Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * A devfreq driver for NVIDIA Tegra SoCs
  4 *
  5 * Copyright (c) 2014 NVIDIA CORPORATION. All rights reserved.
  6 * Copyright (C) 2014 Google, Inc
  7 */
  8
  9#include <linux/clk.h>
 10#include <linux/cpufreq.h>
 11#include <linux/devfreq.h>
 12#include <linux/interrupt.h>
 13#include <linux/io.h>
 
 14#include <linux/module.h>
 15#include <linux/mod_devicetable.h>
 16#include <linux/platform_device.h>
 17#include <linux/pm_opp.h>
 18#include <linux/reset.h>
 
 19
 20#include "governor.h"
 21
 22#define ACTMON_GLB_STATUS					0x0
 23#define ACTMON_GLB_PERIOD_CTRL					0x4
 24
 25#define ACTMON_DEV_CTRL						0x0
 26#define ACTMON_DEV_CTRL_K_VAL_SHIFT				10
 27#define ACTMON_DEV_CTRL_ENB_PERIODIC				BIT(18)
 28#define ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN			BIT(20)
 29#define ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN			BIT(21)
 30#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT	23
 31#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT	26
 32#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN		BIT(29)
 33#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN		BIT(30)
 34#define ACTMON_DEV_CTRL_ENB					BIT(31)
 35
 
 
 36#define ACTMON_DEV_UPPER_WMARK					0x4
 37#define ACTMON_DEV_LOWER_WMARK					0x8
 38#define ACTMON_DEV_INIT_AVG					0xc
 39#define ACTMON_DEV_AVG_UPPER_WMARK				0x10
 40#define ACTMON_DEV_AVG_LOWER_WMARK				0x14
 41#define ACTMON_DEV_COUNT_WEIGHT					0x18
 42#define ACTMON_DEV_AVG_COUNT					0x20
 43#define ACTMON_DEV_INTR_STATUS					0x24
 44
 45#define ACTMON_INTR_STATUS_CLEAR				0xffffffff
 46
 47#define ACTMON_DEV_INTR_CONSECUTIVE_UPPER			BIT(31)
 48#define ACTMON_DEV_INTR_CONSECUTIVE_LOWER			BIT(30)
 49
 50#define ACTMON_ABOVE_WMARK_WINDOW				1
 51#define ACTMON_BELOW_WMARK_WINDOW				3
 52#define ACTMON_BOOST_FREQ_STEP					16000
 53
 54/*
 55 * Activity counter is incremented every 256 memory transactions, and each
 56 * transaction takes 4 EMC clocks for Tegra124; So the COUNT_WEIGHT is
 57 * 4 * 256 = 1024.
 58 */
 59#define ACTMON_COUNT_WEIGHT					0x400
 60
 61/*
 62 * ACTMON_AVERAGE_WINDOW_LOG2: default value for @DEV_CTRL_K_VAL, which
 63 * translates to 2 ^ (K_VAL + 1). ex: 2 ^ (6 + 1) = 128
 64 */
 65#define ACTMON_AVERAGE_WINDOW_LOG2			6
 66#define ACTMON_SAMPLING_PERIOD				12 /* ms */
 67#define ACTMON_DEFAULT_AVG_BAND				6  /* 1/10 of % */
 68
 69#define KHZ							1000
 70
 
 
 71/* Assume that the bus is saturated if the utilization is 25% */
 72#define BUS_SATURATION_RATIO					25
 73
 74/**
 75 * struct tegra_devfreq_device_config - configuration specific to an ACTMON
 76 * device
 77 *
 78 * Coefficients and thresholds are percentages unless otherwise noted
 79 */
 80struct tegra_devfreq_device_config {
 81	u32		offset;
 82	u32		irq_mask;
 83
 84	/* Factors applied to boost_freq every consecutive watermark breach */
 85	unsigned int	boost_up_coeff;
 86	unsigned int	boost_down_coeff;
 87
 88	/* Define the watermark bounds when applied to the current avg */
 89	unsigned int	boost_up_threshold;
 90	unsigned int	boost_down_threshold;
 91
 92	/*
 93	 * Threshold of activity (cycles) below which the CPU frequency isn't
 94	 * to be taken into account. This is to avoid increasing the EMC
 95	 * frequency when the CPU is very busy but not accessing the bus often.
 
 96	 */
 97	u32		avg_dependency_threshold;
 98};
 99
100enum tegra_actmon_device {
101	MCALL = 0,
102	MCCPU,
103};
104
105static struct tegra_devfreq_device_config actmon_device_configs[] = {
106	{
107		/* MCALL: All memory accesses (including from the CPUs) */
108		.offset = 0x1c0,
109		.irq_mask = 1 << 26,
110		.boost_up_coeff = 200,
111		.boost_down_coeff = 50,
112		.boost_up_threshold = 60,
113		.boost_down_threshold = 40,
114	},
115	{
116		/* MCCPU: memory accesses from the CPUs */
117		.offset = 0x200,
118		.irq_mask = 1 << 25,
119		.boost_up_coeff = 800,
120		.boost_down_coeff = 90,
121		.boost_up_threshold = 27,
122		.boost_down_threshold = 10,
123		.avg_dependency_threshold = 50000,
124	},
125};
126
127/**
128 * struct tegra_devfreq_device - state specific to an ACTMON device
129 *
130 * Frequencies are in kHz.
131 */
132struct tegra_devfreq_device {
133	const struct tegra_devfreq_device_config *config;
134	void __iomem *regs;
135
136	/* Average event count sampled in the last interrupt */
137	u32 avg_count;
138
139	/*
140	 * Extra frequency to increase the target by due to consecutive
141	 * watermark breaches.
142	 */
143	unsigned long boost_freq;
144
145	/* Optimal frequency calculated from the stats for this device */
146	unsigned long target_freq;
147};
148
149struct tegra_devfreq {
150	struct devfreq		*devfreq;
151
152	struct reset_control	*reset;
153	struct clk		*clock;
154	void __iomem		*regs;
155
156	struct clk		*emc_clock;
157	unsigned long		max_freq;
158	unsigned long		cur_freq;
159	struct notifier_block	rate_change_nb;
 
 
 
160
161	struct tegra_devfreq_device devices[ARRAY_SIZE(actmon_device_configs)];
162
163	int irq;
 
 
164};
165
166struct tegra_actmon_emc_ratio {
167	unsigned long cpu_freq;
168	unsigned long emc_freq;
169};
170
171static struct tegra_actmon_emc_ratio actmon_emc_ratios[] = {
172	{ 1400000, ULONG_MAX },
173	{ 1200000,    750000 },
174	{ 1100000,    600000 },
175	{ 1000000,    500000 },
176	{  800000,    375000 },
177	{  500000,    200000 },
178	{  250000,    100000 },
179};
180
181static u32 actmon_readl(struct tegra_devfreq *tegra, u32 offset)
182{
183	return readl_relaxed(tegra->regs + offset);
184}
185
186static void actmon_writel(struct tegra_devfreq *tegra, u32 val, u32 offset)
187{
188	writel_relaxed(val, tegra->regs + offset);
189}
190
191static u32 device_readl(struct tegra_devfreq_device *dev, u32 offset)
192{
193	return readl_relaxed(dev->regs + offset);
194}
195
196static void device_writel(struct tegra_devfreq_device *dev, u32 val,
197			  u32 offset)
198{
199	writel_relaxed(val, dev->regs + offset);
200}
201
202static unsigned long do_percent(unsigned long val, unsigned int pct)
203{
204	return val * pct / 100;
 
