Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/module.h>
30#include <linux/sched/signal.h>
31#include <linux/sched/debug.h>
32#include <linux/tty.h>
33#include <linux/tty_flip.h>
34#include <linux/mm.h>
35#include <linux/string.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/leds.h>
39
40#include <linux/kbd_kern.h>
41#include <linux/kbd_diacr.h>
42#include <linux/vt_kern.h>
43#include <linux/input.h>
44#include <linux/reboot.h>
45#include <linux/notifier.h>
46#include <linux/jiffies.h>
47#include <linux/uaccess.h>
48
49#include <asm/irq_regs.h>
50
51extern void ctrl_alt_del(void);
52
53/*
54 * Exported functions/variables
55 */
56
57#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
58
59#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
60#include <asm/kbdleds.h>
61#else
62static inline int kbd_defleds(void)
63{
64 return 0;
65}
66#endif
67
68#define KBD_DEFLOCK 0
69
70/*
71 * Handler Tables.
72 */
73
74#define K_HANDLERS\
75 k_self, k_fn, k_spec, k_pad,\
76 k_dead, k_cons, k_cur, k_shift,\
77 k_meta, k_ascii, k_lock, k_lowercase,\
78 k_slock, k_dead2, k_brl, k_ignore
79
80typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
81 char up_flag);
82static k_handler_fn K_HANDLERS;
83static k_handler_fn *k_handler[16] = { K_HANDLERS };
84
85#define FN_HANDLERS\
86 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
87 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
88 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
89 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
90 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
91
92typedef void (fn_handler_fn)(struct vc_data *vc);
93static fn_handler_fn FN_HANDLERS;
94static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
95
96/*
97 * Variables exported for vt_ioctl.c
98 */
99
100struct vt_spawn_console vt_spawn_con = {
101 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
102 .pid = NULL,
103 .sig = 0,
104};
105
106
107/*
108 * Internal Data.
109 */
110
111static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
112static struct kbd_struct *kbd = kbd_table;
113
114/* maximum values each key_handler can handle */
115static const int max_vals[] = {
116 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
117 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
118 255, NR_LOCK - 1, 255, NR_BRL - 1
119};
120
121static const int NR_TYPES = ARRAY_SIZE(max_vals);
122
123static struct input_handler kbd_handler;
124static DEFINE_SPINLOCK(kbd_event_lock);
125static DEFINE_SPINLOCK(led_lock);
126static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
127static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
128static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
129static bool dead_key_next;
130static int npadch = -1; /* -1 or number assembled on pad */
131static unsigned int diacr;
132static char rep; /* flag telling character repeat */
133
134static int shift_state = 0;
135
136static unsigned int ledstate = -1U; /* undefined */
137static unsigned char ledioctl;
138
139/*
140 * Notifier list for console keyboard events
141 */
142static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
143
144int register_keyboard_notifier(struct notifier_block *nb)
145{
146 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
147}
148EXPORT_SYMBOL_GPL(register_keyboard_notifier);
149
150int unregister_keyboard_notifier(struct notifier_block *nb)
151{
152 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
153}
154EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
155
156/*
157 * Translation of scancodes to keycodes. We set them on only the first
158 * keyboard in the list that accepts the scancode and keycode.
159 * Explanation for not choosing the first attached keyboard anymore:
160 * USB keyboards for example have two event devices: one for all "normal"
161 * keys and one for extra function keys (like "volume up", "make coffee",
162 * etc.). So this means that scancodes for the extra function keys won't
163 * be valid for the first event device, but will be for the second.
164 */
165
166struct getset_keycode_data {
167 struct input_keymap_entry ke;
168 int error;
169};
170
171static int getkeycode_helper(struct input_handle *handle, void *data)
172{
173 struct getset_keycode_data *d = data;
174
175 d->error = input_get_keycode(handle->dev, &d->ke);
176
177 return d->error == 0; /* stop as soon as we successfully get one */
178}
179
180static int getkeycode(unsigned int scancode)
181{
182 struct getset_keycode_data d = {
183 .ke = {
184 .flags = 0,
185 .len = sizeof(scancode),
186 .keycode = 0,
187 },
188 .error = -ENODEV,
189 };
190
191 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
192
193 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
194
195 return d.error ?: d.ke.keycode;
196}
197
198static int setkeycode_helper(struct input_handle *handle, void *data)
199{
200 struct getset_keycode_data *d = data;
201
202 d->error = input_set_keycode(handle->dev, &d->ke);
203
204 return d->error == 0; /* stop as soon as we successfully set one */
205}
206
207static int setkeycode(unsigned int scancode, unsigned int keycode)
208{
209 struct getset_keycode_data d = {
210 .ke = {
211 .flags = 0,
212 .len = sizeof(scancode),
213 .keycode = keycode,
214 },
215 .error = -ENODEV,
216 };
217
218 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
219
220 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
221
222 return d.error;
223}
224
225/*
226 * Making beeps and bells. Note that we prefer beeps to bells, but when
227 * shutting the sound off we do both.
228 */
229
230static int kd_sound_helper(struct input_handle *handle, void *data)
231{
232 unsigned int *hz = data;
233 struct input_dev *dev = handle->dev;
234
235 if (test_bit(EV_SND, dev->evbit)) {
236 if (test_bit(SND_TONE, dev->sndbit)) {
237 input_inject_event(handle, EV_SND, SND_TONE, *hz);
238 if (*hz)
239 return 0;
240 }
241 if (test_bit(SND_BELL, dev->sndbit))
242 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
243 }
244
245 return 0;
246}
247
248static void kd_nosound(struct timer_list *unused)
249{
250 static unsigned int zero;
251
252 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
253}
254
255static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
256
257void kd_mksound(unsigned int hz, unsigned int ticks)
258{
259 del_timer_sync(&kd_mksound_timer);
260
261 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
262
263 if (hz && ticks)
264 mod_timer(&kd_mksound_timer, jiffies + ticks);
265}
266EXPORT_SYMBOL(kd_mksound);
267
268/*
269 * Setting the keyboard rate.
270 */
271
272static int kbd_rate_helper(struct input_handle *handle, void *data)
273{
274 struct input_dev *dev = handle->dev;
275 struct kbd_repeat *rpt = data;
276
277 if (test_bit(EV_REP, dev->evbit)) {
278
279 if (rpt[0].delay > 0)
280 input_inject_event(handle,
281 EV_REP, REP_DELAY, rpt[0].delay);
282 if (rpt[0].period > 0)
283 input_inject_event(handle,
284 EV_REP, REP_PERIOD, rpt[0].period);
285
286 rpt[1].delay = dev->rep[REP_DELAY];
287 rpt[1].period = dev->rep[REP_PERIOD];
288 }
289
290 return 0;
291}
292
293int kbd_rate(struct kbd_repeat *rpt)
294{
295 struct kbd_repeat data[2] = { *rpt };
296
297 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
298 *rpt = data[1]; /* Copy currently used settings */
299
300 return 0;
301}
302
303/*
304 * Helper Functions.
305 */
306static void put_queue(struct vc_data *vc, int ch)
307{
308 tty_insert_flip_char(&vc->port, ch, 0);
309 tty_schedule_flip(&vc->port);
310}
311
312static void puts_queue(struct vc_data *vc, char *cp)
313{
314 while (*cp) {
315 tty_insert_flip_char(&vc->port, *cp, 0);
316 cp++;
317 }
318 tty_schedule_flip(&vc->port);
319}
320
321static void applkey(struct vc_data *vc, int key, char mode)
322{
323 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
324
325 buf[1] = (mode ? 'O' : '[');
326 buf[2] = key;
327 puts_queue(vc, buf);
328}
329
330/*
331 * Many other routines do put_queue, but I think either
332 * they produce ASCII, or they produce some user-assigned
333 * string, and in both cases we might assume that it is
334 * in utf-8 already.
335 */
336static void to_utf8(struct vc_data *vc, uint c)
337{
338 if (c < 0x80)
339 /* 0******* */
340 put_queue(vc, c);
341 else if (c < 0x800) {
342 /* 110***** 10****** */
343 put_queue(vc, 0xc0 | (c >> 6));
344 put_queue(vc, 0x80 | (c & 0x3f));
345 } else if (c < 0x10000) {
346 if (c >= 0xD800 && c < 0xE000)
347 return;
348 if (c == 0xFFFF)
349 return;
350 /* 1110**** 10****** 10****** */
351 put_queue(vc, 0xe0 | (c >> 12));
352 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
353 put_queue(vc, 0x80 | (c & 0x3f));
354 } else if (c < 0x110000) {
355 /* 11110*** 10****** 10****** 10****** */
356 put_queue(vc, 0xf0 | (c >> 18));
357 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
358 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
359 put_queue(vc, 0x80 | (c & 0x3f));
360 }
361}
362
363/*
364 * Called after returning from RAW mode or when changing consoles - recompute
365 * shift_down[] and shift_state from key_down[] maybe called when keymap is
366 * undefined, so that shiftkey release is seen. The caller must hold the
367 * kbd_event_lock.
368 */
369
370static void do_compute_shiftstate(void)
371{
372 unsigned int k, sym, val;
373
374 shift_state = 0;
375 memset(shift_down, 0, sizeof(shift_down));
376
377 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
378 sym = U(key_maps[0][k]);
379 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
380 continue;
381
382 val = KVAL(sym);
383 if (val == KVAL(K_CAPSSHIFT))
384 val = KVAL(K_SHIFT);
385
386 shift_down[val]++;
387 shift_state |= BIT(val);
388 }
389}
390
391/* We still have to export this method to vt.c */
392void compute_shiftstate(void)
393{
394 unsigned long flags;
395 spin_lock_irqsave(&kbd_event_lock, flags);
396 do_compute_shiftstate();
397 spin_unlock_irqrestore(&kbd_event_lock, flags);
398}
399
400/*
401 * We have a combining character DIACR here, followed by the character CH.
402 * If the combination occurs in the table, return the corresponding value.
403 * Otherwise, if CH is a space or equals DIACR, return DIACR.
404 * Otherwise, conclude that DIACR was not combining after all,
405 * queue it and return CH.
406 */
407static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
408{
409 unsigned int d = diacr;
410 unsigned int i;
411
412 diacr = 0;
413
414 if ((d & ~0xff) == BRL_UC_ROW) {
415 if ((ch & ~0xff) == BRL_UC_ROW)
416 return d | ch;
417 } else {
418 for (i = 0; i < accent_table_size; i++)
419 if (accent_table[i].diacr == d && accent_table[i].base == ch)
420 return accent_table[i].result;
421 }
422
423 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
424 return d;
425
426 if (kbd->kbdmode == VC_UNICODE)
427 to_utf8(vc, d);
428 else {
429 int c = conv_uni_to_8bit(d);
430 if (c != -1)
431 put_queue(vc, c);
432 }
433
434 return ch;
435}
436
437/*
438 * Special function handlers
439 */
440static void fn_enter(struct vc_data *vc)
441{
442 if (diacr) {
443 if (kbd->kbdmode == VC_UNICODE)
444 to_utf8(vc, diacr);
445 else {
446 int c = conv_uni_to_8bit(diacr);
447 if (c != -1)
448 put_queue(vc, c);
449 }
450 diacr = 0;
451 }
452
453 put_queue(vc, 13);
454 if (vc_kbd_mode(kbd, VC_CRLF))
455 put_queue(vc, 10);
456}
457
458static void fn_caps_toggle(struct vc_data *vc)
459{
460 if (rep)
461 return;
462
463 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
464}
465
466static void fn_caps_on(struct vc_data *vc)
467{
468 if (rep)
469 return;
470
471 set_vc_kbd_led(kbd, VC_CAPSLOCK);
472}
473
474static void fn_show_ptregs(struct vc_data *vc)
475{
476 struct pt_regs *regs = get_irq_regs();
477
478 if (regs)
479 show_regs(regs);
480}
481
482static void fn_hold(struct vc_data *vc)
483{
484 struct tty_struct *tty = vc->port.tty;
485
486 if (rep || !tty)
487 return;
488
489 /*
490 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
491 * these routines are also activated by ^S/^Q.
492 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
493 */
494 if (tty->stopped)
495 start_tty(tty);
496 else
497 stop_tty(tty);
498}
499
500static void fn_num(struct vc_data *vc)
501{
502 if (vc_kbd_mode(kbd, VC_APPLIC))
503 applkey(vc, 'P', 1);
504 else
505 fn_bare_num(vc);
506}
507
508/*
509 * Bind this to Shift-NumLock if you work in application keypad mode
510 * but want to be able to change the NumLock flag.
511 * Bind this to NumLock if you prefer that the NumLock key always
512 * changes the NumLock flag.
513 */
514static void fn_bare_num(struct vc_data *vc)
515{
516 if (!rep)
517 chg_vc_kbd_led(kbd, VC_NUMLOCK);
518}
519
520static void fn_lastcons(struct vc_data *vc)
521{
522 /* switch to the last used console, ChN */
523 set_console(last_console);
524}
525
526static void fn_dec_console(struct vc_data *vc)
527{
528 int i, cur = fg_console;
529
530 /* Currently switching? Queue this next switch relative to that. */
531 if (want_console != -1)
532 cur = want_console;
533
534 for (i = cur - 1; i != cur; i--) {
535 if (i == -1)
536 i = MAX_NR_CONSOLES - 1;
537 if (vc_cons_allocated(i))
538 break;
539 }
540 set_console(i);
541}
542
543static void fn_inc_console(struct vc_data *vc)
544{
545 int i, cur = fg_console;
546
547 /* Currently switching? Queue this next switch relative to that. */
548 if (want_console != -1)
549 cur = want_console;
550
551 for (i = cur+1; i != cur; i++) {
552 if (i == MAX_NR_CONSOLES)
553 i = 0;
554 if (vc_cons_allocated(i))
555 break;
556 }
557 set_console(i);
558}
559
560static void fn_send_intr(struct vc_data *vc)
561{
562 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
563 tty_schedule_flip(&vc->port);
564}
565
566static void fn_scroll_forw(struct vc_data *vc)
567{
568 scrollfront(vc, 0);
569}
570
571static void fn_scroll_back(struct vc_data *vc)
572{
573 scrollback(vc);
574}
575
576static void fn_show_mem(struct vc_data *vc)
577{
578 show_mem(0, NULL);
579}
580
581static void fn_show_state(struct vc_data *vc)
582{
583 show_state();
584}
585
586static void fn_boot_it(struct vc_data *vc)
587{
588 ctrl_alt_del();
589}
590
591static void fn_compose(struct vc_data *vc)
592{
593 dead_key_next = true;
594}
595
596static void fn_spawn_con(struct vc_data *vc)
597{
598 spin_lock(&vt_spawn_con.lock);
599 if (vt_spawn_con.pid)
600 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
601 put_pid(vt_spawn_con.pid);
602 vt_spawn_con.pid = NULL;
603 }
604 spin_unlock(&vt_spawn_con.lock);
605}
606
607static void fn_SAK(struct vc_data *vc)
608{
609 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
610 schedule_work(SAK_work);
611}
612
613static void fn_null(struct vc_data *vc)
614{
615 do_compute_shiftstate();
616}
617
618/*
619 * Special key handlers
620 */
621static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
622{
623}
624
625static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
626{
627 if (up_flag)
628 return;
629 if (value >= ARRAY_SIZE(fn_handler))
630 return;
631 if ((kbd->kbdmode == VC_RAW ||
632 kbd->kbdmode == VC_MEDIUMRAW ||
633 kbd->kbdmode == VC_OFF) &&
634 value != KVAL(K_SAK))
635 return; /* SAK is allowed even in raw mode */
636 fn_handler[value](vc);
637}
638
639static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
640{
641 pr_err("k_lowercase was called - impossible\n");
642}
643
644static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
645{
646 if (up_flag)
647 return; /* no action, if this is a key release */
648
649 if (diacr)
650 value = handle_diacr(vc, value);
651
652 if (dead_key_next) {
653 dead_key_next = false;
654 diacr = value;
655 return;
656 }
657 if (kbd->kbdmode == VC_UNICODE)
658 to_utf8(vc, value);
659 else {
660 int c = conv_uni_to_8bit(value);
661 if (c != -1)
662 put_queue(vc, c);
663 }
664}
665
666/*
667 * Handle dead key. Note that we now may have several
668 * dead keys modifying the same character. Very useful
669 * for Vietnamese.
