Loading...
1#include <linux/gfp.h>
2#include <linux/initrd.h>
3#include <linux/ioport.h>
4#include <linux/swap.h>
5#include <linux/memblock.h>
6#include <linux/swapfile.h>
7#include <linux/swapops.h>
8#include <linux/kmemleak.h>
9#include <linux/sched/task.h>
10
11#include <asm/set_memory.h>
12#include <asm/e820/api.h>
13#include <asm/init.h>
14#include <asm/page.h>
15#include <asm/page_types.h>
16#include <asm/sections.h>
17#include <asm/setup.h>
18#include <asm/tlbflush.h>
19#include <asm/tlb.h>
20#include <asm/proto.h>
21#include <asm/dma.h> /* for MAX_DMA_PFN */
22#include <asm/microcode.h>
23#include <asm/kaslr.h>
24#include <asm/hypervisor.h>
25#include <asm/cpufeature.h>
26#include <asm/pti.h>
27#include <asm/text-patching.h>
28
29/*
30 * We need to define the tracepoints somewhere, and tlb.c
31 * is only compied when SMP=y.
32 */
33#define CREATE_TRACE_POINTS
34#include <trace/events/tlb.h>
35
36#include "mm_internal.h"
37
38/*
39 * Tables translating between page_cache_type_t and pte encoding.
40 *
41 * The default values are defined statically as minimal supported mode;
42 * WC and WT fall back to UC-. pat_init() updates these values to support
43 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
44 * for the details. Note, __early_ioremap() used during early boot-time
45 * takes pgprot_t (pte encoding) and does not use these tables.
46 *
47 * Index into __cachemode2pte_tbl[] is the cachemode.
48 *
49 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
50 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
51 */
52uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
53 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
54 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
55 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
56 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
59};
60EXPORT_SYMBOL(__cachemode2pte_tbl);
61
62uint8_t __pte2cachemode_tbl[8] = {
63 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
64 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
65 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
66 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
67 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
68 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
69 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
70 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
71};
72EXPORT_SYMBOL(__pte2cachemode_tbl);
73
74static unsigned long __initdata pgt_buf_start;
75static unsigned long __initdata pgt_buf_end;
76static unsigned long __initdata pgt_buf_top;
77
78static unsigned long min_pfn_mapped;
79
80static bool __initdata can_use_brk_pgt = true;
81
82/*
83 * Pages returned are already directly mapped.
84 *
85 * Changing that is likely to break Xen, see commit:
86 *
87 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
88 *
89 * for detailed information.
90 */
91__ref void *alloc_low_pages(unsigned int num)
92{
93 unsigned long pfn;
94 int i;
95
96 if (after_bootmem) {
97 unsigned int order;
98
99 order = get_order((unsigned long)num << PAGE_SHIFT);
100 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
101 }
102
103 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
104 unsigned long ret = 0;
105
106 if (min_pfn_mapped < max_pfn_mapped) {
107 ret = memblock_find_in_range(
108 min_pfn_mapped << PAGE_SHIFT,
109 max_pfn_mapped << PAGE_SHIFT,
110 PAGE_SIZE * num , PAGE_SIZE);
111 }
112 if (ret)
113 memblock_reserve(ret, PAGE_SIZE * num);
114 else if (can_use_brk_pgt)
115 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
116
117 if (!ret)
118 panic("alloc_low_pages: can not alloc memory");
119
120 pfn = ret >> PAGE_SHIFT;
121 } else {
122 pfn = pgt_buf_end;
123 pgt_buf_end += num;
124 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
125 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
126 }
127
128 for (i = 0; i < num; i++) {
129 void *adr;
130
131 adr = __va((pfn + i) << PAGE_SHIFT);
132 clear_page(adr);
133 }
134
135 return __va(pfn << PAGE_SHIFT);
136}
137
138/*
139 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
140 * With KASLR memory randomization, depending on the machine e820 memory
141 * and the PUD alignment. We may need twice more pages when KASLR memory
142 * randomization is enabled.
143 */
144#ifndef CONFIG_RANDOMIZE_MEMORY
145#define INIT_PGD_PAGE_COUNT 6
146#else
147#define INIT_PGD_PAGE_COUNT 12
148#endif
149#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
150RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
151void __init early_alloc_pgt_buf(void)
152{
153 unsigned long tables = INIT_PGT_BUF_SIZE;
154 phys_addr_t base;
155
156 base = __pa(extend_brk(tables, PAGE_SIZE));
157
158 pgt_buf_start = base >> PAGE_SHIFT;
159 pgt_buf_end = pgt_buf_start;
160 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
161}
162
163int after_bootmem;
164
165early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
166
167struct map_range {
168 unsigned long start;
169 unsigned long end;
170 unsigned page_size_mask;
171};
172
173static int page_size_mask;
174
175static void __init probe_page_size_mask(void)
176{
177 /*
178 * For pagealloc debugging, identity mapping will use small pages.
179 * This will simplify cpa(), which otherwise needs to support splitting
180 * large pages into small in interrupt context, etc.
181 */
182 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
183 page_size_mask |= 1 << PG_LEVEL_2M;
184 else
185 direct_gbpages = 0;
186
187 /* Enable PSE if available */
188 if (boot_cpu_has(X86_FEATURE_PSE))
189 cr4_set_bits_and_update_boot(X86_CR4_PSE);
190
191 /* Enable PGE if available */
192 __supported_pte_mask &= ~_PAGE_GLOBAL;
193 if (boot_cpu_has(X86_FEATURE_PGE)) {
194 cr4_set_bits_and_update_boot(X86_CR4_PGE);
195 __supported_pte_mask |= _PAGE_GLOBAL;
196 }
197
198 /* By the default is everything supported: */
199 __default_kernel_pte_mask = __supported_pte_mask;
200 /* Except when with PTI where the kernel is mostly non-Global: */
201 if (cpu_feature_enabled(X86_FEATURE_PTI))
202 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
203
204 /* Enable 1 GB linear kernel mappings if available: */
205 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
206 printk(KERN_INFO "Using GB pages for direct mapping\n");
207 page_size_mask |= 1 << PG_LEVEL_1G;
208 } else {
209 direct_gbpages = 0;
210 }
211}
212
213static void setup_pcid(void)
214{
215 if (!IS_ENABLED(CONFIG_X86_64))
216 return;
217
218 if (!boot_cpu_has(X86_FEATURE_PCID))
219 return;
220
221 if (boot_cpu_has(X86_FEATURE_PGE)) {
222 /*
223 * This can't be cr4_set_bits_and_update_boot() -- the
224 * trampoline code can't handle CR4.PCIDE and it wouldn't
225 * do any good anyway. Despite the name,
226 * cr4_set_bits_and_update_boot() doesn't actually cause
227 * the bits in question to remain set all the way through
228 * the secondary boot asm.
229 *
230 * Instead, we brute-force it and set CR4.PCIDE manually in
231 * start_secondary().
232 */
233 cr4_set_bits(X86_CR4_PCIDE);
234
235 /*
236 * INVPCID's single-context modes (2/3) only work if we set
237 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
238 * on systems that have X86_CR4_PCIDE clear, or that have
239 * no INVPCID support at all.
240 */
241 if (boot_cpu_has(X86_FEATURE_INVPCID))
242 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
243 } else {
244 /*
245 * flush_tlb_all(), as currently implemented, won't work if
246 * PCID is on but PGE is not. Since that combination
247 * doesn't exist on real hardware, there's no reason to try
248 * to fully support it, but it's polite to avoid corrupting
249 * data if we're on an improperly configured VM.
