!perm) {
2038 ret = -EPERM;
2039 goto reterr;
2040 }
2041
2042 fnw = NULL;
2043 fnw_sz = 0;
2044 /* race aginst other writers */
2045 again:
2046 spin_lock_irqsave(&func_buf_lock, flags);
2047 q = func_table[i];
2048
2049 /* fj pointer to next entry after 'q' */
2050 first_free = funcbufptr + (funcbufsize - funcbufleft);
2051 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2052 ;
2053 if (j < MAX_NR_FUNC)
2054 fj = func_table[j];
2055 else
2056 fj = first_free;
2057 /* buffer usage increase by new entry */
2058 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2059
2060 if (delta <= funcbufleft) { /* it fits in current buf */
2061 if (j < MAX_NR_FUNC) {
2062 /* make enough space for new entry at 'fj' */
2063 memmove(fj + delta, fj, first_free - fj);
2064 for (k = j; k < MAX_NR_FUNC; k++)
2065 if (func_table[k])
2066 func_table[k] += delta;
2067 }
2068 if (!q)
2069 func_table[i] = fj;
2070 funcbufleft -= delta;
2071 } else { /* allocate a larger buffer */
2072 sz = 256;
2073 while (sz < funcbufsize - funcbufleft + delta)
2074 sz <<= 1;
2075 if (fnw_sz != sz) {
2076 spin_unlock_irqrestore(&func_buf_lock, flags);
2077 kfree(fnw);
2078 fnw = kmalloc(sz, GFP_KERNEL);
2079 fnw_sz = sz;
2080 if (!fnw) {
2081 ret = -ENOMEM;
2082 goto reterr;
2083 }
2084 goto again;
2085 }
2086
2087 if (!q)
2088 func_table[i] = fj;
2089 /* copy data before insertion point to new location */
2090 if (fj > funcbufptr)
2091 memmove(fnw, funcbufptr, fj - funcbufptr);
2092 for (k = 0; k < j; k++)
2093 if (func_table[k])
2094 func_table[k] = fnw + (func_table[k] - funcbufptr);
2095
2096 /* copy data after insertion point to new location */
2097 if (first_free > fj) {
2098 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2099 for (k = j; k < MAX_NR_FUNC; k++)
2100 if (func_table[k])
2101 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2102 }
2103 if (funcbufptr != func_buf)
2104 kfree(funcbufptr);
2105 funcbufptr = fnw;
2106 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2107 funcbufsize = sz;
2108 }
2109 /* finally insert item itself */
2110 strcpy(func_table[i], kbs->kb_string);
2111 spin_unlock_irqrestore(&func_buf_lock, flags);
2112 break;
2113 }
2114 ret = 0;
2115reterr:
2116 kfree(kbs);
2117 return ret;
2118}
2119
2120int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2121{
2122 struct kbd_struct *kb = kbd_table + console;
2123 unsigned long flags;
2124 unsigned char ucval;
2125
2126 switch(cmd) {
2127 /* the ioctls below read/set the flags usually shown in the leds */
2128 /* don't use them - they will go away without warning */
2129 case KDGKBLED:
2130 spin_lock_irqsave(&kbd_event_lock, flags);
2131 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2132 spin_unlock_irqrestore(&kbd_event_lock, flags);
2133 return put_user(ucval, (char __user *)arg);
2134
2135 case KDSKBLED:
2136 if (!perm)
2137 return -EPERM;
2138 if (arg & ~0x77)
2139 return -EINVAL;
2140 spin_lock_irqsave(&led_lock, flags);
2141 kb->ledflagstate = (arg & 7);
2142 kb->default_ledflagstate = ((arg >> 4) & 7);
2143 set_leds();
2144 spin_unlock_irqrestore(&led_lock, flags);
2145 return 0;
2146
2147 /* the ioctls below only set the lights, not the functions */
2148 /* for those, see KDGKBLED and KDSKBLED above */
2149 case KDGETLED:
2150 ucval = getledstate();
2151 return put_user(ucval, (char __user *)arg);
2152
2153 case KDSETLED:
2154 if (!perm)
2155 return -EPERM;
2156 setledstate(kb, arg);
2157 return 0;
2158 }
2159 return -ENOIOCTLCMD;
2160}
2161
2162int vt_do_kdgkbmode(int console)
2163{
2164 struct kbd_struct *kb = kbd_table + console;
2165 /* This is a spot read so needs no locking */
2166 switch (kb->kbdmode) {
2167 case VC_RAW:
2168 return K_RAW;
2169 case VC_MEDIUMRAW:
2170 return K_MEDIUMRAW;
2171 case VC_UNICODE:
2172 return K_UNICODE;
2173 case VC_OFF:
2174 return K_OFF;
2175 default:
2176 return K_XLATE;
2177 }
2178}
2179
2180/**
2181 * vt_do_kdgkbmeta - report meta status
2182 * @console: console to report
2183 *
2184 * Report the meta flag status of this console
2185 */
2186int vt_do_kdgkbmeta(int console)
2187{
2188 struct kbd_struct *kb = kbd_table + console;
2189 /* Again a spot read so no locking */
2190 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2191}
2192
2193/**
2194 * vt_reset_unicode - reset the unicode status
2195 * @console: console being reset
2196 *
2197 * Restore the unicode console state to its default
2198 */
2199void vt_reset_unicode(int console)
2200{
2201 unsigned long flags;
2202
2203 spin_lock_irqsave(&kbd_event_lock, flags);
2204 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2205 spin_unlock_irqrestore(&kbd_event_lock, flags);
2206}
2207
2208/**
2209 * vt_get_shiftstate - shift bit state
2210 *
2211 * Report the shift bits from the keyboard state. We have to export
2212 * this to support some oddities in the vt layer.
2213 */
2214int vt_get_shift_state(void)
2215{
2216 /* Don't lock as this is a transient report */
2217 return shift_state;
2218}
2219
2220/**
2221 * vt_reset_keyboard - reset keyboard state
2222 * @console: console to reset
2223 *
2224 * Reset the keyboard bits for a console as part of a general console
2225 * reset event
2226 */
2227void vt_reset_keyboard(int console)
2228{
2229 struct kbd_struct *kb = kbd_table + console;
2230 unsigned long flags;
2231
2232 spin_lock_irqsave(&kbd_event_lock, flags);
2233 set_vc_kbd_mode(kb, VC_REPEAT);
2234 clr_vc_kbd_mode(kb, VC_CKMODE);
2235 clr_vc_kbd_mode(kb, VC_APPLIC);
2236 clr_vc_kbd_mode(kb, VC_CRLF);
2237 kb->lockstate = 0;
2238 kb->slockstate = 0;
2239 spin_lock(&led_lock);
2240 kb->ledmode = LED_SHOW_FLAGS;
2241 kb->ledflagstate = kb->default_ledflagstate;
2242 spin_unlock(&led_lock);
2243 /* do not do set_leds here because this causes an endless tasklet loop
2244 when the keyboard hasn't been initialized yet */
2245 spin_unlock_irqrestore(&kbd_event_lock, flags);
2246}
2247
2248/**
2249 * vt_get_kbd_mode_bit - read keyboard status bits
2250 * @console: console to read from
2251 * @bit: mode bit to read
2252 *
2253 * Report back a vt mode bit. We do this without locking so the
2254 * caller must be sure that there are no synchronization needs
2255 */
2256
2257int vt_get_kbd_mode_bit(int console, int bit)
2258{
2259 struct kbd_struct *kb = kbd_table + console;
2260 return vc_kbd_mode(kb, bit);
2261}
2262
2263/**
2264 * vt_set_kbd_mode_bit - read keyboard status bits
2265 * @console: console to read from
2266 * @bit: mode bit to read
2267 *
2268 * Set a vt mode bit. We do this without locking so the
2269 * caller must be sure that there are no synchronization needs
2270 */
2271
2272void vt_set_kbd_mode_bit(int console, int bit)
2273{
2274 struct kbd_struct *kb = kbd_table + console;
2275 unsigned long flags;
2276
2277 spin_lock_irqsave(&kbd_event_lock, flags);
2278 set_vc_kbd_mode(kb, bit);
2279 spin_unlock_irqrestore(&kbd_event_lock, flags);
2280}
2281
2282/**
2283 * vt_clr_kbd_mode_bit - read keyboard status bits
2284 * @console: console to read from
2285 * @bit: mode bit to read
2286 *
2287 * Report back a vt mode bit. We do this without locking so the
2288 * caller must be sure that there are no synchronization needs
2289 */
2290
2291void vt_clr_kbd_mode_bit(int console, int bit)
2292{
2293 struct kbd_struct *kb = kbd_table + console;
2294 unsigned long flags;
2295
2296 spin_lock_irqsave(&kbd_event_lock, flags);
2297 clr_vc_kbd_mode(kb, bit);
2298 spin_unlock_irqrestore(&kbd_event_lock, flags);
2299}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/init.h>
30#include <linux/input.h>
31#include <linux/jiffies.h>
32#include <linux/kbd_diacr.h>
33#include <linux/kbd_kern.h>
34#include <linux/leds.h>
35#include <linux/mm.h>
36#include <linux/module.h>
37#include <linux/nospec.h>
38#include <linux/notifier.h>
39#include <linux/reboot.h>
40#include <linux/sched/debug.h>
41#include <linux/sched/signal.h>
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/string.h>
45#include <linux/tty_flip.h>
46#include <linux/tty.h>
47#include <linux/uaccess.h>
48#include <linux/vt_kern.h>
49
50#include <asm/irq_regs.h>
51
52/*
53 * Exported functions/variables
54 */
55
56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
57
58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59#include <asm/kbdleds.h>
60#else
61static inline int kbd_defleds(void)
62{
63 return 0;
64}
65#endif
66
67#define KBD_DEFLOCK 0
68
69/*
70 * Handler Tables.