670 */
671static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
672{
673 if (up_flag)
674 return;
675
676 diacr = (diacr ? handle_diacr(vc, value) : value);
677}
678
679static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
680{
681 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
682}
683
684static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
685{
686 k_deadunicode(vc, value, up_flag);
687}
688
689/*
690 * Obsolete - for backwards compatibility only
691 */
692static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
693{
694 static const unsigned char ret_diacr[NR_DEAD] = {
695 '`', /* dead_grave */
696 '\'', /* dead_acute */
697 '^', /* dead_circumflex */
698 '~', /* dead_tilda */
699 '"', /* dead_diaeresis */
700 ',', /* dead_cedilla */
701 '_', /* dead_macron */
702 'U', /* dead_breve */
703 '.', /* dead_abovedot */
704 '*', /* dead_abovering */
705 '=', /* dead_doubleacute */
706 'c', /* dead_caron */
707 'k', /* dead_ogonek */
708 'i', /* dead_iota */
709 '#', /* dead_voiced_sound */
710 'o', /* dead_semivoiced_sound */
711 '!', /* dead_belowdot */
712 '?', /* dead_hook */
713 '+', /* dead_horn */
714 '-', /* dead_stroke */
715 ')', /* dead_abovecomma */
716 '(', /* dead_abovereversedcomma */
717 ':', /* dead_doublegrave */
718 'n', /* dead_invertedbreve */
719 ';', /* dead_belowcomma */
720 '$', /* dead_currency */
721 '@', /* dead_greek */
722 };
723
724 k_deadunicode(vc, ret_diacr[value], up_flag);
725}
726
727static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
728{
729 if (up_flag)
730 return;
731
732 set_console(value);
733}
734
735static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
736{
737 if (up_flag)
738 return;
739
740 if ((unsigned)value < ARRAY_SIZE(func_table)) {
741 if (func_table[value])
742 puts_queue(vc, func_table[value]);
743 } else
744 pr_err("k_fn called with value=%d\n", value);
745}
746
747static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
748{
749 static const char cur_chars[] = "BDCA";
750
751 if (up_flag)
752 return;
753
754 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
755}
756
757static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
758{
759 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
760 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
761
762 if (up_flag)
763 return; /* no action, if this is a key release */
764
765 /* kludge... shift forces cursor/number keys */
766 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
767 applkey(vc, app_map[value], 1);
768 return;
769 }
770
771 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
772
773 switch (value) {
774 case KVAL(K_PCOMMA):
775 case KVAL(K_PDOT):
776 k_fn(vc, KVAL(K_REMOVE), 0);
777 return;
778 case KVAL(K_P0):
779 k_fn(vc, KVAL(K_INSERT), 0);
780 return;
781 case KVAL(K_P1):
782 k_fn(vc, KVAL(K_SELECT), 0);
783 return;
784 case KVAL(K_P2):
785 k_cur(vc, KVAL(K_DOWN), 0);
786 return;
787 case KVAL(K_P3):
788 k_fn(vc, KVAL(K_PGDN), 0);
789 return;
790 case KVAL(K_P4):
791 k_cur(vc, KVAL(K_LEFT), 0);
792 return;
793 case KVAL(K_P6):
794 k_cur(vc, KVAL(K_RIGHT), 0);
795 return;
796 case KVAL(K_P7):
797 k_fn(vc, KVAL(K_FIND), 0);
798 return;
799 case KVAL(K_P8):
800 k_cur(vc, KVAL(K_UP), 0);
801 return;
802 case KVAL(K_P9):
803 k_fn(vc, KVAL(K_PGUP), 0);
804 return;
805 case KVAL(K_P5):
806 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
807 return;
808 }
809 }
810
811 put_queue(vc, pad_chars[value]);
812 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
813 put_queue(vc, 10);
814}
815
816static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
817{
818 int old_state = shift_state;
819
820 if (rep)
821 return;
822 /*
823 * Mimic typewriter:
824 * a CapsShift key acts like Shift but undoes CapsLock
825 */
826 if (value == KVAL(K_CAPSSHIFT)) {
827 value = KVAL(K_SHIFT);
828 if (!up_flag)
829 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
830 }
831
832 if (up_flag) {
833 /*
834 * handle the case that two shift or control
835 * keys are depressed simultaneously
836 */
837 if (shift_down[value])
838 shift_down[value]--;
839 } else
840 shift_down[value]++;
841
842 if (shift_down[value])
843 shift_state |= (1 << value);
844 else
845 shift_state &= ~(1 << value);
846
847 /* kludge */
848 if (up_flag && shift_state != old_state && npadch != -1) {
849 if (kbd->kbdmode == VC_UNICODE)
850 to_utf8(vc, npadch);
851 else
852 put_queue(vc, npadch & 0xff);
853 npadch = -1;
854 }
855}
856
857static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
858{
859 if (up_flag)
860 return;
861
862 if (vc_kbd_mode(kbd, VC_META)) {
863 put_queue(vc, '\033');
864 put_queue(vc, value);
865 } else
866 put_queue(vc, value | 0x80);
867}
868
869static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
870{
871 int base;
872
873 if (up_flag)
874 return;
875
876 if (value < 10) {
877 /* decimal input of code, while Alt depressed */
878 base = 10;
879 } else {
880 /* hexadecimal input of code, while AltGr depressed */
881 value -= 10;
882 base = 16;
883 }
884
885 if (npadch == -1)
886 npadch = value;
887 else
888 npadch = npadch * base + value;
889}
890
891static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
892{
893 if (up_flag || rep)
894 return;
895
896 chg_vc_kbd_lock(kbd, value);
897}
898
899static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
900{
901 k_shift(vc, value, up_flag);
902 if (up_flag || rep)
903 return;
904
905 chg_vc_kbd_slock(kbd, value);
906 /* try to make Alt, oops, AltGr and such work */
907 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
908 kbd->slockstate = 0;
909 chg_vc_kbd_slock(kbd, value);
910 }
911}
912
913/* by default, 300ms interval for combination release */
914static unsigned brl_timeout = 300;
915MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
916module_param(brl_timeout, uint, 0644);
917
918static unsigned brl_nbchords = 1;
919MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
920module_param(brl_nbchords, uint, 0644);
921
922static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
923{
924 static unsigned long chords;
925 static unsigned committed;
926
927 if (!brl_nbchords)
928 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
929 else {
930 committed |= pattern;
931 chords++;
932 if (chords == brl_nbchords) {
933 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
934 chords = 0;
935 committed = 0;
936 }
937 }
938}
939
940static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
941{
942 static unsigned pressed, committing;
943 static unsigned long releasestart;
944
945 if (kbd->kbdmode != VC_UNICODE) {
946 if (!up_flag)
947 pr_warn("keyboard mode must be unicode for braille patterns\n");
948 return;
949 }
950
951 if (!value) {
952 k_unicode(vc, BRL_UC_ROW, up_flag);
953 return;
954 }
955
956 if (value > 8)
957 return;
958
959 if (!up_flag) {
960 pressed |= 1 << (value - 1);
961 if (!brl_timeout)
962 committing = pressed;
963 } else if (brl_timeout) {
964 if (!committing ||
965 time_after(jiffies,
966 releasestart + msecs_to_jiffies(brl_timeout))) {
967 committing = pressed;
968 releasestart = jiffies;
969 }
970 pressed &= ~(1 << (value - 1));
971 if (!pressed && committing) {
972 k_brlcommit(vc, committing, 0);
973 committing = 0;
974 }
975 } else {
976 if (committing) {
977 k_brlcommit(vc, committing, 0);
978 committing = 0;
979 }
980 pressed &= ~(1 << (value - 1));
981 }
982}
983
984#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
985
986struct kbd_led_trigger {
987 struct led_trigger trigger;
988 unsigned int mask;
989};
990
991static int kbd_led_trigger_activate(struct led_classdev *cdev)
992{
993 struct kbd_led_trigger *trigger =
994 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
995
996 tasklet_disable(&keyboard_tasklet);
997 if (ledstate != -1U)
998 led_trigger_event(&trigger->trigger,
999 ledstate & trigger->mask ?
1000 LED_FULL : LED_OFF);
1001 tasklet_enable(&keyboard_tasklet);
1002
1003 return 0;
1004}
1005
1006#define KBD_LED_TRIGGER(_led_bit, _name) { \
1007 .trigger = { \
1008 .name = _name, \
1009 .activate = kbd_led_trigger_activate, \
1010 }, \
1011 .mask = BIT(_led_bit), \
1012 }
1013
1014#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1015 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1016
1017static struct kbd_led_trigger kbd_led_triggers[] = {
1018 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1019 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1020 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1021 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1022
1023 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1024 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1025 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1026 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1027 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1028 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1029 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1030 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1031};
1032
1033static void kbd_propagate_led_state(unsigned int old_state,
1034 unsigned int new_state)
1035{
1036 struct kbd_led_trigger *trigger;
1037 unsigned int changed = old_state ^ new_state;
1038 int i;
1039
1040 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1041 trigger = &kbd_led_triggers[i];
1042
1043 if (changed & trigger->mask)
1044 led_trigger_event(&trigger->trigger,
1045 new_state & trigger->mask ?
1046 LED_FULL : LED_OFF);
1047 }
1048}
1049
1050static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1051{
1052 unsigned int led_state = *(unsigned int *)data;
1053
1054 if (test_bit(EV_LED, handle->dev->evbit))
1055 kbd_propagate_led_state(~led_state, led_state);
1056
1057 return 0;
1058}
1059
1060static void kbd_init_leds(void)
1061{
1062 int error;
1063 int i;
1064
1065 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1066 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1067 if (error)
1068 pr_err("error %d while registering trigger %s\n",
1069 error, kbd_led_triggers[i].trigger.name);
1070 }
1071}
1072
1073#else
1074
1075static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1076{
1077 unsigned int leds = *(unsigned int *)data;
1078
1079 if (test_bit(EV_LED, handle->dev->evbit)) {
1080 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1081 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1082 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1083 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1084 }
1085
1086 return 0;
1087}
1088
1089static void kbd_propagate_led_state(unsigned int old_state,
1090 unsigned int new_state)
1091{
1092 input_handler_for_each_handle(&kbd_handler, &new_state,
1093 kbd_update_leds_helper);
1094}
1095
1096static void kbd_init_leds(void)
1097{
1098}
1099
1100#endif
1101
1102/*
1103 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1104 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1105 * or (iii) specified bits of specified words in kernel memory.
1106 */
1107static unsigned char getledstate(void)
1108{
1109 return ledstate & 0xff;
1110}
1111
1112void setledstate(struct kbd_struct *kb, unsigned int led)
1113{
1114 unsigned long flags;
1115 spin_lock_irqsave(&led_lock, flags);
1116 if (!(led & ~7)) {
1117 ledioctl = led;
1118 kb->ledmode = LED_SHOW_IOCTL;
1119 } else
1120 kb->ledmode = LED_SHOW_FLAGS;
1121
1122 set_leds();
1123 spin_unlock_irqrestore(&led_lock, flags);
1124}
1125
1126static inline unsigned char getleds(void)
1127{
1128 struct kbd_struct *kb = kbd_table + fg_console;
1129
1130 if (kb->ledmode == LED_SHOW_IOCTL)
1131 return ledioctl;
1132
1133 return kb->ledflagstate;
1134}
1135
1136/**
1137 * vt_get_leds - helper for braille console
1138 * @console: console to read
1139 * @flag: flag we want to check
1140 *
1141 * Check the status of a keyboard led flag and report it back
1142 */
1143int vt_get_leds(int console, int flag)
1144{
1145 struct kbd_struct *kb = kbd_table + console;
1146 int ret;
1147 unsigned long flags;
1148
1149 spin_lock_irqsave(&led_lock, flags);
1150 ret = vc_kbd_led(kb, flag);
1151 spin_unlock_irqrestore(&led_lock, flags);
1152
1153 return ret;
1154}
1155EXPORT_SYMBOL_GPL(vt_get_leds);
1156
1157/**
1158 * vt_set_led_state - set LED state of a console
1159 * @console: console to set
1160 * @leds: LED bits
1161 *
1162 * Set the LEDs on a console. This is a wrapper for the VT layer
1163 * so that we can keep kbd knowledge internal
1164 */
1165void vt_set_led_state(int console, int leds)
1166{
1167 struct kbd_struct *kb = kbd_table + console;
1168 setledstate(kb, leds);
1169}
1170
1171/**
1172 * vt_kbd_con_start - Keyboard side of console start
1173 * @console: console
1174 *
1175 * Handle console start. This is a wrapper for the VT layer
1176 * so that we can keep kbd knowledge internal
1177 *
1178 * FIXME: We eventually need to hold the kbd lock here to protect
1179 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1180 * and start_tty under the kbd_event_lock, while normal tty paths
1181 * don't hold the lock. We probably need to split out an LED lock
1182 * but not during an -rc release!
1183 */
1184void vt_kbd_con_start(int console)
1185{
1186 struct kbd_struct *kb = kbd_table + console;
1187 unsigned long flags;
1188 spin_lock_irqsave(&led_lock, flags);
1189 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1190 set_leds();
1191 spin_unlock_irqrestore(&led_lock, flags);
1192}
1193
1194/**
1195 * vt_kbd_con_stop - Keyboard side of console stop
1196 * @console: console
1197 *
1198 * Handle console stop. This is a wrapper for the VT layer
1199 * so that we can keep kbd knowledge internal
1200 */
1201void vt_kbd_con_stop(int console)
1202{
1203 struct kbd_struct *kb = kbd_table + console;
1204 unsigned long flags;
1205 spin_lock_irqsave(&led_lock, flags);
1206 set_vc_kbd_led(kb, VC_SCROLLOCK);
1207 set_leds();
1208 spin_unlock_irqrestore(&led_lock, flags);
1209}
1210
1211/*
1212 * This is the tasklet that updates LED state of LEDs using standard
1213 * keyboard triggers. The reason we use tasklet is that we need to
1214 * handle the scenario when keyboard handler is not registered yet
1215 * but we already getting updates from the VT to update led state.
1216 */
1217static void kbd_bh(unsigned long dummy)
1218{
1219 unsigned int leds;
1220 unsigned long flags;
1221
1222 spin_lock_irqsave(&led_lock, flags);
1223 leds = getleds();
1224 leds |= (unsigned int)kbd->lockstate << 8;
1225 spin_unlock_irqrestore(&led_lock, flags);
1226
1227 if (leds != ledstate) {
1228 kbd_propagate_led_state(ledstate, leds);
1229 ledstate = leds;
1230 }
1231}
1232
1233DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1234
1235#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1236 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1237 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1238 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1239
1240#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1241 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1242
1243static const unsigned short x86_keycodes[256] =
1244 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1245 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1246 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1247 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1248 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1249 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1250 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1251 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1252 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1253 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1254 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1255 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1256 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1257 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1258 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1259
1260#ifdef CONFIG_SPARC
1261static int sparc_l1_a_state;
1262extern void sun_do_break(void);
1263#endif
1264
1265static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1266 unsigned char up_flag)
1267{
1268 int code;
1269
1270 switch (keycode) {
1271
1272 case KEY_PAUSE:
1273 put_queue(vc, 0xe1);
1274 put_queue(vc, 0x1d | up_flag);
1275 put_queue(vc, 0x45 | up_flag);
1276 break;
1277
1278 case KEY_HANGEUL:
1279 if (!up_flag)
1280 put_queue(vc, 0xf2);
1281 break;
1282
1283 case KEY_HANJA:
1284 if (!up_flag)
1285 put_queue(vc, 0xf1);
1286 break;
1287
1288 case KEY_SYSRQ:
1289 /*
1290 * Real AT keyboards (that's what we're trying
1291 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1292 * pressing PrtSc/SysRq alone, but simply 0x54
1293 * when pressing Alt+PrtSc/SysRq.
