Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/kernel.h>
 
   3
   4#include <linux/string.h>
   5#include <linux/bitops.h>
   6#include <linux/smp.h>
   7#include <linux/sched.h>
   8#include <linux/sched/clock.h>
   9#include <linux/thread_info.h>
  10#include <linux/init.h>
  11#include <linux/uaccess.h>
  12
  13#include <asm/cpufeature.h>
  14#include <asm/pgtable.h>
  15#include <asm/msr.h>
  16#include <asm/bugs.h>
  17#include <asm/cpu.h>
  18#include <asm/intel-family.h>
  19#include <asm/microcode_intel.h>
  20#include <asm/hwcap2.h>
  21#include <asm/elf.h>
 
 
 
 
  22
  23#ifdef CONFIG_X86_64
  24#include <linux/topology.h>
  25#endif
  26
  27#include "cpu.h"
  28
  29#ifdef CONFIG_X86_LOCAL_APIC
  30#include <asm/mpspec.h>
  31#include <asm/apic.h>
  32#endif
  33
  34/*
  35 * Just in case our CPU detection goes bad, or you have a weird system,
  36 * allow a way to override the automatic disabling of MPX.
  37 */
  38static int forcempx;
  39
  40static int __init forcempx_setup(char *__unused)
  41{
  42	forcempx = 1;
  43
  44	return 1;
  45}
  46__setup("intel-skd-046-workaround=disable", forcempx_setup);
  47
  48void check_mpx_erratum(struct cpuinfo_x86 *c)
  49{
  50	if (forcempx)
  51		return;
  52	/*
  53	 * Turn off the MPX feature on CPUs where SMEP is not
  54	 * available or disabled.
  55	 *
  56	 * Works around Intel Erratum SKD046: "Branch Instructions
  57	 * May Initialize MPX Bound Registers Incorrectly".
  58	 *
  59	 * This might falsely disable MPX on systems without
  60	 * SMEP, like Atom processors without SMEP.  But there
  61	 * is no such hardware known at the moment.
  62	 */
  63	if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
  64		setup_clear_cpu_cap(X86_FEATURE_MPX);
  65		pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
  66	}
  67}
  68
  69/*
  70 * Processors which have self-snooping capability can handle conflicting
  71 * memory type across CPUs by snooping its own cache. However, there exists
  72 * CPU models in which having conflicting memory types still leads to
  73 * unpredictable behavior, machine check errors, or hangs. Clear this
  74 * feature to prevent its use on machines with known erratas.
  75 */
  76static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
  77{
  78	switch (c->x86_model) {
  79	case INTEL_FAM6_CORE_YONAH:
  80	case INTEL_FAM6_CORE2_MEROM:
  81	case INTEL_FAM6_CORE2_MEROM_L:
  82	case INTEL_FAM6_CORE2_PENRYN:
  83	case INTEL_FAM6_CORE2_DUNNINGTON:
  84	case INTEL_FAM6_NEHALEM:
  85	case INTEL_FAM6_NEHALEM_G:
  86	case INTEL_FAM6_NEHALEM_EP:
  87	case INTEL_FAM6_NEHALEM_EX:
  88	case INTEL_FAM6_WESTMERE:
  89	case INTEL_FAM6_WESTMERE_EP:
  90	case INTEL_FAM6_SANDYBRIDGE:
  91		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
  92	}
  93}
  94
  95static bool ring3mwait_disabled __read_mostly;
  96
  97static int __init ring3mwait_disable(char *__unused)
  98{
  99	ring3mwait_disabled = true;
 100	return 0;
 101}
 102__setup("ring3mwait=disable", ring3mwait_disable);
 103
 104static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
 105{
 106	/*
 107	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
 108	 * cpu model and family comparison.
 109	 */
 110	if (c->x86 != 6)
 111		return;
 112	switch (c->x86_model) {
 113	case INTEL_FAM6_XEON_PHI_KNL:
 114	case INTEL_FAM6_XEON_PHI_KNM:
 115		break;
 116	default:
 117		return;
 118	}
 119
 120	if (ring3mwait_disabled)
 121		return;
 122
 123	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
 124	this_cpu_or(msr_misc_features_shadow,
 125		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
 126
 127	if (c == &boot_cpu_data)
 128		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
 129}
 130
 131/*
 132 * Early microcode releases for the Spectre v2 mitigation were broken.
 133 * Information taken from;
 134 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
 135 * - https://kb.vmware.com/s/article/52345
 136 * - Microcode revisions observed in the wild
 137 * - Release note from 20180108 microcode release
 138 */
 139struct sku_microcode {
 140	u8 model;
 141	u8 stepping;
 142	u32 microcode;
 143};
 144static const struct sku_microcode spectre_bad_microcodes[] = {
 145	{ INTEL_FAM6_KABYLAKE,		0x0B,	0x80 },
 146	{ INTEL_FAM6_KABYLAKE,		0x0A,	0x80 },
 147	{ INTEL_FAM6_KABYLAKE,		0x09,	0x80 },
 148	{ INTEL_FAM6_KABYLAKE_L,	0x0A,	0x80 },
 149	{ INTEL_FAM6_KABYLAKE_L,	0x09,	0x80 },
 150	{ INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e },
 151	{ INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c },
 152	{ INTEL_FAM6_BROADWELL,		0x04,	0x28 },
 153	{ INTEL_FAM6_BROADWELL_G,	0x01,	0x1b },
 154	{ INTEL_FAM6_BROADWELL_D,	0x02,	0x14 },
 155	{ INTEL_FAM6_BROADWELL_D,	0x03,	0x07000011 },
 156	{ INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 },
 157	{ INTEL_FAM6_HASWELL_L,		0x01,	0x21 },
 158	{ INTEL_FAM6_HASWELL_G,		0x01,	0x18 },
 159	{ INTEL_FAM6_HASWELL,		0x03,	0x23 },
 160	{ INTEL_FAM6_HASWELL_X,		0x02,	0x3b },
 161	{ INTEL_FAM6_HASWELL_X,		0x04,	0x10 },
 162	{ INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a },
 163	/* Observed in the wild */
 164	{ INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b },
 165	{ INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 },
 166};
 167
 168static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
 169{
 170	int i;
 171
 172	/*
 173	 * We know that the hypervisor lie to us on the microcode version so
 174	 * we may as well hope that it is running the correct version.
 175	 */
 176	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
 177		return false;
 178
 179	if (c->x86 != 6)
 180		return false;
 181
 182	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
 183		if (c->x86_model == spectre_bad_microcodes[i].model &&
 184		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
 185			return (c->microcode <= spectre_bad_microcodes[i].microcode);
 186	}
 187	return false;
 188}
 189
 190static void early_init_intel(struct cpuinfo_x86 *c)
 
 
 
 
 
 
 
 
 191{
 192	u64 misc_enable;
 