71 */
72
73#define K_HANDLERS\
74 k_self, k_fn, k_spec, k_pad,\
75 k_dead, k_cons, k_cur, k_shift,\
76 k_meta, k_ascii, k_lock, k_lowercase,\
77 k_slock, k_dead2, k_brl, k_ignore
78
79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 char up_flag);
81static k_handler_fn K_HANDLERS;
82static k_handler_fn *k_handler[16] = { K_HANDLERS };
83
84#define FN_HANDLERS\
85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
90
91typedef void (fn_handler_fn)(struct vc_data *vc);
92static fn_handler_fn FN_HANDLERS;
93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94
95/*
96 * Variables exported for vt_ioctl.c
97 */
98
99struct vt_spawn_console vt_spawn_con = {
100 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 .pid = NULL,
102 .sig = 0,
103};
104
105
106/*
107 * Internal Data.
108 */
109
110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111static struct kbd_struct *kbd = kbd_table;
112
113/* maximum values each key_handler can handle */
114static const unsigned char max_vals[] = {
115 [ KT_LATIN ] = 255,
116 [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 [ KT_PAD ] = NR_PAD - 1,
119 [ KT_DEAD ] = NR_DEAD - 1,
120 [ KT_CONS ] = 255,
121 [ KT_CUR ] = 3,
122 [ KT_SHIFT ] = NR_SHIFT - 1,
123 [ KT_META ] = 255,
124 [ KT_ASCII ] = NR_ASCII - 1,
125 [ KT_LOCK ] = NR_LOCK - 1,
126 [ KT_LETTER ] = 255,
127 [ KT_SLOCK ] = NR_LOCK - 1,
128 [ KT_DEAD2 ] = 255,
129 [ KT_BRL ] = NR_BRL - 1,
130};
131
132static const int NR_TYPES = ARRAY_SIZE(max_vals);
133
134static void kbd_bh(struct tasklet_struct *unused);
135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
136
137static struct input_handler kbd_handler;
138static DEFINE_SPINLOCK(kbd_event_lock);
139static DEFINE_SPINLOCK(led_lock);
140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143static bool dead_key_next;
144
145/* Handles a number being assembled on the number pad */
146static bool npadch_active;
147static unsigned int npadch_value;
148
149static unsigned int diacr;
150static bool rep; /* flag telling character repeat */
151
152static int shift_state = 0;
153
154static unsigned int ledstate = -1U; /* undefined */
155static unsigned char ledioctl;
156static bool vt_switch;
157
158/*
159 * Notifier list for console keyboard events
160 */
161static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
162
163int register_keyboard_notifier(struct notifier_block *nb)
164{
165 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
166}
167EXPORT_SYMBOL_GPL(register_keyboard_notifier);
168
169int unregister_keyboard_notifier(struct notifier_block *nb)
170{
171 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
172}
173EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
174
175/*
176 * Translation of scancodes to keycodes. We set them on only the first
177 * keyboard in the list that accepts the scancode and keycode.
178 * Explanation for not choosing the first attached keyboard anymore:
179 * USB keyboards for example have two event devices: one for all "normal"
180 * keys and one for extra function keys (like "volume up", "make coffee",
181 * etc.). So this means that scancodes for the extra function keys won't
182 * be valid for the first event device, but will be for the second.
183 */
184
185struct getset_keycode_data {
186 struct input_keymap_entry ke;
187 int error;
188};
189
190static int getkeycode_helper(struct input_handle *handle, void *data)
191{
192 struct getset_keycode_data *d = data;
193
194 d->error = input_get_keycode(handle->dev, &d->ke);
195
196 return d->error == 0; /* stop as soon as we successfully get one */
197}
198
199static int getkeycode(unsigned int scancode)
200{
201 struct getset_keycode_data d = {
202 .ke = {
203 .flags = 0,
204 .len = sizeof(scancode),
205 .keycode = 0,
206 },
207 .error = -ENODEV,
208 };
209
210 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
211
212 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
213
214 return d.error ?: d.ke.keycode;
215}
216
217static int setkeycode_helper(struct input_handle *handle, void *data)
218{
219 struct getset_keycode_data *d = data;
220
221 d->error = input_set_keycode(handle->dev, &d->ke);
222
223 return d->error == 0; /* stop as soon as we successfully set one */
224}
225
226static int setkeycode(unsigned int scancode, unsigned int keycode)
227{
228 struct getset_keycode_data d = {
229 .ke = {
230 .flags = 0,
231 .len = sizeof(scancode),
232 .keycode = keycode,
233 },
234 .error = -ENODEV,
235 };
236
237 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
238
239 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
240
241 return d.error;
242}
243
244/*
245 * Making beeps and bells. Note that we prefer beeps to bells, but when
246 * shutting the sound off we do both.
247 */
248
249static int kd_sound_helper(struct input_handle *handle, void *data)
250{
251 unsigned int *hz = data;
252 struct input_dev *dev = handle->dev;
253
254 if (test_bit(EV_SND, dev->evbit)) {
255 if (test_bit(SND_TONE, dev->sndbit)) {
256 input_inject_event(handle, EV_SND, SND_TONE, *hz);
257 if (*hz)
258 return 0;
259 }
260 if (test_bit(SND_BELL, dev->sndbit))
261 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
262 }
263
264 return 0;
265}
266
267static void kd_nosound(struct timer_list *unused)
268{
269 static unsigned int zero;
270
271 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
272}
273
274static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
275
276void kd_mksound(unsigned int hz, unsigned int ticks)
277{
278 del_timer_sync(&kd_mksound_timer);
279
280 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
281
282 if (hz && ticks)
283 mod_timer(&kd_mksound_timer, jiffies + ticks);
284}
285EXPORT_SYMBOL(kd_mksound);
286
287/*
288 * Setting the keyboard rate.
289 */
290
291static int kbd_rate_helper(struct input_handle *handle, void *data)
292{
293 struct input_dev *dev = handle->dev;
294 struct kbd_repeat *rpt = data;
295
296 if (test_bit(EV_REP, dev->evbit)) {
297
298 if (rpt[0].delay > 0)
299 input_inject_event(handle,
300 EV_REP, REP_DELAY, rpt[0].delay);
301 if (rpt[0].period > 0)
302 input_inject_event(handle,
303 EV_REP, REP_PERIOD, rpt[0].period);
304
305 rpt[1].delay = dev->rep[REP_DELAY];
306 rpt[1].period = dev->rep[REP_PERIOD];
307 }
308
309 return 0;
310}
311
312int kbd_rate(struct kbd_repeat *rpt)
313{
314 struct kbd_repeat data[2] = { *rpt };
315
316 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
317 *rpt = data[1]; /* Copy currently used settings */
318
319 return 0;
320}
321
322/*
323 * Helper Functions.
324 */
325static void put_queue(struct vc_data *vc, int ch)
326{
327 tty_insert_flip_char(&vc->port, ch, 0);
328 tty_flip_buffer_push(&vc->port);
329}
330
331static void puts_queue(struct vc_data *vc, const char *cp)
332{
333 tty_insert_flip_string(&vc->port, cp, strlen(cp));
334 tty_flip_buffer_push(&vc->port);
335}
336
337static void applkey(struct vc_data *vc, int key, char mode)
338{
339 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
340
341 buf[1] = (mode ? 'O' : '[');
342 buf[2] = key;
343 puts_queue(vc, buf);
344}
345
346/*
347 * Many other routines do put_queue, but I think either
348 * they produce ASCII, or they produce some user-assigned
349 * string, and in both cases we might assume that it is
350 * in utf-8 already.
