Loading...
1#include <linux/gfp.h>
2#include <linux/initrd.h>
3#include <linux/ioport.h>
4#include <linux/swap.h>
5#include <linux/memblock.h>
6#include <linux/swapfile.h>
7#include <linux/swapops.h>
8#include <linux/kmemleak.h>
9#include <linux/sched/task.h>
10
11#include <asm/set_memory.h>
12#include <asm/e820/api.h>
13#include <asm/init.h>
14#include <asm/page.h>
15#include <asm/page_types.h>
16#include <asm/sections.h>
17#include <asm/setup.h>
18#include <asm/tlbflush.h>
19#include <asm/tlb.h>
20#include <asm/proto.h>
21#include <asm/dma.h> /* for MAX_DMA_PFN */
22#include <asm/microcode.h>
23#include <asm/kaslr.h>
24#include <asm/hypervisor.h>
25#include <asm/cpufeature.h>
26#include <asm/pti.h>
27#include <asm/text-patching.h>
28
29/*
30 * We need to define the tracepoints somewhere, and tlb.c
31 * is only compied when SMP=y.
32 */
33#define CREATE_TRACE_POINTS
34#include <trace/events/tlb.h>
35
36#include "mm_internal.h"
37
38/*
39 * Tables translating between page_cache_type_t and pte encoding.
40 *
41 * The default values are defined statically as minimal supported mode;
42 * WC and WT fall back to UC-. pat_init() updates these values to support
43 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
44 * for the details. Note, __early_ioremap() used during early boot-time
45 * takes pgprot_t (pte encoding) and does not use these tables.
46 *
47 * Index into __cachemode2pte_tbl[] is the cachemode.
48 *
49 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
50 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
51 */
52uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
53 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
54 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
55 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
56 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
59};
60EXPORT_SYMBOL(__cachemode2pte_tbl);
61
62uint8_t __pte2cachemode_tbl[8] = {
63 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
64 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
65 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
66 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
67 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
68 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
69 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
70 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
71};
72EXPORT_SYMBOL(__pte2cachemode_tbl);
73
74static unsigned long __initdata pgt_buf_start;
75static unsigned long __initdata pgt_buf_end;
76static unsigned long __initdata pgt_buf_top;
77
78static unsigned long min_pfn_mapped;
79
80static bool __initdata can_use_brk_pgt = true;
81
82/*
83 * Pages returned are already directly mapped.
84 *
85 * Changing that is likely to break Xen, see commit:
86 *
87 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
88 *
89 * for detailed information.
90 */
91__ref void *alloc_low_pages(unsigned int num)
92{
93 unsigned long pfn;
94 int i;
95
96 if (after_bootmem) {
97 unsigned int order;
98
99 order = get_order((unsigned long)num << PAGE_SHIFT);
100 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
101 }
102
103 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
104 unsigned long ret = 0;
105
106 if (min_pfn_mapped < max_pfn_mapped) {
107 ret = memblock_find_in_range(
108 min_pfn_mapped << PAGE_SHIFT,
109 max_pfn_mapped << PAGE_SHIFT,
110 PAGE_SIZE * num , PAGE_SIZE);
111 }
112 if (ret)
113 memblock_reserve(ret, PAGE_SIZE * num);
114 else if (can_use_brk_pgt)
115 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
116
117 if (!ret)
118 panic("alloc_low_pages: can not alloc memory");
119
120 pfn = ret >> PAGE_SHIFT;
121 } else {
122 pfn = pgt_buf_end;
123 pgt_buf_end += num;
124 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
125 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
126 }
127
128 for (i = 0; i < num; i++) {
129 void *adr;
130
131 adr = __va((pfn + i) << PAGE_SHIFT);
132 clear_page(adr);
133 }
134
135 return __va(pfn << PAGE_SHIFT);
136}
137
138/*
139 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
140 * With KASLR memory randomization, depending on the machine e820 memory
141 * and the PUD alignment. We may need twice more pages when KASLR memory
142 * randomization is enabled.
143 */
144#ifndef CONFIG_RANDOMIZE_MEMORY
145#define INIT_PGD_PAGE_COUNT 6
146#else
147#define INIT_PGD_PAGE_COUNT 12
148#endif
149#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
150RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
151void __init early_alloc_pgt_buf(void)
152{
153 unsigned long tables = INIT_PGT_BUF_SIZE;
154 phys_addr_t base;
155
156 base = __pa(extend_brk(tables, PAGE_SIZE));
157
158 pgt_buf_start = base >> PAGE_SHIFT;
159 pgt_buf_end = pgt_buf_start;
160 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
161}
162
163int after_bootmem;
164
165early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
166
167struct map_range {
168 unsigned long start;
169 unsigned long end;
170 unsigned page_size_mask;
171};
172
173static int page_size_mask;
174
175static void __init probe_page_size_mask(void)
176{
177 /*
178 * For pagealloc debugging, identity mapping will use small pages.
179 * This will simplify cpa(), which otherwise needs to support splitting
180 * large pages into small in interrupt context, etc.
181 */
182 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
183 page_size_mask |= 1 << PG_LEVEL_2M;
184 else
185 direct_gbpages = 0;
186
187 /* Enable PSE if available */
188 if (boot_cpu_has(X86_FEATURE_PSE))
189 cr4_set_bits_and_update_boot(X86_CR4_PSE);
190
191 /* Enable PGE if available */
192 __supported_pte_mask &= ~_PAGE_GLOBAL;
193 if (boot_cpu_has(X86_FEATURE_PGE)) {
194 cr4_set_bits_and_update_boot(X86_CR4_PGE);
195 __supported_pte_mask |= _PAGE_GLOBAL;
196 }
197
198 /* By the default is everything supported: */
199 __default_kernel_pte_mask = __supported_pte_mask;
200 /* Except when with PTI where the kernel is mostly non-Global: */
201 if (cpu_feature_enabled(X86_FEATURE_PTI))
202 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
203
204 /* Enable 1 GB linear kernel mappings if available: */
205 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
206 printk(KERN_INFO "Using GB pages for direct mapping\n");
207 page_size_mask |= 1 << PG_LEVEL_1G;
208 } else {
209 direct_gbpages = 0;
210 }
211}
212
213static void setup_pcid(void)
214{
215 if (!IS_ENABLED(CONFIG_X86_64))
216 return;
217
218 if (!boot_cpu_has(X86_FEATURE_PCID))
219 return;
220
221 if (boot_cpu_has(X86_FEATURE_PGE)) {
222 /*
223 * This can't be cr4_set_bits_and_update_boot() -- the
224 * trampoline code can't handle CR4.PCIDE and it wouldn't
225 * do any good anyway. Despite the name,
226 * cr4_set_bits_and_update_boot() doesn't actually cause
227 * the bits in question to remain set all the way through
228 * the secondary boot asm.
229 *
230 * Instead, we brute-force it and set CR4.PCIDE manually in
231 * start_secondary().
232 */
233 cr4_set_bits(X86_CR4_PCIDE);
234
235 /*
236 * INVPCID's single-context modes (2/3) only work if we set
237 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
238 * on systems that have X86_CR4_PCIDE clear, or that have
239 * no INVPCID support at all.
240 */
241 if (boot_cpu_has(X86_FEATURE_INVPCID))
242 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
243 } else {
244 /*
245 * flush_tlb_all(), as currently implemented, won't work if
246 * PCID is on but PGE is not. Since that combination
247 * doesn't exist on real hardware, there's no reason to try
248 * to fully support it, but it's polite to avoid corrupting
249 * data if we're on an improperly configured VM.