 193
 194	/* Unmask CPUID levels if masked: */
 195	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 196		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
 197				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
 198			c->cpuid_level = cpuid_eax(0);
 199			get_cpu_cap(c);
 200		}
 201	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202
 203	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
 204		(c->x86 == 0x6 && c->x86_model >= 0x0e))
 205		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 206
 207	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
 208		c->microcode = intel_get_microcode_revision();
 209
 210	/* Now if any of them are set, check the blacklist and clear the lot */
 211	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
 212	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
 213	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
 214	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
 215		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
 216		setup_clear_cpu_cap(X86_FEATURE_IBRS);
 217		setup_clear_cpu_cap(X86_FEATURE_IBPB);
 218		setup_clear_cpu_cap(X86_FEATURE_STIBP);
 219		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
 220		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
 221		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
 222		setup_clear_cpu_cap(X86_FEATURE_SSBD);
 223		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
 224	}
 225
 226	/*
 227	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
 228	 *
 229	 * A race condition between speculative fetches and invalidating
 230	 * a large page.  This is worked around in microcode, but we
 231	 * need the microcode to have already been loaded... so if it is
 232	 * not, recommend a BIOS update and disable large pages.
 233	 */
 234	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
 235	    c->microcode < 0x20e) {
 236		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
 237		clear_cpu_cap(c, X86_FEATURE_PSE);
 238	}
 239
 240#ifdef CONFIG_X86_64
 241	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
 242#else
 243	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
 244	if (c->x86 == 15 && c->x86_cache_alignment == 64)
 245		c->x86_cache_alignment = 128;
 246#endif
 247
 248	/* CPUID workaround for 0F33/0F34 CPU */
 249	if (c->x86 == 0xF && c->x86_model == 0x3
 250	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
 251		c->x86_phys_bits = 36;
 252
 253	/*
 254	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
 255	 * with P/T states and does not stop in deep C-states.
 256	 *
 257	 * It is also reliable across cores and sockets. (but not across
 258	 * cabinets - we turn it off in that case explicitly.)
 259	 */
 260	if (c->x86_power & (1 << 8)) {
 261		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 262		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
 263	}
 264
 265	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
 266	if (c->x86 == 6) {
 267		switch (c->x86_model) {
 268		case INTEL_FAM6_ATOM_SALTWELL_MID:
 269		case INTEL_FAM6_ATOM_SALTWELL_TABLET:
 270		case INTEL_FAM6_ATOM_SILVERMONT_MID:
 271		case INTEL_FAM6_ATOM_AIRMONT_NP:
 272			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
 273			break;
 274		default:
 275			break;
 276		}
 277	}
 278
 279	/*
 280	 * There is a known erratum on Pentium III and Core Solo
 281	 * and Core Duo CPUs.
 282	 * " Page with PAT set to WC while associated MTRR is UC
 283	 *   may consolidate to UC "
 284	 * Because of this erratum, it is better to stick with
 285	 * setting WC in MTRR rather than using PAT on these CPUs.
 286	 *
 287	 * Enable PAT WC only on P4, Core 2 or later CPUs.
 
 
 
 
 
 288	 */
 289	if (c->x86 == 6 && c->x86_model < 15)
 
 290		clear_cpu_cap(c, X86_FEATURE_PAT);
 291
 292	/*
 293	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
 294	 * clear the fast string and enhanced fast string CPU capabilities.
 295	 */
 296	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 297		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
 298		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
 299			pr_info("Disabled fast string operations\n");
 300			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
 301			setup_clear_cpu_cap(X86_FEATURE_ERMS);
 302		}
 303	}
 304
 305	/*
 306	 * Intel Quark Core DevMan_001.pdf section 6.4.11
 307	 * "The operating system also is required to invalidate (i.e., flush)
 308	 *  the TLB when any changes are made to any of the page table entries.
 309	 *  The operating system must reload CR3 to cause the TLB to be flushed"
 310	 *
 311	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
 312	 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
 313	 * to be modified.
 314	 */
 315	if (c->x86 == 5 && c->x86_model == 9) {
 316		pr_info("Disabling PGE capability bit\n");
 317		setup_clear_cpu_cap(X86_FEATURE_PGE);
 318	}
 319
 320	if (c->cpuid_level >= 0x00000001) {
 321		u32 eax, ebx, ecx, edx;
 322
 323		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 324		/*
 325		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
 326		 * apicids which are reserved per package. Store the resulting
 327		 * shift value for the package management code.
 328		 */
 329		if (edx & (1U << 28))
 330			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
 331	}
 332
 333	check_mpx_erratum(c);
 334	check_memory_type_self_snoop_errata(c);
 335
 336	/*
 337	 * Get the number of SMT siblings early from the extended topology
 338	 * leaf, if available. Otherwise try the legacy SMT detection.
 339	 */
 340	if (detect_extended_topology_early(c) < 0)
 341		detect_ht_early(c);
 
 
 
 
 