351 */
352static void to_utf8(struct vc_data *vc, uint c)
353{
354 if (c < 0x80)
355 /* 0******* */
356 put_queue(vc, c);
357 else if (c < 0x800) {
358 /* 110***** 10****** */
359 put_queue(vc, 0xc0 | (c >> 6));
360 put_queue(vc, 0x80 | (c & 0x3f));
361 } else if (c < 0x10000) {
362 if (c >= 0xD800 && c < 0xE000)
363 return;
364 if (c == 0xFFFF)
365 return;
366 /* 1110**** 10****** 10****** */
367 put_queue(vc, 0xe0 | (c >> 12));
368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 put_queue(vc, 0x80 | (c & 0x3f));
370 } else if (c < 0x110000) {
371 /* 11110*** 10****** 10****** 10****** */
372 put_queue(vc, 0xf0 | (c >> 18));
373 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
374 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
375 put_queue(vc, 0x80 | (c & 0x3f));
376 }
377}
378
379/* FIXME: review locking for vt.c callers */
380static void set_leds(void)
381{
382 tasklet_schedule(&keyboard_tasklet);
383}
384
385/*
386 * Called after returning from RAW mode or when changing consoles - recompute
387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
388 * undefined, so that shiftkey release is seen. The caller must hold the
389 * kbd_event_lock.
390 */
391
392static void do_compute_shiftstate(void)
393{
394 unsigned int k, sym, val;
395
396 shift_state = 0;
397 memset(shift_down, 0, sizeof(shift_down));
398
399 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
400 sym = U(key_maps[0][k]);
401 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
402 continue;
403
404 val = KVAL(sym);
405 if (val == KVAL(K_CAPSSHIFT))
406 val = KVAL(K_SHIFT);
407
408 shift_down[val]++;
409 shift_state |= BIT(val);
410 }
411}
412
413/* We still have to export this method to vt.c */
414void vt_set_leds_compute_shiftstate(void)
415{
416 unsigned long flags;
417
418 /*
419 * When VT is switched, the keyboard led needs to be set once.
420 * Ensure that after the switch is completed, the state of the
421 * keyboard LED is consistent with the state of the keyboard lock.
422 */
423 vt_switch = true;
424 set_leds();
425
426 spin_lock_irqsave(&kbd_event_lock, flags);
427 do_compute_shiftstate();
428 spin_unlock_irqrestore(&kbd_event_lock, flags);
429}
430
431/*
432 * We have a combining character DIACR here, followed by the character CH.
433 * If the combination occurs in the table, return the corresponding value.
434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
435 * Otherwise, conclude that DIACR was not combining after all,
436 * queue it and return CH.
437 */
438static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
439{
440 unsigned int d = diacr;
441 unsigned int i;
442
443 diacr = 0;
444
445 if ((d & ~0xff) == BRL_UC_ROW) {
446 if ((ch & ~0xff) == BRL_UC_ROW)
447 return d | ch;
448 } else {
449 for (i = 0; i < accent_table_size; i++)
450 if (accent_table[i].diacr == d && accent_table[i].base == ch)
451 return accent_table[i].result;
452 }
453
454 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
455 return d;
456
457 if (kbd->kbdmode == VC_UNICODE)
458 to_utf8(vc, d);
459 else {
460 int c = conv_uni_to_8bit(d);
461 if (c != -1)
462 put_queue(vc, c);
463 }
464
465 return ch;
466}
467
468/*
469 * Special function handlers
470 */
471static void fn_enter(struct vc_data *vc)
472{
473 if (diacr) {
474 if (kbd->kbdmode == VC_UNICODE)
475 to_utf8(vc, diacr);
476 else {
477 int c = conv_uni_to_8bit(diacr);
478 if (c != -1)
479 put_queue(vc, c);
480 }
481 diacr = 0;
482 }
483
484 put_queue(vc, '\r');
485 if (vc_kbd_mode(kbd, VC_CRLF))
486 put_queue(vc, '\n');
487}
488
489static void fn_caps_toggle(struct vc_data *vc)
490{
491 if (rep)
492 return;
493
494 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
495}
496
497static void fn_caps_on(struct vc_data *vc)
498{
499 if (rep)
500 return;
501
502 set_vc_kbd_led(kbd, VC_CAPSLOCK);
503}
504
505static void fn_show_ptregs(struct vc_data *vc)
506{
507 struct pt_regs *regs = get_irq_regs();
508
509 if (regs)
510 show_regs(regs);
511}
512
513static void fn_hold(struct vc_data *vc)
514{
515 struct tty_struct *tty = vc->port.tty;
516
517 if (rep || !tty)
518 return;
519
520 /*
521 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
522 * these routines are also activated by ^S/^Q.
523 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
524 */
525 if (tty->flow.stopped)
526 start_tty(tty);
527 else
528 stop_tty(tty);
529}
530
531static void fn_num(struct vc_data *vc)
532{
533 if (vc_kbd_mode(kbd, VC_APPLIC))
534 applkey(vc, 'P', 1);
535 else
536 fn_bare_num(vc);
537}
538
539/*
540 * Bind this to Shift-NumLock if you work in application keypad mode
541 * but want to be able to change the NumLock flag.
542 * Bind this to NumLock if you prefer that the NumLock key always
543 * changes the NumLock flag.
544 */
545static void fn_bare_num(struct vc_data *vc)
546{
547 if (!rep)
548 chg_vc_kbd_led(kbd, VC_NUMLOCK);
549}
550
551static void fn_lastcons(struct vc_data *vc)
552{
553 /* switch to the last used console, ChN */
554 set_console(last_console);
555}
556
557static void fn_dec_console(struct vc_data *vc)
558{
559 int i, cur = fg_console;
560
561 /* Currently switching? Queue this next switch relative to that. */
562 if (want_console != -1)
563 cur = want_console;
564
565 for (i = cur - 1; i != cur; i--) {
566 if (i == -1)
567 i = MAX_NR_CONSOLES - 1;
568 if (vc_cons_allocated(i))
569 break;
570 }
571 set_console(i);
572}
573
574static void fn_inc_console(struct vc_data *vc)
575{
576 int i, cur = fg_console;
577
578 /* Currently switching? Queue this next switch relative to that. */
579 if (want_console != -1)
580 cur = want_console;
581
582 for (i = cur+1; i != cur; i++) {
583 if (i == MAX_NR_CONSOLES)
584 i = 0;
585 if (vc_cons_allocated(i))
586 break;
587 }
588 set_console(i);
589}
590
591static void fn_send_intr(struct vc_data *vc)
592{
593 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
594 tty_flip_buffer_push(&vc->port);
595}
596
597static void fn_scroll_forw(struct vc_data *vc)
598{
599 scrollfront(vc, 0);
600}
601
602static void fn_scroll_back(struct vc_data *vc)
603{
604 scrollback(vc);
605}
606
607static void fn_show_mem(struct vc_data *vc)
608{
609 show_mem();
610}
611
612static void fn_show_state(struct vc_data *vc)
613{
614 show_state();
615}
616
617static void fn_boot_it(struct vc_data *vc)
618{
619 ctrl_alt_del();
620}
621
622static void fn_compose(struct vc_data *vc)
623{
624 dead_key_next = true;
625}
626
627static void fn_spawn_con(struct vc_data *vc)
628{
629 spin_lock(&vt_spawn_con.lock);
630 if (vt_spawn_con.pid)
631 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
632 put_pid(vt_spawn_con.pid);
633 vt_spawn_con.pid = NULL;
634 }
635 spin_unlock(&vt_spawn_con.lock);
636}
637
638static void fn_SAK(struct vc_data *vc)
639{
640 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
641 schedule_work(SAK_work);
642}
643
644static void fn_null(struct vc_data *vc)
645{
646 do_compute_shiftstate();
647}
648
649/*
650 * Special key handlers
651 */
652static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
653{
654}
655
656static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
657{
658 if (up_flag)
659 return;
660 if (value >= ARRAY_SIZE(fn_handler))
661 return;
662 if ((kbd->kbdmode == VC_RAW ||
663 kbd->kbdmode == VC_MEDIUMRAW ||
664 kbd->kbdmode == VC_OFF) &&
665 value != KVAL(K_SAK))
666 return; /* SAK is allowed even in raw mode */
667 fn_handler[value](vc);
668}
669
670static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
671{
672 pr_err("k_lowercase was called - impossible\n");
673}
674
675static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
676{
677 if (up_flag)
678 return; /* no action, if this is a key release */
679
680 if (diacr)
681 value = handle_diacr(vc, value);
682
683 if (dead_key_next) {
684 dead_key_next = false;
685 diacr = value;
686 return;
687 }
688 if (kbd->kbdmode == VC_UNICODE)
689 to_utf8(vc, value);
690 else {
691 int c = conv_uni_to_8bit(value);
692 if (c != -1)
693 put_queue(vc, c);
694 }
695}
696
697/*
698 * Handle dead key. Note that we now may have several
699 * dead keys modifying the same character. Very useful
700 * for Vietnamese.