1294 */
1295 if (test_bit(KEY_LEFTALT, key_down) ||
1296 test_bit(KEY_RIGHTALT, key_down)) {
1297 put_queue(vc, 0x54 | up_flag);
1298 } else {
1299 put_queue(vc, 0xe0);
1300 put_queue(vc, 0x2a | up_flag);
1301 put_queue(vc, 0xe0);
1302 put_queue(vc, 0x37 | up_flag);
1303 }
1304 break;
1305
1306 default:
1307 if (keycode > 255)
1308 return -1;
1309
1310 code = x86_keycodes[keycode];
1311 if (!code)
1312 return -1;
1313
1314 if (code & 0x100)
1315 put_queue(vc, 0xe0);
1316 put_queue(vc, (code & 0x7f) | up_flag);
1317
1318 break;
1319 }
1320
1321 return 0;
1322}
1323
1324#else
1325
1326#define HW_RAW(dev) 0
1327
1328static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1329{
1330 if (keycode > 127)
1331 return -1;
1332
1333 put_queue(vc, keycode | up_flag);
1334 return 0;
1335}
1336#endif
1337
1338static void kbd_rawcode(unsigned char data)
1339{
1340 struct vc_data *vc = vc_cons[fg_console].d;
1341
1342 kbd = kbd_table + vc->vc_num;
1343 if (kbd->kbdmode == VC_RAW)
1344 put_queue(vc, data);
1345}
1346
1347static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1348{
1349 struct vc_data *vc = vc_cons[fg_console].d;
1350 unsigned short keysym, *key_map;
1351 unsigned char type;
1352 bool raw_mode;
1353 struct tty_struct *tty;
1354 int shift_final;
1355 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1356 int rc;
1357
1358 tty = vc->port.tty;
1359
1360 if (tty && (!tty->driver_data)) {
1361 /* No driver data? Strange. Okay we fix it then. */
1362 tty->driver_data = vc;
1363 }
1364
1365 kbd = kbd_table + vc->vc_num;
1366
1367#ifdef CONFIG_SPARC
1368 if (keycode == KEY_STOP)
1369 sparc_l1_a_state = down;
1370#endif
1371
1372 rep = (down == 2);
1373
1374 raw_mode = (kbd->kbdmode == VC_RAW);
1375 if (raw_mode && !hw_raw)
1376 if (emulate_raw(vc, keycode, !down << 7))
1377 if (keycode < BTN_MISC && printk_ratelimit())
1378 pr_warn("can't emulate rawmode for keycode %d\n",
1379 keycode);
1380
1381#ifdef CONFIG_SPARC
1382 if (keycode == KEY_A && sparc_l1_a_state) {
1383 sparc_l1_a_state = false;
1384 sun_do_break();
1385 }
1386#endif
1387
1388 if (kbd->kbdmode == VC_MEDIUMRAW) {
1389 /*
1390 * This is extended medium raw mode, with keys above 127
1391 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1392 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1393 * interfere with anything else. The two bytes after 0 will
1394 * always have the up flag set not to interfere with older
1395 * applications. This allows for 16384 different keycodes,
1396 * which should be enough.
1397 */
1398 if (keycode < 128) {
1399 put_queue(vc, keycode | (!down << 7));
1400 } else {
1401 put_queue(vc, !down << 7);
1402 put_queue(vc, (keycode >> 7) | 0x80);
1403 put_queue(vc, keycode | 0x80);
1404 }
1405 raw_mode = true;
1406 }
1407
1408 if (down)
1409 set_bit(keycode, key_down);
1410 else
1411 clear_bit(keycode, key_down);
1412
1413 if (rep &&
1414 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1415 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1416 /*
1417 * Don't repeat a key if the input buffers are not empty and the
1418 * characters get aren't echoed locally. This makes key repeat
1419 * usable with slow applications and under heavy loads.
1420 */
1421 return;
1422 }
1423
1424 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1425 param.ledstate = kbd->ledflagstate;
1426 key_map = key_maps[shift_final];
1427
1428 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1429 KBD_KEYCODE, ¶m);
1430 if (rc == NOTIFY_STOP || !key_map) {
1431 atomic_notifier_call_chain(&keyboard_notifier_list,
1432 KBD_UNBOUND_KEYCODE, ¶m);
1433 do_compute_shiftstate();
1434 kbd->slockstate = 0;
1435 return;
1436 }
1437
1438 if (keycode < NR_KEYS)
1439 keysym = key_map[keycode];
1440 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1441 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1442 else
1443 return;
1444
1445 type = KTYP(keysym);
1446
1447 if (type < 0xf0) {
1448 param.value = keysym;
1449 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1450 KBD_UNICODE, ¶m);
1451 if (rc != NOTIFY_STOP)
1452 if (down && !raw_mode)
1453 k_unicode(vc, keysym, !down);
1454 return;
1455 }
1456
1457 type -= 0xf0;
1458
1459 if (type == KT_LETTER) {
1460 type = KT_LATIN;
1461 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1462 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1463 if (key_map)
1464 keysym = key_map[keycode];
1465 }
1466 }
1467
1468 param.value = keysym;
1469 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1470 KBD_KEYSYM, ¶m);
1471 if (rc == NOTIFY_STOP)
1472 return;
1473
1474 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1475 return;
1476
1477 (*k_handler[type])(vc, keysym & 0xff, !down);
1478
1479 param.ledstate = kbd->ledflagstate;
1480 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1481
1482 if (type != KT_SLOCK)
1483 kbd->slockstate = 0;
1484}
1485
1486static void kbd_event(struct input_handle *handle, unsigned int event_type,
1487 unsigned int event_code, int value)
1488{
1489 /* We are called with interrupts disabled, just take the lock */
1490 spin_lock(&kbd_event_lock);
1491
1492 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1493 kbd_rawcode(value);
1494 if (event_type == EV_KEY)
1495 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1496
1497 spin_unlock(&kbd_event_lock);
1498
1499 tasklet_schedule(&keyboard_tasklet);
1500 do_poke_blanked_console = 1;
1501 schedule_console_callback();
1502}
1503
1504static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1505{
1506 int i;
1507
1508 if (test_bit(EV_SND, dev->evbit))
1509 return true;
1510
1511 if (test_bit(EV_KEY, dev->evbit)) {
1512 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1513 if (test_bit(i, dev->keybit))
1514 return true;
1515 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1516 if (test_bit(i, dev->keybit))
1517 return true;
1518 }
1519
1520 return false;
1521}
1522
1523/*
1524 * When a keyboard (or other input device) is found, the kbd_connect
1525 * function is called. The function then looks at the device, and if it
1526 * likes it, it can open it and get events from it. In this (kbd_connect)
1527 * function, we should decide which VT to bind that keyboard to initially.
1528 */
1529static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1530 const struct input_device_id *id)
1531{
1532 struct input_handle *handle;
1533 int error;
1534
1535 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1536 if (!handle)
1537 return -ENOMEM;
1538
1539 handle->dev = dev;
1540 handle->handler = handler;
1541 handle->name = "kbd";
1542
1543 error = input_register_handle(handle);
1544 if (error)
1545 goto err_free_handle;
1546
1547 error = input_open_device(handle);
1548 if (error)
1549 goto err_unregister_handle;
1550
1551 return 0;
1552
1553 err_unregister_handle:
1554 input_unregister_handle(handle);
1555 err_free_handle:
1556 kfree(handle);
1557 return error;
1558}
1559
1560static void kbd_disconnect(struct input_handle *handle)
1561{
1562 input_close_device(handle);
1563 input_unregister_handle(handle);
1564 kfree(handle);
1565}
1566
1567/*
1568 * Start keyboard handler on the new keyboard by refreshing LED state to
1569 * match the rest of the system.
1570 */
1571static void kbd_start(struct input_handle *handle)
1572{
1573 tasklet_disable(&keyboard_tasklet);
1574
1575 if (ledstate != -1U)
1576 kbd_update_leds_helper(handle, &ledstate);
1577
1578 tasklet_enable(&keyboard_tasklet);
1579}
1580
1581static const struct input_device_id kbd_ids[] = {
1582 {
1583 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1584 .evbit = { BIT_MASK(EV_KEY) },
1585 },
1586
1587 {
1588 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1589 .evbit = { BIT_MASK(EV_SND) },
1590 },
1591
1592 { }, /* Terminating entry */
1593};
1594
1595MODULE_DEVICE_TABLE(input, kbd_ids);
1596
1597static struct input_handler kbd_handler = {
1598 .event = kbd_event,
1599 .match = kbd_match,
1600 .connect = kbd_connect,
1601 .disconnect = kbd_disconnect,
1602 .start = kbd_start,
1603 .name = "kbd",
1604 .id_table = kbd_ids,
1605};
1606
1607int __init kbd_init(void)
1608{
1609 int i;
1610 int error;
1611
1612 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1613 kbd_table[i].ledflagstate = kbd_defleds();
1614 kbd_table[i].default_ledflagstate = kbd_defleds();
1615 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1616 kbd_table[i].lockstate = KBD_DEFLOCK;
1617 kbd_table[i].slockstate = 0;
1618 kbd_table[i].modeflags = KBD_DEFMODE;
1619 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1620 }
1621
1622 kbd_init_leds();
1623
1624 error = input_register_handler(&kbd_handler);
1625 if (error)
1626 return error;
1627
1628 tasklet_enable(&keyboard_tasklet);
1629 tasklet_schedule(&keyboard_tasklet);
1630
1631 return 0;
1632}
1633
1634/* Ioctl support code */
1635
1636/**
1637 * vt_do_diacrit - diacritical table updates
1638 * @cmd: ioctl request
1639 * @udp: pointer to user data for ioctl
1640 * @perm: permissions check computed by caller
1641 *
1642 * Update the diacritical tables atomically and safely. Lock them
1643 * against simultaneous keypresses
1644 */
1645int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1646{
1647 unsigned long flags;
1648 int asize;
1649 int ret = 0;
1650
1651 switch (cmd) {
1652 case KDGKBDIACR:
1653 {
1654 struct kbdiacrs __user *a = udp;
1655 struct kbdiacr *dia;
1656 int i;
1657
1658 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1659 GFP_KERNEL);
1660 if (!dia)
1661 return -ENOMEM;
1662
1663 /* Lock the diacriticals table, make a copy and then
1664 copy it after we unlock */
1665 spin_lock_irqsave(&kbd_event_lock, flags);
1666
1667 asize = accent_table_size;
1668 for (i = 0; i < asize; i++) {
1669 dia[i].diacr = conv_uni_to_8bit(
1670 accent_table[i].diacr);
1671 dia[i].base = conv_uni_to_8bit(
1672 accent_table[i].base);
1673 dia[i].result = conv_uni_to_8bit(
1674 accent_table[i].result);
1675 }
1676 spin_unlock_irqrestore(&kbd_event_lock, flags);
1677
1678 if (put_user(asize, &a->kb_cnt))
1679 ret = -EFAULT;
1680 else if (copy_to_user(a->kbdiacr, dia,
1681 asize * sizeof(struct kbdiacr)))
1682 ret = -EFAULT;
1683 kfree(dia);
1684 return ret;
1685 }
1686 case KDGKBDIACRUC:
1687 {
1688 struct kbdiacrsuc __user *a = udp;
1689 void *buf;
1690
1691 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1692 GFP_KERNEL);
1693 if (buf == NULL)
1694 return -ENOMEM;
1695
1696 /* Lock the diacriticals table, make a copy and then
1697 copy it after we unlock */
1698 spin_lock_irqsave(&kbd_event_lock, flags);
1699
1700 asize = accent_table_size;
1701 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1702
1703 spin_unlock_irqrestore(&kbd_event_lock, flags);
1704
1705 if (put_user(asize, &a->kb_cnt))
1706 ret = -EFAULT;
1707 else if (copy_to_user(a->kbdiacruc, buf,
1708 asize*sizeof(struct kbdiacruc)))
1709 ret = -EFAULT;
1710 kfree(buf);
1711 return ret;
1712 }
1713
1714 case KDSKBDIACR:
1715 {
1716 struct kbdiacrs __user *a = udp;
1717 struct kbdiacr *dia = NULL;
1718 unsigned int ct;
1719 int i;
1720
1721 if (!perm)
1722 return -EPERM;
1723 if (get_user(ct, &a->kb_cnt))
1724 return -EFAULT;
1725 if (ct >= MAX_DIACR)
1726 return -EINVAL;
1727
1728 if (ct) {
1729
1730 dia = memdup_user(a->kbdiacr,
1731 sizeof(struct kbdiacr) * ct);
1732 if (IS_ERR(dia))
1733 return PTR_ERR(dia);
1734
1735 }
1736
1737 spin_lock_irqsave(&kbd_event_lock, flags);
1738 accent_table_size = ct;
1739 for (i = 0; i < ct; i++) {
1740 accent_table[i].diacr =
1741 conv_8bit_to_uni(dia[i].diacr);
1742 accent_table[i].base =
1743 conv_8bit_to_uni(dia[i].base);
1744 accent_table[i].result =
1745 conv_8bit_to_uni(dia[i].result);
1746 }
1747 spin_unlock_irqrestore(&kbd_event_lock, flags);
1748 kfree(dia);
1749 return 0;
1750 }
1751
1752 case KDSKBDIACRUC:
1753 {
1754 struct kbdiacrsuc __user *a = udp;
1755 unsigned int ct;
1756 void *buf = NULL;
1757
1758 if (!perm)
1759 return -EPERM;
1760
1761 if (get_user(ct, &a->kb_cnt))
1762 return -EFAULT;
1763
1764 if (ct >= MAX_DIACR)
1765 return -EINVAL;
1766
1767 if (ct) {
1768 buf = memdup_user(a->kbdiacruc,
1769 ct * sizeof(struct kbdiacruc));
1770 if (IS_ERR(buf))
1771 return PTR_ERR(buf);
1772 }
1773 spin_lock_irqsave(&kbd_event_lock, flags);
1774 if (ct)
1775 memcpy(accent_table, buf,
1776 ct * sizeof(struct kbdiacruc));
1777 accent_table_size = ct;
1778 spin_unlock_irqrestore(&kbd_event_lock, flags);
1779 kfree(buf);
1780 return 0;
1781 }
1782 }
1783 return ret;
1784}
1785
1786/**
1787 * vt_do_kdskbmode - set keyboard mode ioctl
1788 * @console: the console to use
1789 * @arg: the requested mode
1790 *
1791 * Update the keyboard mode bits while holding the correct locks.
1792 * Return 0 for success or an error code.