250 */
251 setup_clear_cpu_cap(X86_FEATURE_PCID);
252 }
253}
254
255#ifdef CONFIG_X86_32
256#define NR_RANGE_MR 3
257#else /* CONFIG_X86_64 */
258#define NR_RANGE_MR 5
259#endif
260
261static int __meminit save_mr(struct map_range *mr, int nr_range,
262 unsigned long start_pfn, unsigned long end_pfn,
263 unsigned long page_size_mask)
264{
265 if (start_pfn < end_pfn) {
266 if (nr_range >= NR_RANGE_MR)
267 panic("run out of range for init_memory_mapping\n");
268 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
269 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
270 mr[nr_range].page_size_mask = page_size_mask;
271 nr_range++;
272 }
273
274 return nr_range;
275}
276
277/*
278 * adjust the page_size_mask for small range to go with
279 * big page size instead small one if nearby are ram too.
280 */
281static void __ref adjust_range_page_size_mask(struct map_range *mr,
282 int nr_range)
283{
284 int i;
285
286 for (i = 0; i < nr_range; i++) {
287 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
288 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
289 unsigned long start = round_down(mr[i].start, PMD_SIZE);
290 unsigned long end = round_up(mr[i].end, PMD_SIZE);
291
292#ifdef CONFIG_X86_32
293 if ((end >> PAGE_SHIFT) > max_low_pfn)
294 continue;
295#endif
296
297 if (memblock_is_region_memory(start, end - start))
298 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
299 }
300 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
301 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
302 unsigned long start = round_down(mr[i].start, PUD_SIZE);
303 unsigned long end = round_up(mr[i].end, PUD_SIZE);
304
305 if (memblock_is_region_memory(start, end - start))
306 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
307 }
308 }
309}
310
311static const char *page_size_string(struct map_range *mr)
312{
313 static const char str_1g[] = "1G";
314 static const char str_2m[] = "2M";
315 static const char str_4m[] = "4M";
316 static const char str_4k[] = "4k";
317
318 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
319 return str_1g;
320 /*
321 * 32-bit without PAE has a 4M large page size.
322 * PG_LEVEL_2M is misnamed, but we can at least
323 * print out the right size in the string.
324 */
325 if (IS_ENABLED(CONFIG_X86_32) &&
326 !IS_ENABLED(CONFIG_X86_PAE) &&
327 mr->page_size_mask & (1<<PG_LEVEL_2M))
328 return str_4m;
329
330 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
331 return str_2m;
332
333 return str_4k;
334}
335
336static int __meminit split_mem_range(struct map_range *mr, int nr_range,
337 unsigned long start,
338 unsigned long end)
339{
340 unsigned long start_pfn, end_pfn, limit_pfn;
341 unsigned long pfn;
342 int i;
343
344 limit_pfn = PFN_DOWN(end);
345
346 /* head if not big page alignment ? */
347 pfn = start_pfn = PFN_DOWN(start);
348#ifdef CONFIG_X86_32
349 /*
350 * Don't use a large page for the first 2/4MB of memory
351 * because there are often fixed size MTRRs in there
352 * and overlapping MTRRs into large pages can cause
353 * slowdowns.
354 */
355 if (pfn == 0)
356 end_pfn = PFN_DOWN(PMD_SIZE);
357 else
358 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
359#else /* CONFIG_X86_64 */
360 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
361#endif
362 if (end_pfn > limit_pfn)
363 end_pfn = limit_pfn;
364 if (start_pfn < end_pfn) {
365 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
366 pfn = end_pfn;
367 }
368
369 /* big page (2M) range */
370 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
371#ifdef CONFIG_X86_32
372 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
373#else /* CONFIG_X86_64 */
374 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
375 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
376 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
377#endif
378
379 if (start_pfn < end_pfn) {
380 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
381 page_size_mask & (1<<PG_LEVEL_2M));
382 pfn = end_pfn;
383 }
384
385#ifdef CONFIG_X86_64
386 /* big page (1G) range */
387 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
388 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
389 if (start_pfn < end_pfn) {
390 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
391 page_size_mask &
392 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
393 pfn = end_pfn;
394 }
395
396 /* tail is not big page (1G) alignment */
397 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
398 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
399 if (start_pfn < end_pfn) {
400 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
401 page_size_mask & (1<<PG_LEVEL_2M));
402 pfn = end_pfn;
403 }
404#endif
405
406 /* tail is not big page (2M) alignment */
407 start_pfn = pfn;
408 end_pfn = limit_pfn;
409 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
410
411 if (!after_bootmem)
412 adjust_range_page_size_mask(mr, nr_range);
413
414 /* try to merge same page size and continuous */
415 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
416 unsigned long old_start;
417 if (mr[i].end != mr[i+1].start ||
418 mr[i].page_size_mask != mr[i+1].page_size_mask)
419 continue;
420 /* move it */
421 old_start = mr[i].start;
422 memmove(&mr[i], &mr[i+1],
423 (nr_range - 1 - i) * sizeof(struct map_range));
424 mr[i--].start = old_start;
425 nr_range--;
426 }
427
428 for (i = 0; i < nr_range; i++)
429 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
430 mr[i].start, mr[i].end - 1,
431 page_size_string(&mr[i]));
432
433 return nr_range;
434}
435
436struct range pfn_mapped[E820_MAX_ENTRIES];
437int nr_pfn_mapped;
438
439static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
440{
441 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
442 nr_pfn_mapped, start_pfn, end_pfn);
443 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
444
445 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
446
447 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
448 max_low_pfn_mapped = max(max_low_pfn_mapped,
449 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
450}
451
452bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
453{
454 int i;
455
456 for (i = 0; i < nr_pfn_mapped; i++)
457 if ((start_pfn >= pfn_mapped[i].start) &&
458 (end_pfn <= pfn_mapped[i].end))
459 return true;
460
461 return false;
462}
463
464/*
465 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
466 * This runs before bootmem is initialized and gets pages directly from
467 * the physical memory. To access them they are temporarily mapped.
468 */
469unsigned long __ref init_memory_mapping(unsigned long start,
470 unsigned long end)
471{
472 struct map_range mr[NR_RANGE_MR];
473 unsigned long ret = 0;
474 int nr_range, i;
475
476 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
477 start, end - 1);
478
479 memset(mr, 0, sizeof(mr));
480 nr_range = split_mem_range(mr, 0, start, end);
481
482 for (i = 0; i < nr_range; i++)
483 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
484 mr[i].page_size_mask);
485
486 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
487
488 return ret >> PAGE_SHIFT;
489}
490
491/*
492 * We need to iterate through the E820 memory map and create direct mappings
493 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
494 * create direct mappings for all pfns from [0 to max_low_pfn) and
495 * [4GB to max_pfn) because of possible memory holes in high addresses
496 * that cannot be marked as UC by fixed/variable range MTRRs.
497 * Depending on the alignment of E820 ranges, this may possibly result
498 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
499 *
500 * init_mem_mapping() calls init_range_memory_mapping() with big range.
501 * That range would have hole in the middle or ends, and only ram parts
502 * will be mapped in init_range_memory_mapping().
503 */
504static unsigned long __init init_range_memory_mapping(
505 unsigned long r_start,
506 unsigned long r_end)
507{
508 unsigned long start_pfn, end_pfn;
509 unsigned long mapped_ram_size = 0;
510 int i;
511
512 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
513 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
514 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
515 if (start >= end)
516 continue;
517
518 /*
519 * if it is overlapping with brk pgt, we need to
520 * alloc pgt buf from memblock instead.