701 */
702static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
703{
704 if (up_flag)
705 return;
706
707 diacr = (diacr ? handle_diacr(vc, value) : value);
708}
709
710static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
711{
712 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
713}
714
715static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
716{
717 k_deadunicode(vc, value, up_flag);
718}
719
720/*
721 * Obsolete - for backwards compatibility only
722 */
723static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
724{
725 static const unsigned char ret_diacr[NR_DEAD] = {
726 '`', /* dead_grave */
727 '\'', /* dead_acute */
728 '^', /* dead_circumflex */
729 '~', /* dead_tilda */
730 '"', /* dead_diaeresis */
731 ',', /* dead_cedilla */
732 '_', /* dead_macron */
733 'U', /* dead_breve */
734 '.', /* dead_abovedot */
735 '*', /* dead_abovering */
736 '=', /* dead_doubleacute */
737 'c', /* dead_caron */
738 'k', /* dead_ogonek */
739 'i', /* dead_iota */
740 '#', /* dead_voiced_sound */
741 'o', /* dead_semivoiced_sound */
742 '!', /* dead_belowdot */
743 '?', /* dead_hook */
744 '+', /* dead_horn */
745 '-', /* dead_stroke */
746 ')', /* dead_abovecomma */
747 '(', /* dead_abovereversedcomma */
748 ':', /* dead_doublegrave */
749 'n', /* dead_invertedbreve */
750 ';', /* dead_belowcomma */
751 '$', /* dead_currency */
752 '@', /* dead_greek */
753 };
754
755 k_deadunicode(vc, ret_diacr[value], up_flag);
756}
757
758static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
759{
760 if (up_flag)
761 return;
762
763 set_console(value);
764}
765
766static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
767{
768 if (up_flag)
769 return;
770
771 if ((unsigned)value < ARRAY_SIZE(func_table)) {
772 unsigned long flags;
773
774 spin_lock_irqsave(&func_buf_lock, flags);
775 if (func_table[value])
776 puts_queue(vc, func_table[value]);
777 spin_unlock_irqrestore(&func_buf_lock, flags);
778
779 } else
780 pr_err("k_fn called with value=%d\n", value);
781}
782
783static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
784{
785 static const char cur_chars[] = "BDCA";
786
787 if (up_flag)
788 return;
789
790 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
791}
792
793static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
794{
795 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
796 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
797
798 if (up_flag)
799 return; /* no action, if this is a key release */
800
801 /* kludge... shift forces cursor/number keys */
802 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
803 applkey(vc, app_map[value], 1);
804 return;
805 }
806
807 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
808
809 switch (value) {
810 case KVAL(K_PCOMMA):
811 case KVAL(K_PDOT):
812 k_fn(vc, KVAL(K_REMOVE), 0);
813 return;
814 case KVAL(K_P0):
815 k_fn(vc, KVAL(K_INSERT), 0);
816 return;
817 case KVAL(K_P1):
818 k_fn(vc, KVAL(K_SELECT), 0);
819 return;
820 case KVAL(K_P2):
821 k_cur(vc, KVAL(K_DOWN), 0);
822 return;
823 case KVAL(K_P3):
824 k_fn(vc, KVAL(K_PGDN), 0);
825 return;
826 case KVAL(K_P4):
827 k_cur(vc, KVAL(K_LEFT), 0);
828 return;
829 case KVAL(K_P6):
830 k_cur(vc, KVAL(K_RIGHT), 0);
831 return;
832 case KVAL(K_P7):
833 k_fn(vc, KVAL(K_FIND), 0);
834 return;
835 case KVAL(K_P8):
836 k_cur(vc, KVAL(K_UP), 0);
837 return;
838 case KVAL(K_P9):
839 k_fn(vc, KVAL(K_PGUP), 0);
840 return;
841 case KVAL(K_P5):
842 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
843 return;
844 }
845 }
846
847 put_queue(vc, pad_chars[value]);
848 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
849 put_queue(vc, '\n');
850}
851
852static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
853{
854 int old_state = shift_state;
855
856 if (rep)
857 return;
858 /*
859 * Mimic typewriter:
860 * a CapsShift key acts like Shift but undoes CapsLock
861 */
862 if (value == KVAL(K_CAPSSHIFT)) {
863 value = KVAL(K_SHIFT);
864 if (!up_flag)
865 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
866 }
867
868 if (up_flag) {
869 /*
870 * handle the case that two shift or control
871 * keys are depressed simultaneously
872 */
873 if (shift_down[value])
874 shift_down[value]--;
875 } else
876 shift_down[value]++;
877
878 if (shift_down[value])
879 shift_state |= BIT(value);
880 else
881 shift_state &= ~BIT(value);
882
883 /* kludge */
884 if (up_flag && shift_state != old_state && npadch_active) {
885 if (kbd->kbdmode == VC_UNICODE)
886 to_utf8(vc, npadch_value);
887 else
888 put_queue(vc, npadch_value & 0xff);
889 npadch_active = false;
890 }
891}
892
893static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
894{
895 if (up_flag)
896 return;
897
898 if (vc_kbd_mode(kbd, VC_META)) {
899 put_queue(vc, '\033');
900 put_queue(vc, value);
901 } else
902 put_queue(vc, value | BIT(7));
903}
904
905static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
906{
907 unsigned int base;
908
909 if (up_flag)
910 return;
911
912 if (value < 10) {
913 /* decimal input of code, while Alt depressed */
914 base = 10;
915 } else {
916 /* hexadecimal input of code, while AltGr depressed */
917 value -= 10;
918 base = 16;
919 }
920
921 if (!npadch_active) {
922 npadch_value = 0;
923 npadch_active = true;
924 }
925
926 npadch_value = npadch_value * base + value;
927}
928
929static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
930{
931 if (up_flag || rep)
932 return;
933
934 chg_vc_kbd_lock(kbd, value);
935}
936
937static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
938{
939 k_shift(vc, value, up_flag);
940 if (up_flag || rep)
941 return;
942
943 chg_vc_kbd_slock(kbd, value);
944 /* try to make Alt, oops, AltGr and such work */
945 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
946 kbd->slockstate = 0;
947 chg_vc_kbd_slock(kbd, value);
948 }
949}
950
951/* by default, 300ms interval for combination release */
952static unsigned brl_timeout = 300;
953MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
954module_param(brl_timeout, uint, 0644);
955
956static unsigned brl_nbchords = 1;
957MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
958module_param(brl_nbchords, uint, 0644);
959
960static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
961{
962 static unsigned long chords;
963 static unsigned committed;
964
965 if (!brl_nbchords)
966 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
967 else {
968 committed |= pattern;
969 chords++;
970 if (chords == brl_nbchords) {
971 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
972 chords = 0;
973 committed = 0;
974 }
975 }
976}
977
978static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
979{
980 static unsigned pressed, committing;
981 static unsigned long releasestart;
982
983 if (kbd->kbdmode != VC_UNICODE) {
984 if (!up_flag)
985 pr_warn("keyboard mode must be unicode for braille patterns\n");
986 return;
987 }
988
989 if (!value) {
990 k_unicode(vc, BRL_UC_ROW, up_flag);
991 return;
992 }
993
994 if (value > 8)
995 return;
996
997 if (!up_flag) {
998 pressed |= BIT(value - 1);
999 if (!brl_timeout)
1000 committing = pressed;
1001 } else if (brl_timeout) {
1002 if (!committing ||
1003 time_after(jiffies,
1004 releasestart + msecs_to_jiffies(brl_timeout))) {
1005 committing = pressed;
1006 releasestart = jiffies;
1007 }
1008 pressed &= ~BIT(value - 1);
1009 if (!pressed && committing) {
1010 k_brlcommit(vc, committing, 0);
1011 committing = 0;
1012 }
1013 } else {
1014 if (committing) {
1015 k_brlcommit(vc, committing, 0);
1016 committing = 0;
1017 }
1018 pressed &= ~BIT(value - 1);
1019 }
1020}
1021
1022#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1023
1024struct kbd_led_trigger {
1025 struct led_trigger trigger;
1026 unsigned int mask;
1027};
1028
1029static int kbd_led_trigger_activate(struct led_classdev *cdev)
1030{
1031 struct kbd_led_trigger *trigger =
1032 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1033
1034 tasklet_disable(&keyboard_tasklet);
1035 if (ledstate != -1U)
1036 led_set_brightness(cdev, ledstate & trigger->mask ? LED_FULL : LED_OFF);
1037 tasklet_enable(&keyboard_tasklet);
1038
1039 return 0;
1040}
1041
1042#define KBD_LED_TRIGGER(_led_bit, _name) { \
1043 .trigger = { \
1044 .name = _name, \
1045 .activate = kbd_led_trigger_activate, \
1046 }, \
1047 .mask = BIT(_led_bit), \
1048 }
1049
1050#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1051 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1052
1053static struct kbd_led_trigger kbd_led_triggers[] = {
1054 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1055 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1056 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1057 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1058
1059 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1060 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1061 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1062 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1063 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1064 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1065 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1066 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1067};
1068
1069static void kbd_propagate_led_state(unsigned int old_state,
1070 unsigned int new_state)
1071{
1072 struct kbd_led_trigger *trigger;
1073 unsigned int changed = old_state ^ new_state;
1074 int i;
1075
1076 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1077 trigger = &kbd_led_triggers[i];
1078
1079 if (changed & trigger->mask)
1080 led_trigger_event(&trigger->trigger,
1081 new_state & trigger->mask ?