 342}
 343
 344#ifdef CONFIG_X86_32
 345/*
 346 *	Early probe support logic for ppro memory erratum #50
 347 *
 348 *	This is called before we do cpu ident work
 349 */
 350
 351int ppro_with_ram_bug(void)
 352{
 353	/* Uses data from early_cpu_detect now */
 354	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
 355	    boot_cpu_data.x86 == 6 &&
 356	    boot_cpu_data.x86_model == 1 &&
 357	    boot_cpu_data.x86_stepping < 8) {
 358		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
 359		return 1;
 360	}
 361	return 0;
 362}
 363
 364static void intel_smp_check(struct cpuinfo_x86 *c)
 365{
 366	/* calling is from identify_secondary_cpu() ? */
 367	if (!c->cpu_index)
 368		return;
 369
 370	/*
 371	 * Mask B, Pentium, but not Pentium MMX
 372	 */
 373	if (c->x86 == 5 &&
 374	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
 375	    c->x86_model <= 3) {
 376		/*
 377		 * Remember we have B step Pentia with bugs
 378		 */
 379		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
 380				    "with B stepping processors.\n");
 381	}
 382}
 383
 384static int forcepae;
 385static int __init forcepae_setup(char *__unused)
 386{
 387	forcepae = 1;
 388	return 1;
 389}
 390__setup("forcepae", forcepae_setup);
 391
 392static void intel_workarounds(struct cpuinfo_x86 *c)
 393{
 394#ifdef CONFIG_X86_F00F_BUG
 395	/*
 396	 * All models of Pentium and Pentium with MMX technology CPUs
 397	 * have the F0 0F bug, which lets nonprivileged users lock up the
 398	 * system. Announce that the fault handler will be checking for it.
 399	 * The Quark is also family 5, but does not have the same bug.
 400	 */
 401	clear_cpu_bug(c, X86_BUG_F00F);
 402	if (c->x86 == 5 && c->x86_model < 9) {
 403		static int f00f_workaround_enabled;
 404
 405		set_cpu_bug(c, X86_BUG_F00F);
 406		if (!f00f_workaround_enabled) {
 407			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
 408			f00f_workaround_enabled = 1;
 409		}
 410	}
 411#endif
 412
 413	/*
 414	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
 415	 * model 3 mask 3
 416	 */
 417	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
 418		clear_cpu_cap(c, X86_FEATURE_SEP);
 419
 420	/*
 421	 * PAE CPUID issue: many Pentium M report no PAE but may have a
 422	 * functionally usable PAE implementation.
 423	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
 424	 */
 425	if (forcepae) {
 426		pr_warn("PAE forced!\n");
 427		set_cpu_cap(c, X86_FEATURE_PAE);
 428		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
 429	}
 430
 431	/*
 432	 * P4 Xeon erratum 037 workaround.
 433	 * Hardware prefetcher may cause stale data to be loaded into the cache.
 434	 */
 435	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
 436		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
 437				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
 438			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
 439			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
 440		}
 441	}
 442
 443	/*
 444	 * See if we have a good local APIC by checking for buggy Pentia,
 445	 * i.e. all B steppings and the C2 stepping of P54C when using their
 446	 * integrated APIC (see 11AP erratum in "Pentium Processor
 447	 * Specification Update").
 448	 */
 449	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
 450	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
 451		set_cpu_bug(c, X86_BUG_11AP);
 452
 453
 454#ifdef CONFIG_X86_INTEL_USERCOPY
 455	/*
 456	 * Set up the preferred alignment for movsl bulk memory moves
 457	 */
 458	switch (c->x86) {
 459	case 4:		/* 486: untested */
 460		break;
 461	case 5:		/* Old Pentia: untested */
 462		break;
 463	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
 464		movsl_mask.mask = 7;
 465		break;
 466	case 15:	/* P4 is OK down to 8-byte alignment */
 467		movsl_mask.mask = 7;
 468		break;
 469	}
 470#endif
 471
 472	intel_smp_check(c);
 473}
 474#else
 475static void intel_workarounds(struct cpuinfo_x86 *c)
 476{
 477}
 478#endif
 479
 480static void srat_detect_node(struct cpuinfo_x86 *c)
 481{
 482#ifdef CONFIG_NUMA
 483	unsigned node;
 484	int cpu = smp_processor_id();
 485
 486	/* Don't do the funky fallback heuristics the AMD version employs
 487	   for now. */
 488	node = numa_cpu_node(cpu);
 489	if (node == NUMA_NO_NODE || !node_online(node)) {
 490		/* reuse the value from init_cpu_to_node() */
 491		node = cpu_to_node(cpu);
 492	}
 493	numa_set_node(cpu, node);
 494#endif
 495}
 496
 497static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
 498{
 499	/* Intel VMX MSR indicated features */
 500#define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
 501#define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
 502#define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
 503#define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
 504#define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
 505#define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
 506#define x86_VMX_FEATURE_EPT_CAP_AD		0x00200000
 507
 508	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
 509	u32 msr_vpid_cap, msr_ept_cap;
 510
 511	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
 512	clear_cpu_cap(c, X86_FEATURE_VNMI);
 513	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
 514	clear_cpu_cap(c, X86_FEATURE_EPT);
 515	clear_cpu_cap(c, X86_FEATURE_VPID);
 516	clear_cpu_cap(c, X86_FEATURE_EPT_AD);
 517
 518	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
 519	msr_ctl = vmx_msr_high | vmx_msr_low;
 520	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
 521		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
 522	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
 523		set_cpu_cap(c, X86_FEATURE_VNMI);
 524	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
 525		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
 526		      vmx_msr_low, vmx_msr_high);
 527		msr_ctl2 = vmx_msr_high | vmx_msr_low;
 528		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
 529		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
 530			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
 531		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT) {
 532			set_cpu_cap(c, X86_FEATURE_EPT);
 533			rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
 534			      msr_ept_cap, msr_vpid_cap);
 535			if (msr_ept_cap & x86_VMX_FEATURE_EPT_CAP_AD)
 536				set_cpu_cap(c, X86_FEATURE_EPT_AD);
 537		}
 538		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
 539			set_cpu_cap(c, X86_FEATURE_VPID);
 540	}
 541}
 542
 543#define MSR_IA32_TME_ACTIVATE		0x982
 544
 545/* Helpers to access TME_ACTIVATE MSR */
 546#define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
 547#define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
 548
 549#define TME_ACTIVATE_POLICY(x)		((x >> 4) & 0xf)	/* Bits 7:4 */
 550#define TME_ACTIVATE_POLICY_AES_XTS_128	0
 551
 552#define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
 553
 554#define TME_ACTIVATE_CRYPTO_ALGS(x)	((x >> 48) & 0xffff)	/* Bits 63:48 */
 555#define TME_ACTIVATE_CRYPTO_AES_XTS_128	1
 556
 557/* Values for mktme_status (SW only construct) */
 558#define MKTME_ENABLED			0
 559#define MKTME_DISABLED			1
 560#define MKTME_UNINITIALIZED		2
 561static int mktme_status = MKTME_UNINITIALIZED;
 562
 563static void detect_tme(struct cpuinfo_x86 *c)
 564{
 565	u64 tme_activate, tme_policy, tme_crypto_algs;
 566	int keyid_bits = 0, nr_keyids = 0;
 567	static u64 tme_activate_cpu0 = 0;
 568
 569	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
 570
 571	if (mktme_status != MKTME_UNINITIALIZED) {
 572		if (tme_activate != tme_activate_cpu0) {
 573			/* Broken BIOS? */
 574			pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
 575			pr_err_once("x86/tme: MKTME is not usable\n");
 576			mktme_status = MKTME_DISABLED;
 577
 578			/* Proceed. We may need to exclude bits from x86_phys_bits. */
 579		}
 580	} else {
 581		tme_activate_cpu0 = tme_activate;
 582	}
 583
 584	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
 585		pr_info_once("x86/tme: not enabled by BIOS\n");
 586		mktme_status = MKTME_DISABLED;
 587		return;
 588	}
 589
 590	if (mktme_status != MKTME_UNINITIALIZED)
 591		goto detect_keyid_bits;
 592
 593	pr_info("x86/tme: enabled by BIOS\n");
 594
 595	tme_policy = TME_ACTIVATE_POLICY(tme_activate);
 596	if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
 597		pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
 598
 599	tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
 600	if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
 601		pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
 602				tme_crypto_algs);
 603		mktme_status = MKTME_DISABLED;
 604	}
 605detect_keyid_bits:
 606	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
 607	nr_keyids = (1UL << keyid_bits) - 1;
 608	if (nr_keyids) {
 609		pr_info_once("x86/mktme: enabled by BIOS\n");
 610		pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
 611	} else {
 612		pr_info_once("x86/mktme: disabled by BIOS\n");
 613	}
 614
 615	if (mktme_status == MKTME_UNINITIALIZED) {
 616		/* MKTME is usable */
 617		mktme_status = MKTME_ENABLED;
 618	}
 619
 620	/*
 621	 * KeyID bits effectively lower the number of physical address
 622	 * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
 623	 */
 624	c->x86_phys_bits -= keyid_bits;
 625}
 626
 627static void init_cpuid_fault(struct cpuinfo_x86 *c)
 628{
 629	u64 msr;
 630
 631	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
 632		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
 633			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
 634	}
 635}
 636
 637static void init_intel_misc_features(struct cpuinfo_x86 *c)
 638{
 639	u64 msr;
 640
 641	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
 642		return;
 643
 644	/* Clear all MISC features */
 645	this_cpu_write(msr_misc_features_shadow, 0);
 646
 647	/* Check features and update capabilities and shadow control bits */
 648	init_cpuid_fault(c);
 649	probe_xeon_phi_r3mwait(c);
 650
 651	msr = this_cpu_read(msr_misc_features_shadow);
 652	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
 653}
 654
 655static void init_intel(struct cpuinfo_x86 *c)
 656{
 657	early_init_intel(c);
 658
 659	intel_workarounds(c);
 660
 661	/*
 662	 * Detect the extended topology information if available. This
 663	 * will reinitialise the initial_apicid which will be used
 664	 * in init_intel_cacheinfo()
 665	 */
 666	detect_extended_topology(c);
 667
 668	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
 669		/*
 670		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
 671		 * detection.
 672		 */
 673		detect_num_cpu_cores(c);
 674#ifdef CONFIG_X86_32
 675		detect_ht(c);
 676#endif
 677	}
 678
 679	init_intel_cacheinfo(c);
 680
 681	if (c->cpuid_level > 9) {
 682		unsigned eax = cpuid_eax(10);
 683		/* Check for version and the number of counters */
 684		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
 685			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
 686	}
 687
 688	if (cpu_has(c, X86_FEATURE_XMM2))
 689		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
 690
 691	if (boot_cpu_has(X86_FEATURE_DS)) {
 692		unsigned int l1, l2;
 693
 694		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
 695		if (!(l1 & (1<<11)))
 696			set_cpu_cap(c, X86_FEATURE_BTS);
 697		if (!(l1 & (1<<12)))
 698			set_cpu_cap(c, X86_FEATURE_PEBS);
 699	}
 700
 701	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
 702	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
 