521 */
522 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
523 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
524 init_memory_mapping(start, end);
525 mapped_ram_size += end - start;
526 can_use_brk_pgt = true;
527 }
528
529 return mapped_ram_size;
530}
531
532static unsigned long __init get_new_step_size(unsigned long step_size)
533{
534 /*
535 * Initial mapped size is PMD_SIZE (2M).
536 * We can not set step_size to be PUD_SIZE (1G) yet.
537 * In worse case, when we cross the 1G boundary, and
538 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
539 * to map 1G range with PTE. Hence we use one less than the
540 * difference of page table level shifts.
541 *
542 * Don't need to worry about overflow in the top-down case, on 32bit,
543 * when step_size is 0, round_down() returns 0 for start, and that
544 * turns it into 0x100000000ULL.
545 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
546 * needs to be taken into consideration by the code below.
547 */
548 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
549}
550
551/**
552 * memory_map_top_down - Map [map_start, map_end) top down
553 * @map_start: start address of the target memory range
554 * @map_end: end address of the target memory range
555 *
556 * This function will setup direct mapping for memory range
557 * [map_start, map_end) in top-down. That said, the page tables
558 * will be allocated at the end of the memory, and we map the
559 * memory in top-down.
560 */
561static void __init memory_map_top_down(unsigned long map_start,
562 unsigned long map_end)
563{
564 unsigned long real_end, start, last_start;
565 unsigned long step_size;
566 unsigned long addr;
567 unsigned long mapped_ram_size = 0;
568
569 /* xen has big range in reserved near end of ram, skip it at first.*/
570 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
571 real_end = addr + PMD_SIZE;
572
573 /* step_size need to be small so pgt_buf from BRK could cover it */
574 step_size = PMD_SIZE;
575 max_pfn_mapped = 0; /* will get exact value next */
576 min_pfn_mapped = real_end >> PAGE_SHIFT;
577 last_start = start = real_end;
578
579 /*
580 * We start from the top (end of memory) and go to the bottom.
581 * The memblock_find_in_range() gets us a block of RAM from the
582 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
583 * for page table.
584 */
585 while (last_start > map_start) {
586 if (last_start > step_size) {
587 start = round_down(last_start - 1, step_size);
588 if (start < map_start)
589 start = map_start;
590 } else
591 start = map_start;
592 mapped_ram_size += init_range_memory_mapping(start,
593 last_start);
594 last_start = start;
595 min_pfn_mapped = last_start >> PAGE_SHIFT;
596 if (mapped_ram_size >= step_size)
597 step_size = get_new_step_size(step_size);
598 }
599
600 if (real_end < map_end)
601 init_range_memory_mapping(real_end, map_end);
602}
603
604/**
605 * memory_map_bottom_up - Map [map_start, map_end) bottom up
606 * @map_start: start address of the target memory range
607 * @map_end: end address of the target memory range
608 *
609 * This function will setup direct mapping for memory range
610 * [map_start, map_end) in bottom-up. Since we have limited the
611 * bottom-up allocation above the kernel, the page tables will
612 * be allocated just above the kernel and we map the memory
613 * in [map_start, map_end) in bottom-up.
614 */
615static void __init memory_map_bottom_up(unsigned long map_start,
616 unsigned long map_end)
617{
618 unsigned long next, start;
619 unsigned long mapped_ram_size = 0;
620 /* step_size need to be small so pgt_buf from BRK could cover it */
621 unsigned long step_size = PMD_SIZE;
622
623 start = map_start;
624 min_pfn_mapped = start >> PAGE_SHIFT;
625
626 /*
627 * We start from the bottom (@map_start) and go to the top (@map_end).
628 * The memblock_find_in_range() gets us a block of RAM from the
629 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
630 * for page table.
631 */
632 while (start < map_end) {
633 if (step_size && map_end - start > step_size) {
634 next = round_up(start + 1, step_size);
635 if (next > map_end)
636 next = map_end;
637 } else {
638 next = map_end;
639 }
640
641 mapped_ram_size += init_range_memory_mapping(start, next);
642 start = next;
643
644 if (mapped_ram_size >= step_size)
645 step_size = get_new_step_size(step_size);
646 }
647}
648
649void __init init_mem_mapping(void)
650{
651 unsigned long end;
652
653 pti_check_boottime_disable();
654 probe_page_size_mask();
655 setup_pcid();
656
657#ifdef CONFIG_X86_64
658 end = max_pfn << PAGE_SHIFT;
659#else
660 end = max_low_pfn << PAGE_SHIFT;
661#endif
662
663 /* the ISA range is always mapped regardless of memory holes */
664 init_memory_mapping(0, ISA_END_ADDRESS);
665
666 /* Init the trampoline, possibly with KASLR memory offset */
667 init_trampoline();
668
669 /*
670 * If the allocation is in bottom-up direction, we setup direct mapping
671 * in bottom-up, otherwise we setup direct mapping in top-down.
672 */
673 if (memblock_bottom_up()) {
674 unsigned long kernel_end = __pa_symbol(_end);
675
676 /*
677 * we need two separate calls here. This is because we want to
678 * allocate page tables above the kernel. So we first map
679 * [kernel_end, end) to make memory above the kernel be mapped
680 * as soon as possible. And then use page tables allocated above
681 * the kernel to map [ISA_END_ADDRESS, kernel_end).
682 */
683 memory_map_bottom_up(kernel_end, end);
684 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
685 } else {
686 memory_map_top_down(ISA_END_ADDRESS, end);
687 }
688
689#ifdef CONFIG_X86_64
690 if (max_pfn > max_low_pfn) {
691 /* can we preseve max_low_pfn ?*/
692 max_low_pfn = max_pfn;
693 }
694#else
695 early_ioremap_page_table_range_init();
696#endif
697
698 load_cr3(swapper_pg_dir);
699 __flush_tlb_all();
700
701 x86_init.hyper.init_mem_mapping();
702
703 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
704}
705
706/*
707 * Initialize an mm_struct to be used during poking and a pointer to be used
708 * during patching.
709 */
710void __init poking_init(void)
711{
712 spinlock_t *ptl;
713 pte_t *ptep;
714
715 poking_mm = copy_init_mm();
716 BUG_ON(!poking_mm);
717
718 /*
719 * Randomize the poking address, but make sure that the following page
720 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
721 * and adjust the address if the PMD ends after the first one.
722 */
723 poking_addr = TASK_UNMAPPED_BASE;
724 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
725 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
726 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
727
728 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
729 poking_addr += PAGE_SIZE;
730
731 /*
732 * We need to trigger the allocation of the page-tables that will be
733 * needed for poking now. Later, poking may be performed in an atomic
734 * section, which might cause allocation to fail.
735 */
736 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
737 BUG_ON(!ptep);
738 pte_unmap_unlock(ptep, ptl);
739}
740
741/*
742 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
743 * is valid. The argument is a physical page number.
744 *
745 * On x86, access has to be given to the first megabyte of RAM because that
746 * area traditionally contains BIOS code and data regions used by X, dosemu,
747 * and similar apps. Since they map the entire memory range, the whole range
748 * must be allowed (for mapping), but any areas that would otherwise be
749 * disallowed are flagged as being "zero filled" instead of rejected.
750 * Access has to be given to non-kernel-ram areas as well, these contain the
751 * PCI mmio resources as well as potential bios/acpi data regions.