1793 */
1794int vt_do_kdskbmode(int console, unsigned int arg)
1795{
1796 struct kbd_struct *kb = kbd_table + console;
1797 int ret = 0;
1798 unsigned long flags;
1799
1800 spin_lock_irqsave(&kbd_event_lock, flags);
1801 switch(arg) {
1802 case K_RAW:
1803 kb->kbdmode = VC_RAW;
1804 break;
1805 case K_MEDIUMRAW:
1806 kb->kbdmode = VC_MEDIUMRAW;
1807 break;
1808 case K_XLATE:
1809 kb->kbdmode = VC_XLATE;
1810 do_compute_shiftstate();
1811 break;
1812 case K_UNICODE:
1813 kb->kbdmode = VC_UNICODE;
1814 do_compute_shiftstate();
1815 break;
1816 case K_OFF:
1817 kb->kbdmode = VC_OFF;
1818 break;
1819 default:
1820 ret = -EINVAL;
1821 }
1822 spin_unlock_irqrestore(&kbd_event_lock, flags);
1823 return ret;
1824}
1825
1826/**
1827 * vt_do_kdskbmeta - set keyboard meta state
1828 * @console: the console to use
1829 * @arg: the requested meta state
1830 *
1831 * Update the keyboard meta bits while holding the correct locks.
1832 * Return 0 for success or an error code.
1833 */
1834int vt_do_kdskbmeta(int console, unsigned int arg)
1835{
1836 struct kbd_struct *kb = kbd_table + console;
1837 int ret = 0;
1838 unsigned long flags;
1839
1840 spin_lock_irqsave(&kbd_event_lock, flags);
1841 switch(arg) {
1842 case K_METABIT:
1843 clr_vc_kbd_mode(kb, VC_META);
1844 break;
1845 case K_ESCPREFIX:
1846 set_vc_kbd_mode(kb, VC_META);
1847 break;
1848 default:
1849 ret = -EINVAL;
1850 }
1851 spin_unlock_irqrestore(&kbd_event_lock, flags);
1852 return ret;
1853}
1854
1855int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1856 int perm)
1857{
1858 struct kbkeycode tmp;
1859 int kc = 0;
1860
1861 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1862 return -EFAULT;
1863 switch (cmd) {
1864 case KDGETKEYCODE:
1865 kc = getkeycode(tmp.scancode);
1866 if (kc >= 0)
1867 kc = put_user(kc, &user_kbkc->keycode);
1868 break;
1869 case KDSETKEYCODE:
1870 if (!perm)
1871 return -EPERM;
1872 kc = setkeycode(tmp.scancode, tmp.keycode);
1873 break;
1874 }
1875 return kc;
1876}
1877
1878#define i (tmp.kb_index)
1879#define s (tmp.kb_table)
1880#define v (tmp.kb_value)
1881
1882int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1883 int console)
1884{
1885 struct kbd_struct *kb = kbd_table + console;
1886 struct kbentry tmp;
1887 ushort *key_map, *new_map, val, ov;
1888 unsigned long flags;
1889
1890 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1891 return -EFAULT;
1892
1893 if (!capable(CAP_SYS_TTY_CONFIG))
1894 perm = 0;
1895
1896 switch (cmd) {
1897 case KDGKBENT:
1898 /* Ensure another thread doesn't free it under us */
1899 spin_lock_irqsave(&kbd_event_lock, flags);
1900 key_map = key_maps[s];
1901 if (key_map) {
1902 val = U(key_map[i]);
1903 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1904 val = K_HOLE;
1905 } else
1906 val = (i ? K_HOLE : K_NOSUCHMAP);
1907 spin_unlock_irqrestore(&kbd_event_lock, flags);
1908 return put_user(val, &user_kbe->kb_value);
1909 case KDSKBENT:
1910 if (!perm)
1911 return -EPERM;
1912 if (!i && v == K_NOSUCHMAP) {
1913 spin_lock_irqsave(&kbd_event_lock, flags);
1914 /* deallocate map */
1915 key_map = key_maps[s];
1916 if (s && key_map) {
1917 key_maps[s] = NULL;
1918 if (key_map[0] == U(K_ALLOCATED)) {
1919 kfree(key_map);
1920 keymap_count--;
1921 }
1922 }
1923 spin_unlock_irqrestore(&kbd_event_lock, flags);
1924 break;
1925 }
1926
1927 if (KTYP(v) < NR_TYPES) {
1928 if (KVAL(v) > max_vals[KTYP(v)])
1929 return -EINVAL;
1930 } else
1931 if (kb->kbdmode != VC_UNICODE)
1932 return -EINVAL;
1933
1934 /* ++Geert: non-PC keyboards may generate keycode zero */
1935#if !defined(__mc68000__) && !defined(__powerpc__)
1936 /* assignment to entry 0 only tests validity of args */
1937 if (!i)
1938 break;
1939#endif
1940
1941 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1942 if (!new_map)
1943 return -ENOMEM;
1944 spin_lock_irqsave(&kbd_event_lock, flags);
1945 key_map = key_maps[s];
1946 if (key_map == NULL) {
1947 int j;
1948
1949 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1950 !capable(CAP_SYS_RESOURCE)) {
1951 spin_unlock_irqrestore(&kbd_event_lock, flags);
1952 kfree(new_map);
1953 return -EPERM;
1954 }
1955 key_maps[s] = new_map;
1956 key_map = new_map;
1957 key_map[0] = U(K_ALLOCATED);
1958 for (j = 1; j < NR_KEYS; j++)
1959 key_map[j] = U(K_HOLE);
1960 keymap_count++;
1961 } else
1962 kfree(new_map);
1963
1964 ov = U(key_map[i]);
1965 if (v == ov)
1966 goto out;
1967 /*
1968 * Attention Key.
1969 */
1970 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1971 spin_unlock_irqrestore(&kbd_event_lock, flags);
1972 return -EPERM;
1973 }
1974 key_map[i] = U(v);
1975 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1976 do_compute_shiftstate();
1977out:
1978 spin_unlock_irqrestore(&kbd_event_lock, flags);
1979 break;
1980 }
1981 return 0;
1982}
1983#undef i
1984#undef s
1985#undef v
1986
1987/* FIXME: This one needs untangling and locking */
1988int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1989{
1990 struct kbsentry *kbs;
1991 char *p;
1992 u_char *q;
1993 u_char __user *up;
1994 int sz, fnw_sz;
1995 int delta;
1996 char *first_free, *fj, *fnw;
1997 int i, j, k;
1998 int ret;
1999 unsigned long flags;
2000
2001 if (!capable(CAP_SYS_TTY_CONFIG))
2002 perm = 0;
2003
2004 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
2005 if (!kbs) {
2006 ret = -ENOMEM;
2007 goto reterr;
2008 }
2009
2010 /* we mostly copy too much here (512bytes), but who cares ;) */
2011 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
2012 ret = -EFAULT;
2013 goto reterr;
2014 }
2015 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2016 i = kbs->kb_func;
2017
2018 switch (cmd) {
2019 case KDGKBSENT:
2020 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
2021 a struct member */
2022 up = user_kdgkb->kb_string;
2023 p = func_table[i];
2024 if(p)
2025 for ( ; *p && sz; p++, sz--)
2026 if (put_user(*p, up++)) {
2027 ret = -EFAULT;
2028 goto reterr;
2029 }
2030 if (put_user('\0', up)) {
2031 ret = -EFAULT;
2032 goto reterr;
2033 }
2034 kfree(kbs);
2035 return ((p && *p) ? -EOVERFLOW : 0);
2036 case KDSKBSENT:
2037 if (!perm) {
2038 ret = -EPERM;
2039 goto reterr;
2040 }
2041
2042 fnw = NULL;
2043 fnw_sz = 0;
2044 /* race aginst other writers */
2045 again:
2046 spin_lock_irqsave(&func_buf_lock, flags);
2047 q = func_table[i];
2048
2049 /* fj pointer to next entry after 'q' */
2050 first_free = funcbufptr + (funcbufsize - funcbufleft);
2051 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2052 ;
2053 if (j < MAX_NR_FUNC)
2054 fj = func_table[j];
2055 else
2056 fj = first_free;
2057 /* buffer usage increase by new entry */
2058 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2059
2060 if (delta <= funcbufleft) { /* it fits in current buf */
2061 if (j < MAX_NR_FUNC) {
2062 /* make enough space for new entry at 'fj' */
2063 memmove(fj + delta, fj, first_free - fj);
2064 for (k = j; k < MAX_NR_FUNC; k++)
2065 if (func_table[k])
2066 func_table[k] += delta;
2067 }
2068 if (!q)
2069 func_table[i] = fj;
2070 funcbufleft -= delta;
2071 } else { /* allocate a larger buffer */
2072 sz = 256;
2073 while (sz < funcbufsize - funcbufleft + delta)
2074 sz <<= 1;
2075 if (fnw_sz != sz) {
2076 spin_unlock_irqrestore(&func_buf_lock, flags);
2077 kfree(fnw);
2078 fnw = kmalloc(sz, GFP_KERNEL);
2079 fnw_sz = sz;
2080 if (!fnw) {
2081 ret = -ENOMEM;
2082 goto reterr;
2083 }
2084 goto again;
2085 }
2086
2087 if (!q)
2088 func_table[i] = fj;
2089 /* copy data before insertion point to new location */
2090 if (fj > funcbufptr)
2091 memmove(fnw, funcbufptr, fj - funcbufptr);
2092 for (k = 0; k < j; k++)
2093 if (func_table[k])
2094 func_table[k] = fnw + (func_table[k] - funcbufptr);
2095
2096 /* copy data after insertion point to new location */
2097 if (first_free > fj) {
2098 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2099 for (k = j; k < MAX_NR_FUNC; k++)
2100 if (func_table[k])
2101 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2102 }
2103 if (funcbufptr != func_buf)
2104 kfree(funcbufptr);
2105 funcbufptr = fnw;
2106 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2107 funcbufsize = sz;
2108 }
2109 /* finally insert item itself */
2110 strcpy(func_table[i], kbs->kb_string);
2111 spin_unlock_irqrestore(&func_buf_lock, flags);
2112 break;
2113 }
2114 ret = 0;
2115reterr:
2116 kfree(kbs);
2117 return ret;
2118}
2119
2120int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2121{
2122 struct kbd_struct *kb = kbd_table + console;
2123 unsigned long flags;
2124 unsigned char ucval;
2125
2126 switch(cmd) {
2127 /* the ioctls below read/set the flags usually shown in the leds */
2128 /* don't use them - they will go away without warning */
2129 case KDGKBLED:
2130 spin_lock_irqsave(&kbd_event_lock, flags);
2131 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2132 spin_unlock_irqrestore(&kbd_event_lock, flags);
2133 return put_user(ucval, (char __user *)arg);
2134
2135 case KDSKBLED:
2136 if (!perm)
2137 return -EPERM;
2138 if (arg & ~0x77)
2139 return -EINVAL;
2140 spin_lock_irqsave(&led_lock, flags);
2141 kb->ledflagstate = (arg & 7);
2142 kb->default_ledflagstate = ((arg >> 4) & 7);
2143 set_leds();
2144 spin_unlock_irqrestore(&led_lock, flags);
2145 return 0;
2146
2147 /* the ioctls below only set the lights, not the functions */
2148 /* for those, see KDGKBLED and KDSKBLED above */
2149 case KDGETLED:
2150 ucval = getledstate();
2151 return put_user(ucval, (char __user *)arg);
2152
2153 case KDSETLED:
2154 if (!perm)
2155 return -EPERM;
2156 setledstate(kb, arg);
2157 return 0;
2158 }
2159 return -ENOIOCTLCMD;
2160}
2161
2162int vt_do_kdgkbmode(int console)
2163{
2164 struct kbd_struct *kb = kbd_table + console;
2165 /* This is a spot read so needs no locking */
2166 switch (kb->kbdmode) {
2167 case VC_RAW:
2168 return K_RAW;
2169 case VC_MEDIUMRAW:
2170 return K_MEDIUMRAW;
2171 case VC_UNICODE:
2172 return K_UNICODE;
2173 case VC_OFF:
2174 return K_OFF;
2175 default:
2176 return K_XLATE;
2177 }
2178}
2179
2180/**
2181 * vt_do_kdgkbmeta - report meta status
2182 * @console: console to report
2183 *
2184 * Report the meta flag status of this console
2185 */
2186int vt_do_kdgkbmeta(int console)
2187{
2188 struct kbd_struct *kb = kbd_table + console;
2189 /* Again a spot read so no locking */
2190 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2191}
2192
2193/**
2194 * vt_reset_unicode - reset the unicode status
2195 * @console: console being reset
2196 *
2197 * Restore the unicode console state to its default
2198 */
2199void vt_reset_unicode(int console)
2200{
2201 unsigned long flags;
2202
2203 spin_lock_irqsave(&kbd_event_lock, flags);
2204 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2205 spin_unlock_irqrestore(&kbd_event_lock, flags);
2206}
2207
2208/**
2209 * vt_get_shiftstate - shift bit state
2210 *
2211 * Report the shift bits from the keyboard state. We have to export
2212 * this to support some oddities in the vt layer.
2213 */
2214int vt_get_shift_state(void)
2215{
2216 /* Don't lock as this is a transient report */
2217 return shift_state;
2218}
2219
2220/**
2221 * vt_reset_keyboard - reset keyboard state
2222 * @console: console to reset
2223 *
2224 * Reset the keyboard bits for a console as part of a general console
2225 * reset event
2226 */
2227void vt_reset_keyboard(int console)
2228{
2229 struct kbd_struct *kb = kbd_table + console;
2230 unsigned long flags;
2231
2232 spin_lock_irqsave(&kbd_event_lock, flags);
2233 set_vc_kbd_mode(kb, VC_REPEAT);
2234 clr_vc_kbd_mode(kb, VC_CKMODE);
2235 clr_vc_kbd_mode(kb, VC_APPLIC);
2236 clr_vc_kbd_mode(kb, VC_CRLF);
2237 kb->lockstate = 0;
2238 kb->slockstate = 0;
2239 spin_lock(&led_lock);
2240 kb->ledmode = LED_SHOW_FLAGS;
2241 kb->ledflagstate = kb->default_ledflagstate;
2242 spin_unlock(&led_lock);
2243 /* do not do set_leds here because this causes an endless tasklet loop
2244 when the keyboard hasn't been initialized yet */
2245 spin_unlock_irqrestore(&kbd_event_lock, flags);
2246}
2247
2248/**
2249 * vt_get_kbd_mode_bit - read keyboard status bits
2250 * @console: console to read from
2251 * @bit: mode bit to read
2252 *
2253 * Report back a vt mode bit. We do this without locking so the
2254 * caller must be sure that there are no synchronization needs
2255 */
2256
2257int vt_get_kbd_mode_bit(int console, int bit)
2258{
2259 struct kbd_struct *kb = kbd_table + console;
2260 return vc_kbd_mode(kb, bit);
2261}
2262
2263/**
2264 * vt_set_kbd_mode_bit - read keyboard status bits
2265 * @console: console to read from
2266 * @bit: mode bit to read
2267 *
2268 * Set a vt mode bit. We do this without locking so the
2269 * caller must be sure that there are no synchronization needs
2270 */
2271
2272void vt_set_kbd_mode_bit(int console, int bit)
2273{
2274 struct kbd_struct *kb = kbd_table + console;
2275 unsigned long flags;
2276
2277 spin_lock_irqsave(&kbd_event_lock, flags);
2278 set_vc_kbd_mode(kb, bit);
2279 spin_unlock_irqrestore(&kbd_event_lock, flags);
2280}
2281
2282/**
2283 * vt_clr_kbd_mode_bit - read keyboard status bits
2284 * @console: console to read from
2285 * @bit: mode bit to read
2286 *
2287 * Report back a vt mode bit. We do this without locking so the
2288 * caller must be sure that there are no synchronization needs
2289 */
2290
2291void vt_clr_kbd_mode_bit(int console, int bit)
2292{
2293 struct kbd_struct *kb = kbd_table + console;
2294 unsigned long flags;
2295
2296 spin_lock_irqsave(&kbd_event_lock, flags);
2297 clr_vc_kbd_mode(kb, bit);
2298 spin_unlock_irqrestore(&kbd_event_lock, flags);
2299}
1/*
2 * Written for linux by Johan Myreen as a translation from
3 * the assembly version by Linus (with diacriticals added)
4 *
5 * Some additional features added by Christoph Niemann (ChN), March 1993
6 *
7 * Loadable keymaps by Risto Kankkunen, May 1993
8 *
9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10 * Added decr/incr_console, dynamic keymaps, Unicode support,
11 * dynamic function/string keys, led setting, Sept 1994
12 * `Sticky' modifier keys, 951006.