 
 703		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
 704
 705	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
 706		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
 
 707		set_cpu_bug(c, X86_BUG_MONITOR);
 708
 709#ifdef CONFIG_X86_64
 710	if (c->x86 == 15)
 711		c->x86_cache_alignment = c->x86_clflush_size * 2;
 712	if (c->x86 == 6)
 713		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
 714#else
 715	/*
 716	 * Names for the Pentium II/Celeron processors
 717	 * detectable only by also checking the cache size.
 718	 * Dixon is NOT a Celeron.
 719	 */
 720	if (c->x86 == 6) {
 721		unsigned int l2 = c->x86_cache_size;
 722		char *p = NULL;
 723
 724		switch (c->x86_model) {
 725		case 5:
 726			if (l2 == 0)
 727				p = "Celeron (Covington)";
 728			else if (l2 == 256)
 729				p = "Mobile Pentium II (Dixon)";
 730			break;
 731
 732		case 6:
 733			if (l2 == 128)
 734				p = "Celeron (Mendocino)";
 735			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
 736				p = "Celeron-A";
 737			break;
 738
 739		case 8:
 740			if (l2 == 128)
 741				p = "Celeron (Coppermine)";
 742			break;
 743		}
 744
 745		if (p)
 746			strcpy(c->x86_model_id, p);
 747	}
 748
 749	if (c->x86 == 15)
 750		set_cpu_cap(c, X86_FEATURE_P4);
 751	if (c->x86 == 6)
 752		set_cpu_cap(c, X86_FEATURE_P3);
 753#endif
 754
 755	/* Work around errata */
 756	srat_detect_node(c);
 757
 758	if (cpu_has(c, X86_FEATURE_VMX))
 759		detect_vmx_virtcap(c);
 760
 761	if (cpu_has(c, X86_FEATURE_TME))
 762		detect_tme(c);
 763
 764	init_intel_misc_features(c);
 765
 766	if (tsx_ctrl_state == TSX_CTRL_ENABLE)
 767		tsx_enable();
 768	if (tsx_ctrl_state == TSX_CTRL_DISABLE)
 769		tsx_disable();
 770}
 771
 772#ifdef CONFIG_X86_32
 773static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
 774{
 775	/*
 776	 * Intel PIII Tualatin. This comes in two flavours.
 777	 * One has 256kb of cache, the other 512. We have no way
 778	 * to determine which, so we use a boottime override
 779	 * for the 512kb model, and assume 256 otherwise.
 780	 */
 781	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
 782		size = 256;
 783
 784	/*
 785	 * Intel Quark SoC X1000 contains a 4-way set associative
 786	 * 16K cache with a 16 byte cache line and 256 lines per tag
 787	 */
 788	if ((c->x86 == 5) && (c->x86_model == 9))
 789		size = 16;
 790	return size;
 791}
 792#endif
 793
 794#define TLB_INST_4K	0x01
 795#define TLB_INST_4M	0x02
 796#define TLB_INST_2M_4M	0x03
 797
 798#define TLB_INST_ALL	0x05
 799#define TLB_INST_1G	0x06
 800
 801#define TLB_DATA_4K	0x11
 802#define TLB_DATA_4M	0x12
 803#define TLB_DATA_2M_4M	0x13
 804#define TLB_DATA_4K_4M	0x14
 805
 806#define TLB_DATA_1G	0x16
 807
 808#define TLB_DATA0_4K	0x21
 809#define TLB_DATA0_4M	0x22
 810#define TLB_DATA0_2M_4M	0x23
 
 
 
 
 811
 812#define STLB_4K		0x41
 813#define STLB_4K_2M	0x42
 
 
 
 
 
 
 
 814
 815static const struct _tlb_table intel_tlb_table[] = {
 816	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
 817	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
 818	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
 819	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
 820	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
 821	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
 822	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
 823	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 824	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 825	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 826	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
 827	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
 828	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
 829	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
 830	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
 831	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
 832	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
 833	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
 834	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
 835	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
 
 836	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
 837	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
 838	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
 839	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
 840	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
 841	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
 842	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
 843	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
 844	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
 845	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
 846	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
 847	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
 848	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
 849	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
 850	{ 0xc2, TLB_DATA_2M_4M,		16,	" DTLB 2 MByte/4MByte pages, 4-way associative" },
 851	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
 852	{ 0x00, 0, 0 }
 853};
 854
 855static void intel_tlb_lookup(const unsigned char desc)
 856{
 857	unsigned char k;
 858	if (desc == 0)
 859		return;
 860
 861	/* look up this descriptor in the table */
 862	for (k = 0; intel_tlb_table[k].descriptor != desc && \
 863			intel_tlb_table[k].descriptor != 0; k++)
 864		;
 865
 866	if (intel_tlb_table[k].tlb_type == 0)
 867		return;
 868
 869	switch (intel_tlb_table[k].tlb_type) {
 870	case STLB_4K:
 871		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 872			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 873		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 874			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 875		break;
 876	case STLB_4K_2M:
 877		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 878			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 879		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 880			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 881		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 882			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 883		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
 884			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
 885		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 886			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 887		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 888			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 889		break;
 890	case TLB_INST_ALL:
 891		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 892			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 893		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 894			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 895		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 896			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 897		break;
 898	case TLB_INST_4K:
 899		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 900			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 901		break;
 902	case TLB_INST_4M:
 903		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 904			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 905		break;
 906	case TLB_INST_2M_4M:
 907		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 908			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 909		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 910			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 911		break;
 912	case TLB_DATA_4K:
 913	case TLB_DATA0_4K:
 914		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 915			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 916		break;
 917	case TLB_DATA_4M:
 918	case TLB_DATA0_4M:
 919		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 920			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 921		break;
 922	case TLB_DATA_2M_4M:
 923	case TLB_DATA0_2M_4M:
 924		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
 925			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
 926		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 927			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 928		break;
 929	case TLB_DATA_4K_4M:
 930		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 931			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 932		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 933			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 934		break;
 
 
 
 
 