752 */
753int devmem_is_allowed(unsigned long pagenr)
754{
755 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
756 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
757 != REGION_DISJOINT) {
758 /*
759 * For disallowed memory regions in the low 1MB range,
760 * request that the page be shown as all zeros.
761 */
762 if (pagenr < 256)
763 return 2;
764
765 return 0;
766 }
767
768 /*
769 * This must follow RAM test, since System RAM is considered a
770 * restricted resource under CONFIG_STRICT_IOMEM.
771 */
772 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
773 /* Low 1MB bypasses iomem restrictions. */
774 if (pagenr < 256)
775 return 1;
776
777 return 0;
778 }
779
780 return 1;
781}
782
783void free_init_pages(const char *what, unsigned long begin, unsigned long end)
784{
785 unsigned long begin_aligned, end_aligned;
786
787 /* Make sure boundaries are page aligned */
788 begin_aligned = PAGE_ALIGN(begin);
789 end_aligned = end & PAGE_MASK;
790
791 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
792 begin = begin_aligned;
793 end = end_aligned;
794 }
795
796 if (begin >= end)
797 return;
798
799 /*
800 * If debugging page accesses then do not free this memory but
801 * mark them not present - any buggy init-section access will
802 * create a kernel page fault:
803 */
804 if (debug_pagealloc_enabled()) {
805 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
806 begin, end - 1);
807 /*
808 * Inform kmemleak about the hole in the memory since the
809 * corresponding pages will be unmapped.
810 */
811 kmemleak_free_part((void *)begin, end - begin);
812 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
813 } else {
814 /*
815 * We just marked the kernel text read only above, now that
816 * we are going to free part of that, we need to make that
817 * writeable and non-executable first.
818 */
819 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
820 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
821
822 free_reserved_area((void *)begin, (void *)end,
823 POISON_FREE_INITMEM, what);
824 }
825}
826
827/*
828 * begin/end can be in the direct map or the "high kernel mapping"
829 * used for the kernel image only. free_init_pages() will do the
830 * right thing for either kind of address.
831 */
832void free_kernel_image_pages(void *begin, void *end)
833{
834 unsigned long begin_ul = (unsigned long)begin;
835 unsigned long end_ul = (unsigned long)end;
836 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
837
838
839 free_init_pages("unused kernel image", begin_ul, end_ul);
840
841 /*
842 * PTI maps some of the kernel into userspace. For performance,
843 * this includes some kernel areas that do not contain secrets.
844 * Those areas might be adjacent to the parts of the kernel image
845 * being freed, which may contain secrets. Remove the "high kernel
846 * image mapping" for these freed areas, ensuring they are not even
847 * potentially vulnerable to Meltdown regardless of the specific
848 * optimizations PTI is currently using.
849 *
850 * The "noalias" prevents unmapping the direct map alias which is
851 * needed to access the freed pages.
852 *
853 * This is only valid for 64bit kernels. 32bit has only one mapping
854 * which can't be treated in this way for obvious reasons.
855 */
856 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
857 set_memory_np_noalias(begin_ul, len_pages);
858}
859
860void __weak mem_encrypt_free_decrypted_mem(void) { }
861
862void __ref free_initmem(void)
863{
864 e820__reallocate_tables();
865
866 mem_encrypt_free_decrypted_mem();
867
868 free_kernel_image_pages(&__init_begin, &__init_end);
869}
870
871#ifdef CONFIG_BLK_DEV_INITRD
872void __init free_initrd_mem(unsigned long start, unsigned long end)
873{
874 /*
875 * end could be not aligned, and We can not align that,
876 * decompresser could be confused by aligned initrd_end
877 * We already reserve the end partial page before in
878 * - i386_start_kernel()
879 * - x86_64_start_kernel()
880 * - relocate_initrd()
881 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
882 */
883 free_init_pages("initrd", start, PAGE_ALIGN(end));
884}
885#endif
886
887/*
888 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
889 * and pass it to the MM layer - to help it set zone watermarks more
890 * accurately.
891 *
892 * Done on 64-bit systems only for the time being, although 32-bit systems
893 * might benefit from this as well.
894 */
895void __init memblock_find_dma_reserve(void)
896{
897#ifdef CONFIG_X86_64
898 u64 nr_pages = 0, nr_free_pages = 0;
899 unsigned long start_pfn, end_pfn;
900 phys_addr_t start_addr, end_addr;
901 int i;
902 u64 u;
903
904 /*
905 * Iterate over all memory ranges (free and reserved ones alike),
906 * to calculate the total number of pages in the first 16 MB of RAM:
907 */
908 nr_pages = 0;
909 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
910 start_pfn = min(start_pfn, MAX_DMA_PFN);
911 end_pfn = min(end_pfn, MAX_DMA_PFN);
912
913 nr_pages += end_pfn - start_pfn;
914 }
915
916 /*
917 * Iterate over free memory ranges to calculate the number of free
918 * pages in the DMA zone, while not counting potential partial
919 * pages at the beginning or the end of the range:
920 */
921 nr_free_pages = 0;
922 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
923 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
924 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
925
926 if (start_pfn < end_pfn)
927 nr_free_pages += end_pfn - start_pfn;
928 }
929
930 set_dma_reserve(nr_pages - nr_free_pages);
931#endif
932}
933
934void __init zone_sizes_init(void)
935{
936 unsigned long max_zone_pfns[MAX_NR_ZONES];
937
938 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
939
940#ifdef CONFIG_ZONE_DMA
941 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
942#endif
943#ifdef CONFIG_ZONE_DMA32
944 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
945#endif
946 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
947#ifdef CONFIG_HIGHMEM
948 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
949#endif
950
951 free_area_init_nodes(max_zone_pfns);
952}
953
954__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
955 .loaded_mm = &init_mm,
956 .next_asid = 1,
957 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
958};
959EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
960
961void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
962{
963 /* entry 0 MUST be WB (hardwired to speed up translations) */
964 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
965
966 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
967 __pte2cachemode_tbl[entry] = cache;
968}
969
970#ifdef CONFIG_SWAP
971unsigned long max_swapfile_size(void)
972{
973 unsigned long pages;
974
975 pages = generic_max_swapfile_size();
976
977 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
978 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
979 unsigned long long l1tf_limit = l1tf_pfn_limit();
980 /*
981 * We encode swap offsets also with 3 bits below those for pfn
982 * which makes the usable limit higher.
983 */
984#if CONFIG_PGTABLE_LEVELS > 2
985 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
986#endif
987 pages = min_t(unsigned long long, l1tf_limit, pages);
988 }
989 return pages;
990}
991#endif
1#include <linux/gfp.h>
2#include <linux/initrd.h>
3#include <linux/ioport.h>
4#include <linux/swap.h>
5#include <linux/memblock.h>
6#include <linux/swapfile.h>
7#include <linux/swapops.h>
8#include <linux/kmemleak.h>
9#include <linux/sched/task.h>
10
11#include <asm/set_memory.h>
12#include <asm/e820/api.h>
13#include <asm/init.h>
14#include <asm/page.h>
15#include <asm/page_types.h>
16#include <asm/sections.h>
17#include <asm/setup.h>
18#include <asm/tlbflush.h>
19#include <asm/tlb.h>
20#include <asm/proto.h>
21#include <asm/dma.h> /* for MAX_DMA_PFN */
22#include <asm/microcode.h>
23#include <asm/kaslr.h>
24#include <asm/hypervisor.h>
25#include <asm/cpufeature.h>
26#include <asm/pti.h>
27#include <asm/text-patching.h>
28#include <asm/memtype.h>
29
30/*
31 * We need to define the tracepoints somewhere, and tlb.c
32 * is only compiled when SMP=y.