13 *
14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
15 *
16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
17 * Merge with the m68k keyboard driver and split-off of the PC low-level
18 * parts by Geert Uytterhoeven, May 1997
19 *
20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23 */
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/consolemap.h>
28#include <linux/module.h>
29#include <linux/sched.h>
30#include <linux/tty.h>
31#include <linux/tty_flip.h>
32#include <linux/mm.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/slab.h>
36#include <linux/leds.h>
37
38#include <linux/kbd_kern.h>
39#include <linux/kbd_diacr.h>
40#include <linux/vt_kern.h>
41#include <linux/input.h>
42#include <linux/reboot.h>
43#include <linux/notifier.h>
44#include <linux/jiffies.h>
45#include <linux/uaccess.h>
46
47#include <asm/irq_regs.h>
48
49extern void ctrl_alt_del(void);
50
51/*
52 * Exported functions/variables
53 */
54
55#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
56
57#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
58#include <asm/kbdleds.h>
59#else
60static inline int kbd_defleds(void)
61{
62 return 0;
63}
64#endif
65
66#define KBD_DEFLOCK 0
67
68/*
69 * Handler Tables.
70 */
71
72#define K_HANDLERS\
73 k_self, k_fn, k_spec, k_pad,\
74 k_dead, k_cons, k_cur, k_shift,\
75 k_meta, k_ascii, k_lock, k_lowercase,\
76 k_slock, k_dead2, k_brl, k_ignore
77
78typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
79 char up_flag);
80static k_handler_fn K_HANDLERS;
81static k_handler_fn *k_handler[16] = { K_HANDLERS };
82
83#define FN_HANDLERS\
84 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
85 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
86 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
87 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
88 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
89
90typedef void (fn_handler_fn)(struct vc_data *vc);
91static fn_handler_fn FN_HANDLERS;
92static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
93
94/*
95 * Variables exported for vt_ioctl.c
96 */
97
98struct vt_spawn_console vt_spawn_con = {
99 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
100 .pid = NULL,
101 .sig = 0,
102};
103
104
105/*
106 * Internal Data.
107 */
108
109static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
110static struct kbd_struct *kbd = kbd_table;
111
112/* maximum values each key_handler can handle */
113static const int max_vals[] = {
114 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
115 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
116 255, NR_LOCK - 1, 255, NR_BRL - 1
117};
118
119static const int NR_TYPES = ARRAY_SIZE(max_vals);
120
121static struct input_handler kbd_handler;
122static DEFINE_SPINLOCK(kbd_event_lock);
123static DEFINE_SPINLOCK(led_lock);
124static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
125static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
126static bool dead_key_next;
127static int npadch = -1; /* -1 or number assembled on pad */
128static unsigned int diacr;
129static char rep; /* flag telling character repeat */
130
131static int shift_state = 0;
132
133static unsigned int ledstate = -1U; /* undefined */
134static unsigned char ledioctl;
135
136/*
137 * Notifier list for console keyboard events
138 */
139static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
140
141int register_keyboard_notifier(struct notifier_block *nb)
142{
143 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
144}
145EXPORT_SYMBOL_GPL(register_keyboard_notifier);
146
147int unregister_keyboard_notifier(struct notifier_block *nb)
148{
149 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
150}
151EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
152
153/*
154 * Translation of scancodes to keycodes. We set them on only the first
155 * keyboard in the list that accepts the scancode and keycode.
156 * Explanation for not choosing the first attached keyboard anymore:
157 * USB keyboards for example have two event devices: one for all "normal"
158 * keys and one for extra function keys (like "volume up", "make coffee",
159 * etc.). So this means that scancodes for the extra function keys won't
160 * be valid for the first event device, but will be for the second.
161 */
162
163struct getset_keycode_data {
164 struct input_keymap_entry ke;
165 int error;
166};
167
168static int getkeycode_helper(struct input_handle *handle, void *data)
169{
170 struct getset_keycode_data *d = data;
171
172 d->error = input_get_keycode(handle->dev, &d->ke);
173
174 return d->error == 0; /* stop as soon as we successfully get one */
175}
176
177static int getkeycode(unsigned int scancode)
178{
179 struct getset_keycode_data d = {
180 .ke = {
181 .flags = 0,
182 .len = sizeof(scancode),
183 .keycode = 0,
184 },
185 .error = -ENODEV,
186 };
187
188 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
189
190 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
191
192 return d.error ?: d.ke.keycode;
193}
194
195static int setkeycode_helper(struct input_handle *handle, void *data)
196{
197 struct getset_keycode_data *d = data;
198
199 d->error = input_set_keycode(handle->dev, &d->ke);
200
201 return d->error == 0; /* stop as soon as we successfully set one */
202}
203
204static int setkeycode(unsigned int scancode, unsigned int keycode)
205{
206 struct getset_keycode_data d = {
207 .ke = {
208 .flags = 0,
209 .len = sizeof(scancode),
210 .keycode = keycode,
211 },
212 .error = -ENODEV,
213 };
214
215 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
216
217 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
218
219 return d.error;
220}
221
222/*
223 * Making beeps and bells. Note that we prefer beeps to bells, but when
224 * shutting the sound off we do both.
225 */
226
227static int kd_sound_helper(struct input_handle *handle, void *data)
228{
229 unsigned int *hz = data;
230 struct input_dev *dev = handle->dev;
231
232 if (test_bit(EV_SND, dev->evbit)) {
233 if (test_bit(SND_TONE, dev->sndbit)) {
234 input_inject_event(handle, EV_SND, SND_TONE, *hz);
235 if (*hz)
236 return 0;
237 }
238 if (test_bit(SND_BELL, dev->sndbit))
239 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
240 }
241
242 return 0;
243}
244
245static void kd_nosound(unsigned long ignored)
246{
247 static unsigned int zero;
248
249 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
250}
251
252static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
253
254void kd_mksound(unsigned int hz, unsigned int ticks)
255{
256 del_timer_sync(&kd_mksound_timer);
257
258 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
259
260 if (hz && ticks)
261 mod_timer(&kd_mksound_timer, jiffies + ticks);
262}
263EXPORT_SYMBOL(kd_mksound);
264
265/*
266 * Setting the keyboard rate.
267 */
268
269static int kbd_rate_helper(struct input_handle *handle, void *data)
270{
271 struct input_dev *dev = handle->dev;
272 struct kbd_repeat *rpt = data;
273
274 if (test_bit(EV_REP, dev->evbit)) {
275
276 if (rpt[0].delay > 0)
277 input_inject_event(handle,
278 EV_REP, REP_DELAY, rpt[0].delay);
279 if (rpt[0].period > 0)
280 input_inject_event(handle,
281 EV_REP, REP_PERIOD, rpt[0].period);
282
283 rpt[1].delay = dev->rep[REP_DELAY];
284 rpt[1].period = dev->rep[REP_PERIOD];
285 }
286
287 return 0;
288}
289
290int kbd_rate(struct kbd_repeat *rpt)
291{
292 struct kbd_repeat data[2] = { *rpt };
293
294 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
295 *rpt = data[1]; /* Copy currently used settings */
296
297 return 0;
298}
299
300/*
301 * Helper Functions.
302 */
303static void put_queue(struct vc_data *vc, int ch)
304{
305 tty_insert_flip_char(&vc->port, ch, 0);
306 tty_schedule_flip(&vc->port);
307}
308
309static void puts_queue(struct vc_data *vc, char *cp)
310{
311 while (*cp) {
312 tty_insert_flip_char(&vc->port, *cp, 0);
313 cp++;
314 }
315 tty_schedule_flip(&vc->port);
316}
317
318static void applkey(struct vc_data *vc, int key, char mode)
319{
320 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
321
322 buf[1] = (mode ? 'O' : '[');
323 buf[2] = key;
324 puts_queue(vc, buf);
325}
326
327/*
328 * Many other routines do put_queue, but I think either
329 * they produce ASCII, or they produce some user-assigned
330 * string, and in both cases we might assume that it is
331 * in utf-8 already.
332 */
333static void to_utf8(struct vc_data *vc, uint c)
334{
335 if (c < 0x80)
336 /* 0******* */
337 put_queue(vc, c);
338 else if (c < 0x800) {
339 /* 110***** 10****** */
340 put_queue(vc, 0xc0 | (c >> 6));
341 put_queue(vc, 0x80 | (c & 0x3f));
342 } else if (c < 0x10000) {
343 if (c >= 0xD800 && c < 0xE000)
344 return;
345 if (c == 0xFFFF)
346 return;
347 /* 1110**** 10****** 10****** */
348 put_queue(vc, 0xe0 | (c >> 12));
349 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
350 put_queue(vc, 0x80 | (c & 0x3f));
351 } else if (c < 0x110000) {
352 /* 11110*** 10****** 10****** 10****** */
353 put_queue(vc, 0xf0 | (c >> 18));
354 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
355 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
356 put_queue(vc, 0x80 | (c & 0x3f));
357 }
358}
359
360/*
361 * Called after returning from RAW mode or when changing consoles - recompute
362 * shift_down[] and shift_state from key_down[] maybe called when keymap is
363 * undefined, so that shiftkey release is seen. The caller must hold the
364 * kbd_event_lock.
365 */
366
367static void do_compute_shiftstate(void)
368{
369 unsigned int i, j, k, sym, val;
370
371 shift_state = 0;
372 memset(shift_down, 0, sizeof(shift_down));
373
374 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
375
376 if (!key_down[i])
377 continue;
378
379 k = i * BITS_PER_LONG;
380
381 for (j = 0; j < BITS_PER_LONG; j++, k++) {
382
383 if (!test_bit(k, key_down))
384 continue;
385
386 sym = U(key_maps[0][k]);
387 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
388 continue;
389
390 val = KVAL(sym);
391 if (val == KVAL(K_CAPSSHIFT))
392 val = KVAL(K_SHIFT);
393
394 shift_down[val]++;
395 shift_state |= (1 << val);
396 }
397 }
398}
399
400/* We still have to export this method to vt.c */
401void compute_shiftstate(void)
402{
403 unsigned long flags;
404 spin_lock_irqsave(&kbd_event_lock, flags);
405 do_compute_shiftstate();
406 spin_unlock_irqrestore(&kbd_event_lock, flags);
407}
408
409/*
410 * We have a combining character DIACR here, followed by the character CH.
411 * If the combination occurs in the table, return the corresponding value.
412 * Otherwise, if CH is a space or equals DIACR, return DIACR.
413 * Otherwise, conclude that DIACR was not combining after all,
414 * queue it and return CH.
415 */
416static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
417{
418 unsigned int d = diacr;
419 unsigned int i;
420
421 diacr = 0;
422
423 if ((d & ~0xff) == BRL_UC_ROW) {
424 if ((ch & ~0xff) == BRL_UC_ROW)
425 return d | ch;
426 } else {
427 for (i = 0; i < accent_table_size; i++)
428 if (accent_table[i].diacr == d && accent_table[i].base == ch)
429 return accent_table[i].result;
430 }
431
432 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
433 return d;
434
435 if (kbd->kbdmode == VC_UNICODE)
436 to_utf8(vc, d);
437 else {
438 int c = conv_uni_to_8bit(d);
439 if (c != -1)
440 put_queue(vc, c);
441 }
442
443 return ch;
444}
445
446/*
447 * Special function handlers
448 */
449static void fn_enter(struct vc_data *vc)
450{
451 if (diacr) {
452 if (kbd->kbdmode == VC_UNICODE)
453 to_utf8(vc, diacr);
454 else {
455 int c = conv_uni_to_8bit(diacr);
456 if (c != -1)
457 put_queue(vc, c);
458 }
459 diacr = 0;
460 }
461
462 put_queue(vc, 13);
463 if (vc_kbd_mode(kbd, VC_CRLF))
464 put_queue(vc, 10);
465}
466
467static void fn_caps_toggle(struct vc_data *vc)
468{
469 if (rep)
470 return;
471
472 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
473}
474
475static void fn_caps_on(struct vc_data *vc)
476{
477 if (rep)
478 return;
479
480 set_vc_kbd_led(kbd, VC_CAPSLOCK);
481}
482
483static void fn_show_ptregs(struct vc_data *vc)
484{
485 struct pt_regs *regs = get_irq_regs();
486
487 if (regs)
488 show_regs(regs);
489}
490
491static void fn_hold(struct vc_data *vc)
492{
493 struct tty_struct *tty = vc->port.tty;
494
495 if (rep || !tty)
496 return;
497
498 /*
499 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
500 * these routines are also activated by ^S/^Q.
501 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
502 */
503 if (tty->stopped)
504 start_tty(tty);
505 else
506 stop_tty(tty);
507}
508
509static void fn_num(struct vc_data *vc)
510{
511 if (vc_kbd_mode(kbd, VC_APPLIC))
512 applkey(vc, 'P', 1);
513 else
514 fn_bare_num(vc);
515}
516
517/*
518 * Bind this to Shift-NumLock if you work in application keypad mode
519 * but want to be able to change the NumLock flag.
520 * Bind this to NumLock if you prefer that the NumLock key always
521 * changes the NumLock flag.