 
 935	case TLB_DATA_1G:
 936		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
 937			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
 938		break;
 939	}
 940}
 941
 942static void intel_detect_tlb(struct cpuinfo_x86 *c)
 943{
 944	int i, j, n;
 945	unsigned int regs[4];
 946	unsigned char *desc = (unsigned char *)regs;
 947
 948	if (c->cpuid_level < 2)
 949		return;
 950
 951	/* Number of times to iterate */
 952	n = cpuid_eax(2) & 0xFF;
 953
 954	for (i = 0 ; i < n ; i++) {
 955		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
 956
 957		/* If bit 31 is set, this is an unknown format */
 958		for (j = 0 ; j < 3 ; j++)
 959			if (regs[j] & (1 << 31))
 960				regs[j] = 0;
 961
 962		/* Byte 0 is level count, not a descriptor */
 963		for (j = 1 ; j < 16 ; j++)
 964			intel_tlb_lookup(desc[j]);
 965	}
 966}
 967
 968static const struct cpu_dev intel_cpu_dev = {
 969	.c_vendor	= "Intel",
 970	.c_ident	= { "GenuineIntel" },
 971#ifdef CONFIG_X86_32
 972	.legacy_models = {
 973		{ .family = 4, .model_names =
 974		  {
 975			  [0] = "486 DX-25/33",
 976			  [1] = "486 DX-50",
 977			  [2] = "486 SX",
 978			  [3] = "486 DX/2",
 979			  [4] = "486 SL",
 980			  [5] = "486 SX/2",
 981			  [7] = "486 DX/2-WB",
 982			  [8] = "486 DX/4",
 983			  [9] = "486 DX/4-WB"
 984		  }
 985		},
 986		{ .family = 5, .model_names =
 987		  {
 988			  [0] = "Pentium 60/66 A-step",
 989			  [1] = "Pentium 60/66",
 990			  [2] = "Pentium 75 - 200",
 991			  [3] = "OverDrive PODP5V83",
 992			  [4] = "Pentium MMX",
 993			  [7] = "Mobile Pentium 75 - 200",
 994			  [8] = "Mobile Pentium MMX",
 995			  [9] = "Quark SoC X1000",
 996		  }
 997		},
 998		{ .family = 6, .model_names =
 999		  {
1000			  [0] = "Pentium Pro A-step",
1001			  [1] = "Pentium Pro",
1002			  [3] = "Pentium II (Klamath)",
1003			  [4] = "Pentium II (Deschutes)",
1004			  [5] = "Pentium II (Deschutes)",
1005			  [6] = "Mobile Pentium II",
1006			  [7] = "Pentium III (Katmai)",
1007			  [8] = "Pentium III (Coppermine)",
1008			  [10] = "Pentium III (Cascades)",
1009			  [11] = "Pentium III (Tualatin)",
1010		  }
1011		},
1012		{ .family = 15, .model_names =
1013		  {
1014			  [0] = "Pentium 4 (Unknown)",
1015			  [1] = "Pentium 4 (Willamette)",
1016			  [2] = "Pentium 4 (Northwood)",
1017			  [4] = "Pentium 4 (Foster)",
1018			  [5] = "Pentium 4 (Foster)",
1019		  }
1020		},
1021	},
1022	.legacy_cache_size = intel_size_cache,
1023#endif
1024	.c_detect_tlb	= intel_detect_tlb,
1025	.c_early_init   = early_init_intel,
 
1026	.c_init		= init_intel,
1027	.c_x86_vendor	= X86_VENDOR_INTEL,
1028};
1029
1030cpu_dev_register(intel_cpu_dev);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/kernel.h>
  3#include <linux/pgtable.h>
  4
  5#include <linux/string.h>
  6#include <linux/bitops.h>
  7#include <linux/smp.h>
  8#include <linux/sched.h>
  9#include <linux/sched/clock.h>
 10#include <linux/thread_info.h>
 11#include <linux/init.h>
 12#include <linux/uaccess.h>
 13
 14#include <asm/cpufeature.h>
 
 15#include <asm/msr.h>
 16#include <asm/bugs.h>
 17#include <asm/cpu.h>
 18#include <asm/intel-family.h>
 19#include <asm/microcode.h>
 20#include <asm/hwcap2.h>
 21#include <asm/elf.h>
 22#include <asm/cpu_device_id.h>
 23#include <asm/resctrl.h>
 24#include <asm/numa.h>
 25#include <asm/thermal.h>
 26
 27#ifdef CONFIG_X86_64
 28#include <linux/topology.h>
 29#endif
 30
 31#include "cpu.h"
 32
 33#ifdef CONFIG_X86_LOCAL_APIC
 34#include <asm/mpspec.h>
 35#include <asm/apic.h>
 36#endif
 37
 38/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39 * Processors which have self-snooping capability can handle conflicting
 40 * memory type across CPUs by snooping its own cache. However, there exists
 41 * CPU models in which having conflicting memory types still leads to
 42 * unpredictable behavior, machine check errors, or hangs. Clear this
 43 * feature to prevent its use on machines with known erratas.
 44 */
 45static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
 46{
 47	switch (c->x86_vfm) {
 48	case INTEL_CORE_YONAH:
 49	case INTEL_CORE2_MEROM:
 50	case INTEL_CORE2_MEROM_L:
 51	case INTEL_CORE2_PENRYN:
 52	case INTEL_CORE2_DUNNINGTON:
 53	case INTEL_NEHALEM:
 54	case INTEL_NEHALEM_G:
 55	case INTEL_NEHALEM_EP:
 56	case INTEL_NEHALEM_EX:
 57	case INTEL_WESTMERE:
 58	case INTEL_WESTMERE_EP:
 59	case INTEL_SANDYBRIDGE:
 60		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
 61	}
 62}
 63
 64static bool ring3mwait_disabled __read_mostly;
 65
 66static int __init ring3mwait_disable(char *__unused)
 67{
 68	ring3mwait_disabled = true;
 69	return 1;
 70}
 71__setup("ring3mwait=disable", ring3mwait_disable);
 72
 73static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
 74{
 75	/*
 76	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
 77	 * cpu model and family comparison.
 78	 */
 79	if (c->x86 != 6)
 80		return;
 81	switch (c->x86_vfm) {
 82	case INTEL_XEON_PHI_KNL:
 83	case INTEL_XEON_PHI_KNM:
 84		break;
 85	default:
 86		return;
 87	}
 88
 89	if (ring3mwait_disabled)
 90		return;
 91
 92	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
 93	this_cpu_or(msr_misc_features_shadow,
 94		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
 95
 96	if (c == &boot_cpu_data)
 97		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
 98}
 99
100/*
101 * Early microcode releases for the Spectre v2 mitigation were broken.
102 * Information taken from;
103 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
104 * - https://kb.vmware.com/s/article/52345
105 * - Microcode revisions observed in the wild
106 * - Release note from 20180108 microcode release
107 */
108struct sku_microcode {
109	u32 vfm;
110	u8 stepping;
111	u32 microcode;
112};
113static const struct sku_microcode spectre_bad_microcodes[] = {
114	{ INTEL_KABYLAKE,	0x0B,	0x80 },
115	{ INTEL_KABYLAKE,	0x0A,	0x80 },
116	{ INTEL_KABYLAKE,	0x09,	0x80 },
117	{ INTEL_KABYLAKE_L,	0x0A,	0x80 },
118	{ INTEL_KABYLAKE_L,	0x09,	0x80 },
119	{ INTEL_SKYLAKE_X,	0x03,	0x0100013e },
120	{ INTEL_SKYLAKE_X,	0x04,	0x0200003c },
121	{ INTEL_BROADWELL,	0x04,	0x28 },
122	{ INTEL_BROADWELL_G,	0x01,	0x1b },
123	{ INTEL_BROADWELL_D,	0x02,	0x14 },
124	{ INTEL_BROADWELL_D,	0x03,	0x07000011 },
125	{ INTEL_BROADWELL_X,	0x01,	0x0b000025 },
126	{ INTEL_HASWELL_L,	0x01,	0x21 },
127	{ INTEL_HASWELL_G,	0x01,	0x18 },
128	{ INTEL_HASWELL,	0x03,	0x23 },
129	{ INTEL_HASWELL_X,	0x02,	0x3b },
130	{ INTEL_HASWELL_X,	0x04,	0x10 },
131	{ INTEL_IVYBRIDGE_X,	0x04,	0x42a },
132	/* Observed in the wild */
133	{ INTEL_SANDYBRIDGE_X,	0x06,	0x61b },
134	{ INTEL_SANDYBRIDGE_X,	0x07,	0x712 },
135};
136
137static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
138{
139	int i;
140
141	/*
142	 * We know that the hypervisor lie to us on the microcode version so
143	 * we may as well hope that it is running the correct version.
144	 */
145	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
146		return false;
147
 
 
 