250 */
251 setup_clear_cpu_cap(X86_FEATURE_PCID);
252 }
253}
254
255#ifdef CONFIG_X86_32
256#define NR_RANGE_MR 3
257#else /* CONFIG_X86_64 */
258#define NR_RANGE_MR 5
259#endif
260
261static int __meminit save_mr(struct map_range *mr, int nr_range,
262 unsigned long start_pfn, unsigned long end_pfn,
263 unsigned long page_size_mask)
264{
265 if (start_pfn < end_pfn) {
266 if (nr_range >= NR_RANGE_MR)
267 panic("run out of range for init_memory_mapping\n");
268 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
269 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
270 mr[nr_range].page_size_mask = page_size_mask;
271 nr_range++;
272 }
273
274 return nr_range;
275}
276
277/*
278 * adjust the page_size_mask for small range to go with
279 * big page size instead small one if nearby are ram too.
280 */
281static void __ref adjust_range_page_size_mask(struct map_range *mr,
282 int nr_range)
283{
284 int i;
285
286 for (i = 0; i < nr_range; i++) {
287 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
288 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
289 unsigned long start = round_down(mr[i].start, PMD_SIZE);
290 unsigned long end = round_up(mr[i].end, PMD_SIZE);
291
292#ifdef CONFIG_X86_32
293 if ((end >> PAGE_SHIFT) > max_low_pfn)
294 continue;
295#endif
296
297 if (memblock_is_region_memory(start, end - start))
298 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
299 }
300 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
301 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
302 unsigned long start = round_down(mr[i].start, PUD_SIZE);
303 unsigned long end = round_up(mr[i].end, PUD_SIZE);
304
305 if (memblock_is_region_memory(start, end - start))
306 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
307 }
308 }
309}
310
311static const char *page_size_string(struct map_range *mr)
312{
313 static const char str_1g[] = "1G";
314 static const char str_2m[] = "2M";
315 static const char str_4m[] = "4M";
316 static const char str_4k[] = "4k";
317
318 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
319 return str_1g;
320 /*
321 * 32-bit without PAE has a 4M large page size.
322 * PG_LEVEL_2M is misnamed, but we can at least
323 * print out the right size in the string.
324 */
325 if (IS_ENABLED(CONFIG_X86_32) &&
326 !IS_ENABLED(CONFIG_X86_PAE) &&
327 mr->page_size_mask & (1<<PG_LEVEL_2M))
328 return str_4m;
329
330 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
331 return str_2m;
332
333 return str_4k;
334}
335
336static int __meminit split_mem_range(struct map_range *mr, int nr_range,
337 unsigned long start,
338 unsigned long end)
339{
340 unsigned long start_pfn, end_pfn, limit_pfn;
341 unsigned long pfn;
342 int i;
343
344 limit_pfn = PFN_DOWN(end);
345
346 /* head if not big page alignment ? */
347 pfn = start_pfn = PFN_DOWN(start);
348#ifdef CONFIG_X86_32
349 /*
350 * Don't use a large page for the first 2/4MB of memory
351 * because there are often fixed size MTRRs in there
352 * and overlapping MTRRs into large pages can cause
353 * slowdowns.
354 */
355 if (pfn == 0)
356 end_pfn = PFN_DOWN(PMD_SIZE);
357 else
358 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
359#else /* CONFIG_X86_64 */
360 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
361#endif
362 if (end_pfn > limit_pfn)
363 end_pfn = limit_pfn;
364 if (start_pfn < end_pfn) {
365 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
366 pfn = end_pfn;
367 }
368
369 /* big page (2M) range */
370 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
371#ifdef CONFIG_X86_32
372 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
373#else /* CONFIG_X86_64 */
374 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
375 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
376 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
377#endif
378
379 if (start_pfn < end_pfn) {
380 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
381 page_size_mask & (1<<PG_LEVEL_2M));
382 pfn = end_pfn;
383 }
384
385#ifdef CONFIG_X86_64
386 /* big page (1G) range */
387 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
388 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
389 if (start_pfn < end_pfn) {
390 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
391 page_size_mask &
392 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
393 pfn = end_pfn;
394 }
395
396 /* tail is not big page (1G) alignment */
397 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
398 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
399 if (start_pfn < end_pfn) {
400 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
401 page_size_mask & (1<<PG_LEVEL_2M));
402 pfn = end_pfn;
403 }
404#endif
405
406 /* tail is not big page (2M) alignment */
407 start_pfn = pfn;
408 end_pfn = limit_pfn;
409 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
410
411 if (!after_bootmem)
412 adjust_range_page_size_mask(mr, nr_range);
413
414 /* try to merge same page size and continuous */
415 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
416 unsigned long old_start;
417 if (mr[i].end != mr[i+1].start ||
418 mr[i].page_size_mask != mr[i+1].page_size_mask)
419 continue;
420 /* move it */
421 old_start = mr[i].start;
422 memmove(&mr[i], &mr[i+1],
423 (nr_range - 1 - i) * sizeof(struct map_range));
424 mr[i--].start = old_start;
425 nr_range--;
426 }
427
428 for (i = 0; i < nr_range; i++)
429 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
430 mr[i].start, mr[i].end - 1,
431 page_size_string(&mr[i]));
432
433 return nr_range;
434}
435
436struct range pfn_mapped[E820_MAX_ENTRIES];
437int nr_pfn_mapped;
438
439static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
440{
441 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
442 nr_pfn_mapped, start_pfn, end_pfn);
443 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
444
445 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
446
447 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
448 max_low_pfn_mapped = max(max_low_pfn_mapped,
449 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
450}
451
452bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
453{
454 int i;
455
456 for (i = 0; i < nr_pfn_mapped; i++)
457 if ((start_pfn >= pfn_mapped[i].start) &&
458 (end_pfn <= pfn_mapped[i].end))
459 return true;
460
461 return false;
462}
463
464/*
465 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
466 * This runs before bootmem is initialized and gets pages directly from
467 * the physical memory. To access them they are temporarily mapped.
468 */
469unsigned long __ref init_memory_mapping(unsigned long start,
470 unsigned long end)
471{
472 struct map_range mr[NR_RANGE_MR];
473 unsigned long ret = 0;
474 int nr_range, i;
475
476 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
477 start, end - 1);
478
479 memset(mr, 0, sizeof(mr));
480 nr_range = split_mem_range(mr, 0, start, end);
481
482 for (i = 0; i < nr_range; i++)
483 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
484 mr[i].page_size_mask);
485
486 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
487
488 return ret >> PAGE_SHIFT;
489}
490
491/*
492 * We need to iterate through the E820 memory map and create direct mappings
493 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
494 * create direct mappings for all pfns from [0 to max_low_pfn) and
495 * [4GB to max_pfn) because of possible memory holes in high addresses
496 * that cannot be marked as UC by fixed/variable range MTRRs.
497 * Depending on the alignment of E820 ranges, this may possibly result
498 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
499 *
500 * init_mem_mapping() calls init_range_memory_mapping() with big range.
501 * That range would have hole in the middle or ends, and only ram parts
502 * will be mapped in init_range_memory_mapping().
503 */
504static unsigned long __init init_range_memory_mapping(
505 unsigned long r_start,
506 unsigned long r_end)
507{
508 unsigned long start_pfn, end_pfn;
509 unsigned long mapped_ram_size = 0;
510 int i;
511
512 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
513 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
514 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
515 if (start >= end)
516 continue;
517
518 /*
519 * if it is overlapping with brk pgt, we need to
520 * alloc pgt buf from memblock instead.
521 */
522 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
523 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
524 init_memory_mapping(start, end);
525 mapped_ram_size += end - start;
526 can_use_brk_pgt = true;
527 }
528
529 return mapped_ram_size;
530}
531
532static unsigned long __init get_new_step_size(unsigned long step_size)
533{
534 /*
535 * Initial mapped size is PMD_SIZE (2M).
536 * We can not set step_size to be PUD_SIZE (1G) yet.
537 * In worse case, when we cross the 1G boundary, and
538 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
539 * to map 1G range with PTE. Hence we use one less than the
540 * difference of page table level shifts.