522 */
523static void fn_bare_num(struct vc_data *vc)
524{
525 if (!rep)
526 chg_vc_kbd_led(kbd, VC_NUMLOCK);
527}
528
529static void fn_lastcons(struct vc_data *vc)
530{
531 /* switch to the last used console, ChN */
532 set_console(last_console);
533}
534
535static void fn_dec_console(struct vc_data *vc)
536{
537 int i, cur = fg_console;
538
539 /* Currently switching? Queue this next switch relative to that. */
540 if (want_console != -1)
541 cur = want_console;
542
543 for (i = cur - 1; i != cur; i--) {
544 if (i == -1)
545 i = MAX_NR_CONSOLES - 1;
546 if (vc_cons_allocated(i))
547 break;
548 }
549 set_console(i);
550}
551
552static void fn_inc_console(struct vc_data *vc)
553{
554 int i, cur = fg_console;
555
556 /* Currently switching? Queue this next switch relative to that. */
557 if (want_console != -1)
558 cur = want_console;
559
560 for (i = cur+1; i != cur; i++) {
561 if (i == MAX_NR_CONSOLES)
562 i = 0;
563 if (vc_cons_allocated(i))
564 break;
565 }
566 set_console(i);
567}
568
569static void fn_send_intr(struct vc_data *vc)
570{
571 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
572 tty_schedule_flip(&vc->port);
573}
574
575static void fn_scroll_forw(struct vc_data *vc)
576{
577 scrollfront(vc, 0);
578}
579
580static void fn_scroll_back(struct vc_data *vc)
581{
582 scrollback(vc, 0);
583}
584
585static void fn_show_mem(struct vc_data *vc)
586{
587 show_mem(0);
588}
589
590static void fn_show_state(struct vc_data *vc)
591{
592 show_state();
593}
594
595static void fn_boot_it(struct vc_data *vc)
596{
597 ctrl_alt_del();
598}
599
600static void fn_compose(struct vc_data *vc)
601{
602 dead_key_next = true;
603}
604
605static void fn_spawn_con(struct vc_data *vc)
606{
607 spin_lock(&vt_spawn_con.lock);
608 if (vt_spawn_con.pid)
609 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
610 put_pid(vt_spawn_con.pid);
611 vt_spawn_con.pid = NULL;
612 }
613 spin_unlock(&vt_spawn_con.lock);
614}
615
616static void fn_SAK(struct vc_data *vc)
617{
618 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
619 schedule_work(SAK_work);
620}
621
622static void fn_null(struct vc_data *vc)
623{
624 do_compute_shiftstate();
625}
626
627/*
628 * Special key handlers
629 */
630static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
631{
632}
633
634static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
635{
636 if (up_flag)
637 return;
638 if (value >= ARRAY_SIZE(fn_handler))
639 return;
640 if ((kbd->kbdmode == VC_RAW ||
641 kbd->kbdmode == VC_MEDIUMRAW ||
642 kbd->kbdmode == VC_OFF) &&
643 value != KVAL(K_SAK))
644 return; /* SAK is allowed even in raw mode */
645 fn_handler[value](vc);
646}
647
648static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
649{
650 pr_err("k_lowercase was called - impossible\n");
651}
652
653static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
654{
655 if (up_flag)
656 return; /* no action, if this is a key release */
657
658 if (diacr)
659 value = handle_diacr(vc, value);
660
661 if (dead_key_next) {
662 dead_key_next = false;
663 diacr = value;
664 return;
665 }
666 if (kbd->kbdmode == VC_UNICODE)
667 to_utf8(vc, value);
668 else {
669 int c = conv_uni_to_8bit(value);
670 if (c != -1)
671 put_queue(vc, c);
672 }
673}
674
675/*
676 * Handle dead key. Note that we now may have several
677 * dead keys modifying the same character. Very useful
678 * for Vietnamese.
679 */
680static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
681{
682 if (up_flag)
683 return;
684
685 diacr = (diacr ? handle_diacr(vc, value) : value);
686}
687
688static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
689{
690 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
691}
692
693static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
694{
695 k_deadunicode(vc, value, up_flag);
696}
697
698/*
699 * Obsolete - for backwards compatibility only
700 */
701static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
702{
703 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
704
705 k_deadunicode(vc, ret_diacr[value], up_flag);
706}
707
708static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
709{
710 if (up_flag)
711 return;
712
713 set_console(value);
714}
715
716static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
717{
718 if (up_flag)
719 return;
720
721 if ((unsigned)value < ARRAY_SIZE(func_table)) {
722 if (func_table[value])
723 puts_queue(vc, func_table[value]);
724 } else
725 pr_err("k_fn called with value=%d\n", value);
726}
727
728static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
729{
730 static const char cur_chars[] = "BDCA";
731
732 if (up_flag)
733 return;
734
735 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
736}
737
738static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
739{
740 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
741 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
742
743 if (up_flag)
744 return; /* no action, if this is a key release */
745
746 /* kludge... shift forces cursor/number keys */
747 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
748 applkey(vc, app_map[value], 1);
749 return;
750 }
751
752 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
753
754 switch (value) {
755 case KVAL(K_PCOMMA):
756 case KVAL(K_PDOT):
757 k_fn(vc, KVAL(K_REMOVE), 0);
758 return;
759 case KVAL(K_P0):
760 k_fn(vc, KVAL(K_INSERT), 0);
761 return;
762 case KVAL(K_P1):
763 k_fn(vc, KVAL(K_SELECT), 0);
764 return;
765 case KVAL(K_P2):
766 k_cur(vc, KVAL(K_DOWN), 0);
767 return;
768 case KVAL(K_P3):
769 k_fn(vc, KVAL(K_PGDN), 0);
770 return;
771 case KVAL(K_P4):
772 k_cur(vc, KVAL(K_LEFT), 0);
773 return;
774 case KVAL(K_P6):
775 k_cur(vc, KVAL(K_RIGHT), 0);
776 return;
777 case KVAL(K_P7):
778 k_fn(vc, KVAL(K_FIND), 0);
779 return;
780 case KVAL(K_P8):
781 k_cur(vc, KVAL(K_UP), 0);
782 return;
783 case KVAL(K_P9):
784 k_fn(vc, KVAL(K_PGUP), 0);
785 return;
786 case KVAL(K_P5):
787 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
788 return;
789 }
790 }
791
792 put_queue(vc, pad_chars[value]);
793 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
794 put_queue(vc, 10);
795}
796
797static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
798{
799 int old_state = shift_state;
800
801 if (rep)
802 return;
803 /*
804 * Mimic typewriter:
805 * a CapsShift key acts like Shift but undoes CapsLock
806 */
807 if (value == KVAL(K_CAPSSHIFT)) {
808 value = KVAL(K_SHIFT);
809 if (!up_flag)
810 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
811 }
812
813 if (up_flag) {
814 /*
815 * handle the case that two shift or control
816 * keys are depressed simultaneously
817 */
818 if (shift_down[value])
819 shift_down[value]--;
820 } else
821 shift_down[value]++;
822
823 if (shift_down[value])
824 shift_state |= (1 << value);
825 else
826 shift_state &= ~(1 << value);
827
828 /* kludge */
829 if (up_flag && shift_state != old_state && npadch != -1) {
830 if (kbd->kbdmode == VC_UNICODE)
831 to_utf8(vc, npadch);
832 else
833 put_queue(vc, npadch & 0xff);
834 npadch = -1;
835 }
836}
837
838static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
839{
840 if (up_flag)
841 return;
842
843 if (vc_kbd_mode(kbd, VC_META)) {
844 put_queue(vc, '\033');
845 put_queue(vc, value);
846 } else
847 put_queue(vc, value | 0x80);
848}
849
850static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
851{
852 int base;
853
854 if (up_flag)
855 return;
856
857 if (value < 10) {
858 /* decimal input of code, while Alt depressed */
859 base = 10;
860 } else {
861 /* hexadecimal input of code, while AltGr depressed */
862 value -= 10;
863 base = 16;
864 }
865
866 if (npadch == -1)
867 npadch = value;
868 else
869 npadch = npadch * base + value;
870}
871
872static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
873{
874 if (up_flag || rep)
875 return;
876
877 chg_vc_kbd_lock(kbd, value);
878}
879
880static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
881{
882 k_shift(vc, value, up_flag);
883 if (up_flag || rep)
884 return;
885
886 chg_vc_kbd_slock(kbd, value);
887 /* try to make Alt, oops, AltGr and such work */
888 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
889 kbd->slockstate = 0;
890 chg_vc_kbd_slock(kbd, value);
891 }
892}
893
894/* by default, 300ms interval for combination release */
895static unsigned brl_timeout = 300;
896MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
897module_param(brl_timeout, uint, 0644);
898
899static unsigned brl_nbchords = 1;
900MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
901module_param(brl_nbchords, uint, 0644);
902
903static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
904{
905 static unsigned long chords;
906 static unsigned committed;
907
908 if (!brl_nbchords)
909 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
910 else {
911 committed |= pattern;
912 chords++;
913 if (chords == brl_nbchords) {
914 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
915 chords = 0;
916 committed = 0;
917 }
918 }
919}
920
921static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
922{
923 static unsigned pressed, committing;
924 static unsigned long releasestart;
925
926 if (kbd->kbdmode != VC_UNICODE) {
927 if (!up_flag)
928 pr_warn("keyboard mode must be unicode for braille patterns\n");
929 return;
930 }
931
932 if (!value) {
933 k_unicode(vc, BRL_UC_ROW, up_flag);
934 return;
935 }
936
937 if (value > 8)
938 return;
939
940 if (!up_flag) {
941 pressed |= 1 << (value - 1);
942 if (!brl_timeout)
943 committing = pressed;
944 } else if (brl_timeout) {
945 if (!committing ||
946 time_after(jiffies,
947 releasestart + msecs_to_jiffies(brl_timeout))) {
948 committing = pressed;
949 releasestart = jiffies;
950 }
951 pressed &= ~(1 << (value - 1));
952 if (!pressed && committing) {
953 k_brlcommit(vc, committing, 0);
954 committing = 0;
955 }
956 } else {
957 if (committing) {
958 k_brlcommit(vc, committing, 0);
959 committing = 0;
960 }
961 pressed &= ~(1 << (value - 1));
962 }
963}
964
965#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
966
967struct kbd_led_trigger {
968 struct led_trigger trigger;
969 unsigned int mask;
970};
971
972static void kbd_led_trigger_activate(struct led_classdev *cdev)
973{
974 struct kbd_led_trigger *trigger =
975 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
976
977 tasklet_disable(&keyboard_tasklet);
978 if (ledstate != -1U)
979 led_trigger_event(&trigger->trigger,
980 ledstate & trigger->mask ?
981 LED_FULL : LED_OFF);
982 tasklet_enable(&keyboard_tasklet);
983}
984
985#define KBD_LED_TRIGGER(_led_bit, _name) { \
986 .trigger = { \
987 .name = _name, \
988 .activate = kbd_led_trigger_activate, \
989 }, \
990 .mask = BIT(_led_bit), \
991 }
992
993#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
994 KBD_LED_TRIGGER((_led_bit) + 8, _name)
995
996static struct kbd_led_trigger kbd_led_triggers[] = {
997 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrollock"),
998 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
999 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1000 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1001
1002 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1003 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1004 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1005 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1006 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1007 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1008 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1009 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1010};
1011
1012static void kbd_propagate_led_state(unsigned int old_state,
1013 unsigned int new_state)
1014{
1015 struct kbd_led_trigger *trigger;
1016 unsigned int changed = old_state ^ new_state;
1017 int i;
1018
1019 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1020 trigger = &kbd_led_triggers[i];
1021
1022 if (changed & trigger->mask)
1023 led_trigger_event(&trigger->trigger,
1024 new_state & trigger->mask ?
1025 LED_FULL : LED_OFF);
1026 }
1027}
1028
1029static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1030{
1031 unsigned int led_state = *(unsigned int *)data;
1032
1033 if (test_bit(EV_LED, handle->dev->evbit))
1034 kbd_propagate_led_state(~led_state, led_state);
1035
1036 return 0;
1037}
1038
1039static void kbd_init_leds(void)
1040{
1041 int error;
1042 int i;
1043
1044 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1045 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1046 if (error)
1047 pr_err("error %d while registering trigger %s\n",
1048 error, kbd_led_triggers[i].trigger.name);
1049 }
1050}
1051
1052#else
1053
1054static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1055{
1056 unsigned int leds = *(unsigned int *)data;
1057
1058 if (test_bit(EV_LED, handle->dev->evbit)) {
1059 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1060 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1061 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1062 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1063 }
1064
1065 return 0;
1066}
1067
1068static void kbd_propagate_led_state(unsigned int old_state,
1069 unsigned int new_state)
1070{
1071 input_handler_for_each_handle(&kbd_handler, &new_state,
1072 kbd_update_leds_helper);
1073}
1074
1075static void kbd_init_leds(void)
1076{
1077}
1078
1079#endif
1080
1081/*
1082 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1083 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1084 * or (iii) specified bits of specified words in kernel memory.
1085 */
1086static unsigned char getledstate(void)
1087{
1088 return ledstate & 0xff;
1089}
1090
1091void setledstate(struct kbd_struct *kb, unsigned int led)
1092{
1093 unsigned long flags;
1094 spin_lock_irqsave(&led_lock, flags);
1095 if (!(led & ~7)) {
1096 ledioctl = led;
1097 kb->ledmode = LED_SHOW_IOCTL;
1098 } else
1099 kb->ledmode = LED_SHOW_FLAGS;
1100
1101 set_leds();
1102 spin_unlock_irqrestore(&led_lock, flags);
1103}
1104
1105static inline unsigned char getleds(void)
1106{
1107 struct kbd_struct *kb = kbd_table + fg_console;
1108
1109 if (kb->ledmode == LED_SHOW_IOCTL)
1110 return ledioctl;
1111
1112 return kb->ledflagstate;
1113}
1114
1115/**
1116 * vt_get_leds - helper for braille console
1117 * @console: console to read
1118 * @flag: flag we want to check
1119 *
1120 * Check the status of a keyboard led flag and report it back
1121 */
1122int vt_get_leds(int console, int flag)
1123{
1124 struct kbd_struct *kb = kbd_table + console;
1125 int ret;
1126 unsigned long flags;
1127
1128 spin_lock_irqsave(&led_lock, flags);
1129 ret = vc_kbd_led(kb, flag);
1130 spin_unlock_irqrestore(&led_lock, flags);
1131
1132 return ret;
1133}
1134EXPORT_SYMBOL_GPL(vt_get_leds);
1135
1136/**
1137 * vt_set_led_state - set LED state of a console
1138 * @console: console to set
1139 * @leds: LED bits
1140 *
1141 * Set the LEDs on a console. This is a wrapper for the VT layer
1142 * so that we can keep kbd knowledge internal
1143 */
1144void vt_set_led_state(int console, int leds)
1145{
1146 struct kbd_struct *kb = kbd_table + console;
1147 setledstate(kb, leds);
1148}
1149
1150/**
1151 * vt_kbd_con_start - Keyboard side of console start
1152 * @console: console
1153 *
1154 * Handle console start. This is a wrapper for the VT layer
1155 * so that we can keep kbd knowledge internal
1156 *
1157 * FIXME: We eventually need to hold the kbd lock here to protect
1158 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1159 * and start_tty under the kbd_event_lock, while normal tty paths
1160 * don't hold the lock. We probably need to split out an LED lock
1161 * but not during an -rc release!
1162 */
1163void vt_kbd_con_start(int console)
1164{
1165 struct kbd_struct *kb = kbd_table + console;
1166 unsigned long flags;
1167 spin_lock_irqsave(&led_lock, flags);
1168 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1169 set_leds();
1170 spin_unlock_irqrestore(&led_lock, flags);
1171}
1172
1173/**
1174 * vt_kbd_con_stop - Keyboard side of console stop
1175 * @console: console
1176 *
1177 * Handle console stop. This is a wrapper for the VT layer
1178 * so that we can keep kbd knowledge internal
1179 */
1180void vt_kbd_con_stop(int console)
1181{
1182 struct kbd_struct *kb = kbd_table + console;
1183 unsigned long flags;
1184 spin_lock_irqsave(&led_lock, flags);
1185 set_vc_kbd_led(kb, VC_SCROLLOCK);
1186 set_leds();
1187 spin_unlock_irqrestore(&led_lock, flags);
1188}
1189
1190/*
1191 * This is the tasklet that updates LED state of LEDs using standard
1192 * keyboard triggers. The reason we use tasklet is that we need to
1193 * handle the scenario when keyboard handler is not registered yet
1194 * but we already getting updates from the VT to update led state.