148	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
149		if (c->x86_vfm == spectre_bad_microcodes[i].vfm &&
150		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
151			return (c->microcode <= spectre_bad_microcodes[i].microcode);
152	}
153	return false;
154}
155
156#define MSR_IA32_TME_ACTIVATE		0x982
157
158/* Helpers to access TME_ACTIVATE MSR */
159#define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
160#define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
161
162#define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
163
164static void detect_tme_early(struct cpuinfo_x86 *c)
165{
166	u64 tme_activate;
167	int keyid_bits;
168
169	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
170
171	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
172		pr_info_once("x86/tme: not enabled by BIOS\n");
173		clear_cpu_cap(c, X86_FEATURE_TME);
174		return;
 
175	}
176	pr_info_once("x86/tme: enabled by BIOS\n");
177	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
178	if (!keyid_bits)
179		return;
180
181	/*
182	 * KeyID bits are set by BIOS and can be present regardless
183	 * of whether the kernel is using them. They effectively lower
184	 * the number of physical address bits.
185	 *
186	 * Update cpuinfo_x86::x86_phys_bits accordingly.
187	 */
188	c->x86_phys_bits -= keyid_bits;
189	pr_info_once("x86/mktme: BIOS enabled: x86_phys_bits reduced by %d\n",
190		     keyid_bits);
191}
192
193void intel_unlock_cpuid_leafs(struct cpuinfo_x86 *c)
194{
195	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
196		return;
197
198	if (c->x86 < 6 || (c->x86 == 6 && c->x86_model < 0xd))
199		return;
200
201	/*
202	 * The BIOS can have limited CPUID to leaf 2, which breaks feature
203	 * enumeration. Unlock it and update the maximum leaf info.
204	 */
205	if (msr_clear_bit(MSR_IA32_MISC_ENABLE, MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0)
206		c->cpuid_level = cpuid_eax(0);
207}
208
209static void early_init_intel(struct cpuinfo_x86 *c)
210{
211	u64 misc_enable;
212
213	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
214		(c->x86 == 0x6 && c->x86_model >= 0x0e))
215		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
216
217	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
218		c->microcode = intel_get_microcode_revision();
219
220	/* Now if any of them are set, check the blacklist and clear the lot */
221	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
222	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
223	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
224	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
225		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
226		setup_clear_cpu_cap(X86_FEATURE_IBRS);
227		setup_clear_cpu_cap(X86_FEATURE_IBPB);
228		setup_clear_cpu_cap(X86_FEATURE_STIBP);
229		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
230		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
231		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
232		setup_clear_cpu_cap(X86_FEATURE_SSBD);
233		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
234	}
235
236	/*
237	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
238	 *
239	 * A race condition between speculative fetches and invalidating
240	 * a large page.  This is worked around in microcode, but we
241	 * need the microcode to have already been loaded... so if it is
242	 * not, recommend a BIOS update and disable large pages.
243	 */
244	if (c->x86_vfm == INTEL_ATOM_BONNELL && c->x86_stepping <= 2 &&
245	    c->microcode < 0x20e) {
246		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
247		clear_cpu_cap(c, X86_FEATURE_PSE);
248	}
249
250#ifdef CONFIG_X86_64
251	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
252#else
253	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
254	if (c->x86 == 15 && c->x86_cache_alignment == 64)
255		c->x86_cache_alignment = 128;
256#endif
257
258	/* CPUID workaround for 0F33/0F34 CPU */
259	if (c->x86 == 0xF && c->x86_model == 0x3
260	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
261		c->x86_phys_bits = 36;
262
263	/*
264	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
265	 * with P/T states and does not stop in deep C-states.
266	 *
267	 * It is also reliable across cores and sockets. (but not across
268	 * cabinets - we turn it off in that case explicitly.)
269	 */
270	if (c->x86_power & (1 << 8)) {
271		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
272		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
273	}
274
275	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
276	switch (c->x86_vfm) {
277	case INTEL_ATOM_SALTWELL_MID:
278	case INTEL_ATOM_SALTWELL_TABLET:
279	case INTEL_ATOM_SILVERMONT_MID:
280	case INTEL_ATOM_AIRMONT_NP:
281		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
282		break;
 
 
 
 
283	}
284
285	/*
286	 * PAT is broken on early family 6 CPUs, the last of which
287	 * is "Yonah" where the erratum is named "AN7":
 
 
 