541 *
542 * Don't need to worry about overflow in the top-down case, on 32bit,
543 * when step_size is 0, round_down() returns 0 for start, and that
544 * turns it into 0x100000000ULL.
545 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
546 * needs to be taken into consideration by the code below.
547 */
548 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
549}
550
551/**
552 * memory_map_top_down - Map [map_start, map_end) top down
553 * @map_start: start address of the target memory range
554 * @map_end: end address of the target memory range
555 *
556 * This function will setup direct mapping for memory range
557 * [map_start, map_end) in top-down. That said, the page tables
558 * will be allocated at the end of the memory, and we map the
559 * memory in top-down.
560 */
561static void __init memory_map_top_down(unsigned long map_start,
562 unsigned long map_end)
563{
564 unsigned long real_end, start, last_start;
565 unsigned long step_size;
566 unsigned long addr;
567 unsigned long mapped_ram_size = 0;
568
569 /* xen has big range in reserved near end of ram, skip it at first.*/
570 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
571 real_end = addr + PMD_SIZE;
572
573 /* step_size need to be small so pgt_buf from BRK could cover it */
574 step_size = PMD_SIZE;
575 max_pfn_mapped = 0; /* will get exact value next */
576 min_pfn_mapped = real_end >> PAGE_SHIFT;
577 last_start = start = real_end;
578
579 /*
580 * We start from the top (end of memory) and go to the bottom.
581 * The memblock_find_in_range() gets us a block of RAM from the
582 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
583 * for page table.
584 */
585 while (last_start > map_start) {
586 if (last_start > step_size) {
587 start = round_down(last_start - 1, step_size);
588 if (start < map_start)
589 start = map_start;
590 } else
591 start = map_start;
592 mapped_ram_size += init_range_memory_mapping(start,
593 last_start);
594 last_start = start;
595 min_pfn_mapped = last_start >> PAGE_SHIFT;
596 if (mapped_ram_size >= step_size)
597 step_size = get_new_step_size(step_size);
598 }
599
600 if (real_end < map_end)
601 init_range_memory_mapping(real_end, map_end);
602}
603
604/**
605 * memory_map_bottom_up - Map [map_start, map_end) bottom up
606 * @map_start: start address of the target memory range
607 * @map_end: end address of the target memory range
608 *
609 * This function will setup direct mapping for memory range
610 * [map_start, map_end) in bottom-up. Since we have limited the
611 * bottom-up allocation above the kernel, the page tables will
612 * be allocated just above the kernel and we map the memory
613 * in [map_start, map_end) in bottom-up.
614 */
615static void __init memory_map_bottom_up(unsigned long map_start,
616 unsigned long map_end)
617{
618 unsigned long next, start;
619 unsigned long mapped_ram_size = 0;
620 /* step_size need to be small so pgt_buf from BRK could cover it */
621 unsigned long step_size = PMD_SIZE;
622
623 start = map_start;
624 min_pfn_mapped = start >> PAGE_SHIFT;
625
626 /*
627 * We start from the bottom (@map_start) and go to the top (@map_end).
628 * The memblock_find_in_range() gets us a block of RAM from the
629 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
630 * for page table.
631 */
632 while (start < map_end) {
633 if (step_size && map_end - start > step_size) {
634 next = round_up(start + 1, step_size);
635 if (next > map_end)
636 next = map_end;
637 } else {
638 next = map_end;
639 }
640
641 mapped_ram_size += init_range_memory_mapping(start, next);
642 start = next;
643
644 if (mapped_ram_size >= step_size)
645 step_size = get_new_step_size(step_size);
646 }
647}
648
649void __init init_mem_mapping(void)
650{
651 unsigned long end;
652
653 pti_check_boottime_disable();
654 probe_page_size_mask();
655 setup_pcid();
656
657#ifdef CONFIG_X86_64
658 end = max_pfn << PAGE_SHIFT;
659#else
660 end = max_low_pfn << PAGE_SHIFT;
661#endif
662
663 /* the ISA range is always mapped regardless of memory holes */
664 init_memory_mapping(0, ISA_END_ADDRESS);
665
666 /* Init the trampoline, possibly with KASLR memory offset */
667 init_trampoline();
668
669 /*
670 * If the allocation is in bottom-up direction, we setup direct mapping
671 * in bottom-up, otherwise we setup direct mapping in top-down.
672 */
673 if (memblock_bottom_up()) {
674 unsigned long kernel_end = __pa_symbol(_end);
675
676 /*
677 * we need two separate calls here. This is because we want to
678 * allocate page tables above the kernel. So we first map
679 * [kernel_end, end) to make memory above the kernel be mapped
680 * as soon as possible. And then use page tables allocated above
681 * the kernel to map [ISA_END_ADDRESS, kernel_end).
682 */
683 memory_map_bottom_up(kernel_end, end);
684 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
685 } else {
686 memory_map_top_down(ISA_END_ADDRESS, end);
687 }
688
689#ifdef CONFIG_X86_64
690 if (max_pfn > max_low_pfn) {
691 /* can we preseve max_low_pfn ?*/
692 max_low_pfn = max_pfn;
693 }
694#else
695 early_ioremap_page_table_range_init();
696#endif
697
698 load_cr3(swapper_pg_dir);
699 __flush_tlb_all();
700
701 x86_init.hyper.init_mem_mapping();
702
703 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
704}
705
706/*
707 * Initialize an mm_struct to be used during poking and a pointer to be used
708 * during patching.
709 */
710void __init poking_init(void)
711{
712 spinlock_t *ptl;
713 pte_t *ptep;
714
715 poking_mm = copy_init_mm();
716 BUG_ON(!poking_mm);
717
718 /*
719 * Randomize the poking address, but make sure that the following page
720 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
721 * and adjust the address if the PMD ends after the first one.
722 */
723 poking_addr = TASK_UNMAPPED_BASE;
724 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
725 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
726 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
727
728 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
729 poking_addr += PAGE_SIZE;
730
731 /*
732 * We need to trigger the allocation of the page-tables that will be
733 * needed for poking now. Later, poking may be performed in an atomic
734 * section, which might cause allocation to fail.
735 */
736 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
737 BUG_ON(!ptep);
738 pte_unmap_unlock(ptep, ptl);
739}
740
741/*
742 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
743 * is valid. The argument is a physical page number.
744 *
745 * On x86, access has to be given to the first megabyte of RAM because that
746 * area traditionally contains BIOS code and data regions used by X, dosemu,
747 * and similar apps. Since they map the entire memory range, the whole range
748 * must be allowed (for mapping), but any areas that would otherwise be
749 * disallowed are flagged as being "zero filled" instead of rejected.
750 * Access has to be given to non-kernel-ram areas as well, these contain the
751 * PCI mmio resources as well as potential bios/acpi data regions.
752 */
753int devmem_is_allowed(unsigned long pagenr)
754{
755 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
756 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
757 != REGION_DISJOINT) {
758 /*
759 * For disallowed memory regions in the low 1MB range,
760 * request that the page be shown as all zeros.
761 */
762 if (pagenr < 256)
763 return 2;
764
765 return 0;
766 }
767
768 /*
769 * This must follow RAM test, since System RAM is considered a
770 * restricted resource under CONFIG_STRICT_IOMEM.
771 */
772 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
773 /* Low 1MB bypasses iomem restrictions. */
774 if (pagenr < 256)
775 return 1;
776
777 return 0;
778 }
779
780 return 1;
781}
782
783void free_init_pages(const char *what, unsigned long begin, unsigned long end)
784{
785 unsigned long begin_aligned, end_aligned;
786
787 /* Make sure boundaries are page aligned */
788 begin_aligned = PAGE_ALIGN(begin);
789 end_aligned = end & PAGE_MASK;
790
791 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
792 begin = begin_aligned;
793 end = end_aligned;
794 }
795
796 if (begin >= end)
797 return;
798
799 /*
800 * If debugging page accesses then do not free this memory but
801 * mark them not present - any buggy init-section access will
802 * create a kernel page fault:
803 */
804 if (debug_pagealloc_enabled()) {
805 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
806 begin, end - 1);
807 /*
808 * Inform kmemleak about the hole in the memory since the
809 * corresponding pages will be unmapped.