33 */
34#define CREATE_TRACE_POINTS
35#include <trace/events/tlb.h>
36
37#include "mm_internal.h"
38
39/*
40 * Tables translating between page_cache_type_t and pte encoding.
41 *
42 * The default values are defined statically as minimal supported mode;
43 * WC and WT fall back to UC-. pat_init() updates these values to support
44 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
45 * for the details. Note, __early_ioremap() used during early boot-time
46 * takes pgprot_t (pte encoding) and does not use these tables.
47 *
48 * Index into __cachemode2pte_tbl[] is the cachemode.
49 *
50 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
51 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52 */
53static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
54 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
55 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
56 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
59 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
60};
61
62unsigned long cachemode2protval(enum page_cache_mode pcm)
63{
64 if (likely(pcm == 0))
65 return 0;
66 return __cachemode2pte_tbl[pcm];
67}
68EXPORT_SYMBOL(cachemode2protval);
69
70static uint8_t __pte2cachemode_tbl[8] = {
71 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
72 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
73 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
74 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
75 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
76 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
77 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
79};
80
81/* Check that the write-protect PAT entry is set for write-protect */
82bool x86_has_pat_wp(void)
83{
84 return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP;
85}
86
87enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
88{
89 unsigned long masked;
90
91 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
92 if (likely(masked == 0))
93 return 0;
94 return __pte2cachemode_tbl[__pte2cm_idx(masked)];
95}
96
97static unsigned long __initdata pgt_buf_start;
98static unsigned long __initdata pgt_buf_end;
99static unsigned long __initdata pgt_buf_top;
100
101static unsigned long min_pfn_mapped;
102
103static bool __initdata can_use_brk_pgt = true;
104
105/*
106 * Pages returned are already directly mapped.
107 *
108 * Changing that is likely to break Xen, see commit:
109 *
110 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
111 *
112 * for detailed information.
113 */
114__ref void *alloc_low_pages(unsigned int num)
115{
116 unsigned long pfn;
117 int i;
118
119 if (after_bootmem) {
120 unsigned int order;
121
122 order = get_order((unsigned long)num << PAGE_SHIFT);
123 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
124 }
125
126 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
127 unsigned long ret = 0;
128
129 if (min_pfn_mapped < max_pfn_mapped) {
130 ret = memblock_find_in_range(
131 min_pfn_mapped << PAGE_SHIFT,
132 max_pfn_mapped << PAGE_SHIFT,
133 PAGE_SIZE * num , PAGE_SIZE);
134 }
135 if (ret)
136 memblock_reserve(ret, PAGE_SIZE * num);
137 else if (can_use_brk_pgt)
138 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
139
140 if (!ret)
141 panic("alloc_low_pages: can not alloc memory");
142
143 pfn = ret >> PAGE_SHIFT;
144 } else {
145 pfn = pgt_buf_end;
146 pgt_buf_end += num;
147 }
148
149 for (i = 0; i < num; i++) {
150 void *adr;
151
152 adr = __va((pfn + i) << PAGE_SHIFT);
153 clear_page(adr);
154 }
155
156 return __va(pfn << PAGE_SHIFT);
157}
158
159/*
160 * By default need to be able to allocate page tables below PGD firstly for
161 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
162 * With KASLR memory randomization, depending on the machine e820 memory and the
163 * PUD alignment, twice that many pages may be needed when KASLR memory
164 * randomization is enabled.
165 */
166
167#ifndef CONFIG_X86_5LEVEL
168#define INIT_PGD_PAGE_TABLES 3
169#else
170#define INIT_PGD_PAGE_TABLES 4
171#endif
172
173#ifndef CONFIG_RANDOMIZE_MEMORY
174#define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
175#else
176#define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
177#endif
178
179#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
180RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
181void __init early_alloc_pgt_buf(void)
182{
183 unsigned long tables = INIT_PGT_BUF_SIZE;
184 phys_addr_t base;
185
186 base = __pa(extend_brk(tables, PAGE_SIZE));
187
188 pgt_buf_start = base >> PAGE_SHIFT;
189 pgt_buf_end = pgt_buf_start;
190 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
191}
192
193int after_bootmem;
194
195early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
196
197struct map_range {
198 unsigned long start;
199 unsigned long end;
200 unsigned page_size_mask;
201};
202
203static int page_size_mask;
204
205/*
206 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
207 * enable and PPro Global page enable), so that any CPU's that boot
208 * up after us can get the correct flags. Invoked on the boot CPU.
209 */
210static inline void cr4_set_bits_and_update_boot(unsigned long mask)
211{
212 mmu_cr4_features |= mask;
213 if (trampoline_cr4_features)
214 *trampoline_cr4_features = mmu_cr4_features;
215 cr4_set_bits(mask);
216}
217
218static void __init probe_page_size_mask(void)
219{
220 /*
221 * For pagealloc debugging, identity mapping will use small pages.
222 * This will simplify cpa(), which otherwise needs to support splitting
223 * large pages into small in interrupt context, etc.
224 */
225 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
226 page_size_mask |= 1 << PG_LEVEL_2M;
227 else
228 direct_gbpages = 0;
229
230 /* Enable PSE if available */
231 if (boot_cpu_has(X86_FEATURE_PSE))
232 cr4_set_bits_and_update_boot(X86_CR4_PSE);
233
234 /* Enable PGE if available */
235 __supported_pte_mask &= ~_PAGE_GLOBAL;
236 if (boot_cpu_has(X86_FEATURE_PGE)) {
237 cr4_set_bits_and_update_boot(X86_CR4_PGE);
238 __supported_pte_mask |= _PAGE_GLOBAL;
239 }
240
241 /* By the default is everything supported: */
242 __default_kernel_pte_mask = __supported_pte_mask;
243 /* Except when with PTI where the kernel is mostly non-Global: */
244 if (cpu_feature_enabled(X86_FEATURE_PTI))
245 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
246
247 /* Enable 1 GB linear kernel mappings if available: */
248 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
249 printk(KERN_INFO "Using GB pages for direct mapping\n");
250 page_size_mask |= 1 << PG_LEVEL_1G;
251 } else {
252 direct_gbpages = 0;
253 }
254}
255
256static void setup_pcid(void)
257{
258 if (!IS_ENABLED(CONFIG_X86_64))
259 return;
260
261 if (!boot_cpu_has(X86_FEATURE_PCID))
262 return;
263
264 if (boot_cpu_has(X86_FEATURE_PGE)) {
265 /*
266 * This can't be cr4_set_bits_and_update_boot() -- the
267 * trampoline code can't handle CR4.PCIDE and it wouldn't
268 * do any good anyway. Despite the name,
269 * cr4_set_bits_and_update_boot() doesn't actually cause
270 * the bits in question to remain set all the way through
271 * the secondary boot asm.
272 *
273 * Instead, we brute-force it and set CR4.PCIDE manually in
274 * start_secondary().
275 */
276 cr4_set_bits(X86_CR4_PCIDE);
277
278 /*
279 * INVPCID's single-context modes (2/3) only work if we set
280 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
281 * on systems that have X86_CR4_PCIDE clear, or that have
282 * no INVPCID support at all.