1195 */
1196static void kbd_bh(unsigned long dummy)
1197{
1198 unsigned int leds;
1199 unsigned long flags;
1200
1201 spin_lock_irqsave(&led_lock, flags);
1202 leds = getleds();
1203 leds |= (unsigned int)kbd->lockstate << 8;
1204 spin_unlock_irqrestore(&led_lock, flags);
1205
1206 if (leds != ledstate) {
1207 kbd_propagate_led_state(ledstate, leds);
1208 ledstate = leds;
1209 }
1210}
1211
1212DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1213
1214#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1215 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1216 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1217 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1218 defined(CONFIG_AVR32)
1219
1220#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1221 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1222
1223static const unsigned short x86_keycodes[256] =
1224 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1225 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1226 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1227 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1228 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1229 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1230 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1231 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1232 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1233 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1234 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1235 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1236 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1237 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1238 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1239
1240#ifdef CONFIG_SPARC
1241static int sparc_l1_a_state;
1242extern void sun_do_break(void);
1243#endif
1244
1245static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1246 unsigned char up_flag)
1247{
1248 int code;
1249
1250 switch (keycode) {
1251
1252 case KEY_PAUSE:
1253 put_queue(vc, 0xe1);
1254 put_queue(vc, 0x1d | up_flag);
1255 put_queue(vc, 0x45 | up_flag);
1256 break;
1257
1258 case KEY_HANGEUL:
1259 if (!up_flag)
1260 put_queue(vc, 0xf2);
1261 break;
1262
1263 case KEY_HANJA:
1264 if (!up_flag)
1265 put_queue(vc, 0xf1);
1266 break;
1267
1268 case KEY_SYSRQ:
1269 /*
1270 * Real AT keyboards (that's what we're trying
1271 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1272 * pressing PrtSc/SysRq alone, but simply 0x54
1273 * when pressing Alt+PrtSc/SysRq.
1274 */
1275 if (test_bit(KEY_LEFTALT, key_down) ||
1276 test_bit(KEY_RIGHTALT, key_down)) {
1277 put_queue(vc, 0x54 | up_flag);
1278 } else {
1279 put_queue(vc, 0xe0);
1280 put_queue(vc, 0x2a | up_flag);
1281 put_queue(vc, 0xe0);
1282 put_queue(vc, 0x37 | up_flag);
1283 }
1284 break;
1285
1286 default:
1287 if (keycode > 255)
1288 return -1;
1289
1290 code = x86_keycodes[keycode];
1291 if (!code)
1292 return -1;
1293
1294 if (code & 0x100)
1295 put_queue(vc, 0xe0);
1296 put_queue(vc, (code & 0x7f) | up_flag);
1297
1298 break;
1299 }
1300
1301 return 0;
1302}
1303
1304#else
1305
1306#define HW_RAW(dev) 0
1307
1308static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1309{
1310 if (keycode > 127)
1311 return -1;
1312
1313 put_queue(vc, keycode | up_flag);
1314 return 0;
1315}
1316#endif
1317
1318static void kbd_rawcode(unsigned char data)
1319{
1320 struct vc_data *vc = vc_cons[fg_console].d;
1321
1322 kbd = kbd_table + vc->vc_num;
1323 if (kbd->kbdmode == VC_RAW)
1324 put_queue(vc, data);
1325}
1326
1327static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1328{
1329 struct vc_data *vc = vc_cons[fg_console].d;
1330 unsigned short keysym, *key_map;
1331 unsigned char type;
1332 bool raw_mode;
1333 struct tty_struct *tty;
1334 int shift_final;
1335 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1336 int rc;
1337
1338 tty = vc->port.tty;
1339
1340 if (tty && (!tty->driver_data)) {
1341 /* No driver data? Strange. Okay we fix it then. */
1342 tty->driver_data = vc;
1343 }
1344
1345 kbd = kbd_table + vc->vc_num;
1346
1347#ifdef CONFIG_SPARC
1348 if (keycode == KEY_STOP)
1349 sparc_l1_a_state = down;
1350#endif
1351
1352 rep = (down == 2);
1353
1354 raw_mode = (kbd->kbdmode == VC_RAW);
1355 if (raw_mode && !hw_raw)
1356 if (emulate_raw(vc, keycode, !down << 7))
1357 if (keycode < BTN_MISC && printk_ratelimit())
1358 pr_warn("can't emulate rawmode for keycode %d\n",
1359 keycode);
1360
1361#ifdef CONFIG_SPARC
1362 if (keycode == KEY_A && sparc_l1_a_state) {
1363 sparc_l1_a_state = false;
1364 sun_do_break();
1365 }
1366#endif
1367
1368 if (kbd->kbdmode == VC_MEDIUMRAW) {
1369 /*
1370 * This is extended medium raw mode, with keys above 127
1371 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1372 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1373 * interfere with anything else. The two bytes after 0 will
1374 * always have the up flag set not to interfere with older
1375 * applications. This allows for 16384 different keycodes,
1376 * which should be enough.
1377 */
1378 if (keycode < 128) {
1379 put_queue(vc, keycode | (!down << 7));
1380 } else {
1381 put_queue(vc, !down << 7);
1382 put_queue(vc, (keycode >> 7) | 0x80);
1383 put_queue(vc, keycode | 0x80);
1384 }
1385 raw_mode = true;
1386 }
1387
1388 if (down)
1389 set_bit(keycode, key_down);
1390 else
1391 clear_bit(keycode, key_down);
1392
1393 if (rep &&
1394 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1395 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1396 /*
1397 * Don't repeat a key if the input buffers are not empty and the
1398 * characters get aren't echoed locally. This makes key repeat
1399 * usable with slow applications and under heavy loads.
1400 */
1401 return;
1402 }
1403
1404 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1405 param.ledstate = kbd->ledflagstate;
1406 key_map = key_maps[shift_final];
1407
1408 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1409 KBD_KEYCODE, ¶m);
1410 if (rc == NOTIFY_STOP || !key_map) {
1411 atomic_notifier_call_chain(&keyboard_notifier_list,
1412 KBD_UNBOUND_KEYCODE, ¶m);
1413 do_compute_shiftstate();
1414 kbd->slockstate = 0;
1415 return;
1416 }
1417
1418 if (keycode < NR_KEYS)
1419 keysym = key_map[keycode];
1420 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1421 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1422 else
1423 return;
1424
1425 type = KTYP(keysym);
1426
1427 if (type < 0xf0) {
1428 param.value = keysym;
1429 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1430 KBD_UNICODE, ¶m);
1431 if (rc != NOTIFY_STOP)
1432 if (down && !raw_mode)
1433 to_utf8(vc, keysym);
1434 return;
1435 }
1436
1437 type -= 0xf0;
1438
1439 if (type == KT_LETTER) {
1440 type = KT_LATIN;
1441 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1442 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1443 if (key_map)
1444 keysym = key_map[keycode];
1445 }
1446 }
1447
1448 param.value = keysym;
1449 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1450 KBD_KEYSYM, ¶m);
1451 if (rc == NOTIFY_STOP)
1452 return;
1453
1454 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1455 return;
1456
1457 (*k_handler[type])(vc, keysym & 0xff, !down);
1458
1459 param.ledstate = kbd->ledflagstate;
1460 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1461
1462 if (type != KT_SLOCK)
1463 kbd->slockstate = 0;
1464}
1465
1466static void kbd_event(struct input_handle *handle, unsigned int event_type,
1467 unsigned int event_code, int value)
1468{
1469 /* We are called with interrupts disabled, just take the lock */
1470 spin_lock(&kbd_event_lock);
1471
1472 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1473 kbd_rawcode(value);
1474 if (event_type == EV_KEY)
1475 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1476
1477 spin_unlock(&kbd_event_lock);
1478
1479 tasklet_schedule(&keyboard_tasklet);
1480 do_poke_blanked_console = 1;
1481 schedule_console_callback();
1482}
1483
1484static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1485{
1486 int i;
1487
1488 if (test_bit(EV_SND, dev->evbit))
1489 return true;
1490
1491 if (test_bit(EV_KEY, dev->evbit)) {
1492 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1493 if (test_bit(i, dev->keybit))
1494 return true;
1495 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1496 if (test_bit(i, dev->keybit))
1497 return true;
1498 }
1499
1500 return false;
1501}
1502
1503/*
1504 * When a keyboard (or other input device) is found, the kbd_connect
1505 * function is called. The function then looks at the device, and if it
1506 * likes it, it can open it and get events from it. In this (kbd_connect)
1507 * function, we should decide which VT to bind that keyboard to initially.
1508 */
1509static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1510 const struct input_device_id *id)
1511{
1512 struct input_handle *handle;
1513 int error;
1514
1515 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1516 if (!handle)
1517 return -ENOMEM;
1518
1519 handle->dev = dev;
1520 handle->handler = handler;
1521 handle->name = "kbd";
1522
1523 error = input_register_handle(handle);
1524 if (error)
1525 goto err_free_handle;
1526
1527 error = input_open_device(handle);
1528 if (error)
1529 goto err_unregister_handle;
1530
1531 return 0;
1532
1533 err_unregister_handle:
1534 input_unregister_handle(handle);
1535 err_free_handle:
1536 kfree(handle);
1537 return error;
1538}
1539
1540static void kbd_disconnect(struct input_handle *handle)
1541{
1542 input_close_device(handle);
1543 input_unregister_handle(handle);
1544 kfree(handle);
1545}
1546
1547/*
1548 * Start keyboard handler on the new keyboard by refreshing LED state to
1549 * match the rest of the system.
1550 */
1551static void kbd_start(struct input_handle *handle)
1552{
1553 tasklet_disable(&keyboard_tasklet);
1554
1555 if (ledstate != -1U)
1556 kbd_update_leds_helper(handle, &ledstate);
1557
1558 tasklet_enable(&keyboard_tasklet);
1559}
1560
1561static const struct input_device_id kbd_ids[] = {
1562 {
1563 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1564 .evbit = { BIT_MASK(EV_KEY) },
1565 },
1566
1567 {
1568 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1569 .evbit = { BIT_MASK(EV_SND) },
1570 },
1571
1572 { }, /* Terminating entry */
1573};
1574
1575MODULE_DEVICE_TABLE(input, kbd_ids);
1576
1577static struct input_handler kbd_handler = {
1578 .event = kbd_event,
1579 .match = kbd_match,
1580 .connect = kbd_connect,
1581 .disconnect = kbd_disconnect,
1582 .start = kbd_start,
1583 .name = "kbd",
1584 .id_table = kbd_ids,
1585};
1586
1587int __init kbd_init(void)
1588{
1589 int i;
1590 int error;
1591
1592 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1593 kbd_table[i].ledflagstate = kbd_defleds();
1594 kbd_table[i].default_ledflagstate = kbd_defleds();
1595 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1596 kbd_table[i].lockstate = KBD_DEFLOCK;
1597 kbd_table[i].slockstate = 0;
1598 kbd_table[i].modeflags = KBD_DEFMODE;
1599 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1600 }
1601
1602 kbd_init_leds();
1603
1604 error = input_register_handler(&kbd_handler);
1605 if (error)
1606 return error;
1607
1608 tasklet_enable(&keyboard_tasklet);
1609 tasklet_schedule(&keyboard_tasklet);
1610
1611 return 0;
1612}
1613
1614/* Ioctl support code */
1615
1616/**
1617 * vt_do_diacrit - diacritical table updates
1618 * @cmd: ioctl request
1619 * @udp: pointer to user data for ioctl
1620 * @perm: permissions check computed by caller
1621 *
1622 * Update the diacritical tables atomically and safely. Lock them
1623 * against simultaneous keypresses
1624 */
1625int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1626{
1627 unsigned long flags;
1628 int asize;
1629 int ret = 0;
1630
1631 switch (cmd) {
1632 case KDGKBDIACR:
1633 {
1634 struct kbdiacrs __user *a = udp;
1635 struct kbdiacr *dia;
1636 int i;
1637
1638 dia = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1639 GFP_KERNEL);
1640 if (!dia)
1641 return -ENOMEM;
1642
1643 /* Lock the diacriticals table, make a copy and then
1644 copy it after we unlock */
1645 spin_lock_irqsave(&kbd_event_lock, flags);
1646
1647 asize = accent_table_size;
1648 for (i = 0; i < asize; i++) {
1649 dia[i].diacr = conv_uni_to_8bit(
1650 accent_table[i].diacr);
1651 dia[i].base = conv_uni_to_8bit(
1652 accent_table[i].base);
1653 dia[i].result = conv_uni_to_8bit(
1654 accent_table[i].result);
1655 }
1656 spin_unlock_irqrestore(&kbd_event_lock, flags);
1657
1658 if (put_user(asize, &a->kb_cnt))
1659 ret = -EFAULT;
1660 else if (copy_to_user(a->kbdiacr, dia,
1661 asize * sizeof(struct kbdiacr)))
1662 ret = -EFAULT;
1663 kfree(dia);
1664 return ret;
1665 }
1666 case KDGKBDIACRUC:
1667 {
1668 struct kbdiacrsuc __user *a = udp;
1669 void *buf;
1670
1671 buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1672 GFP_KERNEL);
1673 if (buf == NULL)
1674 return -ENOMEM;
1675
1676 /* Lock the diacriticals table, make a copy and then
1677 copy it after we unlock */
1678 spin_lock_irqsave(&kbd_event_lock, flags);
1679
1680 asize = accent_table_size;
1681 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1682
1683 spin_unlock_irqrestore(&kbd_event_lock, flags);
1684
1685 if (put_user(asize, &a->kb_cnt))
1686 ret = -EFAULT;
1687 else if (copy_to_user(a->kbdiacruc, buf,
1688 asize*sizeof(struct kbdiacruc)))
1689 ret = -EFAULT;
1690 kfree(buf);
1691 return ret;
1692 }
1693
1694 case KDSKBDIACR:
1695 {
1696 struct kbdiacrs __user *a = udp;
1697 struct kbdiacr *dia = NULL;
1698 unsigned int ct;
1699 int i;
1700
1701 if (!perm)
1702 return -EPERM;
1703 if (get_user(ct, &a->kb_cnt))
1704 return -EFAULT;
1705 if (ct >= MAX_DIACR)
1706 return -EINVAL;
1707
1708 if (ct) {
1709
1710 dia = memdup_user(a->kbdiacr,
1711 sizeof(struct kbdiacr) * ct);
1712 if (IS_ERR(dia))
1713 return PTR_ERR(dia);
1714
1715 }
1716
1717 spin_lock_irqsave(&kbd_event_lock, flags);
1718 accent_table_size = ct;
1719 for (i = 0; i < ct; i++) {
1720 accent_table[i].diacr =
1721 conv_8bit_to_uni(dia[i].diacr);
1722 accent_table[i].base =
1723 conv_8bit_to_uni(dia[i].base);
1724 accent_table[i].result =
1725 conv_8bit_to_uni(dia[i].result);
1726 }
1727 spin_unlock_irqrestore(&kbd_event_lock, flags);
1728 kfree(dia);
1729 return 0;
1730 }
1731
1732 case KDSKBDIACRUC:
1733 {
1734 struct kbdiacrsuc __user *a = udp;
1735 unsigned int ct;
1736 void *buf = NULL;
1737
1738 if (!perm)
1739 return -EPERM;
1740
1741 if (get_user(ct, &a->kb_cnt))
1742 return -EFAULT;
1743
1744 if (ct >= MAX_DIACR)
1745 return -EINVAL;
1746
1747 if (ct) {
1748 buf = kmalloc(ct * sizeof(struct kbdiacruc),
1749 GFP_KERNEL);
1750 if (buf == NULL)
1751 return -ENOMEM;
1752
1753 if (copy_from_user(buf, a->kbdiacruc,
1754 ct * sizeof(struct kbdiacruc))) {
1755 kfree(buf);
1756 return -EFAULT;
1757 }
1758 }
1759 spin_lock_irqsave(&kbd_event_lock, flags);
1760 if (ct)
1761 memcpy(accent_table, buf,
1762 ct * sizeof(struct kbdiacruc));
1763 accent_table_size = ct;
1764 spin_unlock_irqrestore(&kbd_event_lock, flags);
1765 kfree(buf);
1766 return 0;
1767 }
1768 }
1769 return ret;
1770}
1771
1772/**
1773 * vt_do_kdskbmode - set keyboard mode ioctl
1774 * @console: the console to use
1775 * @arg: the requested mode
1776 *
1777 * Update the keyboard mode bits while holding the correct locks.