1082 LED_FULL : LED_OFF);
1083 }
1084}
1085
1086static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1087{
1088 unsigned int led_state = *(unsigned int *)data;
1089
1090 if (test_bit(EV_LED, handle->dev->evbit))
1091 kbd_propagate_led_state(~led_state, led_state);
1092
1093 return 0;
1094}
1095
1096static void kbd_init_leds(void)
1097{
1098 int error;
1099 int i;
1100
1101 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1102 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1103 if (error)
1104 pr_err("error %d while registering trigger %s\n",
1105 error, kbd_led_triggers[i].trigger.name);
1106 }
1107}
1108
1109#else
1110
1111static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1112{
1113 unsigned int leds = *(unsigned int *)data;
1114
1115 if (test_bit(EV_LED, handle->dev->evbit)) {
1116 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1117 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1118 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1119 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1120 }
1121
1122 return 0;
1123}
1124
1125static void kbd_propagate_led_state(unsigned int old_state,
1126 unsigned int new_state)
1127{
1128 input_handler_for_each_handle(&kbd_handler, &new_state,
1129 kbd_update_leds_helper);
1130}
1131
1132static void kbd_init_leds(void)
1133{
1134}
1135
1136#endif
1137
1138/*
1139 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1140 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1141 * or (iii) specified bits of specified words in kernel memory.
1142 */
1143static unsigned char getledstate(void)
1144{
1145 return ledstate & 0xff;
1146}
1147
1148void setledstate(struct kbd_struct *kb, unsigned int led)
1149{
1150 unsigned long flags;
1151 spin_lock_irqsave(&led_lock, flags);
1152 if (!(led & ~7)) {
1153 ledioctl = led;
1154 kb->ledmode = LED_SHOW_IOCTL;
1155 } else
1156 kb->ledmode = LED_SHOW_FLAGS;
1157
1158 set_leds();
1159 spin_unlock_irqrestore(&led_lock, flags);
1160}
1161
1162static inline unsigned char getleds(void)
1163{
1164 struct kbd_struct *kb = kbd_table + fg_console;
1165
1166 if (kb->ledmode == LED_SHOW_IOCTL)
1167 return ledioctl;
1168
1169 return kb->ledflagstate;
1170}
1171
1172/**
1173 * vt_get_leds - helper for braille console
1174 * @console: console to read
1175 * @flag: flag we want to check
1176 *
1177 * Check the status of a keyboard led flag and report it back
1178 */
1179int vt_get_leds(unsigned int console, int flag)
1180{
1181 struct kbd_struct *kb = &kbd_table[console];
1182 int ret;
1183 unsigned long flags;
1184
1185 spin_lock_irqsave(&led_lock, flags);
1186 ret = vc_kbd_led(kb, flag);
1187 spin_unlock_irqrestore(&led_lock, flags);
1188
1189 return ret;
1190}
1191EXPORT_SYMBOL_GPL(vt_get_leds);
1192
1193/**
1194 * vt_set_led_state - set LED state of a console
1195 * @console: console to set
1196 * @leds: LED bits
1197 *
1198 * Set the LEDs on a console. This is a wrapper for the VT layer
1199 * so that we can keep kbd knowledge internal
1200 */
1201void vt_set_led_state(unsigned int console, int leds)
1202{
1203 struct kbd_struct *kb = &kbd_table[console];
1204 setledstate(kb, leds);
1205}
1206
1207/**
1208 * vt_kbd_con_start - Keyboard side of console start
1209 * @console: console
1210 *
1211 * Handle console start. This is a wrapper for the VT layer
1212 * so that we can keep kbd knowledge internal
1213 *
1214 * FIXME: We eventually need to hold the kbd lock here to protect
1215 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1216 * and start_tty under the kbd_event_lock, while normal tty paths
1217 * don't hold the lock. We probably need to split out an LED lock
1218 * but not during an -rc release!
1219 */
1220void vt_kbd_con_start(unsigned int console)
1221{
1222 struct kbd_struct *kb = &kbd_table[console];
1223 unsigned long flags;
1224 spin_lock_irqsave(&led_lock, flags);
1225 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1226 set_leds();
1227 spin_unlock_irqrestore(&led_lock, flags);
1228}
1229
1230/**
1231 * vt_kbd_con_stop - Keyboard side of console stop
1232 * @console: console
1233 *
1234 * Handle console stop. This is a wrapper for the VT layer
1235 * so that we can keep kbd knowledge internal
1236 */
1237void vt_kbd_con_stop(unsigned int console)
1238{
1239 struct kbd_struct *kb = &kbd_table[console];
1240 unsigned long flags;
1241 spin_lock_irqsave(&led_lock, flags);
1242 set_vc_kbd_led(kb, VC_SCROLLOCK);
1243 set_leds();
1244 spin_unlock_irqrestore(&led_lock, flags);
1245}
1246
1247/*
1248 * This is the tasklet that updates LED state of LEDs using standard
1249 * keyboard triggers. The reason we use tasklet is that we need to
1250 * handle the scenario when keyboard handler is not registered yet
1251 * but we already getting updates from the VT to update led state.
1252 */
1253static void kbd_bh(struct tasklet_struct *unused)
1254{
1255 unsigned int leds;
1256 unsigned long flags;
1257
1258 spin_lock_irqsave(&led_lock, flags);
1259 leds = getleds();
1260 leds |= (unsigned int)kbd->lockstate << 8;
1261 spin_unlock_irqrestore(&led_lock, flags);
1262
1263 if (vt_switch) {
1264 ledstate = ~leds;
1265 vt_switch = false;
1266 }
1267
1268 if (leds != ledstate) {
1269 kbd_propagate_led_state(ledstate, leds);
1270 ledstate = leds;
1271 }
1272}
1273
1274#if defined(CONFIG_X86) || defined(CONFIG_ALPHA) ||\
1275 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1276 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1277 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1278
1279static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1280{
1281 if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1282 return false;
1283
1284 return dev->id.bustype == BUS_I8042 &&
1285 dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1286}
1287
1288static const unsigned short x86_keycodes[256] =
1289 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1290 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1291 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1292 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1293 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1294 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1295 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1296 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1297 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1298 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1299 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1300 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1301 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1302 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1303 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1304
1305#ifdef CONFIG_SPARC
1306static int sparc_l1_a_state;
1307extern void sun_do_break(void);
1308#endif
1309
1310static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1311 unsigned char up_flag)
1312{
1313 int code;
1314
1315 switch (keycode) {
1316
1317 case KEY_PAUSE:
1318 put_queue(vc, 0xe1);
1319 put_queue(vc, 0x1d | up_flag);
1320 put_queue(vc, 0x45 | up_flag);
1321 break;
1322
1323 case KEY_HANGEUL:
1324 if (!up_flag)
1325 put_queue(vc, 0xf2);
1326 break;
1327
1328 case KEY_HANJA:
1329 if (!up_flag)
1330 put_queue(vc, 0xf1);
1331 break;
1332
1333 case KEY_SYSRQ:
1334 /*
1335 * Real AT keyboards (that's what we're trying
1336 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1337 * pressing PrtSc/SysRq alone, but simply 0x54
1338 * when pressing Alt+PrtSc/SysRq.
1339 */
1340 if (test_bit(KEY_LEFTALT, key_down) ||
1341 test_bit(KEY_RIGHTALT, key_down)) {
1342 put_queue(vc, 0x54 | up_flag);
1343 } else {
1344 put_queue(vc, 0xe0);
1345 put_queue(vc, 0x2a | up_flag);
1346 put_queue(vc, 0xe0);
1347 put_queue(vc, 0x37 | up_flag);
1348 }
1349 break;
1350
1351 default:
1352 if (keycode > 255)
1353 return -1;
1354
1355 code = x86_keycodes[keycode];
1356 if (!code)
1357 return -1;
1358
1359 if (code & 0x100)
1360 put_queue(vc, 0xe0);
1361 put_queue(vc, (code & 0x7f) | up_flag);
1362
1363 break;
1364 }
1365
1366 return 0;
1367}
1368
1369#else
1370
1371static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1372{
1373 return false;
1374}
1375
1376static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1377{
1378 if (keycode > 127)
1379 return -1;
1380
1381 put_queue(vc, keycode | up_flag);
1382 return 0;
1383}
1384#endif
1385
1386static void kbd_rawcode(unsigned char data)
1387{
1388 struct vc_data *vc = vc_cons[fg_console].d;
1389
1390 kbd = &kbd_table[vc->vc_num];
1391 if (kbd->kbdmode == VC_RAW)
1392 put_queue(vc, data);
1393}
1394
1395static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1396{
1397 struct vc_data *vc = vc_cons[fg_console].d;
1398 unsigned short keysym, *key_map;
1399 unsigned char type;
1400 bool raw_mode;
1401 struct tty_struct *tty;
1402 int shift_final;
1403 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1404 int rc;
1405
1406 tty = vc->port.tty;
1407
1408 if (tty && (!tty->driver_data)) {
1409 /* No driver data? Strange. Okay we fix it then. */
1410 tty->driver_data = vc;
1411 }
1412
1413 kbd = &kbd_table[vc->vc_num];
1414
1415#ifdef CONFIG_SPARC
1416 if (keycode == KEY_STOP)
1417 sparc_l1_a_state = down;
1418#endif
1419
1420 rep = (down == 2);
1421
1422 raw_mode = (kbd->kbdmode == VC_RAW);
1423 if (raw_mode && !hw_raw)
1424 if (emulate_raw(vc, keycode, !down << 7))
1425 if (keycode < BTN_MISC && printk_ratelimit())
1426 pr_warn("can't emulate rawmode for keycode %d\n",
1427 keycode);
1428
1429#ifdef CONFIG_SPARC
1430 if (keycode == KEY_A && sparc_l1_a_state) {
1431 sparc_l1_a_state = false;
1432 sun_do_break();
1433 }
1434#endif
1435
1436 if (kbd->kbdmode == VC_MEDIUMRAW) {
1437 /*
1438 * This is extended medium raw mode, with keys above 127
1439 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1440 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1441 * interfere with anything else. The two bytes after 0 will
1442 * always have the up flag set not to interfere with older
1443 * applications. This allows for 16384 different keycodes,
1444 * which should be enough.