 
 
 
 
 
 
205}
206
207static void tegra_devfreq_update_avg_wmark(struct tegra_devfreq *tegra,
208					   struct tegra_devfreq_device *dev)
209{
210	u32 avg = dev->avg_count;
211	u32 avg_band_freq = tegra->max_freq * ACTMON_DEFAULT_AVG_BAND / KHZ;
212	u32 band = avg_band_freq * ACTMON_SAMPLING_PERIOD;
 
213
 
214	device_writel(dev, avg + band, ACTMON_DEV_AVG_UPPER_WMARK);
215
216	avg = max(dev->avg_count, band);
217	device_writel(dev, avg - band, ACTMON_DEV_AVG_LOWER_WMARK);
218}
219
220static void tegra_devfreq_update_wmark(struct tegra_devfreq *tegra,
221				       struct tegra_devfreq_device *dev)
222{
223	u32 val = tegra->cur_freq * ACTMON_SAMPLING_PERIOD;
224
225	device_writel(dev, do_percent(val, dev->config->boost_up_threshold),
226		      ACTMON_DEV_UPPER_WMARK);
227
228	device_writel(dev, do_percent(val, dev->config->boost_down_threshold),
229		      ACTMON_DEV_LOWER_WMARK);
230}
231
232static void actmon_write_barrier(struct tegra_devfreq *tegra)
233{
234	/* ensure the update has reached the ACTMON */
235	readl(tegra->regs + ACTMON_GLB_STATUS);
236}
237
238static void actmon_isr_device(struct tegra_devfreq *tegra,
239			      struct tegra_devfreq_device *dev)
240{
241	u32 intr_status, dev_ctrl;
242
243	dev->avg_count = device_readl(dev, ACTMON_DEV_AVG_COUNT);
244	tegra_devfreq_update_avg_wmark(tegra, dev);
245
246	intr_status = device_readl(dev, ACTMON_DEV_INTR_STATUS);
247	dev_ctrl = device_readl(dev, ACTMON_DEV_CTRL);
248
249	if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_UPPER) {
250		/*
251		 * new_boost = min(old_boost * up_coef + step, max_freq)
252		 */
253		dev->boost_freq = do_percent(dev->boost_freq,
254					     dev->config->boost_up_coeff);
255		dev->boost_freq += ACTMON_BOOST_FREQ_STEP;
256
257		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
258
259		if (dev->boost_freq >= tegra->max_freq)
 
260			dev->boost_freq = tegra->max_freq;
261		else
262			dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
263	} else if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_LOWER) {
264		/*
265		 * new_boost = old_boost * down_coef
266		 * or 0 if (old_boost * down_coef < step / 2)
267		 */
268		dev->boost_freq = do_percent(dev->boost_freq,
269					     dev->config->boost_down_coeff);
270
271		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
272
273		if (dev->boost_freq < (ACTMON_BOOST_FREQ_STEP >> 1))
274			dev->boost_freq = 0;
275		else
276			dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
277	}
278
279	if (dev->config->avg_dependency_threshold) {
280		if (dev->avg_count >= dev->config->avg_dependency_threshold)
281			dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
282		else if (dev->boost_freq == 0)
283			dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
 
 
284	}
285
286	device_writel(dev, dev_ctrl, ACTMON_DEV_CTRL);
287
288	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
289
290	actmon_write_barrier(tegra);
291}
292
293static unsigned long actmon_cpu_to_emc_rate(struct tegra_devfreq *tegra,
294					    unsigned long cpu_freq)
295{
296	unsigned int i;
297	struct tegra_actmon_emc_ratio *ratio = actmon_emc_ratios;
298
299	for (i = 0; i < ARRAY_SIZE(actmon_emc_ratios); i++, ratio++) {
300		if (cpu_freq >= ratio->cpu_freq) {
301			if (ratio->emc_freq >= tegra->max_freq)
302				return tegra->max_freq;
303			else
304				return ratio->emc_freq;
305		}
306	}
307
308	return 0;
309}
310
 
 
 
 
 
 
 
 
 
 
 
 
 
311static void actmon_update_target(struct tegra_devfreq *tegra,
312				 struct tegra_devfreq_device *dev)
313{
314	unsigned long cpu_freq = 0;
315	unsigned long static_cpu_emc_freq = 0;
316	unsigned int avg_sustain_coef;
317
318	if (dev->config->avg_dependency_threshold) {
319		cpu_freq = cpufreq_get(0);
320		static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
321	}
322
323	dev->target_freq = dev->avg_count / ACTMON_SAMPLING_PERIOD;
324	avg_sustain_coef = 100 * 100 / dev->config->boost_up_threshold;
325	dev->target_freq = do_percent(dev->target_freq, avg_sustain_coef);
326	dev->target_freq += dev->boost_freq;
327
328	if (dev->avg_count >= dev->config->avg_dependency_threshold)
329		dev->target_freq = max(dev->target_freq, static_cpu_emc_freq);
 
 
 
330}
331
332static irqreturn_t actmon_thread_isr(int irq, void *data)
333{
334	struct tegra_devfreq *tegra = data;
335	bool handled = false;
336	unsigned int i;
337	u32 val;
338
339	mutex_lock(&tegra->devfreq->lock);
340
341	val = actmon_readl(tegra, ACTMON_GLB_STATUS);
342	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
343		if (val & tegra->devices[i].config->irq_mask) {
344			actmon_isr_device(tegra, tegra->devices + i);
345			handled = true;
346		}
347	}
348
349	if (handled)
350		update_devfreq(tegra->devfreq);
351
352	mutex_unlock(&tegra->devfreq->lock);
353
354	return handled ? IRQ_HANDLED : IRQ_NONE;
355}
356
357static int tegra_actmon_rate_notify_cb(struct notifier_block *nb,
358				       unsigned long action, void *ptr)
359{
360	struct clk_notifier_data *data = ptr;
361	struct tegra_devfreq *tegra;
362	struct tegra_devfreq_device *dev;
363	unsigned int i;
364
365	if (action != POST_RATE_CHANGE)
366		return NOTIFY_OK;
367
368	tegra = container_of(nb, struct tegra_devfreq, rate_change_nb);
369
370	tegra->cur_freq = data->new_rate / KHZ;
371
372	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
373		dev = &tegra->devices[i];
374
375		tegra_devfreq_update_wmark(tegra, dev);
376	}
377
378	actmon_write_barrier(tegra);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379
380	return NOTIFY_OK;
381}
382
383static void tegra_actmon_configure_device(struct tegra_devfreq *tegra,
384					  struct tegra_devfreq_device *dev)
385{
386	u32 val = 0;
387
 
 
 
388	dev->target_freq = tegra->cur_freq;
389
390	dev->avg_count = tegra->cur_freq * ACTMON_SAMPLING_PERIOD;
391	device_writel(dev, dev->avg_count, ACTMON_DEV_INIT_AVG);
392
393	tegra_devfreq_update_avg_wmark(tegra, dev);
394	tegra_devfreq_update_wmark(tegra, dev);
395
396	device_writel(dev, ACTMON_COUNT_WEIGHT, ACTMON_DEV_COUNT_WEIGHT);
397	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
398
399	val |= ACTMON_DEV_CTRL_ENB_PERIODIC;
400	val |= (ACTMON_AVERAGE_WINDOW_LOG2 - 1)
401		<< ACTMON_DEV_CTRL_K_VAL_SHIFT;
402	val |= (ACTMON_BELOW_WMARK_WINDOW - 1)
403		<< ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT;
404	val |= (ACTMON_ABOVE_WMARK_WINDOW - 1)
405		<< ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT;
406	val |= ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN;
407	val |= ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN;
408	val |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
409	val |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
410	val |= ACTMON_DEV_CTRL_ENB;
411
412	device_writel(dev, val, ACTMON_DEV_CTRL);
413}
414
415static void tegra_actmon_start(struct tegra_devfreq *tegra)
416{
 