810 */
811 kmemleak_free_part((void *)begin, end - begin);
812 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
813 } else {
814 /*
815 * We just marked the kernel text read only above, now that
816 * we are going to free part of that, we need to make that
817 * writeable and non-executable first.
818 */
819 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
820 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
821
822 free_reserved_area((void *)begin, (void *)end,
823 POISON_FREE_INITMEM, what);
824 }
825}
826
827/*
828 * begin/end can be in the direct map or the "high kernel mapping"
829 * used for the kernel image only. free_init_pages() will do the
830 * right thing for either kind of address.
831 */
832void free_kernel_image_pages(void *begin, void *end)
833{
834 unsigned long begin_ul = (unsigned long)begin;
835 unsigned long end_ul = (unsigned long)end;
836 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
837
838
839 free_init_pages("unused kernel image", begin_ul, end_ul);
840
841 /*
842 * PTI maps some of the kernel into userspace. For performance,
843 * this includes some kernel areas that do not contain secrets.
844 * Those areas might be adjacent to the parts of the kernel image
845 * being freed, which may contain secrets. Remove the "high kernel
846 * image mapping" for these freed areas, ensuring they are not even
847 * potentially vulnerable to Meltdown regardless of the specific
848 * optimizations PTI is currently using.
849 *
850 * The "noalias" prevents unmapping the direct map alias which is
851 * needed to access the freed pages.
852 *
853 * This is only valid for 64bit kernels. 32bit has only one mapping
854 * which can't be treated in this way for obvious reasons.
855 */
856 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
857 set_memory_np_noalias(begin_ul, len_pages);
858}
859
860void __weak mem_encrypt_free_decrypted_mem(void) { }
861
862void __ref free_initmem(void)
863{
864 e820__reallocate_tables();
865
866 mem_encrypt_free_decrypted_mem();
867
868 free_kernel_image_pages(&__init_begin, &__init_end);
869}
870
871#ifdef CONFIG_BLK_DEV_INITRD
872void __init free_initrd_mem(unsigned long start, unsigned long end)
873{
874 /*
875 * end could be not aligned, and We can not align that,
876 * decompresser could be confused by aligned initrd_end
877 * We already reserve the end partial page before in
878 * - i386_start_kernel()
879 * - x86_64_start_kernel()
880 * - relocate_initrd()
881 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
882 */
883 free_init_pages("initrd", start, PAGE_ALIGN(end));
884}
885#endif
886
887/*
888 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
889 * and pass it to the MM layer - to help it set zone watermarks more
890 * accurately.
891 *
892 * Done on 64-bit systems only for the time being, although 32-bit systems
893 * might benefit from this as well.
894 */
895void __init memblock_find_dma_reserve(void)
896{
897#ifdef CONFIG_X86_64
898 u64 nr_pages = 0, nr_free_pages = 0;
899 unsigned long start_pfn, end_pfn;
900 phys_addr_t start_addr, end_addr;
901 int i;
902 u64 u;
903
904 /*
905 * Iterate over all memory ranges (free and reserved ones alike),
906 * to calculate the total number of pages in the first 16 MB of RAM:
907 */
908 nr_pages = 0;
909 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
910 start_pfn = min(start_pfn, MAX_DMA_PFN);
911 end_pfn = min(end_pfn, MAX_DMA_PFN);
912
913 nr_pages += end_pfn - start_pfn;
914 }
915
916 /*
917 * Iterate over free memory ranges to calculate the number of free
918 * pages in the DMA zone, while not counting potential partial
919 * pages at the beginning or the end of the range:
920 */
921 nr_free_pages = 0;
922 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
923 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
924 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
925
926 if (start_pfn < end_pfn)
927 nr_free_pages += end_pfn - start_pfn;
928 }
929
930 set_dma_reserve(nr_pages - nr_free_pages);
931#endif
932}
933
934void __init zone_sizes_init(void)
935{
936 unsigned long max_zone_pfns[MAX_NR_ZONES];
937
938 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
939
940#ifdef CONFIG_ZONE_DMA
941 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
942#endif
943#ifdef CONFIG_ZONE_DMA32
944 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
945#endif
946 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
947#ifdef CONFIG_HIGHMEM
948 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
949#endif
950
951 free_area_init_nodes(max_zone_pfns);
952}
953
954__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
955 .loaded_mm = &init_mm,
956 .next_asid = 1,
957 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
958};
959EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
960
961void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
962{
963 /* entry 0 MUST be WB (hardwired to speed up translations) */
964 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
965
966 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
967 __pte2cachemode_tbl[entry] = cache;
968}
969
970#ifdef CONFIG_SWAP
971unsigned long max_swapfile_size(void)
972{
973 unsigned long pages;
974
975 pages = generic_max_swapfile_size();
976
977 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
978 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
979 unsigned long long l1tf_limit = l1tf_pfn_limit();
980 /*
981 * We encode swap offsets also with 3 bits below those for pfn
982 * which makes the usable limit higher.
983 */
984#if CONFIG_PGTABLE_LEVELS > 2
985 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
986#endif
987 pages = min_t(unsigned long long, l1tf_limit, pages);
988 }
989 return pages;
990}
991#endif
1#include <linux/gfp.h>
2#include <linux/initrd.h>
3#include <linux/ioport.h>
4#include <linux/swap.h>
5#include <linux/memblock.h>
6#include <linux/swapfile.h>
7#include <linux/swapops.h>
8#include <linux/kmemleak.h>
9#include <linux/sched/task.h>
10#include <linux/execmem.h>
11
12#include <asm/set_memory.h>
13#include <asm/cpu_device_id.h>
14#include <asm/e820/api.h>
15#include <asm/init.h>
16#include <asm/page.h>
17#include <asm/page_types.h>
18#include <asm/sections.h>
19#include <asm/setup.h>
20#include <asm/tlbflush.h>
21#include <asm/tlb.h>
22#include <asm/proto.h>
23#include <asm/dma.h> /* for MAX_DMA_PFN */
24#include <asm/kaslr.h>
25#include <asm/hypervisor.h>
26#include <asm/cpufeature.h>
27#include <asm/pti.h>
28#include <asm/text-patching.h>
29#include <asm/memtype.h>
30#include <asm/paravirt.h>
31
32/*
33 * We need to define the tracepoints somewhere, and tlb.c
34 * is only compiled when SMP=y.
35 */
36#include <trace/events/tlb.h>
37
38#include "mm_internal.h"
39
40/*
41 * Tables translating between page_cache_type_t and pte encoding.
42 *
43 * The default values are defined statically as minimal supported mode;
44 * WC and WT fall back to UC-. pat_init() updates these values to support
45 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
46 * for the details. Note, __early_ioremap() used during early boot-time
47 * takes pgprot_t (pte encoding) and does not use these tables.
48 *
49 * Index into __cachemode2pte_tbl[] is the cachemode.
50 *
51 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
52 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
53 */
54static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
55 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
56 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
59 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
60 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
61};
62
63unsigned long cachemode2protval(enum page_cache_mode pcm)
64{
65 if (likely(pcm == 0))
66 return 0;
67 return __cachemode2pte_tbl[pcm];
68}
69EXPORT_SYMBOL(cachemode2protval);
70
71static uint8_t __pte2cachemode_tbl[8] = {
72 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
73 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
74 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
75 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
76 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
77 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
79 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
80};
81
82/*
83 * Check that the write-protect PAT entry is set for write-protect.