 
288	 *
289	 * 	Page with PAT (Page Attribute Table) Set to USWC
290	 * 	(Uncacheable Speculative Write Combine) While
291	 * 	Associated MTRR (Memory Type Range Register) Is UC
292	 * 	(Uncacheable) May Consolidate to UC
293	 *
294	 * Disable PAT and fall back to MTRR on these CPUs.
295	 */
296	if (c->x86_vfm >= INTEL_PENTIUM_PRO &&
297	    c->x86_vfm <= INTEL_CORE_YONAH)
298		clear_cpu_cap(c, X86_FEATURE_PAT);
299
300	/*
301	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
302	 * clear the fast string and enhanced fast string CPU capabilities.
303	 */
304	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
305		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
306		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
307			pr_info("Disabled fast string operations\n");
308			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
309			setup_clear_cpu_cap(X86_FEATURE_ERMS);
310		}
311	}
312
313	/*
314	 * Intel Quark Core DevMan_001.pdf section 6.4.11
315	 * "The operating system also is required to invalidate (i.e., flush)
316	 *  the TLB when any changes are made to any of the page table entries.
317	 *  The operating system must reload CR3 to cause the TLB to be flushed"
318	 *
319	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
320	 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
321	 * to be modified.
322	 */
323	if (c->x86_vfm == INTEL_QUARK_X1000) {
324		pr_info("Disabling PGE capability bit\n");
325		setup_clear_cpu_cap(X86_FEATURE_PGE);
326	}
327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328	check_memory_type_self_snoop_errata(c);
329
330	/*
331	 * Adjust the number of physical bits early because it affects the
332	 * valid bits of the MTRR mask registers.
333	 */
334	if (cpu_has(c, X86_FEATURE_TME))
335		detect_tme_early(c);
336}
337
338static void bsp_init_intel(struct cpuinfo_x86 *c)
339{
340	resctrl_cpu_detect(c);
341}
342
343#ifdef CONFIG_X86_32
344/*
345 *	Early probe support logic for ppro memory erratum #50
346 *
347 *	This is called before we do cpu ident work
348 */
349
350int ppro_with_ram_bug(void)
351{
352	/* Uses data from early_cpu_detect now */
353	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
354	    boot_cpu_data.x86 == 6 &&
355	    boot_cpu_data.x86_model == 1 &&
356	    boot_cpu_data.x86_stepping < 8) {
357		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
358		return 1;
359	}
360	return 0;
361}
362
363static void intel_smp_check(struct cpuinfo_x86 *c)
364{
365	/* calling is from identify_secondary_cpu() ? */
366	if (!c->cpu_index)
367		return;
368
369	/*
370	 * Mask B, Pentium, but not Pentium MMX
371	 */
372	if (c->x86 == 5 &&
373	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
374	    c->x86_model <= 3) {
375		/*
376		 * Remember we have B step Pentia with bugs
377		 */
378		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
379				    "with B stepping processors.\n");
380	}
381}
382
383static int forcepae;
384static int __init forcepae_setup(char *__unused)
385{
386	forcepae = 1;
387	return 1;
388}
389__setup("forcepae", forcepae_setup);
390
391static void intel_workarounds(struct cpuinfo_x86 *c)
392{
393#ifdef CONFIG_X86_F00F_BUG
394	/*
395	 * All models of Pentium and Pentium with MMX technology CPUs
396	 * have the F0 0F bug, which lets nonprivileged users lock up the
397	 * system. Announce that the fault handler will be checking for it.
398	 * The Quark is also family 5, but does not have the same bug.
399	 */
400	clear_cpu_bug(c, X86_BUG_F00F);
401	if (c->x86 == 5 && c->x86_model < 9) {
402		static int f00f_workaround_enabled;
403
404		set_cpu_bug(c, X86_BUG_F00F);
405		if (!f00f_workaround_enabled) {
406			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
407			f00f_workaround_enabled = 1;
408		}
409	}
410#endif
411
412	/*
413	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
414	 * model 3 mask 3
415	 */
416	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
417		clear_cpu_cap(c, X86_FEATURE_SEP);
418
419	/*
420	 * PAE CPUID issue: many Pentium M report no PAE but may have a
421	 * functionally usable PAE implementation.
422	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
423	 */
424	if (forcepae) {
425		pr_warn("PAE forced!\n");
426		set_cpu_cap(c, X86_FEATURE_PAE);
427		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
428	}
429
430	/*
431	 * P4 Xeon erratum 037 workaround.
432	 * Hardware prefetcher may cause stale data to be loaded into the cache.
433	 */
434	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
435		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
436				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
437			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
438			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
439		}
440	}
441
442	/*
443	 * See if we have a good local APIC by checking for buggy Pentia,
444	 * i.e. all B steppings and the C2 stepping of P54C when using their
445	 * integrated APIC (see 11AP erratum in "Pentium Processor
446	 * Specification Update").
447	 */
448	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
449	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
450		set_cpu_bug(c, X86_BUG_11AP);
451
452
453#ifdef CONFIG_X86_INTEL_USERCOPY
454	/*
455	 * Set up the preferred alignment for movsl bulk memory moves
456	 */
457	switch (c->x86) {
458	case 4:		/* 486: untested */
459		break;
460	case 5:		/* Old Pentia: untested */
461		break;
462	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
463		movsl_mask.mask = 7;
464		break;
465	case 15:	/* P4 is OK down to 8-byte alignment */
466		movsl_mask.mask = 7;
467		break;
468	}
469#endif
470
471	intel_smp_check(c);
472}
473#else
474static void intel_workarounds(struct cpuinfo_x86 *c)
475{
476}
477#endif
478
479static void srat_detect_node(struct cpuinfo_x86 *c)
480{
481#ifdef CONFIG_NUMA
482	unsigned node;
483	int cpu = smp_processor_id();
484
485	/* Don't do the funky fallback heuristics the AMD version employs
486	   for now. */
487	node = numa_cpu_node(cpu);
488	if (node == NUMA_NO_NODE || !node_online(node)) {
489		/* reuse the value from init_cpu_to_node() */
490		node = cpu_to_node(cpu);
491	}
492	numa_set_node(cpu, node);
493#endif
494}
495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496static void init_cpuid_fault(struct cpuinfo_x86 *c)
497{
498	u64 msr;
499
500	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
501		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
502			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
503	}
504}
505
506static void init_intel_misc_features(struct cpuinfo_x86 *c)
507{
508	u64 msr;
509
510	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
511		return;
512
513	/* Clear all MISC features */
514	this_cpu_write(msr_misc_features_shadow, 0);
515
516	/* Check features and update capabilities and shadow control bits */
517	init_cpuid_fault(c);
518	probe_xeon_phi_r3mwait(c);
519
520	msr = this_cpu_read(msr_misc_features_shadow);
521	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
522}
523
524static void init_intel(struct cpuinfo_x86 *c)
525{
526	early_init_intel(c);
527
528	intel_workarounds(c);
529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530	init_intel_cacheinfo(c);
531
532	if (c->cpuid_level > 9) {
533		unsigned eax = cpuid_eax(10);
534		/* Check for version and the number of counters */
535		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
536			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
537	}
538
539	if (cpu_has(c, X86_FEATURE_XMM2))
540		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
541
542	if (boot_cpu_has(X86_FEATURE_DS)) {
543		unsigned int l1, l2;
544
545		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
546		if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
547			set_cpu_cap(c, X86_FEATURE_BTS);
548		if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
549			set_cpu_cap(c, X86_FEATURE_PEBS);
550	}
551
552	if (boot_cpu_has(X86_FEATURE_CLFLUSH) &&
553	    (c->x86_vfm == INTEL_CORE2_DUNNINGTON ||
554	     c->x86_vfm == INTEL_NEHALEM_EX ||
555	     c->x86_vfm == INTEL_WESTMERE_EX))
556		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
557
558	if (boot_cpu_has(X86_FEATURE_MWAIT) &&
559	    (c->x86_vfm == INTEL_ATOM_GOLDMONT ||
560	     c->x86_vfm == INTEL_LUNARLAKE_M))
561		set_cpu_bug(c, X86_BUG_MONITOR);
562
563#ifdef CONFIG_X86_64
564	if (c->x86 == 15)
565		c->x86_cache_alignment = c->x86_clflush_size * 2;
566	if (c->x86 == 6)
567		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
568#else
569	/*
570	 * Names for the Pentium II/Celeron processors
571	 * detectable only by also checking the cache size.
572	 * Dixon is NOT a Celeron.
573	 */
574	if (c->x86 == 6) {
575		unsigned int l2 = c->x86_cache_size;
576		char *p = NULL;
577
578		switch (c->x86_model) {
579		case 5:
580			if (l2 == 0)
581				p = "Celeron (Covington)";
582			else if (l2 == 256)
583				p = "Mobile Pentium II (Dixon)";
584			break;
585
586		case 6:
587			if (l2 == 128)
588				p = "Celeron (Mendocino)";
589			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
590				p = "Celeron-A";
591			break;
592
593		case 8:
594			if (l2 == 128)
595				p = "Celeron (Coppermine)";
596			break;
597		}
598
599		if (p)
600			strcpy(c->x86_model_id, p);
601	}
602
603	if (c->x86 == 15)
604		set_cpu_cap(c, X86_FEATURE_P4);
605	if (c->x86 == 6)
606		set_cpu_cap(c, X86_FEATURE_P3);
607#endif
608
609	/* Work around errata */
610	srat_detect_node(c);
611
612	init_ia32_feat_ctl(c);
 
 
 
 
613
614	init_intel_misc_features(c);
615
616	split_lock_init();
617
618	intel_init_thermal(c);
 