417	unsigned int i;
418
419	disable_irq(tegra->irq);
 
 
 
 
 
420
421	actmon_writel(tegra, ACTMON_SAMPLING_PERIOD - 1,
 
 
 
 
 
 
 
 
422		      ACTMON_GLB_PERIOD_CTRL);
423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++)
425		tegra_actmon_configure_device(tegra, &tegra->devices[i]);
426
427	actmon_write_barrier(tegra);
 
 
 
 
 
 
 
 
 
 
 
 
 
428
429	enable_irq(tegra->irq);
 
 
 
 
 
 
 
 
 
430}
431
432static void tegra_actmon_stop(struct tegra_devfreq *tegra)
433{
434	unsigned int i;
435
436	disable_irq(tegra->irq);
 
437
438	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
439		device_writel(&tegra->devices[i], 0x00000000, ACTMON_DEV_CTRL);
440		device_writel(&tegra->devices[i], ACTMON_INTR_STATUS_CLEAR,
441			      ACTMON_DEV_INTR_STATUS);
442	}
443
444	actmon_write_barrier(tegra);
 
445
446	enable_irq(tegra->irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447}
448
449static int tegra_devfreq_target(struct device *dev, unsigned long *freq,
450				u32 flags)
451{
452	struct tegra_devfreq *tegra = dev_get_drvdata(dev);
453	struct devfreq *devfreq = tegra->devfreq;
454	struct dev_pm_opp *opp;
455	unsigned long rate;
456	int err;
457
458	opp = devfreq_recommended_opp(dev, freq, flags);
459	if (IS_ERR(opp)) {
460		dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
461		return PTR_ERR(opp);
462	}
463	rate = dev_pm_opp_get_freq(opp);
464	dev_pm_opp_put(opp);
465
466	err = clk_set_min_rate(tegra->emc_clock, rate);
467	if (err)
468		return err;
469
470	err = clk_set_rate(tegra->emc_clock, 0);
471	if (err)
472		goto restore_min_rate;
473
474	return 0;
475
476restore_min_rate:
477	clk_set_min_rate(tegra->emc_clock, devfreq->previous_freq);
478
479	return err;
480}
481
482static int tegra_devfreq_get_dev_status(struct device *dev,
483					struct devfreq_dev_status *stat)
484{
485	struct tegra_devfreq *tegra = dev_get_drvdata(dev);
486	struct tegra_devfreq_device *actmon_dev;
487	unsigned long cur_freq;
488
489	cur_freq = READ_ONCE(tegra->cur_freq);
490
491	/* To be used by the tegra governor */
492	stat->private_data = tegra;
493
494	/* The below are to be used by the other governors */
495	stat->current_frequency = cur_freq * KHZ;
496
497	actmon_dev = &tegra->devices[MCALL];
498
499	/* Number of cycles spent on memory access */
500	stat->busy_time = device_readl(actmon_dev, ACTMON_DEV_AVG_COUNT);
501
502	/* The bus can be considered to be saturated way before 100% */
503	stat->busy_time *= 100 / BUS_SATURATION_RATIO;
504
505	/* Number of cycles in a sampling period */
506	stat->total_time = ACTMON_SAMPLING_PERIOD * cur_freq;
507
508	stat->busy_time = min(stat->busy_time, stat->total_time);
509
510	return 0;
511}
512
513static struct devfreq_dev_profile tegra_devfreq_profile = {
514	.polling_ms	= 0,
515	.target		= tegra_devfreq_target,
516	.get_dev_status	= tegra_devfreq_get_dev_status,
517};
518
519static int tegra_governor_get_target(struct devfreq *devfreq,
520				     unsigned long *freq)
521{
522	struct devfreq_dev_status *stat;
523	struct tegra_devfreq *tegra;
524	struct tegra_devfreq_device *dev;
525	unsigned long target_freq = 0;
526	unsigned int i;
527	int err;
528
529	err = devfreq_update_stats(devfreq);
530	if (err)
531		return err;
532
533	stat = &devfreq->last_status;
534
535	tegra = stat->private_data;
536
537	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
538		dev = &tegra->devices[i];
539
540		actmon_update_target(tegra, dev);
541
542		target_freq = max(target_freq, dev->target_freq);
543	}
544
545	*freq = target_freq * KHZ;
546
547	return 0;
548}
549
550static int tegra_governor_event_handler(struct devfreq *devfreq,
551					unsigned int event, void *data)
552{
553	struct tegra_devfreq *tegra = dev_get_drvdata(devfreq->dev.parent);
 
 
 
 
 
 
 
 
554
555	switch (event) {
556	case DEVFREQ_GOV_START:
557		devfreq_monitor_start(devfreq);
558		tegra_actmon_start(tegra);
559		break;
560
561	case DEVFREQ_GOV_STOP:
562		tegra_actmon_stop(tegra);
563		devfreq_monitor_stop(devfreq);
564		break;
565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566	case DEVFREQ_GOV_SUSPEND:
567		tegra_actmon_stop(tegra);
568		devfreq_monitor_suspend(devfreq);
569		break;
570
571	case DEVFREQ_GOV_RESUME:
572		devfreq_monitor_resume(devfreq);
573		tegra_actmon_start(tegra);
574		break;
575	}
576
577	return 0;
578}
579
580static struct devfreq_governor tegra_devfreq_governor = {
581	.name = "tegra_actmon",
582	.get_target_freq = tegra_governor_get_target,
583	.event_handler = tegra_governor_event_handler,
584	.immutable = true,
 
585};
586
587static int tegra_devfreq_probe(struct platform_device *pdev)
588{
589	struct tegra_devfreq *tegra;
590	struct tegra_devfreq_device *dev;
 
 
591	unsigned int i;
592	unsigned long rate;
593	int err;
594
595	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
596	if (!tegra)
597		return -ENOMEM;
598
599	tegra->regs = devm_platform_ioremap_resource(pdev, 0);
600	if (IS_ERR(tegra->regs))
601		return PTR_ERR(tegra->regs);
602
603	tegra->reset = devm_reset_control_get(&pdev->dev, "actmon");
604	if (IS_ERR(tegra->reset)) {
605		dev_err(&pdev->dev, "Failed to get reset\n");
606		return PTR_ERR(tegra->reset);
607	}
608
609	tegra->clock = devm_clk_get(&pdev->dev, "actmon");
610	if (IS_ERR(tegra->clock)) {
611		dev_err(&pdev->dev, "Failed to get actmon clock\n");
612		return PTR_ERR(tegra->clock);
613	}
614
615	tegra->emc_clock = devm_clk_get(&pdev->dev, "emc");
616	if (IS_ERR(tegra->emc_clock)) {
617		dev_err(&pdev->dev, "Failed to get emc clock\n");
618		return PTR_ERR(tegra->emc_clock);
619	}
620
621	tegra->irq = platform_get_irq(pdev, 0);
622	if (tegra->irq < 0) {
623		err = tegra->irq;
624		dev_err(&pdev->dev, "Failed to get IRQ: %d\n", err);
 
 
 
 
 
 
 
 
 