84 * To do this without making assumptions how PAT has been set up (Xen has
85 * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
86 * mode via the __cachemode2pte_tbl[] into protection bits (those protection
87 * bits will select a cache mode of WP or better), and then translate the
88 * protection bits back into the cache mode using __pte2cm_idx() and the
89 * __pte2cachemode_tbl[] array. This will return the really used cache mode.
90 */
91bool x86_has_pat_wp(void)
92{
93 uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
94
95 return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
96}
97
98enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
99{
100 unsigned long masked;
101
102 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
103 if (likely(masked == 0))
104 return 0;
105 return __pte2cachemode_tbl[__pte2cm_idx(masked)];
106}
107
108static unsigned long __initdata pgt_buf_start;
109static unsigned long __initdata pgt_buf_end;
110static unsigned long __initdata pgt_buf_top;
111
112static unsigned long min_pfn_mapped;
113
114static bool __initdata can_use_brk_pgt = true;
115
116/*
117 * Pages returned are already directly mapped.
118 *
119 * Changing that is likely to break Xen, see commit:
120 *
121 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
122 *
123 * for detailed information.
124 */
125__ref void *alloc_low_pages(unsigned int num)
126{
127 unsigned long pfn;
128 int i;
129
130 if (after_bootmem) {
131 unsigned int order;
132
133 order = get_order((unsigned long)num << PAGE_SHIFT);
134 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
135 }
136
137 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
138 unsigned long ret = 0;
139
140 if (min_pfn_mapped < max_pfn_mapped) {
141 ret = memblock_phys_alloc_range(
142 PAGE_SIZE * num, PAGE_SIZE,
143 min_pfn_mapped << PAGE_SHIFT,
144 max_pfn_mapped << PAGE_SHIFT);
145 }
146 if (!ret && can_use_brk_pgt)
147 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
148
149 if (!ret)
150 panic("alloc_low_pages: can not alloc memory");
151
152 pfn = ret >> PAGE_SHIFT;
153 } else {
154 pfn = pgt_buf_end;
155 pgt_buf_end += num;
156 }
157
158 for (i = 0; i < num; i++) {
159 void *adr;
160
161 adr = __va((pfn + i) << PAGE_SHIFT);
162 clear_page(adr);
163 }
164
165 return __va(pfn << PAGE_SHIFT);
166}
167
168/*
169 * By default need to be able to allocate page tables below PGD firstly for
170 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
171 * With KASLR memory randomization, depending on the machine e820 memory and the
172 * PUD alignment, twice that many pages may be needed when KASLR memory
173 * randomization is enabled.
174 */
175
176#ifndef CONFIG_X86_5LEVEL
177#define INIT_PGD_PAGE_TABLES 3
178#else
179#define INIT_PGD_PAGE_TABLES 4
180#endif
181
182#ifndef CONFIG_RANDOMIZE_MEMORY
183#define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
184#else
185#define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
186#endif
187
188#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
189RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
190void __init early_alloc_pgt_buf(void)
191{
192 unsigned long tables = INIT_PGT_BUF_SIZE;
193 phys_addr_t base;
194
195 base = __pa(extend_brk(tables, PAGE_SIZE));
196
197 pgt_buf_start = base >> PAGE_SHIFT;
198 pgt_buf_end = pgt_buf_start;
199 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
200}
201
202int after_bootmem;
203
204early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
205
206struct map_range {
207 unsigned long start;
208 unsigned long end;
209 unsigned page_size_mask;
210};
211
212static int page_size_mask;
213
214/*
215 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
216 * enable and PPro Global page enable), so that any CPU's that boot
217 * up after us can get the correct flags. Invoked on the boot CPU.
218 */
219static inline void cr4_set_bits_and_update_boot(unsigned long mask)
220{
221 mmu_cr4_features |= mask;
222 if (trampoline_cr4_features)
223 *trampoline_cr4_features = mmu_cr4_features;
224 cr4_set_bits(mask);
225}
226
227static void __init probe_page_size_mask(void)
228{
229 /*
230 * For pagealloc debugging, identity mapping will use small pages.
231 * This will simplify cpa(), which otherwise needs to support splitting
232 * large pages into small in interrupt context, etc.
233 */
234 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
235 page_size_mask |= 1 << PG_LEVEL_2M;
236 else
237 direct_gbpages = 0;
238
239 /* Enable PSE if available */
240 if (boot_cpu_has(X86_FEATURE_PSE))
241 cr4_set_bits_and_update_boot(X86_CR4_PSE);
242
243 /* Enable PGE if available */
244 __supported_pte_mask &= ~_PAGE_GLOBAL;
245 if (boot_cpu_has(X86_FEATURE_PGE)) {
246 cr4_set_bits_and_update_boot(X86_CR4_PGE);
247 __supported_pte_mask |= _PAGE_GLOBAL;
248 }
249
250 /* By the default is everything supported: */
251 __default_kernel_pte_mask = __supported_pte_mask;
252 /* Except when with PTI where the kernel is mostly non-Global: */
253 if (cpu_feature_enabled(X86_FEATURE_PTI))
254 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
255
256 /* Enable 1 GB linear kernel mappings if available: */
257 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
258 printk(KERN_INFO "Using GB pages for direct mapping\n");
259 page_size_mask |= 1 << PG_LEVEL_1G;
260 } else {
261 direct_gbpages = 0;
262 }
263}
264
265/*
266 * INVLPG may not properly flush Global entries on
267 * these CPUs. New microcode fixes the issue.
268 */
269static const struct x86_cpu_id invlpg_miss_ids[] = {
270 X86_MATCH_VFM(INTEL_ALDERLAKE, 0x2e),
271 X86_MATCH_VFM(INTEL_ALDERLAKE_L, 0x42c),
272 X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0x11),
273 X86_MATCH_VFM(INTEL_RAPTORLAKE, 0x118),
274 X86_MATCH_VFM(INTEL_RAPTORLAKE_P, 0x4117),
275 X86_MATCH_VFM(INTEL_RAPTORLAKE_S, 0x2e),
276 {}
277};
278
279static void setup_pcid(void)
280{
281 const struct x86_cpu_id *invlpg_miss_match;
282
283 if (!IS_ENABLED(CONFIG_X86_64))
284 return;
285
286 if (!boot_cpu_has(X86_FEATURE_PCID))
287 return;
288
289 invlpg_miss_match = x86_match_cpu(invlpg_miss_ids);
290
291 if (invlpg_miss_match &&
292 boot_cpu_data.microcode < invlpg_miss_match->driver_data) {
293 pr_info("Incomplete global flushes, disabling PCID");
294 setup_clear_cpu_cap(X86_FEATURE_PCID);
295 return;
296 }
297
298 if (boot_cpu_has(X86_FEATURE_PGE)) {
299 /*
300 * This can't be cr4_set_bits_and_update_boot() -- the
301 * trampoline code can't handle CR4.PCIDE and it wouldn't
302 * do any good anyway. Despite the name,
303 * cr4_set_bits_and_update_boot() doesn't actually cause
304 * the bits in question to remain set all the way through
305 * the secondary boot asm.
306 *
307 * Instead, we brute-force it and set CR4.PCIDE manually in
308 * start_secondary().
309 */
310 cr4_set_bits(X86_CR4_PCIDE);
311 } else {
312 /*
313 * flush_tlb_all(), as currently implemented, won't work if
314 * PCID is on but PGE is not. Since that combination
315 * doesn't exist on real hardware, there's no reason to try
316 * to fully support it, but it's polite to avoid corrupting
317 * data if we're on an improperly configured VM.