1445 */
1446 if (keycode < 128) {
1447 put_queue(vc, keycode | (!down << 7));
1448 } else {
1449 put_queue(vc, !down << 7);
1450 put_queue(vc, (keycode >> 7) | BIT(7));
1451 put_queue(vc, keycode | BIT(7));
1452 }
1453 raw_mode = true;
1454 }
1455
1456 assign_bit(keycode, key_down, down);
1457
1458 if (rep &&
1459 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1460 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1461 /*
1462 * Don't repeat a key if the input buffers are not empty and the
1463 * characters get aren't echoed locally. This makes key repeat
1464 * usable with slow applications and under heavy loads.
1465 */
1466 return;
1467 }
1468
1469 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1470 param.ledstate = kbd->ledflagstate;
1471 key_map = key_maps[shift_final];
1472
1473 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1474 KBD_KEYCODE, ¶m);
1475 if (rc == NOTIFY_STOP || !key_map) {
1476 atomic_notifier_call_chain(&keyboard_notifier_list,
1477 KBD_UNBOUND_KEYCODE, ¶m);
1478 do_compute_shiftstate();
1479 kbd->slockstate = 0;
1480 return;
1481 }
1482
1483 if (keycode < NR_KEYS)
1484 keysym = key_map[keycode];
1485 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1486 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1487 else
1488 return;
1489
1490 type = KTYP(keysym);
1491
1492 if (type < 0xf0) {
1493 param.value = keysym;
1494 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1495 KBD_UNICODE, ¶m);
1496 if (rc != NOTIFY_STOP)
1497 if (down && !raw_mode)
1498 k_unicode(vc, keysym, !down);
1499 return;
1500 }
1501
1502 type -= 0xf0;
1503
1504 if (type == KT_LETTER) {
1505 type = KT_LATIN;
1506 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1507 key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1508 if (key_map)
1509 keysym = key_map[keycode];
1510 }
1511 }
1512
1513 param.value = keysym;
1514 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1515 KBD_KEYSYM, ¶m);
1516 if (rc == NOTIFY_STOP)
1517 return;
1518
1519 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1520 return;
1521
1522 (*k_handler[type])(vc, keysym & 0xff, !down);
1523
1524 param.ledstate = kbd->ledflagstate;
1525 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1526
1527 if (type != KT_SLOCK)
1528 kbd->slockstate = 0;
1529}
1530
1531static void kbd_event(struct input_handle *handle, unsigned int event_type,
1532 unsigned int event_code, int value)
1533{
1534 /* We are called with interrupts disabled, just take the lock */
1535 spin_lock(&kbd_event_lock);
1536
1537 if (event_type == EV_MSC && event_code == MSC_RAW &&
1538 kbd_is_hw_raw(handle->dev))
1539 kbd_rawcode(value);
1540 if (event_type == EV_KEY && event_code <= KEY_MAX)
1541 kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1542
1543 spin_unlock(&kbd_event_lock);
1544
1545 tasklet_schedule(&keyboard_tasklet);
1546 do_poke_blanked_console = 1;
1547 schedule_console_callback();
1548}
1549
1550static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1551{
1552 if (test_bit(EV_SND, dev->evbit))
1553 return true;
1554
1555 if (test_bit(EV_KEY, dev->evbit)) {
1556 if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1557 BTN_MISC)
1558 return true;
1559 if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1560 KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1561 return true;
1562 }
1563
1564 return false;
1565}
1566
1567/*
1568 * When a keyboard (or other input device) is found, the kbd_connect
1569 * function is called. The function then looks at the device, and if it
1570 * likes it, it can open it and get events from it. In this (kbd_connect)
1571 * function, we should decide which VT to bind that keyboard to initially.
1572 */
1573static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1574 const struct input_device_id *id)
1575{
1576 struct input_handle *handle;
1577 int error;
1578
1579 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1580 if (!handle)
1581 return -ENOMEM;
1582
1583 handle->dev = dev;
1584 handle->handler = handler;
1585 handle->name = "kbd";
1586
1587 error = input_register_handle(handle);
1588 if (error)
1589 goto err_free_handle;
1590
1591 error = input_open_device(handle);
1592 if (error)
1593 goto err_unregister_handle;
1594
1595 return 0;
1596
1597 err_unregister_handle:
1598 input_unregister_handle(handle);
1599 err_free_handle:
1600 kfree(handle);
1601 return error;
1602}
1603
1604static void kbd_disconnect(struct input_handle *handle)
1605{
1606 input_close_device(handle);
1607 input_unregister_handle(handle);
1608 kfree(handle);
1609}
1610
1611/*
1612 * Start keyboard handler on the new keyboard by refreshing LED state to
1613 * match the rest of the system.
1614 */
1615static void kbd_start(struct input_handle *handle)
1616{
1617 tasklet_disable(&keyboard_tasklet);
1618
1619 if (ledstate != -1U)
1620 kbd_update_leds_helper(handle, &ledstate);
1621
1622 tasklet_enable(&keyboard_tasklet);
1623}
1624
1625static const struct input_device_id kbd_ids[] = {
1626 {
1627 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1628 .evbit = { BIT_MASK(EV_KEY) },
1629 },
1630
1631 {
1632 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1633 .evbit = { BIT_MASK(EV_SND) },
1634 },
1635
1636 { }, /* Terminating entry */
1637};
1638
1639MODULE_DEVICE_TABLE(input, kbd_ids);
1640
1641static struct input_handler kbd_handler = {
1642 .event = kbd_event,
1643 .match = kbd_match,
1644 .connect = kbd_connect,
1645 .disconnect = kbd_disconnect,
1646 .start = kbd_start,
1647 .name = "kbd",
1648 .id_table = kbd_ids,
1649};
1650
1651int __init kbd_init(void)
1652{
1653 int i;
1654 int error;
1655
1656 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1657 kbd_table[i].ledflagstate = kbd_defleds();
1658 kbd_table[i].default_ledflagstate = kbd_defleds();
1659 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1660 kbd_table[i].lockstate = KBD_DEFLOCK;
1661 kbd_table[i].slockstate = 0;
1662 kbd_table[i].modeflags = KBD_DEFMODE;
1663 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1664 }
1665
1666 kbd_init_leds();
1667
1668 error = input_register_handler(&kbd_handler);
1669 if (error)
1670 return error;
1671
1672 tasklet_enable(&keyboard_tasklet);
1673 tasklet_schedule(&keyboard_tasklet);
1674
1675 return 0;
1676}
1677
1678/* Ioctl support code */
1679
1680/**
1681 * vt_do_diacrit - diacritical table updates
1682 * @cmd: ioctl request
1683 * @udp: pointer to user data for ioctl
1684 * @perm: permissions check computed by caller
1685 *
1686 * Update the diacritical tables atomically and safely. Lock them
1687 * against simultaneous keypresses
1688 */
1689int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1690{
1691 unsigned long flags;
1692 int asize;
1693 int ret = 0;
1694
1695 switch (cmd) {
1696 case KDGKBDIACR:
1697 {
1698 struct kbdiacrs __user *a = udp;
1699 struct kbdiacr *dia;
1700 int i;
1701
1702 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1703 GFP_KERNEL);
1704 if (!dia)
1705 return -ENOMEM;
1706
1707 /* Lock the diacriticals table, make a copy and then
1708 copy it after we unlock */
1709 spin_lock_irqsave(&kbd_event_lock, flags);
1710
1711 asize = accent_table_size;
1712 for (i = 0; i < asize; i++) {
1713 dia[i].diacr = conv_uni_to_8bit(
1714 accent_table[i].diacr);
1715 dia[i].base = conv_uni_to_8bit(
1716 accent_table[i].base);
1717 dia[i].result = conv_uni_to_8bit(
1718 accent_table[i].result);
1719 }
1720 spin_unlock_irqrestore(&kbd_event_lock, flags);
1721