625		return err;
626	}
627
628	reset_control_assert(tegra->reset);
629
630	err = clk_prepare_enable(tegra->clock);
631	if (err) {
632		dev_err(&pdev->dev,
633			"Failed to prepare and enable ACTMON clock\n");
634		return err;
635	}
636
637	reset_control_deassert(tegra->reset);
638
639	tegra->max_freq = clk_round_rate(tegra->emc_clock, ULONG_MAX) / KHZ;
640	tegra->cur_freq = clk_get_rate(tegra->emc_clock) / KHZ;
 
 
 
 
 
 
641
642	for (i = 0; i < ARRAY_SIZE(actmon_device_configs); i++) {
643		dev = tegra->devices + i;
644		dev->config = actmon_device_configs + i;
645		dev->regs = tegra->regs + dev->config->offset;
646	}
647
648	for (rate = 0; rate <= tegra->max_freq * KHZ; rate++) {
649		rate = clk_round_rate(tegra->emc_clock, rate);
650
651		err = dev_pm_opp_add(&pdev->dev, rate, 0);
 
 
 
 
 
 
 
652		if (err) {
653			dev_err(&pdev->dev, "Failed to add OPP: %d\n", err);
654			goto remove_opps;
655		}
656	}
657
658	platform_set_drvdata(pdev, tegra);
659
660	tegra->rate_change_nb.notifier_call = tegra_actmon_rate_notify_cb;
661	err = clk_notifier_register(tegra->emc_clock, &tegra->rate_change_nb);
662	if (err) {
663		dev_err(&pdev->dev,
664			"Failed to register rate change notifier\n");
665		goto remove_opps;
666	}
667
668	err = devfreq_add_governor(&tegra_devfreq_governor);
669	if (err) {
670		dev_err(&pdev->dev, "Failed to add governor: %d\n", err);
671		goto unreg_notifier;
672	}
673
674	tegra_devfreq_profile.initial_freq = clk_get_rate(tegra->emc_clock);
675	tegra->devfreq = devfreq_add_device(&pdev->dev,
676					    &tegra_devfreq_profile,
677					    "tegra_actmon",
678					    NULL);
679	if (IS_ERR(tegra->devfreq)) {
680		err = PTR_ERR(tegra->devfreq);
681		goto remove_governor;
682	}
683
684	err = devm_request_threaded_irq(&pdev->dev, tegra->irq, NULL,
685					actmon_thread_isr, IRQF_ONESHOT,
686					"tegra-devfreq", tegra);
687	if (err) {
688		dev_err(&pdev->dev, "Interrupt request failed: %d\n", err);
689		goto remove_devfreq;
690	}
691
692	return 0;
693
694remove_devfreq:
695	devfreq_remove_device(tegra->devfreq);
696
697remove_governor:
698	devfreq_remove_governor(&tegra_devfreq_governor);
699
700unreg_notifier:
701	clk_notifier_unregister(tegra->emc_clock, &tegra->rate_change_nb);
702
703remove_opps:
704	dev_pm_opp_remove_all_dynamic(&pdev->dev);
705
706	reset_control_reset(tegra->reset);
 