318 */
319 setup_clear_cpu_cap(X86_FEATURE_PCID);
320 }
321}
322
323#ifdef CONFIG_X86_32
324#define NR_RANGE_MR 3
325#else /* CONFIG_X86_64 */
326#define NR_RANGE_MR 5
327#endif
328
329static int __meminit save_mr(struct map_range *mr, int nr_range,
330 unsigned long start_pfn, unsigned long end_pfn,
331 unsigned long page_size_mask)
332{
333 if (start_pfn < end_pfn) {
334 if (nr_range >= NR_RANGE_MR)
335 panic("run out of range for init_memory_mapping\n");
336 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
337 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
338 mr[nr_range].page_size_mask = page_size_mask;
339 nr_range++;
340 }
341
342 return nr_range;
343}
344
345/*
346 * adjust the page_size_mask for small range to go with
347 * big page size instead small one if nearby are ram too.
348 */
349static void __ref adjust_range_page_size_mask(struct map_range *mr,
350 int nr_range)
351{
352 int i;
353
354 for (i = 0; i < nr_range; i++) {
355 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
356 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
357 unsigned long start = round_down(mr[i].start, PMD_SIZE);
358 unsigned long end = round_up(mr[i].end, PMD_SIZE);
359
360#ifdef CONFIG_X86_32
361 if ((end >> PAGE_SHIFT) > max_low_pfn)
362 continue;
363#endif
364
365 if (memblock_is_region_memory(start, end - start))
366 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
367 }
368 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
369 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
370 unsigned long start = round_down(mr[i].start, PUD_SIZE);
371 unsigned long end = round_up(mr[i].end, PUD_SIZE);
372
373 if (memblock_is_region_memory(start, end - start))
374 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
375 }
376 }
377}
378
379static const char *page_size_string(struct map_range *mr)
380{
381 static const char str_1g[] = "1G";
382 static const char str_2m[] = "2M";
383 static const char str_4m[] = "4M";
384 static const char str_4k[] = "4k";
385
386 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
387 return str_1g;
388 /*
389 * 32-bit without PAE has a 4M large page size.
390 * PG_LEVEL_2M is misnamed, but we can at least
391 * print out the right size in the string.
392 */
393 if (IS_ENABLED(CONFIG_X86_32) &&
394 !IS_ENABLED(CONFIG_X86_PAE) &&
395 mr->page_size_mask & (1<<PG_LEVEL_2M))
396 return str_4m;
397
398 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
399 return str_2m;
400
401 return str_4k;
402}
403
404static int __meminit split_mem_range(struct map_range *mr, int nr_range,
405 unsigned long start,
406 unsigned long end)
407{
408 unsigned long start_pfn, end_pfn, limit_pfn;
409 unsigned long pfn;
410 int i;
411
412 limit_pfn = PFN_DOWN(end);
413
414 /* head if not big page alignment ? */
415 pfn = start_pfn = PFN_DOWN(start);
416#ifdef CONFIG_X86_32
417 /*
418 * Don't use a large page for the first 2/4MB of memory
419 * because there are often fixed size MTRRs in there
420 * and overlapping MTRRs into large pages can cause
421 * slowdowns.
422 */
423 if (pfn == 0)
424 end_pfn = PFN_DOWN(PMD_SIZE);
425 else
426 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
427#else /* CONFIG_X86_64 */
428 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
429#endif
430 if (end_pfn > limit_pfn)
431 end_pfn = limit_pfn;
432 if (start_pfn < end_pfn) {
433 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
434 pfn = end_pfn;
435 }
436
437 /* big page (2M) range */
438 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
439#ifdef CONFIG_X86_32
440 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
441#else /* CONFIG_X86_64 */
442 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
443 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
444 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
445#endif
446
447 if (start_pfn < end_pfn) {
448 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
449 page_size_mask & (1<<PG_LEVEL_2M));
450 pfn = end_pfn;
451 }
452
453#ifdef CONFIG_X86_64
454 /* big page (1G) range */
455 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
456 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
457 if (start_pfn < end_pfn) {
458 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
459 page_size_mask &
460 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
461 pfn = end_pfn;
462 }
463
464 /* tail is not big page (1G) alignment */
465 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
466 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
467 if (start_pfn < end_pfn) {
468 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
469 page_size_mask & (1<<PG_LEVEL_2M));
470 pfn = end_pfn;
471 }
472#endif
473
474 /* tail is not big page (2M) alignment */
475 start_pfn = pfn;
476 end_pfn = limit_pfn;
477 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
478
479 if (!after_bootmem)
480 adjust_range_page_size_mask(mr, nr_range);
481
482 /* try to merge same page size and continuous */
483 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
484 unsigned long old_start;
485 if (mr[i].end != mr[i+1].start ||
486 mr[i].page_size_mask != mr[i+1].page_size_mask)
487 continue;
488 /* move it */
489 old_start = mr[i].start;
490 memmove(&mr[i], &mr[i+1],
491 (nr_range - 1 - i) * sizeof(struct map_range));
492 mr[i--].start = old_start;
493 nr_range--;
494 }
495
496 for (i = 0; i < nr_range; i++)
497 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
498 mr[i].start, mr[i].end - 1,
499 page_size_string(&mr[i]));
500
501 return nr_range;
502}
503
504struct range pfn_mapped[E820_MAX_ENTRIES];
505int nr_pfn_mapped;
506
507static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
508{
509 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
510 nr_pfn_mapped, start_pfn, end_pfn);
511 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
512
513 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
514
515 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
516 max_low_pfn_mapped = max(max_low_pfn_mapped,
517 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
518}
519
520bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
521{
522 int i;
523
524 for (i = 0; i < nr_pfn_mapped; i++)
525 if ((start_pfn >= pfn_mapped[i].start) &&
526 (end_pfn <= pfn_mapped[i].end))
527 return true;
528
529 return false;
530}
531
532/*
533 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
534 * This runs before bootmem is initialized and gets pages directly from
535 * the physical memory. To access them they are temporarily mapped.
536 */
537unsigned long __ref init_memory_mapping(unsigned long start,
538 unsigned long end, pgprot_t prot)
539{
540 struct map_range mr[NR_RANGE_MR];
541 unsigned long ret = 0;
542 int nr_range, i;
543
544 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
545 start, end - 1);
546
547 memset(mr, 0, sizeof(mr));
548 nr_range = split_mem_range(mr, 0, start, end);
549
550 for (i = 0; i < nr_range; i++)
551 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
552 mr[i].page_size_mask,
553 prot);
554
555 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
556
557 return ret >> PAGE_SHIFT;
558}
559
560/*
561 * We need to iterate through the E820 memory map and create direct mappings
562 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
563 * create direct mappings for all pfns from [0 to max_low_pfn) and
564 * [4GB to max_pfn) because of possible memory holes in high addresses
565 * that cannot be marked as UC by fixed/variable range MTRRs.
566 * Depending on the alignment of E820 ranges, this may possibly result
567 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
568 *
569 * init_mem_mapping() calls init_range_memory_mapping() with big range.
570 * That range would have hole in the middle or ends, and only ram parts
571 * will be mapped in init_range_memory_mapping().
572 */
573static unsigned long __init init_range_memory_mapping(
574 unsigned long r_start,
575 unsigned long r_end)
576{
577 unsigned long start_pfn, end_pfn;
578 unsigned long mapped_ram_size = 0;
579 int i;
580
581 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
582 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
583 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
584 if (start >= end)
585 continue;
586
587 /*
588 * if it is overlapping with brk pgt, we need to
589 * alloc pgt buf from memblock instead.
590 */
591 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
592 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
593 init_memory_mapping(start, end, PAGE_KERNEL);
594 mapped_ram_size += end - start;
595 can_use_brk_pgt = true;
596 }
597
598 return mapped_ram_size;
599}
600
601static unsigned long __init get_new_step_size(unsigned long step_size)
602{
603 /*
604 * Initial mapped size is PMD_SIZE (2M).
605 * We can not set step_size to be PUD_SIZE (1G) yet.
606 * In worse case, when we cross the 1G boundary, and
607 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
608 * to map 1G range with PTE. Hence we use one less than the
609 * difference of page table level shifts.