1722 if (put_user(asize, &a->kb_cnt))
1723 ret = -EFAULT;
1724 else if (copy_to_user(a->kbdiacr, dia,
1725 asize * sizeof(struct kbdiacr)))
1726 ret = -EFAULT;
1727 kfree(dia);
1728 return ret;
1729 }
1730 case KDGKBDIACRUC:
1731 {
1732 struct kbdiacrsuc __user *a = udp;
1733 void *buf;
1734
1735 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1736 GFP_KERNEL);
1737 if (buf == NULL)
1738 return -ENOMEM;
1739
1740 /* Lock the diacriticals table, make a copy and then
1741 copy it after we unlock */
1742 spin_lock_irqsave(&kbd_event_lock, flags);
1743
1744 asize = accent_table_size;
1745 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1746
1747 spin_unlock_irqrestore(&kbd_event_lock, flags);
1748
1749 if (put_user(asize, &a->kb_cnt))
1750 ret = -EFAULT;
1751 else if (copy_to_user(a->kbdiacruc, buf,
1752 asize*sizeof(struct kbdiacruc)))
1753 ret = -EFAULT;
1754 kfree(buf);
1755 return ret;
1756 }
1757
1758 case KDSKBDIACR:
1759 {
1760 struct kbdiacrs __user *a = udp;
1761 struct kbdiacr *dia = NULL;
1762 unsigned int ct;
1763 int i;
1764
1765 if (!perm)
1766 return -EPERM;
1767 if (get_user(ct, &a->kb_cnt))
1768 return -EFAULT;
1769 if (ct >= MAX_DIACR)
1770 return -EINVAL;
1771
1772 if (ct) {
1773 dia = memdup_array_user(a->kbdiacr,
1774 ct, sizeof(struct kbdiacr));
1775 if (IS_ERR(dia))
1776 return PTR_ERR(dia);
1777 }
1778
1779 spin_lock_irqsave(&kbd_event_lock, flags);
1780 accent_table_size = ct;
1781 for (i = 0; i < ct; i++) {
1782 accent_table[i].diacr =
1783 conv_8bit_to_uni(dia[i].diacr);
1784 accent_table[i].base =
1785 conv_8bit_to_uni(dia[i].base);
1786 accent_table[i].result =
1787 conv_8bit_to_uni(dia[i].result);
1788 }
1789 spin_unlock_irqrestore(&kbd_event_lock, flags);
1790 kfree(dia);
1791 return 0;
1792 }
1793
1794 case KDSKBDIACRUC:
1795 {
1796 struct kbdiacrsuc __user *a = udp;
1797 unsigned int ct;
1798 void *buf = NULL;
1799
1800 if (!perm)
1801 return -EPERM;
1802
1803 if (get_user(ct, &a->kb_cnt))
1804 return -EFAULT;
1805
1806 if (ct >= MAX_DIACR)
1807 return -EINVAL;
1808
1809 if (ct) {
1810 buf = memdup_array_user(a->kbdiacruc,
1811 ct, sizeof(struct kbdiacruc));
1812 if (IS_ERR(buf))
1813 return PTR_ERR(buf);
1814 }
1815 spin_lock_irqsave(&kbd_event_lock, flags);
1816 if (ct)
1817 memcpy(accent_table, buf,
1818 ct * sizeof(struct kbdiacruc));
1819 accent_table_size = ct;
1820 spin_unlock_irqrestore(&kbd_event_lock, flags);
1821 kfree(buf);
1822 return 0;
1823 }
1824 }
1825 return ret;
1826}
1827
1828/**
1829 * vt_do_kdskbmode - set keyboard mode ioctl
1830 * @console: the console to use
1831 * @arg: the requested mode
1832 *
1833 * Update the keyboard mode bits while holding the correct locks.
1834 * Return 0 for success or an error code.
1835 */
1836int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1837{
1838 struct kbd_struct *kb = &kbd_table[console];
1839 int ret = 0;
1840 unsigned long flags;
1841
1842 spin_lock_irqsave(&kbd_event_lock, flags);
1843 switch(arg) {
1844 case K_RAW:
1845 kb->kbdmode = VC_RAW;
1846 break;
1847 case K_MEDIUMRAW:
1848 kb->kbdmode = VC_MEDIUMRAW;
1849 break;
1850 case K_XLATE:
1851 kb->kbdmode = VC_XLATE;
1852 do_compute_shiftstate();
1853 break;
1854 case K_UNICODE:
1855 kb->kbdmode = VC_UNICODE;
1856 do_compute_shiftstate();
1857 break;
1858 case K_OFF:
1859 kb->kbdmode = VC_OFF;
1860 break;
1861 default:
1862 ret = -EINVAL;
1863 }
1864 spin_unlock_irqrestore(&kbd_event_lock, flags);
1865 return ret;
1866}
1867
1868/**
1869 * vt_do_kdskbmeta - set keyboard meta state
1870 * @console: the console to use
1871 * @arg: the requested meta state
1872 *
1873 * Update the keyboard meta bits while holding the correct locks.
1874 * Return 0 for success or an error code.
1875 */
1876int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1877{
1878 struct kbd_struct *kb = &kbd_table[console];
1879 int ret = 0;
1880 unsigned long flags;
1881
1882 spin_lock_irqsave(&kbd_event_lock, flags);
1883 switch(arg) {
1884 case K_METABIT:
1885 clr_vc_kbd_mode(kb, VC_META);
1886 break;
1887 case K_ESCPREFIX:
1888 set_vc_kbd_mode(kb, VC_META);
1889 break;
1890 default:
1891 ret = -EINVAL;
1892 }
1893 spin_unlock_irqrestore(&kbd_event_lock, flags);
1894 return ret;
1895}
1896
1897int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1898 int perm)
1899{
1900 struct kbkeycode tmp;
1901 int kc = 0;
1902
1903 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1904 return -EFAULT;
1905 switch (cmd) {
1906 case KDGETKEYCODE:
1907 kc = getkeycode(tmp.scancode);
1908 if (kc >= 0)
1909 kc = put_user(kc, &user_kbkc->keycode);
1910 break;
1911 case KDSETKEYCODE:
1912 if (!perm)
1913 return -EPERM;
1914 kc = setkeycode(tmp.scancode, tmp.keycode);
1915 break;
1916 }
1917 return kc;
1918}
1919
1920static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1921 unsigned char map)
1922{
1923 unsigned short *key_map, val;
1924 unsigned long flags;
1925
1926 /* Ensure another thread doesn't free it under us */
1927 spin_lock_irqsave(&kbd_event_lock, flags);
1928 key_map = key_maps[map];
1929 if (key_map) {
1930 val = U(key_map[idx]);
1931 if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1932 val = K_HOLE;
1933 } else
1934 val = idx ? K_HOLE : K_NOSUCHMAP;
1935 spin_unlock_irqrestore(&kbd_event_lock, flags);
1936
1937 return val;
1938}
1939
1940static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1941 unsigned char map, unsigned short val)
1942{
1943 unsigned long flags;
1944 unsigned short *key_map, *new_map, oldval;
1945
1946 if (!idx && val == K_NOSUCHMAP) {
1947 spin_lock_irqsave(&kbd_event_lock, flags);
1948 /* deallocate map */
1949 key_map = key_maps[map];
1950 if (map && key_map) {
1951 key_maps[map] = NULL;
1952 if (key_map[0] == U(K_ALLOCATED)) {
1953 kfree(key_map);
1954 keymap_count--;
1955 }
1956 }
1957 spin_unlock_irqrestore(&kbd_event_lock, flags);
1958
1959 return 0;
1960 }
1961
1962 if (KTYP(val) < NR_TYPES) {
1963 if (KVAL(val) > max_vals[KTYP(val)])
1964 return -EINVAL;
1965 } else if (kbdmode != VC_UNICODE)
1966 return -EINVAL;
1967
1968 /* ++Geert: non-PC keyboards may generate keycode zero */
1969#if !defined(__mc68000__) && !defined(__powerpc__)
1970 /* assignment to entry 0 only tests validity of args */
1971 if (!idx)
1972 return 0;
1973#endif
1974
1975 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1976 if (!new_map)
1977 return -ENOMEM;
1978
1979 spin_lock_irqsave(&kbd_event_lock, flags);
1980 key_map = key_maps[map];
1981 if (key_map == NULL) {
1982 int j;
1983
1984 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1985 !capable(CAP_SYS_RESOURCE)) {
1986 spin_unlock_irqrestore(&kbd_event_lock, flags);
1987 kfree(new_map);
1988 return -EPERM;
1989 }
1990 key_maps[map] = new_map;
1991 key_map = new_map;
1992 key_map[0] = U(K_ALLOCATED);
1993 for (j = 1; j < NR_KEYS; j++)
1994 key_map[j] = U(K_HOLE);
1995 keymap_count++;
1996 } else
1997 kfree(new_map);
1998
1999 oldval = U(key_map[idx]);
2000 if (val == oldval)
2001 goto out;
2002
2003 /* Attention Key */
2004 if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2005 spin_unlock_irqrestore(&kbd_event_lock, flags);
2006 return -EPERM;
2007 }
2008
2009 key_map[idx] = U(val);
2010 if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2011 do_compute_shiftstate();
2012out:
2013 spin_unlock_irqrestore(&kbd_event_lock, flags);
2014
2015 return 0;
2016}
2017
2018int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2019 unsigned int console)
2020{
2021 struct kbd_struct *kb = &kbd_table[console];