707	clk_disable_unprepare(tegra->clock);
708
709	return err;
710}
711
712static int tegra_devfreq_remove(struct platform_device *pdev)
713{
714	struct tegra_devfreq *tegra = platform_get_drvdata(pdev);
715
716	devfreq_remove_device(tegra->devfreq);
717	devfreq_remove_governor(&tegra_devfreq_governor);
718
719	clk_notifier_unregister(tegra->emc_clock, &tegra->rate_change_nb);
720	dev_pm_opp_remove_all_dynamic(&pdev->dev);
721
722	reset_control_reset(tegra->reset);
723	clk_disable_unprepare(tegra->clock);
724
725	return 0;
726}
727
728static const struct of_device_id tegra_devfreq_of_match[] = {
729	{ .compatible = "nvidia,tegra30-actmon" },
730	{ .compatible = "nvidia,tegra124-actmon" },
731	{ },
732};
733
734MODULE_DEVICE_TABLE(of, tegra_devfreq_of_match);
735
736static struct platform_driver tegra_devfreq_driver = {
737	.probe	= tegra_devfreq_probe,
738	.remove	= tegra_devfreq_remove,
739	.driver = {
740		.name = "tegra-devfreq",
741		.of_match_table = tegra_devfreq_of_match,
742	},
743};
744module_platform_driver(tegra_devfreq_driver);
745
746MODULE_LICENSE("GPL v2");
747MODULE_DESCRIPTION("Tegra devfreq driver");
748MODULE_AUTHOR("Tomeu Vizoso <tomeu.vizoso@collabora.com>");
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * A devfreq driver for NVIDIA Tegra SoCs
  4 *
  5 * Copyright (c) 2014 NVIDIA CORPORATION. All rights reserved.
  6 * Copyright (C) 2014 Google, Inc
  7 */
  8
  9#include <linux/clk.h>
 10#include <linux/cpufreq.h>
 11#include <linux/devfreq.h>
 12#include <linux/interrupt.h>
 13#include <linux/io.h>
 14#include <linux/irq.h>
 15#include <linux/module.h>
 16#include <linux/of_device.h>
 17#include <linux/platform_device.h>
 18#include <linux/pm_opp.h>
 19#include <linux/reset.h>
 20#include <linux/workqueue.h>
 21
 22#include "governor.h"
 23
 24#define ACTMON_GLB_STATUS					0x0
 25#define ACTMON_GLB_PERIOD_CTRL					0x4
 26
 27#define ACTMON_DEV_CTRL						0x0
 28#define ACTMON_DEV_CTRL_K_VAL_SHIFT				10
 29#define ACTMON_DEV_CTRL_ENB_PERIODIC				BIT(18)
 30#define ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN			BIT(20)
 31#define ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN			BIT(21)
 32#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT	23
 33#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT	26
 34#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN		BIT(29)
 35#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN		BIT(30)
 36#define ACTMON_DEV_CTRL_ENB					BIT(31)
 37
 38#define ACTMON_DEV_CTRL_STOP					0x00000000
 39
 40#define ACTMON_DEV_UPPER_WMARK					0x4
 41#define ACTMON_DEV_LOWER_WMARK					0x8
 42#define ACTMON_DEV_INIT_AVG					0xc
 43#define ACTMON_DEV_AVG_UPPER_WMARK				0x10
 44#define ACTMON_DEV_AVG_LOWER_WMARK				0x14
 45#define ACTMON_DEV_COUNT_WEIGHT					0x18
 46#define ACTMON_DEV_AVG_COUNT					0x20
 47#define ACTMON_DEV_INTR_STATUS					0x24
 48
 49#define ACTMON_INTR_STATUS_CLEAR				0xffffffff
 50
 51#define ACTMON_DEV_INTR_CONSECUTIVE_UPPER			BIT(31)
 52#define ACTMON_DEV_INTR_CONSECUTIVE_LOWER			BIT(30)
 53
 54#define ACTMON_ABOVE_WMARK_WINDOW				1
 55#define ACTMON_BELOW_WMARK_WINDOW				3
 56#define ACTMON_BOOST_FREQ_STEP					16000
 57
 58/*
 59 * Activity counter is incremented every 256 memory transactions, and each
 60 * transaction takes 4 EMC clocks for Tegra124; So the COUNT_WEIGHT is
 61 * 4 * 256 = 1024.
 62 */
 63#define ACTMON_COUNT_WEIGHT					0x400
 64
 65/*
 66 * ACTMON_AVERAGE_WINDOW_LOG2: default value for @DEV_CTRL_K_VAL, which
 67 * translates to 2 ^ (K_VAL + 1). ex: 2 ^ (6 + 1) = 128
 68 */
 69#define ACTMON_AVERAGE_WINDOW_LOG2			6
 70#define ACTMON_SAMPLING_PERIOD				12 /* ms */
 71#define ACTMON_DEFAULT_AVG_BAND				6  /* 1/10 of % */
 72
 73#define KHZ							1000
 74
 75#define KHZ_MAX						(ULONG_MAX / KHZ)
 76
 77/* Assume that the bus is saturated if the utilization is 25% */
 78#define BUS_SATURATION_RATIO					25
 79
 80/**
 81 * struct tegra_devfreq_device_config - configuration specific to an ACTMON
 82 * device
 83 *
 84 * Coefficients and thresholds are percentages unless otherwise noted
 85 */
 86struct tegra_devfreq_device_config {
 87	u32		offset;
 88	u32		irq_mask;
 89
 90	/* Factors applied to boost_freq every consecutive watermark breach */
 91	unsigned int	boost_up_coeff;
 92	unsigned int	boost_down_coeff;
 93
 94	/* Define the watermark bounds when applied to the current avg */
 95	unsigned int	boost_up_threshold;
 96	unsigned int	boost_down_threshold;
 97
 98	/*
 99	 * Threshold of activity (cycles translated to kHz) below which the
100	 * CPU frequency isn't to be taken into account. This is to avoid
101	 * increasing the EMC frequency when the CPU is very busy but not
102	 * accessing the bus often.
103	 */
104	u32		avg_dependency_threshold;
105};
106
107enum tegra_actmon_device {
108	MCALL = 0,
109	MCCPU,
110};
111
112static const struct tegra_devfreq_device_config actmon_device_configs[] = {
113	{
114		/* MCALL: All memory accesses (including from the CPUs) */
115		.offset = 0x1c0,
116		.irq_mask = 1 << 26,
117		.boost_up_coeff = 200,
118		.boost_down_coeff = 50,
119		.boost_up_threshold = 60,
120		.boost_down_threshold = 40,
121	},
122	{
123		/* MCCPU: memory accesses from the CPUs */
124		.offset = 0x200,
125		.irq_mask = 1 << 25,
126		.boost_up_coeff = 800,
127		.boost_down_coeff = 40,
128		.boost_up_threshold = 27,
129		.boost_down_threshold = 10,
130		.avg_dependency_threshold = 16000, /* 16MHz in kHz units */
131	},
132};
133
134/**
135 * struct tegra_devfreq_device - state specific to an ACTMON device
136 *
137 * Frequencies are in kHz.
138 */
139struct tegra_devfreq_device {
140	const struct tegra_devfreq_device_config *config;
141	void __iomem *regs;
142
143	/* Average event count sampled in the last interrupt */
144	u32 avg_count;
145
146	/*
147	 * Extra frequency to increase the target by due to consecutive
148	 * watermark breaches.
149	 */
150	unsigned long boost_freq;
151
152	/* Optimal frequency calculated from the stats for this device */
153	unsigned long target_freq;
154};
155
156struct tegra_devfreq {
157	struct devfreq		*devfreq;
158
159	struct reset_control	*reset;
160	struct clk		*clock;
161	void __iomem		*regs;
162
163	struct clk		*emc_clock;
164	unsigned long		max_freq;
165	unsigned long		cur_freq;
166	struct notifier_block	clk_rate_change_nb;
167
168	struct delayed_work	cpufreq_update_work;
169	struct notifier_block	cpu_rate_change_nb;
170
171	struct tegra_devfreq_device devices[ARRAY_SIZE(actmon_device_configs)];
172
173	unsigned int		irq;
174
175	bool			started;
176};
177
178struct tegra_actmon_emc_ratio {
179	unsigned long cpu_freq;
180	unsigned long emc_freq;
181};
182
183static const struct tegra_actmon_emc_ratio actmon_emc_ratios[] = {
184	{ 1400000,    KHZ_MAX },
185	{ 1200000,    750000 },
186	{ 1100000,    600000 },
187	{ 1000000,    500000 },
188	{  800000,    375000 },
189	{  500000,    200000 },
190	{  250000,    100000 },
191};
192
193static u32 actmon_readl(struct tegra_devfreq *tegra, u32 offset)
194{
195	return readl_relaxed(tegra->regs + offset);
196}
197
198static void actmon_writel(struct tegra_devfreq *tegra, u32 val, u32 offset)
199{
200	writel_relaxed(val, tegra->regs + offset);
201}
202
203static u32 device_readl(struct tegra_devfreq_device *dev, u32 offset)
204{
205	return readl_relaxed(dev->regs + offset);
206}
207
208static void device_writel(struct tegra_devfreq_device *dev, u32 val,
209			  u32 offset)
210{
211	writel_relaxed(val, dev->regs + offset);
212}
213
214static unsigned long do_percent(unsigned long long val, unsigned int pct)
215{
216	val = val * pct;
217	do_div(val, 100);
218
219	/*
220	 * High freq + high boosting percent + large polling interval are
221	 * resulting in integer overflow when watermarks are calculated.
222	 */
223	return min_t(u64, val, U32_MAX);
224}
225
226static void tegra_devfreq_update_avg_wmark(struct tegra_devfreq *tegra,
227					   struct tegra_devfreq_device *dev)
228{
 
229	u32 avg_band_freq = tegra->max_freq * ACTMON_DEFAULT_AVG_BAND / KHZ;
230	u32 band = avg_band_freq * tegra->devfreq->profile->polling_ms;
231	u32 avg;
232
233	avg = min(dev->avg_count, U32_MAX - band);
234	device_writel(dev, avg + band, ACTMON_DEV_AVG_UPPER_WMARK);
235
236	avg = max(dev->avg_count, band);
237	device_writel(dev, avg - band, ACTMON_DEV_AVG_LOWER_WMARK);
238}
239
240static void tegra_devfreq_update_wmark(struct tegra_devfreq *tegra,
241				       struct tegra_devfreq_device *dev)
242{
243	u32 val = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
244
245	device_writel(dev, do_percent(val, dev->config->boost_up_threshold),
246		      ACTMON_DEV_UPPER_WMARK);
247
248	device_writel(dev, do_percent(val, dev->config->boost_down_threshold),
249		      ACTMON_DEV_LOWER_WMARK);
250}
251
 
 
 
 
 
 
252static void actmon_isr_device(struct tegra_devfreq *tegra,
253			      struct tegra_devfreq_device *dev)
254{
255	u32 intr_status, dev_ctrl;
256
257	dev->avg_count = device_readl(dev, ACTMON_DEV_AVG_COUNT);
258	tegra_devfreq_update_avg_wmark(tegra, dev);
259
260	intr_status = device_readl(dev, ACTMON_DEV_INTR_STATUS);
261	dev_ctrl = device_readl(dev, ACTMON_DEV_CTRL);
262
263	if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_UPPER) {
264		/*
265		 * new_boost = min(old_boost * up_coef + step, max_freq)
266		 */
267		dev->boost_freq = do_percent(dev->boost_freq,
268					     dev->config->boost_up_coeff);
269		dev->boost_freq += ACTMON_BOOST_FREQ_STEP;
270
271		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
272
273		if (dev->boost_freq >= tegra->max_freq) {
274			dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
275			dev->boost_freq = tegra->max_freq;
276		}
 
277	} else if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_LOWER) {
278		/*
279		 * new_boost = old_boost * down_coef
280		 * or 0 if (old_boost * down_coef < step / 2)
281		 */
282		dev->boost_freq = do_percent(dev->boost_freq,
283					     dev->config->boost_down_coeff);
284
285		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
286
287		if (dev->boost_freq < (ACTMON_BOOST_FREQ_STEP >> 1)) {
 