283 */
284 if (boot_cpu_has(X86_FEATURE_INVPCID))
285 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
286 } else {
287 /*
288 * flush_tlb_all(), as currently implemented, won't work if
289 * PCID is on but PGE is not. Since that combination
290 * doesn't exist on real hardware, there's no reason to try
291 * to fully support it, but it's polite to avoid corrupting
292 * data if we're on an improperly configured VM.
293 */
294 setup_clear_cpu_cap(X86_FEATURE_PCID);
295 }
296}
297
298#ifdef CONFIG_X86_32
299#define NR_RANGE_MR 3
300#else /* CONFIG_X86_64 */
301#define NR_RANGE_MR 5
302#endif
303
304static int __meminit save_mr(struct map_range *mr, int nr_range,
305 unsigned long start_pfn, unsigned long end_pfn,
306 unsigned long page_size_mask)
307{
308 if (start_pfn < end_pfn) {
309 if (nr_range >= NR_RANGE_MR)
310 panic("run out of range for init_memory_mapping\n");
311 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
312 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
313 mr[nr_range].page_size_mask = page_size_mask;
314 nr_range++;
315 }
316
317 return nr_range;
318}
319
320/*
321 * adjust the page_size_mask for small range to go with
322 * big page size instead small one if nearby are ram too.
323 */
324static void __ref adjust_range_page_size_mask(struct map_range *mr,
325 int nr_range)
326{
327 int i;
328
329 for (i = 0; i < nr_range; i++) {
330 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
331 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
332 unsigned long start = round_down(mr[i].start, PMD_SIZE);
333 unsigned long end = round_up(mr[i].end, PMD_SIZE);
334
335#ifdef CONFIG_X86_32
336 if ((end >> PAGE_SHIFT) > max_low_pfn)
337 continue;
338#endif
339
340 if (memblock_is_region_memory(start, end - start))
341 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
342 }
343 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
344 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
345 unsigned long start = round_down(mr[i].start, PUD_SIZE);
346 unsigned long end = round_up(mr[i].end, PUD_SIZE);
347
348 if (memblock_is_region_memory(start, end - start))
349 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
350 }
351 }
352}
353
354static const char *page_size_string(struct map_range *mr)
355{
356 static const char str_1g[] = "1G";
357 static const char str_2m[] = "2M";
358 static const char str_4m[] = "4M";
359 static const char str_4k[] = "4k";
360
361 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
362 return str_1g;
363 /*
364 * 32-bit without PAE has a 4M large page size.
365 * PG_LEVEL_2M is misnamed, but we can at least
366 * print out the right size in the string.
367 */
368 if (IS_ENABLED(CONFIG_X86_32) &&
369 !IS_ENABLED(CONFIG_X86_PAE) &&
370 mr->page_size_mask & (1<<PG_LEVEL_2M))
371 return str_4m;
372
373 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
374 return str_2m;
375
376 return str_4k;
377}
378
379static int __meminit split_mem_range(struct map_range *mr, int nr_range,
380 unsigned long start,
381 unsigned long end)
382{
383 unsigned long start_pfn, end_pfn, limit_pfn;
384 unsigned long pfn;
385 int i;
386
387 limit_pfn = PFN_DOWN(end);
388
389 /* head if not big page alignment ? */
390 pfn = start_pfn = PFN_DOWN(start);
391#ifdef CONFIG_X86_32
392 /*
393 * Don't use a large page for the first 2/4MB of memory
394 * because there are often fixed size MTRRs in there
395 * and overlapping MTRRs into large pages can cause
396 * slowdowns.
397 */
398 if (pfn == 0)
399 end_pfn = PFN_DOWN(PMD_SIZE);
400 else
401 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
402#else /* CONFIG_X86_64 */
403 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
404#endif
405 if (end_pfn > limit_pfn)
406 end_pfn = limit_pfn;
407 if (start_pfn < end_pfn) {
408 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
409 pfn = end_pfn;
410 }
411
412 /* big page (2M) range */
413 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
414#ifdef CONFIG_X86_32
415 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
416#else /* CONFIG_X86_64 */
417 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
418 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
419 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
420#endif
421
422 if (start_pfn < end_pfn) {
423 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
424 page_size_mask & (1<<PG_LEVEL_2M));
425 pfn = end_pfn;
426 }
427
428#ifdef CONFIG_X86_64
429 /* big page (1G) range */
430 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
431 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
432 if (start_pfn < end_pfn) {
433 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
434 page_size_mask &
435 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
436 pfn = end_pfn;
437 }
438
439 /* tail is not big page (1G) alignment */
440 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
441 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
442 if (start_pfn < end_pfn) {
443 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
444 page_size_mask & (1<<PG_LEVEL_2M));
445 pfn = end_pfn;
446 }
447#endif
448
449 /* tail is not big page (2M) alignment */
450 start_pfn = pfn;
451 end_pfn = limit_pfn;
452 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
453
454 if (!after_bootmem)
455 adjust_range_page_size_mask(mr, nr_range);
456
457 /* try to merge same page size and continuous */
458 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
459 unsigned long old_start;
460 if (mr[i].end != mr[i+1].start ||
461 mr[i].page_size_mask != mr[i+1].page_size_mask)
462 continue;
463 /* move it */
464 old_start = mr[i].start;
465 memmove(&mr[i], &mr[i+1],
466 (nr_range - 1 - i) * sizeof(struct map_range));
467 mr[i--].start = old_start;
468 nr_range--;
469 }
470
471 for (i = 0; i < nr_range; i++)
472 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
473 mr[i].start, mr[i].end - 1,
474 page_size_string(&mr[i]));
475
476 return nr_range;
477}
478
479struct range pfn_mapped[E820_MAX_ENTRIES];
480int nr_pfn_mapped;
481
482static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
483{
484 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
485 nr_pfn_mapped, start_pfn, end_pfn);
486 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
487
488 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
489
490 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
491 max_low_pfn_mapped = max(max_low_pfn_mapped,
492 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
493}
494
495bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
496{
497 int i;
498
499 for (i = 0; i < nr_pfn_mapped; i++)
500 if ((start_pfn >= pfn_mapped[i].start) &&
501 (end_pfn <= pfn_mapped[i].end))
502 return true;
503
504 return false;
505}
506
507/*
508 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
509 * This runs before bootmem is initialized and gets pages directly from
510 * the physical memory. To access them they are temporarily mapped.
511 */
512unsigned long __ref init_memory_mapping(unsigned long start,
513 unsigned long end, pgprot_t prot)
514{
515 struct map_range mr[NR_RANGE_MR];
516 unsigned long ret = 0;
517 int nr_range, i;
518
519 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
520 start, end - 1);
521
522 memset(mr, 0, sizeof(mr));
523 nr_range = split_mem_range(mr, 0, start, end);
524
525 for (i = 0; i < nr_range; i++)
526 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
527 mr[i].page_size_mask,
528 prot);
529
530 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
531
532 return ret >> PAGE_SHIFT;
533}
534
535/*
536 * We need to iterate through the E820 memory map and create direct mappings
537 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
538 * create direct mappings for all pfns from [0 to max_low_pfn) and
539 * [4GB to max_pfn) because of possible memory holes in high addresses
540 * that cannot be marked as UC by fixed/variable range MTRRs.
541 * Depending on the alignment of E820 ranges, this may possibly result
542 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
543 *
544 * init_mem_mapping() calls init_range_memory_mapping() with big range.
545 * That range would have hole in the middle or ends, and only ram parts
546 * will be mapped in init_range_memory_mapping().