2022 struct kbentry kbe;
2023
2024 if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2025 return -EFAULT;
2026
2027 switch (cmd) {
2028 case KDGKBENT:
2029 return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2030 kbe.kb_table),
2031 &user_kbe->kb_value);
2032 case KDSKBENT:
2033 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2034 return -EPERM;
2035 return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2036 kbe.kb_value);
2037 }
2038 return 0;
2039}
2040
2041static char *vt_kdskbsent(char *kbs, unsigned char cur)
2042{
2043 static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2044 char *cur_f = func_table[cur];
2045
2046 if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2047 strcpy(cur_f, kbs);
2048 return kbs;
2049 }
2050
2051 func_table[cur] = kbs;
2052
2053 return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2054}
2055
2056int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2057{
2058 unsigned char kb_func;
2059 unsigned long flags;
2060 char *kbs;
2061 int ret;
2062
2063 if (get_user(kb_func, &user_kdgkb->kb_func))
2064 return -EFAULT;
2065
2066 kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2067
2068 switch (cmd) {
2069 case KDGKBSENT: {
2070 /* size should have been a struct member */
2071 ssize_t len = sizeof(user_kdgkb->kb_string);
2072
2073 kbs = kmalloc(len, GFP_KERNEL);
2074 if (!kbs)
2075 return -ENOMEM;
2076
2077 spin_lock_irqsave(&func_buf_lock, flags);
2078 len = strscpy(kbs, func_table[kb_func] ? : "", len);
2079 spin_unlock_irqrestore(&func_buf_lock, flags);
2080
2081 if (len < 0) {
2082 ret = -ENOSPC;
2083 break;
2084 }
2085 ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2086 -EFAULT : 0;
2087 break;
2088 }
2089 case KDSKBSENT:
2090 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2091 return -EPERM;
2092
2093 kbs = strndup_user(user_kdgkb->kb_string,
2094 sizeof(user_kdgkb->kb_string));
2095 if (IS_ERR(kbs))
2096 return PTR_ERR(kbs);
2097
2098 spin_lock_irqsave(&func_buf_lock, flags);
2099 kbs = vt_kdskbsent(kbs, kb_func);
2100 spin_unlock_irqrestore(&func_buf_lock, flags);
2101
2102 ret = 0;
2103 break;
2104 }
2105
2106 kfree(kbs);
2107
2108 return ret;
2109}
2110
2111int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2112{
2113 struct kbd_struct *kb = &kbd_table[console];
2114 unsigned long flags;
2115 unsigned char ucval;
2116
2117 switch(cmd) {
2118 /* the ioctls below read/set the flags usually shown in the leds */
2119 /* don't use them - they will go away without warning */
2120 case KDGKBLED:
2121 spin_lock_irqsave(&kbd_event_lock, flags);
2122 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2123 spin_unlock_irqrestore(&kbd_event_lock, flags);
2124 return put_user(ucval, (char __user *)arg);
2125
2126 case KDSKBLED:
2127 if (!perm)
2128 return -EPERM;
2129 if (arg & ~0x77)
2130 return -EINVAL;
2131 spin_lock_irqsave(&led_lock, flags);
2132 kb->ledflagstate = (arg & 7);
2133 kb->default_ledflagstate = ((arg >> 4) & 7);
2134 set_leds();
2135 spin_unlock_irqrestore(&led_lock, flags);
2136 return 0;
2137
2138 /* the ioctls below only set the lights, not the functions */
2139 /* for those, see KDGKBLED and KDSKBLED above */
2140 case KDGETLED:
2141 ucval = getledstate();
2142 return put_user(ucval, (char __user *)arg);
2143
2144 case KDSETLED:
2145 if (!perm)
2146 return -EPERM;
2147 setledstate(kb, arg);
2148 return 0;
2149 }
2150 return -ENOIOCTLCMD;
2151}
2152
2153int vt_do_kdgkbmode(unsigned int console)
2154{
2155 struct kbd_struct *kb = &kbd_table[console];
2156 /* This is a spot read so needs no locking */
2157 switch (kb->kbdmode) {
2158 case VC_RAW:
2159 return K_RAW;
2160 case VC_MEDIUMRAW:
2161 return K_MEDIUMRAW;
2162 case VC_UNICODE:
2163 return K_UNICODE;
2164 case VC_OFF:
2165 return K_OFF;
2166 default:
2167 return K_XLATE;
2168 }
2169}
2170
2171/**
2172 * vt_do_kdgkbmeta - report meta status
2173 * @console: console to report
2174 *
2175 * Report the meta flag status of this console
2176 */
2177int vt_do_kdgkbmeta(unsigned int console)
2178{
2179 struct kbd_struct *kb = &kbd_table[console];
2180 /* Again a spot read so no locking */
2181 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2182}
2183
2184/**
2185 * vt_reset_unicode - reset the unicode status
2186 * @console: console being reset
2187 *
2188 * Restore the unicode console state to its default
2189 */
2190void vt_reset_unicode(unsigned int console)
2191{
2192 unsigned long flags;
2193
2194 spin_lock_irqsave(&kbd_event_lock, flags);
2195 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2196 spin_unlock_irqrestore(&kbd_event_lock, flags);
2197}
2198
2199/**
2200 * vt_get_shift_state - shift bit state
2201 *
2202 * Report the shift bits from the keyboard state. We have to export
2203 * this to support some oddities in the vt layer.
2204 */
2205int vt_get_shift_state(void)
2206{
2207 /* Don't lock as this is a transient report */
2208 return shift_state;
2209}
2210
2211/**
2212 * vt_reset_keyboard - reset keyboard state
2213 * @console: console to reset
2214 *
2215 * Reset the keyboard bits for a console as part of a general console
2216 * reset event
2217 */
2218void vt_reset_keyboard(unsigned int console)
2219{
2220 struct kbd_struct *kb = &kbd_table[console];
2221 unsigned long flags;
2222
2223 spin_lock_irqsave(&kbd_event_lock, flags);
2224 set_vc_kbd_mode(kb, VC_REPEAT);
2225 clr_vc_kbd_mode(kb, VC_CKMODE);
2226 clr_vc_kbd_mode(kb, VC_APPLIC);
2227 clr_vc_kbd_mode(kb, VC_CRLF);
2228 kb->lockstate = 0;
2229 kb->slockstate = 0;
2230 spin_lock(&led_lock);
2231 kb->ledmode = LED_SHOW_FLAGS;
2232 kb->ledflagstate = kb->default_ledflagstate;
2233 spin_unlock(&led_lock);
2234 /* do not do set_leds here because this causes an endless tasklet loop
2235 when the keyboard hasn't been initialized yet */
2236 spin_unlock_irqrestore(&kbd_event_lock, flags);
2237}
2238
2239/**
2240 * vt_get_kbd_mode_bit - read keyboard status bits
2241 * @console: console to read from
2242 * @bit: mode bit to read
2243 *
2244 * Report back a vt mode bit. We do this without locking so the
2245 * caller must be sure that there are no synchronization needs
2246 */
2247
2248int vt_get_kbd_mode_bit(unsigned int console, int bit)
2249{
2250 struct kbd_struct *kb = &kbd_table[console];
2251 return vc_kbd_mode(kb, bit);
2252}
2253
2254/**
2255 * vt_set_kbd_mode_bit - read keyboard status bits
2256 * @console: console to read from
2257 * @bit: mode bit to read
2258 *
2259 * Set a vt mode bit. We do this without locking so the
2260 * caller must be sure that there are no synchronization needs
2261 */
2262
2263void vt_set_kbd_mode_bit(unsigned int console, int bit)
2264{
2265 struct kbd_struct *kb = &kbd_table[console];
2266 unsigned long flags;
2267
2268 spin_lock_irqsave(&kbd_event_lock, flags);
2269 set_vc_kbd_mode(kb, bit);
2270 spin_unlock_irqrestore(&kbd_event_lock, flags);
2271}
2272
2273/**
2274 * vt_clr_kbd_mode_bit - read keyboard status bits
2275 * @console: console to read from
2276 * @bit: mode bit to read
2277 *
2278 * Report back a vt mode bit. We do this without locking so the
2279 * caller must be sure that there are no synchronization needs
2280 */
2281
2282void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2283{
2284 struct kbd_struct *kb = &kbd_table[console];
2285 unsigned long flags;
2286
2287 spin_lock_irqsave(&kbd_event_lock, flags);
2288 clr_vc_kbd_mode(kb, bit);
2289 spin_unlock_irqrestore(&kbd_event_lock, flags);
2290}