 
 
 
 
 
 
 
 
288			dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
289			dev->boost_freq = 0;
290		}
291	}
292
293	device_writel(dev, dev_ctrl, ACTMON_DEV_CTRL);
294
295	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
 
 
296}
297
298static unsigned long actmon_cpu_to_emc_rate(struct tegra_devfreq *tegra,
299					    unsigned long cpu_freq)
300{
301	unsigned int i;
302	const struct tegra_actmon_emc_ratio *ratio = actmon_emc_ratios;
303
304	for (i = 0; i < ARRAY_SIZE(actmon_emc_ratios); i++, ratio++) {
305		if (cpu_freq >= ratio->cpu_freq) {
306			if (ratio->emc_freq >= tegra->max_freq)
307				return tegra->max_freq;
308			else
309				return ratio->emc_freq;
310		}
311	}
312
313	return 0;
314}
315
316static unsigned long actmon_device_target_freq(struct tegra_devfreq *tegra,
317					       struct tegra_devfreq_device *dev)
318{
319	unsigned int avg_sustain_coef;
320	unsigned long target_freq;
321
322	target_freq = dev->avg_count / tegra->devfreq->profile->polling_ms;
323	avg_sustain_coef = 100 * 100 / dev->config->boost_up_threshold;
324	target_freq = do_percent(target_freq, avg_sustain_coef);
325
326	return target_freq;
327}
328
329static void actmon_update_target(struct tegra_devfreq *tegra,
330				 struct tegra_devfreq_device *dev)
331{
332	unsigned long cpu_freq = 0;
333	unsigned long static_cpu_emc_freq = 0;
 
334
335	dev->target_freq = actmon_device_target_freq(tegra, dev);
 
 
 
336
337	if (dev->config->avg_dependency_threshold &&
338	    dev->config->avg_dependency_threshold <= dev->target_freq) {
339		cpu_freq = cpufreq_quick_get(0);
340		static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
341
342		dev->target_freq += dev->boost_freq;
343		dev->target_freq = max(dev->target_freq, static_cpu_emc_freq);
344	} else {
345		dev->target_freq += dev->boost_freq;
346	}
347}
348
349static irqreturn_t actmon_thread_isr(int irq, void *data)
350{
351	struct tegra_devfreq *tegra = data;
352	bool handled = false;
353	unsigned int i;
354	u32 val;
355
356	mutex_lock(&tegra->devfreq->lock);
357
358	val = actmon_readl(tegra, ACTMON_GLB_STATUS);
359	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
360		if (val & tegra->devices[i].config->irq_mask) {
361			actmon_isr_device(tegra, tegra->devices + i);
362			handled = true;
363		}
364	}
365
366	if (handled)
367		update_devfreq(tegra->devfreq);
368
369	mutex_unlock(&tegra->devfreq->lock);
370
371	return handled ? IRQ_HANDLED : IRQ_NONE;
372}
373
374static int tegra_actmon_clk_notify_cb(struct notifier_block *nb,
375				      unsigned long action, void *ptr)
376{
377	struct clk_notifier_data *data = ptr;
378	struct tegra_devfreq *tegra;
379	struct tegra_devfreq_device *dev;
380	unsigned int i;
381
382	if (action != POST_RATE_CHANGE)
383		return NOTIFY_OK;
384
385	tegra = container_of(nb, struct tegra_devfreq, clk_rate_change_nb);
386
387	tegra->cur_freq = data->new_rate / KHZ;
388
389	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
390		dev = &tegra->devices[i];
391
392		tegra_devfreq_update_wmark(tegra, dev);
393	}
394
395	return NOTIFY_OK;
396}
397
398static void tegra_actmon_delayed_update(struct work_struct *work)
399{
400	struct tegra_devfreq *tegra = container_of(work, struct tegra_devfreq,
401						   cpufreq_update_work.work);
402
403	mutex_lock(&tegra->devfreq->lock);
404	update_devfreq(tegra->devfreq);
405	mutex_unlock(&tegra->devfreq->lock);
406}
407
408static unsigned long
409tegra_actmon_cpufreq_contribution(struct tegra_devfreq *tegra,
410				  unsigned int cpu_freq)
411{
412	struct tegra_devfreq_device *actmon_dev = &tegra->devices[MCCPU];
413	unsigned long static_cpu_emc_freq, dev_freq;
414
415	dev_freq = actmon_device_target_freq(tegra, actmon_dev);
416
417	/* check whether CPU's freq is taken into account at all */
418	if (dev_freq < actmon_dev->config->avg_dependency_threshold)
419		return 0;
420
421	static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
422
423	if (dev_freq + actmon_dev->boost_freq >= static_cpu_emc_freq)
424		return 0;
425
426	return static_cpu_emc_freq;
427}
428
429static int tegra_actmon_cpu_notify_cb(struct notifier_block *nb,
430				      unsigned long action, void *ptr)
431{
432	struct cpufreq_freqs *freqs = ptr;
433	struct tegra_devfreq *tegra;
434	unsigned long old, new, delay;
435
436	if (action != CPUFREQ_POSTCHANGE)
437		return NOTIFY_OK;
438
439	tegra = container_of(nb, struct tegra_devfreq, cpu_rate_change_nb);
440
441	/*
442	 * Quickly check whether CPU frequency should be taken into account
443	 * at all, without blocking CPUFreq's core.
444	 */
445	if (mutex_trylock(&tegra->devfreq->lock)) {
446		old = tegra_actmon_cpufreq_contribution(tegra, freqs->old);
447		new = tegra_actmon_cpufreq_contribution(tegra, freqs->new);
448		mutex_unlock(&tegra->devfreq->lock);
449
450		/*
451		 * If CPU's frequency shouldn't be taken into account at
452		 * the moment, then there is no need to update the devfreq's
453		 * state because ISR will re-check CPU's frequency on the
454		 * next interrupt.
455		 */
456		if (old == new)
457			return NOTIFY_OK;
458	}
459
460	/*
461	 * CPUFreq driver should support CPUFREQ_ASYNC_NOTIFICATION in order
462	 * to allow asynchronous notifications. This means we can't block
463	 * here for too long, otherwise CPUFreq's core will complain with a
464	 * warning splat.
465	 */
466	delay = msecs_to_jiffies(ACTMON_SAMPLING_PERIOD);
467	schedule_delayed_work(&tegra->cpufreq_update_work, delay);
468
469	return NOTIFY_OK;
470}
471
472static void tegra_actmon_configure_device(struct tegra_devfreq *tegra,
473					  struct tegra_devfreq_device *dev)
474{
475	u32 val = 0;
476
477	/* reset boosting on governor's restart */
478	dev->boost_freq = 0;
479
480	dev->target_freq = tegra->cur_freq;
481
482	dev->avg_count = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
483	device_writel(dev, dev->avg_count, ACTMON_DEV_INIT_AVG);
484
485	tegra_devfreq_update_avg_wmark(tegra, dev);
486	tegra_devfreq_update_wmark(tegra, dev);
487
488	device_writel(dev, ACTMON_COUNT_WEIGHT, ACTMON_DEV_COUNT_WEIGHT);
489	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
490
491	val |= ACTMON_DEV_CTRL_ENB_PERIODIC;
492	val |= (ACTMON_AVERAGE_WINDOW_LOG2 - 1)
493		<< ACTMON_DEV_CTRL_K_VAL_SHIFT;
494	val |= (ACTMON_BELOW_WMARK_WINDOW - 1)
495		<< ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT;
496	val |= (ACTMON_ABOVE_WMARK_WINDOW - 1)
497		<< ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT;
498	val |= ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN;
499	val |= ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN;
 