619}
620
621#ifdef CONFIG_X86_32
622static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
623{
624	/*
625	 * Intel PIII Tualatin. This comes in two flavours.
626	 * One has 256kb of cache, the other 512. We have no way
627	 * to determine which, so we use a boottime override
628	 * for the 512kb model, and assume 256 otherwise.
629	 */
630	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
631		size = 256;
632
633	/*
634	 * Intel Quark SoC X1000 contains a 4-way set associative
635	 * 16K cache with a 16 byte cache line and 256 lines per tag
636	 */
637	if ((c->x86 == 5) && (c->x86_model == 9))
638		size = 16;
639	return size;
640}
641#endif
642
643#define TLB_INST_4K		0x01
644#define TLB_INST_4M		0x02
645#define TLB_INST_2M_4M		0x03
646
647#define TLB_INST_ALL		0x05
648#define TLB_INST_1G		0x06
649
650#define TLB_DATA_4K		0x11
651#define TLB_DATA_4M		0x12
652#define TLB_DATA_2M_4M		0x13
653#define TLB_DATA_4K_4M		0x14
654
655#define TLB_DATA_1G		0x16
656#define TLB_DATA_1G_2M_4M	0x17
657
658#define TLB_DATA0_4K		0x21
659#define TLB_DATA0_4M		0x22
660#define TLB_DATA0_2M_4M		0x23
661
662#define STLB_4K			0x41
663#define STLB_4K_2M		0x42
664
665/*
666 * All of leaf 0x2's one-byte TLB descriptors implies the same number of
667 * entries for their respective TLB types.  The 0x63 descriptor is an
668 * exception: it implies 4 dTLB entries for 1GB pages 32 dTLB entries
669 * for 2MB or 4MB pages.  Encode descriptor 0x63 dTLB entry count for
670 * 2MB/4MB pages here, as its count for dTLB 1GB pages is already at the
671 * intel_tlb_table[] mapping.
672 */
673#define TLB_0x63_2M_4M_ENTRIES	32
674
675static const struct _tlb_table intel_tlb_table[] = {
676	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
677	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
678	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
679	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
680	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
681	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
682	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" },
683	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
684	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
685	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
686	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
687	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
688	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
689	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
690	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
691	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
692	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
693	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
694	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
695	{ 0x63, TLB_DATA_1G_2M_4M,	4,	" TLB_DATA 1 GByte pages, 4-way set associative"
696						" (plus 32 entries TLB_DATA 2 MByte or 4 MByte pages, not encoded here)" },
697	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
698	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
699	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
700	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
701	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
702	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
703	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
704	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
705	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
706	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
707	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
708	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
709	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
710	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
711	{ 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
712	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
713	{ 0x00, 0, 0 }
714};
715
716static void intel_tlb_lookup(const unsigned char desc)
717{
718	unsigned char k;
719	if (desc == 0)
720		return;
721
722	/* look up this descriptor in the table */
723	for (k = 0; intel_tlb_table[k].descriptor != desc &&
724	     intel_tlb_table[k].descriptor != 0; k++)
725		;
726
727	if (intel_tlb_table[k].tlb_type == 0)
728		return;
729
730	switch (intel_tlb_table[k].tlb_type) {
731	case STLB_4K:
732		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
733			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
734		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
735			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
736		break;
737	case STLB_4K_2M:
738		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
739			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
740		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
741			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
742		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
743			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
744		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
745			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
746		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
747			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
748		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
749			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
750		break;
751	case TLB_INST_ALL:
752		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
753			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
754		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
755			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
756		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
757			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
758		break;
759	case TLB_INST_4K:
760		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
761			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
762		break;
763	case TLB_INST_4M:
764		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
765			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
766		break;
767	case TLB_INST_2M_4M:
768		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
769			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
770		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
771			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
772		break;
773	case TLB_DATA_4K:
774	case TLB_DATA0_4K:
775		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
776			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
777		break;
778	case TLB_DATA_4M:
779	case TLB_DATA0_4M:
780		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
781			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
782		break;
783	case TLB_DATA_2M_4M:
784	case TLB_DATA0_2M_4M:
785		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
786			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
787		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
788			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
789		break;
790	case TLB_DATA_4K_4M:
791		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
792			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
793		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
794			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
795		break;
796	case TLB_DATA_1G_2M_4M:
797		if (tlb_lld_2m[ENTRIES] < TLB_0x63_2M_4M_ENTRIES)
798			tlb_lld_2m[ENTRIES] = TLB_0x63_2M_4M_ENTRIES;
799		if (tlb_lld_4m[ENTRIES] < TLB_0x63_2M_4M_ENTRIES)
800			tlb_lld_4m[ENTRIES] = TLB_0x63_2M_4M_ENTRIES;
801		fallthrough;
802	case TLB_DATA_1G:
803		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
804			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
805		break;
806	}
807}
808
809static void intel_detect_tlb(struct cpuinfo_x86 *c)
810{
811	int i, j, n;
812	unsigned int regs[4];
813	unsigned char *desc = (unsigned char *)regs;
814
815	if (c->cpuid_level < 2)
816		return;
817
818	/* Number of times to iterate */
819	n = cpuid_eax(2) & 0xFF;
820
821	for (i = 0 ; i < n ; i++) {
822		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
823
824		/* If bit 31 is set, this is an unknown format */
825		for (j = 0 ; j < 4 ; j++)
826			if (regs[j] & (1 << 31))
827				regs[j] = 0;
828
829		/* Byte 0 is level count, not a descriptor */
830		for (j = 1 ; j < 16 ; j++)
831			intel_tlb_lookup(desc[j]);
832	}
833}
834
835static const struct cpu_dev intel_cpu_dev = {
836	.c_vendor	= "Intel",
837	.c_ident	= { "GenuineIntel" },
838#ifdef CONFIG_X86_32
839	.legacy_models = {
840		{ .family = 4, .model_names =
841		  {
842			  [0] = "486 DX-25/33",
843			  [1] = "486 DX-50",
844			  [2] = "486 SX",
845			  [3] = "486 DX/2",
846			  [4] = "486 SL",
847			  [5] = "486 SX/2",
848			  [7] = "486 DX/2-WB",
849			  [8] = "486 DX/4",
850			  [9] = "486 DX/4-WB"
851		  }
852		},
853		{ .family = 5, .model_names =
854		  {
855			  [0] = "Pentium 60/66 A-step",
856			  [1] = "Pentium 60/66",
857			  [2] = "Pentium 75 - 200",
858			  [3] = "OverDrive PODP5V83",
859			  [4] = "Pentium MMX",
860			  [7] = "Mobile Pentium 75 - 200",
861			  [8] = "Mobile Pentium MMX",
862			  [9] = "Quark SoC X1000",
863		  }
864		},
865		{ .family = 6, .model_names =
866		  {
867			  [0] = "Pentium Pro A-step",
868			  [1] = "Pentium Pro",
869			  [3] = "Pentium II (Klamath)",
870			  [4] = "Pentium II (Deschutes)",
871			  [5] = "Pentium II (Deschutes)",
872			  [6] = "Mobile Pentium II",
873			  [7] = "Pentium III (Katmai)",
874			  [8] = "Pentium III (Coppermine)",
875			  [10] = "Pentium III (Cascades)",
876			  [11] = "Pentium III (Tualatin)",
877		  }
878		},
879		{ .family = 15, .model_names =
880		  {
881			  [0] = "Pentium 4 (Unknown)",
882			  [1] = "Pentium 4 (Willamette)",
883			  [2] = "Pentium 4 (Northwood)",
884			  [4] = "Pentium 4 (Foster)",
885			  [5] = "Pentium 4 (Foster)",
886		  }
887		},
888	},
889	.legacy_cache_size = intel_size_cache,
890#endif
891	.c_detect_tlb	= intel_detect_tlb,
892	.c_early_init   = early_init_intel,
893	.c_bsp_init	= bsp_init_intel,
894	.c_init		= init_intel,
895	.c_x86_vendor	= X86_VENDOR_INTEL,
896};
897
898cpu_dev_register(intel_cpu_dev);
899
900#define X86_HYBRID_CPU_TYPE_ID_SHIFT	24
901
902/**
903 * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
904 *
905 * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
906 * a hybrid processor. If the processor is not hybrid, returns 0.
907 */
908u8 get_this_hybrid_cpu_type(void)
909{
910	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
911		return 0;
912
913	return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
914}
915
916/**
917 * get_this_hybrid_cpu_native_id() - Get the native id of this hybrid CPU
918 *
919 * Returns the uarch native ID [23:0] of a CPU in a hybrid processor.
920 * If the processor is not hybrid, returns 0.
921 */
922u32 get_this_hybrid_cpu_native_id(void)
923{
924	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
925		return 0;
926
927	return cpuid_eax(0x0000001a) &
928	       (BIT_ULL(X86_HYBRID_CPU_TYPE_ID_SHIFT) - 1);
929}