547 */
548static unsigned long __init init_range_memory_mapping(
549 unsigned long r_start,
550 unsigned long r_end)
551{
552 unsigned long start_pfn, end_pfn;
553 unsigned long mapped_ram_size = 0;
554 int i;
555
556 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
557 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
558 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
559 if (start >= end)
560 continue;
561
562 /*
563 * if it is overlapping with brk pgt, we need to
564 * alloc pgt buf from memblock instead.
565 */
566 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
567 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
568 init_memory_mapping(start, end, PAGE_KERNEL);
569 mapped_ram_size += end - start;
570 can_use_brk_pgt = true;
571 }
572
573 return mapped_ram_size;
574}
575
576static unsigned long __init get_new_step_size(unsigned long step_size)
577{
578 /*
579 * Initial mapped size is PMD_SIZE (2M).
580 * We can not set step_size to be PUD_SIZE (1G) yet.
581 * In worse case, when we cross the 1G boundary, and
582 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
583 * to map 1G range with PTE. Hence we use one less than the
584 * difference of page table level shifts.
585 *
586 * Don't need to worry about overflow in the top-down case, on 32bit,
587 * when step_size is 0, round_down() returns 0 for start, and that
588 * turns it into 0x100000000ULL.
589 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
590 * needs to be taken into consideration by the code below.
591 */
592 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
593}
594
595/**
596 * memory_map_top_down - Map [map_start, map_end) top down
597 * @map_start: start address of the target memory range
598 * @map_end: end address of the target memory range
599 *
600 * This function will setup direct mapping for memory range
601 * [map_start, map_end) in top-down. That said, the page tables
602 * will be allocated at the end of the memory, and we map the
603 * memory in top-down.
604 */
605static void __init memory_map_top_down(unsigned long map_start,
606 unsigned long map_end)
607{
608 unsigned long real_end, last_start;
609 unsigned long step_size;
610 unsigned long addr;
611 unsigned long mapped_ram_size = 0;
612
613 /* xen has big range in reserved near end of ram, skip it at first.*/
614 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
615 real_end = addr + PMD_SIZE;
616
617 /* step_size need to be small so pgt_buf from BRK could cover it */
618 step_size = PMD_SIZE;
619 max_pfn_mapped = 0; /* will get exact value next */
620 min_pfn_mapped = real_end >> PAGE_SHIFT;
621 last_start = real_end;
622
623 /*
624 * We start from the top (end of memory) and go to the bottom.
625 * The memblock_find_in_range() gets us a block of RAM from the
626 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
627 * for page table.
628 */
629 while (last_start > map_start) {
630 unsigned long start;
631
632 if (last_start > step_size) {
633 start = round_down(last_start - 1, step_size);
634 if (start < map_start)
635 start = map_start;
636 } else
637 start = map_start;
638 mapped_ram_size += init_range_memory_mapping(start,
639 last_start);
640 last_start = start;
641 min_pfn_mapped = last_start >> PAGE_SHIFT;
642 if (mapped_ram_size >= step_size)
643 step_size = get_new_step_size(step_size);
644 }
645
646 if (real_end < map_end)
647 init_range_memory_mapping(real_end, map_end);
648}
649
650/**
651 * memory_map_bottom_up - Map [map_start, map_end) bottom up
652 * @map_start: start address of the target memory range
653 * @map_end: end address of the target memory range
654 *
655 * This function will setup direct mapping for memory range
656 * [map_start, map_end) in bottom-up. Since we have limited the
657 * bottom-up allocation above the kernel, the page tables will
658 * be allocated just above the kernel and we map the memory
659 * in [map_start, map_end) in bottom-up.
660 */
661static void __init memory_map_bottom_up(unsigned long map_start,
662 unsigned long map_end)
663{
664 unsigned long next, start;
665 unsigned long mapped_ram_size = 0;
666 /* step_size need to be small so pgt_buf from BRK could cover it */
667 unsigned long step_size = PMD_SIZE;
668
669 start = map_start;
670 min_pfn_mapped = start >> PAGE_SHIFT;
671
672 /*
673 * We start from the bottom (@map_start) and go to the top (@map_end).
674 * The memblock_find_in_range() gets us a block of RAM from the
675 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
676 * for page table.
677 */
678 while (start < map_end) {
679 if (step_size && map_end - start > step_size) {
680 next = round_up(start + 1, step_size);
681 if (next > map_end)
682 next = map_end;
683 } else {
684 next = map_end;
685 }
686
687 mapped_ram_size += init_range_memory_mapping(start, next);
688 start = next;
689
690 if (mapped_ram_size >= step_size)
691 step_size = get_new_step_size(step_size);
692 }
693}
694
695/*
696 * The real mode trampoline, which is required for bootstrapping CPUs
697 * occupies only a small area under the low 1MB. See reserve_real_mode()
698 * for details.
699 *
700 * If KASLR is disabled the first PGD entry of the direct mapping is copied
701 * to map the real mode trampoline.
702 *
703 * If KASLR is enabled, copy only the PUD which covers the low 1MB
704 * area. This limits the randomization granularity to 1GB for both 4-level
705 * and 5-level paging.
706 */
707static void __init init_trampoline(void)
708{
709#ifdef CONFIG_X86_64
710 if (!kaslr_memory_enabled())
711 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
712 else
713 init_trampoline_kaslr();
714#endif
715}
716
717void __init init_mem_mapping(void)
718{
719 unsigned long end;
720
721 pti_check_boottime_disable();
722 probe_page_size_mask();
723 setup_pcid();
724
725#ifdef CONFIG_X86_64
726 end = max_pfn << PAGE_SHIFT;
727#else
728 end = max_low_pfn << PAGE_SHIFT;
729#endif
730
731 /* the ISA range is always mapped regardless of memory holes */
732 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
733
734 /* Init the trampoline, possibly with KASLR memory offset */
735 init_trampoline();
736
737 /*
738 * If the allocation is in bottom-up direction, we setup direct mapping
739 * in bottom-up, otherwise we setup direct mapping in top-down.
740 */
741 if (memblock_bottom_up()) {
742 unsigned long kernel_end = __pa_symbol(_end);
743
744 /*
745 * we need two separate calls here. This is because we want to
746 * allocate page tables above the kernel. So we first map
747 * [kernel_end, end) to make memory above the kernel be mapped
748 * as soon as possible. And then use page tables allocated above
749 * the kernel to map [ISA_END_ADDRESS, kernel_end).
750 */
751 memory_map_bottom_up(kernel_end, end);
752 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
753 } else {
754 memory_map_top_down(ISA_END_ADDRESS, end);
755 }
756
757#ifdef CONFIG_X86_64
758 if (max_pfn > max_low_pfn) {
759 /* can we preserve max_low_pfn ?*/
760 max_low_pfn = max_pfn;
761 }
762#else
763 early_ioremap_page_table_range_init();
764#endif
765
766 load_cr3(swapper_pg_dir);
767 __flush_tlb_all();
768
769 x86_init.hyper.init_mem_mapping();
770
771 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
772}
773
774/*
775 * Initialize an mm_struct to be used during poking and a pointer to be used
776 * during patching.
777 */
778void __init poking_init(void)
779{
780 spinlock_t *ptl;
781 pte_t *ptep;
782
783 poking_mm = copy_init_mm();
784 BUG_ON(!poking_mm);
785
786 /*
787 * Randomize the poking address, but make sure that the following page
788 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
789 * and adjust the address if the PMD ends after the first one.