500	val |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
501	val |= ACTMON_DEV_CTRL_ENB;
502
503	device_writel(dev, val, ACTMON_DEV_CTRL);
504}
505
506static void tegra_actmon_stop_devices(struct tegra_devfreq *tegra)
507{
508	struct tegra_devfreq_device *dev = tegra->devices;
509	unsigned int i;
510
511	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++, dev++) {
512		device_writel(dev, ACTMON_DEV_CTRL_STOP, ACTMON_DEV_CTRL);
513		device_writel(dev, ACTMON_INTR_STATUS_CLEAR,
514			      ACTMON_DEV_INTR_STATUS);
515	}
516}
517
518static int tegra_actmon_resume(struct tegra_devfreq *tegra)
519{
520	unsigned int i;
521	int err;
522
523	if (!tegra->devfreq->profile->polling_ms || !tegra->started)
524		return 0;
525
526	actmon_writel(tegra, tegra->devfreq->profile->polling_ms - 1,
527		      ACTMON_GLB_PERIOD_CTRL);
528
529	/*
530	 * CLK notifications are needed in order to reconfigure the upper
531	 * consecutive watermark in accordance to the actual clock rate
532	 * to avoid unnecessary upper interrupts.
533	 */
534	err = clk_notifier_register(tegra->emc_clock,
535				    &tegra->clk_rate_change_nb);
536	if (err) {
537		dev_err(tegra->devfreq->dev.parent,
538			"Failed to register rate change notifier\n");
539		return err;
540	}
541
542	tegra->cur_freq = clk_get_rate(tegra->emc_clock) / KHZ;
543
544	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++)
545		tegra_actmon_configure_device(tegra, &tegra->devices[i]);
546
547	/*
548	 * We are estimating CPU's memory bandwidth requirement based on
549	 * amount of memory accesses and system's load, judging by CPU's
550	 * frequency. We also don't want to receive events about CPU's
551	 * frequency transaction when governor is stopped, hence notifier
552	 * is registered dynamically.
553	 */
554	err = cpufreq_register_notifier(&tegra->cpu_rate_change_nb,
555					CPUFREQ_TRANSITION_NOTIFIER);
556	if (err) {
557		dev_err(tegra->devfreq->dev.parent,
558			"Failed to register rate change notifier: %d\n", err);
559		goto err_stop;
560	}
561
562	enable_irq(tegra->irq);
563
564	return 0;
565
566err_stop:
567	tegra_actmon_stop_devices(tegra);
568
569	clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
570
571	return err;
572}
573
574static int tegra_actmon_start(struct tegra_devfreq *tegra)
575{
576	int ret = 0;
577
578	if (!tegra->started) {
579		tegra->started = true;
580
581		ret = tegra_actmon_resume(tegra);
582		if (ret)
583			tegra->started = false;
 
584	}
585
586	return ret;
587}
588
589static void tegra_actmon_pause(struct tegra_devfreq *tegra)
590{
591	if (!tegra->devfreq->profile->polling_ms || !tegra->started)
592		return;
593
594	disable_irq(tegra->irq);
595
596	cpufreq_unregister_notifier(&tegra->cpu_rate_change_nb,
597				    CPUFREQ_TRANSITION_NOTIFIER);
598
599	cancel_delayed_work_sync(&tegra->cpufreq_update_work);
600
601	tegra_actmon_stop_devices(tegra);
602
603	clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
604}
605
606static void tegra_actmon_stop(struct tegra_devfreq *tegra)
607{
608	tegra_actmon_pause(tegra);
609	tegra->started = false;
610}
611
612static int tegra_devfreq_target(struct device *dev, unsigned long *freq,
613				u32 flags)
614{
615	struct tegra_devfreq *tegra = dev_get_drvdata(dev);
616	struct devfreq *devfreq = tegra->devfreq;
617	struct dev_pm_opp *opp;
618	unsigned long rate;
619	int err;
620
621	opp = devfreq_recommended_opp(dev, freq, flags);
622	if (IS_ERR(opp)) {
623		dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
624		return PTR_ERR(opp);
625	}
626	rate = dev_pm_opp_get_freq(opp);
627	dev_pm_opp_put(opp);
628
629	err = clk_set_min_rate(tegra->emc_clock, rate * KHZ);
630	if (err)
631		return err;
632
633	err = clk_set_rate(tegra->emc_clock, 0);
634	if (err)
635		goto restore_min_rate;
636
637	return 0;
638
639restore_min_rate:
640	clk_set_min_rate(tegra->emc_clock, devfreq->previous_freq);
641
642	return err;
643}
644
645static int tegra_devfreq_get_dev_status(struct device *dev,
646					struct devfreq_dev_status *stat)
647{
648	struct tegra_devfreq *tegra = dev_get_drvdata(dev);
649	struct tegra_devfreq_device *actmon_dev;
650	unsigned long cur_freq;
651
652	cur_freq = READ_ONCE(tegra->cur_freq);
653
654	/* To be used by the tegra governor */
655	stat->private_data = tegra;
656
657	/* The below are to be used by the other governors */
658	stat->current_frequency = cur_freq;
659
660	actmon_dev = &tegra->devices[MCALL];
661
662	/* Number of cycles spent on memory access */
663	stat->busy_time = device_readl(actmon_dev, ACTMON_DEV_AVG_COUNT);
664
665	/* The bus can be considered to be saturated way before 100% */
666	stat->busy_time *= 100 / BUS_SATURATION_RATIO;
667
668	/* Number of cycles in a sampling period */
669	stat->total_time = tegra->devfreq->profile->polling_ms * cur_freq;
670
671	stat->busy_time = min(stat->busy_time, stat->total_time);
672
673	return 0;
674}
675
676static struct devfreq_dev_profile tegra_devfreq_profile = {
677	.polling_ms	= ACTMON_SAMPLING_PERIOD,
678	.target		= tegra_devfreq_target,
679	.get_dev_status	= tegra_devfreq_get_dev_status,
680};
681
682static int tegra_governor_get_target(struct devfreq *devfreq,
683				     unsigned long *freq)
684{
685	struct devfreq_dev_status *stat;
686	struct tegra_devfreq *tegra;
687	struct tegra_devfreq_device *dev;
688	unsigned long target_freq = 0;
689	unsigned int i;
690	int err;
691
692	err = devfreq_update_stats(devfreq);
693	if (err)
694		return err;
695
696	stat = &devfreq->last_status;
697
698	tegra = stat->private_data;
699
700	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
701		dev = &tegra->devices[i];
702
703		actmon_update_target(tegra, dev);
704
705		target_freq = max(target_freq, dev->target_freq);
706	}
707
708	*freq = target_freq;
709
710	return 0;
711}
712
713static int tegra_governor_event_handler(struct devfreq *devfreq,
714					unsigned int event, void *data)
715{
716	struct tegra_devfreq *tegra = dev_get_drvdata(devfreq->dev.parent);
717	unsigned int *new_delay = data;
718	int ret = 0;
719
720	/*
721	 * Couple devfreq-device with the governor early because it is
722	 * needed at the moment of governor's start (used by ISR).
723	 */
724	tegra->devfreq = devfreq;
725
726	switch (event) {
727	case DEVFREQ_GOV_START:
728		devfreq_monitor_start(devfreq);
729		ret = tegra_actmon_start(tegra);
730		break;
731
732	case DEVFREQ_GOV_STOP:
733		tegra_actmon_stop(tegra);
734		devfreq_monitor_stop(devfreq);
735		break;
736
737	case DEVFREQ_GOV_UPDATE_INTERVAL:
738		/*
739		 * ACTMON hardware supports up to 256 milliseconds for the
740		 * sampling period.
741		 */
742		if (*new_delay > 256) {
743			ret = -EINVAL;
744			break;
745		}
746
747		tegra_actmon_pause(tegra);
748		devfreq_update_interval(devfreq, new_delay);
749		ret = tegra_actmon_resume(tegra);
750		break;
751
752	case DEVFREQ_GOV_SUSPEND:
753		tegra_actmon_stop(tegra);
754		devfreq_monitor_suspend(devfreq);
755		break;
756
757	case DEVFREQ_GOV_RESUME:
758		devfreq_monitor_resume(devfreq);
759		ret = tegra_actmon_start(tegra);
760		break;
761	}
762
763	return ret;
764}
765
766static struct devfreq_governor tegra_devfreq_governor = {
767	.name = "tegra_actmon",
768	.get_target_freq = tegra_governor_get_target,
769	.event_handler = tegra_governor_event_handler,
770	.immutable = true,
771	.interrupt_driven = true,
772};
773
774static int tegra_devfreq_probe(struct platform_device *pdev)
775{
 