1778 * Return 0 for success or an error code.
1779 */
1780int vt_do_kdskbmode(int console, unsigned int arg)
1781{
1782 struct kbd_struct *kb = kbd_table + console;
1783 int ret = 0;
1784 unsigned long flags;
1785
1786 spin_lock_irqsave(&kbd_event_lock, flags);
1787 switch(arg) {
1788 case K_RAW:
1789 kb->kbdmode = VC_RAW;
1790 break;
1791 case K_MEDIUMRAW:
1792 kb->kbdmode = VC_MEDIUMRAW;
1793 break;
1794 case K_XLATE:
1795 kb->kbdmode = VC_XLATE;
1796 do_compute_shiftstate();
1797 break;
1798 case K_UNICODE:
1799 kb->kbdmode = VC_UNICODE;
1800 do_compute_shiftstate();
1801 break;
1802 case K_OFF:
1803 kb->kbdmode = VC_OFF;
1804 break;
1805 default:
1806 ret = -EINVAL;
1807 }
1808 spin_unlock_irqrestore(&kbd_event_lock, flags);
1809 return ret;
1810}
1811
1812/**
1813 * vt_do_kdskbmeta - set keyboard meta state
1814 * @console: the console to use
1815 * @arg: the requested meta state
1816 *
1817 * Update the keyboard meta bits while holding the correct locks.
1818 * Return 0 for success or an error code.
1819 */
1820int vt_do_kdskbmeta(int console, unsigned int arg)
1821{
1822 struct kbd_struct *kb = kbd_table + console;
1823 int ret = 0;
1824 unsigned long flags;
1825
1826 spin_lock_irqsave(&kbd_event_lock, flags);
1827 switch(arg) {
1828 case K_METABIT:
1829 clr_vc_kbd_mode(kb, VC_META);
1830 break;
1831 case K_ESCPREFIX:
1832 set_vc_kbd_mode(kb, VC_META);
1833 break;
1834 default:
1835 ret = -EINVAL;
1836 }
1837 spin_unlock_irqrestore(&kbd_event_lock, flags);
1838 return ret;
1839}
1840
1841int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1842 int perm)
1843{
1844 struct kbkeycode tmp;
1845 int kc = 0;
1846
1847 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1848 return -EFAULT;
1849 switch (cmd) {
1850 case KDGETKEYCODE:
1851 kc = getkeycode(tmp.scancode);
1852 if (kc >= 0)
1853 kc = put_user(kc, &user_kbkc->keycode);
1854 break;
1855 case KDSETKEYCODE:
1856 if (!perm)
1857 return -EPERM;
1858 kc = setkeycode(tmp.scancode, tmp.keycode);
1859 break;
1860 }
1861 return kc;
1862}
1863
1864#define i (tmp.kb_index)
1865#define s (tmp.kb_table)
1866#define v (tmp.kb_value)
1867
1868int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1869 int console)
1870{
1871 struct kbd_struct *kb = kbd_table + console;
1872 struct kbentry tmp;
1873 ushort *key_map, *new_map, val, ov;
1874 unsigned long flags;
1875
1876 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1877 return -EFAULT;
1878
1879 if (!capable(CAP_SYS_TTY_CONFIG))
1880 perm = 0;
1881
1882 switch (cmd) {
1883 case KDGKBENT:
1884 /* Ensure another thread doesn't free it under us */
1885 spin_lock_irqsave(&kbd_event_lock, flags);
1886 key_map = key_maps[s];
1887 if (key_map) {
1888 val = U(key_map[i]);
1889 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1890 val = K_HOLE;
1891 } else
1892 val = (i ? K_HOLE : K_NOSUCHMAP);
1893 spin_unlock_irqrestore(&kbd_event_lock, flags);
1894 return put_user(val, &user_kbe->kb_value);
1895 case KDSKBENT:
1896 if (!perm)
1897 return -EPERM;
1898 if (!i && v == K_NOSUCHMAP) {
1899 spin_lock_irqsave(&kbd_event_lock, flags);
1900 /* deallocate map */
1901 key_map = key_maps[s];
1902 if (s && key_map) {
1903 key_maps[s] = NULL;
1904 if (key_map[0] == U(K_ALLOCATED)) {
1905 kfree(key_map);
1906 keymap_count--;
1907 }
1908 }
1909 spin_unlock_irqrestore(&kbd_event_lock, flags);
1910 break;
1911 }
1912
1913 if (KTYP(v) < NR_TYPES) {
1914 if (KVAL(v) > max_vals[KTYP(v)])
1915 return -EINVAL;
1916 } else
1917 if (kb->kbdmode != VC_UNICODE)
1918 return -EINVAL;
1919
1920 /* ++Geert: non-PC keyboards may generate keycode zero */
1921#if !defined(__mc68000__) && !defined(__powerpc__)
1922 /* assignment to entry 0 only tests validity of args */
1923 if (!i)
1924 break;
1925#endif
1926
1927 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1928 if (!new_map)
1929 return -ENOMEM;
1930 spin_lock_irqsave(&kbd_event_lock, flags);
1931 key_map = key_maps[s];
1932 if (key_map == NULL) {
1933 int j;
1934
1935 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1936 !capable(CAP_SYS_RESOURCE)) {
1937 spin_unlock_irqrestore(&kbd_event_lock, flags);
1938 kfree(new_map);
1939 return -EPERM;
1940 }
1941 key_maps[s] = new_map;
1942 key_map = new_map;
1943 key_map[0] = U(K_ALLOCATED);
1944 for (j = 1; j < NR_KEYS; j++)
1945 key_map[j] = U(K_HOLE);
1946 keymap_count++;
1947 } else
1948 kfree(new_map);
1949
1950 ov = U(key_map[i]);
1951 if (v == ov)
1952 goto out;
1953 /*
1954 * Attention Key.
1955 */
1956 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1957 spin_unlock_irqrestore(&kbd_event_lock, flags);
1958 return -EPERM;
1959 }
1960 key_map[i] = U(v);
1961 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1962 do_compute_shiftstate();
1963out:
1964 spin_unlock_irqrestore(&kbd_event_lock, flags);
1965 break;
1966 }
1967 return 0;
1968}
1969#undef i
1970#undef s
1971#undef v
1972
1973/* FIXME: This one needs untangling and locking */
1974int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1975{
1976 struct kbsentry *kbs;
1977 char *p;
1978 u_char *q;
1979 u_char __user *up;
1980 int sz;
1981 int delta;
1982 char *first_free, *fj, *fnw;
1983 int i, j, k;
1984 int ret;
1985
1986 if (!capable(CAP_SYS_TTY_CONFIG))
1987 perm = 0;
1988
1989 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1990 if (!kbs) {
1991 ret = -ENOMEM;
1992 goto reterr;
1993 }
1994
1995 /* we mostly copy too much here (512bytes), but who cares ;) */
1996 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1997 ret = -EFAULT;
1998 goto reterr;
1999 }
2000 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2001 i = kbs->kb_func;
2002
2003 switch (cmd) {
2004 case KDGKBSENT:
2005 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
2006 a struct member */
2007 up = user_kdgkb->kb_string;
2008 p = func_table[i];
2009 if(p)
2010 for ( ; *p && sz; p++, sz--)
2011 if (put_user(*p, up++)) {
2012 ret = -EFAULT;
2013 goto reterr;
2014 }
2015 if (put_user('\0', up)) {
2016 ret = -EFAULT;
2017 goto reterr;
2018 }
2019 kfree(kbs);
2020 return ((p && *p) ? -EOVERFLOW : 0);
2021 case KDSKBSENT:
2022 if (!perm) {
2023 ret = -EPERM;
2024 goto reterr;
2025 }
2026
2027 q = func_table[i];
2028 first_free = funcbufptr + (funcbufsize - funcbufleft);
2029 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2030 ;
2031 if (j < MAX_NR_FUNC)
2032 fj = func_table[j];
2033 else
2034 fj = first_free;
2035
2036 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2037 if (delta <= funcbufleft) { /* it fits in current buf */
2038 if (j < MAX_NR_FUNC) {
2039 memmove(fj + delta, fj, first_free - fj);
2040 for (k = j; k < MAX_NR_FUNC; k++)
2041 if (func_table[k])
2042 func_table[k] += delta;
2043 }
2044 if (!q)
2045 func_table[i] = fj;
2046 funcbufleft -= delta;
2047 } else { /* allocate a larger buffer */
2048 sz = 256;
2049 while (sz < funcbufsize - funcbufleft + delta)
2050 sz <<= 1;
2051 fnw = kmalloc(sz, GFP_KERNEL);
2052 if(!fnw) {
2053 ret = -ENOMEM;
2054 goto reterr;
2055 }
2056
2057 if (!q)
2058 func_table[i] = fj;
2059 if (fj > funcbufptr)
2060 memmove(fnw, funcbufptr, fj - funcbufptr);
2061 for (k = 0; k < j; k++)
2062 if (func_table[k])
2063 func_table[k] = fnw + (func_table[k] - funcbufptr);
2064
2065 if (first_free > fj) {
2066 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2067 for (k = j; k < MAX_NR_FUNC; k++)
2068 if (func_table[k])
2069 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2070 }
2071 if (funcbufptr != func_buf)
2072 kfree(funcbufptr);
2073 funcbufptr = fnw;
2074 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2075 funcbufsize = sz;
2076 }
2077 strcpy(func_table[i], kbs->kb_string);
2078 break;
2079 }
2080 ret = 0;
2081reterr:
2082 kfree(kbs);
2083 return ret;
2084}
2085
2086int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2087{
2088 struct kbd_struct *kb = kbd_table + console;
2089 unsigned long flags;
2090 unsigned char ucval;
2091
2092 switch(cmd) {
2093 /* the ioctls below read/set the flags usually shown in the leds */
2094 /* don't use them - they will go away without warning */
2095 case KDGKBLED:
2096 spin_lock_irqsave(&kbd_event_lock, flags);
2097 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2098 spin_unlock_irqrestore(&kbd_event_lock, flags);
2099 return put_user(ucval, (char __user *)arg);
2100
2101 case KDSKBLED:
2102 if (!perm)
2103 return -EPERM;
2104 if (arg & ~0x77)
2105 return -EINVAL;
2106 spin_lock_irqsave(&led_lock, flags);
2107 kb->ledflagstate = (arg & 7);
2108 kb->default_ledflagstate = ((arg >> 4) & 7);
2109 set_leds();
2110 spin_unlock_irqrestore(&led_lock, flags);
2111 return 0;
2112
2113 /* the ioctls below only set the lights, not the functions */
2114 /* for those, see KDGKBLED and KDSKBLED above */
2115 case KDGETLED:
2116 ucval = getledstate();
2117 return put_user(ucval, (char __user *)arg);
2118
2119 case KDSETLED:
2120 if (!perm)
2121 return -EPERM;
2122 setledstate(kb, arg);
2123 return 0;
2124 }
2125 return -ENOIOCTLCMD;
2126}
2127
2128int vt_do_kdgkbmode(int console)
2129{
2130 struct kbd_struct *kb = kbd_table + console;
2131 /* This is a spot read so needs no locking */
2132 switch (kb->kbdmode) {
2133 case VC_RAW:
2134 return K_RAW;
2135 case VC_MEDIUMRAW:
2136 return K_MEDIUMRAW;
2137 case VC_UNICODE:
2138 return K_UNICODE;
2139 case VC_OFF:
2140 return K_OFF;
2141 default:
2142 return K_XLATE;
2143 }
2144}
2145
2146/**
2147 * vt_do_kdgkbmeta - report meta status
2148 * @console: console to report
2149 *
2150 * Report the meta flag status of this console
2151 */
2152int vt_do_kdgkbmeta(int console)
2153{
2154 struct kbd_struct *kb = kbd_table + console;
2155 /* Again a spot read so no locking */
2156 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2157}
2158
2159/**
2160 * vt_reset_unicode - reset the unicode status
2161 * @console: console being reset
2162 *
2163 * Restore the unicode console state to its default
2164 */
2165void vt_reset_unicode(int console)
2166{
2167 unsigned long flags;
2168
2169 spin_lock_irqsave(&kbd_event_lock, flags);
2170 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2171 spin_unlock_irqrestore(&kbd_event_lock, flags);
2172}
2173
2174/**
2175 * vt_get_shiftstate - shift bit state
2176 *
2177 * Report the shift bits from the keyboard state. We have to export
2178 * this to support some oddities in the vt layer.
2179 */
2180int vt_get_shift_state(void)
2181{
2182 /* Don't lock as this is a transient report */
2183 return shift_state;
2184}
2185
2186/**
2187 * vt_reset_keyboard - reset keyboard state
2188 * @console: console to reset
2189 *
2190 * Reset the keyboard bits for a console as part of a general console
2191 * reset event
2192 */
2193void vt_reset_keyboard(int console)
2194{
2195 struct kbd_struct *kb = kbd_table + console;
2196 unsigned long flags;
2197
2198 spin_lock_irqsave(&kbd_event_lock, flags);
2199 set_vc_kbd_mode(kb, VC_REPEAT);
2200 clr_vc_kbd_mode(kb, VC_CKMODE);
2201 clr_vc_kbd_mode(kb, VC_APPLIC);
2202 clr_vc_kbd_mode(kb, VC_CRLF);
2203 kb->lockstate = 0;
2204 kb->slockstate = 0;
2205 spin_lock(&led_lock);
2206 kb->ledmode = LED_SHOW_FLAGS;
2207 kb->ledflagstate = kb->default_ledflagstate;
2208 spin_unlock(&led_lock);
2209 /* do not do set_leds here because this causes an endless tasklet loop
2210 when the keyboard hasn't been initialized yet */
2211 spin_unlock_irqrestore(&kbd_event_lock, flags);
2212}
2213
2214/**
2215 * vt_get_kbd_mode_bit - read keyboard status bits
2216 * @console: console to read from
2217 * @bit: mode bit to read
2218 *
2219 * Report back a vt mode bit. We do this without locking so the
2220 * caller must be sure that there are no synchronization needs
2221 */
2222
2223int vt_get_kbd_mode_bit(int console, int bit)
2224{
2225 struct kbd_struct *kb = kbd_table + console;
2226 return vc_kbd_mode(kb, bit);
2227}
2228
2229/**
2230 * vt_set_kbd_mode_bit - read keyboard status bits
2231 * @console: console to read from
2232 * @bit: mode bit to read
2233 *
2234 * Set a vt mode bit. We do this without locking so the
2235 * caller must be sure that there are no synchronization needs
2236 */
2237
2238void vt_set_kbd_mode_bit(int console, int bit)
2239{
2240 struct kbd_struct *kb = kbd_table + console;
2241 unsigned long flags;
2242
2243 spin_lock_irqsave(&kbd_event_lock, flags);
2244 set_vc_kbd_mode(kb, bit);
2245 spin_unlock_irqrestore(&kbd_event_lock, flags);
2246}
2247
2248/**
2249 * vt_clr_kbd_mode_bit - read keyboard status bits
2250 * @console: console to read from
2251 * @bit: mode bit to read
2252 *
2253 * Report back a vt mode bit. We do this without locking so the
2254 * caller must be sure that there are no synchronization needs
2255 */
2256
2257void vt_clr_kbd_mode_bit(int console, int bit)
2258{
2259 struct kbd_struct *kb = kbd_table + console;
2260 unsigned long flags;
2261
2262 spin_lock_irqsave(&kbd_event_lock, flags);
2263 clr_vc_kbd_mode(kb, bit);
2264 spin_unlock_irqrestore(&kbd_event_lock, flags);
2265}