790 */
791 poking_addr = TASK_UNMAPPED_BASE;
792 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
793 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
794 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
795
796 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
797 poking_addr += PAGE_SIZE;
798
799 /*
800 * We need to trigger the allocation of the page-tables that will be
801 * needed for poking now. Later, poking may be performed in an atomic
802 * section, which might cause allocation to fail.
803 */
804 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
805 BUG_ON(!ptep);
806 pte_unmap_unlock(ptep, ptl);
807}
808
809/*
810 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
811 * is valid. The argument is a physical page number.
812 *
813 * On x86, access has to be given to the first megabyte of RAM because that
814 * area traditionally contains BIOS code and data regions used by X, dosemu,
815 * and similar apps. Since they map the entire memory range, the whole range
816 * must be allowed (for mapping), but any areas that would otherwise be
817 * disallowed are flagged as being "zero filled" instead of rejected.
818 * Access has to be given to non-kernel-ram areas as well, these contain the
819 * PCI mmio resources as well as potential bios/acpi data regions.
820 */
821int devmem_is_allowed(unsigned long pagenr)
822{
823 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
824 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
825 != REGION_DISJOINT) {
826 /*
827 * For disallowed memory regions in the low 1MB range,
828 * request that the page be shown as all zeros.
829 */
830 if (pagenr < 256)
831 return 2;
832
833 return 0;
834 }
835
836 /*
837 * This must follow RAM test, since System RAM is considered a
838 * restricted resource under CONFIG_STRICT_IOMEM.
839 */
840 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
841 /* Low 1MB bypasses iomem restrictions. */
842 if (pagenr < 256)
843 return 1;
844
845 return 0;
846 }
847
848 return 1;
849}
850
851void free_init_pages(const char *what, unsigned long begin, unsigned long end)
852{
853 unsigned long begin_aligned, end_aligned;
854
855 /* Make sure boundaries are page aligned */
856 begin_aligned = PAGE_ALIGN(begin);
857 end_aligned = end & PAGE_MASK;
858
859 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
860 begin = begin_aligned;
861 end = end_aligned;
862 }
863
864 if (begin >= end)
865 return;
866
867 /*
868 * If debugging page accesses then do not free this memory but
869 * mark them not present - any buggy init-section access will
870 * create a kernel page fault:
871 */
872 if (debug_pagealloc_enabled()) {
873 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
874 begin, end - 1);
875 /*
876 * Inform kmemleak about the hole in the memory since the
877 * corresponding pages will be unmapped.
878 */
879 kmemleak_free_part((void *)begin, end - begin);
880 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
881 } else {
882 /*
883 * We just marked the kernel text read only above, now that
884 * we are going to free part of that, we need to make that
885 * writeable and non-executable first.
886 */
887 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
888 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
889
890 free_reserved_area((void *)begin, (void *)end,
891 POISON_FREE_INITMEM, what);
892 }
893}
894
895/*
896 * begin/end can be in the direct map or the "high kernel mapping"
897 * used for the kernel image only. free_init_pages() will do the
898 * right thing for either kind of address.
899 */
900void free_kernel_image_pages(const char *what, void *begin, void *end)
901{
902 unsigned long begin_ul = (unsigned long)begin;
903 unsigned long end_ul = (unsigned long)end;
904 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
905
906 free_init_pages(what, begin_ul, end_ul);
907
908 /*
909 * PTI maps some of the kernel into userspace. For performance,
910 * this includes some kernel areas that do not contain secrets.
911 * Those areas might be adjacent to the parts of the kernel image
912 * being freed, which may contain secrets. Remove the "high kernel
913 * image mapping" for these freed areas, ensuring they are not even
914 * potentially vulnerable to Meltdown regardless of the specific
915 * optimizations PTI is currently using.
916 *
917 * The "noalias" prevents unmapping the direct map alias which is
918 * needed to access the freed pages.
919 *
920 * This is only valid for 64bit kernels. 32bit has only one mapping
921 * which can't be treated in this way for obvious reasons.
922 */
923 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
924 set_memory_np_noalias(begin_ul, len_pages);
925}
926
927void __ref free_initmem(void)
928{
929 e820__reallocate_tables();
930
931 mem_encrypt_free_decrypted_mem();
932
933 free_kernel_image_pages("unused kernel image (initmem)",
934 &__init_begin, &__init_end);
935}
936
937#ifdef CONFIG_BLK_DEV_INITRD
938void __init free_initrd_mem(unsigned long start, unsigned long end)
939{
940 /*
941 * end could be not aligned, and We can not align that,
942 * decompressor could be confused by aligned initrd_end
943 * We already reserve the end partial page before in
944 * - i386_start_kernel()
945 * - x86_64_start_kernel()
946 * - relocate_initrd()
947 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
948 */
949 free_init_pages("initrd", start, PAGE_ALIGN(end));
950}
951#endif
952
953/*
954 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
955 * and pass it to the MM layer - to help it set zone watermarks more
956 * accurately.
957 *
958 * Done on 64-bit systems only for the time being, although 32-bit systems
959 * might benefit from this as well.
960 */
961void __init memblock_find_dma_reserve(void)
962{
963#ifdef CONFIG_X86_64
964 u64 nr_pages = 0, nr_free_pages = 0;
965 unsigned long start_pfn, end_pfn;
966 phys_addr_t start_addr, end_addr;
967 int i;
968 u64 u;
969
970 /*
971 * Iterate over all memory ranges (free and reserved ones alike),
972 * to calculate the total number of pages in the first 16 MB of RAM:
973 */
974 nr_pages = 0;
975 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
976 start_pfn = min(start_pfn, MAX_DMA_PFN);
977 end_pfn = min(end_pfn, MAX_DMA_PFN);
978
979 nr_pages += end_pfn - start_pfn;
980 }
981
982 /*
983 * Iterate over free memory ranges to calculate the number of free
984 * pages in the DMA zone, while not counting potential partial
985 * pages at the beginning or the end of the range:
986 */
987 nr_free_pages = 0;
988 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
989 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
990 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
991
992 if (start_pfn < end_pfn)
993 nr_free_pages += end_pfn - start_pfn;
994 }
995
996 set_dma_reserve(nr_pages - nr_free_pages);
997#endif
998}
999
1000void __init zone_sizes_init(void)
1001{
1002 unsigned long max_zone_pfns[MAX_NR_ZONES];
1003
1004 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1005
1006#ifdef CONFIG_ZONE_DMA
1007 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
1008#endif
1009#ifdef CONFIG_ZONE_DMA32
1010 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
1011#endif
1012 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1013#ifdef CONFIG_HIGHMEM
1014 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1015#endif
1016
1017 free_area_init(max_zone_pfns);
1018}
1019
1020__visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1021 .loaded_mm = &init_mm,
1022 .next_asid = 1,
1023 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
1024};
1025
1026void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1027{
1028 /* entry 0 MUST be WB (hardwired to speed up translations) */
1029 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1030
1031 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1032 __pte2cachemode_tbl[entry] = cache;
1033}
1034
1035#ifdef CONFIG_SWAP
1036unsigned long max_swapfile_size(void)
1037{
1038 unsigned long pages;
1039
1040 pages = generic_max_swapfile_size();
1041
1042 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1043 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1044 unsigned long long l1tf_limit = l1tf_pfn_limit();
1045 /*
1046 * We encode swap offsets also with 3 bits below those for pfn
1047 * which makes the usable limit higher.
1048 */
1049#if CONFIG_PGTABLE_LEVELS > 2
1050 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1051#endif
1052 pages = min_t(unsigned long long, l1tf_limit, pages);
1053 }
1054 return pages;
1055}
1056#endif