776	struct tegra_devfreq_device *dev;
777	struct tegra_devfreq *tegra;
778	struct devfreq *devfreq;
779	unsigned int i;
780	long rate;
781	int err;
782
783	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
784	if (!tegra)
785		return -ENOMEM;
786
787	tegra->regs = devm_platform_ioremap_resource(pdev, 0);
788	if (IS_ERR(tegra->regs))
789		return PTR_ERR(tegra->regs);
790
791	tegra->reset = devm_reset_control_get(&pdev->dev, "actmon");
792	if (IS_ERR(tegra->reset)) {
793		dev_err(&pdev->dev, "Failed to get reset\n");
794		return PTR_ERR(tegra->reset);
795	}
796
797	tegra->clock = devm_clk_get(&pdev->dev, "actmon");
798	if (IS_ERR(tegra->clock)) {
799		dev_err(&pdev->dev, "Failed to get actmon clock\n");
800		return PTR_ERR(tegra->clock);
801	}
802
803	tegra->emc_clock = devm_clk_get(&pdev->dev, "emc");
804	if (IS_ERR(tegra->emc_clock)) {
805		dev_err(&pdev->dev, "Failed to get emc clock\n");
806		return PTR_ERR(tegra->emc_clock);
807	}
808
809	err = platform_get_irq(pdev, 0);
810	if (err < 0)
811		return err;
812
813	tegra->irq = err;
814
815	irq_set_status_flags(tegra->irq, IRQ_NOAUTOEN);
816
817	err = devm_request_threaded_irq(&pdev->dev, tegra->irq, NULL,
818					actmon_thread_isr, IRQF_ONESHOT,
819					"tegra-devfreq", tegra);
820	if (err) {
821		dev_err(&pdev->dev, "Interrupt request failed: %d\n", err);
822		return err;
823	}
824
825	reset_control_assert(tegra->reset);
826
827	err = clk_prepare_enable(tegra->clock);
828	if (err) {
829		dev_err(&pdev->dev,
830			"Failed to prepare and enable ACTMON clock\n");
831		return err;
832	}
833
834	reset_control_deassert(tegra->reset);
835
836	rate = clk_round_rate(tegra->emc_clock, ULONG_MAX);
837	if (rate < 0) {
838		dev_err(&pdev->dev, "Failed to round clock rate: %ld\n", rate);
839		err = rate;
840		goto disable_clk;
841	}
842
843	tegra->max_freq = rate / KHZ;
844
845	for (i = 0; i < ARRAY_SIZE(actmon_device_configs); i++) {
846		dev = tegra->devices + i;
847		dev->config = actmon_device_configs + i;
848		dev->regs = tegra->regs + dev->config->offset;
849	}
850
851	for (rate = 0; rate <= tegra->max_freq * KHZ; rate++) {
852		rate = clk_round_rate(tegra->emc_clock, rate);
853
854		if (rate < 0) {
855			dev_err(&pdev->dev,
856				"Failed to round clock rate: %ld\n", rate);
857			err = rate;
858			goto remove_opps;
859		}
860
861		err = dev_pm_opp_add(&pdev->dev, rate / KHZ, 0);
862		if (err) {
863			dev_err(&pdev->dev, "Failed to add OPP: %d\n", err);
864			goto remove_opps;
865		}
866	}
867
868	platform_set_drvdata(pdev, tegra);
869
870	tegra->clk_rate_change_nb.notifier_call = tegra_actmon_clk_notify_cb;
871	tegra->cpu_rate_change_nb.notifier_call = tegra_actmon_cpu_notify_cb;
872
873	INIT_DELAYED_WORK(&tegra->cpufreq_update_work,
874			  tegra_actmon_delayed_update);
 
 
875
876	err = devfreq_add_governor(&tegra_devfreq_governor);
877	if (err) {
878		dev_err(&pdev->dev, "Failed to add governor: %d\n", err);
879		goto remove_opps;
880	}
881
882	tegra_devfreq_profile.initial_freq = clk_get_rate(tegra->emc_clock);
883	tegra_devfreq_profile.initial_freq /= KHZ;
 
 
 
 
 
 
 
884
885	devfreq = devfreq_add_device(&pdev->dev, &tegra_devfreq_profile,
886				     "tegra_actmon", NULL);
887	if (IS_ERR(devfreq)) {
888		err = PTR_ERR(devfreq);
889		goto remove_governor;
 
890	}
891
892	return 0;
893
 
 
 
894remove_governor:
895	devfreq_remove_governor(&tegra_devfreq_governor);
896
 
 
 
897remove_opps:
898	dev_pm_opp_remove_all_dynamic(&pdev->dev);
899
900	reset_control_reset(tegra->reset);
901disable_clk:
902	clk_disable_unprepare(tegra->clock);
903
904	return err;
905}
906
907static int tegra_devfreq_remove(struct platform_device *pdev)
908{
909	struct tegra_devfreq *tegra = platform_get_drvdata(pdev);
910
911	devfreq_remove_device(tegra->devfreq);
912	devfreq_remove_governor(&tegra_devfreq_governor);
913
 
914	dev_pm_opp_remove_all_dynamic(&pdev->dev);
915
916	reset_control_reset(tegra->reset);
917	clk_disable_unprepare(tegra->clock);
918
919	return 0;
920}
921
922static const struct of_device_id tegra_devfreq_of_match[] = {
923	{ .compatible = "nvidia,tegra30-actmon" },
924	{ .compatible = "nvidia,tegra124-actmon" },
925	{ },
926};
927
928MODULE_DEVICE_TABLE(of, tegra_devfreq_of_match);
929
930static struct platform_driver tegra_devfreq_driver = {
931	.probe	= tegra_devfreq_probe,
932	.remove	= tegra_devfreq_remove,
933	.driver = {
934		.name = "tegra-devfreq",
935		.of_match_table = tegra_devfreq_of_match,
936	},
937};
938module_platform_driver(tegra_devfreq_driver);
939
940MODULE_LICENSE("GPL v2");
941MODULE_DESCRIPTION("Tegra devfreq driver");
942MODULE_AUTHOR("Tomeu Vizoso <tomeu.vizoso@collabora.com>");