610 *
611 * Don't need to worry about overflow in the top-down case, on 32bit,
612 * when step_size is 0, round_down() returns 0 for start, and that
613 * turns it into 0x100000000ULL.
614 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
615 * needs to be taken into consideration by the code below.
616 */
617 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
618}
619
620/**
621 * memory_map_top_down - Map [map_start, map_end) top down
622 * @map_start: start address of the target memory range
623 * @map_end: end address of the target memory range
624 *
625 * This function will setup direct mapping for memory range
626 * [map_start, map_end) in top-down. That said, the page tables
627 * will be allocated at the end of the memory, and we map the
628 * memory in top-down.
629 */
630static void __init memory_map_top_down(unsigned long map_start,
631 unsigned long map_end)
632{
633 unsigned long real_end, last_start;
634 unsigned long step_size;
635 unsigned long addr;
636 unsigned long mapped_ram_size = 0;
637
638 /*
639 * Systems that have many reserved areas near top of the memory,
640 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
641 * require lots of 4K mappings which may exhaust pgt_buf.
642 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
643 * there is enough mapped memory that can be allocated from
644 * memblock.
645 */
646 addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
647 map_end);
648 memblock_phys_free(addr, PMD_SIZE);
649 real_end = addr + PMD_SIZE;
650
651 /* step_size need to be small so pgt_buf from BRK could cover it */
652 step_size = PMD_SIZE;
653 max_pfn_mapped = 0; /* will get exact value next */
654 min_pfn_mapped = real_end >> PAGE_SHIFT;
655 last_start = real_end;
656
657 /*
658 * We start from the top (end of memory) and go to the bottom.
659 * The memblock_find_in_range() gets us a block of RAM from the
660 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
661 * for page table.
662 */
663 while (last_start > map_start) {
664 unsigned long start;
665
666 if (last_start > step_size) {
667 start = round_down(last_start - 1, step_size);
668 if (start < map_start)
669 start = map_start;
670 } else
671 start = map_start;
672 mapped_ram_size += init_range_memory_mapping(start,
673 last_start);
674 last_start = start;
675 min_pfn_mapped = last_start >> PAGE_SHIFT;
676 if (mapped_ram_size >= step_size)
677 step_size = get_new_step_size(step_size);
678 }
679
680 if (real_end < map_end)
681 init_range_memory_mapping(real_end, map_end);
682}
683
684/**
685 * memory_map_bottom_up - Map [map_start, map_end) bottom up
686 * @map_start: start address of the target memory range
687 * @map_end: end address of the target memory range
688 *
689 * This function will setup direct mapping for memory range
690 * [map_start, map_end) in bottom-up. Since we have limited the
691 * bottom-up allocation above the kernel, the page tables will
692 * be allocated just above the kernel and we map the memory
693 * in [map_start, map_end) in bottom-up.
694 */
695static void __init memory_map_bottom_up(unsigned long map_start,
696 unsigned long map_end)
697{
698 unsigned long next, start;
699 unsigned long mapped_ram_size = 0;
700 /* step_size need to be small so pgt_buf from BRK could cover it */
701 unsigned long step_size = PMD_SIZE;
702
703 start = map_start;
704 min_pfn_mapped = start >> PAGE_SHIFT;
705
706 /*
707 * We start from the bottom (@map_start) and go to the top (@map_end).
708 * The memblock_find_in_range() gets us a block of RAM from the
709 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
710 * for page table.
711 */
712 while (start < map_end) {
713 if (step_size && map_end - start > step_size) {
714 next = round_up(start + 1, step_size);
715 if (next > map_end)
716 next = map_end;
717 } else {
718 next = map_end;
719 }
720
721 mapped_ram_size += init_range_memory_mapping(start, next);
722 start = next;
723
724 if (mapped_ram_size >= step_size)
725 step_size = get_new_step_size(step_size);
726 }
727}
728
729/*
730 * The real mode trampoline, which is required for bootstrapping CPUs
731 * occupies only a small area under the low 1MB. See reserve_real_mode()
732 * for details.
733 *
734 * If KASLR is disabled the first PGD entry of the direct mapping is copied
735 * to map the real mode trampoline.
736 *
737 * If KASLR is enabled, copy only the PUD which covers the low 1MB
738 * area. This limits the randomization granularity to 1GB for both 4-level
739 * and 5-level paging.
740 */
741static void __init init_trampoline(void)
742{
743#ifdef CONFIG_X86_64
744 /*
745 * The code below will alias kernel page-tables in the user-range of the
746 * address space, including the Global bit. So global TLB entries will
747 * be created when using the trampoline page-table.
748 */
749 if (!kaslr_memory_enabled())
750 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
751 else
752 init_trampoline_kaslr();
753#endif
754}
755
756void __init init_mem_mapping(void)
757{
758 unsigned long end;
759
760 pti_check_boottime_disable();
761 probe_page_size_mask();
762 setup_pcid();
763
764#ifdef CONFIG_X86_64
765 end = max_pfn << PAGE_SHIFT;
766#else
767 end = max_low_pfn << PAGE_SHIFT;
768#endif
769
770 /* the ISA range is always mapped regardless of memory holes */
771 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
772
773 /* Init the trampoline, possibly with KASLR memory offset */
774 init_trampoline();
775
776 /*
777 * If the allocation is in bottom-up direction, we setup direct mapping
778 * in bottom-up, otherwise we setup direct mapping in top-down.
779 */
780 if (memblock_bottom_up()) {
781 unsigned long kernel_end = __pa_symbol(_end);
782
783 /*
784 * we need two separate calls here. This is because we want to
785 * allocate page tables above the kernel. So we first map
786 * [kernel_end, end) to make memory above the kernel be mapped
787 * as soon as possible. And then use page tables allocated above
788 * the kernel to map [ISA_END_ADDRESS, kernel_end).
789 */
790 memory_map_bottom_up(kernel_end, end);
791 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
792 } else {
793 memory_map_top_down(ISA_END_ADDRESS, end);
794 }
795
796#ifdef CONFIG_X86_64
797 if (max_pfn > max_low_pfn) {
798 /* can we preserve max_low_pfn ?*/
799 max_low_pfn = max_pfn;
800 }
801#else
802 early_ioremap_page_table_range_init();
803#endif
804
805 load_cr3(swapper_pg_dir);
806 __flush_tlb_all();
807
808 x86_init.hyper.init_mem_mapping();
809
810 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
811}
812
813/*
814 * Initialize an mm_struct to be used during poking and a pointer to be used
815 * during patching.
816 */
817void __init poking_init(void)
818{
819 spinlock_t *ptl;
820 pte_t *ptep;
821
822 poking_mm = mm_alloc();
823 BUG_ON(!poking_mm);
824
825 /* Xen PV guests need the PGD to be pinned. */
826 paravirt_enter_mmap(poking_mm);
827
828 /*
829 * Randomize the poking address, but make sure that the following page
830 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
831 * and adjust the address if the PMD ends after the first one.
832 */
833 poking_addr = TASK_UNMAPPED_BASE;
834 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
835 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
836 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
837
838 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
839 poking_addr += PAGE_SIZE;
840
841 /*
842 * We need to trigger the allocation of the page-tables that will be
843 * needed for poking now. Later, poking may be performed in an atomic
844 * section, which might cause allocation to fail.
845 */
846 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
847 BUG_ON(!ptep);
848 pte_unmap_unlock(ptep, ptl);
849}
850
851/*
852 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
853 * is valid. The argument is a physical page number.
854 *
855 * On x86, access has to be given to the first megabyte of RAM because that
856 * area traditionally contains BIOS code and data regions used by X, dosemu,
857 * and similar apps. Since they map the entire memory range, the whole range
858 * must be allowed (for mapping), but any areas that would otherwise be
859 * disallowed are flagged as being "zero filled" instead of rejected.
860 * Access has to be given to non-kernel-ram areas as well, these contain the
861 * PCI mmio resources as well as potential bios/acpi data regions.
862 */
863int devmem_is_allowed(unsigned long pagenr)
864{
865 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
866 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
867 != REGION_DISJOINT) {
868 /*
869 * For disallowed memory regions in the low 1MB range,
870 * request that the page be shown as all zeros.
871 */
872 if (pagenr < 256)
873 return 2;
874
875 return 0;
876 }
877
878 /*
879 * This must follow RAM test, since System RAM is considered a
880 * restricted resource under CONFIG_STRICT_DEVMEM.
881 */
882 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
883 /* Low 1MB bypasses iomem restrictions. */
884 if (pagenr < 256)
885 return 1;
886
887 return 0;
888 }
889
890 return 1;
891}
892
893void free_init_pages(const char *what, unsigned long begin, unsigned long end)
894{
895 unsigned long begin_aligned, end_aligned;
896
897 /* Make sure boundaries are page aligned */
898 begin_aligned = PAGE_ALIGN(begin);
899 end_aligned = end & PAGE_MASK;
900
901 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
902 begin = begin_aligned;
903 end = end_aligned;
904 }
905
906 if (begin >= end)
907 return;
908
909 /*
910 * If debugging page accesses then do not free this memory but
911 * mark them not present - any buggy init-section access will
912 * create a kernel page fault:
913 */
914 if (debug_pagealloc_enabled()) {
915 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
916 begin, end - 1);
917 /*
918 * Inform kmemleak about the hole in the memory since the
919 * corresponding pages will be unmapped.
920 */
921 kmemleak_free_part((void *)begin, end - begin);
922 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
923 } else {
924 /*
925 * We just marked the kernel text read only above, now that
926 * we are going to free part of that, we need to make that
927 * writeable and non-executable first.
928 */
929 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
930 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
931
932 free_reserved_area((void *)begin, (void *)end,
933 POISON_FREE_INITMEM, what);
934 }
935}
936
937/*
938 * begin/end can be in the direct map or the "high kernel mapping"
939 * used for the kernel image only. free_init_pages() will do the
940 * right thing for either kind of address.
941 */
942void free_kernel_image_pages(const char *what, void *begin, void *end)
943{
944 unsigned long begin_ul = (unsigned long)begin;
945 unsigned long end_ul = (unsigned long)end;
946 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
947
948 free_init_pages(what, begin_ul, end_ul);
949
950 /*
951 * PTI maps some of the kernel into userspace. For performance,
952 * this includes some kernel areas that do not contain secrets.
953 * Those areas might be adjacent to the parts of the kernel image
954 * being freed, which may contain secrets. Remove the "high kernel
955 * image mapping" for these freed areas, ensuring they are not even
956 * potentially vulnerable to Meltdown regardless of the specific
957 * optimizations PTI is currently using.
958 *
959 * The "noalias" prevents unmapping the direct map alias which is
960 * needed to access the freed pages.
961 *
962 * This is only valid for 64bit kernels. 32bit has only one mapping
963 * which can't be treated in this way for obvious reasons.
964 */
965 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
966 set_memory_np_noalias(begin_ul, len_pages);
967}
968
969void __ref free_initmem(void)
970{
971 e820__reallocate_tables();
972
973 mem_encrypt_free_decrypted_mem();
974
975 free_kernel_image_pages("unused kernel image (initmem)",
976 &__init_begin, &__init_end);
977}
978
979#ifdef CONFIG_BLK_DEV_INITRD
980void __init free_initrd_mem(unsigned long start, unsigned long end)
981{
982 /*
983 * end could be not aligned, and We can not align that,
984 * decompressor could be confused by aligned initrd_end
985 * We already reserve the end partial page before in
986 * - i386_start_kernel()
987 * - x86_64_start_kernel()
988 * - relocate_initrd()
989 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
990 */
991 free_init_pages("initrd", start, PAGE_ALIGN(end));
992}
993#endif
994
995void __init zone_sizes_init(void)
996{
997 unsigned long max_zone_pfns[MAX_NR_ZONES];
998
999 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1000
1001#ifdef CONFIG_ZONE_DMA
1002 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
1003#endif
1004#ifdef CONFIG_ZONE_DMA32
1005 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
1006#endif
1007 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1008#ifdef CONFIG_HIGHMEM
1009 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1010#endif
1011
1012 free_area_init(max_zone_pfns);
1013}
1014
1015__visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1016 .loaded_mm = &init_mm,
1017 .next_asid = 1,
1018 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
1019};
1020
1021#ifdef CONFIG_ADDRESS_MASKING
1022DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1023EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1024#endif
1025
1026void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1027{
1028 /* entry 0 MUST be WB (hardwired to speed up translations) */
1029 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1030
1031 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1032 __pte2cachemode_tbl[entry] = cache;
1033}
1034
1035#ifdef CONFIG_SWAP
1036unsigned long arch_max_swapfile_size(void)
1037{
1038 unsigned long pages;
1039
1040 pages = generic_max_swapfile_size();
1041
1042 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1043 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1044 unsigned long long l1tf_limit = l1tf_pfn_limit();
1045 /*
1046 * We encode swap offsets also with 3 bits below those for pfn
1047 * which makes the usable limit higher.
1048 */
1049#if CONFIG_PGTABLE_LEVELS > 2
1050 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1051#endif
1052 pages = min_t(unsigned long long, l1tf_limit, pages);
1053 }
1054 return pages;
1055}
1056#endif
1057
1058#ifdef CONFIG_EXECMEM
1059static struct execmem_info execmem_info __ro_after_init;
1060
1061#ifdef CONFIG_ARCH_HAS_EXECMEM_ROX
1062void execmem_fill_trapping_insns(void *ptr, size_t size, bool writeable)
1063{
1064 /* fill memory with INT3 instructions */
1065 if (writeable)
1066 memset(ptr, INT3_INSN_OPCODE, size);
1067 else
1068 text_poke_set(ptr, INT3_INSN_OPCODE, size);
1069}
1070#endif
1071
1072struct execmem_info __init *execmem_arch_setup(void)
1073{
1074 unsigned long start, offset = 0;
1075 enum execmem_range_flags flags;
1076 pgprot_t pgprot;
1077
1078 if (kaslr_enabled())
1079 offset = get_random_u32_inclusive(1, 1024) * PAGE_SIZE;
1080
1081 start = MODULES_VADDR + offset;
1082
1083 if (IS_ENABLED(CONFIG_ARCH_HAS_EXECMEM_ROX) &&
1084 cpu_feature_enabled(X86_FEATURE_PSE)) {
1085 pgprot = PAGE_KERNEL_ROX;
1086 flags = EXECMEM_KASAN_SHADOW | EXECMEM_ROX_CACHE;
1087 } else {
1088 pgprot = PAGE_KERNEL;
1089 flags = EXECMEM_KASAN_SHADOW;
1090 }
1091
1092 execmem_info = (struct execmem_info){
1093 .ranges = {
1094 [EXECMEM_MODULE_TEXT] = {
1095 .flags = flags,
1096 .start = start,
1097 .end = MODULES_END,
1098 .pgprot = pgprot,
1099 .alignment = MODULE_ALIGN,
1100 },
1101 [EXECMEM_KPROBES ... EXECMEM_BPF] = {
1102 .flags = EXECMEM_KASAN_SHADOW,
1103 .start = start,
1104 .end = MODULES_END,
1105 .pgprot = PAGE_KERNEL,
1106 .alignment = MODULE_ALIGN,
1107 },
1108 [EXECMEM_MODULE_DATA] = {
1109 .flags = EXECMEM_KASAN_SHADOW,
1110 .start = start,
1111 .end = MODULES_END,
1112 .pgprot = PAGE_KERNEL,
1113 .alignment = MODULE_ALIGN,
1114 },
1115 },
1116 };
1117
1118 return &execmem_info;
1119}
1120#endif /* CONFIG_EXECMEM */